WO2015005431A1 - 細胞への遺伝子導入用組成物 - Google Patents

細胞への遺伝子導入用組成物 Download PDF

Info

Publication number
WO2015005431A1
WO2015005431A1 PCT/JP2014/068439 JP2014068439W WO2015005431A1 WO 2015005431 A1 WO2015005431 A1 WO 2015005431A1 JP 2014068439 W JP2014068439 W JP 2014068439W WO 2015005431 A1 WO2015005431 A1 WO 2015005431A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorbitan
component
group
gene
sericin
Prior art date
Application number
PCT/JP2014/068439
Other languages
English (en)
French (fr)
Inventor
由隆 近藤
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to JP2015526401A priority Critical patent/JP6439690B2/ja
Priority to EP14823515.3A priority patent/EP3020809B1/en
Priority to US14/904,394 priority patent/US20160160234A1/en
Publication of WO2015005431A1 publication Critical patent/WO2015005431A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Definitions

  • the present invention relates to a composition for gene introduction into cells, a method for gene introduction into cells, and a kit for gene introduction into cells.
  • the other is a method that does not use a viral vector.
  • a method that does not use a viral vector for example, a method of including plasmid DNA or the like in a liposome, polyethyleneimine, virus-derived envelope or the like (carrier) is known.
  • lipid-containing suspension can be prepared by dissolving a lipid in a lower alcohol such as methanol or ethanol and then mixing and stirring the lipid solution with a buffer solution or the like.
  • lipids are dissolved in an organic solvent such as chloroform or a chloroform / methanol mixed solvent, and the organic solvent is volatilized to form a lipid thin film.
  • Suspensions containing liposomes can be prepared.
  • liposomes for gene introduction were prepared by the SUV method (Non-patent Document 1) or the two-stage emulsification method (Patent Documents 1 and 2).
  • Non-Patent Documents As a gene transfer method using a virus-derived envelope, a method using a Sendai virus envelope is known. In this method, after destroying the Sendai virus genomic RNA with ⁇ -propiolactone or UV irradiation, etc., the virus-derived envelope obtained by purification and the gene-encapsulated liposome are fused (Non-Patent Documents). 2) Or by encapsulating the plasmid DNA in the virus-derived envelope by temporarily improving the membrane permeability by treating the virus-derived envelope with a surfactant (Patent Document 3), a gene transfer vector is prepared. ing.
  • Non-patent Document 3 Also known is a method of including a gene in a virus-like envelope reconstituted from an artificial lipid membrane and a virus-derived membrane protein.
  • Patent Document 4 altering envelope virus membrane surface protein using genetic modification technology (Patent Document 4), using polyethyleneimine (Non-Patent Document 4), combining cationic lipid and extracellular matrix (Patent Document 5)
  • Patent Document 5 combining cationic lipid and extracellular matrix
  • Patent Document 6 In a reverse transfection method in which a gene transfer vector is immobilized and contacted with cells, a method of combining a gene delivery material and sericin or a hydrolyzate thereof is also known (Patent Document 6). Although improvement of gene expression can be expected, improvement of foreign gene expression for floating cells is limited.
  • the present inventor has conducted various studies and has found that a composition for introducing a foreign gene into a cell having excellent safety and gene transfer efficiency can be obtained by a simple operation of simply mixing a specific substance. And the present invention was completed.
  • the present invention (1) (A) Sorbitan sesquioleate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, sorbitan monooleate, L- ⁇ -phosphatidylinositol, L- ⁇ -dioleoyl phosphatidylethanolamine At least one lipid selected from the group consisting of octadecylamine, hexadecylamine, DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) and cardiolipin (hereinafter also referred to as component A), and (B) albumin , At least one protein selected from the group consisting of casein, gelatin and sericin (hereinafter also referred to as component B), and (C) selected from the group consisting of protamine sulfate, polyarginine, polylysine, polyethyleneimine and hexadimethr
  • the present invention provides the composition according to (1) or (2), further comprising (E) chloroquine, quinacrine, hydroxychloroquine, cyclosporine, cyclophosphamide, tacrolimus, ascomycin, rapamycin, 2-cyano.
  • the present invention also relates to a composition
  • component F a virus envelope
  • this invention relates to the method of introduce
  • this invention relates to the method of introduce
  • this invention relates to the method of said (5) or (6) which makes the component D contact a cell further.
  • the present invention also relates to the method according to any one of (5) to (7) above, wherein the component E is further contacted with a cell.
  • the present invention also relates to the method according to any one of (5) to (8) above, wherein the component F is further brought into contact with cells.
  • this invention relates to the kit containing the component A, the component B, and the component C. (11) Moreover, this invention relates to the kit which contains the component D further to the kit of said (10). (12) Moreover, this invention relates to the kit which contains the component E further in the kit of said (10) or (11). (13) The present invention also relates to a kit further containing component F in the kit according to any one of (10) to (12).
  • the present invention can provide a composition for introducing a foreign gene into a cell having excellent safety and gene transfer efficiency.
  • the composition can be prepared by a simple operation only by mixing a specific substance.
  • the composition is advantageous in terms of cost as compared with a carrier used in an existing method.
  • An outline of the preparation method is shown. 1 shows an example of a procedure for adding each component to plasmid DNA.
  • (A), (B), (C), (D), (E), and (F) in the figure are component A and component B, respectively.
  • Component C, Component D, Component E and Component F are shown.
  • a mixed solution containing plasmid DNA pTurboGFP-N
  • A sorbitan sesquioleate
  • Span 83 sorbitan sesquioleate
  • B sericin
  • C protamine sulfate
  • the left bar graph represents the expression level of the luciferase gene when (D) laminin is not added.
  • Cultured cells containing a mixture of plasmid DNA (pCMV-GL3), (F) Sendai virus-derived envelope, (A) sorbitan sesquioleate, (B) sericin, (C) protamine sulfate and (E) chloroquine or quinacrine Represents the expression level of the luciferase gene measured one day after the addition.
  • the bar graph represents the case where component E is not added, the case where chloroquine is added as component E, and the case where quinacrine is added as component E, in order from the left.
  • plasmid DNA Sendai virus-derived envelope
  • A Sendai virus-derived envelope
  • B albumin
  • C protamine sulfate
  • the expression level of the measured luciferase gene is represented (in the order from the left of the bar graph, albumin 1 mg / mL, 1/3 mg / mL, 1/9 mg / mL, no albumin added).
  • a mixed solution containing plasmid DNA pCMV-GL3
  • F Sendai virus-derived envelope
  • A sorbitan sesquioleate
  • B sericin
  • C protamine sulfate
  • the measured expression level of the luciferase gene is represented (the right end of the bar graph).
  • a mixed solution containing plasmid DNA (pCMV-GL3), (A) sorbitan sesquioleate, (A) hexadecylamine, (B) sericin, and (C) protamine sulfate was added to the cultured cells, and measurement was performed one day later. It represents the expression level of the luciferase gene.
  • the left bar graph represents the expression level of the luciferase gene when (A) hexadecylamine is not added.
  • Plasmid DNA pCMV-GL3
  • A Mixture 1 containing sorbitan sesquioleate
  • B sericin and
  • C protamine sulfate
  • plasmid DNA pCMV-GL3
  • F Sendai virus-derived envelope
  • A sorbitan sesquioleate
  • B sericin and
  • C a comparison of gene expression levels of a commercially available gene introduction reagent (comparative mixture) containing mixed solution 2 containing protamine sulfate.
  • the bar graph represents the mixed solution 1, the mixed solution 2, and the comparative mixed solution in order from the left.
  • Plasmid DNA pCMV-GL3
  • A sorbitan sesquioleate
  • B sericin
  • C protamine sulfate
  • E N- [3-[[5-iodo-4-[[3-[(2 1 day after adding a mixed solution containing -thienylcarbonyl) amino] propyl] amino] -2-pyrimidinyl] amino] phenyl] -1-pyrrolidinecarboxamide (hereinafter sometimes referred to as Compound A) to the cultured cells It represents the expression level of the measured luciferase gene.
  • the left bar graph represents the expression level of the luciferase gene when (E) Compound A is not added.
  • gene refers to a natural, synthetic or recombinant gene or a gene fragment thereof
  • gene transfer refers to natural, synthetic or recombinant gene in a target cell in vivo or in vitro.
  • the desired gene or gene fragment thereof is introduced so that the introduced gene maintains its function.
  • the gene or gene fragment introduced in the present invention includes DNA, RNA having a specific sequence, or a nucleic acid that is a synthetic analog thereof.
  • gene transfer and “transfection” are used interchangeably.
  • examples of cells into which genes are introduced include in vitro cultured cells, cells extracted from living organisms, and cells existing in living organisms.
  • the cells may be either adherent cells or floating cells.
  • sericin is used to mean sericin and its hydrolyzate.
  • the viral envelope is a retroviridae, togaviridae, coronaviridae, flaviviridae, paramyxoviridae, orthomyxoviridae, bunyaviridae, rhabdoviridae, poxviridae, herpesviridae, Envelopes derived from viruses belonging to the Baculoviridae family and the Hepadnaviridae family can be mentioned, and an envelope derived from Sendai virus (HVJ) is preferred. More preferably, it is an inactivated envelope derived from Sendai virus (HVJ).
  • HVJ Sendai virus
  • the composition according to the present invention is prepared by a simple operation in which component A, component B and component C are mixed by, for example, pipetting, tapping, vortex mixer or the like. Can do.
  • the composition of the present invention can be expected to improve gene expression efficiency by further mixing component D, component E and / or component F or other appropriate preparation.
  • the mixing weight ratio of component A and component B is not particularly limited, but is preferably 1: 0.07 to 1: 4200, more preferably 1: 4 to 1: 4200, and still more preferably 1: 4 to 1. : 1000, and even more preferably 1:35 to 1: 840.
  • the mixing weight ratio of component A and component C cannot be generally specified because the time required for gene transfer varies depending on the amount of component C, but is preferably 1: 0.006 to 1: 320, more preferably 1: 0.1 to 1: 320. More preferably, it is 1: 0.1 to 1:50, and still more preferably 1: 1.5 to 1:50.
  • the mixing weight ratio of component A and component D is not particularly limited, but is preferably 1: 0.002 to 1: 140, more preferably 1: 0.04 to 1: 140, More preferably, it is 1: 0.04 to 1:70, and still more preferably 1: 0.1 to 1:10.
  • the mixing weight ratio of component A and component E differs depending on the type of component E, so it cannot be defined unconditionally and does not give toxicity to cells into which the gene is introduced. What is necessary is just to select arbitrarily in the range.
  • the mixing ratio of component A and the envelope derived from Sendai virus is not particularly limited, but is preferably 1: 0.01 to 1: 3000, more preferably 1: 0.1 to 1: 3000, still more preferably 1: 0.3 to 1: 500, and even more preferably 1: 0.5 to 1. : 100.
  • the concentration of component A in the composition of the present invention is not particularly limited, but is preferably 0.0003 to 0.2% by weight, more preferably 0.0003 to 0.02% by weight, still more preferably 0.0005 to 0.02% by weight, and still more preferably 0.0007 to 0.001% by weight. It is.
  • the concentration of component B in the composition of the present invention is not particularly limited, but is preferably 0.01 to 3% by weight, more preferably 0.04 to 2% by weight, still more preferably 0.04 to 1% by weight, and even more preferably 0.2 to 1% by weight. It is.
  • the concentration of component C in the composition of the present invention cannot be defined unconditionally because the time required for gene transfer varies depending on the amount of component C, but is preferably 0.0009 to 0.13 wt%, more preferably 0.009 to 0.06 wt%.
  • the concentration of component D is not particularly limited, but is preferably 0.0003 to 0.04% by weight, more preferably 0.0008 to 0.004% by weight.
  • the concentration of component E varies depending on the type of component E, so it cannot be defined unconditionally, and is arbitrarily selected within a range that does not give toxicity to cells into which the gene is introduced. do it.
  • the HAU of the envelope derived from Sendai virus per unit liquid amount is not particularly limited, but preferably 0.01 to 10 to HAU / ⁇ L, more preferably 0.03 to 1 to HAU / ⁇ L.
  • the composition of the present invention comprises components A, B and C, and optionally components D, E and / or F, water, alcohols (for example, ethanol), buffer (for example, phosphate buffered saline) , HEPES buffer solution, Tris hydrochloric acid buffer solution, TE buffer solution), cell culture solution (for example, DMEM medium, RPMI medium) and the like may be contained.
  • concentration of these additives is not particularly limited.
  • the pH of the composition of the present invention is preferably 6-10.
  • the method of the present invention includes a method of introducing a gene into a cell of a non-human animal by contacting component A, component B, component C, and the gene with the cell, as well as component A, component B,
  • a gene is introduced into a cell in vitro by bringing the component C and the gene into contact with the cell.
  • improvement in gene transfer efficiency can be expected.
  • the method of the present invention can be performed under arbitrary conditions.
  • component A, component B and component C, and optionally component D, component E and / or component F, and the gene may be contacted with the cell simultaneously or sequentially, It is preferred that the component and gene are combined and contacted with the cell simultaneously. Among them, it is particularly preferable to prepare a gene transfer vector containing component A, component B and component C, and optionally component D, component E and / or component F, and a gene, and bringing the vector into contact with a cell. .
  • each component and gene may be partly or entirely in the form of a complex.
  • the term “gene transfer vector” does not mean a single nucleic acid, but means a composition in which a component other than the nucleic acid (for example, component A) is included in addition to the nucleic acid. To do.
  • Preparation of the gene transfer vector can be performed by mixing each component and the gene in an arbitrary mixing order, for example, by pipetting.
  • a gene to be introduced is mixed with a mixture of component A, component B and component C;
  • component C is mixed;
  • the introduced gene and component C are mixed, then the mixture of components A and B is mixed;
  • the introduced gene and component A are mixed, then Mix component B, and finally mix component C;
  • introduce For example, the gene and the component B are mixed, then the component C is mixed, and finally the component A is mixed.
  • the gene transfer vector can be prepared by mixing the components in an arbitrary order, for example, by pipetting.
  • component F include, for example, (vii) mixing the gene to be introduced and component F, and then mixing the mixture of component A, component B and component C; (viii) being introduced Mix the gene and component F, then mix the mixture of component A and component B, and finally mix component C; (ix) mix the introduced gene with the mixture of component A and component B, then Mix component F, finally mix component C; (x) mix the gene to be introduced and the mixture of components A and B, then mix component C, finally mix component F; etc. Can be mentioned.
  • the order of mixing is not limited, but it is preferably performed according to the procedure shown in FIG.
  • examples of the mixing ratio and use concentration of each component include the same as the mixing weight ratio and concentration of each component in the above-described composition of the present invention.
  • the gene transfer vector may contain the same additive as the additive of the above-described composition of the present invention.
  • the gene introduction kit of the present invention contains component A, component B, and component C, and may contain component D, component E, and / or component F as necessary.
  • the kit of the present invention comprises alcohols (e.g., ethanol), buffers (e.g., phosphate buffered saline, HEPES buffer, Tris hydrochloric acid buffer, TE buffer), cell culture solutions (e.g., DMEM medium, RPMI). Medium) and the like.
  • kit of the present invention may be accommodated in a separate container, or any two or more components may be accommodated in a single container.
  • the gene transfer composition and gene transfer vector of the present invention can be easily prepared.
  • extracellular matrix component selected from the group consisting of laminin, fibronectin, hyaluronic acid, entactin, elastin, tenascin, vitronectin, collagen, chondroitin sulfate, fibrin and fibrinogen
  • the composition according to (1), wherein the lipid of (A) is at least one selected from the group consisting of sorbitan sesquioleate, sorbitan monolaurate and hexadecylamine.
  • the composition according to (1), wherein the lipid of (A) is sorbitan sesquioleate.
  • the composition according to (1), wherein the positively charged substance in (C) is protamine sulfate.
  • the composition according to (2), wherein the extracellular matrix component of (D) is at least one selected from the group consisting of laminin, vitronectin and fibrinogen.
  • the composition according to (4), wherein the virus envelope of (F) is an envelope derived from Sendai virus.
  • (10) (A) Sorbitan sesquioleate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, sorbitan monooleate, L- ⁇ -phosphatidylinositol, L- ⁇ -dioleoyl phosphatidylethanolamine , Octadecylamine, hexadecylamine, DOTAP and cardiolipin, (B) at least one protein selected from the group consisting of albumin, casein, gelatin and sericin; (C) It is characterized by contacting a cell with a gene and at least one positively charged substance selected from the group consisting of protamine sulfate, polyarginine, polylysine, polyethyleneimine, polyethyleneimine, and hexadimethrin bromide.
  • a method for introducing a gene into a non-human animal cell (11)
  • a method for introducing a gene into a cell in vitro (12) Further, (D) at least one extracellular matrix component selected from the group consisting of laminin, fibronectin, vitronectin, hyaluronic acid, entactin, elastin, tenascin, collagen, chondroitin sulfate, fibrin and fibrinogen is brought into contact with the cell.
  • the method described in 1. The method according to any one of (10) to (13), wherein (F) the virus envelope is further contacted with a cell.
  • the lipid according to (10) to (14), wherein the lipid of (A) is at least one selected from the group consisting of sorbitan sesquioleate, sorbitan monolaurate and hexadecylamine.
  • Method. (16) The method according to any one of (10) to (14), wherein the lipid of (A) is sorbitan sesquioleate.
  • the positively charged substance in (C) is protamine sulfate.
  • extracellular matrix component selected from the group consisting of laminin, fibronectin, vitronectin, hyaluronic acid, entactin, elastin, tenascin, collagen, chondroitin sulfate, fibrin and fibrinogen.
  • the lipid (A) is at least one selected from the group consisting of sorbitan sesquioleate, sorbitan monolaurate, and hexadecylamine.
  • the present inventor has found that the effect of improving the gene transfer efficiency by component E is exhibited not only by the method of the present invention but also by applying to a known gene transfer method. That is, the second invention also relates to a method for improving gene transfer efficiency using component E and a gene transfer promoter containing component E as an active ingredient.
  • Component E used in the method includes quinacrine, N- [3-[[5-iodo-4-[[3-[(2-thienylcarbonyl) amino] propyl] amino] -2-pyrimidinyl] amino] phenyl ] -1-pyrrolidinecarboxamide is particularly preferred.
  • Known gene transfer methods are not particularly limited, but include, for example, viral vector methods, electroporation methods, ultrasonic gene transfer methods, liposomes, polyethyleneimine, virus-derived envelopes (carriers) including plasmid DNA, etc.
  • the method to make is mentioned.
  • a method using a known viral vector, an electroporation method and an ultrasonic gene transfer method the method described in the gene transfer and expression analysis protocol (Yodosha, 2003) which is always successful is a method using a liposome or polyethyleneimine.
  • Nonviral gene delivery principle, limitations, and recent progress. The AAPS Journal.
  • TM Lipofectamine
  • TM Lipofectamine
  • TM Lipofectamine
  • TM Lipofectamine
  • TM Lipofectamine
  • TM Lipofectamine
  • TM Lipofectamine
  • TM Lipofectamine
  • TM 3000 Reagent
  • FuGENE TM
  • HD Transfection Reagent FuGENE
  • TM HD Transfection Reagent
  • TM Polyplus
  • Max Polyethylenimine
  • TM Polyplus
  • Xfect TM Transfection Reagent
  • Takara Attractene Transfection
  • Reagent QIAGEN
  • Effectene TM Transfection
  • TM Transfection
  • TM Transfection
  • TM Transfection
  • TM Transfection
  • TM Transfection
  • TM Transfection
  • TM Transfection
  • Promega Promega
  • X-tremeGENE 9 DNA (Transmega)
  • X-tremeGENE (trademark), HP, DNA, Transfection, Reagent, (Roche
  • (II) (E) is quinacrine and N- [3-[[5-iodo-4-[[3-[(2-thienylcarbonyl) amino] propyl] amino] -2-pyrimidinyl] amino] phenyl]-
  • the method according to (I) above which is at least one selected from the group consisting of 1-pyrrolidinecarboxamide.
  • (III) The method according to (I) or (II), which is used in a gene introduction method using liposome.
  • (V) (E) is quinacrine and N- [3-[[5-iodo-4-[[3-[(2-thienylcarbonyl) amino] propyl] amino] -2-pyrimidinyl] amino] phenyl]-
  • the gene introduction promoter according to (IV) which is at least one selected from the group consisting of 1-pyrrolidinecarboxamide.
  • Example 1 A549 cells, which are adherent culture cells, were seeded to a density of 4 ⁇ 10 3 cells / well in a 96-well plate one day before transfection. THP-1 cells, which are suspension culture cells, were seeded on a 96-well plate at the density of 2 ⁇ 10 4 cells / well on the day of transfection.
  • Example 2 Jurkat cells, which are suspension culture cells, were seeded on a 96-well plate at the density of 4 ⁇ 10 4 cells / well on the day of transfection.
  • a suspension of Sendai virus-derived inactivated HVJ envelope (GenomONE-CF: registered trademark, manufactured by Ishihara Sangyo Co., Ltd.) 47.8 HAU / ⁇ L was used in the experiment.
  • This inactivated HVJ envelope suspension was diluted 1/2, 1/4, 1/8, 1/16, 1/32 times with PBS. Add 4 ⁇ L of each diluted inactivated HVJ envelope suspension to 8 ⁇ L of 0.3% Triton X-100 PBS solution, and centrifuge at 4 ° C, 10,000 g for 5 minutes using a micro high-speed cooling centrifuge. The activated HVJ envelope was pelleted down. After removing the supernatant, the inactivated HVJ envelope whose permeability of the envelope membrane was improved by TritonTriX-100 treatment was suspended in 12.5 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution.
  • test composition was prepared by adding 6.25 ⁇ L of 1 mg / mL / protamine sulfate / PBS solution. These test compositions were added to the cell culture at 9.5 ⁇ L / well.
  • component F improves the gene transfer efficiency of the composition of the present invention.
  • Example 3 NIH-3T3 cells, which are adherent culture cells, were seeded on a 96-well plate at a density of 4 ⁇ 10 3 cells / well one day before transfection.
  • Example 4 NIH-3T3 cells, which are adherent culture cells, were seeded on a 96-well plate at a density of 4 ⁇ 10 3 cells / well one day before transfection.
  • a suspension of Sendai virus-derived inactivated HVJ envelope (GenomONE-CF: registered trademark, manufactured by Ishihara Sangyo Co., Ltd.) 47.8 HAU / ⁇ L was used in the experiment.
  • Example 5 A549 and RAW264.7 cells, which are adherent culture cells, were seeded on 96-well plates at a density of 4 ⁇ 10 3 cells / well and 2 ⁇ 10 4 cells / well, respectively, one day before transfection.
  • a suspension of Sendai virus-derived inactivated HVJ envelope (GenomONE-CF: registered trademark, manufactured by Ishihara Sangyo Co., Ltd.) 47.8 HAU / ⁇ L was used in the experiment.
  • Example 6 K562 cells, which are suspension culture cells, were seeded on a 96-well plate at the density of 1 ⁇ 10 4 cells / well on the day of transfection.
  • Example 7 Jurkat cells, which are suspension culture cells, were seeded on a 96-well plate at the density of 4 ⁇ 10 4 cells / well on the day of transfection.
  • a suspension of Sendai virus-derived inactivated HVJ envelope (GenomONE-CF: registered trademark, manufactured by Ishihara Sangyo Co., Ltd.) 47.8 HAU / ⁇ L was used in the experiment.
  • test composition was prepared by adding 12.5 ⁇ L of mg / mL ⁇ ⁇ protamine sulfate PBS solution. These test compositions were added to the cell culture at 7.5 ⁇ L / well.
  • Lipofectamine® LTX & PLUS® reagent (Invitrogen) was performed as follows. To 20 ⁇ L of Opti-MEM Reduced Serum Medium (Gibco), 1 ⁇ mg / mL pCMV-GL3 plasmid solution 0.1 ⁇ L and PLUS reagent 0.1 ⁇ L were added and allowed to stand for 5 minutes. Further, Lipofectamine LTX reagent 0.55 ⁇ L was added and allowed to stand for 25 minutes, and then added to the cell culture solution at 20 ⁇ L / well.
  • Opti-MEM Reduced Serum Medium Gibco
  • Lipofectamine LTX reagent 0.55 ⁇ L was added and allowed to stand for 25 minutes, and then added to the cell culture solution at 20 ⁇ L / well.
  • composition of the present invention was found to have significantly higher gene transfer efficiency than the commercially available gene transfer reagent Lipofectamine® LTX & PLUS® reagent (Invitrogen).
  • Example 8 A549 cells, which are adherent culture cells, were seeded to a density of 4 ⁇ 10 3 cells / well in a 96-well plate one day before transfection.
  • test composition was prepared by adding 15 ⁇ L of 1 mg / mL protamine sulfate PBS solution. These test compositions were added to the cell culture at 20 ⁇ L / well.
  • Example 9 RAW264.7 cells, which are adherent culture cells, were seeded in a 96-well plate at a density of 2 ⁇ 10 4 cells / well one day before transfection.
  • Jurkat cells, U937 cells, K562 cells, and THP-1 cells which are suspension culture cells, are 4 ⁇ 10 4 cells / well, 4 ⁇ 10 4 cells / well, 2 ⁇ 10 4 cells / well, 8 on the day of transfection, respectively. It seed
  • test composition To each 30 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution, add 36 ⁇ L of each of the above preparations, mix by pipetting, and then add 15 ⁇ L of 1 ⁇ mg / mL ⁇ ⁇ protamine sulfate PBS solution to prepare the test composition. . These test compositions were added to the cell culture at 15 ⁇ L / well.
  • test composition by adding 30 ⁇ L of each of the above preparations to 25 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution, mixing by pipetting, and then adding 12.5 ⁇ L of 1 mg / mL ⁇ ⁇ protamine sulfate PBS solution. did. These test compositions were added to the cell culture at 15 ⁇ L / well. Immediately after transfection, PBS was added at 4.7 ⁇ L / well for the sample containing sericin, and 4.7 ⁇ L / well of 15 ⁇ g / mL sericin-PBS solution was added to the sample without sericin.
  • Example 11 Adherent culture cells A549 and NIH-3T3 cells were seeded at a density of 4 ⁇ 10 3 cells / well in 96-well plates one day before transfection.
  • a suspension of Sendai virus-derived inactivated HVJ envelope (GenomONE-CF: registered trademark, manufactured by Ishihara Sangyo Co., Ltd.) 47.8 HAU / ⁇ L was used in the experiment.
  • test composition was prepared by adding 3.1 ⁇ L of 1 ⁇ mg / mL-protamine sulfate-PBS solution. These test compositions were added to the cell culture at 8.1 ⁇ L / well.
  • the enzyme activity (relative value) of the luciferase protein produced from the pCMV-GL3 plasmid was measured using ONE-Glo-Luciferase-Assay-System (Promega) to confirm whether or not gene transfer was achieved.
  • Example 12 NIH-3T3 cells, which are adherent culture cells, were seeded on a 96-well plate at a density of 4 ⁇ 10 3 cells / well one day before transfection.
  • Jurkat cells which are suspension culture cells, were seeded on a 96-well plate at the density of 4 ⁇ 10 4 cells / well on the day of transfection.
  • SIGMA cardiolipin
  • DOPE L- ⁇ -dioleoyl phosphatidylethanolamine
  • test composition by adding 15 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution to each 18 ⁇ L of the above preparations, mixing by pipetting, and then adding 7.5 ⁇ L of 1 mg / mL ⁇ ⁇ protamine sulfate PBS solution. did. These test compositions were added to the cell culture at 15 ⁇ L / well.
  • the enzyme activity (relative value) of the luciferase protein produced from the pCMV-GL3 plasmid was measured using ONE-Glo-Luciferase-Assay-System (Promega) to confirm whether or not gene transfer was achieved.
  • composition of the present invention using sorbitan sesquioleate, sorbitan monooleate, cardiolipin, cardiolipin and DOPE as component A can introduce genes into NIH-3T3 cells and Jurkat cells. It was.
  • Example 13 NIH-3T3 cells, which are adherent culture cells, were seeded on a 96-well plate at a density of 4 ⁇ 10 3 cells / well one day before transfection.
  • test composition After adding 10 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution to 12 ⁇ L of each of the above preparations and mixing by pipetting, a test composition was prepared by adding 5 ⁇ L of 1 ⁇ mg / mL ⁇ ⁇ protamine sulfate PBS solution. . These test compositions were added to the cell culture at 15 ⁇ L / well.
  • the enzyme activity (relative value) of the luciferase protein produced from the pCMV-GL3 plasmid was measured using ONE-Glo-Luciferase-Assay-System (Promega) to confirm whether or not gene transfer was achieved.
  • Example 14 NIH-3T3 cells, which are adherent culture cells, were seeded on a 96-well plate at a density of 4 ⁇ 10 3 cells / well one day before transfection.
  • test composition After adding 10 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution to 12 ⁇ L of each of the above preparations and mixing by pipetting, a test composition was prepared by adding 5 ⁇ L of 1 ⁇ mg / mL ⁇ ⁇ protamine sulfate PBS solution. . These test compositions were added to the cell culture at 15 ⁇ L / well.
  • the enzyme activity (relative value) of the luciferase protein produced from the pCMV-GL3 plasmid was measured using ONE-Glo-Luciferase-Assay-System (Promega) to confirm whether or not gene transfer was achieved.
  • Example 15 Jurkat cells, which are suspension culture cells, were seeded on a 96-well plate at the density of 4 ⁇ 10 4 cells / well on the day of transfection.
  • PCMV-GL3, sorbitan sesquioleate, sericin and protamine sulfate were prepared by changing the mixing order as shown in the following (a) to (d).
  • test composition was prepared by adding 30 ⁇ L of the above preparation solution to 25 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution, mixing by pipetting, and then adding 12.5 ⁇ L of 1 mg / mL ⁇ ⁇ protamine sulfate PBS solution. .
  • a test composition was prepared by adding 65.5 ⁇ L of the above preparation solution to 2 ⁇ L of 1/2% sorbitan sesquioleate (Nacalai Tesque) ethanol solution and mixing by pipetting.
  • test composition prepared by the procedures (a) to (d) was added to the cell culture solution at 15 ⁇ L / well.
  • the enzyme activity (relative value) of the luciferase protein produced from the pCMV-GL3 plasmid was measured using ONE-Glo-Luciferase-Assay-System (Promega) to confirm whether or not gene transfer was achieved.
  • composition of the present invention was not limited to the order shown in FIG. 2 because no significant difference in gene expression was observed when the composition of the present invention was prepared in any mixing order. It was confirmed that preparation was possible.
  • Example 16 A549 and RAW264.7 cells, which are adherent culture cells, were seeded on 96-well plates at a density of 4 ⁇ 10 3 cells / well and 2 ⁇ 10 4 cells / well, respectively, one day before transfection.
  • K562 cells which are suspension culture cells, were seeded on a 96-well plate at the density of 2 ⁇ 10 4 cells / well on the day of transfection.
  • test composition To each 40 ⁇ L of 1/10 mg / mL pCMV-GL3 plasmid solution, add 48 ⁇ L of each of the above preparations, mix by pipetting, and then add 20 ⁇ L of 1 ⁇ mg / mL ⁇ ⁇ protamine sulfate PBS solution to prepare the test composition. (A total of 3 prepared per cell). These test compositions were added to the cell culture at 15 ⁇ L / well.
  • Lipofectamine LTX & PLUS reagent (Invitrogen) was performed as follows. 1-mg / mL-pCMV-GL3 plasmid solution 0.7 ⁇ L and PLUS-reagent-0.7 ⁇ L were added to 140 ⁇ L of Opti-MEM 1 Reduced Serum Medium (Gibco) (Gibco), and allowed to stand for 5 minutes. Further, 2.8 ⁇ L of Lipofectamine LTX reagent was added and allowed to stand for 25 minutes, and then added to the cell culture solution at 20 ⁇ L / well.
  • the enzyme activity (relative value) of the luciferase protein produced from the pCMV-GL3 plasmid was measured using ONE-Glo-Luciferase-Assay-System (Promega) to confirm whether or not gene transfer was achieved.
  • Example 17 RAW264.7 cells, which are adherent culture cells, were seeded in a 96-well plate at a density of 2 ⁇ 10 4 cells / well one day before transfection.
  • Lipofectamine LTX & PLUS reagent (Invitrogen) was performed as follows. 0.2 ⁇ L of 1 ⁇ mg / mL pCMV-GL3 plasmid solution and 0.2 ⁇ L PLUS reagent 0.2 ⁇ L were added to 40 ⁇ L of Opti-MEM I Reduced Serum Medium (Gibco) (Gibco) and allowed to stand for 5 minutes. Further, Lipofectamine LTX reagent 0.8 ⁇ L was added and allowed to stand for 25 minutes, and then added to the cell culture solution at 20 ⁇ L / well.
  • the enzyme activity (relative value) of the luciferase protein produced from the pCMV-GL3 plasmid was measured using ONE-Glo-Luciferase-Assay-System (Promega) to confirm whether or not gene transfer was achieved.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

開示されているのは、(A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質を含有する遺伝子導入用組成物、遺伝子を非ヒト動物の細胞内に導入する方法、遺伝子を生体外の細胞内に導入する方法、並びに遺伝子導入用キットである。

Description

細胞への遺伝子導入用組成物
 本発明は、細胞への遺伝子導入用組成物、細胞への遺伝子導入方法、及び細胞への遺伝子導入用キットに関する。
 現在、細胞内への遺伝子導入は、分子生物学、細胞生物学、遺伝子工学など幅広い分野において中心的な技術となっている。ここで、細胞内に遺伝子を導入するための方法は大きく二つに分類することができる。
 一つは、ウイルスベクターを用いる方法である。当該ウイルスベクターを用いる方法は、導入効率は高いものの安全性面の課題がある場合が多い。
 もう一つは、ウイルスベクターを用いない方法である。この方法の具体例としては、例えばリポソーム、ポリエチレンイミン、ウイルス由来のエンベロープ等(キャリア)にプラスミドDNAなどを含ませる方法が知られている。
 リポソームの調製方法としては、低級アルコール法、Bangham法(薄膜法)などが知られている。低級アルコール法では、脂質をメタノール、エタノールなどの低級アルコールに溶解させた後、この脂質溶液を緩衝液等と混合、撹拌することで、リポソームを含む懸濁液を調製することができる。Bangham法では、脂質をクロロホルムやクロロホルム/メタノール混合溶媒などの有機溶媒に溶解し、当該有機溶媒を揮発させることで、脂質薄膜を形成させた後、そこで緩衝液などと混合、撹拌することで、リポソームを含む懸濁液を調製することができる。これらの調製方法以外にも、SUV法(非特許文献1)又は二段階乳化法(特許文献1、2)で遺伝子導入用のリポソームを調製したことが報告されている。
 ウイルス由来のエンベロープを利用した遺伝子導入方法としては、センダイウイルスのエンベロープを利用した方法が知られている。この方法では、センダイウイルスのゲノムRNAをβ-プロピオラクトンやUV照射等で破壊した後、精製することで得られるウイルス由来のエンベロープと、遺伝子を封入したリポソームを融合することで(非特許文献2)、あるいは、ウイルス由来のエンベロープを界面活性剤処理で一時的に膜透過性を向上させることでプラスミドDNAをウイルス由来のエンベロープに封入することで(特許文献3)、遺伝子導入ベクターを調製している。
 また、人工脂質膜とウイルス由来の膜タンパクから再構成したウイルス様エンベロープに遺伝子を含ませる方法も知られている(非特許文献3)。
 また、遺伝子改変技術を用いたエンベロープウイルスの膜表面タンパク質の改変や(特許文献4)、ポリエチレンイミンの使用(非特許文献4)、カチオン性脂質と細胞外マトリクスを組み合わせること(特許文献5)で外来遺伝子発現の改善に成功した報告がある。
 遺伝子導入ベクターを固相化し細胞と接触させるリバーストランスフェクション法において、遺伝子デリバリー材料とセリシン又はその加水分解物とを組み合わせる方法も知られているが(特許文献6)、当該方法は接着細胞に対する外来遺伝子発現の改善が期待できるが、浮遊細胞に対する外来遺伝子発現の改善は限定的である。
 これらのウイルスベクターを用いない遺伝子導入方法は、ウイルスベクターを用いる方法と比べ、安全性は改善されているものの遺伝子発現効率は劣る場合が多い。また、前述のとおり、リポソームの調製や遺伝子導入ベクターの固相化は、煩雑で調製に多くの時間と労力を要する。
特開2005-68120号公報 特開2003-1097号公報 特開2001-286282号公報 特開2011-50292号公報 国際公開第2005/073385号 国際公開第2009/028421号
Construction of a multifunctional envelope-type nano device by a SUV-fusion method. Int J Pharm. 2005 May 30; 296(1-2): 142-150. Epub 2005 Apr 11 Gene therapy using HVJ-liposomes: the best of both worlds. Mol Med Today. 1999 Jul; 5(7): 298-303 Effect of Lipid Compositions on Gene Transfer into 293 Cells Using Sendai F/HN-virosomes. J Biochem Mol Biol. 2002 Sep 30; 35(5): 459-464 Nonviral gene delivery: principle, limitations, and recent progress. The AAPS Journal. 2009 Dec; 11(4): 671-681
 現在、数多くの遺伝子導入方法が使用されているが、さらに、使用上の簡便性、安全性及び導入効率のすべての点を満足する方法の開発が望まれている。また、導入対象となる細胞の種類も多様であり、既存の方法では必ずしも十分でない場合がある。
 本発明者は種々検討を重ね、特定の物質を混合するのみの簡便な作業により、優れた安全性及び遺伝子導入効率を備えた細胞内への外来遺伝子導入用組成物が得られるとの知見を得、本発明を完成した。
 即ち本発明は、
(1)(A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP (1,2-ジオレオイル-3-トリメチルアンモニウム-プロパン)及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質(以下、成分Aともいう)と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質(以下、成分Bともいう)と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質(以下、成分Cともいう)を含有する遺伝子導入用組成物に関する。
(2)また、本発明は、前記(1)の組成物に、さらに(D)ラミニン、フィブロネクチン、ビトロネクチン、ヒアルロン酸、エンタクチン、エラスチン、テネイシン、コラーゲン、コンドロイチン硫酸、フィブリン及びフィブリノゲンからなる群より選ばれる少なくとも1種の細胞外マトリックス成分(以下、成分Dともいう)を含有する組成物に関する。
(3)また、本発明は、前記(1)又は(2)の組成物に、さらに(E)クロロキン、キナクリン、ヒドロキシクロロキン、シクロスポリン、シクロホスファミド、タクロリムス、アスコマイシン、ラパマイシン、2-シアノ-3-(3,4-ジヒドロキシフェニル)-N-ベンジルアクリルアミド、アンレキサノクス、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド、ドキソルビシン、アクチノマイシンD、アウリントリカルボン酸、パクリタキセル、エトポシド、N-[1-(3-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-イル)-1-メチル-1H-ピラゾール-5-イル)]-2-クロロベンゼンスルホンアミド、α-アマニチン、β-アマニチン、アムロジピン、ニフェジピン、ニカルジピン、ベラパミル、ジルチアゼム、トリコスタチンA、ツバスタチンA、スベロイルビス-ヒドロキサム酸、スベロイルアニリドヒドロキサム酸、バルプロ酸及びホルボール12-ミリスタート13-アセタートからなる群より選ばれる少なくとも1種(以下、成分Eともいう)を含有する組成物に関する。
(4)また、本発明は、前記(1)~(3)のいずれか一項の組成物に、さらに(F)ウイルスエンベロープ(以下、成分Fともいう)を含有する組成物に関する。
(5)また、本発明は、成分Aと、成分Bと、成分Cと、遺伝子とを細胞に接触させることを特徴とする、遺伝子を非ヒト動物の細胞内に導入する方法に関する。
(6)また、本発明は、成分Aと、成分Bと、成分Cと、遺伝子とを細胞に接触させることを特徴とする、遺伝子を生体外の細胞内に導入する方法に関する。
(7)また、本発明は、さらに成分Dを細胞に接触させる、前記(5)又は(6)の方法に関する。
(8)また、本発明は、さらに成分Eを細胞に接触させる、前記(5)~(7)のいずれか一項の方法に関する。
(9)また、本発明は、さらに成分Fを細胞に接触させる、前記(5)~(8)のいずれか一項の方法に関する。
(10)また、本発明は、成分Aと、成分Bと、成分Cを含有するキットに関する。
(11)また、本発明は、前記(10)のキットに、さらに成分Dを含有するキットに関する。
(12)また、本発明は、前記(10)又は(11)のキットに、さらに成分Eを含有するキットに関する。
(13)また、本発明は、前記(10)~(12)のいずれか一項のキットに、さらに成分Fを含有するキットに関する。
 本発明により、優れた安全性及び遺伝子導入効率を備えた細胞内への外来遺伝子導入用組成物を提供することができる。また、当該組成物は、特定の物質を混合するのみの簡便な作業で調製することができる。さらに、当該組成物は、既存の方法に用いるキャリアなどに比べてコスト面においても有利である。
試験に用いたプラスミドDNAを表す。 調製方法の概要を表す。プラスミドDNAに各成分を加える手順の一例を示しており、図中の(A)、(B)、(C)、(D)、(E)及び(F)は、それぞれ、成分A、成分B、成分C、成分D、成分E及び成分Fを示す。 プラスミドDNA (pTurboGFP-N)、(A)ソルビタンセスキオレエート(Span 83)、(B)セリシン及び(C)硫酸プロタミンを含有する混合液を培養細胞に添加して1日後のpTurboGFP-Nを導入した細胞の蛍光顕微鏡写真。図3の「ベクターの構成物」の欄に記載の記号○は構成成分が含まれていることを表し、記号×は構成成分が含まれていないことを表す。 プラスミドDNA(pCMV-GL3)、(F)センダイウイルス由来のエンベロープ、(A)ソルビタンセスキオレエート、(B)セリシン及び(C)硫酸プロタミンを含有する混合液を培養細胞に添加して1日後に測定したルシフェラーゼ遺伝子の発現量を表す。 プラスミドDNA (pCMV-GL3)、(A)ソルビタンセスキオレエート、(B)セリシン、(C)硫酸プロタミン及び(D)ラミニンを含有する混合液を培養細胞に添加して1日後に測定したルシフェラーゼ遺伝子の発現量を表す。左の棒グラフは、(D)ラミニンを添加しなかった場合のルシフェラーゼ遺伝子の発現量を表す。 プラスミドDNA (pCMV-GL3)、(F)センダイウイルス由来のエンベロープ、(A)ソルビタンセスキオレエート、(B)セリシン、(C)硫酸プロタミン及び(E)クロロキン又はキナクリンを含有する混合液を培養細胞に添加して1日後に測定したルシフェラーゼ遺伝子の発現量を表す。棒グラフは左から順に、成分Eを添加しなかった場合、成分Eとしてクロロキンを添加した場合、成分Eとしてキナクリンを添加した場合を表す。 プラスミドDNA (pCMV-GL3)、(F)センダイウイルス由来のエンベロープ、(A)ソルビタンセスキオレエート、(B)アルブミン及び(C)硫酸プロタミンを含有する混合液を培養細胞に添加して1日後に測定したルシフェラーゼ遺伝子の発現量を表す(棒グラフの左から順に、アルブミン1 mg/mL、1/3 mg/mL、1/9 mg/mL、アルブミン無添加)。プラスミドDNA (pCMV-GL3)、(F)センダイウイルス由来のエンベロープ、(A)ソルビタンセスキオレエート、(B)セリシン及び(C)硫酸プロタミンを含有する混合液を培養細胞に添加して1日後に測定したルシフェラーゼ遺伝子の発現量を表す(棒グラフの右端)。 プラスミドDNA (pCMV-GL3)、(A)ソルビタンセスキオレエート、(A)ヘキサデシルアミン、(B)セリシン及び(C)硫酸プロタミンを含有する混合液を培養細胞に添加して1日後に測定したルシフェラーゼ遺伝子の発現量を表す。左の棒グラフは、(A)ヘキサデシルアミンを添加しなかった場合のルシフェラーゼ遺伝子の発現量を表す。 プラスミドDNA (pCMV-GL3)、(A)ソルビタンセスキオレエート、(B)セリシン及び(C)硫酸プロタミンを含有する混合液1と、プラスミドDNA (pCMV-GL3)、(F)センダイウイルス由来のエンベロープ、(A)ソルビタンセスキオレエート、(B)セリシン及び(C)硫酸プロタミンを含有する混合液2と、市販の遺伝子導入試薬(比較混合液)との遺伝子発現量の比較を表す。棒グラフは左から順に、混合液1、混合液2、比較混合液を表す。 プラスミドDNA (pCMV-GL3)、(A)ソルビタンセスキオレエート、(B)セリシン、(C)硫酸プロタミン及び(E)N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド(以下、化合物Aと称することもある)を含有する混合液を培養細胞に添加して1日後に測定したルシフェラーゼ遺伝子の発現量を表す。左の棒グラフは、(E)化合物Aを添加しなかった場合のルシフェラーゼ遺伝子の発現量を表す。
 本明細書において、「遺伝子」とは、天然、合成若しくは組換えの遺伝子又はその遺伝子断片をいい、「遺伝子導入」とは、生体内又はインビトロにおいて、標的細胞内に、天然、合成若しくは組換えの所望の遺伝子又はその遺伝子断片を、導入された遺伝子がその機能を維持するように、導入することをいう。本発明において導入される遺伝子又は遺伝子断片は、特定の配列を有するDNA、RNA又はこれらの合成アナログである核酸を包含する。本明細書において、「遺伝子導入」及び「トランスフェクション」は、互換可能に使用される。
 本明細書において、遺伝子が導入される細胞としては、インビトロ培養細胞、生体から抽出した細胞、生体内に存在する細胞等が挙げられる。当該細胞は、接着細胞又は浮遊細胞のいずれであってもよい。
 本明細書において、セリシンは、セリシン及びその加水分解物を包含する意味で使用される。
 本明細書において、ウイルスエンベロープは、レトロウイルス科、トガウイルス科、コロナウイルス科、フラビウイルス科、パラミクソウイルス科、オルトミクソウイルス科、ブニヤウイルス科、ラブドウイルス科、ポックスウイルス科、ヘルペスウイルス科、バキュロウイルス科及びヘパドナウイルス科に属するウイルス由来のエンベロープが挙げられるが、好ましくはセンダイウイルス(HVJ)由来エンベロープである。さらに好ましくは、不活化したセンダイウイルス(HVJ)由来エンベロープである。
 本発明において「非ヒト動物の細胞内に導入する方法」及び「生体外の細胞内に導入する方法」という記載は、ヒトの治療方法を含まないことを明示するものである。
 本発明に係る組成物は、煩雑なリポソームの調製方法とは異なって、成分A、成分B及び成分Cを、例えばピペッティング、タッピング、ボルテックスミキサー等により混合するだけの簡便な作業で調製することができる。また、本発明組成物は、さらに成分D、成分E及び/又は成分Fを混合その他適切に調製することにより、遺伝子発現効率の向上が期待できる。
 本発明組成物において、成分A及び成分Bの混合重量比は特に限定されないが、好ましくは1:0.07~1:4200、より好ましくは1:4~1:4200、さらに好ましくは1:4~1:1000、さらにより好ましくは1:35~1:840である。
 成分A及び成分Cの混合重量比は、成分Cの量によって遺伝子導入に要する時間が異なるので一概に規定できないが、好ましくは1:0.006~1:320、より好ましくは1:0.1~1:320、さらに好ましくは1:0.1~1:50、さらにより好ましくは1:1.5~1:50である。
 本発明組成物が成分Dをさらに含有する場合、成分A及び成分Dとの混合重量比は特に限定されないが、好ましくは1:0.002~1:140、より好ましくは1:0.04~1:140、さらに好ましくは1:0.04~1:70、さらにより好ましくは1:0.1~1:10である。
 本発明組成物が成分Eをさらに含有する場合、成分A及び成分Eの混合重量比は、成分Eの種類に応じて異なるので一概に規定できず、遺伝子が導入される細胞に毒性を与えない範囲で任意に選択すればよい。
 本発明組成物が成分Fをさらに含有する場合で、特に成分Fとしてセンダイウイルス由来のエンベロープを含有する場合、成分A及びセンダイウイルス由来のエンベロープとの混合比(成分A 1μgに対するセンダイウイルス由来のエンベロープのHAU)は特に限定されないが、好ましくは1:0.01~1:3000、より好ましくは1:0.1~1:3000、さらに好ましくは1:0.3~1:500、さらにより好ましくは1:0.5~1:100である。
 本発明組成物における成分Aの濃度は特に限定されないが、好ましくは0.0003~0.2重量%、より好ましくは0.0003~0.02重量%、さらに好ましくは0.0005~0.02重量%、さらにより好ましくは0.0007~0.001重量%である。
 本発明組成物における成分Bの濃度は特に限定されないが、好ましくは0.01~3重量%、より好ましくは0.04~2重量%、さらに好ましくは0.04~1重量%、さらにより好ましくは0.2~1重量%である。
 本発明組成物における成分Cの濃度は、成分Cの量によって遺伝子導入に要する時間が異なるので一概に規定できないが、好ましくは0.0009~0.13重量%、さらに好ましくは0.009~0.06重量%である。
 本発明組成物が成分Dをさらに含有する場合、成分Dの濃度は特に限定されないが、好ましくは0.0003~0.04重量%、さらに好ましくは0.0008~0.004重量%である。
 本発明組成物が成分Eをさらに含有する場合、成分Eの濃度は、成分Eの種類に応じて異なるので一概に規定できず、遺伝子が導入される細胞に毒性を与えない範囲で任意に選択すればよい。
 本発明組成物が成分Fをさらに含有する場合で、特に成分Fとしてセンダイウイルス由来のエンベロープを含有する場合、単位液量当たりのセンダイウイルス由来のエンベロープのHAUは特に限定されないが、好ましくは0.01~10 HAU/μL、さらに好ましくは0.03~1 HAU/μLである。
 本発明組成物は成分A、B及びC、並びに必要に応じて成分D、E及び/又はFの他に、水、アルコール類(例えば、エタノール)、緩衝液(例えば、リン酸緩衝生理食塩液、HEPES緩衝液、Tris塩酸緩衝液、TE緩衝液)、細胞培養液(例えば、DMEM培地、RPMI培地)等の添加物を含有していてもよい。これら添加物の濃度は特に限定されない。本発明の組成物のpHは、6~10が好ましい。
 本発明の方法は、成分Aと、成分Bと、成分Cと、遺伝子とを細胞に接触させることによって遺伝子を非ヒト動物の細胞内に導入する方法、並びに、成分Aと、成分Bと、成分Cと、遺伝子とを細胞に接触させることによって遺伝子を生体外の細胞内に導入する方法である。本発明の方法において、成分D、成分E及び/又は成分Fをさらに細胞に接触させることにより、遺伝子導入効率の向上が期待できる。
 本発明の方法は、任意の条件下で行うことができる。
 本発明の方法において、成分A、成分B及び成分C、並びに必要に応じて成分D、成分E及び/又は成分Fと、遺伝子とは、同時に又は順次に、細胞と接触させてもよく、各成分と遺伝子とを、組み合わせて同時に細胞に接触させることが好ましい。中でも、成分A、成分B及び成分C、並びに必要に応じて成分D、成分E及び/又は成分Fと、遺伝子とを含む遺伝子導入ベクターを調製し、当該ベクターを細胞に接触させることが特に好ましい。本発明の方法において、各成分と遺伝子とは、その一部又は全部が複合体の形態であってもよい。本明細書において、「遺伝子導入ベクター」とは、単独の核酸を意味するのではなく、核酸に加えて核酸以外の他の成分(例えば、成分A)が含まれる組成物の状態のものを意味する。
 遺伝子導入ベクターの調製は、各成分と遺伝子とを任意の混合順序で、例えばピペッティングにより、混合することにより行うことができる。具体例としては、(i)導入される遺伝子と、成分A、成分B及び成分Cの混合物とを混合する;(ii)導入される遺伝子と成分A及び成分Bとの混合物とを混合し、次いで成分Cを混合する;(iii)導入される遺伝子と成分Cとを混合し、次いで成分A及びBとの混合物を混合する;(iv)導入される遺伝子と成分Aとを混合し、次いで成分Bを混合し、最後に成分Cを混合する;(v)導入される遺伝子と成分Bとを混合し、次いで成分Aを混合し、最後に成分Cを混合する;(vi)導入される遺伝子と成分Bとを混合し、次いで成分Cを混合し、最後に成分Aを混合する等が挙げられる。
 成分D、E及び/又はFをさらに用いる場合においても、遺伝子導入ベクターの調製は、各成分を任意の順序で、例えばピペッティングにより、混合することにより行うことができる。成分Fを更に使用する場合の具体例としては、例えば、(vii)導入される遺伝子と成分Fと混合し、次いで成分A、成分B及び成分Cの混合物を混合する;(viii)導入される遺伝子と成分Fとを混合し、次いで成分A及び成分Bの混合物を混合し、最後に成分Cを混合する;(ix)導入される遺伝子と成分A及び成分Bの混合物とを混合し、次いで成分Fを混合し、最後に成分Cを混合する;(x)導入される遺伝子と成分A及びBの混合物とを混合し、次いで成分Cを混合し、最後に成分Fを混合する;等が挙げられる。
 遺伝子導入ベクターの調製において混合順序は限定されるものではないが、図2に表される手順で行うことが好ましい。
 本発明の方法において、各成分の混合比及び使用濃度としては、上述の本発明組成物中での各成分の混合重量比及び濃度と同様のものが挙げられる。なお、遺伝子導入ベクターは、上述の本発明組成物の添加物と同様のものを含有していてもよい。
 本発明の遺伝子導入用キットは、成分A、成分B及び成分Cを含有し、必要に応じて成分D、成分E及び/又は成分Fを含有していてもよい。本発明のキットは、アルコール類(例えば、エタノール)、緩衝液(例えば、リン酸緩衝生理食塩液、HEPES緩衝液、Tris塩酸緩衝液、TE緩衝液)、細胞培養液(例えば、DMEM培地、RPMI培地)等を更に含有していてもよい。
 本発明のキットを構成する各成分は、それぞれ別の容器に収容されていてもよいし、任意の2以上の成分が1つの容器に収容されていてもよい。
 本発明の遺伝子導入用キットによれば、本発明の遺伝子導入用組成物及び遺伝子導入ベクターを簡便に調製することができる。
 以下に本発明における望ましい態様の一例を記載するが、本発明はこれらに限定して解釈されるものではない。
(1)(A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質を含有する遺伝子導入用組成物。
(2)さらに、(D)ラミニン、フィブロネクチン、ヒアルロン酸、エンタクチン、エラスチン、テネイシン、ビトロネクチン、コラーゲン、コンドロイチン硫酸、フィブリン及びフィブリノゲンからなる群より選ばれる少なくとも1種の細胞外マトリックス成分を含有する、前記(1)に記載の組成物。
(3)さらに、(E)クロロキン、キナクリン、ヒドロキシクロロキン、シクロスポリン、シクロホスファミド、タクロリムス、アスコマイシン、ラパマイシン、2-シアノ-3-(3,4-ジヒドロキシフェニル)-N-ベンジルアクリルアミド、アンレキサノクス、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド、ドキソルビシン、アクチノマイシンD、アウリントリカルボン酸、パクリタキセル、エトポシド、N-[1-(3-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-イル)-1-メチル-1H-ピラゾール-5-イル)]-2-クロロベンゼンスルホンアミド、α-アマニチン、β-アマニチン、アムロジピン、ニフェジピン、ニカルジピン、ベラパミル、ジルチアゼム、トリコスタチンA、ツバスタチンA、スベロイルビス-ヒドロキサム酸、スベロイルアニリドヒドロキサム酸、バルプロ酸及びホルボール12-ミリスタート13-アセタートからなる群より選ばれる少なくとも1種を含有する、前記(1)又は(2)に記載の組成物。
(4)さらに、(F)ウイルスエンベロープを含有する、前記(1)~(3)のいずれか一項に記載の組成物。
(5)(A)の脂質がソルビタンセスキオレエート、ソルビタンモノラウレート及びヘキサデシルアミンからなる群より選ばれる少なくとも1種である、前記(1)に記載の組成物。
(6)(A)の脂質がソルビタンセスキオレエートである、前記(1)に記載の組成物。
(7)(C)の正電荷物質が硫酸プロタミンである、前記(1)に記載の組成物。
(8)(D)の細胞外マトリックス成分がラミニン、ビトロネクチン及びフィブリノゲンからなる群より選ばれる少なくとも1種である、前記(2)に記載の組成物。
(9)(F)のウイルスエンベロープがセンダイウイルス由来のエンベロープである、前記(4)に記載の組成物。
(10)(A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質と、遺伝子とを細胞に接触させることを特徴とする、遺伝子を非ヒト動物の細胞内に導入する方法。
(11)(A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質と、遺伝子とを細胞に接触させることを特徴とする、遺伝子を生体外の細胞内に導入する方法。
(12)さらに、(D)ラミニン、フィブロネクチン、ビトロネクチン、ヒアルロン酸、エンタクチン、エラスチン、テネイシン、コラーゲン、コンドロイチン硫酸、フィブリン及びフィブリノゲンからなる群より選ばれる少なくとも1種の細胞外マトリックス成分を細胞と接触させる、前記(10)又は(11)に記載の方法。
(13)さらに、(E)クロロキン、キナクリン、ヒドロキシクロロキン、シクロスポリン、シクロホスファミド、タクロリムス、アスコマイシン、ラパマイシン、2-シアノ-3-(3,4-ジヒドロキシフェニル)-N-ベンジルアクリルアミド、アンレキサノクス、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド、ドキソルビシン、アクチノマイシンD、アウリントリカルボン酸、パクリタキセル、エトポシド、N-[1-(3-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-イル)-1-メチル-1H-ピラゾール-5-イル)]-2-クロロベンゼンスルホンアミド、α-アマニチン、β-アマニチン、アムロジピン、ニフェジピン、ニカルジピン、ベラパミル、ジルチアゼム、トリコスタチンA、ツバスタチンA、スベロイルビス-ヒドロキサム酸、スベロイルアニリドヒドロキサム酸、バルプロ酸及びホルボール12-ミリスタート13-アセタートからなる群より選ばれる少なくとも1種を細胞と接触させる、前記(10)~(12)のいずれか一項に記載の方法。
(14)さらに、(F)ウイルスエンベロープを細胞と接触させる、前記(10)~(13)のいずれか一項に記載の方法。
(15)(A)の脂質がソルビタンセスキオレエート、ソルビタンモノラウレート及びヘキサデシルアミンからなる群より選ばれる少なくとも1種である、前記(10)~(14)のいずれか一項に記載の方法。
(16)(A)の脂質がソルビタンセスキオレエートである、前記(10)~(14)のいずれか一項に記載の方法。
(17)(C)の正電荷物質が硫酸プロタミンである、前記(10)~(16)のいずれか一項に記載の方法。
(18)(D)の細胞外マトリックス成分がラミニン、ビトロネクチン及びフィブリノゲンからなる群より選ばれる少なくとも1種である、前記(12)~(17)のいずれか一項に記載の方法。
(19)(F)のウイルスエンベロープがセンダイウイルス由来のエンベロープである、(14)~(18)のいずれか一項に記載の方法。
(20)(A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質を含有する遺伝子導入用キット。
(21)さらに、(D)ラミニン、フィブロネクチン、ビトロネクチン、ヒアルロン酸、エンタクチン、エラスチン、テネイシン、コラーゲン、コンドロイチン硫酸、フィブリン及びフィブリノゲンからなる群より選ばれる少なくとも1種の細胞外マトリックス成分を含有する、前記(20)に記載のキット。
(22)さらに、(E)クロロキン、キナクリン、ヒドロキシクロロキン、シクロスポリン、シクロホスファミド、タクロリムス、アスコマイシン、ラパマイシン、2-シアノ-3-(3,4-ジヒドロキシフェニル)-N-ベンジルアクリルアミド、アンレキサノクス、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド、ドキソルビシン、アクチノマイシンD、アウリントリカルボン酸、パクリタキセル、エトポシド、N-[1-(3-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-イル)-1-メチル-1H-ピラゾール-5-イル)]-2-クロロベンゼンスルホンアミド、α-アマニチン、β-アマニチン、アムロジピン、ニフェジピン、ニカルジピン、ベラパミル、ジルチアゼム、トリコスタチンA、ツバスタチンA、スベロイルビス-ヒドロキサム酸、スベロイルアニリドヒドロキサム酸、バルプロ酸及びホルボール12-ミリスタート13-アセタートからなる群より選ばれる少なくとも1種を含有する、前記(20)又は(21)に記載のキット。
(23)さらに、(F)ウイルスエンベロープを含有する、前記(20)~(22)のいずれか一項に記載のキット。
(24)(A)の脂質がソルビタンセスキオレエート、ソルビタンモノラウレート及びヘキサデシルアミンからなる群より選ばれる少なくとも1種である、前記(20)~(23)のいずれか一項に記載のキット。
(25)(A)の脂質がソルビタンセスキオレエートである、前記(20)~(23)のいずれか一項に記載のキット。
(26)(C)の正電荷物質が硫酸プロタミンである、前記(20)~(25)のいずれか一項に記載のキット。
(27)(D)の細胞外マトリックス成分がラミニン、ビトロネクチン及びフィブリノゲンからなる群より選ばれる少なくとも1種である、前記(21)~(26)のいずれか一項に記載のキット。
(28)(F)のウイルスエンベロープがセンダイウイルス由来のエンベロープである、(23)~(27)のいずれか一項に記載のキット。
(29)(A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質を含有する遺伝子導入用組成物。
(30)さらに、(D)ラミニン、フィブロネクチン、ビトロネクチン、コラーゲン及びフィブリノゲンからなる群より選ばれる少なくとも1種の細胞外マトリックス成分を含有する、前記(29)に記載の組成物。
(31)さらに、(E)クロロキン及びキナクリンからなる群より選ばれる少なくとも1種のToll様受容体に対する阻害剤を含有する、前記(29)又は(30)に記載の組成物。
(32)さらに、(F)ウイルスエンベロープを含有する、前記(29)~(31)のいずれか一項に記載の組成物。
(33)(A)の脂質がソルビタンセスキオレエート、ソルビタンモノラウレート及びヘキサデシルアミンからなる群より選ばれる少なくとも1種である、前記(29)に記載の組成物。
(34)(A)の脂質がソルビタンセスキオレエートである、前記(29)に記載の組成物。
(35)(C)の正電荷物質が硫酸プロタミンである、前記(29)に記載の組成物。
(36)(D)の細胞外マトリックス成分がラミニン及びフィブリノゲンからなる群より選ばれる少なくとも1種である、前記(30)に記載の組成物。
(37)(F)のウイルスエンベロープがセンダイウイルス由来のエンベロープである、前記(32)に記載の組成物。
(38)前記(29)に記載の組成物を細胞に接触させることを特徴とする、遺伝子を非ヒト動物の細胞内に導入する方法。
(39)前記(29)に記載の組成物を細胞に接触させることを特徴とする、遺伝子を生体外の細胞内に導入する方法。
 また、本発明者は、成分Eによる遺伝子導入効率の向上効果は、本発明の方法だけでなく、公知の遺伝子導入方法に適用しても発揮されることを見出した。即ち、第二の発明としては、成分Eを使用する遺伝子導入効率の向上方法及び成分Eを有効成分とする遺伝子導入促進剤にも関する。
 当該方法に使用する成分Eとしては、キナクリン、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミドが特に好ましい。
 公知の遺伝子導入方法は、特に限定されないが、例えば、ウイルスベクターを用いる方法、エレクトロポレーション法、超音波遺伝子導入法、リポソーム、ポリエチレンイミン、ウイルス由来のエンベロープ等(キャリア)にプラスミドDNAなどを含ませる方法が挙げられる。公知のウイルスベクターを用いる方法、エレクトロポレーション法及び超音波遺伝子導入法としては、必ず上手くいく遺伝子導入と発現解析プロトコール(羊土社、2003)に記載の方法が、リポソーム、ポリエチレンイミンを用いる方法としては、Nonviral gene delivery:principle, limitations, and recent progress. The AAPS Journal. 2009 Dec; 11(4): 671-681に記載の方法が、ウイルス由来のエンベロープを用いる方法としては、HVJ-envelope vector for gene transfer into central nervous system. Biochem Biophys Res Commun. 2003 Jan 10; 300(2): 464-471に記載の方法が挙げられ、市販品を使用する遺伝子導入方法であってもよい。このような市販品としては、Lipofectamine (商標) LTX&PLUS reagent (Invitrogen)、Lipofectamine (商標) 3000 Reagent (Invitrogen)、FuGENE (商標) HD Transfection Reagent (Roche)、jetPEI (商標)(Polyplus)、Polyethylenimine Max (Polysciences)、Xfect (商標) Transfection Reagent (Takara)、Attractene Transfection Reagent (QIAGEN)、Effectene (商標) Transfection Reagent (QIAGEN)、ViaFect (商標) Transfection Reagent (Promega)、X-tremeGENE 9 DNA Transfection Reagent (Roche)、X-tremeGENE (商標) HP DNA Transfection Reagent (Roche)等が挙げられる。
 以下に遺伝子導入効率の向上方法の望ましい態様の一例を記載するが、第二の発明はこれらに限定して解釈されるものではない。
(I)(E)クロロキン、キナクリン、ヒドロキシクロロキン、シクロスポリン、シクロホスファミド、タクロリムス、アスコマイシン、ラパマイシン、2-シアノ-3-(3,4-ジヒドロキシフェニル)-N-ベンジルアクリルアミド、アンレキサノクス、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド、ドキソルビシン、アクチノマイシンD、アウリントリカルボン酸、パクリタキセル、エトポシド、N-[1-(3-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-イル)-1-メチル-1H-ピラゾール-5-イル)]-2-クロロベンゼンスルホンアミド、α-アマニチン、β-アマニチン、アムロジピン、ニフェジピン、ニカルジピン、ベラパミル、ジルチアゼム、トリコスタチンA、ツバスタチンA、スベロイルビス-ヒドロキサム酸、スベロイルアニリドヒドロキサム酸、バルプロ酸及びホルボール12-ミリスタート13-アセタートからなる群より選ばれる少なくとも1種を使用する、遺伝子導入効率の向上方法。
(II)(E)が、キナクリン及びN-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミドからなる群より選ばれる少なくとも1種である、前記(I)記載の方法。
(III)リポソームを使用する遺伝子導入方法に使用される、前記(I)又は(II)記載の方法。
(IV)(E)クロロキン、キナクリン、ヒドロキシクロロキン、シクロスポリン、シクロホスファミド、タクロリムス、アスコマイシン、ラパマイシン、2-シアノ-3-(3,4-ジヒドロキシフェニル)-N-ベンジルアクリルアミド、アンレキサノクス、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド、ドキソルビシン、アクチノマイシンD、アウリントリカルボン酸、パクリタキセル、エトポシド、N-[1-(3-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-イル)-1-メチル-1H-ピラゾール-5-イル)]-2-クロロベンゼンスルホンアミド、α-アマニチン、β-アマニチン、アムロジピン、ニフェジピン、ニカルジピン、ベラパミル、ジルチアゼム、トリコスタチンA、ツバスタチンA、スベロイルビス-ヒドロキサム酸、スベロイルアニリドヒドロキサム酸、バルプロ酸及びホルボール12-ミリスタート13-アセタートからなる群より選ばれる少なくとも1種を有効成分とする、遺伝子導入促進剤。
(V)(E)が、キナクリン及びN-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミドからなる群より選ばれる少なくとも1種である、前記(IV)記載の遺伝子導入促進剤。
 本発明をより詳しく述べるために、以下に実施例を記載するが、本発明はこれらに限定して解釈されるものではない。なお、下記において、%とは、特に言及しない限り、W/V%を意味するものとする。
 実施例1
 接着系培養細胞であるA549細胞はトランスフェクション1日前に96ウェルプレートに4×103 cells/well細胞密度になるように播種した。浮遊系培養細胞であるTHP-1細胞はトランスフェクション当日に96ウェルプレートに2×104 cells/well細胞密度になるように播種した。 
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液3μLに対し、10 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液42μLを加え、ピペッティングで混和した。
 ソルビタンセスキオレエートを含まないサンプルとして、エタノール3μLに対し、10 mg/mL セリシン PBS溶液42μLを加え、ピペッティングで混和した。
 セリシンを含まないサンプルとして、1/2% ソルビタンセスキオレエート エタノール溶液3μLに対し、PBS 42μLを加え、ピペッティングで混和した。
 ソルビタンセスキオレエート及びセリシンを含まないサンプルとして、エタノール3μLに対し、PBS 42μLを加え、ピペッティングで混和した。
 1 mg/mL pTurboGFP-N プラスミド溶液(Evrogen) 1.25μLに対して、上記の各調製液15μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を6.3μL加えることで供試組成物を調製した。これら供試組成物を5μL/ウェルで細胞培養液に加えた。
 翌日、蛍光顕微鏡を用いて、pTurboGFP-Nプラスミドから産生される緑色蛍光タンパク質(TurboGFP、Evrogen社)を観察することで、遺伝子導入が達成されたか否かを確認した。結果を図3に示す。
 成分Cのみ、成分B及び成分Cの混合物、並びに成分A及び成分Cの混合物を使用した場合、ほとんど遺伝子が導入されなかったのに対し、成分A、成分B及び成分Cを含有する本発明組成物を使用するとA549細胞及びTHP-1細胞に遺伝子導入できることが分った。
 実施例2
 浮遊系培養細胞であるJurkat細胞はトランスフェクション当日に96ウェルプレートに4×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液20μLに対し、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液280μLを加え、ピペッティングで混和した。
 ウイルス由来のエンベロープとして、センダイウイルス由来の不活性化HVJエンベロープ(GenomONE-CF:登録商標 石原産業株式会社製) 47.8 HAU/μLの懸濁液を実験に使用した。
 この不活性化HVJエンベロープ懸濁液を、PBSを用いて1/2、1/4、1/8、1/16、1/32倍希釈した。この希釈した不活性化HVJエンベロープ懸濁液それぞれ4μLに対し、0.3% Triton X-100 PBS溶液8μLを加え、微量高速冷却遠心機を用いて4℃、10,000g、5分間遠心分離することで不活性化HVJエンベロープをペレットダウンした。上清を取り除いた後、Triton X-100処理によりエンベロープ膜の透過性が向上した不活性化HVJエンベロープを1/10 mg/mL pCMV-GL3プラスミド溶液12.5μLで懸濁した。これらのプラスミドを含むHVJエンベロープ懸濁液又は1/10 mg/mL pCMV-GL3プラスミド溶液12.5μLそれぞれに対し、PBS4μLを加え、さらに先に調製しておいたソルビタンセスキオレエートとセリシンの混合液20μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を6.25μL加えることで供試組成物を調製した。これら供試組成物を9.5μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を図4に示す。
 成分Fを使用することにより、本発明組成物の遺伝子導入効率が向上することが分った。
 実施例3
 接着系培養細胞であるNIH-3T3細胞はトランスフェクション1日前に96ウェルプレートに4×103 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液6μLに対し、10 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) 水溶液84μLを加え、ピペッティングで混和した。
 1 mg/mL pCMV-GL3プラスミド溶液1.875μLに対して、1/40 mg/mL ラミニン(SIGMA) 水溶液、あるいは、水21μLをそれぞれ加え、ピペッティングで混和した。これら混合液7.6μLをそれぞれ別チューブに移した後、先に調製しておいたソルビタンセスキオレエートとセリシンの混合液7.5μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を3.1μL加えることで供試組成物を調製した。これら供試組成物を8.1μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を図5に示す。
 実施例4
 接着系培養細胞であるNIH-3T3細胞はトランスフェクション1日前に96ウェルプレートに4×103 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート エタノール溶液15μLに対し、15 mg/mL セリシン PBS溶液210μLを加え、ピペッティングで混和した。
 ウイルス由来のエンベロープとして、センダイウイルス由来の不活性化HVJエンベロープ(GenomONE-CF:登録商標 石原産業株式会社製) 47.8 HAU/μLの懸濁液を実験に使用した。
 この不活性化HVJエンベロープ懸濁液6μLに対しPBS溶液54μL、2% Triton X-100 PBS溶液6μLを加え、微量高速冷却遠心機を用いて4℃、10,000g、5分間遠心分離することで不活性化HVJエンベロープをペレットダウンした。上清を取り除いた後、Triton X-100処理によりエンベロープ膜の透過性が向上した不活性化HVJエンベロープを1 mg/mL pCMV-GL3プラスミド溶液15μLで懸濁した。この不活性化HVJエンベロープとpCMV-GL3プラスミドの混合液を1.25μLずつ別チューブに移した後、1 mM クロロキン(SIGMA) PBS溶液、1/3 mM キナクリン(和光純薬工業) PBS溶液又はPBS 4μLを加え、さらに、先に調製しておいたソルビタンセスキオレエートとセリシンの混合液15μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を6.3μL加えることで供試組成物を調製した。これら供試組成物を6μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System(Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を図6に示す。
 実施例5
 接着系培養細胞であるA549、RAW264.7細胞はトランスフェクション1日前に96ウェルプレートにそれぞれ4×103 cells/well、2×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液2μLに対し、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液、1、1/3、1/9 mg/mL アルブミン(SIGMA) 水溶液又は水28μLをそれぞれ加え、ピペッティングで混和した。
 ウイルス由来のエンベロープとして、センダイウイルス由来の不活性化HVJエンベロープ(GenomONE-CF:登録商標 石原産業株式会社製) 47.8 HAU/μLの懸濁液を実験に使用した。
 この不活性化HVJエンベロープ懸濁液4μLに対し0.2% Triton X-100 PBS溶液4μLを加え、微量高速冷却遠心機を用いて4℃、10,000g、5分間遠心分離することで不活性化HVJエンベロープをペレットダウンした。上清を取り除いた後、Triton X-100処理によりエンベロープ膜の透過性が向上した不活性化HVJエンベロープを1/10 mg/mL pCMV-GL3プラスミド溶液100μLで懸濁した。この不活性化HVJエンベロープとpCMV-GL3プラスミドの混合液を12.5μLずつ別チューブに移した後、先に調製しておいたソルビタンセスキオレエートとセリシンの混合液、あるいは、ソルビタンセスキオレエートとアルブミンの混合液15μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を6.25μL加えることで供試組成物を調製した。これら供試組成物を7.5μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を図7に示す。
 実施例6
 浮遊系培養細胞であるK562細胞はトランスフェクション当日に96ウェルプレートに1×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液3μLに対し、1/20% ヘキサデシルアミン(和光純薬工業) エタノール溶液3μLを加え、さらに、10 mg/mL セリシン水溶液42μLを加え、ピペッティングで混和した。
 ヘキサデシルアミンを含まないサンプルとして、1/2% ソルビタンセスキオレエート エタノール溶液3μLに対し、エタノール3μLを加え、さらに、10 mg/mL セリシン水溶液42μLを加え、ピペッティングで混和した。
 1 mg/mL pCMV-GL3プラスミド溶液1.5μLに対して、上記の各調製液19.2μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を7.5μL加えることで供試組成物を調製した。これら供試組成物を5μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を図8に示す。
 実施例7
 浮遊系培養細胞であるJurkat細胞はトランスフェクション当日に96ウェルプレートに4×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液8μLに対し、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液112μLを加え、ピペッティングで混和した。
 ウイルス由来のエンベロープとして、センダイウイルス由来の不活性化HVJエンベロープ(GenomONE-CF:登録商標 石原産業株式会社製) 47.8 HAU/μLの懸濁液を実験に使用した。
 この不活性化HVJエンベロープ懸濁液1μLに対し、0.2% Triton X-100 PBS溶液10μLを加え、微量高速冷却遠心機を用いて4℃、10,000g、5分間遠心分離することで不活性化HVJエンベロープをペレットダウンした。上清を取り除いた後、Triton X-100処理によりエンベロープ膜の透過性が向上した不活性化HVJエンベロープを1/10 mg/mL pCMV-GL3プラスミド溶液25μLで懸濁した。
 このpCMV-GL3プラスミドを含ませたHVJエンベロープ、あるいは、pCMV-GL3プラスミド溶液それぞれに、先に調製しておいたソルビタンセスキオレエートとセリシンの混合液30μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を12.5μL加えることで供試組成物を調製した。これら供試組成物を7.5μL/ウェルで細胞培養液に加えた。
 比較として、市販されている遺伝子導入試薬Lipofectamine LTX&PLUS reagent (Invitrogen)を用いた遺伝子導入を以下の通り行った。Opti-MEM I Reduced Serum Medium (Gibco) 20μLに対し、1 mg/mL pCMV-GL3プラスミド溶液0.1μL、PLUS reagent0.1μLを加え5分間静置した。さらに、Lipofectamine LTX reagent 0.55μLを加え25分間静置した後、20μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を図9に示す。
 本発明組成物は、市販されている遺伝子導入試薬Lipofectamine LTX&PLUS reagent (Invitrogen)と比較して顕著に高い遺伝子導入効率を有することが分かった。
 実施例8
 接着系培養細胞であるA549細胞はトランスフェクション1日前に96ウェルプレートに4×103 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液25μLに対し、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液350μLをそれぞれ加え、ピペッティングで混和した。
 1/10 mg/mL pCMV-GL3プラスミド溶液30μLに対して、50/3μM 化合物A (InvivoGen)又は水9μLを加え、さらに、先に調製しておいたソルビタンセスキオレエートとセリシンの混合液36μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を15μL加えることで供試組成物を調製した。これら供試組成物を20μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を図10に示す。
 実施例9
 接着系培養細胞であるRAW264.7細胞はトランスフェクション1日前に96ウェルプレートに2×104 cells/well細胞密度になるように播種した。
 浮遊系培養細胞であるJurkat細胞、U937細胞、K562細胞、THP-1細胞はトランスフェクション当日にそれぞれ4×104 cells/well、4×104 cells/well、2×104 cells/well、8×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液6μLに、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液84μLを加え、ピペッティングで混和した。
 ソルビタンセスキオレエートを含まないサンプルとして、エタノール6μLに、15 mg/mL セリシン PBS溶液84μLを加え、ピペッティングで混和した。
 セリシンを含まないサンプルとして、1/2% ソルビタンセスキオレエート エタノール溶液6μLに、PBS 84μLを加え、ピペッティングで混和した。
 1/10 mg/mL pCMV-GL3プラスミド溶液30μLに、上記の各調製液36μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を15μL加えることで供試組成物を調製した。これら供試組成物を15μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した通り、成分A及び成分Cの混合物並びに成分B及び成分Cの混合物を使用した場合、ほとんど遺伝子が導入されなかったのに対し、成分A、成分B及び成分Cを含有する本発明組成物を使用すると接着細胞、浮遊細胞のいずれに対しても、高効率で遺伝子導入できることが分った。
 実施例10
 浮遊系培養細胞であるJurkat細胞、U937細胞、K562細胞、THP-1細胞はトランスフェクション当日にそれぞれ4×104 cells/well、4×104 cells/well、2×104 cells/well、8×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液6μLに、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液84μLを加え、ピペッティングで混和した。
 セリシンを含まないサンプルとして、1/2% ソルビタンセスキオレエート エタノール溶液6μLに、PBS 84μLを加え、ピペッティングで混和した。
 1/10 mg/mL pCMV-GL3プラスミド溶液25μLに、上記の各調製液30μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を12.5μL加えることで供試組成物を調製した。これら供試組成物を15μL/ウェルで細胞培養液に加えた。トランスフェクション直後に、セリシンを含むサンプルに対してはPBSを4.7μL/ウェルで、セリシンを含まないサンプルに対しては15 mg/mL セリシン PBS溶液を4.7μL/ウェルで添加した。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示した通り、成分A、成分B及び成分Cの混合物として使用する方が、より高効率で遺伝子導入できることが分った。
 実施例11
 接着系培養細胞であるA549、NIH-3T3細胞はトランスフェクション1日前に96ウェルプレートにそれぞれ4×103 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液6μLに対し、10 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) 水溶液84μLを加え、ピペッティングで混和した。
 ウイルス由来のエンベロープとして、センダイウイルス由来の不活性化HVJエンベロープ(GenomONE-CF:登録商標 石原産業株式会社製) 47.8 HAU/μLの懸濁液を実験に使用した。
 この不活性化HVJエンベロープ懸濁液6μLにPBSを54μL加えた後、2% Triton X-100 PBS溶液6μLを加え、微量高速冷却遠心機を用いて4℃、10,000g、5分間遠心分離することで不活性化HVJエンベロープをペレットダウンした。上清を取り除いた後、Triton X-100処理によりエンベロープ膜の透過性が向上した不活性化HVJエンベロープを1 mg/mL pCMV-GL3プラスミド溶液15μLで懸濁した。この不活性化HVJエンベロープとpCMV-GL3プラスミドの混合液を2.5μLずつ別チューブに移した後、1/20 mg/mL ラミニン(SIGMA) 水溶液、あるいは、水28μLをそれぞれ加え、ピペッティングで混和した。これら混合液7.6μLをそれぞれ別チューブに移した後、先に調製しておいたソルビタンセスキオレエートとセリシンの混合液7.5μL、10 mg/mL セリシン水溶液7μL及び水0.5μL、1/2% ソルビタンセスキオレエートエタノール溶液0.5μLと水7μL、水7.5μLをそれぞれ加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を3.1μL加えることで供試組成物を調製した。これら供試組成物を8.1μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。
Figure JPOXMLDOC01-appb-T000003
 表3に示した通り、成分Cのみ、成分B及び成分Cの混合物、成分C及び成分Dの混合物並びに成分A及び成分Cの混合物であっても成分Fを併用すると、遺伝子導入が確認されたが、本発明の組成物である成分A、成分B及び成分Cの混合物又は成分A、成分B、成分C及び成分Eの混合物に対して成分Fを併用すると、より高い効率で遺伝子導入できることが分かった。
 実施例12
 接着系培養細胞であるNIH-3T3細胞はトランスフェクション1日前に96ウェルプレートに4×103 cells/well細胞密度になるように播種した。浮遊系培養細胞であるJurkat細胞はトランスフェクション当日に96ウェルプレートに4×104 cells/well細胞密度になるように播種した。
 1/4% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液1.2μLに、5 mg/mL セリシン PBS溶液16.8μLを加え、ピペッティングで混和した。
 1/4% ソルビタンモノオレエート(SIGMA) エタノール溶液1.2μLに、5 mg/mL セリシン PBS溶液16.8μLを加え、ピペッティングで混和した。
 1/5% カルジオリピン(SIGMA)エタノール溶液0.6μLに、1/5% L-α-ジオレオイル ホスファチジルエタノールアミン(和光純薬工業、以下DOPEと称す) エタノール溶液0.6μL、又は、エタノールを0.6μL加え、さらに、5 mg/mL セリシン PBS溶液16.8μLを加え、ピペッティングで混和した。
 上記の各調製液18μLに、1/10 mg/mL pCMV-GL3プラスミド溶液15μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を7.5μL加えることで供試組成物を調製した。これら供試組成物を15μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。
Figure JPOXMLDOC01-appb-T000004
 表4に示した通り、成分Aとして、ソルビタンセスキオレエート、ソルビタンモノオレエート、カルジオリピン、カルジオリピン及びDOPEを使用した本発明の組成物は、NIH-3T3細胞、Jurkat細胞に遺伝子導入できることが分った。
 実施例13
 接着系培養細胞であるNIH-3T3細胞はトランスフェクション1日前に96ウェルプレートに4×103 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液0.8μLに、1/4、1/2、3、5、20、30、50 mg/mL セリシン PBS溶液、又はPBSをそれぞれ11.2μL加え、ピペッティングで混和した。
 上記の各調製液12μLに、1/10 mg/mL pCMV-GL3プラスミド溶液10μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を5μL加えることで供試組成物を調製した。これら供試組成物を15μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。
Figure JPOXMLDOC01-appb-T000005
 表5に示した通り、セリシンを使用しない場合と比べ、1/4~50 mg/mL濃度のセリシンを使用した場合に遺伝子発現が向上した。
 実施例14
 接着系培養細胞であるNIH-3T3細胞はトランスフェクション1日前に96ウェルプレートに4×103 cells/well細胞密度になるように播種した。
 1/50、1/10、1/2、5/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液0.8μLそれぞれに対し、10 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液を11.2μL加え、ピペッティングで混和した。
 上記の各調製液12μLに、1/10 mg/mL pCMV-GL3プラスミド溶液10μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を5μL加えることで供試組成物を調製した。これら供試組成物を15μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。
Figure JPOXMLDOC01-appb-T000006
 結果、表6に示した通り、1/50~5/2%のソルビタンセスキオレエートを使用した場合に遺伝子発現が認められた。
 実施例15
 浮遊系培養細胞であるJurkat細胞はトランスフェクション当日に96ウェルプレートに4×104 cells/well細胞密度になるように播種した。
 pCMV-GL3、ソルビタンセスキオレエート、セリシン、硫酸プロタミンを以下の(a)~(d)に示す通り、混合する順序を変えて調製した。
 (a)1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液2μLに、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液28μLを加え、ピペッティングで混和した。
 1/10 mg/mL pCMV-GL3プラスミド溶液25μLに、上記の調製液30μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を12.5μL加えることで供試組成物を調製した。
 (b)1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液2μLに、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液28μLを加え、ピペッティングで混和した。
 1/10 mg/mL pCMV-GL3プラスミド溶液25μLに、1 mg/mL 硫酸プロタミン PBS溶液を12.5μL加え、ピペッティングで混和した後、上記の各調製液30μLを加えることで供試組成物を調製した。
 (c)1/10 mg/mL pCMV-GL3プラスミド溶液25μLに、15 mg/mL セリシン(和光純薬工業、商品名:ピュアセリシン) PBS溶液28μLを加え、ピペッティングで混和した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液2μLに、上記の調製液53μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を12.5μL加えることで供試組成物を調製した。
 (d)1/10 mg/mL pCMV-GL3プラスミド溶液25μLに、15 mg/mL セリシン PBS溶液28μL、1 mg/mL 硫酸プロタミン PBS溶液を12.5μLを加え、ピペッティングで混和した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液2μLに、上記の調製液65.5μLを加え、ピペッティングで混和することで供試組成物を調製した。
 (a)~(d)の手順で調製した供試組成物を15μL/ウェルで細胞培養液に加えた。
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。
Figure JPOXMLDOC01-appb-T000007
 表7に示した通り、いずれの混合順序で本発明組成物を調製しても、大きな遺伝子発現の差は認められなかったことから、本発明組成物が図2に示される順序に限定されず調製可能であることが確認できた。
 実施例16
 接着系培養細胞であるA549、RAW264.7細胞はトランスフェクション1日前に96ウェルプレートにそれぞれ4×103 cells/well、2×104 cells/well細胞密度になるように播種した。
 浮遊系培養細胞であるK562細胞はトランスフェクション当日に96ウェルプレートに2×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液11μLに、15 mg/mL セリシンPBS溶液154μLを加え、ピペッティングで混和した。
 1/10 mg/mL pCMV-GL3プラスミド溶液40μLに、上記の各調製液48μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を20μL加えることで供試組成物を調製した(細胞ごとに合計3本調製)。これら供試組成物を15μL/ウェルで細胞培養液に加えた。
 Lipofectamine LTX&PLUS reagent (Invitrogen)を用いた遺伝子導入は以下の通り行った。Opti-MEM I Reduced Serum Medium (Gibco) 140μLに、1 mg/mL pCMV-GL3プラスミド溶液0.7μL、PLUS reagent 0.7μLを加え5分間静置した。さらに、Lipofectamine LTX reagent 2.8μLを加え25分間静置した後、20μL/ウェルで細胞培養液に加えた。
 これら遺伝子導入ベクターを細胞培養液に加える直前に、20μM 化合物A DMSO水溶液又は水を、それぞれ5μL/ウェルで細胞培養液に加えた。 
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。
Figure JPOXMLDOC01-appb-T000008
 表8に示した通り、本発明組成物又は市販の遺伝子導入試薬Lipofectamine LTX&PLUS reagentに化合物Aを併用すると、いずれの場合も遺伝子発現の向上が確認された。
 実施例17
 接着系培養細胞であるRAW264.7細胞はトランスフェクション1日前に96ウェルプレートに2×104 cells/well細胞密度になるように播種した。
 1/2% ソルビタンセスキオレエート(ナカライテスク) エタノール溶液2.4μLに、15 mg/mL セリシンPBS溶液33.6μLを加え、ピペッティングで混和した。この調製液に、1/10 mg/mL pCMV-GL3プラスミド溶液30μLを加え、ピペッティングで混和した後、1 mg/mL 硫酸プロタミン PBS溶液を15μL加えることで供試組成物を調製した。これら供試組成物を15μL/ウェルで細胞培養液に加えた。
 FuGENE HD transfection reagent (Roche)を用いた遺伝子導入は以下の通り行った。Opti-MEM I Reduced Serum Medium (Gibco) 50μLに、1 mg/mL pCMV-GL3プラスミド溶液1μLを加え、ピペッティングで混和した。この調製液12.5μLに、FuGENE HD transfection reagent 0.5μLを加え15分間静置した後、5.2μL/ウェルで細胞培養液に加えた。
 Lipofectamine LTX&PLUS reagent (Invitrogen)を用いた遺伝子導入は以下の通り行った。Opti-MEM I Reduced Serum Medium (Gibco) 40μLに、1 mg/mL pCMV-GL3プラスミド溶液0.2μL、PLUS reagent 0.2μLを加え5分間静置した。さらに、Lipofectamine LTX reagent 0.8μLを加え25分間静置した後、20μL/ウェルで細胞培養液に加えた。
 Polyethylenimine Max (Polyscience)を用いた遺伝子導入は以下の通り行った。1 mg/mL Polyethylenimine Max (pH7、MW25,000) 1.5μLに水13.5μL、1/30 mg/mL pCMV-GL3プラスミド溶液15μLを加え20分間静置した後、5μL/ウェルで細胞培養液に加えた。
 これら遺伝子導入ベクターを細胞培養液に加える直前に、20μM化合物A DMSO水溶液又は水を、それぞれ5μL/ウェルで細胞培養液に加えた。 
 翌日、pCMV-GL3プラスミドから産生されるルシフェラーゼタンパク質の酵素活性(相対値)を、ONE-Glo Luciferase Assay System (Promega)を用いて測定することで、遺伝子導入が達成されたか否かを確認した。
Figure JPOXMLDOC01-appb-T000009
 表9に示した通り、本発明組成物又は市販の遺伝子導入試薬Lipofectamine LTX&PLUS reagent、FuGENE HD transfection reagent、Polyethylenimine Maxに化合物Aを併用すると、いずれの場合も遺伝子発現の向上が確認された。

Claims (9)

  1. (A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質を含有する遺伝子導入用組成物。
  2. さらに、(D)ラミニン、フィブロネクチン、ビトロネクチン、ヒアルロン酸、エンタクチン、エラスチン、テネイシン、コラーゲン、コンドロイチン硫酸、フィブリン及びフィブリノゲンからなる群より選ばれる少なくとも1種の細胞外マトリックス成分を含有する、請求項1に記載の組成物。
  3. さらに、(E)クロロキン、キナクリン、ヒドロキシクロロキン、シクロスポリン、シクロホスファミド、タクロリムス、アスコマイシン、ラパマイシン、2-シアノ-3-(3,4-ジヒドロキシフェニル)-N-ベンジルアクリルアミド、アンレキサノクス、N-[3-[[5-ヨード-4-[[3-[(2-チエニルカルボニル)アミノ]プロピル]アミノ]-2-ピリミジニル]アミノ]フェニル]-1-ピロリジンカルボキサミド、ドキソルビシン、アクチノマイシンD、アウリントリカルボン酸、パクリタキセル、エトポシド、N-[1-(3-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-イル)-1-メチル-1H-ピラゾール-5-イル)]-2-クロロベンゼンスルホンアミド、α-アマニチン、β-アマニチン、アムロジピン、ニフェジピン、ニカルジピン、ベラパミル、ジルチアゼム、トリコスタチンA、ツバスタチンA、スベロイルビス-ヒドロキサム酸、スベロイルアニリドヒドロキサム酸、バルプロ酸及びホルボール12-ミリスタート13-アセタートからなる群より選ばれる少なくとも1種を含有する、請求項1又は請求項2に記載の組成物。
  4. さらに、(F)ウイルスエンベロープを含有する、請求項1~請求項3のいずれか一項に記載の組成物。
  5. (A)の脂質が、ソルビタンセスキオレエート及びソルビタンモノラウレートからなる群より選ばれる少なくとも1種である、請求項1に記載の組成物。
  6. (A)の脂質が、ソルビタンセスキオレエートである、請求項1に記載の組成物。
  7. (A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質と、遺伝子とを、細胞に接触させることを特徴とする、遺伝子を非ヒト動物の細胞内に導入する方法。
  8. (A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質と、遺伝子とを、細胞に接触させることを特徴とする、遺伝子を生体外の細胞内に導入する方法。
  9. (A)ソルビタンセスキオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ソルビタンモノオレエート、L-α-ホスファチジルイノシトール、L-α-ジオレオイル ホスファチジルエタノールアミン、オクタデシルアミン、ヘキサデシルアミン、DOTAP及びカルジオリピンからなる群より選ばれる少なくとも1種の脂質と、(B)アルブミン、カゼイン、ゼラチン及びセリシンからなる群より選ばれる少なくとも1種のタンパク質と、(C)硫酸プロタミン、ポリアルギニン、ポリリジン、ポリエチレンイミン及び臭化ヘキサジメトリンからなる群より選ばれる少なくとも1種の正電荷物質とを含有する遺伝子導入用キット。
PCT/JP2014/068439 2013-07-12 2014-07-10 細胞への遺伝子導入用組成物 WO2015005431A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015526401A JP6439690B2 (ja) 2013-07-12 2014-07-10 細胞への遺伝子導入用組成物
EP14823515.3A EP3020809B1 (en) 2013-07-12 2014-07-10 Composition for transferring gene to cell
US14/904,394 US20160160234A1 (en) 2013-07-12 2014-07-10 Composition for transferring gene to cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-146742 2013-07-12
JP2013146742 2013-07-12
JP2013-248324 2013-11-29
JP2013248324 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015005431A1 true WO2015005431A1 (ja) 2015-01-15

Family

ID=52280108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068439 WO2015005431A1 (ja) 2013-07-12 2014-07-10 細胞への遺伝子導入用組成物

Country Status (4)

Country Link
US (1) US20160160234A1 (ja)
EP (1) EP3020809B1 (ja)
JP (1) JP6439690B2 (ja)
WO (1) WO2015005431A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111966B2 (en) 2016-06-17 2018-10-30 Magenta Therapeutics, Inc. Methods for the depletion of CD117+ cells
US10434185B2 (en) 2017-01-20 2019-10-08 Magenta Therapeutics, Inc. Compositions and methods for the depletion of CD137+ cells
WO2021141020A1 (ja) * 2020-01-06 2021-07-15 国立大学法人大阪大学 2種類のTBK1/IKKe阻害剤を利用した核酸導入

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286282A (ja) 2000-02-02 2001-10-16 Japan Science & Technology Corp 遺伝子導入のためのウイルスエンベロープベクター
WO2001092508A1 (fr) * 2000-06-01 2001-12-06 Dnavec Research Inc. Vecteur de retrovirus de pseudo-type contenant une proteine de membrane possedant une activite d'hemagglutinine
WO2002031138A1 (fr) * 2000-10-06 2002-04-18 Dnavec Research Inc. Vecteur de paramyxovirus permettant de transferer un gene etranger dans le muscle squelettique
JP2003001097A (ja) 2001-06-22 2003-01-07 Techno Network Shikoku Co Ltd ナノサイズ脂質ベシクルの製造方法
JP2005068120A (ja) 2003-08-21 2005-03-17 Keiichi Kato 脂質膜ベシクルおよびその調製法
WO2005073385A1 (ja) 2004-01-29 2005-08-11 National Institute Of Advanced Industrial Science And Technology 遺伝子導入効率を上昇させるための組成物および方法
WO2009028421A1 (ja) 2007-08-24 2009-03-05 Cytopathfinder, Inc. セリシンを用いたトランスフェクションデバイス
WO2010004989A1 (ja) * 2008-07-07 2010-01-14 タカラバイオ株式会社 多能性幹細胞の製造方法
JP2011050292A (ja) 2009-08-31 2011-03-17 Genomidea Inc 高機能化hvj−eの開発
JP2012060997A (ja) * 2010-08-19 2012-03-29 Osaka Prefecture Univ 遺伝子導入用組成物およびその利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003683A2 (en) * 1998-07-20 2000-01-27 Inex Pharmaceuticals Corporation Liposomal encapsulated nucleic acid-complexes
WO2013032643A2 (en) * 2011-08-31 2013-03-07 Dicerna Pharmaceuticals, Inc. Lipids capable of conformational change and their use in formulations to deliver therapeutic agents to cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286282A (ja) 2000-02-02 2001-10-16 Japan Science & Technology Corp 遺伝子導入のためのウイルスエンベロープベクター
WO2001092508A1 (fr) * 2000-06-01 2001-12-06 Dnavec Research Inc. Vecteur de retrovirus de pseudo-type contenant une proteine de membrane possedant une activite d'hemagglutinine
WO2002031138A1 (fr) * 2000-10-06 2002-04-18 Dnavec Research Inc. Vecteur de paramyxovirus permettant de transferer un gene etranger dans le muscle squelettique
JP2003001097A (ja) 2001-06-22 2003-01-07 Techno Network Shikoku Co Ltd ナノサイズ脂質ベシクルの製造方法
JP2005068120A (ja) 2003-08-21 2005-03-17 Keiichi Kato 脂質膜ベシクルおよびその調製法
WO2005073385A1 (ja) 2004-01-29 2005-08-11 National Institute Of Advanced Industrial Science And Technology 遺伝子導入効率を上昇させるための組成物および方法
WO2009028421A1 (ja) 2007-08-24 2009-03-05 Cytopathfinder, Inc. セリシンを用いたトランスフェクションデバイス
WO2010004989A1 (ja) * 2008-07-07 2010-01-14 タカラバイオ株式会社 多能性幹細胞の製造方法
JP2011050292A (ja) 2009-08-31 2011-03-17 Genomidea Inc 高機能化hvj−eの開発
JP2012060997A (ja) * 2010-08-19 2012-03-29 Osaka Prefecture Univ 遺伝子導入用組成物およびその利用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Effect of Lipid Compositions on Gene Transfer into 293 Cells Using Sendai F/HN-virosomes", J BIOCHEM MOL BIOL., vol. 35, no. 5, 30 September 2002 (2002-09-30), pages 459 - 464
"Gene therapy using HVJ-liposomes: the best of both worlds", MOL MED TODAY, vol. 5, no. 7, July 1999 (1999-07-01), pages 298 - 303
"Kanarazu umaku iku idenshi dounyu to hatsugen kaiseki purotokoru", 2003, YODOSHA
"Nonviral gene delivery: principle, limitations, and recent progress", THE AAPS JOURNAL., vol. 11, no. 4, December 2009 (2009-12-01), pages 671 - 681
BIOCHEM BIOPHYS RES COMMUN, vol. 300, no. 2, 10 January 2003 (2003-01-10), pages 464 - 471
LIU, F. ET AL.: "Effect of Non-Ionic Surfactants on the Formation of DNA/Emulsion Complexes and Emulsion-Mediated Gene Transfer", PHARMACEUTICAL RESEARCH, vol. 13, no. 11, 1996, pages 1642 - 1646, XP001012538 *
OHAMA, Y. ET AL.: "Gene Transfection into Hela Cells by Vesicles Containing Cationic Peptide Lipid", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 69, no. 8, 2005, pages 1453 - 1458, XP055311062 *
See also references of EP3020809A4
THE AAPS JOURNAL, vol. 11, no. 4, December 2009 (2009-12-01), pages 671 - 681
YOSHITAKA KONDO ET AL.: "Shinki Hi-Virus-kei Idenshi Donyu Vector", ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN PROGRAM YOSHISHU (WEB), vol. 36 TH, no. #1P-09, 20 November 2013 (2013-11-20), XP008182726 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111966B2 (en) 2016-06-17 2018-10-30 Magenta Therapeutics, Inc. Methods for the depletion of CD117+ cells
US10434185B2 (en) 2017-01-20 2019-10-08 Magenta Therapeutics, Inc. Compositions and methods for the depletion of CD137+ cells
US10576161B2 (en) 2017-01-20 2020-03-03 Magenta Therapeutics, Inc. Compositions and methods for the depletion of CD137+ cells
WO2021141020A1 (ja) * 2020-01-06 2021-07-15 国立大学法人大阪大学 2種類のTBK1/IKKe阻害剤を利用した核酸導入

Also Published As

Publication number Publication date
US20160160234A1 (en) 2016-06-09
JPWO2015005431A1 (ja) 2017-03-02
JP6439690B2 (ja) 2018-12-19
EP3020809A4 (en) 2017-01-04
EP3020809A1 (en) 2016-05-18
EP3020809B1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
Ewe et al. Storage stability of optimal liposome–polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery
Kurosaki et al. Ternary complexes of pDNA, polyethylenimine, and γ-polyglutamic acid for gene delivery systems
US9249417B2 (en) Reagent kit having acidified polvethvlendimine for introducting nucleic acids into cells
JP2020511141A (ja) 新規Cas13bオルソログCRISPR酵素及び系
Cervera et al. Intracellular characterization of Gag VLP production by transient transfection of HEK 293 cells
Hofman et al. In Vitro Transfection Mediated by Dendrigraft Poly (L‐lysines): The Effect of Structure and Molecule Size
AU2023216779A1 (en) Engineered nucleases useful for treatment of hemophilia A
Tay et al. Mechanical Stimulation after Centrifuge‐Free Nano‐Electroporative Transfection Is Efficient and Maintains Long‐Term T Cell Functionalities
JP6439690B2 (ja) 細胞への遺伝子導入用組成物
Shim et al. Dynamics of nucleic acid/cationic polymer complexation and disassembly under biologically simulated conditions using in situ atomic force microscopy
Shubhra et al. Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: Process optimization and cytotoxicity analysis
Maury et al. Influence of pDNA availability on transfection efficiency of polyplexes in non-proliferative cells
Ayyadevara et al. Calcium enhances polyplex-mediated transfection efficiency of plasmid DNA in Jurkat cells
CN110753757A (zh) 修饰的指导rna,crispr-核糖核蛋白复合物和使用方法
JP7447389B2 (ja) T細胞遺伝子発現の非ウイルス性改変
Keswani et al. Efficient in vitro gene delivery by hybrid biopolymer/virus nanobiovectors
JP2012509904A (ja) 核酸送達組成物および核酸送達法
Pradhan et al. Effect of addition of ‘carrier’DNA during transient protein expression in suspension CHO culture
Gillard et al. Timed-release polymers as novel transfection reagents
Majumdar et al. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture
ES2798449T3 (es) Método para transfectar células eucaróticas usando fibras de sepiolita
Noble et al. Folding-mediated DNA delivery by α-helical amphipathic peptides
US20230120357A1 (en) Device, method and composition for transfection of cells with nucleic acids
US20230340437A1 (en) Modified nucleases
Tay et al. Recent advances in mammalian cell transfection techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904394

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014823515

Country of ref document: EP