WO2015005134A1 - 抵抗スポット溶接方法 - Google Patents

抵抗スポット溶接方法 Download PDF

Info

Publication number
WO2015005134A1
WO2015005134A1 PCT/JP2014/067083 JP2014067083W WO2015005134A1 WO 2015005134 A1 WO2015005134 A1 WO 2015005134A1 JP 2014067083 W JP2014067083 W JP 2014067083W WO 2015005134 A1 WO2015005134 A1 WO 2015005134A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
spot welding
pulsation
time
welding method
Prior art date
Application number
PCT/JP2014/067083
Other languages
English (en)
French (fr)
Inventor
富士本 博紀
及川 初彦
山中 晋太郎
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020167001464A priority Critical patent/KR101892828B1/ko
Priority to US14/902,985 priority patent/US10265797B2/en
Priority to CA2916872A priority patent/CA2916872A1/en
Priority to CN201480038319.1A priority patent/CN105358284B/zh
Priority to EP14823032.9A priority patent/EP3020499B1/en
Priority to RU2016101225A priority patent/RU2633413C2/ru
Priority to JP2015526251A priority patent/JP6094676B2/ja
Priority to MX2015017709A priority patent/MX367552B/es
Priority to BR112016000058-7A priority patent/BR112016000058B1/pt
Publication of WO2015005134A1 publication Critical patent/WO2015005134A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • B23K11/245Electric supplies using a stepping counter in synchronism with the welding pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a resistance spot welding method.
  • An automobile body is assembled by joining press-formed steel sheets mainly by spot welding.
  • spot welding used in the assembly of vehicle bodies, it is required to ensure both a nugget diameter according to the plate thickness and suppression of dust generation.
  • the nugget diameter When assembling the car body, the nugget diameter may fall below the standard nugget diameter due to various disturbance factors such as electrode wear, diversion to the welded point, and gaps between the pressed parts. In the case of welding at a test piece level, an appropriate current range is often required to be 1.0 kA or more, or 1.5 kA or more.
  • inverter DC type resistance spot welder is often used instead of a single-phase AC type in the assembly of automobiles.
  • the inverter direct current method has the merit of being able to reduce the transformer and mounting it on a robot with a small payload, so it is often used especially in an automated line.
  • the inverter direct current method has high heat generation efficiency because it does not turn on and off the current as in the conventional single phase alternating current method, and continuously applies current. For this reason, it has been reported that even in the case of a galvanized material of thin mild steel that is difficult to form a nugget, a nugget having a diameter smaller than the reference nugget diameter is formed from a low current, and the appropriate current range becomes wider than a single-phase alternating current.
  • the one-stage energization method in which energization is performed only once is often used in resistance spot welding of automobiles.
  • I on the vertical axis represents welding current
  • t on the horizontal axis represents time (hereinafter, the same applies to FIGS. 2 to 7).
  • the current value at which intermediate dust is generated is low, and the appropriate current range is significantly narrowed.
  • JP 2010-188408 A (hereinafter sometimes referred to as “Document 1”), as shown in FIG. 2, two-stage in which main energization is performed after improving the familiarity between the contact surfaces of the steel plates by preliminary energization.
  • a method for suppressing generation of dust in spot welding of a high-strength steel sheet by adopting an energization method is disclosed.
  • the current value is set after improving the familiarity between the contact surfaces of the steel plates by preliminary energization. It is disclosed that an energization method in which the current value is increased and then the current value is increased again to perform constant current main energization or pulsed main energization is disclosed. This discloses that generation of dust in spot welding of a high-tensile steel plate is suppressed.
  • Reference 4 discloses a high-strength steel sheet by spot welding in which the current value is increased while repeatedly increasing and decreasing the current as shown in FIG. A method for suppressing the generation of dust in spot welding is disclosed.
  • An object of the present invention is to provide a resistance spot welding method capable of securing a wide appropriate current range even with an inverter DC method for a plate assembly in which steel materials including high-tensile steel plates are stacked.
  • the inventors have studied using a 1500 MPa class hot stamped steel sheet that has been surface-treated with various plate assemblies as a specific method. As a result, by combining the short-time pulsation energization process (repeat energization and energization stop multiple times) and the subsequent continuous energization process, the generation of medium dust and surface dust was suppressed, and the appropriate current range was wide and stable. It was found that spot welding can be performed.
  • a pair of welding electrodes connected to an inverter DC spot welding power source sandwich a plate assembly in which two or more steel plates including at least one high-tensile steel plate are stacked, A pulsation step in which energization and energization pause are repeated a plurality of times while pressurizing the steel plate with a welding electrode, and after the pulsation step, the steel plate is continuously applied with the welding electrode for a longer time than the maximum energization time of the pulsation step.
  • a resistance spot welding method comprising a continuous energization step of energizing while applying pressure.
  • the resistance spot welding method of the present invention can ensure a wide appropriate current range even when spot welding is performed using an inverter DC power source on a plate assembly in which steel plates including high-tensile steel plates are overlapped.
  • FIG. 10A to FIG. 10H, and FIG. 11A to FIG. 11G I on the vertical axis represents welding current, and t on the horizontal axis represents time.
  • the surface of the steel sheet used for hot stamping may be subjected to surface treatment such as zinc plating or aluminum plating in order to prevent the generation of iron scale when heated to a high temperature.
  • the hot stamped steel sheet is not a flat plate but a formed body, but in the present invention, the hot stamped steel sheet is also referred to as a “hot stamped steel sheet”.
  • a hot stamped steel sheet obtained by hot stamping a zinc-based plated steel sheet or an aluminum-based plated steel sheet may be referred to as a “surface-treated hot stamped steel sheet” in the following description.
  • the surface-treated hot stamped steel sheet has an intermetallic compound and an iron-based solid solution formed on the surface by an alloying reaction between the zinc-based or aluminum-based plating film and the base steel, and the outer surface is plated. It has an oxide film whose main component is a derived metal (for example, zinc for zinc-based plating). Therefore, the surface-treated hot stamped steel plate has a higher resistance at the contact portion between the steel plates and a larger calorific value than the bare steel plate.
  • the melting point near the surface has a high value close to that of iron.
  • the portion is difficult to soften and the expansion of the energization path is suppressed.
  • the inverter direct current method has a higher heat generation efficiency than a single-phase alternating current by continuously supplying current, the formation of a nugget at the initial energization becomes very rapid. For this reason, it is presumed that the growth of the press-contact portion around the nugget cannot catch up and the molten metal cannot be confined to generate medium dust.
  • the cause of occurrence of surface dust is considered to be the same as the cause of occurrence of medium dust. Furthermore, since the inverter DC system has no current quiescent time like a single-phase AC by continuously supplying current, it is difficult to obtain the cooling effect by the electrodes. For this reason, it is presumed that nuggets are likely to grow in the thickness direction, the molten portion reaches the outermost layer of the steel plate, and surface dust is generated.
  • the surface-treated hot stamped steel sheet is in the surface state as described above, it is considered that medium dust and surface dust are likely to occur.
  • the appropriate current range is often less than 1 kA.
  • the method of Reference 1 which is a resistance spot welding method for high-strength steel sheets, has a low current value that can be applied to surface-treated hot stamped steel sheets without generating dust during preliminary energization.
  • the effect of suppressing the generation of dust by reducing the current density is not sufficient. For this reason, when the current value is increased by this energization, there are cases in which medium dust and surface dust occur, and it has been difficult to ensure a sufficient appropriate current range.
  • the methods of Documents 2 and 3 have a low current value that can be applied to the surface-treated hot stamped steel sheet without generating dust during preliminary energization, as in the method of Document 1.
  • the upper limit value of preliminary energization is higher than that of Document 1, there are cases where medium dust occurs when the current value is increased by main energization, and it has still been difficult to secure a sufficient appropriate current range.
  • the method described in Document 4 has the effect of extending the appropriate current range up to a steel material with a tensile strength of 980 MPa, but with a higher-strength surface-treated hot stamped steel plate, the medium dust and surface Dust is easily generated, and this energization pattern is not suitable for welding of the surface-treated hot stamped steel sheet.
  • the welding machine 10 includes electrodes 16 and 18 that pressurize the stacked steel plates 12 and 14 to flow a welding current, a pressurizing mechanism 20 that applies a predetermined pressing force to the electrodes 16 and 18, and a pressurizing mechanism 20.
  • a pressurizing control unit 22 that controls the pressing force of the pressure mechanism 20, a welding power source 24 that applies current to the electrodes 16 and 18, and a current that controls the welding power source 24 to control the current value applied to the electrodes 16 and 18.
  • a control unit 26 that controls the pressing force of the pressure mechanism 20
  • a welding power source 24 that applies current to the electrodes 16 and 18, and a current that controls the welding power source 24 to control the current value applied to the electrodes 16 and 18.
  • the plate assembly targeted by the resistance spot welding method of the present embodiment is a stack of two or more steel plates including at least one high-tensile steel plate of 590 MPa class or higher.
  • FIG. 8 shows a plate assembly in which two steel plates 12 and 14 are stacked, three or more plates may be used. In the assembly of a normal automobile body, resistance spot welding is performed on a plate assembly in which two or three steel plates are overlapped.
  • the type of the high-strength steel plate is not particularly limited, and can be applied to high-tensile steel plates having a tensile strength of 590 MPa or more, such as precipitation-strengthened steel, DP steel, TRIP (work-induced transformation) steel, hot stamped steel plate, and the like. .
  • the resistance spot welding method of the present embodiment can be applied to a plate assembly including a high-tensile steel plate having a tensile strength of 980 MPa or more.
  • a plate assembly including a high-tensile steel plate having a tensile strength of 1200 MPa or more is preferably applied to a plate assembly including a high-tensile steel plate having a tensile strength of 1500 MPa or more.
  • the steel plate included in the plate assembly may be a cold-rolled steel plate or a hot-rolled steel plate.
  • the steel plate may be a bare steel plate or a plated steel plate, and the type of plating is not particularly limited.
  • the resistance spot welding method of this embodiment is applicable to various high-tensile steel plates, it is particularly suitable for surface-treated hot stamped steel plates.
  • the thickness of the high-tensile steel plate there is no particular limitation on the thickness of the high-tensile steel plate.
  • the plate thickness of a steel plate used for automobile parts or vehicle bodies is 0.6 to 3.2 mm, and the resistance spot welding according to this embodiment is sufficiently applicable in this range.
  • the welding machine 10 is a spot welding machine having an inverter DC type welding power source 24.
  • the inverter DC type welding power source 24 When welding high strength steel sheets such as hot stamped steel sheets, the inverter DC type welding power source 24 generates medium dust and surface dust at a lower current value than the single phase AC type welding power source. It becomes easy.
  • the resistance spot welding method of this embodiment is applied to the welding machine 10 using such an inverter DC type spot welding power source.
  • the pressurizing mechanism 20 for the electrodes 16 and 18 of the welding machine 10 may be either pressurization by a servo motor or pressurization by air.
  • the shape of the gun may be any of a stationary type, a C type, and an X type.
  • the pressure applied during welding is not particularly limited, but is preferably 200 to 600 kgf under the control of the pressurization control unit 22. During spot welding, a constant pressure may be applied, or the pressure may be changed in each step described later.
  • the electrodes 16 and 18 are not particularly limited, and examples thereof include DR (dome radius) type electrodes having a tip diameter of 6 to 8 mm. As a most typical example, there is a DR type electrode having a tip diameter of 6 mm and a tip R of 40 mm.
  • the electrode material may be either chromium copper or alumina-dispersed copper, but alumina-dispersed copper is more desirable from the viewpoint of preventing welding and surface dust.
  • the electrodes 16 and 18 controlled by the pressurization control unit 22 sandwich the plate assembly in which the steel plate 12 and the steel plate 14 are stacked with a predetermined pressing force, and the electrodes from the welding power source 24 by the energization method controlled by the current control unit 26. Welding energization is performed on the steel plates 12 and 14 through 16 and 18.
  • energization of a pulse waveform having an energization time t0 with a current value I0 is performed three times (see pulses P1 to P3 in FIG. 9). At this time, the non-energized pause time between the pulses is constant at t1.
  • a continuous energization process which will be described later, is performed after a lapse of a non-energizing period t2 after the last pulse P3 of the pulsation process (hereinafter, sometimes referred to as “the last suspending period”).
  • the pulsation process is performed from the rise of the first pulse P1 to the end of the last pause time t2.
  • the “pulse” of the present embodiment includes those having a slope and those having a sawtooth shape shown in examples of variations described later (see FIGS. 10D and 10E).
  • the electrodes 16 and 18 are continuously energized between the steel plates 12 and 14, and a predetermined nugget 28 is formed at the interface between the steel plates 12 and 14.
  • the pulses P1 to P3 in the pulsation process of the present embodiment correspond to “energization in the pulsation process” of the present invention.
  • the range of the pause time t1 and the range of the final pause time t2 in the pulsation process of the present embodiment both correspond to the “energization pause of the pulsation process” of the present invention.
  • the range of the pause time t1 between the pulses P1 and P2 and between the pulses P2 and P3 of the present embodiment corresponds to the “energization pause” between adjacent energizations of the present invention, and the range of the last pause time t2 of the present embodiment.
  • the continuous energization process is performed after the pulsation process of the present invention, but the last energization stop of the pulsation process is always positioned before the continuous energization process.
  • the energization time, rest time, and number of pulses are adjusted according to the type of material, plate thickness, and plate assembly.
  • the familiarity between the contact surfaces of the steel plates can be improved in a short time.
  • the energization time t0 of each pulse P1 to P3 in the pulsation process is preferably 10 to 60 milliseconds.
  • the energization time t0 is more preferably 15 milliseconds or longer.
  • the energization time t0 is more preferably 45 milliseconds or less, and further preferably 25 milliseconds or less.
  • the current value I0 of the welding current in the pulsation process is preferably 7.0 to 14.0 kA. Normally, if the energization time in pulsation increases, dust will be generated at a low current value. Therefore, in pulsation energization, there is no dust in the range of 7.0 to 14.0 kA in consideration of the energization time. It is desirable to adjust the current value as appropriate.
  • the pause time t1 in the pulsation process is preferably 10 to 60 milliseconds, excluding the final pause time t2. If the downtime t1 is less than 10 milliseconds, the downtime is short and the steel plates 12 and 14 are not sufficiently cooled, and there is a risk that medium dust and surface dust will occur. On the other hand, if the pause time t1 exceeds 60 milliseconds, the cooling effect by the electrodes 16 and 18 becomes too great, and the amount of nugget 28 formed in the continuous energization process described later may be reduced.
  • the pause time t1 is more preferably 15 milliseconds or longer.
  • the pause time t1 is more desirably 45 milliseconds or less, and further desirably 25 milliseconds or less.
  • the last pause time t2 in the pulsation process is preferably 10 to 120 milliseconds.
  • the last downtime t2 is less than 10 milliseconds, the nugget 28 is not sufficiently cooled, and dust is generated even at a low current value during the continuous energization process.
  • the last downtime t2 exceeds 120 milliseconds, the nugget 28 is excessively cooled, and the current value for obtaining the reference nugget diameter having a predetermined joint strength increases in the continuous energization process, and the appropriate current range Becomes narrower.
  • the final pause time t2 is 15 milliseconds or longer.
  • the last pause time t2 is more preferably 100 milliseconds or less, and further preferably 60 milliseconds or less.
  • the energization can be repeated while sandwiching the cooling effect of the electrodes 16 and 18. Therefore, while suppressing the generation of dust due to the rapid growth of the nugget 28 on the contact surfaces of the steel plates 12, 14, the familiarity between the high-tensile steel plate and other steel plates is promoted, and the current path at the interface between the steel plates is increased. Can do.
  • the current path between the steel plates 12 and 14 can be increased even if the energization is continued for a time longer than the (maximum) energization time t1 of each pulse P1 to P3 of the pulsation process.
  • the current density By increasing the current density, the temperature rise at the contact portion between the steel plates is suppressed, thereby suppressing the generation of dust. That is, the current value at which dust is generated increases.
  • the energization time t3 longer than the energization time t1 of each pulse in the pulsation process is energized once in the continuous energization process (see FIG. 1).
  • the nugget 28 grows to a predetermined reference nugget diameter at a lower current value.
  • the appropriate current range in the continuous energization process is increased.
  • the appropriate current range means that the nugget diameter, which is a reference for obtaining a predetermined welding strength, is 4t 1/2 (t is a plate thickness (mm).
  • t is a plate thickness (mm).
  • 4 ⁇ t may be described.
  • the lower limit is the current value that is)
  • the upper limit is the maximum current value at which no dust (sputtering) occurs.
  • the plate thickness t is the thickness (mm) of one of the two steel plates on which the nugget is formed. When the thicknesses of the two steel plates are different, it is the thickness of the thinner steel plate. Furthermore, when three or more steel plates are overlapped, it is the thickness of the thinner steel plate of the two steel plates whose nugget diameter is measured.
  • the resistance spot welding method according to the present embodiment it is possible to perform stable resistance spot welding even for a steel sheet including a surface-treated hot stamped steel sheet or the like that is likely to generate dust.
  • the appearance quality of the product can be improved by suppressing the generation of dust. Moreover, since the adhesion of dust to the movable part of the welding robot can be prevented, the operation rate of the robot can be improved. Moreover, since post-processes such as deburring due to generation of dust can be omitted, work efficiency can be improved.
  • the number of pulses (energization) in the pulsation process is at least twice. This is because in the case of the surface-treated hot stamped steel plate, the effect of suppressing the generation of dust cannot be obtained unless there are two or more pulses.
  • the number of pulses is more preferably 3 times or more. In general, the larger the total plate thickness of the plate assembly, the more the number of pulses may be increased. However, the effect tends to be saturated even if the number of pulses exceeds 9, so the number of pulses is preferably 9 or less. .
  • the pulsation process is, for example, energization of 7.5 to 12 kA in 16.6 (one cycle at 60 Hz) to 20 milliseconds (one cycle at 50 Hz) It is desirable to repeat 3 to 7 times and pause.
  • the resistance spot welding method of this embodiment includes a continuous energization process after the pulsation process. Even if the energization path can be expanded only by the pulsation process, the effect of expanding the nugget diameter is small, but by providing a continuous energization process after the pulsation process, heat generation at the interface between the steel plates 12 and 14 is promoted. A sufficiently large nugget 28 can be formed without generating dust.
  • the continuous energization process it is desirable to energize continuously with an energization time t3 of 100 to 500 milliseconds. If the energization time t3 in the continuous energization process is less than 100 milliseconds, the time for enlarging the nugget 28 is insufficient and no effect is obtained, and if it exceeds 500 milliseconds, the effect of enlarging the nugget 28 is saturated and tact time is increased. This is because time is increased.
  • the energization time t3 in the continuous energization process is more preferably 120 milliseconds or more, and more preferably 400 milliseconds or less.
  • the current value I1 in the continuous energization process is desirably 5.0 to 12.0 kA. Further, it is desirable that the current value I1 in the continuous energization process is not more than the maximum current value I0 in the pulsation process. This is because the generation of dust is suppressed by lowering the current value I1 in the continuous energization process below the maximum current value I0 in the pulsation process.
  • the current value is not necessarily constant, the current value may be changed in the middle, and an up slope or a down slope of 16 milliseconds to 60 milliseconds may be inserted.
  • one more energization or pulse energization may be performed after the continuous energization process for the purpose of improving the toughness of the nugget 28 by controlling the cooling process. (See FIGS. 11F and 11G).
  • the solidification segregation of phosphorus in the nugget 28 is alleviated, or the nugget 28 is made tempered martensite structure, thereby improving the toughness of the nugget 28 and increasing the strength of the spot welded joint. Benefits that can be improved.
  • the resistance spot welding method according to the present embodiment may further include a holding step of pressing with the electrodes 16 and 18 without passing an electric current after the pulsation step and the continuous energization step are finished.
  • each pulse P1 to P3 in the pulsation process may be constant or may be changed with each pulse.
  • the energizing time of each pulse and the energizing pause time between each pulse in the pulsation process are constant as in this embodiment, and the current of each pulse
  • the value is not limited to a constant value.
  • control may be performed in which the current value is increased from the first pulse P1 toward the subsequent pulses P2 and P3.
  • a slope may be provided at the rising portion of the first pulse P1.
  • a sawtooth wave shape in which the rising sides of the pulses P1 to P3 are slopes may be used.
  • FIG. 10G only the first pause time t11 between the first pulse P1 and the second pulse P2 is longer than the other pause times t12, so that the electrodes are cooled for the first pulse P1. The effect may be increased as compared with other pulses P2.
  • the last pause time (energization pause time between the last pulse P3 and the continuous energization process) t2 is shorter than other examples (see FIGS. 10A to 10G). It is also possible to do.
  • electric energy for example, energization time, current value
  • applied to the steel plate during continuous energization while suppressing excessive cooling of the steel plates 12, 14 by the electrodes 16, 18 is reduced. Can be suppressed.
  • the current value may be controlled to decrease from the first pulse P1 toward the last pulse P3.
  • the first pulse P1 may be energized with a higher current value than the other pulses P2 and P3.
  • the energization time may be made longer only for the first pulse P1 than for the other pulses P2 and P3.
  • the contact resistance between the thin plate and the thick plate is high.
  • the nugget can be grown between the thin plate and the thick plate at a high temperature.
  • the rising of the current waveform in the continuous energization process is set as a slope, or as shown in FIG. 11E, the current value in the first half of the continuous energization process is set to a current value lower than the current value in the latter half.
  • the slope of the falling of the current waveform in the continuous energization process is used as a slope, or as shown in FIG. 11C, the current value in the latter half of the continuous energization process is made lower than the current value in the first half. There is. By doing in this way, the intensity
  • one energization or pulse energization is performed after the continuous energization process.
  • the metal structure of the welded portion is improved, and the strength of the welded joint is improved.
  • the nugget between the thin plate and the thick plate is obtained by conducting a current with a high current value at the beginning of the continuous energization process on the three-layered plate assembly of the thin plate, the thick plate, and the thick plate. It promotes growth.
  • the welding machine used in this example is a servo pressurization type inverter DC spot welding machine, and includes a DR type electrode (alumina dispersed copper) having a tip diameter of 6 mm and a tip R of 40 mm.
  • the material to be welded is a 1500 MPa class hot-plated steel plate with a thickness of 1.2 mm and a size of 30 mm ⁇ 100 mm (the amount of plating before hot stamping is 40 g / m 2 per side. For 4 minutes).
  • Table 1 shows the welding methods.
  • Test Nos. 6 and 7 preliminary energization was performed before the continuous energization process, but two-stage energization with no downtime was performed between the pre-energization and the continuous energization process.
  • Test No. 8 is a period in which energization is stopped (34 msec) between the preliminary energization process and the continuous energization process.
  • the applied pressure was set to a constant value (300 kgf) in the pulsation process or the preliminary energization process and the continuous energization process.
  • spot welding is performed by changing the current value in the continuous energization process while keeping the conditions of the pulsation process or the pre-energization constant, so that the nugget diameter, which is a reference for the strength of the welded joint, is 4 ⁇ t.
  • the appropriate current range is the range of the current value in the continuous energization process that does not generate dust while forming a nugget that gives a predetermined strength to the welded joint while forming a range that is greater than or equal to this 4 ⁇ t current value and less than the maximum dustless current value.
  • the test results are shown in Table 1.
  • the nugget diameter was obtained by performing a destructive test with a chisel after spot welding and measuring the fracture surface with calipers. The presence or absence of dust was confirmed visually during spot welding.
  • test numbers 1 to 4 of the present invention example is 3 times or more wider.
  • test numbers 1 to 4 of the present invention example having the pulsation process repeat energization and pause multiple times. It was confirmed that the appropriate current range is more than twice as wide.
  • the welding machine used in the present embodiment is the same as that in the first embodiment.
  • the materials to be welded are a 270 MPa class GA plated steel sheet with a thickness of 0.7 mm and a size of 30 mm ⁇ 100 mm, and a 1500 MPa class GA plated hot stamped steel sheet with a thickness of 1.2 mm. / m 2. the heating conditions as well.) as in example 1, is a superposition of three and 440MPa grade non-plated steel sheet having a thickness of 1.4 mm.
  • Table 2 shows the welding method.
  • the energization method of the comparative example is the same as that of the first embodiment. Further, in both the inventive examples and the comparative examples, the applied pressure was set to a constant value (300 kgf) in the pulsation process or the preliminary energization process and the continuous energization process.
  • the minimum current value at which the nugget diameters at both interfaces are 4 ⁇ t or more is defined as the 4 ⁇ t current value.
  • Example 2 Even when the material to be welded is a three-layer stack including a hot stamp material, as in Example 1, there is no pre-energization, but there is pre-energization, but there is a downtime between the pre-energization and the continuous energization. No suitable current range of test numbers 1 to 3 of the present invention having a pulsation process is nearly three times wider than that of comparative example test numbers 4 to 6 having a pause between pre-energization and continuous energization It was confirmed that it was (2.0 kA or more).
  • the welding machine used in this example is an air pressure type inverter DC spot welding machine, and includes a DR type electrode (alumina dispersed copper) having a tip diameter of 6 mm and a tip R of 40 mm.
  • the material to be welded is a stack of two 1500 MPa-class furnace-heated ZnO-coated aluminum-plated hot stamped steel sheets having a plate thickness of 1.6 mm and a size of 30 mm ⁇ 100 mm. Table 3 shows the welding method.
  • the energization method of the comparative example is the same as that of the first embodiment. Further, in both the inventive example and the comparative example, the applied pressure was set to a constant value (350 kgf) in the pulsation process or the preliminary energization process and the continuous energization process.
  • the ZnO film treatment Al plating hot stamping steel plate used in this example was prepared by the following method.
  • Al plating was performed by the Sendzimer method.
  • the annealing temperature at this time was about 800 ° C.
  • the Al plating bath contained Si: 9%, and also contained Fe eluted from the steel strip.
  • the plating adhesion amount was adjusted to 40 g / m 2 per side by a gas wiping method.
  • water was sprayed in the form of a spray during cooling after plating. After cooling the Al-plated steel sheet, the treatment liquid was applied with a roll coater and baked at about 80 ° C.
  • the treatment liquid is based on NanoTek (registered trademark) Slurry ZnO Slurry manufactured by Cai Kasei Co., Ltd. Adds water-soluble urethane resin as a binder up to 30% in solids and carbon black for coloring up to 10% in solids did. The adhesion amount was measured as Zn content, and was 0.8 g / m 2 .
  • the steel plate thus produced was heated in a furnace at 900 ° C. for 5 minutes in an air atmosphere and then quenched with a water-cooled mold to obtain a test material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Resistance Welding (AREA)

Abstract

本発明は、高張力鋼板を含む鋼材を重ね合わせた板組みに対して、インバータ直流方式でも広い適正電流範囲を確保できる抵抗スポット溶接方法を提供することを目的とし、インバータ直式のスポット溶接電源に接続された一対の溶接電極で、少なくとも1枚の高張力鋼板を含む2枚以上の鋼板を重ね合わせた板組みを挟持し、溶接電極で鋼板を加圧しながら通電と通電休止を複数回繰り返すパルセーション工程と、パルセーション工程後に、パルセーション工程の最大通電時間(t0)よりも長時間(t3)連続的に溶接電極で鋼板に加圧しながら通電する連続通電工程と、を備える抵抗スポット溶接方法とした。

Description

抵抗スポット溶接方法
 本発明は、抵抗スポット溶接方法に関する。
 自動車車体はプレス成形された鋼板を、主にスポット溶接にて接合することで組み立てられる。車体の組立てで使用されるスポット溶接では、板厚に応じたナゲット径の確保とチリの発生抑制の両立が求められる。
 チリには中チリ(溶接により溶融した母材金属が鋼板の重ね面より飛散する現象)と表チリ(溶接により溶融した母材金属が鋼板と電極の接触面から飛散する現象)とがある。いずれも、チリが飛散し自動車の車体に付着することで車体の表面品質を低下させる。また、溶接用ロボットの可動部に付着することで、設備の稼働不良の要因となる。さらに、スポット溶接表面に針状に残存する表チリは自動車のワイヤハーネスなどの損傷の原因となるため、グラインダーで研削する必要がある。このため、抵抗スポット溶接においては、中チリおよび表チリは避け、かつ必要な溶接継手の強度を確保するために所定の基準ナゲット径を確保することが求められている。
 車体の組立てでは、電極の損耗、既溶接点への分流、プレス部品間の隙間等の様々な外乱因子によりナゲット径が基準ナゲット径を下回ることがあるため、量産ラインにてチリを生じさせずに溶接する場合、試験片レベルの評価において、適正電流範囲が1.0kA以上、または、1.5kA以上必要とされることが多い。
 近年、自動車の組立てでは、単相交流式に代わりインバータ直流方式の抵抗スポット溶接機が用いられることが多くなっている。インバータ直流方式はトランスを小さくでき、可搬重量の小さいロボットに搭載できるメリットがあるため、特に自動化ラインで多く用いられる。
 インバータ直流方式は、従来用いられてきた単相交流方式のような電流のオンオフがなく、連続的に電流を付与するため、発熱効率が高い。このため、ナゲットが形成しにくい薄板軟鋼の亜鉛めっき材の場合であっても、低電流から基準ナゲット径以上のナゲットが形成され適正電流範囲が単相交流より広くなることが報告されている。
 スポット溶接において、図1に示すように、通電を1回だけ行う1段通電方式は、自動車の抵抗スポット溶接で多く用いられている。なお、図1において、縦軸のIは溶接電流を、横軸のtは時間を表す(以下、図2~図7で同様である)。しかしながら、インバータ直流方式で高張力鋼板を1段通電方式で溶接すると中チリが発生する電流値が低く、適正電流範囲が著しく狭くなる。
 特開2010-188408号公報(以下、「文献1」という場合がある)には、図2に示すように、予備通電により鋼板の接触面同士のなじみを向上させた後に本通電を行う2段通電方式を採用することによって、高張力鋼板のスポット溶接におけるチリの発生を抑制する方法が開示されている。
 特開2003-236674号公報(以下、「文献2」という場合がある)には、図3に示すように、予備通電により鋼板の接触面同士のなじみを向上させた後に通電を休止し、その後、本通電を行う通電方式を採用することによって、高張力鋼板のスポット溶接におけるチリの発生を抑制する方法が開示されている。
 特開2010-207909号公報(以下、「文献3」という場合がある)には、図4及び図5に示すように、予備通電により鋼板の接触面同士のなじみを向上させた後に電流値を下げ、その後、再び電流値を上げて一定電流の本通電またはパルス状の本通電を行う通電方式を採用することが開示されている。これによって、高張力鋼板のスポット溶接におけるチリの発生が抑制されることが開示されている。
 特開2006-181621号公報(以下、「文献4」という場合がある)には、図6に示すように電流のアップダウンを繰り返しながら、電流値を上げていくスポット溶接により、高張力鋼板のスポット溶接におけるチリの発生を抑制する方法が開示されている。
 文献(ISO 18278-2 Resistance welding-Weldability- Part 2 Alternative procedure for the assessment of sheet steels for spot welding)(以下、「文献5」という場合がある)には、図7に示すように、板厚1.5mm以上の鋼板において、6サイクル(120ミリ秒)以上の通電と2サイクル(40ミリ秒)の休止とを3回以上繰り返すスポット溶接方法が開示されている。
 本発明は、高張力鋼板を含む鋼材を重ね合わせた板組みに対して、インバータ直流方式でも広い適正電流範囲を確保できる抵抗スポット溶接方法を提供することを目的とする。
 発明者達はその具体的な方法として、様々な板組みで、表面処理された1500MPa級ホットスタンプ鋼板を用いて検討を行った。その結果、短時間のパルセーション通電(通電および通電休止を複数回繰り返す)工程と、その後の連続通電工程とを組み合わせることで、中チリおよび表チリの発生を抑制し適正電流範囲が広く安定したスポット溶接を実施できることを見出した。
 本発明の一態様によれば、インバータ直流式スポット溶接電源に接続された一対の溶接電極で、少なくとも1枚の高張力鋼板を含む2枚以上の鋼板を重ね合わせた板組みを挟持し、前記溶接電極で前記鋼板を加圧しながら通電と通電休止を複数回繰り返すパルセーション工程と、前記パルセーション工程後に、前記パルセーション工程の最大通電時間よりも長時間連続的に前記溶接電極で前記鋼板を加圧しながら通電する連続通電工程と、を備える抵抗スポット溶接方法が提供される。
 本発明の抵抗スポット溶接方法は、高張力鋼板を含む鋼板を重ね合わせた板組みに対してインバータ直流電源を用いてスポット溶接を行った場合でも、広い適正電流範囲を確保することができる。
通電を1回だけ行う1段通電方式の時間と溶接電流の関係を模式的に示す説明図である。 文献1に記載の通電方式の時間と溶接電流の関係を模式的に示す説明図である。 文献2に記載の通電方式の時間と溶接電流の関係を模式的に示す説明図である。 文献3に記載の通電方式の時間と溶接電流の関係を模式的に示す説明図である。 文献3に記載の通電方式の時間と溶接電流の関係を模式的に示す説明図である。 文献4に記載の通電方式の時間と溶接電流の関係を模式的に示す説明図である。 文献5に記載の通電方式の時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接装置を模式的に示す概略図である。 本発明の一実施形態に係る抵抗スポット溶接方法における通電方式の時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法におけるパルセーション工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法における連続通電工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法における連続通電工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法における連続通電工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法における連続通電工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法における連続通電工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法における連続通電工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。 本発明の一実施形態に係る抵抗スポット溶接方法における連続通電工程の通電方式のバリエーションの時間と溶接電流の関係を模式的に示す説明図である。
 本発明の一実施形態に係る抵抗スポット溶接方法について説明する。なお、図9、図10A~図10H、図11A~図11Gにおいて、縦軸のIは溶接電流を、横軸のtは時間を表す。
 近年、自動車用の材料面では、車体の軽量化および衝突安全性の向上を図るため、各種高張力鋼板の使用が拡大しつつある。また、ホットスタンプ(鋼板を焼き入れ可能な温度まで加熱しオーステナイト化した後、金型でプレス成形と同時に冷却し焼き入れする方法。)の適用が広がり、引張強度が1200~2000MPaとなる超高強度の多くのプレス成形部品が、ホットスタンプにより製造されている。
 ホットスタンプに用いる鋼板の表面は、非めっきの他に、高温に加熱した時に鉄スケールの発生を防止するため、亜鉛系めっき、アルミニウム系めっきなどの表面処理が施されるものがある。なお、ホットスタンプされた鋼板は、多くの場合、平板ではなく成形加工された成形体であるが、本発明では、成形体である場合も含めて「ホットスタンプ鋼板」という。また、亜鉛系めっき鋼板やアルミニウム系めっき鋼板をホットスタンプして得られるホットスタンプ鋼板を、以下の説明では「表面処理ホットスタンプ鋼板」という場合がある。
 ホットスタンプ鋼板をインバータ直流電源のスポット溶接機でスポット溶接すると、軟鋼板とは逆に、単相交流電源を用いた場合よりも低い電流値でチリが発生し、適正電流範囲が狭くなる現象が起きる。この現象は、例えばアルミめっきホットスタンプ鋼板のスポット溶接にて起きることが、文献(LAURENZ, et al:Schweissen Schneiden, 64-10(2012), 654-661.)(以下、「文献6」という場合がある)で報告されているが、抜本的な解決法については報告されていない。
 特に、表面処理ホットスタンプ鋼板は、インバータ直流電源のスポット溶接機でスポット溶接すると、中チリと共に表チリも出やすくなり、適正電流範囲が著しく狭くなる。このためチリを発生せずに得られる、ナゲット径も小さくなる。
 これらの原因は解明されていないが、中チリの発生については次のように考えられる。表面処理ホットスタンプ鋼板は、亜鉛系またはアルミニウム系のめっき皮膜と基材の鋼との合金化反応によって、金属間化合物および鉄基の固溶体がその表面に形成されており、さらにその外面にめっきに由来する金属(例えば、亜鉛系めっきであれば亜鉛を指す。)を主成分とする酸化皮膜を有している。そのため、表面処理ホットスタンプ鋼板は裸の鋼板と比べて、鋼板同士の接触部での抵抗が高く発熱量が大きい。
 一方、ホットスタンプ工程でめっきと鋼との合金化が進行し、表面近傍の融点も鉄に近い高い値となっているので、加熱前のめっき皮膜を備える鋼板と比較して、鋼板同士の接触部が軟化しにくく通電パスの拡大が抑制される。特に、インバータ直流方式は連続的な電流の投入により単相交流に比べ発熱効率が高いため、通電初期のナゲットの形成が非常に急激となる。このためナゲットの周囲の圧接部の成長が追い付かず溶融金属を閉じ込めることができなくなり中チリが発生するものと推定される。
 また、表チリの発生原因についても、上記の中チリの発生原因と同様であると考えられる。さらに、インバータ直流方式は連続的な電流の投入により単相交流のような電流休止時間がないため、電極による冷却効果が得られにくい。このため、ナゲットが板厚方向に成長しやすく、鋼板の最表層まで溶融部が達して、表チリが発生するものと推定される。
 表面処理ホットスタンプ鋼板は、上述のような表面状態にあることから、中チリおよび表チリが発生しやすいと考えられ、加圧力が低い場合、適正電流範囲が1kA未満となることも多い。しかしながら、表面処理ホットスタンプ鋼板を含む板組みの抵抗スポット溶接方法について、これまでほとんど検討されてこなかったのが現状である。
 この表面処理ホットスタンプ鋼板について、文献1~5の方法を適用すると、以下の不都合があった。
 高張力鋼板の抵抗スポット溶接方法である文献1の方法は、表面処理ホットスタンプ鋼板に対して予備通電でチリを生じさせずに付与できる電流値が低いため、鋼板同士の界面における通電パスを広げ電流密度を下げることでチリの発生を抑制するという効果は十分ではない。このため、本通電で電流値を上げると中チリおよび表チリが発生するケースが認められ、十分な適正電流範囲を確保することは難しかった。
 文献2、3の方法は、文献1の方法と同様に、表面処理ホットスタンプ鋼板に対して予備通電にてチリ発生させずに付与できる電流値が低い。文献1に比べ、予備通電の上限値は上昇するが、本通電で電流値を上げると中チリが発生するケースが認められ、十分な適正電流範囲を確保することはまだ難しかった。
 文献4に記載の方法は、引張強度が980MPa級の鋼材までは適正電流範囲を広げる効果があるが、より高強度の表面処理ホットスタンプ鋼板では2、3回目の電流アップの時に中チリや表チリが発生しやすく、この通電パターンは表面処理ホットスタンプ鋼板の溶接には好適ではない。
 文献5に開示されている通電方式では、通電が最も短い場合でも6サイクル(120ミリ秒)である。表面処理ホットスタンプ鋼板では、6サイクルより短い通電時間で中チリが発生するため、この通電方式では上限電流を上昇させることができない。そこで、各パルスでの通電時間を短くすると、上限電流値が上昇するが、発熱効率低下により下限電流値も上昇し、結果として、適正電流範囲を広げることはできない。このため、この方法も適切ではない。
 これに対して、本実施形態の抵抗スポット溶接方法では、表面処理ホットスタンプ鋼板を含めた高張力鋼板に対して、インバータ直流電源を用いた場合にも広い適正電流範囲を確保したものである。
 先ず、本実施形態の抵抗スポット溶接方法で用いられる溶接機について説明する。
 図8に示すように、溶接機10は重ね合わされた鋼板12、14を加圧して溶接電流を流す電極16、18と、電極16、18に所定の加圧力を与える加圧機構20と、加圧機構20の加圧力を制御する加圧制御部22と、電極16、18に電流を付与する溶接電源24と、溶接電源24を制御して電極16、18に付与する電流値を制御する電流制御部26とを備える。
 本実施形態の抵抗スポット溶接方法が対象とする板組みは、少なくとも1枚が590MPa級以上の高張力鋼板を含む、2枚以上の鋼鈑を重ね合わせたものである。図8には、2枚の鋼板12、14が重ねられた板組みが示されているが、3枚以上でも良い。通常の自動車車体の組立てでは、2枚または3枚の鋼板を重ね合わせた板組みに対して抵抗スポット溶接が行われる。
 高張力鋼板の種類については、特に制限はなく、例えば、析出強化鋼、DP鋼、TRIP(加工誘起変態)鋼、ホットスタンプ鋼板等の、引張強度が590MPa以上の高張力鋼板に適用可能である。本実施形態の抵抗スポット溶接方法は、引張強度が980MPa以上の高張力鋼板を含む板組みに対して適用することが可能である。特に、引張強度が1200MPa以上の高張力鋼板を含む板組みに適用するのが好ましく、引張強度が1500MPa以上の高張力鋼板を含む板組みに適用するのがより好ましい。
 板組みに含まれる鋼板は、冷延鋼板でも良く、または熱延鋼板でも良い。また、鋼板は裸鋼板でもめっき鋼板でも良く、めっきの種類にも特に制限はない。本実施形態の抵抗スポット溶接方法は様々な高張力鋼板に適用可能であるが、表面処理ホットスタンプ鋼板に特に好適である。
 高張力鋼板の板厚について、特に制限はない。例えば、自動車用部品または車体で使用される鋼板の板厚は0.6~3.2mmであり、本実施形態に係る抵抗スポット溶接は、この範囲において十分に適用可能である。
 溶接機10は、インバータ直流方式の溶接電源24を有するスポット溶接機である。ホットスタンプ鋼板等の高張力鋼板を含む板組みの溶接を行う場合、インバータ直流方式の溶接電源24では、単相交流方式の溶接電源と比較して低い電流値で中チリおよび表チリが発生しやすくなる。本実施形態の抵抗スポット溶接方法は、このようなインバータ直流式のスポット溶接電源を用いる溶接機10に適用するものである。
 溶接機10の電極16、18に対する加圧機構20は、サーボモータによる加圧でもエアーによる加圧でもどちらでも良い。また、ガンの形状は定置式、C型、X型のいずれを用いても良い。溶接時の加圧力について、特に制限はないが、加圧制御部22の制御により200~600kgfとするのが望ましい。スポット溶接中、一定の加圧力であっても良いし、後述する各工程で加圧力を変化させても良い。
 電極16、18についても、特に制限はないが、例えば、先端径6~8mmのDR(ドームラジアス)型電極が挙げられる。最も代表的な例として、先端径6mm 先端R40mmのDR型電極がある。電極材質としては、クロム銅またはアルミナ分散銅のどちらでも良いが、溶着および表チリを防止する観点ではアルミナ分散銅の方が望ましい。
 次に、このような溶接機10を用いて行う抵抗スポット溶接方法について説明する。
 加圧制御部22によって制御された電極16、18が鋼板12と鋼板14を重ねた板組みを所定の加圧力で挟持すると共に、電流制御部26で制御された通電方式により溶接電源24から電極16、18を介して鋼板12、14に溶接通電を行う。
 通電方式は、図9に示すように、先ず、電流値I0で通電時間がt0のパルス波形の通電を三回行う(図9、パルスP1~P3参照)。この際、各パルス間の通電しない休止時間はt1で一定である。また、パルセーション工程の最後のパルスP3の後の通電しない休止時間(以下、「最後の休止時間」という場合がある)t2経過後、後述する連続通電工程が行われる。
 なお、最初のパルスP1の立ち上がりから、最後の休止時間t2の終了時までをパルセーション工程とする。
 また、本実施形態の「パルス」には、後述するバリエーションの例(図10D、図10E参照)で示すスロープを有するものや鋸波形状のものを含む。
 パルセーション工程の最後のパルスP3の通電が終了した後、最後の休止時間t2が経過すると、パルスP1~P3の電流値I0よりも低い電流値I1で、各パルスP1~P3の(最大)通電時間t0よりも長い通電時間t3にわたって、電極16、18から鋼板12、14間に連続的に通電され、鋼板12、14の界面に所定のナゲット28が形成される。
 なお、本実施形態のパルセーション工程におけるパルスP1~P3は、本発明の「パルセーション工程の通電」に相当する。また、本実施形態のパルセーション工程における休止時間t1の範囲及び最後の休止時間t2の範囲は、いずれも本発明の「パルセーション工程の通電休止」に相当する。さらに、本実施形態のパルスP1、P2間及びP2、P3間の休止時間t1の範囲が本発明の隣接する通電間の「通電休止」に相当し、本実施形態の最後の休止時間t2の範囲が本発明の「最後の通電休止」に相当する。
 また、本実施形態のように、本発明のパルセーション工程の後には連続通電工程が行われるが、連続通電工程の前には必ずパルセーション工程の最後の通電休止が位置することになる。
 このような通電方式で抵抗スポット溶接を行うことにより、以下のような効果が得られる。
 パルセーション工程においては、材料の種類、板厚、板組みによって、通電時間、休止時間およびパルス数を調整する。本実施形態の抵抗スポット溶接方法では、まずパルセーション工程を設けることによって、短時間で鋼板の接触面同士のなじみを向上させることができる。
 特に、酸化亜鉛等の電気抵抗が高い皮膜で覆われた表面処理ホットスタンプ鋼板の場合、通電と通電休止とが繰り返されることにより、熱膨張、収縮による振動を接触面に与えることができるため、高融点の酸化物層を効果的に溶接部の外側に排除することができる。また、パルセーション通電では通電および休止が繰り返されることにより、電極の冷却効果を十分に働かすことができ、ナゲット28の急激な温度上昇を抑制できるため、中チリ、表チリの発生を抑制しつつ、短時間で鋼板12、14の接触面同士のなじみを向上させる効果を得ることができる。
 パルセーション工程における各パルスP1~P3の通電時間t0は、10~60ミリ秒であることが望ましい。通電時間t0が10ミリ秒未満では、加熱時間が短く鋼板12、14の接触面の発熱が十分ではなく、60ミリ秒を越えると、加熱時間が長過ぎて表チリおよび中チリの発生率が高まるおそれがある。通電時間t0は15ミリ秒以上であるのがより望ましい。また、通電時間t0は45ミリ秒以下であるのがより望ましく、25ミリ秒以下であるのがさらに望ましい。
 パルセーション工程における溶接電流の電流値I0は、7.0~14.0kAであることが望ましい。通常、パルセーションでの通電時間が増加すると、低い電流値でチリが発生するようになるため、パルセーション通電では、通電時間との兼ね合いから、7.0~14.0kAの範囲でチリがでないように電流値を適宜調整するのが望ましい。
 パルセーション工程における休止時間t1は、最後の休止時間t2を除いて、それぞれ10~60ミリ秒であることが望ましい。休止時間t1が10ミリ秒未満では、休止が短く鋼板12、14の冷却が不十分であり中チリおよび表チリが発生するおそれがある。一方、休止時間t1が60ミリ秒を越えると、電極16、18による冷却効果が大きくなり過ぎ、後述の連続通電工程でのナゲット28の形成量が低下するおそれがある。休止時間t1は15ミリ秒以上であるのがより望ましい。また、休止時間t1は45ミリ秒以下であるのがより望ましく、25ミリ秒以下であるのがさらに望ましい。
 パルセーション工程における最後の休止時間t2は、10~120ミリ秒であることが望ましい。最後の休止時間t2が10ミリ秒未満では、ナゲット28の冷却が不十分であり、連続通電工程時に低い電流値でもチリが発生するようになる。一方、最後の休止時間t2が120ミリ秒を越えると、ナゲット28が過度に冷却され、連続通電工程において、所定の継手強度を有する基準ナゲット径を得るための電流値が上昇し、適正電流範囲が狭くなる。最後の休止時間t2は15ミリ秒以上であるのがより望ましい。また、最後の休止時間t2は100ミリ秒以下であるのがより望ましく、60ミリ秒間以下であるのがさらに望ましい。
  このように、予備通電としてパルセーション工程を設けることによって、電極16、18の冷却効果を挟みつつ通電を繰り返すことができる。したがって、鋼板12、14の接触面における急激なナゲット28の成長によるチリの発生を抑制しつつ、高張力鋼板と他の鋼板のなじみを増進させ、鋼板同士の界面における電流パスの増大を図ることができる。
 したがって、パルセーション工程の後に連続通電工程を入れることによって、パルセーション工程の各パルスP1~P3の(最大)通電時間t1よりも長い時間連続通電しても、鋼板12、14間の電流パスの増大によって電流密度が下がり、鋼板同士の接触部の温度の上昇が抑制されることによりチリの発生が抑制される。すなわち、チリが発生する電流値が高くなる。
 また、パルセーション工程でナゲット28の成長が開始された後、連続通電工程においてパルセーション工程の各パルスの通電時間t1よりも長い通電時間t3通電することにより、一回通電(図1参照)よりも低い電流値でナゲット28が所定の基準ナゲット径まで成長する。
 この結果、本実施形態の抵抗スポット溶接方法では、連続通電工程における適正電流範囲が増加することになる。
 ここで、適正電流範囲とは、所定の溶接強度が得られる基準とされるナゲット径が4t1/2(tは板厚(mm)を示す。以下、「4√t」と記載する場合がある。)となる電流値を下限とし、チリ(スパッタ)が発生しない最大電流値を上限として規定される範囲である。また、板厚tとは、ナゲットが形成される2枚の鋼板のうちの1枚の鋼板の厚さ(mm)である。2枚の鋼板の厚さが異なる場合には、薄い方の鋼板の厚さである。さらに、3枚以上の鋼板が重ね合わせられた場合には、ナゲット径が計測される2枚の鋼板のうち、薄い方の鋼板の厚さである。
 したがって、本実施形態に係る抵抗スポット溶接方法を用いれば、チリが発生しやすい表面処理ホットスタンプ鋼板等を含む鋼板であっても、安定した抵抗スポット溶接を行うことが可能になる。
 また本実施形態に係る抵抗スポット溶接方法によれば、チリ発生を抑制することで製品の外観品質を向上させることができる。また、溶接ロボットの可動部へのチリの付着を防止できるためロボットの稼働率を向上させることができる。また、チリ発生に伴うバリ取りなどの後工程を省略できるため、作業能率の向上を図ることもできる。
 パルセーション工程におけるパルス(通電)の回数は少なくとも2回以上である。表面処理ホットスタンプ鋼板の場合、2回以上のパルスがないとチリの発生を抑制する効果が得られないためである。パルス回数は3回以上とすることがより好ましい。一般には板組みの総板厚が大きいほど、パルス回数を増やせば良いが、9回を越えてパルスを行っても効果が飽和する傾向があるため、パルス回数は9回以下とするのが好ましい。
 チリが発生しやすい表面処理ホットスタンプ鋼板に適用する場合、パルセーション工程としては、例えば、16.6(60Hzで1サイクル)~20ミリ秒(50Hzで1サイクル)で7.5~12kAの通電と休止とを3回~7回繰り返すのが望ましい。
 本実施形態の抵抗スポット溶接方法は、パルセーション工程後に連続通電工程を備える。パルセーション工程だけでは、通電パスを拡大できてもナゲット径を拡大する効果は小さいが、パルセーション工程後に連続通電工程を設けることにより鋼板12、14の界面の発熱を促進し、中チリ、表チリを発生させることなく、十分な大きさのナゲット28を形成することができる。
 連続通電工程では、通電時間t3が100~500ミリ秒の連続的な通電を行うのが望ましい。連続通電工程における通電時間t3が100ミリ秒未満では、ナゲット28を拡大するための時間が不十分で効果が得られず、500ミリ秒を越えるとナゲット28を拡大する効果が飽和するとともに、タクトタイムの上昇を招くためである。連続通電工程における通電時間t3は、120ミリ秒以上であるのがより望ましく、400ミリ秒以下であるのがより望ましい。
 連続通電工程における電流値I1は、5.0~12.0kAであることが望ましい。また、連続通電工程の電流値I1は、パルセーション工程での最大電流値I0以下とするのが望ましい。連続通電工程の電流値I1を、パルセーション工程の最大電流値I0より下げることで、チリの発生を抑制するためである。連続溶接工程では、電流値は必ずしも一定でなくても良く、途中で電流値を変化させても良いし、16ミリ秒~60ミリ秒のアップスロープまたはダウンスロープを入れても良い。
 ホットスタンプ鋼板等の高張力鋼板を対象とする場合、冷却過程を制御してナゲット28の靭性を向上させることを目的として、連続通電工程後に、さらに1回の通電またはパルス通電を行っても良い(図11F、図11G参照)。連続通電工程後にさらなる通電を行うことによって、ナゲット28内のリンの凝固偏析を緩和したり、ナゲット28を焼き戻しマルテンサイト組織にしたりすることでナゲット28の靭性を向上させ、スポット溶接継手強度を向上できるメリットが得られる。
 本実施形態に係る抵抗スポット溶接方法は、上記のパルセーション工程および連続通電工程が終わった後、電流を流さずに電極16、18で押圧する保持工程をさらに備えても良い。保持工程を設けることでナゲット28内の凝固割れを抑制することができる。保持工程を設ける場合の保持時間については特に制限はないが、保持時間が長すぎるとタクトタイムの増加につながるため、300ミリ秒以下とすることが望ましい。
 なお、パルセーション工程における各パルスP1~P3の電流値I0、通電時間t0および休止時間t1は一定であっても良いし、各パルスで変化させても良い。
 すなわち、2枚組みの鋼板に対して抵抗スポット溶接を行う場合には、本実施形態のようにパルセーション工程における各パルスの通電時間や各パルス間の通電休止時間を一定とし、各パルスの電流値も一定するものに限定されるわけではない。
 例えば、図10Aに示すように、最初のパルスP1から後のパルスP2、P3に向かって電流値を上げていく制御を行っても良い。また、図10Dに示すように、最初のパルスP1の立ち上げ部分にスロープを有するものとしても良い。さらに、図10Eに示すように、各パルスP1~P3の立ち上げ側がスロープとされた鋸波状でも良い。さらにまた、図10Gに示すように、最初のパルスP1と二回目のパルスP2との間の最初の休止時間t11のみ他の休止時間t12よりも長く取るようにして最初のパルスP1に対する電極の冷却効果を他のパルスP2と比較して大きくしても良い。
 パルセーション工程においてこのような通電方式を採用することにより、パルセーション工程におけるナゲット28の急成長(当該部分の温度急上昇)を抑制し、中チリ、表チリの発生を抑制することができる。
 また、例えば、図10Hに示すように、最後の休止時間(最後のパルスP3と連続通電工程との間の通電休止時間)t2を他の例(図10A~図10G参照)と比較して短くすることも考えられる。このように最後の休止時間t2を短くすることによって、電極16、18による鋼板12、14の過度の冷却を抑制して連続通電時に鋼板に付与する電気エネルギ(例えば、通電時間、電流値)を抑制することができる。
 さらに、2枚の厚板の外側に薄板が重ねられた3枚組みの鋼板に対して抵抗スポット溶接を行う場合には、次のようなパルセーション工程の通電方式のバリエーションが考えられる。
 例えば、図10Bに示すように、最初のパルスP1から最後のパルスP3に向かって電流値を下げていく制御を行っても良い。また、図10Cのように、最初のパルスP1のみ、他のパルスP2、P3よりも高い電流値の通電をしても良い。さらに、図10Fに示すように、最初のパルスP1のみ、他のパルスP2、P3よりも通電時間を長くして良い。
 このように、3枚組み鋼板に対して最初のパルスP1によって付与される電気エネルギが他のパルスP2、P3によって付与される電気エネルギよりも高いため、薄板と厚板の接触抵抗が高い時点で高い電気エネルギを付与することにより、薄板と厚板を高温として両者の間にナゲットを成長させることができる。
 同様に、本実施形態の抵抗スポット溶接方法の連続通電工程の通電方式のバリエーションについて図11A~図11Gを参照して説明する。
 例えば、図11Aに示すように、連続通電工程の電流波形の立ち上がりをスロープとすること、あるいは図11Eに示すように、連続通電工程の前半の電流値を後半の電流値よりも低い電流値とすることで、連続通電開始時のナゲット28の急激な温度上昇を抑制して中チリ、表チリの発生を抑制することができる。
 また、図11Bに示すように、連続通電工程の電流波形の立ち下がりをスロープとするものや、図11Cに示すように、連続通電工程の後半の電流値を前半の電流値よりも低くするものがある。このようにすることで、溶接後の冷却を緩やかにして溶接部の金属組織の特性を変えることで、溶接継手の強度を向上させることができる。
 さらに、例えば、図11Fや図11Gに示すように、連続通電工程の後に、一回の通電あるいはパルス通電を行うものである。これにより、溶接部の金属組織を改善し、溶接継手の強度を向上させるものである。
 さらにまた、図11Dに示すように、薄板、厚板、厚板の3枚重ねの板組みに対して連続通電工程の最初に高い電流値の通電を行うことで、薄板と厚板間のナゲット成長を促進するものである。
 以下、実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
 本実施例で用いられた溶接機は、サーボ加圧式のインバータ直流スポット溶接機であり、先端径6mm、先端R40mmのDR型電極(アルミナ分散銅)を備える。被溶接材は、板厚1.2mm、サイズ30mm×100mmの1500MPa級アルミめっきホットスタンプ鋼板(ホットスタンプ前のめっき付着量は、片側あたり40g/m。加熱条件は、900℃のガス炉内で4分間加熱。)を2枚重ね合わせたものである。
 溶接方法について、表1に示す。なお、試験番号6、7は連続通電工程の前に予備通電があるが、予備通電と連続通電工程との間に休止時間のない2段通電を行ったものである。また、試験番号8は、予備通電と連続通電工程の間に通電の休止時間(34msec)があったものである。なお、本発明例及び比較例とも、加圧力は、パルセーション工程又は予備通電、および連続通電工程で一定値(300kgf)とした。
 各試験について、パルセーション工程又は予備通電の条件を一定にしたまま、連続通電工程の電流値を変化させてスポット溶接を行うことにより、溶接継手の強度の基準とされるナゲット径が4√t(t:板厚mm)=4.3mm以上となる最小電流(4√t電流)値と、チリ(中チリと表チリ)が発生しない最大電流(チリレス最大電流)値を求めた。この4√t電流値以上でチリレス最大電流値以下の範囲、すなわち、溶接継手に所定の強度を与えるナゲットを形成しつつ、チリを発生させない連続通電工程の電流値の範囲を適正電流範囲とした。試験結果を表1に示す。
 なお、ナゲット径は、スポット溶接後、タガネで破壊試験を行い、破面をノギスで測定して求めた。またチリの発生の有無は、スポット溶接時に目視で確認した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、予備通電のないもの、あるいは予備通電はあるが予備通電と連続通電の間に通電の休止時間がない比較例の試験番号5~7と比較して、パルセーション工程を有する本発明例の試験番号1~4の適正電流範囲が3倍以上広くなっている。また、予備通電と連続通電工程の間に休止時間がある比較例の試験番号8と比較しても、パルセーション工程を有する(通電と休止を複数回繰り返す)本発明例の試験番号1~4は適正電流範囲が2倍以上広いことが確認された。
 [実施例2]
 本実施例で用いられた溶接機は、実施例1と同一である。被溶接材は、板厚0.7mm、サイズ30mm×100mmの270MPa級GAめっき鋼板と、板厚1.2mmの1500MPa級のGAめっきホットスタンプ鋼板(ホットスタンプ前のめっき付着量は、片側あたり55g/m。加熱条件は実施例1と同様。)と、板厚1.4mmの440MPa級非めっき鋼板との3枚を重ね合わせたものである。溶接方法について、表2に示す。なお、比較例の通電方式は、実施例1と同様である。また、本発明例及び比較例とも、加圧力は、パルセーション工程又は予備通電、および連続通電工程で一定値(300kgf)とした。
 試験及び試験結果の評価については、実施例1と同様に行った。
 なお、4√t電流値については、3枚の板の板厚が異なるため、以下のように判定している。すなわち、鋼板同士それぞれの界面のナゲット径が、それぞれ4√t(t:重ね面の薄板側の板厚mm)を満たしている最小の電流値を4√t電流値とする。具体的には、板厚0.7mmの鋼板と板厚1.2mmの鋼板の間の界面のナゲットについては、ナゲット径が4×(0.7)1/2=3.4mmであれば4√tとし、板厚1.2mmの鋼板と板厚1.4mmの鋼板の間の界面のナゲットについては、ナゲット径が4×(1.2)1/2=4.4mm )以上であれば、4√tとする。したがって、双方の界面のナゲット径がそれぞれ4√t以上となる最小の電流値を4√t電流値とする。
 試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、被溶接材がホットスタンプ材を含む3枚重ねでも、実施例1と同様に、予備通電のないもの、予備通電はあるが予備通電と連続通電の間に休止時間のないもの、予備通電と連続通電の間に休止時間のある比較例の試験番号4~6と比較して、パルセーション工程を有する本発明の試験番号1~3の適正電流範囲が3倍近く広く(2.0kA以上に)なっていることが確認された。
 [実施例3]
 本実施例で用いられた溶接機は、エアー加圧式のインバータ直流スポット溶接機であり、先端径6mm、先端R40mmのDR型電極(アルミナ分散銅)を備える。被溶接材は、板厚1.6mm、サイズ30mm×100mmの1500MPa級の炉加熱したZnO皮膜処理Alめっきホットスタンプ鋼板2枚を重ね合わせたものである。溶接方法について、表3に示す。なお、比較例の通電方式は、実施例1と同様である。また、本発明例及び比較例とも加圧力は、パルセーション工程又は予備通電、および連続通電工程で一定値(350kgf)とした。
 試験及び試験結果の評価については、実施例1と同様に行った。
 試験結果について表3に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、本実施例で使用した、ZnO皮膜処理Alめっきホットスタンプ鋼板は下記の方法で作成した。
 板厚1.6mmの冷延鋼板を使用して、ゼンジマー法でAlめっきした。このときの焼鈍温度は約800℃であり、Alめっき浴はSi:9%を含有し、他に鋼帯から溶出するFeを含有していた。その後、めっき付着量をガスワイピング法で片面あたり40g/mに調整した。Alめっき層の表面粗度を調整するために、めっき後の冷却時に水をスプレー状に噴霧した。Alめっき鋼板を冷却後、処理液をロールコーターで塗布し、約80℃で焼き付けた。処理液は、シーアイ化成株式会社製NanoTek(登録商標) SlurryのZnO Slurryをベースとし、バインダーとして水溶性ウレタン樹脂を固形分中最大30%、着色のためにカーボンブラックを固形分中最大10%添加した。付着量はZn含有量として測定し、0.8g/mとした。このようにして製造した鋼板を、大気雰囲気下において900℃で5分炉加熱した後、水冷金型で焼き入れし、供試材とした。
 表3に示すように、被溶接材がZnO皮膜処理Alめっきホットスタンプ鋼板の2枚重ねでも、実施例1と同様に、予備通電のないもの、予備通電はあるが予備通電と連続通電の間に休止時間のないもの、予備通電と連続通電の間に休止時間のある比較例の試験番号5~8と比較して、パルセーション工程を有する本発明の試験番号1~4では連続通電工程における電流値上限(チリレス最大電流値)を上昇させることができ、適正電流範囲が広く(1.5kA以上に)なっていることが確認された。
 2013年7月11日に出願された日本国特許出願2013-145380号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  インバータ直流式のスポット溶接電源に接続された一対の溶接電極で、少なくとも1枚の高張力鋼板を含む2枚以上の鋼板を重ね合わせた板組みを挟持し、前記溶接電極で前記鋼板を加圧しながら通電と通電休止を複数回繰り返すパルセーション工程と、
     前記パルセーション工程後に、前記パルセーション工程の最大通電時間よりも長時間連続的に前記溶接電極で前記鋼板を加圧しながら通電する連続通電工程と、
     を備える抵抗スポット溶接方法。
  2.  前記パルセーション工程では、前記各通電の通電時間がそれぞれ10~60ミリ秒である請求項1記載の抵抗スポット溶接方法。
  3.  前記パルセーション工程では、隣接する通電間の通電休止の時間がそれぞれ10~60ミリ秒である請求項1又は2記載の抵抗スポット溶接方法。
  4.  前記パルセーション工程では、最後の前記通電と前記連続通電工程との間の最後の通電休止の時間が10~120ミリ秒である請求項1~3のいずれか1項記載の抵抗スポット溶接方法。
  5.  前記パルセーション工程における前記通電の電流値が7.0~14.0kAである請求項2~4のいずれか1項に記載の抵抗スポット溶接方法。
  6.  前記連続通電工程では、通電時間が100~500ミリ秒である請求項2~5のいずれか1項に記載の抵抗スポット溶接方法。
  7.  前記連続通電工程における通電の電流値が5.0~12.0kAである請求項6に記載の抵抗スポット溶接方法。
  8.  前記連続通電工程における最大電流値が、前記パルセーション工程における最大電流値以下である請求項7に記載の抵抗スポット溶接方法。
  9.  前記高張力鋼板が、表面が亜鉛系皮膜またはアルミ系皮膜で覆われているホットスタンプ鋼板である請求項1~8のいずれか1項に記載の抵抗スポット溶接方法。
PCT/JP2014/067083 2013-07-11 2014-06-26 抵抗スポット溶接方法 WO2015005134A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020167001464A KR101892828B1 (ko) 2013-07-11 2014-06-26 저항 스폿 용접 방법
US14/902,985 US10265797B2 (en) 2013-07-11 2014-06-26 Resistance spot welding method
CA2916872A CA2916872A1 (en) 2013-07-11 2014-06-26 Resistance spot welding method
CN201480038319.1A CN105358284B (zh) 2013-07-11 2014-06-26 电阻点焊方法
EP14823032.9A EP3020499B1 (en) 2013-07-11 2014-06-26 Resistive spot welding method
RU2016101225A RU2633413C2 (ru) 2013-07-11 2014-06-26 Способ контактной точечной сварки
JP2015526251A JP6094676B2 (ja) 2013-07-11 2014-06-26 抵抗スポット溶接方法
MX2015017709A MX367552B (es) 2013-07-11 2014-06-26 Método de soldadura de puntos por resistencia.
BR112016000058-7A BR112016000058B1 (pt) 2013-07-11 2014-06-26 método de soldagem por pontos à resistência

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013145380 2013-07-11
JP2013-145380 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015005134A1 true WO2015005134A1 (ja) 2015-01-15

Family

ID=52279820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067083 WO2015005134A1 (ja) 2013-07-11 2014-06-26 抵抗スポット溶接方法

Country Status (11)

Country Link
US (1) US10265797B2 (ja)
EP (1) EP3020499B1 (ja)
JP (1) JP6094676B2 (ja)
KR (1) KR101892828B1 (ja)
CN (1) CN105358284B (ja)
BR (1) BR112016000058B1 (ja)
CA (1) CA2916872A1 (ja)
MX (1) MX367552B (ja)
MY (1) MY174502A (ja)
RU (1) RU2633413C2 (ja)
WO (1) WO2015005134A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052480B1 (ja) * 2015-07-10 2016-12-27 Jfeスチール株式会社 抵抗スポット溶接方法
JP6055154B1 (ja) * 2016-08-29 2016-12-27 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
WO2017010072A1 (ja) * 2015-07-10 2017-01-19 Jfeスチール株式会社 抵抗スポット溶接方法
WO2017010071A1 (ja) * 2015-07-10 2017-01-19 Jfeスチール株式会社 抵抗スポット溶接方法
CN106425070A (zh) * 2016-12-07 2017-02-22 上汽大众汽车有限公司 镀锌钢板的焊接方法
CN106513965A (zh) * 2015-09-15 2017-03-22 通用汽车环球科技运作有限责任公司 用于在钢点焊期间控制电阻焊接熔核生长和性能的功率脉冲方法
TWI601588B (zh) * 2015-10-21 2017-10-11 Nippon Steel & Sumitomo Metal Corp Resistance point welding method
EP3266553A4 (en) * 2015-03-05 2018-03-21 JFE Steel Corporation Resistance spot welding method and weld joint
JP2018171649A (ja) * 2017-03-31 2018-11-08 Jfeスチール株式会社 抵抗スポット溶接方法および抵抗スポット溶接の溶接条件判定方法
KR20200086730A (ko) 2017-12-19 2020-07-17 닛폰세이테츠 가부시키가이샤 저항 스폿 용접 조인트의 제조 방법
US10722972B2 (en) 2015-03-05 2020-07-28 Jfe Steel Corporation Resistance spot welding device
JPWO2019180923A1 (ja) * 2018-03-23 2020-12-03 本田技研工業株式会社 スポット溶接方法
JP2021536369A (ja) * 2018-09-13 2021-12-27 アルセロールミタル 少なくとも2枚の金属基材の組立体の製造のための溶接方法
JP2022500253A (ja) * 2018-09-13 2022-01-04 アルセロールミタル 少なくとも2枚の金属基材の組立体

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504796B2 (en) * 2013-10-04 2022-11-22 Jfe Steel Corporation Resistance spot welding method
CN108015401B (zh) * 2016-11-04 2020-06-23 宝山钢铁股份有限公司 具有良好接头性能的镀锌高强钢电阻点焊方法
DE102017200945B3 (de) * 2017-01-20 2018-05-09 Ford Global Technologies, Llc Verfahren zur Herstellung von Hybrid- Leichtbau- Bremsscheiben
WO2018181231A1 (ja) * 2017-03-31 2018-10-04 Jfeスチール株式会社 抵抗スポット溶接継手の製造方法
JP6665140B2 (ja) * 2017-09-13 2020-03-13 本田技研工業株式会社 抵抗溶接方法及び抵抗溶接装置
KR102394629B1 (ko) * 2017-12-07 2022-05-06 현대자동차주식회사 핫스탬핑 강판의 접합방법
WO2019156073A1 (ja) 2018-02-09 2019-08-15 Jfeスチール株式会社 抵抗スポット溶接方法、抵抗スポット溶接継手の製造方法
JP7010720B2 (ja) * 2018-02-13 2022-01-26 トヨタ自動車株式会社 抵抗スポット溶接方法
JP6963282B2 (ja) * 2018-04-20 2021-11-05 株式会社神戸製鋼所 アルミニウム材の抵抗スポット溶接継手、及びアルミニウム材の抵抗スポット溶接方法
US20210187654A1 (en) * 2018-09-05 2021-06-24 Honda Motor Co., Ltd. Spot welding method
MX2021002860A (es) * 2018-09-13 2021-05-28 Arcelormittal Un montaje de al menos 2 sustratos metalicos.
CN109079304A (zh) * 2018-10-10 2018-12-25 鞍钢股份有限公司 一种高碳当量冷轧双相钢的点焊工艺方法
US12053834B2 (en) 2018-11-26 2024-08-06 Honda Motor Co., Ltd. Spot welding method
CN109317801A (zh) * 2018-12-03 2019-02-12 闫宇 一种镀镍铜线束与铜板的微点焊工艺
US20220288718A1 (en) * 2019-08-20 2022-09-15 Honda Motor Co., Ltd. Spot welding method
MX2022003474A (es) * 2019-09-27 2022-04-19 Jfe Steel Corp Metodo de soldadura por puntos de resistencia y metodo para producir una union soldada por puntos de resistencia.
JP7240672B2 (ja) * 2019-10-18 2023-03-16 株式会社神戸製鋼所 アルミニウム材の抵抗スポット溶接方法、アルミニウム材の抵抗スポット溶接制御装置、および抵抗スポット溶接機
JP6958765B1 (ja) * 2020-03-05 2021-11-02 Jfeスチール株式会社 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
CN111673250B (zh) * 2020-06-09 2022-08-05 首钢集团有限公司 钝化镀层钢板的电阻点焊方法
US20220072648A1 (en) * 2020-09-09 2022-03-10 Kth Parts Industries, Inc. Balanced welding of dissimilar materials
CN113070561A (zh) * 2021-03-05 2021-07-06 唐山钢铁集团有限责任公司 一种2000MPa级热冲压成形钢板的电阻点焊方法
KR102490575B1 (ko) * 2021-06-18 2023-01-20 현대제철 주식회사 핫 스탬핑 강판의 점 용접 방법
WO2023130792A1 (en) * 2022-01-05 2023-07-13 Novelis Inc. Systems and methods for improving aluminum resistance spot welding
CN115446437B (zh) * 2022-09-14 2023-11-10 首钢集团有限公司 一种电阻点焊方法、装置、设备及存储介质
WO2024105432A1 (en) * 2022-11-16 2024-05-23 Arcelormittal A spot welding method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303973A (ja) * 1994-05-11 1995-11-21 Na Detsukusu:Kk 抵抗溶接機の制御装置及び制御方法
JP2003236674A (ja) 2002-02-15 2003-08-26 Mazda Motor Corp 高張力鋼板のスポット溶接方法およびその装置
JP2006181621A (ja) 2004-12-28 2006-07-13 Daihatsu Motor Co Ltd スポット抵抗溶接装置
JP2010172946A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接方法
JP2010188408A (ja) 2009-02-20 2010-09-02 Honda Motor Co Ltd 抵抗溶接の通電方法
JP2010207909A (ja) 2009-02-12 2010-09-24 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
JP2012030274A (ja) * 2010-08-03 2012-02-16 Daihen Corp メッキ鋼板の抵抗溶接制御方法
JP2013086158A (ja) * 2011-10-21 2013-05-13 Chuo Motor Wheel Co Ltd ホイールリムのアプセット溶接方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483035A (en) 1993-09-21 1996-01-09 Nadex Co., Ltd. System for and method of controlling resistance welder
JP3291110B2 (ja) * 1994-02-24 2002-06-10 株式会社ナ・デックス 抵抗溶接機の制御装置及び制御方法
RU2243071C2 (ru) * 2002-07-01 2004-12-27 Открытое акционерное общество "АВТОВАЗ" Способ контактной точечной сварки оцинкованных стальных листов
JP4728926B2 (ja) 2006-10-16 2011-07-20 新日本製鐵株式会社 重ね抵抗スポット溶接方法
US20090165455A1 (en) * 2007-12-31 2009-07-02 Shlomo Gilboa Methods and apparatus for energy production
KR100933846B1 (ko) * 2008-05-30 2009-12-24 주식회사 하이닉스반도체 전압 생성장치 및 이를 구비한 불휘발성 메모리 소자
US9079266B2 (en) * 2008-09-30 2015-07-14 Neturen Co., Ltd. Welding equipment for metallic materials and method for welding metallic materials
JP5332857B2 (ja) 2009-04-20 2013-11-06 新日鐵住金株式会社 高張力鋼板の抵抗溶接方法
EP2474381B8 (en) 2009-08-31 2019-07-24 Nippon Steel Corporation Spot-welded joint and spot welding method
KR101593642B1 (ko) * 2010-06-29 2016-02-16 한양대학교 산학협력단 인버터 직류 저항 점 용접 시스템, 그의 용접 공정 제어방법 및 그의 퍼지 제어기 설계방법
JP5333560B2 (ja) * 2011-10-18 2013-11-06 Jfeスチール株式会社 高張力鋼板の抵抗スポット溶接方法及び抵抗スポット溶接継手

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303973A (ja) * 1994-05-11 1995-11-21 Na Detsukusu:Kk 抵抗溶接機の制御装置及び制御方法
JP2003236674A (ja) 2002-02-15 2003-08-26 Mazda Motor Corp 高張力鋼板のスポット溶接方法およびその装置
JP2006181621A (ja) 2004-12-28 2006-07-13 Daihatsu Motor Co Ltd スポット抵抗溶接装置
JP2010172946A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接方法
JP2010207909A (ja) 2009-02-12 2010-09-24 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
JP2010188408A (ja) 2009-02-20 2010-09-02 Honda Motor Co Ltd 抵抗溶接の通電方法
JP2012030274A (ja) * 2010-08-03 2012-02-16 Daihen Corp メッキ鋼板の抵抗溶接制御方法
JP2013086158A (ja) * 2011-10-21 2013-05-13 Chuo Motor Wheel Co Ltd ホイールリムのアプセット溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAURENZ ET AL., SCHWEISSEN SCHNEIDEN, vol. 64-10, 2012, pages 654 - 661

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266553A4 (en) * 2015-03-05 2018-03-21 JFE Steel Corporation Resistance spot welding method and weld joint
US10641304B2 (en) 2015-03-05 2020-05-05 Jfe Steel Corporation Resistance spot welding method and weld joint
KR102056264B1 (ko) * 2015-03-05 2019-12-16 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 방법
US10722972B2 (en) 2015-03-05 2020-07-28 Jfe Steel Corporation Resistance spot welding device
JP6052480B1 (ja) * 2015-07-10 2016-12-27 Jfeスチール株式会社 抵抗スポット溶接方法
WO2017010071A1 (ja) * 2015-07-10 2017-01-19 Jfeスチール株式会社 抵抗スポット溶接方法
JPWO2017010071A1 (ja) * 2015-07-10 2017-07-13 Jfeスチール株式会社 抵抗スポット溶接方法
WO2017010072A1 (ja) * 2015-07-10 2017-01-19 Jfeスチール株式会社 抵抗スポット溶接方法
CN107848062B (zh) * 2015-07-10 2021-03-09 杰富意钢铁株式会社 电阻点焊方法
CN107848061B (zh) * 2015-07-10 2021-03-09 杰富意钢铁株式会社 电阻点焊方法
CN107848062A (zh) * 2015-07-10 2018-03-27 杰富意钢铁株式会社 电阻点焊方法
CN107848061A (zh) * 2015-07-10 2018-03-27 杰富意钢铁株式会社 电阻点焊方法
CN106513965B (zh) * 2015-09-15 2018-11-20 通用汽车环球科技运作有限责任公司 用于在钢点焊期间控制电阻焊接熔核生长和性能的功率脉冲方法
CN106513965A (zh) * 2015-09-15 2017-03-22 通用汽车环球科技运作有限责任公司 用于在钢点焊期间控制电阻焊接熔核生长和性能的功率脉冲方法
TWI601588B (zh) * 2015-10-21 2017-10-11 Nippon Steel & Sumitomo Metal Corp Resistance point welding method
WO2018043099A1 (ja) * 2016-08-29 2018-03-08 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
US10350699B2 (en) 2016-08-29 2019-07-16 Origin Electric Company, Limited Method for manufacturing joined member and joined member manufacturing apparatus
JP6055154B1 (ja) * 2016-08-29 2016-12-27 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
CN106425070B (zh) * 2016-12-07 2018-10-19 上汽大众汽车有限公司 镀锌钢板的焊接方法
CN106425070A (zh) * 2016-12-07 2017-02-22 上汽大众汽车有限公司 镀锌钢板的焊接方法
JP2018171649A (ja) * 2017-03-31 2018-11-08 Jfeスチール株式会社 抵抗スポット溶接方法および抵抗スポット溶接の溶接条件判定方法
KR20200086730A (ko) 2017-12-19 2020-07-17 닛폰세이테츠 가부시키가이샤 저항 스폿 용접 조인트의 제조 방법
JPWO2019180923A1 (ja) * 2018-03-23 2020-12-03 本田技研工業株式会社 スポット溶接方法
JP7038193B2 (ja) 2018-03-23 2022-03-17 本田技研工業株式会社 スポット溶接方法
JP2021536369A (ja) * 2018-09-13 2021-12-27 アルセロールミタル 少なくとも2枚の金属基材の組立体の製造のための溶接方法
JP2022500253A (ja) * 2018-09-13 2022-01-04 アルセロールミタル 少なくとも2枚の金属基材の組立体
JP7194269B2 (ja) 2018-09-13 2022-12-21 アルセロールミタル 少なくとも2枚の金属基材の組立体

Also Published As

Publication number Publication date
RU2016101225A (ru) 2017-08-16
EP3020499A1 (en) 2016-05-18
CN105358284B (zh) 2018-12-14
KR101892828B1 (ko) 2018-08-28
CA2916872A1 (en) 2015-01-15
EP3020499B1 (en) 2020-08-12
US20160144451A1 (en) 2016-05-26
JPWO2015005134A1 (ja) 2017-03-02
MX2015017709A (es) 2016-04-04
EP3020499A4 (en) 2017-04-26
BR112016000058B1 (pt) 2019-11-12
MY174502A (en) 2020-04-23
JP6094676B2 (ja) 2017-03-15
CN105358284A (zh) 2016-02-24
KR20160021858A (ko) 2016-02-26
US10265797B2 (en) 2019-04-23
MX367552B (es) 2019-08-27
RU2633413C2 (ru) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6094676B2 (ja) 抵抗スポット溶接方法
JP6137337B2 (ja) 抵抗スポット溶接方法
JP6593572B1 (ja) 抵抗スポット溶接継手の製造方法
JP6584728B1 (ja) 抵抗スポット溶接継手の製造方法
KR101819475B1 (ko) 저항 스폿 용접 방법
JP6079935B2 (ja) 抵抗スポット溶接方法
WO2016139952A1 (ja) 抵抗スポット溶接装置
JP2017047476A (ja) スポット溶接方法
TW201718144A (zh) 點熔接方法
CN110475642B (zh) 电阻点焊接头的制造方法
JP6160581B2 (ja) 抵抗スポット溶接方法
WO2020045678A1 (ja) 抵抗スポット溶接方法
WO2019124465A1 (ja) 抵抗スポット溶接継手の製造方法
JPH04371371A (ja) 抵抗スポット溶接方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038319.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526251

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/017709

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2916872

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14902985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014823032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201600317

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167001464

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000058

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016101225

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016000058

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160104