WO2015005078A1 - 核酸増幅検出装置及びそれを用いた核酸検査装置 - Google Patents

核酸増幅検出装置及びそれを用いた核酸検査装置 Download PDF

Info

Publication number
WO2015005078A1
WO2015005078A1 PCT/JP2014/066089 JP2014066089W WO2015005078A1 WO 2015005078 A1 WO2015005078 A1 WO 2015005078A1 JP 2014066089 W JP2014066089 W JP 2014066089W WO 2015005078 A1 WO2015005078 A1 WO 2015005078A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid amplification
detection apparatus
amplification detection
temperature
Prior art date
Application number
PCT/JP2014/066089
Other languages
English (en)
French (fr)
Inventor
杉山 公一
稔 佐野
康則 庄司
義之 庄司
祐希 菊地
麻奈美 南木
伊名波 良仁
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to DE112014002858.4T priority Critical patent/DE112014002858B4/de
Priority to US14/898,286 priority patent/US9993822B2/en
Priority to JP2015526234A priority patent/JP6072913B2/ja
Priority to CN201480028834.1A priority patent/CN105452435A/zh
Publication of WO2015005078A1 publication Critical patent/WO2015005078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0609Holders integrated in container to position an object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/1844Means for temperature control using fluid heat transfer medium using fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1883Means for temperature control using thermal insulation

Definitions

  • the present invention relates to a nucleic acid amplification detection apparatus for a specimen derived from a living body and a nucleic acid test apparatus using the same.
  • PCR polymerase chain reaction
  • temperature accuracy control is important. Even when a plurality of types of specimens having different test items are processed in parallel, it is necessary to control the temperature of each specimen with uniform temperature accuracy. Even if the ambient temperature at which the apparatus is installed varies within a certain range, it is necessary to have the same temperature accuracy.
  • the temperature in the cover 2 (hereinafter referred to as the internal temperature) covering the location where the specimen is installed is controlled by taking in outside air with the fan 9 or the like.
  • the temperature in the cabinet fluctuates depending on the environmental temperature of the place where the apparatus is installed, and that the temperature control differs between the installed environments.
  • the reaction container 13 in the apparatus is affected by the wind generated from the fan 9 depending on the installation position, and the degree of influence of outside air may be different for each reaction container 13.
  • the temperature control of individual specimens is affected, and temperature control performance such as temperature accuracy, temperature rising speed, and temperature falling speed may not be maintained, and there may be variations among specimens.
  • the present invention has been made in view of the above, and maintains stable temperature control performance for a plurality of reaction vessels 13 containing reaction solutions, even if the environmental temperature of the place where the apparatus is installed is different within a certain range. It is an object of the present invention to provide a nucleic acid amplification detection apparatus capable of minimizing temperature variations and a nucleic acid test apparatus using the same.
  • the present invention employs the configuration described in the claims.
  • the reaction vessel 13 containing the reaction liquid and the location where the temperature is controlled directly or indirectly are covered with the cover 2 and the fin cover 8 of the heat insulating structure, and further the inside temperature inside the cover 2 is controlled.
  • the internal temperature is made constant by the configuration having the heat source for minimizing the environmental temperature influence on the temperature control of the reaction vessel 13.
  • the temperature control on the reaction vessel is less affected by the environmental temperature.
  • the temperature can be controlled while maintaining a certain temperature accuracy.
  • it is necessary to create a control formula that incorporates the influence of disturbance due to the environmental temperature as a parameter in the temperature control software, but according to the present invention, there is an advantage that it can be handled without the parameter. is there.
  • Example 1 It is an overhead view of a nucleic acid amplification detection apparatus.
  • Example 1 A and b partial enlarged views of FIGS. 1 and 2 It is explanatory drawing which showed the modification of the nucleic acid amplification detection apparatus.
  • Example 2 It is explanatory drawing which showed the nucleic acid test
  • Example 3 It is explanatory drawing which showed the modification of the nucleic acid amplification detection apparatus.
  • Example 4 It is explanatory drawing which showed the modification of the nucleic acid amplification detection apparatus.
  • Example 5 It is explanatory drawing which showed the modification of the nucleic acid amplification detection apparatus.
  • Example 6 It is explanatory drawing which showed the modification of the nucleic acid amplification detection apparatus.
  • FIG. 1 is a side sectional view of the nucleic acid amplification detection apparatus 1
  • FIG. 2 is an overhead view of the nucleic acid amplification detection apparatus 1
  • FIG. 3 is an enlarged view of parts a and b of FIGS.
  • the nucleic acid amplification detection apparatus 1 includes a base 5 serving as a base, a holder 19 provided with a plurality of temperature control blocks 38 having a configuration for holding the reaction vessel 13, and a reaction solution accommodated in the reaction vessel 13.
  • the fluorescence detector 6 that performs fluorescence detection of the above and the cover 2 that covers the holder 19 and the fluorescence detector 6 are provided.
  • the holder 19 is a disc-shaped holder base 14 arranged with the central axis facing upward, and a plurality of temperature control blocks provided side by side along the inner periphery of the holder base 14 around the central axis. 38.
  • the holder base 14 is provided so as to be rotatable in the circumferential direction around a rotation shaft provided at the center thereof, and is rotationally driven by a stepping motor 4 which is a rotation drive device.
  • the holder base 14 is formed using, for example, a member having excellent heat insulating properties such as plastic, and is configured so that the temperatures between the plurality of temperature control blocks 38 are unlikely to interfere with each other. In addition, it is good also as a structure which forms a heat insulation layer by heat insulating materials, such as a polyurethane foam, between the holder base 14 and the temperature control block 38, and further reduces temperature interference.
  • the temperature control block 38 has a base portion serving as a base of the temperature control block 38, a hole-like installation position provided through the base portion in the vertical direction (vertical direction in FIG. 5), and a temperature adjustment provided below the base portion.
  • the apparatus includes a Peltier element 15 and a radiating fin 10 as apparatuses, and a temperature sensor 17 that detects the temperature of the reaction liquid in the reaction vessel 13 by detecting the temperature near the installation position provided at the base.
  • a temperature sensor 17 for example, a thermistor, a thermocouple, a resistance temperature detector, or the like is used.
  • the base is formed of a heat conductor such as copper, aluminum or various alloys, for example.
  • a heat conductor such as copper, aluminum or various alloys, for example.
  • one or more fluorescence detectors 6 are provided, and are arranged at equal intervals along the outer periphery of the holder 19.
  • the fluorescence detector 6 is disposed below the reaction vessel 13 (below the flow line of the reaction vessel 13), and performs fluorescence detection when the reaction vessel 13 passes above due to the rotation of the holder 19.
  • the reaction liquid in the reaction vessel 13 is detected or measured independently of each other.
  • the fluorescence detector 6 includes an excitation light source for irradiating excitation light to the bottom (exposed portion) of the reaction vessel 13 held at the installation position of the temperature control block 38, and a detection element for detecting fluorescence from the reaction solution.
  • the reaction liquid accommodated in the reaction vessel 13 is fluorescently labeled with the base sequence to be amplified by the reagent, and the fluorescence from the reaction liquid generated by the excitation light irradiated to the reaction vessel 13 from the excitation light source is detected by the fluorescence detector 6.
  • the base sequence to be amplified in the reaction solution is quantified over time. The obtained detection result is sent to the control device 37.
  • the excitation light source for example, a light emitting diode (LED), a semiconductor laser, a xenon lamp, or a halogen lamp is used.
  • a detection element a photodiode, a photomultiplier, a CCD, or the like is used.
  • the cover 2 covers the holder 19 and the fluorescence detector 6 together with the base 5, and aims at a light shielding effect for suppressing the incidence of external light to the fluorescence detector 6 of the nucleic acid amplification detection apparatus 1.
  • the cover 2 is provided with a gate 7 that can be opened and closed. When the gate 7 is opened, the reaction vessel 13 is carried into and out of the installation position by a gripper.
  • the cover 2 is made of a heat insulating material because the purpose is to suppress the fluctuation of the outside air temperature outside the cover from affecting the inside of the cover and to keep the atmospheric temperature inside the cover constant. Or the structure which stuck the heat insulating material inside the cover may be sufficient.
  • a heater is installed inside the cover 2.
  • the heat source is not limited to the heater, and a system in which circulating water such as Peltier elements, hot water or cold water is circulated may be used. Thereby, the atmospheric temperature inside the nucleic acid amplification detection apparatus 1 can be kept constant, and temperature changes of the holder base 14 and the temperature control block 38 can be continuously performed.
  • the holder base 14 is provided with the fins 10, the fans 9, and the secondary cooling Peltier element 16.
  • the fan 9 increases the heat dissipation efficiency of the fin 10 by sucking outside air from outside the cover 2 and blowing it to the fin 10. Since the wind after passing through the fin 10 fluctuates the outside air temperature and the amount of heat absorbed from the fin 10 and the temperature cannot be controlled, it will affect the ambient temperature in the cover 2 when it is put in the cover. is there. Therefore, the nucleic acid amplification detection apparatus 1 includes a fin cover 8.
  • the fin cover 8 is good also as a structure which has a heat insulating material.
  • the fin cover 8 Since the fin cover 8 is attached to the holder base 14, no gap is generated between the fin cover 8 and the holder base 14, and no air flows into the cabinet. Thereby, it is possible to prevent both the direct application of the exhaust heat of the fan 9 to the reaction vessel 13 and the fluctuation of the internal temperature.
  • a member for closing the gap may be further provided, or a duct for guiding the wind coming out of the gap and releasing it to the outside may be provided.
  • a heat pipe such as a holder base 14 or a rotary shaft is incorporated, and heat is actively transferred from the holder base 14 or the rotary shaft to other members.
  • a duct and a water cooling mechanism it is possible to further improve the heat radiation efficiency by appropriately installing a duct and a water cooling mechanism.
  • the fluorescence detector 6 is arranged inside the cover 2, but it may be installed outside the cover, and the installation location is not limited.
  • the control device 37 controls the operation of the nucleic acid amplification detection device 1, and based on the protocol set by the input device 35, the nucleic acid is read using various software stored in a storage unit (not shown) in advance An amplification process is performed, and an analysis result such as a fluorescence detection result, a movable state of the nucleic acid test device, and the like are stored in the storage unit or displayed on the display device.
  • FIG. 4 shows a second embodiment.
  • This is a nucleic acid amplification detection device obtained by modifying the configuration of the nucleic acid amplification detection device 1 described in the first embodiment.
  • common parts with the first embodiment are omitted, and only the differences will be described in detail.
  • the fan 9 for increasing the heat dissipation efficiency sucks out the air inside the cover and releases it outside the cover.
  • the air released passes through the fins and increases the heat dissipation efficiency of the fins 10.
  • the air around the reaction vessel 13 also flows and is sucked out, but since the air in the cover is controlled at a constant temperature by the side heater and the bottom heater, the temperature fluctuation effect on the reaction vessel is minimal. It becomes the limit.
  • the temperature inside the cover can be controlled to be constant without using the fin cover 8.
  • FIG. 5 shows a third embodiment of the present invention.
  • the nucleic acid amplification detection apparatus described in the first embodiment or the nucleic acid amplification detection apparatus described in the first embodiment is expanded as a fully automated automatic analysis apparatus for pretreatment.
  • the nucleic acid test apparatus adds a plurality of sample containers 28 containing specimens containing nucleic acids to be amplified, a sample container 28 rack 32 containing a plurality of sample containers 28, and added to the specimens.
  • a capping unit 30 that seals the reaction vessel 13 containing the reaction liquid, which is a mixed solution of the sample and the reagent, with a lid member, and the reaction vessel 13 contained in the sealed reaction vessel 13
  • a stirring unit 31 for stirring the reaction solution is provided.
  • the nucleic acid test apparatus includes a robot arm apparatus capable of moving a robot arm X-axis 20 extending in the X direction (left-right direction in FIG. 5) and a robot arm Y-axis 21 extending in the Y direction (vertical direction in FIG. 5).
  • a gripper unit 33 provided on the robot arm, and a dispensing unit 34 provided on the robot arm.
  • the gripper unit 33 is a mechanism for gripping the reaction container 13 and transporting it to each part in the nucleic acid test apparatus.
  • the dispensing unit 34 aspirates the sample in the sample container 28 and the reagent in the reagent container 25, and enters the reaction liquid adjustment position 26. This is a mechanism for dispensing into the installed reaction vessel 13.
  • the dispensing unit 34 performs the dispensing operation by attaching the nozzle tip 22 to a site that comes into contact with the specimen or reagent.
  • the nucleic acid test apparatus has a nozzle chip 22 rack 23 in which a plurality of unused nozzle chips 22 are stored, a used nozzle chip 22 and a used (tested) reaction. And a disposal box 29 for discarding the container 13.
  • the nucleic acid amplification detection apparatus 1 which performs a nucleic acid amplification process on the reaction liquid stored in the reaction vessel 13, the input device 35 such as a keyboard and a mouse, and the display device 36 such as a liquid crystal monitor, and the nucleic acid including the nucleic acid amplification detection apparatus 1
  • a control device 37 that controls the overall operation of the inspection device is provided.
  • Each sample container 28 is managed by identification information such as a barcode for each sample contained therein, and is managed by position information such as coordinates assigned to each position of the sample container 28 rack 32.
  • each reagent container 25 is managed by identification information such as a barcode for each stored reagent, and is managed by position information such as coordinates assigned to each position of the reagent container 25 rack 27. These identification information and position information are registered and managed in the control device 37 in advance.
  • each reaction vessel 13 is similarly managed by identification information and position information.
  • the nucleic acid test apparatus includes one or more nucleic acid amplification detection apparatuses 1 described in the first embodiment or one or more nucleic acid amplification detection apparatuses 1b described in the second embodiment.
  • the details of the nucleic acid amplification detection device 1 and the nucleic acid amplification detection device 1b are already described in the respective embodiments, and are omitted here.
  • the control device 37 controls the entire operation of the nucleic acid testing device, and based on the protocol set by the input device 35, the nucleic acid is detected using various software stored in a storage unit (not shown) in advance. An amplification process is performed, and an analysis result such as a fluorescence detection result, a movable state of the nucleic acid test device, and the like are stored in the storage unit or displayed on the display device.
  • a sample container 28 containing a specimen containing a nucleic acid to be amplified is stored in a sample container 28 rack 32 of a nucleic acid test apparatus, and a reagent container 25 rack 27 is preliminarily set according to a protocol.
  • a predetermined reagent container 25 containing various reagents to be added to each sample is stored.
  • the unused reaction container 13 is accommodated in the reaction container rack 2424, and the unused nozzle chip 22 is accommodated in the nozzle chip 22 rack 23.
  • the operation of the control device 37 starts the nucleic acid amplification process.
  • the necessary number of unused reaction vessels 13 are transported to the reaction solution adjustment position 26 by the gripper unit 33.
  • the unused nozzle tip 22 is attached to the dispensing unit 34, and the specimen is dispensed from the predetermined sample container 28 to the reaction container 13.
  • the used nozzle tip 22 is discarded in a disposal box 29 to prevent contamination.
  • the reagent is also dispensed into a predetermined reaction vessel 13 in the same procedure, and mixed with the specimen to generate a reaction solution.
  • the reaction vessel 13 containing the reaction solution is conveyed to the closing unit 30 by the gripper unit 33 and sealed by the lid member, and further conveyed to the agitation unit 31 for agitation processing.
  • the stirred reaction vessel 13 is transported by the gripper unit 33 and is inserted into and held at a predetermined installation position of the holder 19 through the gate 7 of the cover 2 in the stirring amplification device.
  • the holder 19 is driven to rotate and is controlled so that a predetermined installation position is positioned at the position of the gate 7.
  • each of them is subjected to sealing and stirring with a lid member and sequentially conveyed to a predetermined installation position.
  • the Peltier element 15 of the temperature adjusting device is controlled based on the protocol corresponding to the specimen accommodated in the reaction container 13 held in the holding tool 19, and the temperature of the reaction container 13 is controlled periodically and stepwise. And nucleic acid amplification treatment is performed.
  • the temperature of a reaction solution in which a sample and a reagent are mixed is periodically changed stepwise based on a protocol corresponding to each sample, thereby obtaining a desired base. The sequence is selectively amplified.
  • the nucleic acid amplification process is sequentially started, and the temperature is periodically increased stepwise based on the protocol corresponding to each sample. Change.
  • the holder 19 is driven to rotate, the fluorescence detector 6 detects fluorescence, and the fluorescence from the reaction solution is detected by the fluorescence detector 6 to detect the base sequence to be amplified in the reaction solution. Quantification is performed over time. The detection results are sequentially sent to the control device 37.
  • reaction container 13 is transported to the disposal box 29 via the gate 7 by the gripper unit 33 and discarded.
  • the nucleic acid detection apparatus of the present embodiment minimizes the influence of the environmental temperature installed in the reaction vessel on the reaction vessel while fully automating a series of operations from pretreatment to nucleic acid amplification detection. Although it is a structure that allows analysis items to be analyzed continuously and simultaneously, it is possible to minimize variations in the temperature accuracy of the nucleic acid amplification detection unit 1 or the nucleic acid amplification detection unit 1b. In addition, since it is not necessary to include a disturbance factor of environmental temperature influence in the temperature control software, it becomes possible to control the temperature with high accuracy with a simpler control formula.
  • each temperature control block 38 can be attached to and detached from the holder base 14, and when any of the plurality of temperature control blocks 38 fails, an inspection of the failed temperature control block 38 is performed. Can be easily replaced. Further, by changing the shape of the erection position 12 provided at the base of the temperature control block 38, reaction vessels 13 having different shapes can be erected on the holder base 14 at the same time.
  • an arbitrary temperature control block 38 can be mounted on the holder base 14 by optimizing the base 11, the temperature adjustment device 14, and the temperature sensor 17 in order to correspond to a specific analysis item. Accordingly, various analysis items can be performed with the same holder 19 in a state in which the apparatus state is optimized with respect to the specified temperature.
  • the relative speed between the reaction vessel 13105 and the fluorescence detector 66 at the time of fluorescence measurement can be controlled.
  • the relative speed may be constant, or fluorescence detection may be performed by temporarily stopping at a position where the reaction vessel 13105 and the fluorescence detector 66 face each other.
  • FIG. 6 shows a fourth embodiment.
  • This is a nucleic acid amplification detection apparatus in which the configuration of the nucleic acid amplification detection apparatus 1 described in the first embodiment is modified.
  • common parts with the first embodiment are omitted, and only the differences will be described in detail.
  • the mounting angle of the fin cover 8 is changed. Due to the miniaturization of the nucleic acid amplification detection apparatus 1 and the space on the holder base, the fin cover 8 and the fan 9 may be in a close positional relationship. The closer this distance is, the more inhaled air may not be discharged. Therefore, an attachment angle of the fin cover 8 is provided in a direction in which the upper end portion of the fin cover 8 moves away from the fan 9 so as not to obstruct the air flow.
  • FIG. 7 shows a fifth embodiment.
  • This is a nucleic acid amplification detection apparatus in which the configuration of the nucleic acid amplification detection apparatus 1 described in the first embodiment is modified.
  • the fifth embodiment is a form in which the heat source installed in the warehouse in the first embodiment is provided outside the cover 2.
  • the air controlled to an arbitrary temperature by the outside heater 39 is blown to control the internal temperature to an arbitrary temperature.
  • the outside heater 39 is not limited to the heater, and may be a system in which circulating water such as Peltier elements, hot water or cold water is circulated.
  • the movement of heat, such as ventilation, from the outside heater 39 to the inside of the warehouse is performed from one place or a plurality of places, and the number of the places where the heat is moved is not limited.
  • FIG. 8 shows a sixth embodiment.
  • This is a nucleic acid amplification detection apparatus in which the configuration of the nucleic acid amplification detection apparatus 1 described in the first embodiment is modified.
  • the sixth embodiment is a form in which the cover 2 is enlarged and installed so as to wrap the entire nucleic acid amplification detection apparatus 1.
  • the cover 2 is enlarged and installed so as to wrap the entire nucleic acid amplification detection apparatus 1.
  • the secondary cooling Peltier element can be cooled more efficiently and stably.
  • temperature control on the reaction vessel can be performed stably.
  • Disposal box 30 ... Closing unit 31 ... Stirring unit 32 ... Sample container rack 33 ... Gripper unit 34 ... Dispensing unit 35 ... input device 36 ... display device 37 ... control device 38 ... temperature control block 3 9 ... External heater

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 従来、検体が設置される箇所を覆うカバー内の温度(以下、庫内温度とする)が、ファンで外気を取り入れて制御する方法のため、装置を設置した場所の環境温度によって庫内温度が変動し、設置した環境間で温度制御に差が生じる恐れがある。また装置内の反応容器は架設位置によってファンから生じる風が当たり、反応容器ごとに外気の影響度合いが異なる可能性がある。それにより個々の検体の温度制御に影響し、温度精度や昇温速度、降温速度等の温調性能が維持できない可能性や検体間でばらつきが生じる可能性がある。 本発明は、例えば、反応液の入った反応容器13とそれを直接的又は間接的 に温度制御する箇所を断熱構造のカバー2とフィンカバー8で覆い、さらにそのカバー2で覆った内側の庫内温度を制御するための熱源を有する構成により、庫内温度を一定にし、反応容器13の温度制御に対する環境温度影響を最小化する。

Description

核酸増幅検出装置及びそれを用いた核酸検査装置
 本発明は、生体由来の検体を対象とする核酸増幅検出装置及びそれを用いた核酸検査装置に関するものである。
 核酸増幅技術の一つとして、ポリメラーゼ連鎖反応(Polymerase Chain Reaction;以下、PCRと称する)法を用いたものがある。このようなPCR法を用いた核酸増幅に関する従来技術として、検体と試薬を混合した反応液の温度を制御する温度制御装置が知られている。
 PCR法による核酸増幅技術では、対象とする検査項目によって使用する試薬やプロトコル(印加する温度や時間などの条件)が異なる。これまで、1つの温度制御機構で同じ検査項目の複数の反応液を一斉に処理するバッチ処理方式が一般的であったが、近年、複数の温度制御機構で異なる複数の検査項目をそれぞれ連続的に処理できる方式が提案されている(特許文献1参照)。
特開2011-234639号公報
 PCR法では、温度の精度管理が重要である。検査項目の異なる複数種類の検体を並列処理する構成とした場合でも、それぞれの検体に対し、均一な温度精度で温度制御する必要がある。それは装置を設置する環境温度がある範囲で異なった場合でも、同様な温度精度である必要がある。
 しかしながら、上記特許文献1記載の従来技術においては、検体が設置される箇所を覆うカバー2内の温度(以下、庫内温度とする)が、ファン9などで外気を取り入れて制御する方法のため、装置を設置した場所の環境温度によって庫内温度が変動し、設置した環境間で温度制御に差が生じる恐れがある。また装置内の反応容器13は架設位置によってファン9から生じる風が当たり、反応容器13ごとに外気の影響度合いが異なる可能性がある。それにより個々の検体の温度制御に影響し、温度精度や昇温速度、降温速度等の温調性能が維持できない可能性や検体間でばらつきが生じる可能性がある。
 本発明は上記に鑑みてなされたものであり、装置を設置する場所の環境温度がある範囲で異なっても反応液の入った複数の反応容器13に対し、それぞれ安定した温調性能を維持し温度のばらつきを最小限に抑えることができる核酸増幅検出装置及びそれを用いた核酸検査装置を提供することを目的とする。
 本発明は、特許請求の範囲に記載の構成を採用する。例えば、反応液の入った反応容器13とそれを直接的又は間接的に温度制御する箇所を断熱構造のカバー2とフィンカバー8で覆い、さらにそのカバー2で覆った内側の庫内温度を制御するための熱源を有する構成により、庫内温度を一定にし、反応容器13の温度制御に対する環境温度影響を最小化する。
 本発明の核酸増幅検出装置及びそれを用いた核酸検査装置は、庫内温度を一定に保つことで反応容器に対する温度制御が環境温度影響を受けにくくなることから、環境温度がある範囲で変わっても一定の温度精度を維持して温度制御可能という利点がある。また温度変化を受ける系の場合は、温度制御ソフトに環境温度による外乱影響をパラメータとして入れ込んだ制御式を作る必要があるが、本発明によればそのパラメータ不要で対応可能であるという利点がある。
核酸増幅検出装置の実施方法を示した説明図である。(実施例1) 核酸増幅検出装置の俯瞰図である。(実施例1) 図1及び図2のa,b部分拡大図 核酸増幅検出装置の変形例を示した説明図である。(実施例2) 核酸増幅検出装置を搭載した核酸検査装置を示した説明図である。(実施例3) 核酸増幅検出装置の変形例を示した説明図である。(実施例4) 核酸増幅検出装置の変形例を示した説明図である。(実施例5) 核酸増幅検出装置の変形例を示した説明図である。(実施例6)
 以下、図面を用いて、発明を実施するための形態を説明する。
 第1の実施の形態を図1~図3に示す。図1は、核酸増幅検出装置1の側面断面図、図2は核酸増幅検出装置1の俯瞰図、図3は図1及び図2のa,b部分拡大図である。
 図1において、核酸増幅検出装置1は、基礎となるベース5と、反応容器13を保持する構成を有する複数の温調ブロック38を設けた保持具19と、反応容器13に収容された反応液の蛍光検出を行う蛍光検出器6と、保持具19及び蛍光検出器6を覆うカバー2とを備えている。
 保持具19は、中心軸を上方に向けて配置された円板形状の保持具ベース14と、保持具ベース14の中心軸周りに、外周の内側に沿って並べて設けられた複数の温調ブロック38とを備えている。保持具ベース14は、その中心に設けられた回転軸を中心に周方向に回転可能に設けられており、回転駆動装置であるステッピングモータ4により回転駆動される。
 保持具ベース14は、例えば、プラスチックなど断熱性に優れた部材を用いて形成されており、複数の温調ブロック38間の温度が相互に干渉しにくいように構成されている。なお、保持具ベース14と温調ブロック38の間にポリウレタンフォームなどの断熱材による断熱層を形成し、温度干渉をさらに低減する構成としてもよい。
 温調ブロック38は、温調ブロック38のベースとなる基部と、基部に上下方向(図5の上下方向)に突き抜けて設けられた穴状の架設ポジションと、基部の下方に設けられた温度調整装置としてのペルチェ素子15及び放熱フィン10と、基部に設けられ架設ポジションの近傍の温度を検出することにより反応容器13内の反応液の温度を検出する温度センサ17とを備えている。温度センサ17は、例えばサーミスタ、熱電対、測温抵抗体などが用いられる。
 基部は、例えば、銅、アルミニウム又は各種合金などの熱伝導体により形成されている。この基部をペルチェ素子15により加熱または冷却することにより、基部の架設ポジションに保持された反応容器13の温度を調整する。また、放熱フィン10は、ペルチェ素子15の基部と反対側の面に設けられておりペルチェ素子15の放熱効率を高めている。この基部の架設ポジションに反応容器13を上方から差し込むことにより、反応容器13の底部が温調ブロック38から露出した状態で保持させる。
 図2において、蛍光検出器6は、1つ以上(例えば、本実施の形態では4つ)設けられており、保持具19の外周に沿って等間隔に配置されている。また、蛍光検出器6は、反応容器13の下方(反応容器13の動線の下方)に配置されており、保持具19の回転により反応容器13が上方を通過する際に蛍光検出を行う。なお、蛍光検出器6が複数ある場合は、互いに独立的に反応容器13内の反応液の検出又は測定を行う。
 蛍光検出器6は、温調ブロック38の架設ポジションに保持された反応容器13の底部(露出部分)に励起光を照射するための励起光源、及び、反応液からの蛍光を検出する検出素子を有する。反応容器13に収容された反応液は、試薬により増幅対象となる塩基配列が蛍光標識されており、励起光源から反応容器13に照射された励起光により生じる反応液からの蛍光を蛍光検出器6で検出することにより、反応液における増幅対象となる塩基配列の定量を経時的に行う。得られた検出結果は制御装置37に送られる。励起光源としては、例えば、発光ダイオード(LED)、半導体レーザー、キセノンランプ、ハロゲンランプが用いられる。また、検出素子としては、フォトダイオード、フォトマルチプライヤー、CCD等が用いられる。
 カバー2は、ベース5とともに保持具19及び蛍光検出器6を覆うことにより、核酸増幅検出装置1の蛍光検出器6への外光の入射を抑制する遮光効果を目的としている。カバー2には、開閉可能なゲート7が設けられており、ゲート7開放時にグリッパによって架設ポジションへ反応容器13の搬入出が行われる。
 また、カバー2は、カバー外の外気温度の変動をカバー内に影響することを抑制し、カバー内の雰囲気温度を一定にさせることも目的にしているため、断熱素材とする。またはカバー内側に断熱材を貼った構成でもよい。カバー2で覆われた核酸増幅検出装置1内部の雰囲気温度の変動を抑制するため、カバー2の内側にヒータを設置する。この熱源はヒータに限らず、ペルチェ素子や温水又は冷水など循環水を巡らせる方式でも良い。これにより、核酸増幅検出装置1内部の雰囲気温度を一定に保つことができ、保持具ベース14や温調ブロック38の温度変化を継続して行うことができる。
 放熱効率を高めるために、保持具ベース14にフィン10とファン9、二次冷却用ペルチェ素子16を備える。ファン9はカバー2外から外気を吸込みフィン10に送風することでフィン10の放熱効率を高めている。フィン10を通過した後の風は、外気温度とフィン10からの吸熱量が変動し温度管理が出来ないため、カバー内へ入れるとカバー2内雰囲気温度に影響するため、カバー外へ逃がす必要がある。そこで核酸増幅検出装置1はフィンカバー8を備える。なお、フィンカバー8は断熱材を有する構造としても良い。
 フィンカバー8は保持具ベース14に取り付けられているため、フィンカバー8と保持具ベース14の間には隙間が発生せず、庫内への空気の流入がない。これにより、ファン9の排出熱を反応容器13へ直接当てることと、庫内温度を変動させることの両方を防ぐことが可能である。なお、保持具ベース14とフィンカバーの隙間から空気の流入を防止出来る構造であれば、保持具ベース14に取り付けられていなくとも良い。例えば、隙間を塞ぐ部材をさらに設けたり、又は隙間から出てくる風を誘導し外部へ放出するダクトを設けたりすれば良い。
 なお、二次冷却用ペルチェ素子16の代わりに、例えば保持具ベース14や回転軸等ヒートパイプを組み込み、熱を保持具ベース14や回転軸等から他の部材へと積極的に移動させる構成としてもよく、加えて、ダクト、水冷機構を適宜設置することにより、放熱効率をより高めることも可能である。
また、図1では蛍光検出器6がカバー2の内側に配置した形態となっているが、カバー外に設置する方式でもよく、設置場所を限定するものではない。
 制御装置37は、核酸増幅検出装置1の動作を制御するものであり、入力装置35により設定されたプロトコルに基づいて、予め記憶部(図示せず)に記憶された各種ソフトウェア等を用いて核酸増幅処理を行い、蛍光検出結果などの分析結果や核酸検査装置の可動状況などを記憶部に記憶したり表示装置36に表示したりする。
 図4に、第2の実施の形態を示す。第1の実施の形態で述べた核酸増幅検出装置1の構成を変形した核酸増幅検出装置である。ここでは第1の実施形態と共通箇所は割愛し、差異のみ詳述する。
 放熱効率を高めるためのファン9はカバー内の空気を吸い出しカバー外へ放出する。放出する際に放出される空気はフィンを通過し、フィン10の放熱効率を高める。この吸込みによる放出では、反応容器13の周囲の空気も流動し吸い出されるが、カバー内の空気は側面ヒータ及び下面ヒータで一定温度に制御されているため、反応容器への温度変動影響は最小限になる。
 この実施形態では、フィンカバー8を使用せずにカバー内温度を一定に制御することができる。
 図5に本発明の第3の実施形態を示す。本実施形態では、第1の実施形態で述べた核酸増幅検出装置又は第1の実施形態で述べた核酸増幅検出装置で測定するための前処理を全自動化した自動分析装置として拡張した形態である。図5において、核酸検査装置には、増幅処理の対象となる核酸を含む検体が収容された複数のサンプル容器28と、複数のサンプル容器28が収納されたサンプル容器28ラック32と、検体に加えるための種々の試薬が収容された複数の試薬容器25と、複数の試薬容器25が収納された試薬容器25ラック27と、検体と試薬を混合するための反応容器13と、未使用の反応容器13が複数収容された反応容器ラック2424と、未使用の反応容器13を架設し、サンプル容器28及び試薬容器25のそれぞれから反応容器13への検体及び試薬の分注を行うための反応液調整ポジション26と、検体と試薬の混合液である反応液が収容された反応容器13を蓋部材で密閉する閉栓ユニット30と、密閉された反応容器13に収容された反応液を攪拌する攪拌ユニット31とが備えられている。
 また、核酸検査装置には、X方向(図5の左右方向)に伸びたロボットアームX軸20及びY方向(図5の上下方向)に伸びたロボットアームY軸21を移動可能なロボットアーム装置と、ロボットアームに設けられたグリッパユニット33と、同様にロボットアームに設けられた分注ユニット34とが備えられる。グリッパユニット33は反応容器13を把持して核酸検査装置内の各部に搬送する機構であり、分注ユニット34はサンプル容器28の検体や試薬容器25の試薬を吸引し、反応液調整ポジション26に架設された反応容器13に分注する機構である。分注ユニット34は検体や試薬と接触する部位にノズルチップ22を装着して分注動作を行う。この際、ノズルチップ22は使い捨てとなるため、核酸検査装置には未使用のノズルチップ22が複数収納されたノズルチップ22ラック23と、使用済みのノズルチップ22や使用済み(検査済み)の反応容器13を破棄する廃棄ボックス29と、が備えられる。
 さらに、反応容器13に収容された反応液に核酸増幅処理を施す核酸増幅検出装置1と、キーボードやマウス等の入力装置35や液晶モニタ等の表示装置36を備え核酸増幅検出装置1を含む核酸検査装置の全体の動作を制御する制御装置37とが備えられている。
 各サンプル容器28は、収容された検体毎にバーコード等の識別情報により管理されており、サンプル容器28ラック32の各位置に割り当てられた座標等の位置情報により管理されている。同様に、各試薬容器25は、収容された試薬毎にバーコード等の識別情報により管理されており、試薬容器25ラック27の各位置に割り当てられた座標等の位置情報により管理されている。これらの識別情報や位置情報は予め制御装置37に登録され管理される。また、各反応容器13も識別情報や位置情報により同様に管理されている。
 また、核酸検査装置は、実施例1で述べた核酸増幅検出装置1又は実施例2で述べた核酸増幅検出装置1bを1つ乃至は2つ以上備える。核酸増幅検出装置1及び核酸増幅検出装置1bの詳細は各実施例で既述のため、ここでは割愛する。
 制御装置37は、核酸検査装置の全体の動作を制御するものであり、入力装置35により設定されたプロトコルに基づいて、予め記憶部(図示せず)に記憶された各種ソフトウェア等を用いて核酸増幅処理を行い、蛍光検出結果などの分析結果や核酸検査装置の可動状況などを記憶部に記憶したり表示装置36に表示したりする。
 以上のように構成した本実施の形態における動作を説明する。
 まず、核酸増幅処理を行う準備として、核酸検査装置のサンプル容器28ラック32に増幅処理の対象となる核酸を含む検体が収容されたサンプル容器28を収納し、試薬容器25ラック27にプロトコルにより予め定められた、各検体に加えるための種々の試薬が収容された試薬容器25を収納する。また、反応容器ラック2424に未使用の反応容器13を、ノズルチップ22ラック23に未使用のノズルチップ22をそれぞれ収納する。
この状態で、制御装置37の操作により核酸増幅処理を開始する。
 核酸増幅処理の開始が指示されると、まず、グリッパユニット33により必要数の未使用反応容器13が反応液調整ポジション26に搬送される。続いて、分注ユニット34に未使用のノズルチップ22が装着され、所定のサンプル容器28から反応容器13に検体が分注される。その後、使用済みのノズルチップ22は、コンタミ防止のため廃棄ボックス29に廃棄される。続いて、試薬についても同様の手順で所定の反応容器13に分注され、検体と混合されて反応液が生成される。
 必要な数の分注が終了すると、反応液が収容された反応容器13は、グリッパユニット33により閉栓ユニット30に搬送されて蓋部材により密閉され、さらに、攪拌ユニット31に搬送されて攪拌処理される。攪拌処理された反応容器13は、グリッパユニット33により搬送され、攪拌増幅装置におけるカバー2のゲート7を介して、保持具19の所定位置の架設ポジションに差し込まれて保持される。このとき、保持具19は、回転駆動され、ゲート7の位置に所定の架設ポジションが位置するように制御される。処理対象の反応容器13が複数ある場合は、それぞれについて、蓋部材による密閉および攪拌処理が施され、所定の架設ポジションに順次搬送される。
 ここで、保持具19に保持された反応容器13に収容された検体に対応するプロトコルに基づいて、温度調整装置のペルチェ素子15が制御され、周期的に段階的に反応容器13の温度が制御され、核酸増幅処理が施される。このように、核酸増幅方の一種であるPCR法では、検体と試薬を混合した反応液の温度を、各検体に対応するプロトコルに基づいて周期的に段階的に変化させることにより、所望の塩基配列を選択的に増幅させる。複数の反応容器13を並列処理する場合においても、各反応容器13が架設ポジションに保持された場合は順次核酸増幅処理を開始し、各検体に対応するプロトコルに基づいて周期的に段階的に温度変化させる。核酸増幅処理の間は、保持具19を回転駆動させ蛍光検出器6により蛍光検出を行い、反応液からの蛍光を蛍光検出器6で検出することにより、反応液における増幅対象となる塩基配列の定量を経時的に行う。検出結果は順次、制御装置37に送る。
 所定の核酸増幅処理が終了したら、その反応容器13は、グリッパユニット33によりゲート7を介して廃棄ボックス29に搬送され廃棄される。
 以上のように構成した本実施の形態における効果を説明する。
 本実施形態の核酸検出装置は、前処理から核酸の増幅検出までの一連の動作を全自動化しつつ、装置の設置した環境温度の影響を反応容器に対して最小化することで、異なる複数の検査項目を連続的に且つ同時に分析できる構造でありながら、核酸増幅検出部1又は核酸増幅検出部1bそれぞれの温度精度のばらつきを最小限に抑えることができる。また、温度制御ソフトに環境温度影響の外乱因子を入れなくて済むことでよりシンプルな制御式で、精度良く温度制御することが可能となる。
 また、構造的な効果として、それぞれの温調ブロック38は保持具ベース14から着脱可能であり、複数ある温調ブロック38のうちいずれかが故障した場合には、故障した温調ブロック38の検査や交換を容易に行うことができる。また、温調ブロック38の基部に設けた架設ポジション12の形状を変えることで、異なる形状の反応容器13を保持具ベース14に同時に架設することができる。また、任意の温調ブロック38を、特定の分析項目に対応するため基部11、温度調整装置14や温度センサ17を最適化して、保持具ベース14に搭載することができる。これらにより、同一の保持具19で様々な分析項目を、規定された温度に対し装置状態を最適化した状態で、実施することができる。
 なお、保持具19ベース1454の蛍光検出器66に対する回転速度(相対的な回転速度)を制御することにより、蛍光測定時における反応容器13105と蛍光検出器66との相対速度を制御することができる。その相対速度は一定速度でもよく、また、反応容器13105と蛍光検出器66とが相対した位置で一次停止させて蛍光検出を行ってもよい。
 図6に、第4の実施例を示す。第1の実施例で述べた核酸増幅検出装置1の構成を変形した核酸増幅検出装置である。ここでは第1の実施形態と共通箇所は割愛し、差異のみ詳述する。
 ファン9による吸入排出効率を高めるため、フィンカバー8の取り付け角度を変えた形態である。核酸増幅検出装置1の小型化や保持具ベース上のスペースの都合で、フィンカバー8とファン9は近接した位置関係になる場合がある。この距離が近ければ近い程、吸入した空気を排出出来なくなる可能性がある。そこで、フィンカバー8上端部がファン9から遠ざかる方向にフィンカバー8の取り付け角度を設け、空気の流れを阻害しないようにする。
 図7に、第5の実施例を示す。第1の実施例で述べた核酸増幅検出装置1の構成を変形した核酸増幅検出装置である。ここでは第1の実施例と共通箇所は割愛し、差異のみ詳述する。
 第1の実施例で庫内に設置していた熱源を、カバー2の外側に設ける形態が第5の実施形態である。この場合、庫外ヒータ39で任意の温度に制御した空気を送風し、庫内温度を任意の温度に制御する。なお、庫外ヒータ39はヒータに限らず、ペルチェ素子や温水又は冷水など循環水を巡らせる方式でも良い。また庫外ヒータ39から庫内への送風等の熱の移動は、1箇所または複数個所から行い、熱の移動箇所の数量等を限定するものではない。
 第1の実施例で庫内に設置していた庫内に設置した側面ヒータ11、下面ヒータ12等の熱源はあってもなくても良い。
 図8に、第6の実施例を示す。第1の実施例で述べた核酸増幅検出装置1の構成を変形した核酸増幅検出装置である。ここでは第1の実施形態と共通箇所は割愛し、差異のみ詳述する。
 カバー2を大型化させ、核酸増幅検出装置1全体を包むように設置した形態が第6の実施例である。この形態では、庫内温度を一定にしていることから、ファン9に吸入する温度が安定し、二次冷却用ペルチェ素子をより効率よく安定して冷却することが可能である。加えて、反応容器13周囲の雰囲気温度も安定しているため、反応容器に対する温度制御も安定して行うことが可能となる。
1,1b…核酸増幅検出装置
2…カバー
3…容器架設ポジション
4…ステッピングモータ
5…ベース
6…蛍光検出器
7…ゲート
8…フィンカバー
9…ファン
10…フィン
11…側面ヒータ
12…下面ヒータ
13…反応容器
14…保持具ベース
15…ペルチェ素子
16…二次冷却用ペルチェ素子
17…温度センサ
18…送風方向
19…保持具
20…ロボットアームX軸
21…ロボットアームY軸
22…ノズルチップ
23…ノズルチップラック
24…反応容器ラック
25…試薬容器
26…反応液調整ポジション
27…試薬容器ラック
28…サンプル容器
29…廃棄ボックス
30…閉栓ユニット
31…攪拌ユニット
32…サンプル容器ラック
33…グリッパユニット
34…分注ユニット
35…入力装置
36…表示装置
37…制御装置
38…温調ブロック
39…庫外ヒータ

Claims (27)

  1.  検体と試薬を混合した反応液の核酸を増幅させる核酸増幅検出装置において、
     反応液を収容した少なくとも1つの反応容器をそれぞれ保持する複数の温調ブロックを設けた保持具と、
     前記複数の温調ブロックのそれぞれに設けられ、前記反応液の温度を調整する第1の温度調整装置と、
     前記複数の温調ブロックとそれぞれに設けられた温度調整装置を覆う断熱構造のカバーと、
     前記カバーに設けられ、前記カバー内側の雰囲気温度を調整する第2の温度調整装置と、
     を備えたことを特徴とする核酸増幅検出装置。
  2.  請求項1記載の核酸増幅検出装置において、
     検体と試薬を混合した反応液を収容した反応容器に対し、環境温度の影響が出ないようフィンカバーを備えたことを特徴とする核酸増幅検出装置。
  3.  請求項1記載の核酸増幅検出装置において、
     検体と試薬を混合した反応液を収容した反応容器を順次保持具に投入することを特徴とする核酸増幅検出装置。
  4.  請求項1記載の核酸増幅検出装置において、
     所定時間が経過した反応容器を随時保持具から搬出することを特徴とする核酸増幅検出装置。
  5.  請求項1記載の核酸増幅検出装置において、
     少なくともいずれかの温調ブロックは、核酸増幅の間、一定温度に制御可能であることを特徴とする核酸増幅検出装置。
  6.  請求項1記載の核酸増幅検出装置において、
     少なくともいずれかの温調ブロックは、PCR増幅に対応したサーマルサイクルを行うことを特徴とする核酸増幅検出装置。
  7.  請求項1記載の核酸増幅検出装置において、
     前記温調ブロック間で異なる核酸増幅法を行うことを特徴とする核酸増幅検出装置。
  8.  請求項1記載の核酸増幅検出装置において、
     前記反応容器は、互いに離れて配置されることを特徴とする核酸増幅検出装置。
  9.  請求項1記載の核酸増幅検出装置において、
     前記反応容器の間は、互いに断熱されていることを特徴とする核酸増幅検出装置。
  10.  請求項1記載の核酸増幅検出装置において、
     前記第1の温度調整装置は、ペルチェ素子であることを特徴とする核酸増幅検出装置。
  11.  請求項1記載の核酸増幅検出装置において、
     カバー内側の雰囲気温度を調整する第2の温度調整装置は、ヒータであることを特徴とする核酸増幅検出装置。
  12.  請求項1記載の核酸増幅検出装置において、
     各温調ブロックは、前記保持具から取り外し自在であることを特徴とする核酸増幅検出装置。
  13.  請求項1記載の核酸増幅検出装置において、
     前記保持具は、材質や温度調整装置が異なる前記温調ブロックをあわせもつことを特徴とする核酸増幅検出装置。
  14.  請求項1記載の核酸増幅検出装置において、
     前記カバーには、前記反応容器を投入する投入部が設けられていることを特徴とする核酸増幅装置。
  15.  請求項1記載の核酸増幅検出装置において、
     前記保持具は、中心軸を上方に向け周方向に回転可能に設けられた円板形状を有し、前記第1の温調ブロックは前記保持具の外側に、その外周に沿って配置されたことを特徴とする核酸増幅装置。
  16.  請求項1記載の核酸増幅検出装置において、
     前記保持具は、中心軸を上方に向け周方向に回転可能に設けられた輪形状を有し、前記第1の温調ブロックは前記保持具の内側又は外側に、その内周又は外周に沿って配置されたことを特徴とする核酸増幅検出装置。
  17.  請求項1記載の核酸増幅検出装置において、
     前記反応容器の投入位置が決まっており、反応容器投入時に、所定の投入位置まで保持具を回転させることを特徴とする核酸増幅検出装置。
  18.  請求項1記載の核酸増幅検出装置において、
     前記反応容器を、静止した前記保持具の、任意の反応容器設置位置に、投入可能であることを特徴とする核酸増幅検出装置。
  19.  請求項1記載の核酸増幅検出装置において、
     光源から前記反応容器の反応液に照射された励起光により生じた蛍光を検出する少なくとも1つの蛍光検出器を備えたことを特徴とする核酸増幅検出装置。
  20.  請求項19記載の核酸増幅検出装置1において、
     前記蛍光検出器は、複数設けられており、互いに独立して蛍光検出を行うことを特徴とする核酸増幅検出装置。
  21.  請求項1記載の核酸増幅検出装置において、
     前記保持具の前記温調ブロックを除く部分の温度を制御する保持具温度制御部をさらに備えることを特徴とする核酸増幅検出装置。
  22.  請求項21記載の核酸増幅検出装置において、
     前記保持具温度制御部は、ペルチェ素子であることを特徴とする核酸増幅検出装置。
  23.  請求項22記載の核酸増幅検出装置において、
     前記保持具温度制御部の放熱効率を上げる機構を有することを特徴とする核酸増幅検出装置。
  24.  請求項23記載の核酸増幅検出装置において、
     前記保持具温度制御部の放熱効率を上げる機構が、ファンとフィンで構成されていることを特徴とする核酸増幅検出装置。
  25.  請求項2記載の核酸増幅検出装置において、
     前記フィンカバーは、保持具ベースに取り付けられていることを特徴とする核酸増幅検出装置。
  26.  請求項25記載の核酸増幅検出装置において、
     前記フィンカバーの上端部は、ファンから遠ざける方向に傾斜して備えられていることを特徴とする核酸増幅検出装置。
  27.  請求項1記載の核酸増幅検出装置において、
     前記複数の温調ブロックを安定して温度制御するための二次温調機構と、
    前記二次温調機構の排熱を行うファンと、
    を備えられていることを特徴とする核酸増幅検出装置。
PCT/JP2014/066089 2013-07-08 2014-06-18 核酸増幅検出装置及びそれを用いた核酸検査装置 WO2015005078A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014002858.4T DE112014002858B4 (de) 2013-07-08 2014-06-18 Nukleinsäureamplifikations-/Detektionsvorrichtung und Nukleinsäureinspektionsvorrichtung, welche diese verwendet
US14/898,286 US9993822B2 (en) 2013-07-08 2014-06-18 Nucleic acid amplification/detection device and nucleic acid inspection device using same
JP2015526234A JP6072913B2 (ja) 2013-07-08 2014-06-18 核酸増幅検出装置及びそれを用いた核酸検査装置
CN201480028834.1A CN105452435A (zh) 2013-07-08 2014-06-18 核酸扩增检测装置以及使用了该核酸扩增检测装置的核酸检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142229 2013-07-08
JP2013-142229 2013-07-08

Publications (1)

Publication Number Publication Date
WO2015005078A1 true WO2015005078A1 (ja) 2015-01-15

Family

ID=52279764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066089 WO2015005078A1 (ja) 2013-07-08 2014-06-18 核酸増幅検出装置及びそれを用いた核酸検査装置

Country Status (5)

Country Link
US (1) US9993822B2 (ja)
JP (1) JP6072913B2 (ja)
CN (1) CN105452435A (ja)
DE (1) DE112014002858B4 (ja)
WO (1) WO2015005078A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2572420A (en) * 2018-03-29 2019-10-02 Nokia Technologies Oy Spatial sound rendering
JP2020174661A (ja) * 2019-04-18 2020-10-29 奎克生技光電股▲フン▼有限公司 熱伝導均一性及び熱履歴整合性を改善するための熱サイクル装置
KR20210025793A (ko) * 2019-08-28 2021-03-10 (주)레보스케치 Pcr 용 시료 용기의 히팅 및 쿨링 시스템
KR20210028671A (ko) 2018-09-28 2021-03-12 주식회사 히타치하이테크 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치
CN113801784A (zh) * 2018-01-23 2021-12-17 深圳市真迈生物科技有限公司 核酸加载装置及用途
KR20220045590A (ko) * 2020-10-05 2022-04-13 (주)바이오니아 핵산증폭검사장치 및 이를 구비하는 시료자동분석시스템
WO2023218662A1 (ja) * 2022-05-13 2023-11-16 株式会社日立ハイテク 光計測装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815524B2 (en) * 2015-02-23 2020-10-27 Hitachi High-Tech Corporation Nucleic acid analyzer
WO2018139788A1 (ko) * 2017-01-25 2018-08-02 주식회사 유진셀 고속 핵산증폭 장치 및 핵산증폭 반응의 온도조절 방법
CN107043697A (zh) * 2017-06-14 2017-08-15 北京百康芯生物科技有限公司 一种多通道芯片恒温扩增核酸检测仪器
CN107354085B (zh) * 2017-08-07 2023-09-08 上海金标生物科技有限公司 一种升降结构、温度金属浴及实现温度差异的方法
CN107338191B (zh) * 2017-08-07 2023-07-07 上海金标生物科技有限公司 一种差异化温度加热的温度金属浴及实现方法
KR102061559B1 (ko) * 2018-12-20 2020-01-02 한림대학교 산학협력단 개방형 플랫폼 기반 중합 효소 연쇄 반응 분석 장치 및 분석 방법
CN110564603A (zh) * 2019-08-22 2019-12-13 南京艾瑞谱生物技术有限公司 一种一体化核酸检测器件及应用
CN115445674B (zh) * 2022-08-24 2023-07-14 芜湖大捷离合器有限公司 一种高低温湿热试验箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239688A (ja) * 2010-05-14 2011-12-01 Hitachi High-Technologies Corp 核酸増幅装置及び核酸増幅方法
JP2012228212A (ja) * 2011-04-27 2012-11-22 Hitachi High-Technologies Corp 遺伝子検査装置
WO2013015057A1 (ja) * 2011-07-25 2013-01-31 株式会社 日立ハイテクノロジーズ 核酸検査装置
WO2014115863A1 (ja) * 2013-01-28 2014-07-31 株式会社 日立ハイテクノロジーズ 核酸増幅装置および温度調節機能の異常検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952412B (zh) * 2008-02-15 2014-07-23 生物辐射实验室股份有限公司 具有自动调节盖的热循环仪
JP2010130925A (ja) * 2008-12-03 2010-06-17 Olympus Corp 核酸増幅方法、核酸増幅装置及び微量液体の保持方法
US8000622B2 (en) * 2009-03-18 2011-08-16 Ricoh Company, Ltd. Moving body controlling device, intermediate transferring device, and image forming apparatus having the same
JP5280984B2 (ja) * 2009-10-23 2013-09-04 株式会社日立ハイテクノロジーズ 保温装置及びそれを備えた分析装置
JP5249988B2 (ja) * 2010-05-07 2013-07-31 株式会社日立ハイテクノロジーズ 核酸増幅装置及びそれを用いた核酸検査装置
TW201205021A (en) * 2010-07-23 2012-02-01 Yayatech Co Ltd Refrigeration device
JP5393610B2 (ja) * 2010-07-28 2014-01-22 株式会社日立ハイテクノロジーズ 核酸分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239688A (ja) * 2010-05-14 2011-12-01 Hitachi High-Technologies Corp 核酸増幅装置及び核酸増幅方法
JP2012228212A (ja) * 2011-04-27 2012-11-22 Hitachi High-Technologies Corp 遺伝子検査装置
WO2013015057A1 (ja) * 2011-07-25 2013-01-31 株式会社 日立ハイテクノロジーズ 核酸検査装置
WO2014115863A1 (ja) * 2013-01-28 2014-07-31 株式会社 日立ハイテクノロジーズ 核酸増幅装置および温度調節機能の異常検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801784A (zh) * 2018-01-23 2021-12-17 深圳市真迈生物科技有限公司 核酸加载装置及用途
GB2572420A (en) * 2018-03-29 2019-10-02 Nokia Technologies Oy Spatial sound rendering
KR20210028671A (ko) 2018-09-28 2021-03-12 주식회사 히타치하이테크 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치
JP2020174661A (ja) * 2019-04-18 2020-10-29 奎克生技光電股▲フン▼有限公司 熱伝導均一性及び熱履歴整合性を改善するための熱サイクル装置
KR20210025793A (ko) * 2019-08-28 2021-03-10 (주)레보스케치 Pcr 용 시료 용기의 히팅 및 쿨링 시스템
KR102355377B1 (ko) * 2019-08-28 2022-01-25 (주)레보스케치 Pcr 용 시료 용기의 히팅 및 쿨링 시스템
KR20220045590A (ko) * 2020-10-05 2022-04-13 (주)바이오니아 핵산증폭검사장치 및 이를 구비하는 시료자동분석시스템
KR102578721B1 (ko) 2020-10-05 2023-09-15 (주)바이오니아 핵산증폭검사장치 및 이를 구비하는 시료자동분석시스템
WO2023218662A1 (ja) * 2022-05-13 2023-11-16 株式会社日立ハイテク 光計測装置

Also Published As

Publication number Publication date
US20160144366A1 (en) 2016-05-26
CN105452435A (zh) 2016-03-30
US9993822B2 (en) 2018-06-12
DE112014002858B4 (de) 2017-06-22
JP6072913B2 (ja) 2017-02-01
DE112014002858T5 (de) 2016-04-14
JPWO2015005078A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6072913B2 (ja) 核酸増幅検出装置及びそれを用いた核酸検査装置
US10512915B2 (en) Nucleic acid amplifier and nucleic acid inspection device employing the same
JP5801334B2 (ja) 核酸増幅装置及びそれを用いた核酸検査装置
JP5759818B2 (ja) 核酸検査装置
JP4681736B2 (ja) 遠心力および加熱による小体積混合物の均一化
WO2014115863A1 (ja) 核酸増幅装置および温度調節機能の異常検出方法
US20090221060A1 (en) Nucleic acid analyzer
JP4564924B2 (ja) 生体試料分析装置
JP5662055B2 (ja) 核酸増幅装置及び核酸増幅方法
JP2013190400A (ja) 自動分析装置
JP5921336B2 (ja) 自動分析装置及び前処理装置
JP6371101B2 (ja) 核酸分析装置
JP6452965B2 (ja) 核酸増幅装置
EP3599023B1 (en) A method to monitor and control the temperature of a sample holder of a laboratory instrument
US20210402389A1 (en) Nucleic acid detection method, nucleic acid detection device and module
JP7038221B2 (ja) サーマルサイクラーおよびそれを備えたリアルタイムpcr装置
KR101335940B1 (ko) 생체물질 검사 장치 및 그 제어 방법
JP2009300286A (ja) 自動分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028834.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822398

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015526234

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14898286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002858

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822398

Country of ref document: EP

Kind code of ref document: A1