WO2015004953A1 - スイッチング装置 - Google Patents

スイッチング装置 Download PDF

Info

Publication number
WO2015004953A1
WO2015004953A1 PCT/JP2014/057991 JP2014057991W WO2015004953A1 WO 2015004953 A1 WO2015004953 A1 WO 2015004953A1 JP 2014057991 W JP2014057991 W JP 2014057991W WO 2015004953 A1 WO2015004953 A1 WO 2015004953A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
drive
switching
drive voltage
Prior art date
Application number
PCT/JP2014/057991
Other languages
English (en)
French (fr)
Inventor
片岡 耕太郎
野村 勝
竹史 塩見
周治 若生
柴田 晃秀
岩田 浩
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015526184A priority Critical patent/JP6110490B2/ja
Priority to US14/904,051 priority patent/US9660513B2/en
Publication of WO2015004953A1 publication Critical patent/WO2015004953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators

Definitions

  • the present invention relates to a switching device.
  • FIG. 13 shows a configuration example of the switching device.
  • a gate driver driver circuit
  • a control circuit for controlling the gate driver are usually provided. .3V and 15V) are required. Therefore, it is common to provide a power supply circuit for the gate driver and a power supply circuit for the control circuit separately (see, for example, Patent Document 1 below).
  • an object of the present invention is to provide a switching device that contributes to suppression of malfunction of the switching circuit at the time of startup.
  • a switching device generates a second drive voltage based on a switching circuit having a switching element, a first drive voltage generation circuit that generates a first drive voltage based on a first input voltage, and a second input voltage.
  • a second drive voltage generation circuit ; a control circuit that drives the first drive voltage to generate a control signal; and drives the second drive voltage to supply a drive signal based on the control signal to the switching circuit
  • a voltage generation control unit for controlling.
  • FIG. 1 is a schematic block diagram of a switching device according to a first embodiment of the present invention. It is a figure which shows the internal structural example of the switching circuit of FIG. It is a figure which shows the example of a relationship between a switching apparatus and a voltage source (common voltage source) concerning 1st Embodiment of this invention. It is a figure which shows the example of a relationship between a switching apparatus and a voltage source (three voltage sources) concerning 1st Embodiment of this invention. It is a schematic block diagram of the switching apparatus which concerns on 2nd Embodiment of this invention. It is a partial circuit diagram of the switching apparatus which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a schematic block diagram of a switching device 1 according to the first embodiment.
  • the switching device 1 includes each part referred to by reference numerals 11 to 16.
  • Control circuit for driving voltage generating circuit 11 (hereinafter, abbreviated as generating circuit 11), the supply operation control circuit, the input voltage V INC, generates a driving voltage V OC of a DC for driving the control circuit 15 .
  • the input voltage V INC is considered to be a DC voltage, but the input voltage V INC can also be changed to an AC.
  • the generation circuit 11 may be a step-up power supply circuit or a step-down power supply circuit. In this specification, an arbitrary voltage is a voltage seen from the ground having a reference potential of 0 V (volt) unless otherwise specified.
  • V OC 0 before the power supply operation of the generation circuit 11 is started, the drive voltage V OC rises toward a predetermined target voltage after the power supply operation of the generation circuit 11 is started.
  • the drive circuit drive voltage generation circuit 12 (hereinafter abbreviated as the generation circuit 12) generates a DC drive voltage V OD for driving the drive circuit 14 from the input voltage V IND by a drive circuit power supply operation.
  • the input voltage V IND is considered to be a DC voltage
  • the input voltage V IND can be changed to an AC voltage.
  • the generation circuit 12 may be a step-up power supply circuit or a step-down power supply circuit.
  • V OD 0 before starting the power operation of the generation circuit 12, but after the power operation of the generation circuit 12 is started, the drive voltage V OD increases toward a predetermined target voltage.
  • the drive circuit 14 requires a gate drive voltage (for example, 10 to 15 V), while the control circuit 15 for the drive circuit 14 has a different voltage, usually a lower voltage (for example, 3.3 V to 5V) is required. Therefore, the switching device 1 is provided with two drive voltage generation circuits 11 and 12.
  • the switching circuit 13 has an arbitrary number of one or more switching elements, and generates the output voltage V OS from the input voltage V INS by a switching operation according to the drive signal from the drive circuit 14.
  • the switching circuit 13 may further include a circuit element other than the switching element. In the switching operation, each switching element in the switching circuit 13 is turned on or off in accordance with a drive signal from the drive circuit 14.
  • the switching element in the switching circuit 13 may be any kind of semiconductor switching element, or may be a mechanical switching element (such as a relay).
  • the semiconductor switching element is, for example, a bipolar transistor, a field effect transistor such as a MOSFET (metal-oxide-semiconductor field-effect transistor), or an IGBT (insulated gate bipolar transistor).
  • the switching circuit 13 may be any switching circuit, but here, it is considered that the switching circuit 13 is the switching circuit CC13 of FIG.
  • the switching circuit CC13 is an inverter circuit that generates an AC output voltage V OS from the DC input voltage V INS , and includes switching elements 61 and 62 connected in series with each other.
  • the switching elements 61 and 62 are N-channel MOSFETs (metal-oxide-semiconductor field-effect transistors).
  • a MOSFET 61 that is a high-side switch is provided with a diode 63 whose forward direction is from the source to the drain of the MOSFET 61.
  • a MOSFET 64 that is a low-side switch is provided with a diode 64 whose forward direction is from the source to the drain of the MOSFET 62.
  • the diodes 63 and 64 may be parasitic diodes of the MOSFETs 61 and 62, respectively.
  • a DC input voltage V INS is applied to the drain of the MOSFET 61 (V INS > 0), and the source of the MOSFET 62 is connected to the ground.
  • the source of the MOSFET 61 and the drain of the MOSFET 62 are commonly connected at a connection point 65.
  • the drive signal output from the drive circuit 14 includes two signals that control the gate potentials of the MOSFETs 61 and 62. When the MOSFETs 61 and 62 are alternately turned on by the drive signal, an AC output voltage VOS is output from the connection point 65.
  • the drive circuit 14 is driven with the drive voltage V OD and supplies a drive signal based on the control signal from the control circuit 15 to the switching circuit 13 to turn on or off each switching element in the switching circuit 13. Note that the MOSFETs 61 and 62 in FIG. 2 are kept off before the drive circuit 14 is driven.
  • the drive circuit 14 is a gate driver that supplies a gate signal to the switching element.
  • the control circuit 15 is driven by the drive voltage V OC to generate a control signal, and supplies the control signal to the drive circuit 14.
  • the input voltages V INC , V IND and V INS may be supplied from a common voltage source. That is, for example, as shown in FIG. 3, a configuration in which the input voltages V INC , V IND, and V INS are supplied from a common voltage source 2 can be employed.
  • the input voltages V INC , V IND, and V INS may be supplied from different voltage sources. That is, for example, as shown in FIG. 4, the input voltages V INC , V IND , and V INS may be supplied from different voltage sources 2 C , 2 D , and 2 S , respectively. In this case, the voltage values of the input voltages V INC , V IND and V INS may be different from each other.
  • any two of the input voltages V INC , V IND and V INS are supplied from the first voltage source, while the remaining one input voltage is supplied from the second voltage source. There may be (the illustration of those supplies is omitted).
  • the second voltage source is different from the first voltage source.
  • the voltage sources 2, 2 S , 2 C and 2 D are preferably solar cells (the same applies to the first and second voltage sources).
  • the solar cell performs power generation based on sunlight and outputs a DC voltage obtained by the power generation.
  • the voltage sources 2, 2 S , 2 C, and 2 D may output a DC voltage using an arbitrary energy source (fossil fuel, hydropower, wind power, geothermal heat, etc.) other than sunlight ( The same applies to the first and second voltage sources).
  • the voltage sources 2, 2 S , 2 C, and 2 D may be formed by a primary battery such as an alkaline battery or a secondary battery such as a lithium ion battery (the same applies to the first and second voltage sources). ).
  • the input voltages V INC , V IND, and V INS are all positive DC voltages.
  • the control circuit 15 includes a microcomputer, a logic circuit, and the like.
  • the voltage value of the drive voltage V OC output from the generation circuit 11 is smaller than the predetermined lower limit value V TH1 , the start-up and normal operation of the control circuit 15 are not guaranteed, and the voltage value of the drive voltage V OC is lower limit value V TH1. At this time, the startup and normal operation of the control circuit 15 are ensured.
  • Start-up in the control circuit 15 refers to shifting from a state in which the control circuit 15 is not operating to a state in which the control circuit 15 can operate normally.
  • the MOSFETs 61 and 62 in FIG. 2 may be turned on simultaneously. There is a possibility that a circuit element in the switching circuit 13 including the switching element or its peripheral elements may be destroyed or deteriorated due to a malfunction of the switching circuit 13.
  • the input voltages V INC , V IND, and V INS are voltages supplied from the common voltage source 2, depending on the circuit configuration and operation of the generation circuits 11 and 12, the drive voltages V OC There is also a possibility that the drive voltage V OD rises first.
  • the input voltages V INS and V IND may be supplied when the input voltage V INC is not supplied. In these cases, it is necessary to avoid such a malfunction. Therefore, the switching element 1 is provided with a voltage generation control unit 16.
  • the voltage generation control unit 16 controls the generation circuit 12 so that the drive circuit power supply operation is permitted after the control circuit 15 is activated (so that the start of the drive circuit power supply operation is permitted). In other words, the voltage generation control unit 16 prohibits execution of the drive circuit power supply operation before the control circuit 15 is started.
  • the drive circuit power supply operation refers to an operation of generating the drive voltage V OD by the generation circuit 12.
  • the voltage generation control unit 16 in the first embodiment detects the voltage value of the drive voltage V OC that is the output voltage of the generation circuit 11, and the voltage value of the drive voltage V OC is equal to or greater than a predetermined threshold value V TH2.
  • a predetermined threshold value V TH2 the voltage value of the drive voltage V OC is equal to or greater than a predetermined threshold value V TH2.
  • V TH2 ⁇ V TH1 > 0 the unit is volts.
  • the voltage generation control unit 16 does not allow the drive circuit power supply operation to be performed.
  • the voltage for driving the voltage generation control unit 16 is preferably the input voltage V INC or V IND (the same applies to the voltage generation control unit 16A described later).
  • the output voltage of the generation circuit 12 is sufficiently low (usually 0 V), and a drive signal for turning on the MOSFETs 61 and 62 is not output from the drive circuit 14 (however, noise Ignore abnormal operation due to the above).
  • the output voltage of the generation circuit 12 starts to rise from a sufficiently low voltage (usually 0 V) and stabilizes at a predetermined target voltage.
  • the drive circuit 14 When the output voltage of the generation circuit 12 (ie, V OD ) is stabilized at the target voltage, or when the output voltage of the generation circuit 12 (ie, V OD ) reaches a voltage slightly lower than the target voltage, the drive circuit 14
  • the MOSFETs 61 and 62 can be turned on / off by.
  • Second Embodiment A second embodiment of the present invention will be described.
  • the second embodiment and the third to fifth embodiments to be described later are embodiments based on the first embodiment.
  • the matters not particularly described in the second to fifth embodiments are not particularly described and contradictory. As long as there is no, description of 1st Embodiment is applied also to 2nd-5th Embodiment.
  • FIG. 5 is a schematic block diagram of the switching device 1A according to the second embodiment.
  • the switching device 1A includes the respective parts referenced by reference numerals 11 to 15 and 16A. That is, the switching device 1A is formed by replacing the voltage generation control unit 16 in the switching device 1 of the first embodiment with the voltage generation control unit 16A.
  • the voltage generation control unit 16A has the same function as the voltage generation control unit 16 described in the first embodiment. That is, the voltage generation control unit 16A controls the generation circuit 12 so that the drive circuit power supply operation is permitted after the control circuit 15 is activated (so that the start of the drive circuit power supply operation is permitted). However, the voltage generation controller 16A, instead of issuing the authorization based on the voltage value of the drive voltage V OC, based on the activation signal generated by the control circuit 15 based on the drive voltage V OC, give the permission .
  • the control circuit 15 is configured to output a start signal after starting itself (does not output a start signal before starting). Therefore, when the voltage generation control unit 16A confirms that the activation signal is output from the control circuit 15, the voltage generation control unit 16A permits the drive circuit power supply operation to be performed. When the activation signal is not output from the control circuit 15, the voltage generation control unit 16 does not permit execution of the drive circuit power supply operation.
  • the control circuit 15 outputs a low level or a high level voltage signal having a higher potential than the low level from its specific terminal, and the high level voltage signal from the specific terminal functions as an activation signal.
  • the voltage signal at the specific terminal is generated based on the drive voltage V OC, and the voltage value (voltage level) of the voltage signal does not exceed the voltage value of the drive voltage V OC .
  • the voltage generation control unit 16 may determine that the activation signal is output from the control circuit 15 when the voltage signal from the specific terminal has a voltage value greater than or equal to a predetermined value.
  • FIG. 6 is a specific partial circuit diagram of the switching device according to the present invention. The technique of the first embodiment is applied to the circuit of FIG. Except for the voltage source 2, each part shown in FIG. 6 is included in the components of the switching device 1.
  • circuits CC11, CC12, and CC16 are examples of the generation circuit 11, the generation circuit 12, and the voltage generation control unit 16, respectively.
  • the output terminal 101 on the positive side of the voltage source 2 is connected to the branch point 103 via a protection circuit 102 for the purpose of overvoltage protection of the power supply ICs 110 and 120, and the voltage input lines 104 and 105 are connected to the branch point 103.
  • the The negative output terminal of the voltage source 2 is connected to the ground.
  • the voltages applied to the voltage input lines 104 and 105 correspond to the input voltages V INC and V IND , respectively.
  • the circuit CC11 includes a power supply IC 110 forming a switching regulator, capacitors C110 to C112, an inductor L110, and voltage dividing resistors R110 and R111.
  • the power supply IC 110 includes an input terminal 111, an SS (soft start) terminal 112, an output terminal 113, and an FB (feedback) terminal 114.
  • the capacitor C110 may be formed of a plurality of capacitors (the same applies to other capacitors).
  • the inductor L110 may be formed of a plurality of inductors (the same applies to other inductors).
  • the voltage dividing resistor R110 may be formed of a plurality of resistors (the same applies to other resistors).
  • the voltage input line 104 is connected to the input terminal 111 and to the ground via the capacitor C110.
  • the output terminal 113 is connected to the positive electrode of the output capacitor C112 via the inductor L110, and the negative electrode of the output capacitor C112 is connected to the ground.
  • the voltage applied to the output capacitor C112 is applied to the series connection circuit of the voltage dividing resistors R110 and R111. More specifically, the positive electrode of the output capacitor C112 is connected to one end of the voltage dividing resistor R110, and the other end of the voltage dividing resistor R110 is connected to the ground via the voltage dividing resistor R111. A connection point between the voltage dividing resistors R110 and R111 is connected to the FB terminal 114.
  • the power supply IC 110 switches the input voltage to the input terminal 111 using pulse width modulation or the like so that the voltage at the FB terminal 114 matches the predetermined first reference voltage, and the voltage obtained by the switching is output to the output terminal. 113 to output.
  • the voltage AC component at the output terminal 113 is reduced by the low-pass filter including the inductor L110 and the output capacitor C112.
  • Voltage applied to the output capacitor C112 is via another low-pass filter 170 is connected to an output terminal of terminal 11 OUT generating circuit 11, the driving voltage V OC to the control circuit 15 from the output terminal 11 OUT is output. Therefore, by appropriately setting the resistance values of the voltage dividing resistors R110 and R111, the voltage value of the drive voltage VOC can be stabilized at a desired first target voltage (for example, 3.3 V).
  • the low-pass filter 170 can be omitted.
  • the power supply IC 110 when a voltage equal to or higher than a predetermined voltage value is applied to the input terminal 111, a current (for example, a constant current) is supplied in a direction from the input terminal 111 to the SS terminal 112. This current charges the capacitor C111 provided between the SS terminal 112 and the ground.
  • the power supply IC 110 performs a soft start operation using the voltage of the SS terminal 112. That is, when the voltage at the SS terminal 112 starts from 0V, the power supply IC 110 increases the first reference voltage from 0V so that the voltage at the FB terminal 114 increases as the voltage at the SS terminal 112 increases.
  • the increase of the first reference voltage is stopped and the soft start operation is terminated.
  • the drive voltage V OC matches the first target voltage (for example, 3.3 V) (however, the error is ignored).
  • the circuit CC12 has a power supply IC 120 forming a switching regulator, capacitors C120 to C122, an inductor L120, and voltage dividing resistors R120 and R121.
  • the power supply IC 120 includes an input terminal 121, an SS (soft start) terminal 122, an output terminal 123, and an FB (feedback) terminal 124.
  • the voltage input line 105 is connected to the input terminal 121 and connected to the ground via the capacitor C120.
  • the output terminal 123 is connected to the positive electrode of the output capacitor C122 via the inductor L120, and the negative electrode of the output capacitor C122 is connected to the ground.
  • the voltage applied to the output capacitor C122 is applied to the series connection circuit of the voltage dividing resistors R120 and R121. More specifically, the positive electrode of the output capacitor C122 is connected to one end of the voltage dividing resistor R120, and the other end of the voltage dividing resistor R120 is connected to the ground via the voltage dividing resistor R121. A connection point between the voltage dividing resistors R120 and R121 is connected to the FB terminal 124.
  • the power supply IC 120 switches the input voltage to the input terminal 121 using pulse width modulation or the like so that the voltage at the FB terminal 124 matches the predetermined second reference voltage, and the voltage obtained by the switching is output to the output terminal. 123.
  • the voltage AC component at the output terminal 123 is reduced by the low-pass filter including the inductor L120 and the output capacitor C122.
  • the voltage applied to the output capacitor C122 is connected to the terminal 12 OUT which is the output terminal of the generation circuit 12, and the drive voltage V OD for the drive circuit 14 is output from the output terminal 12 OUT . Therefore, by appropriately setting the resistance values of the voltage dividing resistors R120 and R121, the voltage value of the drive voltage VOD can be stabilized to a desired second target voltage (for example, 15V).
  • a current for example, a constant current
  • a transistor TR160 which will be described later
  • the power supply IC 120 performs a soft start operation using the voltage of the SS terminal 122. That is, when the voltage at the SS terminal 122 starts to increase from 0V, the power supply IC 120 increases the second reference voltage from 0V so that the voltage at the FB terminal 124 increases as the voltage at the SS terminal 122 increases.
  • the second reference voltage When the second reference voltage reaches a predetermined second reference value, the rise of the second reference voltage is stopped and the soft start operation is terminated.
  • the voltage value of the second reference voltage matches the second reference value, the drive voltage V OD matches the second target voltage (for example, 15V) (however, the error is ignored).
  • the circuit CC16 includes a transistor TR160 which is an NPN bipolar transistor, resistors R160 to R162, a Zener diode ZD160, a shunt regulator SR160 having a reference terminal 165, an anode and a cathode, and a capacitor C160.
  • the output terminal 11 OUT is connected to one end of the voltage dividing resistor R170, and the other end of the voltage dividing resistor R170 is connected to the ground via the voltage dividing resistor R171.
  • a connection point between the voltage dividing resistors R170 and R171 is connected to the reference terminal 165 and to the ground via the capacitor C160.
  • a voltage corresponding to the drive voltage V OC is input to the reference terminal 165 through the voltage dividing resistors R170 and R171. It may be considered that the voltage dividing resistors R170 and R171 are included in the components of the circuit CC16.
  • the anode of the shunt regulator SR160 is connected to the ground.
  • the cathode of the shunt regulator SR160 is connected to the cathode of the Zener diode ZD160 and is connected to the voltage input line 105 (and 104) via the resistor R160.
  • the anode of the Zener diode ZD160 is connected to the base of the transistor TR160 via the resistor R161. In the transistor TR160, the base is connected to the emitter via the resistor R162, the emitter is connected to the ground, and the collector is connected to the SS terminal 122.
  • the shunt regulator SR160 makes its anode and cathode non-conductive.
  • a base current is supplied from the voltage input line 105 to the transistor TR160 through the resistor R160 and the Zener diode ZD160, and the transistor TR160 functioning as a switch is turned on.
  • the voltage at the SS terminal 122 is lowered to a voltage close to 0V, and the voltage at the output terminal 12 OUT does not increase from 0V even if the input voltage V IND is sufficiently high. That is, when the voltage at the reference terminal 165 is less than the predetermined third reference voltage, the drive circuit power supply operation is prohibited (the drive circuit power supply operation is not started).
  • the shunt regulator SR160 conducts between its anode and cathode.
  • the cathode potential of the shunt regulator SR160 is sufficiently lowered, the base current through the Zener diode ZD160 is not supplied to the transistor TR160, and the transistor TR160 is turned off.
  • the soft start operation in the power supply IC 120 is started. With the start of the soft start operation, the output voltage V OD of the circuit CC12 rises toward the second target voltage (for example, 15V), and finally stabilizes at the second target voltage.
  • the second target voltage for example, 15V
  • the operation and effect described in the first embodiment are realized by the circuit configuration of FIG.
  • the circuit CC16 for detecting the output voltage of the circuit CC11 is driven by using the input voltages (V INC and V IND ) of the circuits CC11 and CC12. Therefore, a desired voltage can be detected in the circuit CC11 before the voltages for driving the control circuit 15 and the drive circuit 14 are generated.
  • FIG. 7 is a schematic block diagram of a switching device 1B according to the fourth embodiment.
  • the switching device 1B includes the respective parts referred to by reference numerals 11 to 16 as in the switching device 1 of FIG.
  • the voltage generation control unit 16 may be replaced with the voltage generation control unit 16A (FIG. 5) according to the second embodiment.
  • the function and operation of each part in the switching device 1B are the same as those of the switching device 1 or 1A.
  • the generation circuit 11 in the switching device 1B can generate the voltage V OC using the input voltage V INC or the output voltage V OD of the generation circuit 12. Specifically, for example, when “V INC + ⁇ > V OD ” is established, the generation circuit 11 generates the voltage V OC using the input voltage V INC without using the output voltage V OD , and “V INC + ⁇ ⁇ When V OD ′′ is established, the output voltage V OD is used to generate the voltage V OC .
  • the voltage amount ⁇ can be zero or any positive value other than zero. As shown in FIG.
  • the output terminal of the generation circuit 12 that outputs the voltage V OD is connected to the input terminal of the generation circuit 11 that receives the input voltage V INC via the diode DD.
  • the voltage amount ⁇ corresponds to a voltage drop of the diode DD (FIG. 12 described later corresponds to a specific circuit example of the configuration of FIG. 8).
  • FIG. 9 shows a switching circuit CC 13 ′ as an example of the switching circuit 13.
  • the switching circuit 13 may be any switching circuit.
  • the switching circuit CC13 ' is applicable to all the embodiments, and the switching circuit CC13 of FIG. 2 is also applicable to all the embodiments.
  • the switching circuit CC13 ′ is a synchronous rectification step-up chopper that boosts the DC input voltage V INS to obtain the DC output voltage V OS , and includes an inductor 70, switching elements 71 and 72, and an output capacitor 75.
  • the switching elements 71 and 72 are N-channel MOSFETs.
  • An input voltage V INS is applied to one end of the inductor 70.
  • the other end of the inductor 70 is commonly connected to the drain of a MOSFET 71 that is a low-side switch and the source of a MOSFET 72 that is a high-side (synchronous rectification) switch.
  • the MOSFETs 71 and 72 are respectively provided with diodes 73 and 74 whose forward direction is from the source to the drain.
  • the diodes 73 and 74 may be parasitic diodes of the MOSFETs 71 and 72, respectively.
  • the source of the MOSFET 71 is connected to the ground.
  • the drain of the MOSFET 72 is connected to the positive electrode of the output capacitor 75 at the connection point 76, and the negative electrode of the output capacitor 75 is connected to the ground.
  • the drive signal output from the drive circuit 14 includes two signals for controlling the gate potentials of the MOSFETs 71 and 72.
  • the MOSFETs 71 and 72 are alternately turned on by the drive signal, so that the DC output voltage VOS is output from the connection point 76. Note that the MOSFETs 71 and 72 are kept off before the drive circuit 14 is driven.
  • the input voltages V INC , V IND, and V INS may be supplied from different voltage sources, but as shown in FIG.
  • the input voltages V INC , V IND and V INS are supplied from a common voltage source 2.
  • a sufficiently high voltage V 2OUT is supplied from the voltage source 2 as the input voltages V INC , V IND and V INS , and the voltages V OC and V OD are set to the first and second target voltages (eg, 3.3V and 15V).
  • the output of the voltage source 2 stops at a certain timing with reference to the stabilized state (see FIG. 11).
  • the output voltage V OD of the generation circuit 12 starts to decrease starting from the timing, but the control circuit power supply in the generation circuit 11 is in a period in which the output voltage V OD is equal to or higher than a predetermined voltage lower than the second target voltage.
  • the operation is maintained, and the drive voltage V OC of the control circuit 15 is maintained at the first target voltage. Thereafter, the output voltage V OC of the generation circuit 11 decreases after the voltage V OD has sufficiently decreased.
  • control circuit 15 can correctly control the drive circuit 14 until the operation of the drive circuit 14 is stopped, and the malfunction of the switching circuit 13 can be prevented.
  • the switching circuit 13 may malfunction (unintentional switching element on / off). There is a possibility that a circuit element in the switching circuit 13 including the switching element or its peripheral elements may be destroyed or deteriorated due to a malfunction of the switching circuit 13. For example, if the MOSFETs 71 and 72 are simultaneously turned on due to a malfunction in a state where charges are accumulated in the output capacitor 75 in FIG. 9, a through current from the output capacitor 75 through the MOSFETs 72 and 71 is generated, and circuit elements are destroyed. obtain.
  • the cause of the stop or decrease in the supply of the input voltage VINC is arbitrary.
  • the voltage source 2 or 2 C (refer to FIG. 10 or FIG. 4) is a solar cell
  • the supply of the input voltage VINC may be stopped or lowered due to shielding of sunlight.
  • the connection between the voltage source 2 or 2 C and the generation circuit 11 is interrupted, the supply of the input voltage VINC is stopped. Blocking connection in this case occurs switch off or disposed between the voltage source 2 or 2 C and generating circuit 11, a disconnection or the like of the wiring between the voltage source 2 or 2 C and generating circuit 11 .
  • the voltage source 2 or 2 C is a battery such as a primary battery or a secondary battery
  • the input voltage is applied when the battery is removed from the apparatus and the connection between the battery and the generation circuit 11 is interrupted.
  • a supply stop of VINC occurs.
  • FIG. 12 is a specific partial circuit diagram of the switching device according to the present invention.
  • the techniques of the first and fourth embodiments are applied to the circuit of FIG. Except for the voltage source 2, each part shown in FIG. 12 is included in the components of the switching device 1B.
  • the circuit of FIG. 12 can be obtained by adding the diode DD to the circuit of FIG.
  • the diode DD may be formed of a plurality of diodes. Since the circuit of FIG. 12 is the same as the circuit of FIG. 6 except for the addition of the diode DD, the description of the same circuit portion is omitted. However, in FIG. 12, the circuit CC12 is limited to a step-down power supply circuit.
  • the anode is connected to the output terminal 123 of the power supply IC 120, and the cathode is connected to the voltage input line 104 (and thus also connected to the voltage input line 105).
  • the anode of the diode DD may be connected to the positive electrode of the output capacitor C122.
  • the voltage on the wiring between the output terminal 123 and the inductor L120 includes a large amount of switching components, but the wiring is also applied with the output voltage of the generation circuit 12 like the wiring between the inductor L120 and the terminal 12 OUT. It is a kind of.
  • the voltage source 2 is a solar battery
  • the output of the voltage source 2 is stopped due to sunlight shielding or the like
  • the leakage current is about It is considered that only a reverse flow occurs and no reverse current (current from the output capacitor C122 to the voltage source 2) that causes a problem is generated.
  • a backflow prevention diode for preventing backflow current may be added between the terminal 101 and the connection point 103. Further, when a switch (not shown) provided between the voltage source 2 and the connection point 103 is turned off or when the battery as the voltage source 2 is removed, the problem of backflow does not occur.
  • a switching device (1, 1A, 1B) generates a first drive voltage (V OC ) based on a switching circuit (13) having a switching element and a first input voltage (V INC ).
  • a control circuit for driving and generating a control signal; and a drive that is driven by the second drive voltage and that turns on or off the switching element by supplying a drive signal based on the control signal to the switching circuit
  • a circuit (14) for controlling the second drive voltage generation circuit so that the second drive voltage generation operation is permitted by the second drive voltage generation circuit after the control circuit is activated.
  • the voltage generation control unit (16, 16A) is configured such that when the voltage value of the first drive voltage (V OC ) is equal to or greater than a predetermined threshold value, or when the activation signal is supplied from the control circuit.
  • the generation operation of the second drive voltage (V OD ) by the second drive voltage generation circuit (12) may be permitted.
  • the first drive voltage generation circuit (11) uses the first input voltage (V INC ) or the second drive voltage (V OD ) output from the second drive voltage generation circuit (12).
  • the first drive voltage (V OC ) may be generated.
  • the first drive voltage can be generated using the second drive voltage.
  • the drive circuit is driven in a state where the control circuit is not operating normally, and the malfunction of the switching circuit when the supply of the first input voltage is stopped is suppressed.
  • the switching device further includes a diode (DD) provided between a voltage input line (104) and a wiring to which an output voltage of the second drive voltage generation circuit is applied, and the first drive voltage
  • the generation circuit (11, CC11) generates the first drive voltage (V OC ) based on the voltage applied to the voltage input line (104), and the voltage input line (104) has the first input voltage.
  • the first input voltage may be applied or the output voltage of the second drive voltage generation circuit may be applied through the diode according to the output voltage of the second drive voltage generation circuit.
  • the switching devices (1, 1A, 1B) include a switching control device connected to the switching circuit 13.
  • the switching control device corresponds to the switching device (1, 1A, 1B) excluding the switching circuit 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

 制御回路(15)は、生成回路(11)が生成した駆動電圧(VOC)にて駆動して制御信号を出力する。ドライブ回路(14)は、生成回路(12)が生成した駆動電圧(VOD)にて駆動し、制御信号に従ったドライブ信号をスイッチング回路(13)に供給することで、スイッチング回路(13)内のスイッチング素子をオン又はオフする。スイッチング装置(1)の起動時において、電圧生成制御部(16)は、生成回路(11)の出力電圧(VOC)の電圧値を検出し、検出電圧値が所定閾値以上になったことを確認してから、生成回路(12)の起動を許可する。

Description

スイッチング装置
 本発明は、スイッチング装置に関する。
 図13に、スイッチング装置の構成例を示す。インバータ等のスイッチング回路を制御する際、通常、ゲート信号を供給するゲートドライバ(ドライバ回路)とゲートドライバを制御する制御回路が設けられ、ゲートドライバ及び制御回路に対して互いに異なる駆動電圧(例えば3.3Vと15V)が必要となる。従って、ゲートドライバ用の電源回路と制御回路用の電源回路を別に設けることが一般的である(例えば下記特許文献1参照)。
特開2010-239766号公報
 図13において、制御回路の起動前には、制御信号を伝搬すべき信号線に論理が不定の信号が加わるおそれがある、従って、制御回路用の電源回路の出力が立ち上がる前にゲートドライバ用の電源回路の出力が立ち上がった場合、制御回路用の電源回路の出力が立ち上がるまでの時間帯において、論理が不定の信号の入力に応答し、スイッチング回路に誤動作(意図しないスイッチング素子のオン/オフ)が発生するおそれがある。例えば、直列接続された電界効果トランジスタの同時オンによる貫通電流が発生しうる。スイッチング回路の誤動作によって、スイッチング素子を含むスイッチング回路内の回路素子又はその周辺素子が破壊又は劣化するおそれがある。
 そこで本発明は、起動時におけるスイッチング回路の誤動作抑制に寄与するスイッチング装置を提供することを目的とする。
 本発明に係るスイッチング装置は、スイッチング素子を有するスイッチング回路と、第1入力電圧に基づき第1駆動電圧を生成する第1駆動電圧生成回路と、第2入力電圧に基づき第2駆動電圧を生成する第2駆動電圧生成回路と、前記第1駆動電圧にて駆動して制御信号を生成する制御回路と、前記第2駆動電圧にて駆動し、前記制御信号に基づくドライブ信号を前記スイッチング回路に供給することで前記スイッチング素子をオン又はオフするドライブ回路と、前記制御回路の起動後に前記第2駆動電圧生成回路による前記第2駆動電圧の生成動作が許可されるよう、前記第2駆動電圧生成回路を制御する電圧生成制御部と、を備えたことを特徴とする。
 本発明によれば、起動時におけるスイッチング回路の誤動作抑制に寄与するスイッチング装置を提供することが可能である。
本発明の第1実施形態に係るスイッチング装置の概略ブロック図である。 図1のスイッチング回路の内部構成例を示す図である。 本発明の第1実施形態に係り、スイッチング装置と電圧源(共通電圧源)との関係例を示す図である。 本発明の第1実施形態に係り、スイッチング装置と電圧源(3つの電圧源)との関係例を示す図である。 本発明の第2実施形態に係るスイッチング装置の概略ブロック図である。 本発明の第3実施形態に係るスイッチング装置の部分回路図である。 本発明の第4実施形態に係るスイッチング装置の概略ブロック図である。 本発明の第4実施形態に係るスイッチング装置の概略ブロック図である。 図7のスイッチング回路の内部構成例を示す図である。 本発明の第4実施形態に係り、スイッチング装置と電圧源(共通電圧源)との関係例を示す図である。 本発明の第4実施形態に係り、電圧源の出力と生成される駆動電圧との関係を示す図である。 本発明の第5実施形態に係るスイッチング装置の部分回路図である。 従来のスイッチング装置の構成を示す図である。
 以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、状態量又は部材等を参照する記号又は符号を記すことによって該記号又は符号に対応する情報、信号、物理量、状態量又は部材等の名称を省略又は略記することがある。
<第1実施形態>
 本発明の第1実施形態を説明する。図1は、第1実施形態に係るスイッチング装置1の概略ブロック図である。スイッチング装置1は、符号11~16によって参照される各部位を備える。
 制御回路用駆動電圧生成回路11(以下、生成回路11と略記する)は、制御回路用電源動作により、入力電圧VINCから、制御回路15を駆動するための直流の駆動電圧VOCを生成する。ここでは、入力電圧VINCは直流電圧であると考えるが、入力電圧VINCを交流にすることも可能である。生成回路11は、昇圧型の電源回路でも降圧型の電源回路でも良い。本明細書において、任意の電圧は、特に記述無き限り、0V(ボルト)の基準電位を有するグランドから見た電圧であるとする。生成回路11の電源動作の起動前においてVOC=0であるが、生成回路11の電源動作の起動後、駆動電圧VOCは、所定の目標電圧に向けて上昇する。
 ドライブ回路用駆動電圧生成回路12(以下、生成回路12と略記する)は、ドライブ回路用電源動作により、入力電圧VINDから、ドライブ回路14を駆動するための直流の駆動電圧VODを生成する。ここでは、入力電圧VINDは直流電圧であると考えるが、入力電圧VINDを交流にすることも可能である。生成回路12は、昇圧型の電源回路でも降圧型の電源回路でも良い。生成回路12の電源動作の起動前においてVOD=0であるが、生成回路12の電源動作の起動後、駆動電圧VODは、所定の目標電圧に向けて上昇する。
 ドライブ回路14へは、ゲートドライブ用の電圧(例えば10~15V)が必要となる一方で、ドライブ回路14に対する制御回路15へは、それと異なる電圧、通常は、より低い電圧(例えば3.3V~5V)が必要である。従って、スイッチング装置1には、2つの駆動電圧生成回路11及び12が設けられている。
 スイッチング回路13は、1以上の任意の個数のスイッチング素子を有し、ドライブ回路14からのドライブ信号に従うスイッチング動作により入力電圧VINSから出力電圧VOSを生成する。スイッチング回路13に、スイッチング素子以外の回路素子が更に含まれていても良い。スイッチング動作において、スイッチング回路13内の各スイッチング素子は、ドライブ回路14からのドライブ信号に従ってオン又はオフとされる。スイッチング回路13におけるスイッチング素子は、任意の種類の半導体スイッチング素子であって良いし、機械式スイッチング素子(リレー等)であっても良い。半導体スイッチング素子は、例えば、バイポーラトランジスタ、MOSFET(metal-oxide-semiconductor field-effect transistor)等の電界効果トランジスタ、又は、IGBT(絶縁ゲートバイポーラトランジスタ)である。
 スイッチング回路13は、どのようなスイッチング回路であっても良いが、ここでは、スイッチング回路13が図2のスイッチング回路CC13であることを考える。スイッチング回路CC13は、直流の入力電圧VINSから交流の出力電圧VOSを生成するインバータ回路であり、互いに直列接続されたスイッチング素子61及び62を有する。図2の例において、スイッチング素子61及び62は、Nチャネル型のMOSFET(metal-oxide-semiconductor field-effect transistor)である。ハイサイドスイッチであるMOSFET61には、MOSFET61のソースからドレインに向かう方向を順方向とするダイオード63が付与されている。ローサイドスイッチであるMOSFET62には、MOSFET62のソースからドレインに向かう方向を順方向とするダイオード64が付与されている。ダイオード63及び64は、夫々、MOSFET61及び62の寄生ダイオードであって良い。
 MOSFET61のドレインに直流の入力電圧VINSが印加され(VINS>0)、MOSFET62のソースはグランドに接続される。MOSFET61のソースとMOSFET62のドレインは接続点65にて共通接続される。ドライブ回路14が出力するドライブ信号は、MOSFET61及び62のゲート電位を制御する2つの信号から成る。ドライブ信号によってMOSFET61及び62が交互にオンされることで、接続点65から交流の出力電圧VOSが出力される。
 ドライブ回路14は、駆動電圧VODにて駆動し、制御回路15からの制御信号に基づくドライブ信号をスイッチング回路13に供給することでスイッチング回路13内の各スイッチング素子をオン又はオフする。尚、ドライブ回路14の駆動前において、図2のMOSFET61及び62はオフに維持される。スイッチング素子がMOSFET等の電界効果トランジスタである場合、ドライブ回路14は、スイッチング素子にゲート信号を供給するゲートドライバである。
 制御回路15は、駆動電圧VOCにて駆動して制御信号を生成し、該制御信号をドライブ回路14に供給する。
 入力電圧VINC、VIND及びVINSは、共通の電圧源から供給されるものであって良い。即ち例えば、図3に示す如く、入力電圧VINC、VIND及びVINSが共通の電圧源2から供給される構成を採用することもできる。図3において、電圧源2の出力電圧が入力電圧VINC、VIND及びVINSとして生成回路11、生成回路12及びスイッチング回路13に供給される(従って、VINC=VIND=VINS)。
 或いは、入力電圧VINC、VIND及びVINSは、互いに異なる電圧源から供給されるものであっても良い。即ち例えば、図4に示す如く、入力電圧VINC、VIND、VINSは、夫々、互いに異なる電圧源2、2、2から供給されても良い。この場合、入力電圧VINC、VIND及びVINSの電圧値は互いに異なりうる。
 或いは、入力電圧VINC、VIND及びVINSの内、任意の2つの入力電圧が第1電圧源から供給される一方で、残りの1つの入力電圧が第2電圧源から供給されるものであっても良い(それらの供給の図示は割愛)。ここで、第2電圧源は第1電圧源と異なる。
 電圧源2、2、2及び2は、太陽電池であると良い(第1及び第2電圧源も同様)。太陽電池は、太陽光に基づく発電を行って当該発電にて得た直流電圧を出力する。但し、電圧源2、2、2及び2は、太陽光以外の任意のエネルギ源(化石燃料、水力、風力、地熱など)を用いて直流電圧を出力するものであっても良い(第1及び第2電圧源も同様)。或いは例えば、電圧源2、2、2及び2は、アルカリ電池等の一次電池又はリチウムイオン電池等の二次電池にて形成されていても良い(第1及び第2電圧源も同様)。以下の説明では、入力電圧VINC、VIND及びVINSは全て正の直流電圧であるとする。
 制御回路15は、マイクロコンピュータ、論理回路等から成る。生成回路11から出力される駆動電圧VOCの電圧値が所定の下限値VTH1より小さいとき、制御回路15の起動及び正常動作が保証されず、駆動電圧VOCの電圧値が下限値VTH1以上のときに、制御回路15の起動及び正常動作が確保される。制御回路15における起動とは、制御回路15が動作していない状態から、制御回路15が正常動作できる状態へ移行することを指す。
 制御回路15の起動前あるいは起動動作中においては、制御信号を伝搬すべき信号線に論理が不定の信号が加わるおそれがある。例えば起動動作中、制御回路15に所定の電圧値に満たない中途半端な電圧が印加されている状態において、制御回路15の一部が正常に動作しつつも他の一部が論理不定となっていると、その時間帯には、誤った制御信号が出力されてしまう可能性がある。従って、仮に、制御回路15の起動前あるいは起動動作中に、十分に高い駆動電圧VODがドライブ回路14に供給されたならば、論理が不定の信号の入力に応答して、スイッチング回路13に誤動作(意図しないスイッチング素子のオン/オフ)が発生するおそれがある。例えば、図2のMOSFET61及び62の同時オンが発生するおそれがある。スイッチング回路13の誤動作によって、スイッチング素子を含むスイッチング回路13内の回路素子又はその周辺素子が破壊又は劣化するおそれがある。
 図3に示す如く入力電圧VINC、VIND及びVINSが共通の電圧源2から供給される電圧であったとしても、生成回路11及び12の回路構成及び動作によっては、駆動電圧VOCよりも先に駆動電圧VODが立ち上がる可能性もある。また、図4のような回路構成の場合には、入力電圧VINCが供給されていないときに入力電圧VINS及びVINDが供給されることもある。これらの場合に、上記のような誤動作を回避することが必要である。そこで、スイッチング素子1には電圧生成制御部16が設けられている。
 電圧生成制御部16は、制御回路15の起動後に上記ドライブ回路用電源動作が許可されるよう(ドライブ回路用電源動作の開始が許可されるよう)、生成回路12を制御する。換言すれば、電圧生成制御部16は、制御回路15の起動前において、ドライブ回路用電源動作の実行を禁止する。ドライブ回路用電源動作は、生成回路12による駆動電圧VODの生成動作を指す。所定電圧値以上の入力電圧VINDが生成回路12に供給されている状態でドライブ回路用電源動作の実行が許可された場合、その許可が得られた時点から、生成回路12は、ドライブ回路用電源動作の実行を開始する。従って、電圧生成制御部16は、制御回路15の起動後にドライブ回路用電源動作が開始されるよう、生成回路12を制御しているとも言える(後述の電圧生成制御部16Aについても同様)。
 これを実現すべく、第1実施形態における電圧生成制御部16は、生成回路11の出力電圧である駆動電圧VOCの電圧値を検出し、駆動電圧VOCの電圧値が所定閾値VTH2以上になっていることを確認した場合に、ドライブ回路用電源動作の実行を許可する(ドライブ回路用電源動作を開始させる)。ここで、“VTH2≧VTH1>0”である(単位はボルト)。駆動電圧VOCの電圧値が所定閾値VTH2未満である場合、電圧生成制御部16は、ドライブ回路用電源動作の実行を許可しない。尚、電圧生成制御部16を駆動するための電圧は、入力電圧VINC又はVINDであると良い(後述の電圧生成制御部16Aについても同様)。
 ドライブ回路用電源動作の実行開始前において、生成回路12の出力電圧は十分に低く(通常は0V)、MOSFET61及び62をオンするドライブ信号がドライブ回路14から出力されることは無い(但し、ノイズ等による異常動作を無視)。ドライブ回路用電源動作を開始されると、生成回路12の出力電圧は、十分に低い電圧(通常は0V)から上昇を開始して所定の目標電圧で安定化する。生成回路12の出力電圧(即ちVOD)が当該目標電圧で安定化しているとき、又は、生成回路12の出力電圧(即ちVOD)が当該目標電圧より若干低い電圧に達すると、ドライブ回路14によるMOSFET61及び62のオン/オフ制御が可能となる。
 本実施形態によれば、スイッチング装置の起動時におけるスイッチング回路の誤動作を確実に防止することが可能となる。
<第2実施形態>
 本発明の第2実施形態を説明する。第2実施形態並びに後述の第3~第5実施形態は第1実施形態を基礎とする実施形態であり、第2~第5実施形態において特に述べない事項に関しては、特に記述無き限り且つ矛盾の無い限り、第1実施形態の記載が第2~第5実施形態にも適用される。
 図5は、第2実施形態に係るスイッチング装置1Aの概略ブロック図である。スイッチング装置1Aは、符号11~15及び16Aによって参照される各部位を備える。つまり、第1実施形態のスイッチング装置1における電圧生成制御部16を電圧生成制御部16Aに置き換えることで、スイッチング装置1Aが形成される。
 電圧生成制御部16Aは、第1実施形態で述べた電圧生成制御部16と同等の機能を持つ。即ち、電圧生成制御部16Aは、制御回路15の起動後に上記ドライブ回路用電源動作が許可されるよう(ドライブ回路用電源動作の開始が許可されるよう)、生成回路12を制御する。但し、電圧生成制御部16Aは、駆動電圧VOCの電圧値に基づき当該許可を出すのではなく、駆動電圧VOCに基づき制御回路15にて生成された起動信号に基づいて、当該許可を出す。
 制御回路15は、自身の起動後に起動信号を出力するように構成されている(起動前には起動信号を出力しない)。従って、電圧生成制御部16Aは、制御回路15から起動信号が出力されていることを確認した場合に、ドライブ回路用電源動作の実行を許可する。制御回路15から起動信号が出力されていない場合、電圧生成制御部16は、ドライブ回路用電源動作の実行を許可しない。
 例えば、制御回路15は、自身の特定端子からローレベル又はローレベルより電位の高いハイレベルの電圧信号を出力し、特定端子からのハイレベルの電圧信号が起動信号として機能する。特定端子における電圧信号は駆動電圧VOCに基づき生成され、その電圧信号の電圧値(電圧レベル)は、駆動電圧VOCの電圧値を超えない。電圧生成制御部16は、上記特定端子からの電圧信号が所定値以上の電圧値を有しているとき、制御回路15から起動信号が出力されていると判断すればよい。
 第2実施形態によっても、スイッチング装置の起動時におけるスイッチング回路の誤動作を確実に防止することが可能となる。
<第3実施形態>
 本発明の第3実施形態を説明する。第3実施形態では、本発明に係るスイッチング装置の具体的回路例を説明する。図6は、本発明に係るスイッチング装置の具体的な部分回路図である。図6の回路には、第1実施形態の技術が適用されている。電圧源2を除き、図6に示される各部位は、スイッチング装置1の構成要素に含まれる。図6において、回路CC11、CC12、CC16は、夫々、生成回路11、生成回路12、電圧生成制御部16の例である。
 電圧源2の正側の出力端子101は、電源IC110及び120の過電圧保護等を目的とした保護回路102を介して分岐点103に接続され、分岐点103に電圧入力線104及び105が接続される。電圧源2の負側の出力端子はグランドに接続される。電圧入力線104、105への印加電圧が、夫々、入力電圧VINC、VINDに相当する。
 回路CC11は、スイッチングレギュレータを形成する電源IC110と、コンデンサC110~C112と、インダクタL110と、分圧抵抗R110及びR111を有する。電源IC110は、入力端子111、SS(ソフトスタート)端子112、出力端子113及びFB(フィードバック)端子114を有する。コンデンサC110は、複数のコンデンサにて形成されていても良い(他のコンデンサについても同様)。インダクタL110は、複数のインダクタにて形成されていても良い(他のインダクタについても同様)。分圧抵抗R110は、複数の抵抗にて形成されていても良い(他の抵抗についても同様)。
 電圧入力線104は、入力端子111に接続されていると共に、コンデンサC110を介してグランドに接続されている。出力端子113は、インダクタL110を介して出力コンデンサC112の正極に接続され、出力コンデンサC112の負極はグランドに接続される。出力コンデンサC112に加わる電圧は、分圧抵抗R110及びR111の直列接続回路に印加される。より具体的には、出力コンデンサC112の正極は分圧抵抗R110の一端に接続され、分圧抵抗R110の他端は分圧抵抗R111を介してグランドに接続される。そして、分圧抵抗R110及びR111間の接続点はFB端子114に接続される。電源IC110は、FB端子114における電圧が所定の第1基準電圧と一致するように、パルス幅変調等を用いて入力端子111への入力電圧をスイッチングし、該スイッチングによって得られた電圧を出力端子113から出力する。インダクタL110及び出力コンデンサC112から成るローパスフィルタにより、出力端子113における電圧交流成分が低減される。
 出力コンデンサC112に加わる電圧は、他のローパスフィルタ170を介して、生成回路11の出力端子である端子11OUTに接続され、出力端子11OUTから制御回路15に対する駆動電圧VOCが出力される。故に、分圧抵抗R110及びR111の抵抗値を適切に設定することで、駆動電圧VOCの電圧値を所望の第1目標電圧(例えば3.3V)に安定化させることができる。尚、ローパスフィルタ170は割愛されうる。
 また、電源IC110では、入力端子111に所定電圧値以上の電圧が印加されているとき、入力端子111からSS端子112に向かう方向に電流(例えば定電流)が供給される。この電流によって、SS端子112及びグランド間に設けられたコンデンサC111が充電される。電源IC110は、SS端子112の電圧を利用してソフトスタート動作を行う。即ち、SS端子112の電圧が0Vを起点として上昇を開始すると、電源IC110は、SS端子112の電圧の上昇に伴ってFB端子114の電圧が上昇するように上記第1基準電圧を0Vから上昇させてゆき、第1基準電圧が所定の第1基準値に達した時点で第1基準電圧の上昇を停止させてソフトスタート動作を終了する。第1基準電圧の電圧値が第1基準値と一致するとき、駆動電圧VOCは第1目標電圧(例えば3.3V)と一致する(但し、誤差を無視)。
 回路CC12は、スイッチングレギュレータを形成する電源IC120と、コンデンサC120~C122と、インダクタL120と、分圧抵抗R120及びR121を有する。電源IC120は、入力端子121、SS(ソフトスタート)端子122、出力端子123及びFB(フィードバック)端子124を有する。
 電圧入力線105は、入力端子121に接続されていると共に、コンデンサC120を介してグランドに接続されている。出力端子123は、インダクタL120を介して出力コンデンサC122の正極に接続され、出力コンデンサC122の負極はグランドに接続される。出力コンデンサC122に加わる電圧は、分圧抵抗R120及びR121の直列接続回路に印加される。より具体的には、出力コンデンサC122の正極は分圧抵抗R120の一端に接続され、分圧抵抗R120の他端は分圧抵抗R121を介してグランドに接続される。そして、分圧抵抗R120及びR121間の接続点はFB端子124に接続される。電源IC120は、FB端子124における電圧が所定の第2基準電圧と一致するように、パルス幅変調等を用いて入力端子121への入力電圧をスイッチングし、該スイッチングによって得られた電圧を出力端子123から出力する。インダクタL120及び出力コンデンサC122から成るローパスフィルタにより、出力端子123における電圧交流成分が低減される。
 出力コンデンサC122に加わる電圧は、生成回路12の出力端子である端子12OUTに接続され、出力端子12OUTからドライブ回路14に対する駆動電圧VODが出力される。故に、分圧抵抗R120及びR121の抵抗値を適切に設定することで、駆動電圧VODの電圧値を所望の第2目標電圧(例えば15V)に安定化させることができる。
 また、電源IC120では、入力端子121に所定電圧値以上の電圧が印加されているとき、入力端子121からSS端子122に向かう方向に電流(例えば定電流)が供給される。後述のトランジスタTR160がオフであるときには、この電流によって、SS端子122及びグランド間に設けられたコンデンサC121が充電される。電源IC120は、SS端子122の電圧を利用してソフトスタート動作を行う。即ち、SS端子122の電圧が0Vを起点として上昇を開始すると、電源IC120は、SS端子122の電圧の上昇に伴ってFB端子124の電圧が上昇するように上記第2基準電圧を0Vから上昇させてゆき、第2基準電圧が所定の第2基準値に達した時点で第2基準電圧の上昇を停止させてソフトスタート動作を終了する。第2基準電圧の電圧値が第2基準値と一致するとき、駆動電圧VODは第2目標電圧(例えば15V)と一致する(但し、誤差を無視)。
 回路CC16は、NPNバイポーラトランジスタであるトランジスタTR160と、抵抗R160~R162と、ツェナダイオードZD160と、リファレンス端子165、アノード及びカソードを有するシャントレギュレータSR160と、コンデンサC160と、を有する。出力端子11OUTは、分圧抵抗R170の一端に接続され、分圧抵抗R170の他端は分圧抵抗R171を介してグランドに接続される。分圧抵抗R170及びR171間の接続点は、リファレンス端子165に接続されると共にコンデンサC160を介してグランドに接続される。つまり、分圧抵抗R170及びR171を通じて、駆動電圧VOCに応じた電圧がリファレンス端子165に入力される。分圧抵抗R170及びR171は回路CC16の構成要素に含まれる、と考えても良い。
 シャントレギュレータSR160のアノードはグランドに接続される。シャントレギュレータSR160のカソードは、ツェナダイオードZD160のカソードに接続されると共に、抵抗R160を介して電圧入力線105(及び104)に接続される。ツェナダイオードZD160のアノードは、抵抗R161を介してトランジスタTR160のベースに接続される。また、トランジスタTR160において、ベースは抵抗R162を介してエミッタに接続され、エミッタはグランドに接続され、コレクタはSS端子122に接続される。
 リファレンス端子165における電圧が所定の第3基準電圧(例えば2.88V)未満であるとき、シャントレギュレータSR160は自身のアノード及びカソード間を非導通にする。結果、電圧入力線105から、抵抗R160及びツェナダイオードZD160を通じて、トランジスタTR160にベース電流が供給され、スイッチとして機能するトランジスタTR160がオンとなる。そうすると、SS端子122の電圧が0Vに近い電圧にまで引き下げられ、入力電圧VINDが十分に高くても出力端子12OUTの電圧が0Vから上昇しない。つまり、リファレンス端子165における電圧が所定の第3基準電圧未満であるとき、ドライブ回路用電源動作の実行が禁止される(ドライブ回路用電源動作が開始されない)。
 一方、リファレンス端子165における電圧が所定の第3基準電圧以上になると、シャントレギュレータSR160は自身のアノード及びカソード間を導通させる。結果、シャントレギュレータSR160のカソード電位が十分に低下して、ツェナダイオードZD160を通じたベース電流がトランジスタTR160に供給されなくなり、トランジスタTR160がオフとなる。トランジスタTR160のターンオフに連動してコンデンサC121の充電が開始されるので、電源IC120におけるソフトスタート動作が開始される。ソフトスタート動作の開始により、回路CC12の出力電圧VODが第2目標電圧(例えば15V)に向けて上昇し、最終的に第2目標電圧にて安定化する。このように、リファレンス端子165における電圧が所定の第3基準電圧以上であるとき、ドライブ回路用電源動作の実行が許可される。
 図6の回路構成により、第1実施形態で述べた作用及び効果が実現される。また、回路CC11の出力電圧を検出するための回路CC16は、回路CC11及びCC12の入力電圧(VINC、VIND)を用いて駆動する。故に、制御回路15及びドライブ回路14を駆動するための電圧が生成される前に、回路CC11における所望の電圧検出が可能である。
<第4実施形態>
 本発明の第4実施形態を説明する。図7は、第4実施形態に係るスイッチング装置1Bの概略ブロック図である。スイッチング装置1Bは、図1のスイッチング装置1と同様、符号11~16によって参照される各部位を備える。但し、スイッチング装置1Bにおいて、電圧生成制御部16を、第2実施形態に係る電圧生成制御部16A(図5)に置き換えても良い。スイッチング装置1B内の各部位の機能及び動作は、スイッチング装置1又は1Aのそれらと同様である。
 但し、スイッチング装置1Bにおける生成回路11は、入力電圧VINC又は生成回路12の出力電圧VODを用いて、電圧VOCを生成可能である。具体的には例えば、生成回路11は、“VINC+Δ>VOD”の成立時には、出力電圧VODを用いずに入力電圧VINCを用いて電圧VOCを生成し、“VINC+Δ≦VOD”の成立時には、出力電圧VODを用いて電圧VOCを生成する。電圧量Δを、ゼロ又はゼロ以外の任意の正の値にすることも可能である。図8に示す如く、入力電圧VINCを受ける生成回路11の入力端子に対し、ダイオードDDを介して、電圧VODが出力される生成回路12の出力端子を接続する構成を採用可能であり、その構成においては、電圧量ΔはダイオードDDの電圧降下に相当する(後述の図12は、図8の構成の具体的回路例に相当する)。
 図9に、スイッチング回路13の例としてスイッチング回路CC13’を示す。但し、上述したように、スイッチング回路13は、どのようなスイッチング回路であっても良い。スイッチング回路CC13’は全ての実施形態に適用可能であるし、図2のスイッチング回路CC13も全ての実施形態に適用可能である。
 スイッチング回路CC13’は、直流の入力電圧VINSを昇圧して直流の出力電圧VOSを得る同期整流型昇圧チョッパであり、インダクタ70、スイッチング素子71及び72並びに出力コンデンサ75を有する。図9の例において、スイッチング素子71及び72は、Nチャネル型のMOSFETである。インダクタ70の一端に入力電圧VINSが印加される。インダクタ70の他端は、ローサイドスイッチであるMOSFET71のドレイン及びハイサイド(同期整流)スイッチであるMOSFET72のソースに共通接続される。MOSFET71、72には、夫々、ソースからドレインに向かう方向を順方向とするダイオード73、74が付与されている。ダイオード73及び74は、夫々、MOSFET71及び72の寄生ダイオードであって良い。MOSFET71のソースはグランドに接続される。MOSFET72のドレインは接続点76にて出力コンデンサ75の正極に接続され、出力コンデンサ75の負極はグランドに接続される。ドライブ回路14が出力するドライブ信号は、MOSFET71及び72のゲート電位を制御する2つの信号から成る。ドライブ信号によってMOSFET71及び72が交互にオンされることで、接続点76から直流の出力電圧VOSが出力される。尚、ドライブ回路14の駆動前において、MOSFET71及び72はオフに維持される。
 第1実施形態で述べたように、本実施形態においても、入力電圧VINC、VIND及びVINSは互いに異なる電圧源から供給されるものであっても良いが、今、図10に示す如く、入力電圧VINC、VIND及びVINSが共通の電圧源2から供給される場合を考える。電圧源2から十分に高い電圧V2OUTが入力電圧VINC、VIND及びVINSとして供給されていて且つ電圧VOC及びVODが第1及び第2目標電圧(例えば3.3V及び15V)に安定化されている状態を基準として、或るタイミングに電圧源2の出力が停止したとする(図11参照)。そうすると、当該タイミングを起点として、生成回路12の出力電圧VODが低下し始めるが、出力電圧VODが第2目標電圧より小さな所定電圧以上である期間においては、生成回路11における制御回路用電源動作が維持され、制御回路15の駆動電圧VOCは第1目標電圧に保たれる。その後、電圧VODが十分に落ちてから生成回路11の出力電圧VOCが低下する。
 つまり、ドライブ回路14の動作が停止するまで制御回路15は正しくドライブ回路14を制御することが可能となり、スイッチング回路13の誤動作を防ぐことが可能である。尚、図10等には示していないが、生成回路12に出力コンデンサを設け、その出力コンデンサから生成回路11の駆動用電力を供給するようにすると良い(図12のコンデンサC122が当該出力コンデンサに相当する)。
 もし、ドライブ回路14の駆動電圧VODよりも先に制御回路15への駆動電圧VOCが低下したならば、その過程において、制御信号を伝搬すべき信号線に、論理が不定の信号が加わりかねない。結果、スイッチング回路13に誤動作(意図しないスイッチング素子のオン/オフ)が発生するおそれがある。スイッチング回路13の誤動作によって、スイッチング素子を含むスイッチング回路13内の回路素子又はその周辺素子が破壊又は劣化するおそれがある。例えば、図9の出力コンデンサ75に電荷が蓄積された状態で、誤動作によりMOSFET71及び72が同時にオンすると、出力コンデンサ75からMOSFET72及び71を通じた貫通電流が発生し、回路素子の破壊等が発生し得る。
 本実施形態のような構成を採用すれば、入力電圧VINCの供給停止又は低下時に発生し得るスイッチング回路の誤動作を抑制することが可能となる。
 尚、入力電圧VINCの供給停止又は低下の原因は任意である。例えば、電圧源2又は2(図10又は図4参照)が太陽電池である場合、日照の遮蔽等により、入力電圧VINCの供給停止又は低下が発生しうる。或いは例えば、電圧源2又は2と生成回路11との接続が遮断されたとき、入力電圧VINCの供給停止が発生する。ここにおける接続の遮断は、電圧源2又は2と生成回路11との間に配置されたスイッチのオフや、電圧源2又は2と生成回路11との間における配線の断線等により発生する。或いは例えば、電圧源2又は2が一次電池又は二次電池等のバッテリである場合において、当該バッテリが装置から取り外されて、当該バッテリ及び生成回路11間の接続が遮断されたとき、入力電圧VINCの供給停止が発生する。
<第5実施形態>
 本発明の第5実施形態を説明する。図12は、本発明に係るスイッチング装置の具体的な部分回路図である。図12の回路には、第1及び第4実施形態の技術が適用されている。電圧源2を除き、図12に示される各部位は、スイッチング装置1Bの構成要素に含まれる。図6の回路に、ダイオードDDを追加することで図12の回路が得られる。ダイオードDDは複数のダイオードにて形成されていても良い。ダイオードDDの追加を除き、図12の回路は図6の回路と同様であるので、同じ回路部分の説明を割愛する。但し、図12において、回路CC12は降圧型の電源回路に限定される。
 ダイオードDDにおいて、アノードは電源IC120の出力端子123に接続され、カソードは電圧入力線104に接続される(従って電圧入力線105にも接続される)。但し、ダイオードDDのアノードを出力コンデンサC122の正極に接続するようにしても良い。出力端子123及びインダクタL120間の配線上の電圧には、スイッチング成分が多く含まれているが、当該配線も、インダクタL120及び端子12OUT間の配線と同様、生成回路12の出力電圧が加わる配線の一種である。入力電圧VINCが、回路CC12の出力電圧VOD(出力コンデンサC122の電圧)からダイオードDDの電圧降下を差し引いた電圧より低くなったとき、ダイオードDDを通じて電圧入力線104に回路CC12の出力電圧VOD(出力コンデンサC122の電圧)が加わる。
 図12の回路において、或るタイミングに電圧源2の出力が停止したとする。そうすると、電源IC120の動作が停止し、当該タイミングを起点として回路CC12の出力電圧VODが低下し始める(例えば15Vから低下し始める)。しかし、一方で、出力コンデンサC122からダイオードDDを通じ電源IC110の入力端子111に電力が供給されるため、電圧VODが第2目標電圧(例えば15V)より小さな所定電圧(例えば4V)以上である期間においては、電源IC110の正常動作が維持されて制御回路15に正常な駆動電圧VOC(例えば3.3V)が供給され続ける。その後、電圧VODが十分に低下すると電圧VOCも低下するが、この段階では、ドライブ回路14の動作が停止していることが期待されるため、スイッチング回路13の誤動作発生が回避される。
 尚、電圧源2が太陽電池である場合において、日照の遮蔽等により電圧源2の出力が停止したとき、出力コンデンサC122の電圧をダイオードDDを通じて電圧入力線104に与えても、リーク電流程度の逆流が生じるのみで、問題になるような程度の逆流電流(出力コンデンサC122から電圧源2への電流)は生じないと考えられる。但し、端子101及び接続点103間に逆流電流を防止するための逆流防止ダイオードを追加しても良い。また、電圧源2及び接続点103間に設けられたスイッチ(不図示)がオフされた時や電圧源2としてのバッテリの取り外し時には、逆流の問題は生じない。
 <発明内容の考察>
 以下、本発明の内容について考察する。
 本発明の一側面に係るスイッチング装置(1、1A、1B)は、スイッチング素子を有するスイッチング回路(13)と、第1入力電圧(VINC)に基づき第1駆動電圧(VOC)を生成する第1駆動電圧生成回路(11)と、第2入力電圧(VIND)に基づき第2駆動電圧(VOD)を生成する第2駆動電圧生成回路(12)と、前記第1駆動電圧にて駆動して制御信号を生成する制御回路(15)と、前記第2駆動電圧にて駆動し、前記制御信号に基づくドライブ信号を前記スイッチング回路に供給することで前記スイッチング素子をオン又はオフするドライブ回路(14)と、前記制御回路の起動後に前記第2駆動電圧生成回路による前記第2駆動電圧の生成動作が許可されるよう、前記第2駆動電圧生成回路を制御する電圧生成制御部(16、16A)と、を備えている。
 制御回路の起動前に第2駆動電圧が生成されてドライブ回路が駆動を開始すると、スイッチング回路に誤動作(意図しないスイッチング素子のオン/オフ)が生じることがある。上記電圧生成制御部を設けることにより、スイッチング装置の起動時におけるスイッチング回路の誤動作が抑制される。
 具体的には例えば、前記電圧生成制御部(16、16A)は、前記第1駆動電圧(VOC)の電圧値、又は、前記第1駆動電圧に基づき前記制御回路(15)にて生成された起動信号に基づいて、前記第2駆動電圧生成回路(12)の動作制御を行うと良い。
 これにより、第2駆動電圧の生成動作を制御回路の起動後に許可するという機能を、簡素な構成で実現できる。
 そして例えば、前記電圧生成制御部(16、16A)は、前記第1駆動電圧(VOC)の電圧値が所定閾値以上となったとき、又は、前記制御回路から前記起動信号が供給されたとき、前記第2駆動電圧生成回路(12)による前記第2駆動電圧(VOD)の生成動作を許可すると良い。
 これにより、第2駆動電圧の生成動作を制御回路の起動後に許可するという機能を、確実に実現できる。
 また例えば、前記第1駆動電圧生成回路(11)は、前記第1入力電圧(VINC)又は前記第2駆動電圧生成回路(12)から出力される前記第2駆動電圧(VOD)を用いて、前記第1駆動電圧(VOC)を生成可能に形成されていても良い。
 これにより例えば、第1入力電圧の供給停止時等において、第2駆動電圧を用いて第1駆動電圧を生成するといったことが可能となる。結果、制御回路が正常動作していない状態でドライブ回路が駆動するといったことが回避され、第1入力電圧の供給停止時等におけるスイッチング回路の誤動作が抑制される。
 具体的には例えば、電圧入力線(104)と前記第2駆動電圧生成回路の出力電圧が加わる配線との間に設けられたダイオード(DD)を当該スイッチング装置は更に備え、前記第1駆動電圧生成回路(11、CC11)は、前記電圧入力線(104)への印加電圧に基づき前記第1駆動電圧(VOC)を生成し、前記電圧入力線(104)には、前記第1入力電圧及び前記第2駆動電圧生成回路の出力電圧に応じて、前記第1入力電圧が加わる又は前記ダイオードを通じて前記第2駆動電圧生成回路の出力電圧が加わると良い。
 これにより、第1入力電圧の供給停止時等において、特段の制御を必要とすることなく、ダイオードを通じ必要な電力が第1駆動電圧生成回路に供給され、第1入力電圧の供給停止時等におけるスイッチング回路の誤動作が抑制される。
 尚、スイッチング装置(1、1A、1B)は、スイッチング回路13に接続されたスイッチング制御装置を内包していると言える。スイッチング制御装置は、スイッチング装置(1、1A、1B)からスイッチング回路13を除外したものに相当する。
 本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
  1、1A、1B スイッチング装置
 11 制御回路用駆動電圧生成回路
 12 ドライブ回路用駆動電圧生成回路
 13 スイッチング回路
 14 ドライブ回路
 15 制御回路
 16、16A 電圧生成制御部
 DD ダイオード

Claims (5)

  1.  スイッチング素子を有するスイッチング回路と、
     第1入力電圧に基づき第1駆動電圧を生成する第1駆動電圧生成回路と、
     第2入力電圧に基づき第2駆動電圧を生成する第2駆動電圧生成回路と、
     前記第1駆動電圧にて駆動して制御信号を生成する制御回路と、
     前記第2駆動電圧にて駆動し、前記制御信号に基づくドライブ信号を前記スイッチング回路に供給することで前記スイッチング素子をオン又はオフするドライブ回路と、
     前記制御回路の起動後に前記第2駆動電圧生成回路による前記第2駆動電圧の生成動作が許可されるよう、前記第2駆動電圧生成回路を制御する電圧生成制御部と、を備えた
    ことを特徴とするスイッチング装置。
  2.  前記電圧生成制御部は、前記第1駆動電圧の電圧値、又は、前記第1駆動電圧に基づき前記制御回路にて生成された起動信号に基づいて、前記第2駆動電圧生成回路の動作制御を行う
    ことを特徴とする請求項1に記載のスイッチング装置。
  3.  前記電圧生成制御部は、前記第1駆動電圧の電圧値が所定閾値以上となったとき、又は、前記制御回路から前記起動信号が供給されたとき、前記第2駆動電圧生成回路による前記第2駆動電圧の生成動作を許可する
    ことを特徴とする請求項2に記載のスイッチング装置。
  4.  前記第1駆動電圧生成回路は、前記第1入力電圧又は前記第2駆動電圧生成回路から出力される前記第2駆動電圧を用いて、前記第1駆動電圧を生成可能に形成されている
    ことを特徴とする請求項1乃至3の何れかに記載のスイッチング装置。
  5.  電圧入力線と前記第2駆動電圧生成回路の出力電圧が加わる配線との間に設けられたダイオードを更に備え、
     前記第1駆動電圧生成回路は、前記電圧入力線への印加電圧に基づき前記第1駆動電圧を生成し、
     前記電圧入力線には、前記第1入力電圧及び前記第2駆動電圧生成回路の出力電圧に応じて、前記第1入力電圧が加わる又は前記ダイオードを通じて前記第2駆動電圧生成回路の出力電圧が加わる
    ことを特徴とする請求項4に記載のスイッチング装置。
PCT/JP2014/057991 2013-07-09 2014-03-24 スイッチング装置 WO2015004953A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015526184A JP6110490B2 (ja) 2013-07-09 2014-03-24 スイッチング装置
US14/904,051 US9660513B2 (en) 2013-07-09 2014-03-24 Switching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013143143 2013-07-09
JP2013-143143 2013-07-09

Publications (1)

Publication Number Publication Date
WO2015004953A1 true WO2015004953A1 (ja) 2015-01-15

Family

ID=52279652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057991 WO2015004953A1 (ja) 2013-07-09 2014-03-24 スイッチング装置

Country Status (3)

Country Link
US (1) US9660513B2 (ja)
JP (1) JP6110490B2 (ja)
WO (1) WO2015004953A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525491A (ja) * 2020-01-26 2022-05-17 上海韋孜美電子科技有限公司 Dc-dcコンバータ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2911298A1 (en) * 2014-02-25 2015-08-26 ABB Oy Gate drive circuit with a voltage stabilizer and a method
US10630290B2 (en) * 2017-09-27 2020-04-21 Apple Inc. Low leakage power switch
US10523194B2 (en) * 2017-09-27 2019-12-31 Apple Inc. Low leakage power switch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222490A (ja) * 1994-02-02 1995-08-18 Matsushita Electric Ind Co Ltd 電動機制御機器の電源
JP2007151322A (ja) * 2005-11-29 2007-06-14 Mitsumi Electric Co Ltd 電源回路およびdc−dcコンバータ
JP2012050216A (ja) * 2010-08-26 2012-03-08 Mitsumi Electric Co Ltd 多出力電源装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI446713B (zh) * 2011-03-11 2014-07-21 Richtek Technology Corp 改良抗雜訊的浮接閘驅動器電路結構及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222490A (ja) * 1994-02-02 1995-08-18 Matsushita Electric Ind Co Ltd 電動機制御機器の電源
JP2007151322A (ja) * 2005-11-29 2007-06-14 Mitsumi Electric Co Ltd 電源回路およびdc−dcコンバータ
JP2012050216A (ja) * 2010-08-26 2012-03-08 Mitsumi Electric Co Ltd 多出力電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525491A (ja) * 2020-01-26 2022-05-17 上海韋孜美電子科技有限公司 Dc-dcコンバータ

Also Published As

Publication number Publication date
JP6110490B2 (ja) 2017-04-05
US20160172960A1 (en) 2016-06-16
US9660513B2 (en) 2017-05-23
JPWO2015004953A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US8994411B2 (en) System and method for bootstrapping a switch driver
US11251691B2 (en) Floating power supply for a driver circuit configured to drive a high-side switching transistor
US8754675B2 (en) System and method for driving a switch
US8964343B2 (en) Semiconductor device and switching regulator using the device
JP5443749B2 (ja) 昇圧型スイッチングレギュレータおよびその制御回路
JP5396446B2 (ja) 車載用電源装置
US20120182049A1 (en) System and Method for Driving a Switch Transistor
US8310281B2 (en) System and method for driving a cascode switch
JP2006288062A (ja) Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法
JP6110490B2 (ja) スイッチング装置
JP2010200554A (ja) Dc−dcコンバータ
JP2007110833A (ja) 昇圧回路、昇圧回路を使用した定電圧回路及び昇圧回路を使用した定電流回路
WO2006016516A1 (ja) 電源装置
JP2014023272A (ja) スイッチング電源回路
JP2018074666A (ja) 電力変換装置
JP2008035633A (ja) インバータ装置
JP2016116151A (ja) 半導体装置および電流制限方法
JP5394975B2 (ja) スイッチングトランジスタの制御回路およびそれを用いた電力変換装置
JP2015089268A (ja) 駆動回路
JP2009095214A (ja) Dc−dcコンバータ回路
CN107885154B (zh) 可编程逻辑控制器
US11990826B2 (en) Power electronics device and method for supplying electrical voltage to a driver circuit of a power semiconductor switch
JP5209273B2 (ja) 電源装置及びこれを備えた電子機器
CN109660138B (zh) 一种有源全桥整流器
JP5067430B2 (ja) コンバータ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526184

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904051

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822874

Country of ref document: EP

Kind code of ref document: A1