WO2015004867A1 - Semiconductor device for detecting radiation - Google Patents

Semiconductor device for detecting radiation Download PDF

Info

Publication number
WO2015004867A1
WO2015004867A1 PCT/JP2014/003355 JP2014003355W WO2015004867A1 WO 2015004867 A1 WO2015004867 A1 WO 2015004867A1 JP 2014003355 W JP2014003355 W JP 2014003355W WO 2015004867 A1 WO2015004867 A1 WO 2015004867A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
radiation detection
heat dissipation
semiconductor device
Prior art date
Application number
PCT/JP2014/003355
Other languages
French (fr)
Japanese (ja)
Inventor
亮一 増田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015004867A1 publication Critical patent/WO2015004867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/14652Multispectral infrared imagers, having a stacked pixel-element structure, e.g. npn, npnpn or MQW structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • a radiation detection element and a readout circuit thereof are formed on the same SOI (Silicon ON Insulator) substrate with an insulating film therebetween, and an active element such as a MOS transistor, a resistor, a capacitor, or the like constituting the readout circuit is formed.
  • SOI Silicon ON Insulator
  • an active element such as a MOS transistor, a resistor, a capacitor, or the like constituting the readout circuit is formed.
  • the present invention relates to a semiconductor device for radiation detection equipped with a passive element.
  • Conventional radiation detection elements are for detecting radiation and are used in fields such as nuclear medicine, nuclear power, astronomy, and cosmic ray physics.
  • the radiation includes alpha rays, beta rays, gamma rays, X rays, neutron rays, charged particle rays, and the like.
  • the currently used pixel type radiation detector employs a structure in which the sensor part and the readout circuit part are made as separate chips and mechanically connected by metal bumps. For this reason, this type of pixel-type radiation detector is generally called a hybrid-type pixel detector.
  • One of the problems with this hybrid pixel detector is the connection between the sensor section and the readout circuit section.
  • manufacturing cost and connection reliability are limited, and the size of the metal bump is generally limited to 50 ⁇ m.
  • radiation detection such as S / N and operation speed is affected by the parasitic capacitance between the metal bump and the wiring to the metal bump. The performance as a container is limited.
  • a conventional general pixel detector is connected to a readout circuit chip separated from a radiation detection element chip by bump bonding with solder, lead, indium, or the like.
  • the individual bumps are responsible for the electrical connection between the pixels of a single radiation detection element and the corresponding readout circuit.
  • it is necessary to perform bonding with a very large number of bumps, which increases the thickness and increases the mounting cost.
  • the SOI substrate is a laminated structure in which a thin single crystal silicon layer is formed on a silicon substrate via an insulator layer. From the top of the physical structure, the single crystal silicon on the top of the insulator layer is a thin silicon layer. It is a substrate having a laminated structure of a single crystal silicon layer under an insulator layer which is a layer / insulator layer (silicon oxide film) / thick silicon layer.
  • an electronic circuit is formed on a single crystal silicon layer above the insulator layer, and the single crystal silicon layer below the insulator layer is a simple physical structure (supporting substrate).
  • a radiation detecting element such as a photodiode or an avalanche photodiode is formed in the single-crystal silicon layer portion of the lower thick silicon layer, so that a depletion layer can be formed in the single-crystal silicon layer portion of the lower thick silicon layer.
  • a via hole made of metal wiring is formed in the silicon oxide film (insulator layer) in the center of the structure using a semiconductor process technology, and an electronic circuit configured as a thin silicon layer (single crystal silicon layer) above the insulator layer By connecting the radiation detection element via the via hole, it is possible to realize the integral formation of the radiation detection element and the readout circuit for reading the signal charge detected thereby.
  • the advantage of this method is that bump bonding is not required. Since no mechanical connection such as bump bonding is required for the connection between the sensor and the readout circuit, a smaller pixel size can be realized. In addition, since parasitic capacitance due to bumps is eliminated, higher speed and lower power consumption can be expected. Furthermore, there is a possibility that cost can be reduced by integration on the same substrate. In addition to these, the isolation of the silicon oxide film at the center of the SOI structure between adjacent elements improves the isolation of the elements, eliminates latch-up, and allows the distance between the elements to be reduced. Since the circuit area can be reduced, a CMOS circuit having a complicated signal processing function can be mounted on each pixel. Note that the thickness of the single crystal silicon layer above the insulator layer is preferably about 10 to 100 nm which enables complete depletion of the MOS transistor.
  • the SOI has a configuration in which an insulator layer (silicon oxide film) is sandwiched from above and below by a single crystal silicon wafer, From the top, it is composed of thin single crystal silicon layer / insulator layer / thick single crystal silicon layer.
  • circuit elements such as MOS transistors, resistors, and capacitors are formed on the single crystal silicon layer above the insulator layer, and radiation detection such as photodiodes and avalanche photodiodes are formed on the single crystal silicon layer below the insulator layer. An element is formed.
  • the circuit element formed in the thin single crystal silicon layer has a structure in which the periphery is covered with an insulator such as a silicon oxide film. For this reason, Joule heat generated in the channel formation region of the MOS transistor is dissipated through the insulator layer or the gate insulator, but with respect to the thermal conductivity (about 150 W / mK) of the single crystal silicon. Since the thermal conductivity of silicon oxide film (approximately 1.4 W / mK) and the thermal conductivity of TEOS (tetraethylorthosilicate) used as an interlayer insulating film are as low as 1.2 W / mK, the heat dissipation efficiency of SOI is generally bulky. It is said that it is worse than silicon.
  • FIG. 11 is a cross-sectional view showing a configuration example of a main part of an SOI device disclosed in Patent Document 1.
  • a conventional SOI device 100 has an SOI structure in which a silicon layer (SOI layer) 103 is formed on a silicon support substrate 101 via a silicon oxide film 102 as a first insulating film. .
  • a transistor T1 is formed in the SOI layer 103.
  • a silicon oxide film 104 is formed on the SOI layer 103 to insulate and isolate the semiconductor elements formed thereon.
  • a silicon oxide film 109 as a second insulating film is formed on the SOI layer 103, and aluminum (Al) wirings 105 a and 105 b are formed on the silicon oxide film 109.
  • the wiring 105a that is the first wiring is connected to the source of the transistor T1 via the contact plug 106a that is the first plug of tungsten (W).
  • the wiring 105b is connected to the drain of the transistor T1 through a tungsten contact plug 106b.
  • the transistor T1 is an nMOS transistor, and the wiring 105a is a wiring connected to the ground (Gnd).
  • a metal back metal 107 is formed as a back film.
  • the back metal 107 is connected to the wiring 105a through a heat dissipation plug 108 which is a second tungsten plug.
  • the heat generated in the transistor T1 formed in the SOI layer 103 is transmitted to the heat dissipation plug 108 via the contact plug 106a and the wiring 105a, and is further dissipated from the heat dissipation plug 108 to the back metal 107. Since the back metal 107 has a higher thermal conductivity than the support substrate 101, a higher heat dissipation effect can be obtained than when heat generated in the transistor T1 is released to the support substrate 101. Therefore, the self-heating effect in the SOI device can be suppressed.
  • the back surface metal 107 is not in contact with the lower surface of the transistor T1 formed in the SOI layer 103. That is, the silicon oxide film 102 exists between the transistor T1 and the back metal 107. Therefore, even if the transistor T1 has a source / drain diffusion layer that reaches the lower surface of the SOI layer 103, a short circuit between the source and drain does not occur via the back metal 107.
  • FIG. 12 is a cross-sectional view showing a configuration example of a main part of a semiconductor integrated circuit disclosed in Patent Document 2.
  • a conventional semiconductor integrated circuit 200 includes a plurality of fully depleted SOIs on an SOI substrate 204 in which a buried oxide film 202 is formed on a silicon substrate 201 and a single crystal silicon layer 203 is further formed thereon.
  • a transistor is formed.
  • Each fully depleted MOS transistor is electrically isolated by an isolation oxide film 205 formed by, for example, STI (Shallow Trench Isolation) technology in which a shallow trench is filled with an insulating material to isolate the element.
  • the fully depleted MOS transistor has two source or drain regions 206 and 206 formed on the single crystal silicon layer 203 of the SOI substrate 204 at a predetermined interval, and a gate on the single crystal silicon layer 203 between the source or drain regions 206 and 206.
  • a gate electrode 208 made of, for example, a polysilicon film formed through an oxide film 207 is provided.
  • the fully depleted SOI transistors in regions A and B have a common gate electrode 208.
  • metal wiring layers M1 to M6 are formed in order from the lower layer side.
  • the gate electrode 208 is electrically connected to the lowermost metal wiring layer M1 through the contact layer 210, and further through the via layer 211, the metal It is electrically connected to the wiring layer M2.
  • connection holes and the metal wiring layer constituting the multilayer wiring structure are made of the same conductive material, and are different from the signal transmission connection holes and the metal wiring layer (see region C).
  • Heat conduction portions 212, 213, and 214 that extend to the upper layer side in the path are provided (see regions A, E, and F).
  • the heat generated by the gate operation of the fully depleted SOI transistor is conducted to the contact layer 210, the metal wiring layer M 1, the via layer 211, and the metal wiring layer M 2, and then reaches the maximum through the heat conduction unit 212. Conduction is performed up to the upper metal wiring layer M6, and heat is radiated from the upper surface side of the insulating layer 209. Thereby, the temperature rise of the semiconductor integrated circuit 200 can be reduced.
  • a thin single crystal silicon layer is formed on a thick single crystal silicon layer as a support substrate via an insulator layer made of a silicon oxide film.
  • a semiconductor element such as a MOS transistor formed in a thin single crystal silicon layer has a structure in which the periphery is covered with a silicon oxide film.
  • This silicon oxide film has extremely low thermal conductivity as compared with silicon constituting a thick single crystal silicon layer as a supporting substrate, aluminum, copper used for metal wiring, and the like.
  • the heat generated in the MOS transistor formed in the thin single crystal silicon layer is difficult to escape to the outside, and the temperature of the MOS transistor rises and flows through the current. (Self-heating) will occur.
  • a heat insulating trench and a contact are formed in contact with a thin single crystal silicon layer (SOI layer 103) or a thick single crystal silicon layer (support substrate 101).
  • SOI layer 103 thin single crystal silicon layer
  • support substrate 101 a thick single crystal silicon layer
  • the gate electrode 208 of the fully depleted SOI transistor is connected to the lowermost metal wiring layer M1 through the contact layer 210 and further connected to the metal wiring layer M2 through the via layer 211. Yes.
  • the heat of the gate electrode 208 is conducted from the metal wiring layer M2 to the uppermost metal wiring layer M6 of the heat conducting portion 212 extending to the upper layer side, and is radiated from the upper surface side of the insulating layer 209.
  • Patent Document 1 a hole reaching the thick single crystal silicon layer as the supporting substrate 101 from the thin single crystal silicon layer (SOI layer 103) through the silicon oxide film 104 is formed, and the heat dissipation plug 108 is formed.
  • SOI layer 103 thin single crystal silicon layer
  • the heat dissipation plug 108 is formed.
  • the support substrate is usually used. Since a large number of radiation detection elements consisting of photodiodes and avalanche photodiodes are formed on a thick single crystal silicon layer that is used only as Yes.
  • the present invention solves the above-mentioned conventional problems, and by providing a heat conduction part made of an insulating high heat dissipation material film, specifically a diamond-like carbon film, which can obtain a sufficient heat dissipation effect, heat dissipation efficiency is improved.
  • An object of the present invention is to provide a semiconductor device for radiation detection which has a high heat dissipation structure and can obtain high reliability by suppressing temperature rise.
  • the semiconductor device for radiation detection according to the present invention is an SOI (Silicon ON) in which a first semiconductor layer or a semiconductor substrate is disposed on the lower surface of an insulator layer, and a second semiconductor layer is disposed on the upper surface of the insulator layer.
  • SOI Silicon ON
  • a radiation detection element is formed on the first semiconductor layer or the semiconductor substrate
  • a peripheral circuit element is formed on the second semiconductor layer and its peripheral part, and above the peripheral circuit element
  • a heat dissipation path of a different system different from a signal transmission path connected to at least one of the wiring structures and / or at least one of an upper side and a lower side from the signal transmission path Heat conductive portion of the heat radiation that is connected extends is one which is arranged, the objects can be achieved.
  • the peripheral circuit element in the semiconductor device for radiation detection has a readout circuit element including at least a MOS transistor for processing a signal charge detected by the radiation detection element, and the heat conducting portion for heat dissipation.
  • a conductive portion is disposed.
  • the thermal conductivity of the heat conducting part in the semiconductor device for radiation detection of the present invention is higher than the thermal conductivity of silicon or silicon oxide film.
  • the heat conductivity of the heat conducting part in the semiconductor device for radiation detection of the present invention is 1.2 W / (mK) or more.
  • the heat conducting part in the semiconductor device for radiation detection of the present invention is composed of an insulating high heat dissipation material film.
  • the insulating high heat dissipation material film in the semiconductor device for radiation detection of the present invention is a diamond-like carbon film.
  • the diamond-like carbon film in the semiconductor device for radiation detection of the present invention has an atomic ratio of hydrogen contained in the range from 35% to 40% in order to improve the insulation performance.
  • an opening is formed in the insulating film on the heat conducting portion in the radiation detecting semiconductor device of the present invention.
  • the heat conducting portion includes a gate electrode, a source region, a drain region, and an element isolation region for electrically isolating the MOS transistor element.
  • a signal transmission connection electrode connected to at least one of them and / or a heat radiation path of a different system different from the metal wiring connected to the connection electrode and / or the signal transmission path is connected to extend upward.
  • the peripheral circuit unit includes at least one of a resistor, an inductor, and a capacitor, and the heat conducting unit is connected to at least one of the terminal electrodes.
  • the signal transmission connection electrode and / or the metal wiring connected thereto are connected to another heat dissipation path or / and extending upward from the signal transmission path.
  • the heat conducting section in the semiconductor device for radiation detection of the present invention is connected for each functional block via a connection electrode for signal transmission and / or a metal wiring connected to the connection electrode.
  • the heat conducting unit has a heat dissipation capacity corresponding to the heat capacity of the MOS transistor in the functional block.
  • the heat conducting portion in the semiconductor device for radiation detection according to the present invention is disposed on the entire surface of the chip or a partial surface of the chip.
  • the MOS transistor in the semiconductor device for radiation detection of the present invention is a partially depleted SOI transistor.
  • the radiation detection element and the readout circuit are integrally formed on the SOI structure in the radiation detection semiconductor device of the present invention.
  • the radiation detection semiconductor device in which the radiation detection element and the readout circuit are integrally formed on an SOI structure in the radiation detection semiconductor device of the present invention, wherein the radiation detection element has the SOI structure. It is comprised so that a radiation can be detected with respect to the direction in which a radiation injects from any one of the surface and back surface.
  • the present invention has an SOI (Silicon ON Insulator) structure in which a first semiconductor layer or a semiconductor substrate is disposed on the lower surface of the insulator layer, and a second semiconductor layer is disposed on the upper surface of the insulator layer.
  • the radiation detection element is formed on the first semiconductor layer or the semiconductor substrate
  • the peripheral circuit element is formed on the second semiconductor layer and its peripheral portion
  • the wiring structure connected to the peripheral circuit element is formed above the peripheral circuit element.
  • signal transmission connected to at least one of the first semiconductor layer or the semiconductor substrate, the radiation detecting element, the second semiconductor layer, the peripheral circuit element, and the wiring structure.
  • a heat conduction part for heat dissipation is provided which extends from and is connected to at least one of the upper side and the lower side from a different heat dissipation path and / or signal transmission path different from the path. It is.
  • a heat conduction part consisting of an insulating high heat dissipation material film, specifically a diamond-like carbon film, which provides a sufficient heat dissipation effect, it has a heat dissipation structure with high heat dissipation efficiency and suppresses temperature rise Thus, high reliability can be obtained.
  • a heat conducting portion made of an insulating high heat dissipation material film, specifically a diamond-like carbon film, which can obtain a heat dissipation effect, it has a heat dissipation structure with high heat dissipation efficiency.
  • high reliability can be obtained by suppressing the temperature rise.
  • FIG. 1 It is sectional drawing which shows the principal part structural example in the semiconductor device for radiation detection of Embodiment 1 of this invention. It is a longitudinal cross-sectional view which shows typically the example of a principal part structure of a photodiode as a single example of the radiation detection element of FIG. It is a longitudinal cross-sectional view which shows typically the example of a principal part structure of the avalanche photodiode as another single example of the radiation detection element of FIG. It is the figure which showed the relationship of the multiplication factor with respect to the bias voltage (V) of an avalanche photodiode using the ambient temperature of an avalanche photodiode as a parameter.
  • V bias voltage
  • (A) And (b) is sectional drawing which shows each heat dissipation structural example of the source region of a MOS transistor in the read-out circuit of the semiconductor device for radiation detection of Embodiment 5 of this invention
  • (c) is the MOS It is sectional drawing which shows each heat dissipation structural example of the element isolation area
  • FIG. 10 is a cross-sectional view showing an example of a configuration of a main part of an SOI device disclosed in Patent Document 1.
  • FIG. FIG. 10 is a cross-sectional view showing a configuration example of a main part of a semiconductor integrated circuit disclosed in Patent Document 2.
  • FIG. 1 is a cross-sectional view showing a configuration example of a main part of a semiconductor device for radiation detection according to Embodiment 1 of the present invention.
  • a radiation detecting semiconductor device 20 having an SOI structure includes an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure.
  • a radiation detection element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure.
  • the thin single crystal silicon layer 4 having the SOI structure is connected to the metal wiring 9 (by the contact electrodes 6 and 10 as connection electrodes made of tungsten W or the like having good embedding properties formed in the insulator layer 2 and the interlayer insulating layer 7.
  • a readout circuit 8 is formed as a peripheral circuit for reading out signal charges detected by the radiation detection element 5 to the thin single crystal silicon layer 4 side through the metal wiring) and processing such as amplification.
  • the read circuit 8 has at least one of an active element such as a MOS transistor and a passive element such as a resistor, a capacitor, and an inductor as a read circuit element as a peripheral circuit element.
  • the readout circuit 8 is a circuit that reads out signal charges detected by the radiation detection element 5 from the contact electrode 6 through the metal wiring 9 and further through the contact electrode 10 and performs processing such as amplification.
  • the read circuit 8 has a CMOS circuit constituted by a series circuit of a P channel MOS transistor and an N channel MOS transistor.
  • This SOI structure has a structure in which an insulator layer 2 made of a silicon oxide film or the like is sandwiched from above and below by a single crystal silicon wafer. From the bottom of the physical structure, a thick single crystal silicon layer 3 / insulator layer 2 / It is composed of a thin single crystal silicon layer 4.
  • a semiconductor device such as a MOS transistor as a peripheral circuit element constituting a peripheral circuit such as a readout circuit 8 and the like in the thin single crystal silicon layer 4 on the upper surface of the insulator layer 2 and the interlayer insulating layer 7 thereon are provided.
  • Thin contact electrodes 10 and 10A having a via diameter of about 0.1 to 0.3 ⁇ m made of metal wiring 9 (metal wiring) such as aluminum Al and the like, and tungsten W having good embedding properties are formed to connect the respective parts.
  • the radiation detection element 5 is formed on the single crystal silicon layer 3 on the lower surface side of the insulator layer 2.
  • the single crystal silicon layer 3 on the lower surface side of the insulator layer 2 has a simple physical structure.
  • a depletion layer is formed in the lower single crystal silicon layer 3 by forming a radiation detection element 5 such as a photodiode or an avalanche photo diode in the thick single crystal silicon layer 3 on the lower surface side of the insulator layer 2. Then, a via hole is formed in the insulator layer 2 such as a silicon oxide film layer in the center of the SOI structure by using a semiconductor process technique, and tungsten W having a good embedding property is buried in the via hole, thereby connecting electrodes (contact electrodes 6, 10, 10A). ).
  • a semiconductor circuit element formed on the thin single crystal silicon layer 4 on the upper surface side of the insulator layer 2 and a radiation detection element 5 formed on the lower single crystal silicon layer 3 are connected to the contact electrode 6, the metal wiring 9, and By connecting to each other via the contact electrode 10, the radiation detection element 5 and the readout circuit 8 are integrally formed on the same substrate.
  • the advantage of this method is that the radiation detection element 5 and the readout circuit 8 are integrally formed with the insulator layer 2 interposed therebetween, so that the radiation detection element 5 and the peripheral circuit including the readout circuit 8 are mechanically connected. Therefore, bump bonding with a large size is not required. As described above, since the connection between the radiation detection element 5 (sensor) and the readout circuit 8 does not require a large electrical and mechanical terminal connection such as bump bonding, a smaller pixel size is realized. be able to. Thus, by reducing the circuit area, it is possible to mount a CMOS circuit having a complicated signal processing function in each pixel. The CMOS circuit can be formed in a peripheral circuit including the readout circuit 8.
  • the bump bonding is not necessary, the parasitic capacitance due to the bump electrode is eliminated, so that it is possible to further speed up the signal reading from the radiation detecting element 5 by the reading circuit 8 and to reduce the power consumption. Furthermore, the cost may be reduced by integrating the radiation detection element 5 and the readout circuit 8 (in the same chip) instead of a separate chip.
  • the presence of the insulating film 2 such as a silicon oxide film at the center of the SOI structure between the adjacent elements of the radiation detection element 5 and the readout circuit 8 improves the separation between the upper and lower elements, and latches between the elements. Further, the distance between the radiation detection element 5 and the readout circuit 8 can be reduced.
  • the radiation detection element 5 formed on the single crystal silicon layer 3 below the insulator layer 2 performs, for example, when the radiation is incident from the back surface of the SOI substrate, performs photoelectric conversion directly from the radiation to the electrical signal by the photodiode, and performs the SOI substrate.
  • a scintillator made of a composite material that can convert radiation into light (visible light, ultraviolet light, and infrared light) is connected to the chip surface, and an electrical signal is output from the light with a photodiode or avalanche photodiode. Indirect photoelectric conversion may be performed.
  • the light shielding metal 11 is formed on the surface side of the interlayer insulating film 7 directly above the read circuit 8 so as to suppress unnecessary light from entering the read circuit 8 from the outside. Good.
  • a scintillator may be connected to the back of the chip to indirectly perform photoelectric conversion from light to an electrical signal.
  • a back electrode 14 is formed on the back surface of the lower single crystal silicon layer 3.
  • the radiation detection element 5 includes the front and back surfaces of the SOI structure. The radiation can be detected in the direction in which the radiation enters from any one of the surfaces.
  • FIG. 2 is a longitudinal sectional view schematically showing an example of the configuration of the main part of a photodiode as a single case of the radiation detection element 5 of FIG.
  • a photodiode 51 has a PIN diode structure, and a P-type semiconductor layer 51b and an N-type semiconductor layer 51c are arranged on the upper and lower surfaces of the intrinsic semiconductor substrate 51a.
  • a front surface electrode 51d is disposed with the central portion of the P-type semiconductor layer 51b open, and a back surface electrode 51e is disposed on the N-type semiconductor layer 51c.
  • the central portion of the P-type semiconductor layer 51b is opened so that light can enter, and no electrode is formed on the light receiving surface.
  • FIG. 3 is a longitudinal sectional view schematically showing an example of the configuration of the main part of an avalanche photodiode as another single case of the radiation detection element 5 of FIG.
  • an avalanche photodiode 52 has an n ⁇ region 52b provided on the surface of a semiconductor substrate 52a, and a p-type region 52c provided in a predetermined range from the surface side to the center in the n ⁇ region 52b.
  • a p-region 52d is provided so as to surround and cover the periphery.
  • a protective film 52e is formed on the surface side of n-region 52b, P-type region 52c, and p-region 52d.
  • a light shielding metal 52f is formed on the protective film 52e so as to open on the P-type region 52c.
  • the P-side electrode 52g is provided so as to be connected to the central portion of the P-type region 52c through the contact layer 52h, and the N-side electrode 52i is provided on the back surface of the semiconductor substrate 52a.
  • the peripheral circuit element formed in the thin single crystal silicon layer 4 is covered with an insulator such as a silicon oxide film.
  • the Joule heat generated in the channel formation region of the MOS transistor is dissipated through the insulator layer 2 and the gate insulating film, but the thermal conductivity of the single crystal silicon (about 150 W / mK), the thermal conductivity (about 1.4 W / mK) of the silicon oxide film is remarkably small.
  • the heat dissipation efficiency is considered to be extremely poor compared to bulk silicon. For this reason, in the SOI structure radiation detection semiconductor device 20, heat generated in the MOS transistor, the radiation detection element 5, and the like constituting the readout circuit 8 causes so-called self-heating (self-heating) that is difficult to escape to the outside. .
  • each upper side of the thick single crystal silicon layer 3, the radiation detection element 5, and the peripheral circuit element including the MOS transistor comprising a signal transmission metal wiring layer (first layer and second layer metal wiring 9) and connection holes (contact electrodes 10 connecting them) constituting the wiring structure of Heat radiation can be promoted by providing the heat conductive portion 11 on the upper surface of the interlayer insulating film 7 connected via the contact electrodes 10A extending from the second-layer metal wiring 9 to the upper layer side.
  • the signal transmission metal wiring layer (the first and second metal wirings 9) and the connection hole (the contact electrode 10 connecting them) constituting the wiring structure above the diffusion layer 13 are insulated from each other.
  • a metal wiring layer (1) that forms a wiring structure extending to the upper side of the thick single crystal silicon layer 3 and the thin single crystal silicon layer 4 in a different heat dissipation path different from the path to the terminal 12 on the upper surface of the film 7 By providing the heat conduction part 11 on the upper surface of the interlayer insulating film 7 from the metal wiring 9 of the second and second layers) and the connection holes (contact electrodes 10A connecting them), it becomes possible to promote heat dissipation. ing.
  • the diffusion layer 13 is provided on the surface of the thick single crystal silicon layer 3, one end of the contact electrode 10 is connected to the surface of the diffusion layer 13, and the other end penetrates the insulator layer 2 and the single crystal silicon layer 4.
  • the first layer metal wiring 9 Connected to the first layer metal wiring 9, and the first layer metal wiring 9 extends upward through another contact electrode 10 and further through the second layer metal wiring 9 and is connected to the upper surface of the interlayer insulating film 7. Electrically connected to the terminal 12, a potential fixing voltage is applied from the terminal 12 to the diffusion layer 13.
  • one end of a heat dissipation contact electrode 10A is connected to the surface portion of the lower thick single crystal silicon layer 3, and the other end is connected to the first layer of metal wiring 9 and another layer of heat dissipation via another contact electrode 10A.
  • One end of a heat dissipation contact electrode 10A is connected to the surface portion of the upper single crystal silicon layer 4 and the other end is connected to the first metal wiring 9 and another contact for heat dissipation. It is connected to the second level metal wiring 9 through the electrode 10A.
  • Heat radiation can be promoted by connecting to the heat conduction portion 11 on the upper surface of the interlayer insulating film 7 through each contact electrode 10A extending from the second-layer metal wiring 9 to the upper layer side.
  • the thermal conductivity of the heat conducting part 11 should be higher than the thermal conductivity of silicon or silicon oxide film, and preferably has an insulating property. By doing in this way, heat dissipation efficiency can be improved. Further, the thermal conductivity of the heat conducting unit 11 of the first embodiment is desirably 1.2 W / (mK) or more, and more desirably 1.5 W / (mK) or more. By doing in this way, heat dissipation efficiency can be improved further.
  • the heat conducting part 11 is composed of a diamond-like carbon film
  • other materials may be used.
  • the thermal conductivity of the diamond-like carbon film is 30 W / (mK) to 500 W / (mK)
  • the heat dissipation efficiency can be further improved.
  • Diamond-like carbon is characterized by a high heat release rate because heat is released by lattice vibration during heat generation.
  • the heat conducting portion 11 is not limited to a diamond-like carbon single layer as long as it has a higher thermal conductivity than silicon or a silicon oxide film, and other thin films of different materials from the diamond-like carbon thin film. At least one layer may be provided, and the heat dissipation performance can be adjusted according to the application by changing the film thickness of each layer, the content ratio of the material constituting each film, and the distribution thereof.
  • the insulating high heat dissipation material film made of diamond-like carbon preferably has an atomic ratio of hydrogen of 35% or more and 40% or less in consideration of insulation performance.
  • This diamond-like carbon is an insulator, and even on the same path connected to the metal wiring layer for signal transmission (the first and second metal wirings 9) and the connection hole (the contact electrode 10 connecting them). Does not adversely affect signal transmission such as short circuit. For this reason, the signal wiring (first-layer and second-layer metal wiring 9) may be used as it is, and in this case, an increase in layout area can be suppressed.
  • the metal wiring layer may be a dummy metal that is not used as an electrical wiring, and is a dedicated metal wiring layer provided for connection to the heat conducting section 11 as shown in FIG. May be.
  • the semiconductor device 20 for radiation detection a large number of radiation detection elements 5 made of photodiodes and avalanche photodiodes are formed in the thick single crystal silicon layer 3 that is usually used only as a support substrate. Heat generated by the radiation detection element 5 in addition to the MOS transistor of the readout circuit 8 cannot be ignored. The same problem occurs in the photodiode, but particularly when an avalanche photodiode having a high gain is used, the multiplication factor with respect to the bias voltage of the avalanche photodiode greatly fluctuates due to the influence of temperature rise due to heat generation. This is shown in FIG.
  • FIG. 4 is a diagram showing the relationship of the multiplication factor with respect to the bias voltage (V) of the avalanche photodiode using the ambient temperature of the avalanche photodiode as a parameter.
  • the light reception intensity of the avalanche photodiode and the output level of the electric signal output from the avalanche photodiode are in a proportional relationship, and the multiplication factor determines the proportionality constant of the proportional relationship.
  • the avalanche photodiode can increase the multiplication factor by applying a high bias voltage such as 70 V or higher, and can obtain high light receiving sensitivity. Therefore, the avalanche photodiode can detect weak light and radiation.
  • the radiation detecting element 5 is suitable for the above.
  • avalanche photodiodes have the following problems.
  • the relationship between the bias voltage of the avalanche photodiode and the multiplication factor is as shown by a solid line T0 in FIG. 4 when the ambient temperature of the avalanche photodiode is 0 degrees Celsius, and the ambient temperature of the avalanche photodiode is 25 degrees Celsius.
  • the temperature is about 60 degrees Celsius
  • the relationship is as shown by a solid line T80 in FIG. 4.
  • the ambient temperature of the avalanche photodiode is 80 degrees Celsius
  • the relationship is as shown by a solid line T80 in FIG.
  • the multiplication factor with respect to the bias voltage set by the avalanche photodiode greatly varies. For this reason, if a constant bias voltage is applied to the avalanche photodiode without considering the variation in the ambient temperature, the multiplication factor of the avalanche photodiode varies due to the variation in the ambient temperature, and output from the avalanche photodiode. There arises a problem that the output level of the electric signal fluctuates.
  • the influence can be suppressed by adopting an insulating material higher than the thermal conductivity of silicon or silicon oxide film for the heat conducting portion 11.
  • the breakdown voltage necessary for passing a constant current hardly changes with time, and is effective for extending the device life.
  • the radiation detection element 5 the deterioration of element characteristics due to the temperature rise of the MOS transistor and the passive element formed in the thin single crystal silicon layer 4 is suppressed, which is effective in extending the element life.
  • the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2.
  • the radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion.
  • a heat conduction part 11 that is a heat-dissipating insulating high heat-dissipating material film that extends upward from a heat dissipation path or a signal transmission path of a different system different from the signal transmission path connected to one another is disposed. .
  • an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
  • Embodiment 2 In the first embodiment, the case where the heat radiation contact electrode 10A extending to the upper layer side is connected to the heat conduction portion 11 for heat radiation on the upper surface of the interlayer insulating film 7 has been described. In the second embodiment, thick single crystal silicon is used. A case will be described in which a heat radiating heat conducting portion 11 provided on the lower surface side of the thick single crystal silicon layer 3 is connected via a heat radiating contact electrode 10A extending through the layer 3 and extending downward.
  • FIG. 5 is a cross-sectional view showing a configuration example of a main part of the radiation detecting semiconductor device 20A according to the second embodiment of the present invention.
  • members having the same functions and effects as those in FIG. 5 members having the same functions and effects as those in FIG.
  • the radiation detection semiconductor device 20 ⁇ / b> A having the SOI structure according to the second embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure.
  • a radiation detection element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure.
  • the thin single-crystal silicon layer 4 having the SOI structure is exposed to radiation via the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2 and the interlayer insulating layer 7.
  • a readout circuit 8 is formed as a peripheral circuit for reading out signal charges detected by the detection element 5 to the thin single crystal silicon layer 4 side and processing such as amplification.
  • the heat conduction part 11 connected through the extending contact electrode 10A is provided widely on a part of the lower surface of the thick single crystal silicon layer 3 below the insulator layer 2 (the surface other than the back electrode 14) to promote heat dissipation. It is supposed to let you.
  • the thermal conductivity of the heat conducting portion 11 only needs to be higher than the thermal conductivity of silicon or silicon oxide film, and desirably has an insulating property. By doing in this way, heat dissipation efficiency can be improved further. Further, the thermal conductivity of the heat conducting unit 11 is desirably 1.2 W / (mK) or higher or 1.5 W / (mK) or higher. By doing in this way, heat dissipation efficiency can be improved further. Further, the heat conducting part 11 may be composed of a diamond-like carbon film. In particular, since the thermal conductivity of the diamond-like carbon film is about 30 W / (mK) to 500 W / (mK), the heat dissipation efficiency can be further improved.
  • the heat conduction part 11 is not limited to a diamond-like carbon single layer as long as it has a higher thermal conductivity than silicon or a silicon oxide film, but is not limited to a diamond-like carbon thin film and other thin films of different materials.
  • These layers may be provided with at least one layer, and the heat dissipation performance can be adjusted according to the application by changing the film thickness of each layer, the content ratio of the material constituting each film, and its distribution.
  • the insulating high heat dissipation material film made of diamond-like carbon preferably has an atomic ratio of hydrogen contained in the range of 35% to 40% in consideration of insulation performance.
  • Diamond-like carbon is an insulator and does not adversely affect signal transmission such as short circuit even if the same path as the signal transmission metal wiring layer (metal wiring 9) and connection holes (contact electrodes 6, 10) is used.
  • the wiring may be used as it is. In this case, an increase in layout area can be suppressed.
  • the metal wiring layer (metal wiring 9) may be a dummy metal that is not used as an electrical wiring.
  • the metal wiring layer (metal wiring 9) is a dedicated metal circuit provided for connection to the heat conducting unit 11. It may be a metal wiring layer (metal wiring 9).
  • the radiation detection semiconductor device 20A in order to form a large number of radiation detection elements 5 made of photodiodes and avalanche photodiodes in the thick single crystal silicon layer 3 that is normally used only as a support substrate, in addition to the MOS transistors, The heat generated by the radiation detection element 5 cannot be ignored. The same problem occurs in the photodiode. In particular, when an avalanche photodiode having a high gain is used, the multiplication factor with respect to the bias voltage of the avalanche photodiode varies as the radiation detection element 5 due to the influence of temperature rise due to heat generation. End up.
  • the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2.
  • the radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion.
  • the first semiconductor layer 3 (or the semiconductor substrate) and the second semiconductor layer 3
  • a heat conducting portion 11 which is an insulating high heat dissipating material film for heat radiation extending downward from a heat radiation path of a different system from the signal transmission path connected to the semiconductor layer 4 via the contact electrode 10A. Is arranged To have.
  • the connection distance from the heat generation source is shortened by connecting the heat conductive portion 11 which is an insulating high heat dissipation material film for heat dissipation to the lower side via the contact electrode 10A. It becomes good.
  • an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
  • a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
  • Embodiment 3 In the first embodiment, the case where the heat radiation contact electrode 10A extending to the upper layer side is connected to the heat conduction portion 11 for heat radiation on the upper surface of the interlayer insulating film 7 will be described. In the second embodiment, a thick single crystal silicon layer is used.
  • the heat dissipation contact electrode 10 ⁇ / b> A extending downward through 3 is connected to the heat dissipation thermal conduction portion 11 on the lower surface side of the thick single crystal silicon layer 3.
  • the heat dissipation contact electrode 10A extending to the upper side of the interlayer insulating film 7 is connected to the heat dissipation heat conducting portion 11 on the upper surface of the interlayer insulating film 7 and the heat dissipation contact electrode 10A extending downward through the thick single crystal silicon layer 3 is thickened.
  • a case where the single crystal silicon layer 3 is connected to the heat conducting portion 11 for heat radiation on the lower surface side will be described.
  • FIG. 6 is a cross-sectional view showing a configuration example of a main part of the radiation detecting semiconductor device 20B according to the third embodiment of the present invention.
  • members having the same functions and effects as those in FIG. 6 members having the same functions and effects as those in FIG.
  • the radiation detecting semiconductor device 20B having the SOI structure of the third embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure.
  • a radiation detection element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure.
  • the thin single crystal silicon layer 4 having the SOI structure is formed on the thin single crystal silicon layer 4 from the insulator layer 2 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2.
  • a readout circuit 8 is formed as a peripheral circuit for reading out the signal charges detected by the radiation detection element 5 through the crystalline silicon layer 4 and the interlayer insulating layer 7 thereabove and processing such as amplification.
  • the portions 11 are respectively formed on the lower surface side of the single crystal silicon layer 3 below the insulator layer 2 and on the interlayer insulating layer 7 to promote heat dissipation.
  • the thermal conductivity of the heat conducting portion 11 only needs to be higher than the thermal conductivity of silicon or silicon oxide film, and desirably has an insulating property. By doing in this way, heat dissipation efficiency can be improved further. Moreover, it is desirable that the heat conductivity of the heat conducting portion 11 is 1.2 W / (mK) or more or 1.5 W / (mK) or more. By doing in this way, heat dissipation efficiency can be improved further. Further, the heat conducting part 11 may be composed of a diamond-like carbon film. In particular, since the thermal conductivity of the diamond-like carbon film is about 30 W / (mK) to 500 W / (mK), the heat dissipation efficiency can be further improved.
  • diamond-like carbon (DLC) is amorphous, its thermal conduction is not anisotropic and its thermal conduction is isotropic. For example, the heat transfer rate is in the crystal orientation like graphite. Regardless, heat can be dissipated isotropically.
  • Diamond-like carbon (DLC) has a low coefficient of linear thermal expansion of 3 ⁇ 10 ⁇ -6 to 5 ⁇ 10 -6 / K. Therefore, diamond-like carbon (DLC) is suitable as a constituent material of a device having a laminated structure.
  • the surface of the diamond-like carbon film (DLC film) is flatter than that of graphite, the surface unevenness of the diamond-like carbon film (DLC film) in the laminated structure including the diamond-like carbon film (DLC film). It is possible to suppress the occurrence of local stress due to the above.
  • the heat conduction part 11 is not limited to a diamond-like carbon single layer as long as it has a higher thermal conductivity than that of a silicon oxide film, but is not limited to a diamond-like carbon thin film and other thin films different from the material. At least one layer may be provided, and the heat dissipation performance can be adjusted according to the use by changing the film thickness of each layer, the content ratio of the material constituting each film, and the distribution thereof.
  • the atomic ratio of hydrogen contained is 35% or more and 40% or less in consideration of insulating performance.
  • Diamond-like carbon is an insulator, and even if it is used in the same path 22 as the signal transmission metal wiring layer (metal wiring 9) and connection holes (contact electrodes 6, 10), it does not adversely affect signal transmission such as a short circuit.
  • the signal wiring may be used as it is. In this case, an increase in layout area can be suppressed.
  • the metal wiring layer (metal wiring 9) may be a dummy metal that is not used as an electrical wiring, and is connected to the heat conducting portion 11 for heat dissipation as shown in the path 21 of FIG. For this purpose, a dedicated metal wiring 9 and a connection hole (contact electrode 10A) may be provided.
  • the radiation detection semiconductor device 20B a large number of radiation detection elements 5 made of photodiodes or avalanche photodiodes are formed in the thick single crystal silicon layer 3 that is normally used only as a support substrate. Heat generated by the detection element 5 cannot be ignored.
  • a similar problem occurs with a photodiode as the radiation detection element 5, but in particular, when an avalanche photodiode having a high gain is used, the increase in the bias voltage of the avalanche photodiode is affected by the rise in temperature due to heat generation. The magnification will fluctuate.
  • the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2.
  • the radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion.
  • the first semiconductor layer 3 (or the semiconductor substrate) and the radiation detection At least of the element 5, the second semiconductor layer 4, the readout circuit element (MOS transistor) of the readout circuit 8 as a peripheral circuit element, and the wiring structure (metal wiring 9 and contact electrodes 6, 10).
  • a heat conduction part which is an insulating high heat radiation material film for each heat radiation extending from and connected to a heat radiation path of a different system different from the signal transmission path connected to any one of them or / and a signal transmission path. 11 is disposed.
  • an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
  • the gate electrode, the source region, and the drain of the MOS transistor in the peripheral circuit such as the readout circuit 8
  • a heat dissipation configuration example of the region and further the element isolation region will be described.
  • FIG. 7 is a cross-sectional view showing a heat dissipation configuration example of the gate electrode of the MOS transistor in the peripheral circuit such as the readout circuit 8 of the semiconductor device 20C for radiation detection according to the fourth embodiment of the present invention.
  • members having the same functions and effects as those in FIG. 7 members having the same functions and effects as those in FIG.
  • the radiation detection semiconductor device 20 ⁇ / b> C having the SOI structure according to the fourth embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure.
  • a radiation detecting element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure.
  • the thin single crystal silicon layer 4 having the SOI structure is formed on the radiation detection element 5 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2.
  • Peripheral circuits such as a read circuit 8 that reads the detected signal charges and processes them such as amplification are formed.
  • a gate electrode 81 is formed on the thin single crystal silicon layer 4 where the MOS transistor in the peripheral circuit such as the readout circuit 8 is formed via a gate oxide film.
  • the thin single crystal silicon layer 4 as a MOS transistor, a channel region 82 provided under the gate electrode 81 and a source region 83 and a drain region 84 provided so as to sandwich the channel region 82 are opposed to each other. Are arranged.
  • the signal wiring metal wiring 9 is connected to the signal wiring contact electrode 10 connected on the gate electrode 81, and the metal wiring 9 is connected to the interlayer insulating film 7 through the heat dissipation contact electrode 10A. It is connected to the heat conducting part 11 for heat dissipation.
  • the gate electrode 81 of the MOS transistor and the heat conducting part 11 for heat dissipation are connected by the contact electrodes 10 and 10A and the metal wiring 9.
  • the heat generated in the gate electrode 81 can be conducted through the contact electrodes 10 and 10A and the metal wiring 9 to be radiated from the heat conducting portion 11 to the outside.
  • a plurality of contact electrodes 10A for heat dissipation may be formed, and may be used together with the contact electrode 10 for signal wiring.
  • the contact electrode 10 for signal wiring and the dedicated contact electrode 10A for heat dissipation are made of metal wiring (metal You may arrange
  • the heat conduction part 11 may be provided below the single crystal silicon layer 3 below the insulator layer 2 which is the thick silicon layer 3.
  • the heat conduction part 11 is not limited to the upper part shown in FIG. 11 may be provided on the lower side of the lower surface of the channel region 82 or on the upper and lower sides of the upper and lower surfaces thereof via heat dissipation contact electrodes 10A and the like.
  • FIGS. 8A and 8B are cross-sectional views and diagrams showing examples of heat dissipation configurations of the source region and the drain region of the MOS transistor in the readout circuit 8 of the semiconductor device 20C for radiation detection according to the fourth embodiment of the present invention.
  • 8C is a cross-sectional view showing an example of the heat radiation configuration of the element isolation regions 85 and 86 between the MOS transistors.
  • heat dissipation is performed from the source region 83 of the MOS transistor to the upper interlayer insulating film 7 on the thin single crystal silicon layer 4 through the contact electrodes 10 and 10A and the metal wiring 9.
  • a heat conducting portion 11 is formed.
  • heat dissipation is performed from the drain region 84 of the MOS transistor onto the inter-layer insulating film 7 on the thin single crystal silicon layer 4 via the contact electrodes 10 and 10A and the metal wiring 9.
  • a heat conducting portion 11 is formed.
  • the contact electrodes 10 and 10A and the metal wiring 9 are respectively formed on the interlayer insulating film 7 on the thin single crystal silicon layer 4 from the element isolation regions 85 and 86 between the MOS transistors.
  • Each heat conduction part 11 for heat dissipation is formed.
  • a plurality of contact electrodes 10 and 10A may be formed for each of the gate electrode 81, the source region 83, the drain region 84, and the element isolation regions 85 and 86, and may be used together with the contact electrode 10 for signal wiring.
  • a dedicated contact electrode 10A or wiring may be disposed.
  • a plurality of contact electrodes 10 and 10A are provided in parallel with each electrode and region. May be.
  • the heat conducting portion 11 may be provided on the lower surface portion of the single crystal silicon layer 3 below the insulator layer 2 which is a thick silicon layer. It may be provided on the lower surface side or on both upper and lower surfaces.
  • the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2.
  • the radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion.
  • the MOS transistor of the readout circuit element of the readout circuit 8 as a peripheral circuit element
  • the gate electrode 81, the source region 83, the drain region 84, and the element isolation regions 85 and 86 are further connected to extend from the signal transmission path connected to the element isolation regions 85 and 86.
  • Heat-conducting portion 11 is disposed a rim, high heat radiation material film.
  • an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
  • the signal transmission is connected to any one of the gate electrode, the source region and the drain region of the MOS transistor which is the readout circuit element of the readout circuit 8, and the element isolation region.
  • the heat conduction part 11 which is an insulating high heat radiation material film for heat radiation extending from the path to the upper side and / or the lower side is provided has been described.
  • the heat conducting unit 11 includes a MOS transistor gate electrode 81, a source region 83 on one side of the channel region 82 below the gate electrode 81, a drain region 84 on the other side of the channel region 82 below the gate electrode 81, and a MOS transistor.
  • Connection electrode for signal transmission connected to at least one of element isolation regions 85 and 86 for electrically isolating elements
  • the contact electrodes 10 and 10A) and / or the metal wiring (metal wiring 9) connected thereto may be connected to extend from the signal transmission path to the upper side and / or the lower side from a different heat dissipation path. . (Embodiment 5)
  • a heat dissipation configuration example of various passive elements such as a resistance element in the readout circuit 8 will be described. To do.
  • FIG. 9 is a cross-sectional view showing a heat dissipation configuration example of a passive element in the readout circuit 8 of the semiconductor device 20D for radiation detection according to the fifth embodiment of the present invention.
  • members having the same functions and effects as those of FIG. 9 members having the same functions and effects as those of FIG.
  • the radiation detecting semiconductor device 20D having the SOI structure of the fifth embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure.
  • a radiation detecting element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure.
  • the thin single crystal silicon layer 4 having the SOI structure is formed on the radiation detection element 5 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2.
  • a readout circuit 8 for reading out the detected signal charge and processing it such as amplification is formed.
  • Various passive elements 15 such as resistors, capacitors, and inductors are formed on the thin single crystal silicon layer 4. Both terminal electrodes 16 a and 16 b are connected to both ends of the passive element 15. The both terminal electrodes 16a and 16b are connected to the metal wiring 9 via the signal wiring contact electrodes 10, respectively. The metal wiring 9 is connected to the heat conducting portion 11 on the interlayer insulating film 7 through a heat dissipation contact electrode 10A.
  • the terminal electrodes 16a and 16b of the passive element 15 and the heat conducting part 11 are connected by the contact electrodes 10 and 10A and the metal wiring 9, and the heat generated from the passive element 15 is generated by the contact electrodes 10 and 10A and the metal.
  • the heat can be conducted to the heat conducting part 11 through the wiring 9 and can be radiated from the heat conducting part 11.
  • a plurality of contact electrodes 10 and 10A are formed.
  • the contact electrode 10A for heat dissipation may be used together with the contact electrode 10 for signal wiring, or the contact electrode 10A dedicated for heat dissipation and wiring (metal wiring 9). May be arranged separately from the signal transmission path.
  • the heat conducting portion 11 may be provided below the single crystal silicon layer 3 below the insulator layer 2 which is a thick silicon layer, and the passive element 15 other than the upper portion of the single crystal silicon layer 4 as shown in FIG.
  • the passive element 15 may be provided on the lower side or the upper and lower surfaces.
  • the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2.
  • the radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion.
  • the read circuit element passive of the read circuit 8 as a peripheral circuit element
  • an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
  • an insulating high heat dissipation for heat dissipation that extends upward from the signal transmission path connected to the passive element 15 that is a read circuit element of the read circuit 8 is connected.
  • the heat conducting portion 11 that is a material film is provided has been described, the present invention is not limited thereto, and the peripheral circuit portion includes at least one of a resistor, an inductor, and a capacitor.
  • 11 is a signal transmission connection electrode (contact electrode 10) connected to both terminal electrodes 16a and 16b of at least one of a resistor, an inductor and a capacitor and / or a metal wiring (metal wiring 9) connected thereto.
  • FIG. 10 is a cross-sectional view showing a heat dissipation configuration example of a MOS transistor in another peripheral circuit of the radiation detection semiconductor device 20E according to the sixth embodiment of the present invention.
  • members having the same functions and effects as those in FIG. 10 members having the same functions and effects as those in FIG.
  • the radiation detecting semiconductor device 20E having the SOI structure according to the sixth embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an OI structure.
  • a radiation detecting element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure.
  • the thin single crystal silicon layer 4 having the SOI structure is formed on the radiation detection element 5 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2.
  • a readout circuit 8 for reading out the detected signal charge and processing it such as amplification is formed.
  • one or a plurality of peripheral circuits 17 including the MOS transistor are formed.
  • the upper part of the gate electrode of the MOS transistor in the peripheral circuit 17 formed in the thin single crystal silicon layer 4 is connected to the metal wiring 9 through the contact electrode 10, and the metal wiring 9 is connected to the upper metal through the contact electrode 10.
  • the upper metal wiring 9 is connected to the electrode 9 via the signal wiring contact electrode 1 and is connected to the heat conducting portion 11 via the heat dissipation contact electrode 10A. .
  • the heat conduction part 11 is connected by these wiring structures, and the heat generated in the peripheral circuit 17 and the radiation detection element 5 can be radiated.
  • a plurality of contact electrodes 10 and 10A may be formed, and the contact electrode 10A may be used together with the contact electrode 10 for signal wiring.
  • a dedicated contact electrode 10A for heat dissipation or metal wiring 9 may be arranged.
  • the heat conducting portion 11 may be provided on the lower surface side of the single crystal silicon layer 3 below the insulator layer 2 which is a thick silicon layer. As shown in FIG. Besides the upper side, the heat conducting portion 11 may be provided on the lower surface side of the single crystal silicon layer 3 or on both upper and lower surfaces thereof. Furthermore, the heat conducting unit 11 may be arranged for each peripheral circuit 17, may be arranged according to the heat capacity of the MOS transistor in the functional block, and may be arranged on the entire surface or a part of the chip.
  • the heat conducting part 11 for heat dissipation is connected to each functional block via a connection electrode (contact electrode 10) for signal transmission and / or a metal wiring (metal wiring 9) connected thereto.
  • the heat conducting part 11 for heat radiation can be set to have a heat radiation capacity corresponding to the heat capacity of a part of the functional block or all the MOS transistors.
  • the heat conducting portion 11 for heat dissipation is disposed on the entire surface of the chip or a part of the chip surface.
  • the MOS transistor may be a partially depleted SOI transistor.
  • the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2.
  • the radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion.
  • the MOS transistor As the peripheral circuit element of the peripheral circuit 17 and its wiring
  • a heat dissipation path of a different system different from the signal transmission path connected to at least one of the structures (metal wiring 9 and contact electrodes 6, 10) or / and the signal transmission path from the upper side Heat-conducting portion 11 is disposed an insulating high heat dissipation material film for heat dissipation is the Activity connected.
  • an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
  • an opening is formed in the insulating film on the upper surface of the heat conducting portion 11.
  • the present invention is not limited to this.
  • An opening may be formed in the insulating film on and around the heat conducting portion 11 so that the side surface of the conducting portion 11 is also exposed.
  • the first to sixth embodiments of the present invention can be variously modified within the scope shown in the claims of the present application.
  • embodiments obtained by further combining technical means appropriately changed within the scope of the claims of the present application are also included in the technical scope of the present invention.
  • a radiation detection element and a readout circuit thereof are formed on the same SOI (Silicon ON Insulator) substrate with an insulating film therebetween, and an active element such as a MOS transistor, a resistor, a capacitor, or the like constituting the readout circuit is formed.
  • SOI Silicon ON Insulator
  • an active element such as a MOS transistor, a resistor, a capacitor, or the like constituting the readout circuit.
  • the radiation detection semiconductor devices 20 and 20A to 20E having the SOI structure of the present invention enable effective heat radiation countermeasures against the generation of Joule heat accompanying the operation of semiconductor elements such as MOS transistors and radiation detection elements 5. . It is possible to prevent the deterioration of the characteristics of the semiconductor element caused by the accumulation of heat and the thermal deterioration of the various components constituting the semiconductor element and the wiring layer including vias and contact electrodes, and a highly reliable circuit resistant to self-heating and such a circuit. A highly reliable semiconductor device for radiation detection including a circuit as a configuration can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

The provision of heat-conducting sections comprising films of an electrically insulating, highly heat-dissipating material that provides a sufficient heat-dissipation effect, specifically diamond-like carbon films, results in a heat-dissipation structure with a high heat-dissipation efficiency, reducing temperature increases and yielding a high degree of reliability. In this semiconductor device (20) for detecting radiation, a radiation-detecting element (5) is formed on a first semiconductor layer (3); a read-out MOS transistor for a read-out circuit (8), i.e. a peripheral circuit element, is formed on a second semiconductor layer (4) and the periphery thereof; and a wiring structure connected to the read-out circuit element is formed on top of same. Said semiconductor device (20) for detecting radiation is provided with heat-conducting sections (11) consisting of heat-dissipating films of an electrically insulating, highly heat-dissipating material. Said heat-conducting sections (11) extend upwards from and are connected via heat-dissipation paths or signal transmission paths that are part of a separate system from signal transmission paths connected to the first semiconductor layer (3), the radiation-detecting element (5), the second semiconductor layer (4), the read-out circuit element of the read-out circuit (8), i.e. the peripheral circuit element, and/or the wiring structure (metal wiring (9) and contact electrodes (6, 10)).

Description

放射線検出用半導体装置Radiation detection semiconductor device
 本発明は、同一のSOI(Silicon ON Insulator)基板に放射線検出素子とこれの読出し回路とを絶縁膜で隔てて形成し、この読出し回路を構成するMOSトランジスタなどの能動素子や抵抗やコンデンサなどの受動素子を搭載した放射線検出用半導体装置に関する。 In the present invention, a radiation detection element and a readout circuit thereof are formed on the same SOI (Silicon ON Insulator) substrate with an insulating film therebetween, and an active element such as a MOS transistor, a resistor, a capacitor, or the like constituting the readout circuit is formed. The present invention relates to a semiconductor device for radiation detection equipped with a passive element.
 従来の放射線検出素子は、放射線を検出するものであり、例えば核医学、原子力、天文学、宇宙線物理学などの分野で利用されている。なお、放射線にはアルファ線、ベータ線、ガンマ線、X線、中性子線および荷電粒子線などが含まれる。 Conventional radiation detection elements are for detecting radiation and are used in fields such as nuclear medicine, nuclear power, astronomy, and cosmic ray physics. The radiation includes alpha rays, beta rays, gamma rays, X rays, neutron rays, charged particle rays, and the like.
 現在使用されているピクセル型放射線検出器は、センサ部と読出し回路部を別々のチップとして作り、金属バンプによって機械的に接続する構造を採用している。このため、このタイプのピクセル型放射線検出器は、一般にハイブリッド型ピクセル検出器と呼ばれている。 The currently used pixel type radiation detector employs a structure in which the sensor part and the readout circuit part are made as separate chips and mechanically connected by metal bumps. For this reason, this type of pixel-type radiation detector is generally called a hybrid-type pixel detector.
 このハイブリッド型ピクセル検出器で課題とされているものに、センサ部と読出し回路部との接続がある。大面積のピクセル検出器では、製造コストや接続信頼性の制限が発生し、金属バンプの大きさから一般に50μmがピクセルサイズの限界であるとされている。また、センサ部と読出し回路部との2枚の個別のチップを用いるために、金属バンプとこの金属バンプまでの配線などとの寄生容量の影響を受けて、S/Nや動作速度など放射線検出器としての性能に制約を受けている。 One of the problems with this hybrid pixel detector is the connection between the sensor section and the readout circuit section. In a large-area pixel detector, manufacturing cost and connection reliability are limited, and the size of the metal bump is generally limited to 50 μm. In addition, since two separate chips of the sensor unit and the readout circuit unit are used, radiation detection such as S / N and operation speed is affected by the parasitic capacitance between the metal bump and the wiring to the metal bump. The performance as a container is limited.
 従来の一般的なピクセル検出器は、半田、鉛またはインジウムなどによるバンプボンディングによって、放射線検出素子チップから分離した読出し回路チップに接続している。個々のバンプは、単一の放射線検出素子のピクセルとそれに対応する読出し回路間との電気的接合を担っている。しかし、2つのチップ間を接続するためには、非常に多数のバンプによる接合を施す必要があるため、その厚さが大きく、かつ実装コストが高くなってしまう。 A conventional general pixel detector is connected to a readout circuit chip separated from a radiation detection element chip by bump bonding with solder, lead, indium, or the like. The individual bumps are responsible for the electrical connection between the pixels of a single radiation detection element and the corresponding readout circuit. However, in order to connect the two chips, it is necessary to perform bonding with a very large number of bumps, which increases the thickness and increases the mounting cost.
 そこで、SOI(Silicon-ON-Insulator)として、シリコン基板上に絶縁シリコン酸化膜を作り込み、さらにその上に電子回路を構築する技術を利用することにより、1枚のシリコン基板上に、放射線検出素子と読出し回路を一体化することができれば、バンプや配線の寄生容量が少なくなることによるS/Nの向上や配線長の短縮による読出し速度の高速化が期待される。SOI基板とは、シリコン基板上に絶縁体層を介して薄い単結晶シリコン層が形成された積層構造であって、物理構造的に上から、薄いシリコン層である絶縁体層上部の単結晶シリコン層/絶縁体層(シリコン酸化膜)/厚いシリコン層である絶縁体層下部の単結晶シリコン層の積層構造を持つ基板である。 Therefore, as an SOI (Silicon-ON-Insulator), radiation detection is performed on a single silicon substrate by using a technology in which an insulating silicon oxide film is formed on a silicon substrate and an electronic circuit is constructed thereon. If the element and the readout circuit can be integrated, it is expected that the S / N is improved by reducing the parasitic capacitance of the bump and the wiring, and the reading speed is increased by shortening the wiring length. The SOI substrate is a laminated structure in which a thin single crystal silicon layer is formed on a silicon substrate via an insulator layer. From the top of the physical structure, the single crystal silicon on the top of the insulator layer is a thin silicon layer. It is a substrate having a laminated structure of a single crystal silicon layer under an insulator layer which is a layer / insulator layer (silicon oxide film) / thick silicon layer.
 一般的には、絶縁体層上部の単結晶シリコン層上に電子回路を形成し、絶縁体層下部の単結晶シリコン層は単なる物理構造物(支持基板)となっている。この下側の厚いシリコン層の単結晶シリコン層部分にフォトダイオードやアバランシェフォトダイオードなどの放射線検出素子を形成して下側の厚いシリコン層の単結晶シリコン層部分に空乏層を形成可能とし、SOI構造中央のシリコン酸化膜(絶縁体層)に、半導体プロセス技術を用いて金属配線からなるビアホールを形成し、絶縁体層上部の薄いシリコン層(単結晶シリコン層)に構成された電子回路に対して放射線検出素子からビアホールを介して接続することによって、放射線検出素子と、これで検出された信号電荷を読み出す読出し回路との一体形成を実現することが可能となる。 Generally, an electronic circuit is formed on a single crystal silicon layer above the insulator layer, and the single crystal silicon layer below the insulator layer is a simple physical structure (supporting substrate). A radiation detecting element such as a photodiode or an avalanche photodiode is formed in the single-crystal silicon layer portion of the lower thick silicon layer, so that a depletion layer can be formed in the single-crystal silicon layer portion of the lower thick silicon layer. A via hole made of metal wiring is formed in the silicon oxide film (insulator layer) in the center of the structure using a semiconductor process technology, and an electronic circuit configured as a thin silicon layer (single crystal silicon layer) above the insulator layer By connecting the radiation detection element via the via hole, it is possible to realize the integral formation of the radiation detection element and the readout circuit for reading the signal charge detected thereby.
 本方式の利点は、バンプボンディングが不要となることである。センサと読出し回路間の接続にバンプボンディングなどの機械接続が必要なくなるので、より小面積のピクセルサイズを実現することができる。また、バンプによる寄生容量もなくなるので、一層の高速化および低消費電力化も望める。さらには、同一基板への一体化による低コスト化が図れる可能性もある。これらに加えて、隣り合う素子間にSOI構造中央のシリコン酸化膜の絶縁膜があるおかげで素子の分離性がよくなり、ラッチアップがなくなる上に、素子間の距離を近づけることもできる。回路面積を小さくできることによって、各ピクセルに複雑な信号処理機能を持つCMOS回路の実装が可能となる。なお、絶縁体層上部の単結晶シリコン層の厚さはMOSトランジスタの完全空乏化が可能となる10~100nm程度の厚さが好ましい。 The advantage of this method is that bump bonding is not required. Since no mechanical connection such as bump bonding is required for the connection between the sensor and the readout circuit, a smaller pixel size can be realized. In addition, since parasitic capacitance due to bumps is eliminated, higher speed and lower power consumption can be expected. Furthermore, there is a possibility that cost can be reduced by integration on the same substrate. In addition to these, the isolation of the silicon oxide film at the center of the SOI structure between adjacent elements improves the isolation of the elements, eliminates latch-up, and allows the distance between the elements to be reduced. Since the circuit area can be reduced, a CMOS circuit having a complicated signal processing function can be mounted on each pixel. Note that the thickness of the single crystal silicon layer above the insulator layer is preferably about 10 to 100 nm which enables complete depletion of the MOS transistor.
 このような利点を持つSOIを用いた放射線検出用半導体装置であるが、SOIは、絶縁体層(シリコン酸化膜)を単結晶シリコンウエハで上下から挟み込んだ構成となっており、物理構造的に上から、薄い単結晶シリコン層/絶縁体層/厚い単結晶シリコン層で構成されている。一般的には、絶縁体層上部の単結晶シリコン層上にMOSトランジスタや抵抗、キャパシタなどの回路素子を形成し、絶縁体層下部の単結晶シリコン層にフォトダイオードやアバランシェフォトダイオードなどの放射線検出素子を形成する。 Although it is a semiconductor device for radiation detection using SOI having such advantages, the SOI has a configuration in which an insulator layer (silicon oxide film) is sandwiched from above and below by a single crystal silicon wafer, From the top, it is composed of thin single crystal silicon layer / insulator layer / thick single crystal silicon layer. Generally, circuit elements such as MOS transistors, resistors, and capacitors are formed on the single crystal silicon layer above the insulator layer, and radiation detection such as photodiodes and avalanche photodiodes are formed on the single crystal silicon layer below the insulator layer. An element is formed.
 薄い単結晶シリコン層に形成された回路素子は、その周囲をシリコン酸化膜などの絶縁体で覆われた構造となっている。このため、MOSトランジスタのチャネル形成領域で発生したジュール熱は、絶縁体層またはゲート絶縁体を介して放熱されることとなるが、単結晶シリコンの熱伝導率(約150W/mK)に対してシリコン酸化膜の熱伝導率(約1.4W/mK)、層間絶縁膜として使用されているTEOS(tetraethylorth osilicate)の熱伝導率は1.2W/mKと低いため、一般にSOIの放熱効率はバルクシリコンと比べて悪いとされている。 The circuit element formed in the thin single crystal silicon layer has a structure in which the periphery is covered with an insulator such as a silicon oxide film. For this reason, Joule heat generated in the channel formation region of the MOS transistor is dissipated through the insulator layer or the gate insulator, but with respect to the thermal conductivity (about 150 W / mK) of the single crystal silicon. Since the thermal conductivity of silicon oxide film (approximately 1.4 W / mK) and the thermal conductivity of TEOS (tetraethylorthosilicate) used as an interlayer insulating film are as low as 1.2 W / mK, the heat dissipation efficiency of SOI is generally bulky. It is said that it is worse than silicon.
 このため、SOI構造の放射線検出用半導体装置では、トランジスタなどで発生した熱が外部に逃げにくい所謂自己発熱(セルフヒーティング)を起こしてしまう。この自己発熱によって、放射線検出用半導体装置の温度が上昇するとトランジスタの動作が不安定となってしまうため、従来からいくつかの対策が検討されてきた。 For this reason, in the semiconductor device for radiation detection of the SOI structure, the heat generated in the transistor or the like causes so-called self-heating (self-heating) that is difficult to escape to the outside. Due to this self-heating, when the temperature of the semiconductor device for radiation detection rises, the operation of the transistor becomes unstable. Therefore, several countermeasures have been conventionally studied.
 図11は、特許文献1に開示されているSOIデバイスの要部構成例を示す断面図である。 FIG. 11 is a cross-sectional view showing a configuration example of a main part of an SOI device disclosed in Patent Document 1.
 図11において、従来のSOIデバイス100は、シリコンの支持基板101上に第1の絶縁膜であるシリコン酸化膜102を介してシリコン層(SOI層)103が形成されたSOI構造を有している。SOI層103にはトランジスタT1が形成されている。また、SOI層103には、それに形成される半導体素子同士を絶縁分離するためのシリコン酸化膜104が形成されている。さらに、SOI層103上には第2の絶縁膜であるシリコン酸化膜109が形成され、シリコン酸化膜109の上にはアルミニウム(Al)の配線105a,105bが形成されている。第1の配線である配線105aは、タングステン(W)の第1のプラグであるコンタクトプラグ106aを介してトランジスタT1のソースに接続されている。一方、配線105bはタングステンのコンタクトプラグ106bを介してトランジスタT1のドレインに接続されている。トランジスタT1はnMOSトランジスタであり、配線105aはグラウンド(Gnd)に接続される配線である。 In FIG. 11, a conventional SOI device 100 has an SOI structure in which a silicon layer (SOI layer) 103 is formed on a silicon support substrate 101 via a silicon oxide film 102 as a first insulating film. . In the SOI layer 103, a transistor T1 is formed. In addition, a silicon oxide film 104 is formed on the SOI layer 103 to insulate and isolate the semiconductor elements formed thereon. Further, a silicon oxide film 109 as a second insulating film is formed on the SOI layer 103, and aluminum (Al) wirings 105 a and 105 b are formed on the silicon oxide film 109. The wiring 105a that is the first wiring is connected to the source of the transistor T1 via the contact plug 106a that is the first plug of tungsten (W). On the other hand, the wiring 105b is connected to the drain of the transistor T1 through a tungsten contact plug 106b. The transistor T1 is an nMOS transistor, and the wiring 105a is a wiring connected to the ground (Gnd).
 支持基板101の下面(裏面)には裏面膜として金属の裏面メタル107が形成されて
いる。当該裏面メタル107は、タングステンの第2のプラグである放熱用プラグ108を介して配線105aと接続している。
On the lower surface (back surface) of the support substrate 101, a metal back metal 107 is formed as a back film. The back metal 107 is connected to the wiring 105a through a heat dissipation plug 108 which is a second tungsten plug.
 上記構成により、SOI層103に形成されたトランジスタT1で発生した熱は、コンタクトプラグ106a、配線105aを介して放熱用プラグ108に伝わり、さらに放熱用プラグ108から裏面メタル107に放熱される。裏面メタル107は支持基板101よりも熱伝導度が高いため、トランジスタT1で発生した熱を支持基板101に逃す場合よりも高い放熱効果を得ることができる。よって、SOIデバイスにおけるセルフヒート効果を抑制することができる。 With the above configuration, the heat generated in the transistor T1 formed in the SOI layer 103 is transmitted to the heat dissipation plug 108 via the contact plug 106a and the wiring 105a, and is further dissipated from the heat dissipation plug 108 to the back metal 107. Since the back metal 107 has a higher thermal conductivity than the support substrate 101, a higher heat dissipation effect can be obtained than when heat generated in the transistor T1 is released to the support substrate 101. Therefore, the self-heating effect in the SOI device can be suppressed.
 裏面メタル107はSOI層103に形成されたトランジスタT1の下面に接するものではない。つまり、トランジスタT1と裏面メタル107との間にシリコン酸化膜102が存在する。よって、トランジスタT1が、SOI層103の下面にまで達するソースドレイン拡散層を有する構造であっても、裏面メタル107を介してソース-ドレイン間の短絡を発生させることはない。 The back surface metal 107 is not in contact with the lower surface of the transistor T1 formed in the SOI layer 103. That is, the silicon oxide film 102 exists between the transistor T1 and the back metal 107. Therefore, even if the transistor T1 has a source / drain diffusion layer that reaches the lower surface of the SOI layer 103, a short circuit between the source and drain does not occur via the back metal 107.
 図12は、特許文献2に開示されている半導体集積回路の要部構成例を示す断面図である。 FIG. 12 is a cross-sectional view showing a configuration example of a main part of a semiconductor integrated circuit disclosed in Patent Document 2.
 図12において、従来の半導体集積回路200は、シリコン基板201上に埋込み酸化膜202が形成され、さらにその上に単結晶シリコン層203が形成されているSOI基板204上に複数の完全空乏型SOIトランジスタが形成されている。各完全空乏型MOSトランジスタは、例えば浅い溝を絶縁物で埋めて素子分離を行なうSTI(Shallow Trench Isolation)技術により形成された分離酸化膜205により電気的に素子分離されている。完全空乏型MOSトランジスタはSOI基板204の単結晶シリコン層203に所定間隔をもって形成された2つのソースまたはドレイン領域206,206と、ソースまたはドレイン領域206,206間の単結晶シリコン層203上にゲート酸化膜207を介して形成された例えばポリシリコン膜からなるゲート電極208を備えている。領域AとBの完全空乏型SOIトランジスタは共通のゲート電極208を持っている。 In FIG. 12, a conventional semiconductor integrated circuit 200 includes a plurality of fully depleted SOIs on an SOI substrate 204 in which a buried oxide film 202 is formed on a silicon substrate 201 and a single crystal silicon layer 203 is further formed thereon. A transistor is formed. Each fully depleted MOS transistor is electrically isolated by an isolation oxide film 205 formed by, for example, STI (Shallow Trench Isolation) technology in which a shallow trench is filled with an insulating material to isolate the element. The fully depleted MOS transistor has two source or drain regions 206 and 206 formed on the single crystal silicon layer 203 of the SOI substrate 204 at a predetermined interval, and a gate on the single crystal silicon layer 203 between the source or drain regions 206 and 206. A gate electrode 208 made of, for example, a polysilicon film formed through an oxide film 207 is provided. The fully depleted SOI transistors in regions A and B have a common gate electrode 208.
 完全空乏型SOIトランジスタ上および素子分離膜205を含むSOI基板204上に複数の絶縁層が積層されて形成された絶縁層209が形成されている。絶縁層209内には下層側から順にメタル配線層M1~M6が形成されている。 An insulating layer 209 formed by laminating a plurality of insulating layers on the fully depleted SOI transistor and on the SOI substrate 204 including the element isolation film 205 is formed. In the insulating layer 209, metal wiring layers M1 to M6 are formed in order from the lower layer side.
 完全空乏型SOIトランジスタが形成されている領域A及びDにおいて、ゲート電極208は、コンタクト層210を介して最下層のメタル配線層M1に電気的に接続され、さらにビア層211を介して、メタル配線層M2に電気的に接続されている。 In the regions A and D where the fully depleted SOI transistors are formed, the gate electrode 208 is electrically connected to the lowermost metal wiring layer M1 through the contact layer 210, and further through the via layer 211, the metal It is electrically connected to the wiring layer M2.
 この多層配線構造を備えた半導体集積回路200において、多層配線構造を構成する接続孔および金属配線層と同じ導電材料からなり、信号伝送用の接続孔および金属配線層(領域C参照)とは異なる経路で上層側に延びる熱伝導部212,213,214を備えている(領域A,E,F参照)。 In the semiconductor integrated circuit 200 having this multilayer wiring structure, the connection holes and the metal wiring layer constituting the multilayer wiring structure are made of the same conductive material, and are different from the signal transmission connection holes and the metal wiring layer (see region C). Heat conduction portions 212, 213, and 214 that extend to the upper layer side in the path are provided (see regions A, E, and F).
 領域Aにおいて、完全空乏型SOIトランジスタのゲート動作により発生した熱は、コンタクト層210、メタル配線層M1、ビア層211、メタル配線層M2に伝導された後に、さらに熱伝導部212を介して最上層のメタル配線層M6まで伝導され、絶縁層209の上面側から放熱される。これによって、半導体集積回路200の温度上昇を低減することができる。 In the region A, the heat generated by the gate operation of the fully depleted SOI transistor is conducted to the contact layer 210, the metal wiring layer M 1, the via layer 211, and the metal wiring layer M 2, and then reaches the maximum through the heat conduction unit 212. Conduction is performed up to the upper metal wiring layer M6, and heat is radiated from the upper surface side of the insulating layer 209. Thereby, the temperature rise of the semiconductor integrated circuit 200 can be reduced.
特開2004-349537号公報JP 2004-349537 A 特開2004-72017号公報JP 2004-72017 A
 一般に、SOI構造を有する従来の放射線検出用半導体装置は、支持基板としての厚い単結晶シリコン層上にシリコン酸化膜からなる絶縁体層を介して薄い単結晶シリコン層が形成されている。このため、薄い単結晶シリコン層に形成されるMOSトランジスタなどの半導体素子は、その周囲をシリコン酸化膜で覆われた構造となっている。このシリコン酸化膜は、支持基板である厚い単結晶シリコン層を構成するシリコンや金属配線に使用されるアルミニウムや銅などと比べて熱伝導度が極めて低い。 Generally, in a conventional radiation detection semiconductor device having an SOI structure, a thin single crystal silicon layer is formed on a thick single crystal silicon layer as a support substrate via an insulator layer made of a silicon oxide film. For this reason, a semiconductor element such as a MOS transistor formed in a thin single crystal silicon layer has a structure in which the periphery is covered with a silicon oxide film. This silicon oxide film has extremely low thermal conductivity as compared with silicon constituting a thick single crystal silicon layer as a supporting substrate, aluminum, copper used for metal wiring, and the like.
 このため、SOIデバイス構造を有する従来の放射線検出用半導体装置では、薄い単結晶シリコン層に形成されたMOSトランジスタで発生する熱が外部に逃げ難く、当該MOSトランジスタの温度が上昇して、流れる電流が減少する現象(セルフヒーティング)が起こってしまう。 For this reason, in the conventional radiation detection semiconductor device having the SOI device structure, the heat generated in the MOS transistor formed in the thin single crystal silicon layer is difficult to escape to the outside, and the temperature of the MOS transistor rises and flows through the current. (Self-heating) will occur.
 このセルフヒーティングにより、MOSトランジスタを流れる電流が低下すると、デバイスの動作が不安定化し、最悪の場合には誤動作や動作が停止してしまうという問題を有していた。 When the current flowing through the MOS transistor decreases due to this self-heating, the operation of the device becomes unstable, and in the worst case, there is a problem that malfunction or operation stops.
 このため、SOIデバイスの放熱効果を高めるための技術が、上記特許文献1および特許文献2などで提案されている。 For this reason, techniques for enhancing the heat dissipation effect of the SOI device have been proposed in Patent Document 1 and Patent Document 2 described above.
 例えば上記特許文献1では、薄い単結晶シリコン層(SOI層103)や厚い単結晶シリコン層(支持基板101)と接する放熱用の絶縁トレンチやコンタクト(放熱用プラグ108およびコンタクトプラグ106a)を形成することにより、薄い単結晶シリコン層で発生した熱を、コンタクトプラグ106aから配線105さらに放熱用プラグ108を介して厚い単結晶シリコン層(支持基板101)側の裏面メタル107に逃す技術が提案されている。 For example, in Patent Document 1, a heat insulating trench and a contact (heat dissipating plug 108 and contact plug 106a) are formed in contact with a thin single crystal silicon layer (SOI layer 103) or a thick single crystal silicon layer (support substrate 101). Thus, a technique has been proposed in which heat generated in the thin single crystal silicon layer is released from the contact plug 106a to the back metal 107 on the thick single crystal silicon layer (support substrate 101) side through the wiring 105 and the heat dissipation plug 108. Yes.
 例えば上記特許文献2では、完全空乏型SOIトランジスタのゲート電極208は、コンタクト層210を介して最下層のメタル配線層M1に接続され、さらにビア層211を介してメタル配線層M2に接続されている。ゲート電極208の熱は、メタル配線層M2から上層側に延びる熱伝導部212の最上層のメタル配線層M6まで伝導されて、絶縁層209の上面側から放熱される。 For example, in Patent Document 2, the gate electrode 208 of the fully depleted SOI transistor is connected to the lowermost metal wiring layer M1 through the contact layer 210 and further connected to the metal wiring layer M2 through the via layer 211. Yes. The heat of the gate electrode 208 is conducted from the metal wiring layer M2 to the uppermost metal wiring layer M6 of the heat conducting portion 212 extending to the upper layer side, and is radiated from the upper surface side of the insulating layer 209.
 また、従来技術の別の事例として、裏面の厚い単結晶シリコン層を除去し、薄い単結晶シリコン層の下の酸化膜を直接放熱フィン上に接合する技術もあるが、これは加工に手間がかかる。さらに、厚い単結晶シリコン層に金属を拡散させて合金層を形成することにより放熱効果を高める技術も提案されている。 As another example of the prior art, there is a technique in which the thick single crystal silicon layer on the back surface is removed and the oxide film under the thin single crystal silicon layer is directly bonded onto the heat radiation fin. Take it. Furthermore, a technique for enhancing the heat dissipation effect by diffusing metal into a thick single crystal silicon layer to form an alloy layer has also been proposed.
 しかしながら、特許文献1には、薄い単結晶シリコン層(SOI層103)からシリコン酸化膜104を貫通して支持基板101である厚い単結晶シリコン層に達する孔部を形成し、放熱用プラグ108として、孔の内部に熱伝導率の高い材料を埋め込む技術が開示されているが、孔部に熱伝導率の高い材料を埋め込む構造であるため、放熱可能な領域が限られてしまい、その放熱効果は小さくなってしまう。 However, in Patent Document 1, a hole reaching the thick single crystal silicon layer as the supporting substrate 101 from the thin single crystal silicon layer (SOI layer 103) through the silicon oxide film 104 is formed, and the heat dissipation plug 108 is formed. Although a technique for embedding a material having high thermal conductivity in the hole is disclosed, since the material having a high thermal conductivity is embedded in the hole, the heat dissipating region is limited, and the heat dissipation effect Will get smaller.
 前述した上記従来技術では、結果としてより十分な放熱効果が得られず、動作不良や信頼性不良などの発生を抑制できない場合が多く、特に、従来の放射線検出用半導体装置では、通常は支持基板としてのみ利用する厚い単結晶シリコン層にフォトダイオードやアバランシェフォトダイオードからなる放射線検出素子を多数形成するため、トランジスタに加え放射線検出素子による発熱とその影響を受けた特性変動も無視できない状態になっている。 In the above-described conventional technology, as a result, a sufficient heat dissipation effect cannot be obtained, and in many cases, it is not possible to suppress the occurrence of malfunction or reliability failure. In particular, in conventional semiconductor devices for radiation detection, the support substrate is usually used. Since a large number of radiation detection elements consisting of photodiodes and avalanche photodiodes are formed on a thick single crystal silicon layer that is used only as Yes.
 本発明は、上記従来の問題を解決するもので、十分な放熱効果が得られる、絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部を設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる放射線検出用半導体装置を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and by providing a heat conduction part made of an insulating high heat dissipation material film, specifically a diamond-like carbon film, which can obtain a sufficient heat dissipation effect, heat dissipation efficiency is improved. An object of the present invention is to provide a semiconductor device for radiation detection which has a high heat dissipation structure and can obtain high reliability by suppressing temperature rise.
 本発明の放射線検出用半導体装置は、絶縁体層の下面に第1の半導体層または半導体基板が配設され、該絶縁体層の上面に第2の半導体層が配設されたSOI(Silicon ON Insulator)構造を有し、該第1の半導体層または該半導体基板に放射線検出素子が形成され、該第2の半導体層およびその周辺部に周辺回路素子が形成され、該周辺回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置において、該第1の半導体層または該半導体基板と、該放射線検出素子と、該第2の半導体層と、該周辺回路素子と、該配線構造とのうちの少なくともいずれかに接続された信号伝送経路とは異なる別系統の放熱経路または/および該信号伝送経路から上側および下側のうちの少なくともいずれか側に延びて接続される放熱用の熱伝導部が配設されているものであり、そのことにより上記目的が達成される。 The semiconductor device for radiation detection according to the present invention is an SOI (Silicon ON) in which a first semiconductor layer or a semiconductor substrate is disposed on the lower surface of an insulator layer, and a second semiconductor layer is disposed on the upper surface of the insulator layer. Insulator structure, a radiation detection element is formed on the first semiconductor layer or the semiconductor substrate, a peripheral circuit element is formed on the second semiconductor layer and its peripheral part, and above the peripheral circuit element In a semiconductor device for radiation detection formed with a wiring structure connected thereto, the first semiconductor layer or the semiconductor substrate, the radiation detection element, the second semiconductor layer, the peripheral circuit element, A heat dissipation path of a different system different from a signal transmission path connected to at least one of the wiring structures and / or at least one of an upper side and a lower side from the signal transmission path Heat conductive portion of the heat radiation that is connected extends is one which is arranged, the objects can be achieved.
 また、好ましくは、本発明の放射線検出用半導体装置における周辺回路素子は、前記放射線検出素子で検出した信号電荷を処理する少なくともMOSトランジスタを含む読出し回路素子を有し、前記放熱用の熱伝導部は、該読出し回路素子に接続される信号伝送経路とは異なる別系統の放熱経路または/および該信号伝送経路から上側および下側のうちの少なくともいずれか側に延びて接続される放熱用の熱伝導部が配設されている。 Preferably, the peripheral circuit element in the semiconductor device for radiation detection according to the present invention has a readout circuit element including at least a MOS transistor for processing a signal charge detected by the radiation detection element, and the heat conducting portion for heat dissipation. Is a heat dissipation path of a different system different from the signal transmission path connected to the readout circuit element and / or heat for heat dissipation extending from the signal transmission path to at least one of the upper side and the lower side. A conductive portion is disposed.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部の熱伝導率がシリコンまたはシリコン酸化膜の熱導電率よりも高い。 Furthermore, preferably, the thermal conductivity of the heat conducting part in the semiconductor device for radiation detection of the present invention is higher than the thermal conductivity of silicon or silicon oxide film.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部の熱伝導率は1.2W/(mK)以上である。 Furthermore, preferably, the heat conductivity of the heat conducting part in the semiconductor device for radiation detection of the present invention is 1.2 W / (mK) or more.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部が絶縁性高放熱材料膜から構成されている。 Furthermore, preferably, the heat conducting part in the semiconductor device for radiation detection of the present invention is composed of an insulating high heat dissipation material film.
 さらに、好ましくは、本発明の放射線検出用半導体装置における絶縁性高放熱材料膜はダイヤモンドライクカーボン膜である。 Further preferably, the insulating high heat dissipation material film in the semiconductor device for radiation detection of the present invention is a diamond-like carbon film.
 さらに、好ましくは、本発明の放射線検出用半導体装置におけるダイヤモンドライクカーボン膜は、絶縁性能を向上するために、含有する水素の原子割合が35パーセント以上40パーセント以下である。 Further preferably, the diamond-like carbon film in the semiconductor device for radiation detection of the present invention has an atomic ratio of hydrogen contained in the range from 35% to 40% in order to improve the insulation performance.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部上の絶縁膜には開口部が形成されている。 Further preferably, an opening is formed in the insulating film on the heat conducting portion in the radiation detecting semiconductor device of the present invention.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部は、前記MOSトランジスタのゲート電極と、ソース領域と、ドレイン領域と、該MOSトランジスタ素子を電気的に分離する素子分離領域とのうちの少なくともいずれかに接続される信号伝送用の接続電極および/またはこれに接続される金属配線とは異なる別系統の放熱経路または/および該信号伝送経路から上側に延びて接続されている。 Further preferably, in the semiconductor device for radiation detection according to the present invention, the heat conducting portion includes a gate electrode, a source region, a drain region, and an element isolation region for electrically isolating the MOS transistor element. A signal transmission connection electrode connected to at least one of them and / or a heat radiation path of a different system different from the metal wiring connected to the connection electrode and / or the signal transmission path is connected to extend upward.
 さらに、好ましくは、本発明の放射線検出用半導体装置における周辺回路部は、抵抗、インダクタおよびキャパシタのうちの少なくともいずれかを有し、前記熱伝導部は、当該少なくともいずれかの端子電極に接続される信号伝送用の接続電極および/またはこれに接続される金属配線とは異なる別系統の放熱経路または/および該信号伝送経路から上側に延びて接続されている。 Still preferably, in a semiconductor device for radiation detection according to the present invention, the peripheral circuit unit includes at least one of a resistor, an inductor, and a capacitor, and the heat conducting unit is connected to at least one of the terminal electrodes. The signal transmission connection electrode and / or the metal wiring connected thereto are connected to another heat dissipation path or / and extending upward from the signal transmission path.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部は、機能ブロック毎に信号伝送用の接続電極および/またはこれに接続される金属配線を介して接続されている。 Further preferably, the heat conducting section in the semiconductor device for radiation detection of the present invention is connected for each functional block via a connection electrode for signal transmission and / or a metal wiring connected to the connection electrode.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部は、機能ブロック内の前記MOSトランジスタの熱容量に応じた放熱容量を有している。 Still preferably, in a semiconductor device for radiation detection according to the present invention, the heat conducting unit has a heat dissipation capacity corresponding to the heat capacity of the MOS transistor in the functional block.
 さらに、好ましくは、本発明の放射線検出用半導体装置における熱伝導部は、チップ全面またはチップ一部面に配置されている。 Further preferably, the heat conducting portion in the semiconductor device for radiation detection according to the present invention is disposed on the entire surface of the chip or a partial surface of the chip.
 さらに、好ましくは、本発明の放射線検出用半導体装置におけるMOSトランジスタは部分空乏型SOIトランジスタである。 Further preferably, the MOS transistor in the semiconductor device for radiation detection of the present invention is a partially depleted SOI transistor.
 さらに、好ましくは、本発明の放射線検出用半導体装置におけるSOI構造上に前記放射線検出素子と前記読出し回路とが一体形成されている。 Further preferably, the radiation detection element and the readout circuit are integrally formed on the SOI structure in the radiation detection semiconductor device of the present invention.
 さらに、好ましくは、本発明の放射線検出用半導体装置におけるSOI構造上に前記放射線検出素子と前記読出し回路とが一体形成された放射線検出用半導体装置であって、該放射線検出素子は、該SOI構造の表面と裏面とのうちのいずれかの面から放射線が入射する方向に対して放射線検出可能に構成されている。 Furthermore, preferably, the radiation detection semiconductor device in which the radiation detection element and the readout circuit are integrally formed on an SOI structure in the radiation detection semiconductor device of the present invention, wherein the radiation detection element has the SOI structure. It is comprised so that a radiation can be detected with respect to the direction in which a radiation injects from any one of the surface and back surface.
 上記構成により、以下、本発明の作用を説明する。 The operation of the present invention will be described below with the above configuration.
 本発明においては、絶縁体層の下面に第1の半導体層または半導体基板が配設され、絶縁体層の上面に第2の半導体層が配設されたSOI(Silicon ON Insulator)構造を有し、第1の半導体層または半導体基板に放射線検出素子が形成され、第2の半導体層およびその周辺部に周辺回路素子が形成され、周辺回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置において、第1の半導体層または半導体基板と、放射線検出素子と、第2の半導体層と、周辺回路素子と、配線構造とのうちの少なくともいずれかに接続された信号伝送経路とは異なる別系統の放熱経路または/および信号伝送経路から上側および下側のうちの少なくともいずれか側に延びて接続される放熱用の熱伝導部が配設されている。 The present invention has an SOI (Silicon ON Insulator) structure in which a first semiconductor layer or a semiconductor substrate is disposed on the lower surface of the insulator layer, and a second semiconductor layer is disposed on the upper surface of the insulator layer. The radiation detection element is formed on the first semiconductor layer or the semiconductor substrate, the peripheral circuit element is formed on the second semiconductor layer and its peripheral portion, and the wiring structure connected to the peripheral circuit element is formed above the peripheral circuit element. In the radiation detecting semiconductor device, signal transmission connected to at least one of the first semiconductor layer or the semiconductor substrate, the radiation detecting element, the second semiconductor layer, the peripheral circuit element, and the wiring structure. A heat conduction part for heat dissipation is provided which extends from and is connected to at least one of the upper side and the lower side from a different heat dissipation path and / or signal transmission path different from the path. It is.
 これによって、十分な放熱効果が得られる、絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部を設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることが可能となる。 By providing a heat conduction part consisting of an insulating high heat dissipation material film, specifically a diamond-like carbon film, which provides a sufficient heat dissipation effect, it has a heat dissipation structure with high heat dissipation efficiency and suppresses temperature rise Thus, high reliability can be obtained.
 以上により、本発明によれば、な放熱効果が得られる、絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部を設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。 As described above, according to the present invention, by providing a heat conducting portion made of an insulating high heat dissipation material film, specifically a diamond-like carbon film, which can obtain a heat dissipation effect, it has a heat dissipation structure with high heat dissipation efficiency. In addition, high reliability can be obtained by suppressing the temperature rise.
本発明の実施形態1の放射線検出用半導体装置における要部構成例を示す断面図である。It is sectional drawing which shows the principal part structural example in the semiconductor device for radiation detection of Embodiment 1 of this invention. 図1の放射線検出素子の一単体事例としてフォトダイオードの要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of a principal part structure of a photodiode as a single example of the radiation detection element of FIG. 図1の放射線検出素子の別の単体事例としてアバランシェフォトダイオードの要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of a principal part structure of the avalanche photodiode as another single example of the radiation detection element of FIG. アバランシェフォトダイオードの周辺温度をパラメータとしてアバランシェフォトダイオードのバイアス電圧(V)に対する増倍率の関係を示した図である。It is the figure which showed the relationship of the multiplication factor with respect to the bias voltage (V) of an avalanche photodiode using the ambient temperature of an avalanche photodiode as a parameter. 本発明の実施形態2の放射線検出用半導体装置における要部構成例を示す断面図である。It is sectional drawing which shows the principal part structural example in the semiconductor device for radiation detection of Embodiment 2 of this invention. 本発明の実施形態3の放射線検出用半導体装置における要部構成例を示す断面図である。It is sectional drawing which shows the principal part structural example in the semiconductor device for radiation detection of Embodiment 3 of this invention. 本発明の実施形態4の放射線検出用半導体装置の読出し回路などの周辺回路におけるMOSトランジスタのゲート電極の放熱構成例を示す断面図である。It is sectional drawing which shows the heat dissipation structural example of the gate electrode of a MOS transistor in peripheral circuits, such as a read-out circuit of the semiconductor device for radiation detection of Embodiment 4 of this invention. (a)および(b)は、本発明の実施形態5の放射線検出用半導体装置の読出し回路におけるMOSトランジスタのソース領域およびドレイン領域の各放熱構成例を示す断面図、(c)は、そのMOSトランジスタ間の素子分離領域の各放熱構成例を示す断面図である。(A) And (b) is sectional drawing which shows each heat dissipation structural example of the source region of a MOS transistor in the read-out circuit of the semiconductor device for radiation detection of Embodiment 5 of this invention, (c) is the MOS It is sectional drawing which shows each heat dissipation structural example of the element isolation area | region between transistors. 本発明の実施形態5の放射線検出用半導体装置の読出し回路における受動素子の放熱構成例を示す断面図である。It is sectional drawing which shows the heat dissipation structural example of the passive element in the read-out circuit of the semiconductor device for radiation detection of Embodiment 5 of this invention. 本発明の実施形態6の放射線検出用半導体装置の他の周辺回路におけるMOSトランジスタの放熱構成例を示す断面図である。It is sectional drawing which shows the heat dissipation structural example of the MOS transistor in the other peripheral circuit of the semiconductor device for radiation detection of Embodiment 6 of this invention. 特許文献1に開示されているSOIデバイスの要部構成例を示す断面図である。10 is a cross-sectional view showing an example of a configuration of a main part of an SOI device disclosed in Patent Document 1. FIG. 特許文献2に開示されている半導体集積回路の要部構成例を示す断面図である。FIG. 10 is a cross-sectional view showing a configuration example of a main part of a semiconductor integrated circuit disclosed in Patent Document 2.
 20、20A~20E 放射線検出用半導体装置
 2 絶縁体層
 3、4 単結晶シリコン層
 5 放射線検出素子
 51 フォトダイオード
 51a 真性半導体基板
 51b P型半導体層
 51c N型半導体層
 51d 表面電極
 51e N型半導体層
 52 アバランシェフォトダイオード
 52a 半導体基板
 52b n-領域
 52c P型領域
 52d p-領域
 52e 保護膜
 52f 遮光メタル
 52g P側電極
 52h コンタクト層
 52i N側電極
 7 層間絶縁層
 8 読出し回路
 81 ゲート電極
 82 チャネル領域
 83 ソース領域
 84 ドレイン領域
 85、86 素子分離領域
 9 メタル配線(金属配線)
 6、10、10A コンタクト電極(接続電極)
 11 熱伝導部
 12 端子
 13 拡散層
 14 裏面電極
 15 受動素子
 16a,16b 端子電極
 17 周辺回路
 21,22 経路
20, 20A-20E Semiconductor device for radiation detection 2 Insulator layer 3, 4 Single crystal silicon layer 5 Radiation detection element 51 Photodiode 51a Intrinsic semiconductor substrate 51b P-type semiconductor layer 51c N-type semiconductor layer 51d Surface electrode 51e N-type semiconductor layer 52 avalanche photodiode 52a semiconductor substrate 52b n-region 52c P-type region 52d p-region 52e protective film 52f light shielding metal 52g P-side electrode 52h contact layer 52i N-side electrode 7 interlayer insulating layer 8 readout circuit 81 gate electrode 82 channel region 83 Source region 84 Drain region 85, 86 Element isolation region 9 Metal wiring (metal wiring)
6, 10, 10A Contact electrode (connection electrode)
DESCRIPTION OF SYMBOLS 11 Thermal conduction part 12 Terminal 13 Diffusion layer 14 Back surface electrode 15 Passive element 16a, 16b Terminal electrode 17 Peripheral circuit 21,22 Path | route
 以下に、本発明の放射線検出用半導体装置の実施形態1~6について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。また、配線やコンタクト電極の個数も実際のデバイスと一致していなくてもよく、図示および説明の便宜を考慮した個数としたものであり、図示する構成に限定されるものではない。さらに、本発明の放射線検出用半導体装置の実施形態1~6は、本願請求項に示した範囲で種々の変更が可能である。即ち、本願請求項に示した範囲で適宜変更した技術的手段を更に組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
(実施形態1)
 図1は、本発明の実施形態1の放射線検出用半導体装置における要部構成例を示す断面図である。
Embodiments 1 to 6 of the present invention will be described in detail below with reference to the drawings. In addition, each thickness, length, etc. of the structural member in each figure are not limited to the structure to illustrate from a viewpoint on drawing preparation. Further, the number of wirings and contact electrodes may not coincide with an actual device, and is set in consideration of the convenience of illustration and description, and is not limited to the illustrated configuration. Furthermore, the first to sixth embodiments of the semiconductor device for radiation detection according to the present invention can be variously modified within the scope of the claims. In other words, embodiments obtained by further combining technical means appropriately changed within the scope of the claims of the present application are also included in the technical scope of the present invention.
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration example of a main part of a semiconductor device for radiation detection according to Embodiment 1 of the present invention.
 図1において、本実施形態1のSOI構造を持つ放射線検出用半導体装置20は、SOI構造として、絶縁体層2と、この絶縁体層2の下面に配置された第1の半導体層(または半導体基板)としての単結晶シリコン層3(またはシリコン基板)と、絶縁体層2の上面に配置された第2の半導体層としての単結晶シリコン層4とを有している。このSOI構造の厚い単結晶シリコン層3には、フォトダイオードやアバランシェフォトダイオードなどの放射線検出素子5が形成されている。そのSOI構造の薄い単結晶シリコン層4には、絶縁体層2および層間絶縁層7内に形成された埋め込み性のよいタングステンWなどからなる接続電極としてのコンタクト電極6、10によりメタル配線9(金属配線)を介して、放射線検出素子5で検出した信号電荷を薄い単結晶シリコン層4側に読み出して増幅など処理する周辺回路としての読出し回路8が形成されている。 In FIG. 1, a radiation detecting semiconductor device 20 having an SOI structure according to the first embodiment includes an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure. A single crystal silicon layer 3 (or silicon substrate) as a substrate) and a single crystal silicon layer 4 as a second semiconductor layer disposed on the upper surface of the insulator layer 2. A radiation detection element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure. The thin single crystal silicon layer 4 having the SOI structure is connected to the metal wiring 9 (by the contact electrodes 6 and 10 as connection electrodes made of tungsten W or the like having good embedding properties formed in the insulator layer 2 and the interlayer insulating layer 7. A readout circuit 8 is formed as a peripheral circuit for reading out signal charges detected by the radiation detection element 5 to the thin single crystal silicon layer 4 side through the metal wiring) and processing such as amplification.
 読出し回路8は、周辺回路素子としての読出し回路素子として、MOSトランジスタなどの能動素子と、抵抗やキャパシタやインダクタなどの受動素子とのうちの少なくともいずれかを有している。読出し回路8は、放射線検出素子5で検出した信号電荷をコンタクト電極6からメタル配線9、さらにコンタクト電極10を介して読み出して増幅などの処理をする回路である。また、読出し回路8は、PチャネルMOSトランジスタとNチャネルMOSトランジスタとの直列回路で構成されたCMOS回路を有している。 The read circuit 8 has at least one of an active element such as a MOS transistor and a passive element such as a resistor, a capacitor, and an inductor as a read circuit element as a peripheral circuit element. The readout circuit 8 is a circuit that reads out signal charges detected by the radiation detection element 5 from the contact electrode 6 through the metal wiring 9 and further through the contact electrode 10 and performs processing such as amplification. The read circuit 8 has a CMOS circuit constituted by a series circuit of a P channel MOS transistor and an N channel MOS transistor.
 このSOI構造は、シリコン酸化膜などからなる絶縁体層2を単結晶シリコンウエハで上下から挟み込んだ構成となっており、物理構造的に下から、厚い単結晶シリコン層3/絶縁体層2/薄い単結晶シリコン層4で構成されている。 This SOI structure has a structure in which an insulator layer 2 made of a silicon oxide film or the like is sandwiched from above and below by a single crystal silicon wafer. From the bottom of the physical structure, a thick single crystal silicon layer 3 / insulator layer 2 / It is composed of a thin single crystal silicon layer 4.
 ここでは、絶縁体層2の上面の薄い単結晶シリコン層4およびその上の層間絶縁層7内には、読出し回路8などの周辺回路を構成する周辺回路素子としてのMOSトランジスタなどの半導体装置およびその各部を接続するアルミニュウムAlなどのメタル配線9(金属配線)および、埋め込み性のよいタングステンWなどからなるビア径が0.1~0.3μm程度の細いコンタクト電極10,10Aが形成されている。また、絶縁体層2の下面側の単結晶シリコン層3には放射線検出素子5が形成されているが、一般的には、絶縁体層2の下面側の単結晶シリコン層3は単なる物理構造物(支持基板)である。この絶縁体層2の下面側の厚い単結晶シリコン層3に、フォトダイオードやアバランシェフォトダイオートなどの放射線検出素子5を形成することにより、下側の単結晶シリコン層3内に空乏層を形成し、SOI構造中央のシリコン酸化膜層などの絶縁体層2に、半導体プロセス技術を用いてビアホールを形成し、これに埋め込み性のよいタングステンWを埋め込んで接続電極(コンタクト電極6、10,10A)としている。絶縁体層2の上面側の薄い単結晶シリコン層4に構成された半導体回路素子と、下側の単結晶シリコン層3に形成された放射線検出素子5とを、コンタクト電極6、メタル配線9およびコンタクト電極10を介して互いに接続することによって、放射線検出素子5とこれの読出し回路8との同一基板上への一体的形成を実現している。 Here, a semiconductor device such as a MOS transistor as a peripheral circuit element constituting a peripheral circuit such as a readout circuit 8 and the like in the thin single crystal silicon layer 4 on the upper surface of the insulator layer 2 and the interlayer insulating layer 7 thereon are provided. Thin contact electrodes 10 and 10A having a via diameter of about 0.1 to 0.3 μm made of metal wiring 9 (metal wiring) such as aluminum Al and the like, and tungsten W having good embedding properties are formed to connect the respective parts. . The radiation detection element 5 is formed on the single crystal silicon layer 3 on the lower surface side of the insulator layer 2. Generally, the single crystal silicon layer 3 on the lower surface side of the insulator layer 2 has a simple physical structure. Object (supporting substrate). A depletion layer is formed in the lower single crystal silicon layer 3 by forming a radiation detection element 5 such as a photodiode or an avalanche photo diode in the thick single crystal silicon layer 3 on the lower surface side of the insulator layer 2. Then, a via hole is formed in the insulator layer 2 such as a silicon oxide film layer in the center of the SOI structure by using a semiconductor process technique, and tungsten W having a good embedding property is buried in the via hole, thereby connecting electrodes ( contact electrodes 6, 10, 10A). ). A semiconductor circuit element formed on the thin single crystal silicon layer 4 on the upper surface side of the insulator layer 2 and a radiation detection element 5 formed on the lower single crystal silicon layer 3 are connected to the contact electrode 6, the metal wiring 9, and By connecting to each other via the contact electrode 10, the radiation detection element 5 and the readout circuit 8 are integrally formed on the same substrate.
 本方式の利点は、放射線検出素子5と読出し回路8とを間に絶縁体層2を挟んで一体的に形成したので、放射線検出素子5と読出し回路8を含む周辺回路との間を機械接続するためのサイズの大きいバンプボンディングが不要になることである。このように、放射線検出素子5(センサ)と読出し回路8との間の接続にバンプボンディングなどの電気的で機械的なサイズの大きい端子接続が必要なくなるので、より小面積のピクセルサイズを実現することができる。このように、回路面積を小さくできることによって、各ピクセルに複雑な信号処理機能を持つCMOS回路の実装が可能となる。CMOS回路は読出し回路8を含む周辺回路に形成することができる。また、バンプボンディングが不要になることでバンプ電極による寄生容量もなくなるので、読出し回路8による放射線検出素子5からの信号読出しの一層の高速化および低消費電力化も望める。さらに、別チップではなく、放射線検出素子5と読出し回路8の一体化(同一チップ化)による低コスト化が図られる可能性もある。 The advantage of this method is that the radiation detection element 5 and the readout circuit 8 are integrally formed with the insulator layer 2 interposed therebetween, so that the radiation detection element 5 and the peripheral circuit including the readout circuit 8 are mechanically connected. Therefore, bump bonding with a large size is not required. As described above, since the connection between the radiation detection element 5 (sensor) and the readout circuit 8 does not require a large electrical and mechanical terminal connection such as bump bonding, a smaller pixel size is realized. be able to. Thus, by reducing the circuit area, it is possible to mount a CMOS circuit having a complicated signal processing function in each pixel. The CMOS circuit can be formed in a peripheral circuit including the readout circuit 8. Further, since the bump bonding is not necessary, the parasitic capacitance due to the bump electrode is eliminated, so that it is possible to further speed up the signal reading from the radiation detecting element 5 by the reading circuit 8 and to reduce the power consumption. Furthermore, the cost may be reduced by integrating the radiation detection element 5 and the readout circuit 8 (in the same chip) instead of a separate chip.
 これらに加えて、放射線検出素子5と読出し回路8の隣り合う素子間にSOI構造中央のシリコン酸化膜などの絶縁膜2が存在するおかげで上下の素子の分離性がよくなり、素子間のラッチアップがなくなる上に、放射線検出素子5と読出し回路8の素子間の距離を近づけることもできる。 In addition to the above, the presence of the insulating film 2 such as a silicon oxide film at the center of the SOI structure between the adjacent elements of the radiation detection element 5 and the readout circuit 8 improves the separation between the upper and lower elements, and latches between the elements. Further, the distance between the radiation detection element 5 and the readout circuit 8 can be reduced.
 絶縁体層2の下部の単結晶シリコン層3に形成する放射線検出素子5は、例えばSOI基板裏面から放射線を入射する場合には、フォトダイオードにより放射線から電気信号に直接光電変換を行い、SOI基板表面から放射線を入射する場合には、例えばチップ表面に放射線を光(可視光、紫外線および赤外線)に変換できる複合材料から構成されるシンチレータを接続し、フォトダイオードやアバランシェフォトダイオードで光から電気信号に間接的に光電変換を行えばよい。 The radiation detection element 5 formed on the single crystal silicon layer 3 below the insulator layer 2 performs, for example, when the radiation is incident from the back surface of the SOI substrate, performs photoelectric conversion directly from the radiation to the electrical signal by the photodiode, and performs the SOI substrate. When radiation is incident from the surface, for example, a scintillator made of a composite material that can convert radiation into light (visible light, ultraviolet light, and infrared light) is connected to the chip surface, and an electrical signal is output from the light with a photodiode or avalanche photodiode. Indirect photoelectric conversion may be performed.
 この場合、読出し回路8を埋め込んでいる真上の層間絶縁膜7の表面側に遮光メタル11を形成して、読出し回路8への外部からの不要な光の入射を抑えるように構成にしてもよい。 In this case, the light shielding metal 11 is formed on the surface side of the interlayer insulating film 7 directly above the read circuit 8 so as to suppress unnecessary light from entering the read circuit 8 from the outside. Good.
 また、チップ裏面にシンチレータを接続して光から電気信号に間接的に光電変換を行ってもよいことは言うまでもないことである。下部の単結晶シリコン層3の裏面には裏面電極14が形成されている。 It goes without saying that a scintillator may be connected to the back of the chip to indirectly perform photoelectric conversion from light to an electrical signal. A back electrode 14 is formed on the back surface of the lower single crystal silicon layer 3.
 したがって、SOI基板(またはSOI構造)上に放射線検出素子5とこれに接続された読出し回路8とが一体形成された放射線検出用半導体装置20において、放射線検出素子5は、SOI構造の表面と裏面とのうちのいずれかの面から放射線が入射する方向に対して放射線検出可能に構成されている。 Therefore, in the radiation detection semiconductor device 20 in which the radiation detection element 5 and the readout circuit 8 connected to the radiation detection element 5 are integrally formed on the SOI substrate (or SOI structure), the radiation detection element 5 includes the front and back surfaces of the SOI structure. The radiation can be detected in the direction in which the radiation enters from any one of the surfaces.
 ここで、図1の放射線検出素子5としてのフォトダイオードやアバランシェフォトダイオートの単体構成について説明する。 Here, a single structure of a photodiode or an avalanche photo die auto as the radiation detection element 5 of FIG. 1 will be described.
 図2は、図1の放射線検出素子5の一単体事例としてフォトダイオードの要部構成例を模式的に示す縦断面図である。 FIG. 2 is a longitudinal sectional view schematically showing an example of the configuration of the main part of a photodiode as a single case of the radiation detection element 5 of FIG.
 図2において、フォトダイオード51は、PINダイオード構造であり、真性半導体基板51aの上下面にP型半導体層51bとN型半導体層51cが配置されている。P型半導体層51bの中央部上を開口した状態で表面電極51dが配置され、N型半導体層51c上には裏面電極51eが配置されている。 In FIG. 2, a photodiode 51 has a PIN diode structure, and a P-type semiconductor layer 51b and an N-type semiconductor layer 51c are arranged on the upper and lower surfaces of the intrinsic semiconductor substrate 51a. A front surface electrode 51d is disposed with the central portion of the P-type semiconductor layer 51b open, and a back surface electrode 51e is disposed on the N-type semiconductor layer 51c.
 P型半導体層51bの中央部上は、光が入るように開口して受光面には電極は形成していない。 The central portion of the P-type semiconductor layer 51b is opened so that light can enter, and no electrode is formed on the light receiving surface.
 図3は、図1の放射線検出素子5の別の単体事例としてアバランシェフォトダイオードの要部構成例を模式的に示す縦断面図である。 FIG. 3 is a longitudinal sectional view schematically showing an example of the configuration of the main part of an avalanche photodiode as another single case of the radiation detection element 5 of FIG.
 図3において、アバランシェフォトダイオード52は、半導体基板52aの表面にn-領域52bが設けられ、n-領域52b内にその表面側から中央部の所定範囲でP型領域52cが設けられ、さらにその周囲を取り囲んで覆うようにp-領域52dが設けられている。n-領域52b、P型領域52cおよびp-領域52dの表面側に保護膜52eが形成されている。P型領域52c上を開口するように保護膜52e上に遮光メタル52fが形成されている。P側電極52gは、コンタクト層52hを介してP型領域52cの中央部分に接続するように設けられ、N側電極52iは半導体基板52aの裏面に設けられている。 In FIG. 3, an avalanche photodiode 52 has an n− region 52b provided on the surface of a semiconductor substrate 52a, and a p-type region 52c provided in a predetermined range from the surface side to the center in the n− region 52b. A p-region 52d is provided so as to surround and cover the periphery. A protective film 52e is formed on the surface side of n-region 52b, P-type region 52c, and p-region 52d. A light shielding metal 52f is formed on the protective film 52e so as to open on the P-type region 52c. The P-side electrode 52g is provided so as to be connected to the central portion of the P-type region 52c through the contact layer 52h, and the N-side electrode 52i is provided on the back surface of the semiconductor substrate 52a.
 次に、本実施形態1の放熱について詳細に説明する。 Next, heat dissipation according to the first embodiment will be described in detail.
 以上のような利点を持つSOI構造を用いた放射線検出用半導体装置20であるが、薄い単結晶シリコン層4に形成された周辺回路素子は、その周囲をシリコン酸化膜などの絶縁体で覆われた構造となっており、MOSトランジスタのチャネル形成領域で発生したジュール熱は、絶縁体層2やゲート絶縁膜を介して放熱されることになるが、単結晶シリコンの熱伝導率(約150W/mK)に対して、シリコン酸化膜の熱伝導率(約1.4W/mK)は顕著に小さいため、一般に、SOI
の放熱効率はバルクシリコンと比べて極端に悪いとされている。このため、SOI構造の放射線検出用半導体装置20では、読出し回路8を構成するMOSトランジスタや放射線検出素子5などで発生した熱が外部に逃げにくい、所謂自己発熱(セルフヒーティング)を起こしてしまう。
Although the semiconductor device 20 for radiation detection using the SOI structure having the above advantages, the peripheral circuit element formed in the thin single crystal silicon layer 4 is covered with an insulator such as a silicon oxide film. The Joule heat generated in the channel formation region of the MOS transistor is dissipated through the insulator layer 2 and the gate insulating film, but the thermal conductivity of the single crystal silicon (about 150 W / mK), the thermal conductivity (about 1.4 W / mK) of the silicon oxide film is remarkably small.
The heat dissipation efficiency is considered to be extremely poor compared to bulk silicon. For this reason, in the SOI structure radiation detection semiconductor device 20, heat generated in the MOS transistor, the radiation detection element 5, and the like constituting the readout circuit 8 causes so-called self-heating (self-heating) that is difficult to escape to the outside. .
 そこで、本実施形態1のSOI構造の放射線検出用半導体装置20では、図1に示すように、厚い単結晶シリコン層3と、放射線検出素子5と、MOSトランジスタを含む周辺回路素子との各上側の配線構造を構成する信号伝送用の金属配線層(1層目および2層目のメタル配線9)および接続孔(それらの間を接続するコンタクト電極10)からなる信号伝送経路を用いて、各2層目のメタル配線9から上層側に延びる各コンタクト電極10Aをそれぞれ介して接続された層間絶縁膜7の上面の熱伝導部11を備えることにより放熱を促進させることが可能となっている。 Therefore, in the SOI structure radiation detection semiconductor device 20 according to the first embodiment, as shown in FIG. 1, each upper side of the thick single crystal silicon layer 3, the radiation detection element 5, and the peripheral circuit element including the MOS transistor. Signal transmission paths comprising a signal transmission metal wiring layer (first layer and second layer metal wiring 9) and connection holes (contact electrodes 10 connecting them) constituting the wiring structure of Heat radiation can be promoted by providing the heat conductive portion 11 on the upper surface of the interlayer insulating film 7 connected via the contact electrodes 10A extending from the second-layer metal wiring 9 to the upper layer side.
 また、拡散層13の上側の配線構造を構成する信号伝送用の金属配線層(1層目および2層目のメタル配線9)および接続孔(それらの間を接続するコンタクト電極10)から層間絶縁膜7の上面の端子12に至る経路とは異なる別系統の放熱経路で、厚い単結晶シリコン層3と、薄い単結晶シリコン層4との上層側に延びる配線構造を構成する金属配線層(1層目および2層目のメタル配線9)および接続孔(それらの間を接続するコンタクト電極10A)から層間絶縁膜7の上面の熱伝導部11を備えることにより放熱を促進させることが可能となっている。 Further, the signal transmission metal wiring layer (the first and second metal wirings 9) and the connection hole (the contact electrode 10 connecting them) constituting the wiring structure above the diffusion layer 13 are insulated from each other. A metal wiring layer (1) that forms a wiring structure extending to the upper side of the thick single crystal silicon layer 3 and the thin single crystal silicon layer 4 in a different heat dissipation path different from the path to the terminal 12 on the upper surface of the film 7 By providing the heat conduction part 11 on the upper surface of the interlayer insulating film 7 from the metal wiring 9 of the second and second layers) and the connection holes (contact electrodes 10A connecting them), it becomes possible to promote heat dissipation. ing.
 つまり、厚い単結晶シリコン層3の表面部に拡散層13が設けられ、その拡散層13の表面にコンタクト電極10の一端が接続されその他端が絶縁体層2および単結晶シリコン層4を貫通して1層目のメタル配線9に接続され、その1層目のメタル配線9は別のコンタクト電極10さらに2層目メタル配線9を介して上に延びて接続された層間絶縁膜7の上面の端子12に電気的に接続されて、端子12から拡散層13に電位固定用の電圧が印加される。 That is, the diffusion layer 13 is provided on the surface of the thick single crystal silicon layer 3, one end of the contact electrode 10 is connected to the surface of the diffusion layer 13, and the other end penetrates the insulator layer 2 and the single crystal silicon layer 4. Connected to the first layer metal wiring 9, and the first layer metal wiring 9 extends upward through another contact electrode 10 and further through the second layer metal wiring 9 and is connected to the upper surface of the interlayer insulating film 7. Electrically connected to the terminal 12, a potential fixing voltage is applied from the terminal 12 to the diffusion layer 13.
 また、下側の厚い単結晶シリコン層3の表面部に放熱用のコンタクト電極10Aの一端が接続されその他端が1層目のメタル配線9、放熱用の別のコンタクト電極10Aを介して2層目のメタル配線9に接続されると共に、上側の単結晶シリコン層4の表面部に放熱用のコンタクト電極10Aの一端が接続されその
他端が1層目のメタル配線9さらに放熱用の別のコンタクト電極10Aを介して2層目のメタル配線9に接続されている。これらの各2層目のメタル配線9から上層側に延びる各コンタクト電極10Aをそれぞれ介して層間絶縁膜7の上面の熱伝導部11に接続することにより放熱を促進することが可能となる。
Further, one end of a heat dissipation contact electrode 10A is connected to the surface portion of the lower thick single crystal silicon layer 3, and the other end is connected to the first layer of metal wiring 9 and another layer of heat dissipation via another contact electrode 10A. One end of a heat dissipation contact electrode 10A is connected to the surface portion of the upper single crystal silicon layer 4 and the other end is connected to the first metal wiring 9 and another contact for heat dissipation. It is connected to the second level metal wiring 9 through the electrode 10A. Heat radiation can be promoted by connecting to the heat conduction portion 11 on the upper surface of the interlayer insulating film 7 through each contact electrode 10A extending from the second-layer metal wiring 9 to the upper layer side.
 この熱伝導部11の熱伝導率は、シリコンやシリコン酸化膜の熱導電率よりも高ければよく、絶縁性を有していることが望ましい。このようにすることにより、放熱効率を向上させることができる。また、本実施形態1の熱伝導部11の熱伝導率は、1.2W/(mK)以上、さらには1.5W/(mK)以上であることが望ましい。このようにすることにより、放熱効率をより一層向上させることができる。 The thermal conductivity of the heat conducting part 11 should be higher than the thermal conductivity of silicon or silicon oxide film, and preferably has an insulating property. By doing in this way, heat dissipation efficiency can be improved. Further, the thermal conductivity of the heat conducting unit 11 of the first embodiment is desirably 1.2 W / (mK) or more, and more desirably 1.5 W / (mK) or more. By doing in this way, heat dissipation efficiency can be improved further.
 また、熱伝導部11はダイヤモンドライクカーボン膜から構成されているが、これ以外の材質であってもよい。特に、ダイヤモンドライクカーボン膜の熱伝導率は、30W/(mK)~500W/(mK)にもなるので、放熱効率をより一層向上させることができる。ダイヤモンドライクカーボンは、発熱の際の格子振動により放熱が行われるため、放熱速度が速い特徴を持っている。 Further, although the heat conducting part 11 is composed of a diamond-like carbon film, other materials may be used. In particular, since the thermal conductivity of the diamond-like carbon film is 30 W / (mK) to 500 W / (mK), the heat dissipation efficiency can be further improved. Diamond-like carbon is characterized by a high heat release rate because heat is released by lattice vibration during heat generation.
 また、熱伝導部11はシリコンまたはシリコン酸化膜よりも熱伝導率が高い材料であれば、ダイヤモンドライクカーボン単層に限定されるものではなく、ダイヤモンドライクカーボンの薄膜と材質の異なる他の薄膜の層を少なくとも一層備えていてもよく、各層の膜厚や各膜を構成する材料の含有率やその分布を変えることで放熱性能を用途に応じて調整することも可能である。 In addition, the heat conducting portion 11 is not limited to a diamond-like carbon single layer as long as it has a higher thermal conductivity than silicon or a silicon oxide film, and other thin films of different materials from the diamond-like carbon thin film. At least one layer may be provided, and the heat dissipation performance can be adjusted according to the application by changing the film thickness of each layer, the content ratio of the material constituting each film, and the distribution thereof.
 なお、ダイヤモンドライクカーボンからなる絶縁性高放熱材料膜は、絶縁性能を考慮し、含有する水素の原子割合が35パーセント以上であり40パーセント以下であることが好ましい。このダイヤモンドライクカーボンは絶縁体であり、信号伝送用の金属配線層(1層目および2層目のメタル配線9)および接続孔(それらの間を接続するコンタクト電極10)に接続する同じ経路でも短絡など信号伝送に悪影響を与えない。このため、信号配線(1層目および2層目のメタル配線9)をそのまま利用してもよく、この場合、レイアウト面積の増加を抑えることが可能である。 The insulating high heat dissipation material film made of diamond-like carbon preferably has an atomic ratio of hydrogen of 35% or more and 40% or less in consideration of insulation performance. This diamond-like carbon is an insulator, and even on the same path connected to the metal wiring layer for signal transmission (the first and second metal wirings 9) and the connection hole (the contact electrode 10 connecting them). Does not adversely affect signal transmission such as short circuit. For this reason, the signal wiring (first-layer and second-layer metal wiring 9) may be used as it is, and in this case, an increase in layout area can be suppressed.
 また、金属配線層は電気的配線としては使用されていないダミーメタルであってもよく、図1に示したように、熱伝導部11と接続するために設けられた専用のメタル配線層であってもよい。 Further, the metal wiring layer may be a dummy metal that is not used as an electrical wiring, and is a dedicated metal wiring layer provided for connection to the heat conducting section 11 as shown in FIG. May be.
 これに加えて、放射線検出用半導体装置20では、通常は支持基板としてのみ利用する厚い単結晶シリコン層3にフォトダイオードやアバランシェフォトダイオードからなる放射線検出素子5を多数形成するため、これのための読出し回路8のMOSトランジスタに加えて放射線検出素子5による発熱も無視できない。フォトダイオードでも同様の問題が発生するが、特に、ゲインが高いアバランシェフォトダイオードを使用した場合に、発熱による温度上昇の影響を受け、アバランシェフォトダイオードのバイアス電圧に対する増倍率が大きく変動してしまう。これを図4に示している。 In addition to this, in the semiconductor device 20 for radiation detection, a large number of radiation detection elements 5 made of photodiodes and avalanche photodiodes are formed in the thick single crystal silicon layer 3 that is usually used only as a support substrate. Heat generated by the radiation detection element 5 in addition to the MOS transistor of the readout circuit 8 cannot be ignored. The same problem occurs in the photodiode, but particularly when an avalanche photodiode having a high gain is used, the multiplication factor with respect to the bias voltage of the avalanche photodiode greatly fluctuates due to the influence of temperature rise due to heat generation. This is shown in FIG.
 図4は、アバランシェフォトダイオードの周辺温度をパラメータとしてアバランシェフォトダイオードのバイアス電圧(V)に対する増倍率の関係を示した図である。 FIG. 4 is a diagram showing the relationship of the multiplication factor with respect to the bias voltage (V) of the avalanche photodiode using the ambient temperature of the avalanche photodiode as a parameter.
 図4に示すように、アバランシェフォトダイオードの受光強度と、アバランシェフォトダイオードから出力される電気信号の出力レベルとは比例関係にあり、増倍率は、その比例関係の比例定数を決定する。アバランシェフォトダイオードは、例えば70V以上というような高電圧のバイアス電圧を印加することにより、増倍率を高めることができ、高い受光感度を得ることができるので、アバランシェフォトダイオードは微弱な光や放射線検出に好適な放射線検出素子5である。 As shown in FIG. 4, the light reception intensity of the avalanche photodiode and the output level of the electric signal output from the avalanche photodiode are in a proportional relationship, and the multiplication factor determines the proportionality constant of the proportional relationship. The avalanche photodiode can increase the multiplication factor by applying a high bias voltage such as 70 V or higher, and can obtain high light receiving sensitivity. Therefore, the avalanche photodiode can detect weak light and radiation. The radiation detecting element 5 is suitable for the above.
 しかしながら、アバランシェフォトダイオードには以下に示すような問題がある。 However, avalanche photodiodes have the following problems.
 即ち、アバランシェフォトダイオードのバイアス電圧と増倍率との関係は、アバランシェフォトダイオードの周囲温度が摂氏0度のときには図4の実線T0に示されるような関係となり、アバランシェフォトダイオードの周囲温度が摂氏25度のときには図4の実線T25に示されるような関係となり、アバランシェフォトダイオードの周囲温度が摂氏80度のときには図4の実線T80に示されるような関係になる。 That is, the relationship between the bias voltage of the avalanche photodiode and the multiplication factor is as shown by a solid line T0 in FIG. 4 when the ambient temperature of the avalanche photodiode is 0 degrees Celsius, and the ambient temperature of the avalanche photodiode is 25 degrees Celsius. When the temperature is about 60 degrees Celsius, the relationship is as shown by a solid line T80 in FIG. 4. When the ambient temperature of the avalanche photodiode is 80 degrees Celsius, the relationship is as shown by a solid line T80 in FIG.
 このように、アバランシェフォトダイオードは周囲温度が変動すると、アバランシェフォトダイオードの設定したバイアス電圧に対する増倍率が大きく変動してしまう。このために、周囲温度の変動を考慮せずに、一定のバイアス電圧をアバランシェフォトダイオードに印加していると、周囲温度の変動によってアバランシェフォトダイオードの増倍率が変動し、アバランシェフォトダイオードから出力する電気信号の出力レベルが変動してしまうという問題が発生する。 Thus, when the ambient temperature of the avalanche photodiode varies, the multiplication factor with respect to the bias voltage set by the avalanche photodiode greatly varies. For this reason, if a constant bias voltage is applied to the avalanche photodiode without considering the variation in the ambient temperature, the multiplication factor of the avalanche photodiode varies due to the variation in the ambient temperature, and output from the avalanche photodiode. There arises a problem that the output level of the electric signal fluctuates.
 このような問題の発生を防止するために、アバランシェフォトダイオードにバイアス電圧を供給するバイアス回路に温度補償を設けることが提案されているが、回路面積の増大に加えてバイアス回路からの発熱も増大してしまう。 In order to prevent such a problem from occurring, it has been proposed to provide temperature compensation for a bias circuit that supplies a bias voltage to the avalanche photodiode. However, in addition to an increase in circuit area, heat generation from the bias circuit also increases. Resulting in.
 そこで、熱伝導部11にシリコンまたはシリコン酸化膜の熱導電率よりも高い絶縁性材料を採用することで影響を抑えることができる。また、定電流を流すのに必要なブレークダウン電圧の経時変化は極めて少なく、素子寿命の長期化に有効である。また、放射線検出素子5に加え、薄い単結晶シリコン層4に形成されるMOSトランジスタや受動素子の温度上昇に伴う素子特性の劣化も抑制され、素子寿命の長期化に有効である。 Therefore, the influence can be suppressed by adopting an insulating material higher than the thermal conductivity of silicon or silicon oxide film for the heat conducting portion 11. In addition, the breakdown voltage necessary for passing a constant current hardly changes with time, and is effective for extending the device life. Further, in addition to the radiation detection element 5, the deterioration of element characteristics due to the temperature rise of the MOS transistor and the passive element formed in the thin single crystal silicon layer 4 is suppressed, which is effective in extending the element life.
 以上により、本実施形態1によれば、絶縁体層2の下面に第1の半導体層3(または半導体基板)が配設され、絶縁体層2の上面に第2の半導体層4が配設されたSOI構造を有し、第1の半導体層3(または該半導体基板)に放射線検出素子4が形成され、第2の半導体層4およびその周辺部に周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタ)が形成され、読出し回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置20において、第1の半導体層3(または半導体基板)と、放射線検出素子5と、第2の半導体層4と、周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタ)と、配線構造(メタル配線9とコンタクト電極6、10)とのうちの少なくともいずれかに接続された信号伝送経路とは異なる別系統の放熱経路または信号伝送経路から上側に延びて接続される放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている。 As described above, according to the first embodiment, the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2. The radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion. In the radiation detection semiconductor device 20 in which a circuit element (MOS transistor) is formed and a wiring structure connected to the readout circuit element is formed above the first semiconductor layer 3 (or semiconductor substrate), radiation detection At least of the element 5, the second semiconductor layer 4, the read circuit element (MOS transistor) of the read circuit 8 as a peripheral circuit element, and the wiring structure (metal wiring 9 and contact electrodes 6, 10). A heat conduction part 11 that is a heat-dissipating insulating high heat-dissipating material film that extends upward from a heat dissipation path or a signal transmission path of a different system different from the signal transmission path connected to one another is disposed. .
 これによって、十分な放熱効果が得られる絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部11を放熱用に設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。
(実施形態2)
 上記実施形態1では、上層側に延びる放熱用のコンタクト電極10Aを層間絶縁膜7の上面の放熱用の熱伝導部11に接続した場合について説明したが、本実施形態2では、厚い単結晶シリコン層3を貫通して下側に延びる放熱用のコンタクト電極10Aを介して厚い単結晶シリコン層3の下面側に設けられた放熱用の熱伝導部11に接続した場合について説明する。
Thus, an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
(Embodiment 2)
In the first embodiment, the case where the heat radiation contact electrode 10A extending to the upper layer side is connected to the heat conduction portion 11 for heat radiation on the upper surface of the interlayer insulating film 7 has been described. In the second embodiment, thick single crystal silicon is used. A case will be described in which a heat radiating heat conducting portion 11 provided on the lower surface side of the thick single crystal silicon layer 3 is connected via a heat radiating contact electrode 10A extending through the layer 3 and extending downward.
 図5は、本発明の実施形態2の放射線検出用半導体装置20Aにおける要部構成例を示す断面図である。なお、図5では、図1と同様の作用効果を奏する部材には同一の符号を付して説明する。 FIG. 5 is a cross-sectional view showing a configuration example of a main part of the radiation detecting semiconductor device 20A according to the second embodiment of the present invention. In FIG. 5, members having the same functions and effects as those in FIG.
 図5において、本実施形態2のSOI構造を持つ放射線検出用半導体装置20Aは、SOI構造として、絶縁体層2と、この絶縁体層2の下面に配置された第1の半導体層(または半導体基板)としての厚い単結晶シリコン層3(またはシリコン基板)と、絶縁体層2の上面に配置された第2の半導体層としての薄い単結晶シリコン層4とを有している。このSOI構造の厚い単結晶シリコン層3には、フォトダイオードやアバランシェフォトダイオードなどの放射線検出素子5が形成されている。そのSOI構造の薄い単結晶シリコン層4には、絶縁体層2および層間絶縁層7内に形成された埋め込み性のよいタングステンWなどからなるコンタクト電極6、10によりメタル配線9を介して、放射線検出素子5で検出した信号電荷を薄い単結晶シリコン層4側に読み出して増幅など処理する周辺回路としての読出し回路8が形成されている。 In FIG. 5, the radiation detection semiconductor device 20 </ b> A having the SOI structure according to the second embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure. A thick single crystal silicon layer 3 (or silicon substrate) as a substrate) and a thin single crystal silicon layer 4 as a second semiconductor layer disposed on the upper surface of the insulator layer 2. A radiation detection element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure. The thin single-crystal silicon layer 4 having the SOI structure is exposed to radiation via the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2 and the interlayer insulating layer 7. A readout circuit 8 is formed as a peripheral circuit for reading out signal charges detected by the detection element 5 to the thin single crystal silicon layer 4 side and processing such as amplification.
 信号伝送用の金属配線層(メタル配線9)および接続孔(コンタクト電極6、10)とは異なる別系統の経路で厚い単結晶シリコン層3および薄い単結晶シリコン層4の各面から下側に延びるコンタクト電極10Aを介して接続される熱伝導部11を、絶縁体層2の下部の厚い単結晶シリコン層3の下面の一部面(裏面電極14以外の面)に広く設けて放熱を促進させるようになっている。 From each surface of the thick single crystal silicon layer 3 and the thin single crystal silicon layer 4 to the lower side through a path of a different system different from the metal wiring layer (metal wiring 9) and the connection holes (contact electrodes 6, 10) for signal transmission The heat conduction part 11 connected through the extending contact electrode 10A is provided widely on a part of the lower surface of the thick single crystal silicon layer 3 below the insulator layer 2 (the surface other than the back electrode 14) to promote heat dissipation. It is supposed to let you.
 この熱伝導部11の熱伝導率は、シリコンまたはシリコン酸化膜の熱導電率よりも高ければよく、絶縁性を有していることが望ましい。このようにすることにより、放熱効率をより一層向上させることができる。また、熱伝導部11の熱伝導率は、1.2W/(mK)以上または1.5W/(mK)以上であることが望ましい。このようにすることにより、放熱効率をより一層向上させることができる。また、熱伝導部11はダイヤモンドライクカーボン膜から構成されていてもよい。特に、ダイヤモンドライクカーボン膜の熱伝導率は、30W/(mK)~500W/(mK)程度にもなるので、放熱効率をより一層向上させることができる。また、熱伝導部11はシリコンまたはシリコン酸化膜よりも熱伝導率が高い材料であれば、ダイヤモンドライクカーボン単層に限定されるものではなく、ダイヤモンドライクカーボンの薄膜と、材質の異なる他の薄膜の層を少なくとも一層とを備えていてもよく、各層の膜厚や各膜を構成する材料の含有率やその分布を変えることで放熱性能を用途に応じて調整することも可能である。 The thermal conductivity of the heat conducting portion 11 only needs to be higher than the thermal conductivity of silicon or silicon oxide film, and desirably has an insulating property. By doing in this way, heat dissipation efficiency can be improved further. Further, the thermal conductivity of the heat conducting unit 11 is desirably 1.2 W / (mK) or higher or 1.5 W / (mK) or higher. By doing in this way, heat dissipation efficiency can be improved further. Further, the heat conducting part 11 may be composed of a diamond-like carbon film. In particular, since the thermal conductivity of the diamond-like carbon film is about 30 W / (mK) to 500 W / (mK), the heat dissipation efficiency can be further improved. In addition, the heat conduction part 11 is not limited to a diamond-like carbon single layer as long as it has a higher thermal conductivity than silicon or a silicon oxide film, but is not limited to a diamond-like carbon thin film and other thin films of different materials. These layers may be provided with at least one layer, and the heat dissipation performance can be adjusted according to the application by changing the film thickness of each layer, the content ratio of the material constituting each film, and its distribution.
 なお、ダイヤモンドライクカーボンからなる絶縁性高放熱材料膜は、絶縁性能を考慮して、含有する水素の原子割合が35パーセント以上40パーセント以下であることが好ましい。ダイヤモンドライクカーボンは絶縁体であり、信号伝送用の金属配線層(メタル配線9)および接続孔(コンタクト電極6、10)と同じ経路を用いても短絡など信号伝送に悪影響を与えないため、信号配線をそのまま利用してもよい。この場合、レイアウト面積の増加を抑えることが可能である。また、金属配線層(メタル配線9)は電気的配線としては使用されていないダミーメタルであってもよく、ここでは図示していないが、熱伝導部11と接続するために設けられた専用のメタル配線層(メタル配線9)であってもよい。 The insulating high heat dissipation material film made of diamond-like carbon preferably has an atomic ratio of hydrogen contained in the range of 35% to 40% in consideration of insulation performance. Diamond-like carbon is an insulator and does not adversely affect signal transmission such as short circuit even if the same path as the signal transmission metal wiring layer (metal wiring 9) and connection holes (contact electrodes 6, 10) is used. The wiring may be used as it is. In this case, an increase in layout area can be suppressed. The metal wiring layer (metal wiring 9) may be a dummy metal that is not used as an electrical wiring. Although not shown here, the metal wiring layer (metal wiring 9) is a dedicated metal circuit provided for connection to the heat conducting unit 11. It may be a metal wiring layer (metal wiring 9).
 これに加えて、放射線検出用半導体装置20Aにおいて、通常は支持基板としてのみ利用する厚い単結晶シリコン層3にフォトダイオードやアバランシェフォトダイオードからなる放射線検出素子5を多数形成するため、MOSトランジスタに加え、放射線検出素子5による発熱も無視できない。フォトダイオードでも同様の問題が発生するが、特に、ゲインが高いアバランシェフォトダイオードを使用した場合、発熱による温度上昇の影響を受け、放射線検出素子5としてアバランシェフォトダイオードのバイアス電圧に対する増倍率が変動してしまう。 In addition to this, in the radiation detection semiconductor device 20A, in order to form a large number of radiation detection elements 5 made of photodiodes and avalanche photodiodes in the thick single crystal silicon layer 3 that is normally used only as a support substrate, in addition to the MOS transistors, The heat generated by the radiation detection element 5 cannot be ignored. The same problem occurs in the photodiode. In particular, when an avalanche photodiode having a high gain is used, the multiplication factor with respect to the bias voltage of the avalanche photodiode varies as the radiation detection element 5 due to the influence of temperature rise due to heat generation. End up.
 このために、周囲温度の変動を考慮せずに常に一定のバイアス電圧を放射線検出素子5としてのアバランシェフォトダイオードに印加していると、周囲温度の変動によってアバランシェフォトダイオードの増倍率が変動し、これにより、アバランシェフォトダイオードから出力する電気信号の出力レベルが変動してしまうという問題が発生する。そのような問題の発生を防止するために、アバランシェフォトダイオードにバイアス電圧を供給するバイアス回路に温度補償を設けることが提案されているが、回路面積の増大に加えてバイアス回路からの発熱も増大してしまう。 For this reason, when a constant bias voltage is always applied to the avalanche photodiode as the radiation detection element 5 without considering the variation in the ambient temperature, the multiplication factor of the avalanche photodiode varies due to the variation in the ambient temperature. This causes a problem that the output level of the electrical signal output from the avalanche photodiode varies. In order to prevent the occurrence of such problems, it has been proposed to provide temperature compensation for the bias circuit that supplies a bias voltage to the avalanche photodiode, but in addition to the increase in circuit area, heat generation from the bias circuit also increases. Resulting in.
 そこで、熱伝導部11にシリコンまたはシリコン酸化膜の熱導電率よりも高い絶縁性材料を採用することにより悪影響を抑えることができる。また、定電流を流すのに必要なブレークダウン電圧の経時変化は極めて少なく、素子寿命の長期化に有効である。また、放射線検出素子5に加え、薄い単結晶シリコン層4に形成されるMOSトランジスタや受動素子の温度上昇に伴う素子特性の劣化も抑制されて、素子寿命の長期化に有効である。 Therefore, adverse effects can be suppressed by adopting an insulating material higher than the thermal conductivity of silicon or silicon oxide film for the heat conducting portion 11. In addition, the breakdown voltage necessary for passing a constant current hardly changes with time, and is effective for extending the device life. Further, in addition to the radiation detection element 5, the deterioration of the element characteristics due to the temperature rise of the MOS transistor and the passive element formed in the thin single crystal silicon layer 4 is suppressed, which is effective in extending the element life.
 以上により、本実施形態2によれば、絶縁体層2の下面に第1の半導体層3(または半導体基板)が配設され、絶縁体層2の上面に第2の半導体層4が配設されたSOI構造を有し、第1の半導体層3(または該半導体基板)に放射線検出素子4が形成され、第2の半導体層4およびその周辺部に周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタ)が形成され、読出し回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置20Aにおいて、第1の半導体層3(または半導体基板)と第2の半導体層4とにそれぞれ接続された信号伝送経路とは異なる別系統の放熱経路からコンタクト電極10Aを介して下側に延びて接続される放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている。このように、コンタクト電極10Aを介して下側に放熱用の絶縁性高放熱材料膜である熱伝導部11に接続する方が熱発生源からの接続距離が短くなってその分だけ放熱効果も良好となる。 As described above, according to the second embodiment, the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2. The radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion. In the semiconductor device for radiation detection 20A in which a circuit element (MOS transistor) is formed and a wiring structure connected to the readout circuit element is formed above, the first semiconductor layer 3 (or the semiconductor substrate) and the second semiconductor layer 3 A heat conducting portion 11 which is an insulating high heat dissipating material film for heat radiation extending downward from a heat radiation path of a different system from the signal transmission path connected to the semiconductor layer 4 via the contact electrode 10A. Is arranged To have. Thus, the connection distance from the heat generation source is shortened by connecting the heat conductive portion 11 which is an insulating high heat dissipation material film for heat dissipation to the lower side via the contact electrode 10A. It becomes good.
 これによって、十分な放熱効果が得られる絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部11を放熱用に設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。
(実施形態3)
 上記実施形態1では、上層側に延びる放熱用のコンタクト電極10Aを層間絶縁膜7の上面の放熱用の熱伝導部11に接続した場合について説明し、上記実施形態2では、厚い単結晶シリコン層3を貫通して下側に延びる放熱用のコンタクト電極10Aを厚い単結晶シリコン層3の下面側の放熱用の熱伝導部11に接続した場合について説明したが、本実施形態3では、上層側に延びる放熱用のコンタクト電極10Aを層間絶縁膜7の上面の放熱用の熱伝導部11に接続すると共に、厚い単結晶シリコン層3を貫通して下側に延びる放熱用のコンタクト電極10Aを厚い単結晶シリコン層3の下面側の放熱用の熱伝導部11に接続した場合について説明する。
Thus, an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
(Embodiment 3)
In the first embodiment, the case where the heat radiation contact electrode 10A extending to the upper layer side is connected to the heat conduction portion 11 for heat radiation on the upper surface of the interlayer insulating film 7 will be described. In the second embodiment, a thick single crystal silicon layer is used. 3, the heat dissipation contact electrode 10 </ b> A extending downward through 3 is connected to the heat dissipation thermal conduction portion 11 on the lower surface side of the thick single crystal silicon layer 3. The heat dissipation contact electrode 10A extending to the upper side of the interlayer insulating film 7 is connected to the heat dissipation heat conducting portion 11 on the upper surface of the interlayer insulating film 7 and the heat dissipation contact electrode 10A extending downward through the thick single crystal silicon layer 3 is thickened. A case where the single crystal silicon layer 3 is connected to the heat conducting portion 11 for heat radiation on the lower surface side will be described.
 図6は、本発明の実施形態3の放射線検出用半導体装置20Bにおける要部構成例を示す断面図である。なお、図6では、図1と同様の作用効果を奏する部材には同一の符号を付して説明する。 FIG. 6 is a cross-sectional view showing a configuration example of a main part of the radiation detecting semiconductor device 20B according to the third embodiment of the present invention. In FIG. 6, members having the same functions and effects as those in FIG.
 図6において、本実施形態3のSOI構造を持つ放射線検出用半導体装置20Bは、SOI構造として、絶縁体層2と、この絶縁体層2の下面に配置された第1の半導体層(または半導体基板)としての単結晶シリコン層3(またはシリコン基板)と、絶縁体層2の上面に配置された第2の半導体層としての単結晶シリコン層4とを有している。このSOI構造の厚い単結晶シリコン層3には、フォトダイオードやアバランシェフォトダイオードなどの放射線検出素子5が形成されている。そのSOI構造の薄い単結晶シリコン層4には、絶縁体層2内に形成された埋め込み性のよいタングステンWなどからなるコンタクト電極6、10によりメタル配線9を介して絶縁体層2から薄い単結晶シリコン層4およびその上の層間絶縁層7内を通して放射線検出素子5で検出した信号電荷を読み出して増幅など処理する周辺回路としての読出し回路8が形成されている。 In FIG. 6, the radiation detecting semiconductor device 20B having the SOI structure of the third embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure. A single crystal silicon layer 3 (or silicon substrate) as a substrate) and a single crystal silicon layer 4 as a second semiconductor layer disposed on the upper surface of the insulator layer 2. A radiation detection element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure. The thin single crystal silicon layer 4 having the SOI structure is formed on the thin single crystal silicon layer 4 from the insulator layer 2 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2. A readout circuit 8 is formed as a peripheral circuit for reading out the signal charges detected by the radiation detection element 5 through the crystalline silicon layer 4 and the interlayer insulating layer 7 thereabove and processing such as amplification.
 信号伝送用の金属配線層(メタル配線9)および接続孔(コンタクト電極6、10)とは異なる放熱経路21で上層側および下層側に延びるメタル配線9およびコンタクト電極10Aを介して接続した熱伝導部11を、絶縁体層2の下部の単結晶シリコン層3の下面側と層間絶縁層7上とにそれぞれ形成して放熱を促進させている。 Heat conduction connected via a metal wiring 9 and contact electrode 10A extending to the upper layer side and the lower layer side through a heat radiation path 21 different from the metal wiring layer (metal wiring 9) and the connection holes (contact electrodes 6, 10) for signal transmission The portions 11 are respectively formed on the lower surface side of the single crystal silicon layer 3 below the insulator layer 2 and on the interlayer insulating layer 7 to promote heat dissipation.
 この熱伝導部11の熱伝導率は、シリコンまたはシリコン酸化膜の熱導電率よりも高ければよく、絶縁性を有していることが望ましい。このようにすることにより、放熱効率をより一層向上させることができる。また、熱伝導部11の熱伝導率を1.2W/(mK)以上または1.5W/(mK)以上とすることが望ましい。このようにすることにより、放熱効率をより一層向上させることができる。また、熱伝導部11はダイヤモンドライクカーボン膜から構成されていてもよい。特に、ダイヤモンドライクカーボン膜の熱伝導率は、30W/(mK)~500W/(mK)程度にもなるので、放熱効率をより一層向上させることができる。また、ダイヤモンドライクカーボン(DLC)は、非晶質であるために、その熱伝導に異方性はなく、その熱伝導は等方的であり、例えばグラファイトのように熱伝送率が結晶方位によらず、熱を等方的に放熱することができる。また、ダイヤモンドライクカーボン(DLC)は、線熱膨張率が3×10^-6 ~5×10^-6 /Kと小さい。したがって、ダイヤモンドライクカーボン(DLC)は、積層構造を有するデバイスの構成材料として好適である。また、ダイヤモンドライクカーボン膜(DLC膜)は、グラファイトに比べて膜の表面が平坦であるため、ダイヤモンドライクカーボン膜(DLC膜)を含む積層構造では、ダイヤモンドライクカーボン膜(DLC膜)の表面凹凸に起因する局所的な応力が発生するのを抑制することができる。 The thermal conductivity of the heat conducting portion 11 only needs to be higher than the thermal conductivity of silicon or silicon oxide film, and desirably has an insulating property. By doing in this way, heat dissipation efficiency can be improved further. Moreover, it is desirable that the heat conductivity of the heat conducting portion 11 is 1.2 W / (mK) or more or 1.5 W / (mK) or more. By doing in this way, heat dissipation efficiency can be improved further. Further, the heat conducting part 11 may be composed of a diamond-like carbon film. In particular, since the thermal conductivity of the diamond-like carbon film is about 30 W / (mK) to 500 W / (mK), the heat dissipation efficiency can be further improved. Further, since diamond-like carbon (DLC) is amorphous, its thermal conduction is not anisotropic and its thermal conduction is isotropic. For example, the heat transfer rate is in the crystal orientation like graphite. Regardless, heat can be dissipated isotropically. Diamond-like carbon (DLC) has a low coefficient of linear thermal expansion of 3 × 10 ^ -6 to 5 × 10 -6 / K. Therefore, diamond-like carbon (DLC) is suitable as a constituent material of a device having a laminated structure. Further, since the surface of the diamond-like carbon film (DLC film) is flatter than that of graphite, the surface unevenness of the diamond-like carbon film (DLC film) in the laminated structure including the diamond-like carbon film (DLC film). It is possible to suppress the occurrence of local stress due to the above.
 また、熱伝導部11はシリコン酸化膜よりも熱伝導率が高い材料であれば、ダイヤモンドライクカーボン単層に限定されるものではなく、ダイヤモンドライクカーボンの薄膜と、その材質と異なる他の薄膜の層を少なくとも一層とを備えていてもよく、各層の膜厚や各膜を構成する材料の含有率やその分布を変えることにより放熱性能を用途に応じて調整することも可能である。 In addition, the heat conduction part 11 is not limited to a diamond-like carbon single layer as long as it has a higher thermal conductivity than that of a silicon oxide film, but is not limited to a diamond-like carbon thin film and other thin films different from the material. At least one layer may be provided, and the heat dissipation performance can be adjusted according to the use by changing the film thickness of each layer, the content ratio of the material constituting each film, and the distribution thereof.
 ダイヤモンドライクカーボンからなる絶縁性高放熱材料膜は、絶縁性能を考慮して、含有する水素の原子割合が35パーセント以上40パーセント以下であることが好ましい。ダイヤモンドライクカーボンは絶縁体であり、信号伝送用の金属配線層(メタル配線9)および接続孔(コンタクト電極6、10)と同じ経路22に用いても短絡など信号伝送に悪影響を与えないため、信号配線をそのまま利用してもよい。この場合、レイアウト面積の増加を抑えることが可能である。また、金属配線層(メタル配線9)は、電気的配線としては使用されていないダミーメタルであってもよく、図6の経路21に示したように、放熱用の熱伝導部11と接続するために設けられた専用のメタル配線9および接続孔(コンタクト電極10A)であってもよい。 In the insulating high heat dissipation material film made of diamond-like carbon, it is preferable that the atomic ratio of hydrogen contained is 35% or more and 40% or less in consideration of insulating performance. Diamond-like carbon is an insulator, and even if it is used in the same path 22 as the signal transmission metal wiring layer (metal wiring 9) and connection holes (contact electrodes 6, 10), it does not adversely affect signal transmission such as a short circuit. The signal wiring may be used as it is. In this case, an increase in layout area can be suppressed. Further, the metal wiring layer (metal wiring 9) may be a dummy metal that is not used as an electrical wiring, and is connected to the heat conducting portion 11 for heat dissipation as shown in the path 21 of FIG. For this purpose, a dedicated metal wiring 9 and a connection hole (contact electrode 10A) may be provided.
 加えて、放射線検出用半導体装置20Bでは、通常は支持基板としてのみ利用する厚い単結晶シリコン層3にフォトダイオードやアバランシェフォトダイオードからなる放射線検出素子5を多数形成するため、MOSトランジスタに加えて放射線検出素子5による発熱も無視できない。放射線検出素子5として、フォトダイオードでも同様の問題が発生するが、特に、ゲインが高いアバランシェフォトダイオードを使用した場合には、発熱による温度上昇の影響を受けて、アバランシェフォトダイオードのバイアス電圧に対する増倍率が変動してしまう。 In addition, in the radiation detection semiconductor device 20B, a large number of radiation detection elements 5 made of photodiodes or avalanche photodiodes are formed in the thick single crystal silicon layer 3 that is normally used only as a support substrate. Heat generated by the detection element 5 cannot be ignored. A similar problem occurs with a photodiode as the radiation detection element 5, but in particular, when an avalanche photodiode having a high gain is used, the increase in the bias voltage of the avalanche photodiode is affected by the rise in temperature due to heat generation. The magnification will fluctuate.
 このために、周囲温度の変動を考慮せずに常に一定のバイアス電圧をアバランシェフォトダイオードに印加していると、周囲温度の変動によってアバランシェフォトダイオードの増倍率が変動し、これによって、アバランシェフォトダイオードから出力する電気信号の出力レベルが変動してしまうという問題が発生する。 For this reason, when a constant bias voltage is always applied to the avalanche photodiode without considering the variation in the ambient temperature, the multiplication factor of the avalanche photodiode varies due to the variation in the ambient temperature. This causes a problem that the output level of the electric signal output from the terminal fluctuates.
 このような問題の発生を防止するために、アバランシェフォトダイオードにバイアス電圧を供給するバイアス回路に温度補償を設けることが提案されているが、回路面積の増大に加えてバイアス回路からの発熱も増大してしまう。 In order to prevent such a problem from occurring, it has been proposed to provide temperature compensation for a bias circuit that supplies a bias voltage to the avalanche photodiode. However, in addition to an increase in circuit area, heat generation from the bias circuit also increases. Resulting in.
 そこで、放熱用の熱伝導部11にシリコンまたはシリコン酸化膜の熱導電率よりも高い絶縁性材料を採用することにより悪影響を抑えることができる。また、定電流を流すのに必要なブレークダウン電圧の経時変化は極めて少なく、素子寿命の長期化に有効である。また、放射線検出素子5に加えて、薄い単結晶シリコン層4に形成されるMOSトランジスタや受動素子の温度上昇に伴う素子特性の劣化も抑制され、素子寿命の長期化に有効である。 Therefore, adverse effects can be suppressed by adopting an insulating material higher than the thermal conductivity of silicon or silicon oxide film for the heat conducting portion 11 for heat dissipation. In addition, the breakdown voltage necessary for passing a constant current hardly changes with time, and is effective for extending the device life. Further, in addition to the radiation detection element 5, the deterioration of the element characteristics due to the temperature rise of the MOS transistor and the passive element formed in the thin single crystal silicon layer 4 is suppressed, which is effective in extending the element life.
 以上により、本実施形態3によれば、絶縁体層2の下面に第1の半導体層3(または半導体基板)が配設され、絶縁体層2の上面に第2の半導体層4が配設されたSOI構造を有し、第1の半導体層3(または該半導体基板)に放射線検出素子4が形成され、第2の半導体層4およびその周辺部に周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタ)が形成され、読出し回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置20Bにおいて、第1の半導体層3(または半導体基板)と、放射線検出素子5と、第2の半導体層4と、周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタ)と、配線構造(メタル配線9とコンタクト電極6、10)とのうちの少なくともいずれかに接続された信号伝送経路とは異なる別系統の放熱経路または/および信号伝送経路から上側および下側にそれぞれ延びて接続される各放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている。 As described above, according to the third embodiment, the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2. The radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion. In the semiconductor device for radiation detection 20B in which the circuit element (MOS transistor) is formed and the wiring structure connected to the readout circuit element is formed above, the first semiconductor layer 3 (or the semiconductor substrate) and the radiation detection At least of the element 5, the second semiconductor layer 4, the readout circuit element (MOS transistor) of the readout circuit 8 as a peripheral circuit element, and the wiring structure (metal wiring 9 and contact electrodes 6, 10). A heat conduction part which is an insulating high heat radiation material film for each heat radiation extending from and connected to a heat radiation path of a different system different from the signal transmission path connected to any one of them or / and a signal transmission path. 11 is disposed.
 これによって、十分な放熱効果が得られる絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部11を放熱用に設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。
(実施形態4)
 本実施形態4では、上記本実施形態1~3のいずれかに加えて、または上記本実施形態1~3とは別に、読出し回路8などの周辺回路におけるMOSトランジスタのゲート電極、ソース領域およびドレイン領域、さらに素子分離領域の放熱構成例について説明する。
Thus, an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
(Embodiment 4)
In the fourth embodiment, in addition to any of the first to third embodiments or separately from the first to third embodiments, the gate electrode, the source region, and the drain of the MOS transistor in the peripheral circuit such as the readout circuit 8 A heat dissipation configuration example of the region and further the element isolation region will be described.
 図7は、本発明の実施形態4の放射線検出用半導体装置20Cの読出し回路8などの周辺回路におけるMOSトランジスタのゲート電極の放熱構成例を示す断面図である。なお、図7では、図1と同様の作用効果を奏する部材には同一の符号を付して説明する。 FIG. 7 is a cross-sectional view showing a heat dissipation configuration example of the gate electrode of the MOS transistor in the peripheral circuit such as the readout circuit 8 of the semiconductor device 20C for radiation detection according to the fourth embodiment of the present invention. In FIG. 7, members having the same functions and effects as those in FIG.
 図7において、本実施形態4のSOI構造を持つ放射線検出用半導体装置20Cは、SOI構造として、絶縁体層2と、この絶縁体層2の下面に配置された第1の半導体層(または半導体基板)としての単結晶シリコン層3(またはシリコン基板)と、絶縁体層2の上面に配置された第2の半導体層としての単結晶シリコン層4とを有している。このSOI構造の厚い単結晶シリコン層3には、前述したが、フォトダイオードやアバランシェフォトダイオードなどの放射線検出素子5が形成されている。そのSOI構造の薄い単結晶シリコン層4には、絶縁体層2内に形成された埋め込み性のよいタングステンWなどからなる前述したコンタクト電極6、10によりメタル配線9を介して放射線検出素子5で検出した信号電荷を読み出して増幅など処理する読出し回路8などの周辺回路が形成されている。 In FIG. 7, the radiation detection semiconductor device 20 </ b> C having the SOI structure according to the fourth embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure. A single crystal silicon layer 3 (or silicon substrate) as a substrate) and a single crystal silicon layer 4 as a second semiconductor layer disposed on the upper surface of the insulator layer 2. As described above, a radiation detecting element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure. The thin single crystal silicon layer 4 having the SOI structure is formed on the radiation detection element 5 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2. Peripheral circuits such as a read circuit 8 that reads the detected signal charges and processes them such as amplification are formed.
 読出し回路8などの周辺回路におけるMOSトランジスタが形成されている薄い単結晶シリコン層4の上部に、ゲート酸化膜を介してゲート電極81が形成されている。薄い単結晶シリコン層4には、MOSトランジスタとして、ゲート電極81の下に設けられたチャネル領域82と、チャネル領域82を間に挟むように設けられたソース領域83およびドレイン領域84とが互いに対向して配置されている。 A gate electrode 81 is formed on the thin single crystal silicon layer 4 where the MOS transistor in the peripheral circuit such as the readout circuit 8 is formed via a gate oxide film. In the thin single crystal silicon layer 4, as a MOS transistor, a channel region 82 provided under the gate electrode 81 and a source region 83 and a drain region 84 provided so as to sandwich the channel region 82 are opposed to each other. Are arranged.
 このゲート電極81上に接続された信号配線用のコンタクト電極10を介して信号配線用のメタル配線9に接続され、そのメタル配線9は放熱用のコンタクト電極10Aを介して層間絶縁膜7上の放熱用の熱伝導部11に接続されている。 The signal wiring metal wiring 9 is connected to the signal wiring contact electrode 10 connected on the gate electrode 81, and the metal wiring 9 is connected to the interlayer insulating film 7 through the heat dissipation contact electrode 10A. It is connected to the heat conducting part 11 for heat dissipation.
 このようにして、これらのコンタクト電極10,10Aおよびメタル配線9によりMOSトランジスタのゲート電極81と放熱用の熱伝導部11とが接続されている。ゲート電極81で発生した熱をコンタクト電極10,10Aおよびメタル配線9を介して伝導させて熱伝導部11から外部に放熱させることができる。 Thus, the gate electrode 81 of the MOS transistor and the heat conducting part 11 for heat dissipation are connected by the contact electrodes 10 and 10A and the metal wiring 9. The heat generated in the gate electrode 81 can be conducted through the contact electrodes 10 and 10A and the metal wiring 9 to be radiated from the heat conducting portion 11 to the outside.
 放熱用のコンタクト電極10Aは複数形成してもよく、信号配線用のコンタクト電極10と共に用いてもよく、また、信号配線用のコンタクト電極10と放熱用の専用コンタクト電極10Aとを金属配線(メタル配線9)に並行に共に配置してもよい。また、熱伝導部11を厚いシリコン層3である絶縁体層2の下部の単結晶シリコン層3の下部に設けてもよく、熱伝導部11は図7に示す上部以外にも、熱伝導部11は、チャネル領域82の下面の下側またはその上下両面の上側および下側に放熱用のコンタクト電極10Aなどを介して設けてもよい。 A plurality of contact electrodes 10A for heat dissipation may be formed, and may be used together with the contact electrode 10 for signal wiring. Also, the contact electrode 10 for signal wiring and the dedicated contact electrode 10A for heat dissipation are made of metal wiring (metal You may arrange | position together in parallel with the wiring 9). Further, the heat conduction part 11 may be provided below the single crystal silicon layer 3 below the insulator layer 2 which is the thick silicon layer 3. The heat conduction part 11 is not limited to the upper part shown in FIG. 11 may be provided on the lower side of the lower surface of the channel region 82 or on the upper and lower sides of the upper and lower surfaces thereof via heat dissipation contact electrodes 10A and the like.
 図8(a)および図8(b)は、本発明の実施形態4の放射線検出用半導体装置20Cの読出し回路8におけるMOSトランジスタのソース領域およびドレイン領域の各放熱構成例を示す断面図、図8(c)は、そのMOSトランジスタ間の素子分離領域85,86の各放熱構成例を示す断面図である。なお、図8では、図1と同様の作用効果を奏する部材には同一の符号を付して説明する。 FIGS. 8A and 8B are cross-sectional views and diagrams showing examples of heat dissipation configurations of the source region and the drain region of the MOS transistor in the readout circuit 8 of the semiconductor device 20C for radiation detection according to the fourth embodiment of the present invention. 8C is a cross-sectional view showing an example of the heat radiation configuration of the element isolation regions 85 and 86 between the MOS transistors. In FIG. 8, members having the same operational effects as those in FIG.
 図8(a)に示すように、MOSトランジスタのソースン領域83から、薄い単結晶シリコン層4の上部の部層間絶縁膜7上に、コンタクト電極10,10Aとメタル配線9を介して放熱用の熱伝導部11が形成されている。 As shown in FIG. 8A, heat dissipation is performed from the source region 83 of the MOS transistor to the upper interlayer insulating film 7 on the thin single crystal silicon layer 4 through the contact electrodes 10 and 10A and the metal wiring 9. A heat conducting portion 11 is formed.
 図8(b)に示すように、MOSトランジスタのドレイン領域84から、薄い単結晶シリコン層4の上部の部層間絶縁膜7上に、コンタクト電極10,10Aとメタル配線9を介して放熱用の熱伝導部11が形成されている。 As shown in FIG. 8B, heat dissipation is performed from the drain region 84 of the MOS transistor onto the inter-layer insulating film 7 on the thin single crystal silicon layer 4 via the contact electrodes 10 and 10A and the metal wiring 9. A heat conducting portion 11 is formed.
 図8(c)に示すように、MOSトランジスタ間の素子分離領域85,86からそれぞれ、薄い単結晶シリコン層4の上部の層間絶縁膜7上に、コンタクト電極10,10Aとメタル配線9をそれぞれ介して放熱用の各熱伝導部11が形成されている。 As shown in FIG. 8C, the contact electrodes 10 and 10A and the metal wiring 9 are respectively formed on the interlayer insulating film 7 on the thin single crystal silicon layer 4 from the element isolation regions 85 and 86 between the MOS transistors. Each heat conduction part 11 for heat dissipation is formed.
 コンタクト電極10,10Aはゲート電極81、ソース領域83、ドレイン領域84および素子分離領域85,86毎に複数形成してもよく、信号配線用のコンタクト電極10と共に用いてもよく、また、放熱用の専用のコンタクト電極10Aや配線を配置してもよい。また、ゲート電極81、ソース領域83、ドレイン領域84および素子分離領域85,86毎に個別にコンタクト電極10Aを設けるだけでなく、各電極や領域に並行して複数のコンタクト電極10、10Aを設けてもよい。また、熱伝導部11を、厚いシリコン層である絶縁体層2下部の単結晶シリコン層3の下面部に設けてもよく、熱伝導部11を、図8に示すように上面部以外にも、下面側にまたは上下両面に設けてもよい。 A plurality of contact electrodes 10 and 10A may be formed for each of the gate electrode 81, the source region 83, the drain region 84, and the element isolation regions 85 and 86, and may be used together with the contact electrode 10 for signal wiring. A dedicated contact electrode 10A or wiring may be disposed. In addition to providing the contact electrode 10A individually for each of the gate electrode 81, the source region 83, the drain region 84, and the element isolation regions 85 and 86, a plurality of contact electrodes 10 and 10A are provided in parallel with each electrode and region. May be. Further, the heat conducting portion 11 may be provided on the lower surface portion of the single crystal silicon layer 3 below the insulator layer 2 which is a thick silicon layer. It may be provided on the lower surface side or on both upper and lower surfaces.
 以上により、本実施形態4によれば、絶縁体層2の下面に第1の半導体層3(または半導体基板)が配設され、絶縁体層2の上面に第2の半導体層4が配設されたSOI構造を有し、第1の半導体層3(または該半導体基板)に放射線検出素子4が形成され、第2の半導体層4およびその周辺部に周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタ)が形成され、読出し回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置20Cにおいて、周辺回路素子としての読出し回路8の読出し回路素子のMOSトランジスタのゲート電極81、ソース領域83およびドレイン領域84、さらに素子分離領域85,86のいずれかに接続された信号伝送経路から上側に延びて接続される放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている。 As described above, according to the fourth embodiment, the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2. The radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion. In the radiation detection semiconductor device 20C in which a circuit element (MOS transistor) is formed and a wiring structure connected to the readout circuit element is formed above the readout circuit element, the MOS transistor of the readout circuit element of the readout circuit 8 as a peripheral circuit element The gate electrode 81, the source region 83, the drain region 84, and the element isolation regions 85 and 86 are further connected to extend from the signal transmission path connected to the element isolation regions 85 and 86. Heat-conducting portion 11 is disposed a rim, high heat radiation material film.
 これによって、十分な放熱効果が得られる絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部11を放熱用に設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。 Thus, an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
 なお、本実施形態4では、放射線検出用半導体装置20Cにおいて、読出し回路8の読出し回路素子であるMOSトランジスタのゲート電極、ソース領域およびドレイン領域、さらに素子分離領域のいずれかに接続された信号伝送経路から上側および/または下側に延びて接続される放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている場合について説明したが、これに限らず、この放熱用の熱伝導部11は、MOSトランジスタのゲート電極81と、ゲート電極81下のチャネル領域82の一方側のソース領域83と、ゲート電極81下のチャネル領域82の他方側のドレイン領域84と、MOSトランジスタ素子を電気的に分離する素子分離領域85,86とのうちの少なくともいずれかに接続される信号伝送用の接続電極(コンタクト電極10,10A)および/またはこれに接続される金属配線(メタル配線9)とは異なる別系統の放熱経路またはこの信号伝送経路から上側および/または下側に延びて接続されていてもよい。
(実施形態5)
 本実施形態5では、上記本実施形態1~3のいずれかに加えて、または上記本実施形態1~3とは別に、読出し回路8における抵抗素子などの各種の受動素子の放熱構成例について説明する。
In the fourth embodiment, in the radiation detection semiconductor device 20C, the signal transmission is connected to any one of the gate electrode, the source region and the drain region of the MOS transistor which is the readout circuit element of the readout circuit 8, and the element isolation region. Although the case where the heat conduction part 11 which is an insulating high heat radiation material film for heat radiation extending from the path to the upper side and / or the lower side is provided has been described. The heat conducting unit 11 includes a MOS transistor gate electrode 81, a source region 83 on one side of the channel region 82 below the gate electrode 81, a drain region 84 on the other side of the channel region 82 below the gate electrode 81, and a MOS transistor. Connection electrode for signal transmission connected to at least one of element isolation regions 85 and 86 for electrically isolating elements The contact electrodes 10 and 10A) and / or the metal wiring (metal wiring 9) connected thereto may be connected to extend from the signal transmission path to the upper side and / or the lower side from a different heat dissipation path. .
(Embodiment 5)
In the fifth embodiment, in addition to any of the first to third embodiments, or separately from the first to third embodiments, a heat dissipation configuration example of various passive elements such as a resistance element in the readout circuit 8 will be described. To do.
 図9は、本発明の実施形態5の放射線検出用半導体装置20Dの読出し回路8における受動素子の放熱構成例を示す断面図である。なお、図9では、図1と同様の作用効果を奏する部材には同一の符号を付して説明する。 FIG. 9 is a cross-sectional view showing a heat dissipation configuration example of a passive element in the readout circuit 8 of the semiconductor device 20D for radiation detection according to the fifth embodiment of the present invention. In FIG. 9, members having the same functions and effects as those of FIG.
 図9において、本実施形態5のSOI構造を持つ放射線検出用半導体装置20Dは、SOI構造として、絶縁体層2と、この絶縁体層2の下面に配置された第1の半導体層(または半導体基板)としての単結晶シリコン層3(またはシリコン基板)と、絶縁体層2の上面に配置された第2の半導体層としての単結晶シリコン層4とを有している。このSOI構造の厚い単結晶シリコン層3には、前述したが、フォトダイオードやアバランシェフォトダイオードなどの放射線検出素子5が形成されている。そのSOI構造の薄い単結晶シリコン層4には、絶縁体層2内に形成された埋め込み性のよいタングステンWなどからなる前述したコンタクト電極6、10によりメタル配線9を介して放射線検出素子5で検出した信号電荷を読み出して増幅など処理する読出し回路8が形成されている。 In FIG. 9, the radiation detecting semiconductor device 20D having the SOI structure of the fifth embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an SOI structure. A single crystal silicon layer 3 (or silicon substrate) as a substrate) and a single crystal silicon layer 4 as a second semiconductor layer disposed on the upper surface of the insulator layer 2. As described above, a radiation detecting element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure. The thin single crystal silicon layer 4 having the SOI structure is formed on the radiation detection element 5 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2. A readout circuit 8 for reading out the detected signal charge and processing it such as amplification is formed.
 薄い単結晶シリコン層4上には、抵抗、キャパシタおよびインダクタなどの各種の受動素子15が形成されている。この受動素子15の両端上には、両端子電極16a,16bが接続されている。両端子電極16a,16b上にそれぞれ信号配線用のコンタクト電極10を介してメタル配線9に接続されている。このメタル配線9は放熱用のコンタクト電極10Aを介して層間絶縁膜7上の熱伝導部11に接続されている。 Various passive elements 15 such as resistors, capacitors, and inductors are formed on the thin single crystal silicon layer 4. Both terminal electrodes 16 a and 16 b are connected to both ends of the passive element 15. The both terminal electrodes 16a and 16b are connected to the metal wiring 9 via the signal wiring contact electrodes 10, respectively. The metal wiring 9 is connected to the heat conducting portion 11 on the interlayer insulating film 7 through a heat dissipation contact electrode 10A.
 このように、コンタクト電極10,10Aおよびメタル配線9により受動素子15の端子電極16a,16bと熱伝導部11とが接続されており、受動素子15から発生する熱をコンタクト電極10,10Aおよびメタル配線9を介して熱伝導部11に伝導して熱伝導部11から放熱することができる。 Thus, the terminal electrodes 16a and 16b of the passive element 15 and the heat conducting part 11 are connected by the contact electrodes 10 and 10A and the metal wiring 9, and the heat generated from the passive element 15 is generated by the contact electrodes 10 and 10A and the metal. The heat can be conducted to the heat conducting part 11 through the wiring 9 and can be radiated from the heat conducting part 11.
 コンタクト電極10、10Aは複数形成されており、放熱用のコンタクト電極10Aは、信号配線用のコンタクト電極10と共に用いてもよく、また、放熱用の専用のコンタクト電極10Aや配線(メタル配線9)を信号伝送経路とは別途配置してもよい。また、熱伝導部11を厚いシリコン層である絶縁体層2の下部の単結晶シリコン層3の下部に設けてもよく、図9に示すように受動素子15は単結晶シリコン層4の上部以外にも、受動素子15はその下側または上下両面側に設けてもよい。 A plurality of contact electrodes 10 and 10A are formed. The contact electrode 10A for heat dissipation may be used together with the contact electrode 10 for signal wiring, or the contact electrode 10A dedicated for heat dissipation and wiring (metal wiring 9). May be arranged separately from the signal transmission path. Further, the heat conducting portion 11 may be provided below the single crystal silicon layer 3 below the insulator layer 2 which is a thick silicon layer, and the passive element 15 other than the upper portion of the single crystal silicon layer 4 as shown in FIG. In addition, the passive element 15 may be provided on the lower side or the upper and lower surfaces.
 以上により、本実施形態5によれば、絶縁体層2の下面に第1の半導体層3(または半導体基板)が配設され、絶縁体層2の上面に第2の半導体層4が配設されたSOI構造を有し、第1の半導体層3(または該半導体基板)に放射線検出素子4が形成され、第2の半導体層4およびその周辺部に周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタなど)が形成され、読出し回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置20Dにおいて、周辺回路素子としての読出し回路8の読出し回路素子の受動素子15に両端子電極16a,16bを介して接続された信号伝送経路から上側に延びて接続される放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている。 As described above, according to the fifth embodiment, the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2. The radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion. In the radiation detection semiconductor device 20D in which a circuit element (such as a MOS transistor) is formed and a wiring structure connected to the read circuit element is formed on the upper side of the read circuit element, the read circuit element passive of the read circuit 8 as a peripheral circuit element A heat conducting portion 11, which is an insulating high heat dissipation material film for heat dissipation, is disposed extending upward from a signal transmission path connected to the element 15 via both terminal electrodes 16 a and 16 b.
 これによって、十分な放熱効果が得られる絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部11を放熱用に設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。 Thus, an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
 なお、本実施形態4では、放射線検出用半導体装置20Dにおいて、読出し回路8の読出し回路素子である受動素子15に接続された信号伝送経路から上側に延びて接続される放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている場合について説明したが、これに限らず、この周辺回路部は、抵抗、インダクタおよびキャパシタのうちの少なくともいずれかを有し、この熱伝導部11は、抵抗、インダクタおよびキャパシタのうちの少なくともいずれかの両端子電極16a,16bに接続される信号伝送用の接続電極(コンタクト電極10)および/またはこれに接続される金属配線(メタル配線9)とは異なる別系統の放熱経路または信号伝送経路から上側に延びて接続されていてもよい。
(実施形態6)
 上記実施形態1のように、読出し回路8が設けられている単結晶シリコン層4からの放熱だけではなく、本実施形態6では、他の周辺回路の放熱についても他の周辺回路の回路構成を用いて行う場合について説明する。
In the fourth embodiment, in the radiation detection semiconductor device 20D, an insulating high heat dissipation for heat dissipation that extends upward from the signal transmission path connected to the passive element 15 that is a read circuit element of the read circuit 8 is connected. Although the case where the heat conducting portion 11 that is a material film is provided has been described, the present invention is not limited thereto, and the peripheral circuit portion includes at least one of a resistor, an inductor, and a capacitor. 11 is a signal transmission connection electrode (contact electrode 10) connected to both terminal electrodes 16a and 16b of at least one of a resistor, an inductor and a capacitor and / or a metal wiring (metal wiring 9) connected thereto. ) May be connected to extend upward from a heat dissipation path or signal transmission path of another system different from the above.
(Embodiment 6)
As in the first embodiment, not only the heat radiation from the single crystal silicon layer 4 in which the readout circuit 8 is provided, but in the sixth embodiment, the circuit configuration of other peripheral circuits is also used for the heat radiation of other peripheral circuits. The case where it uses is demonstrated.
 図10は、本発明の実施形態6の放射線検出用半導体装置20Eの他の周辺回路におけるMOSトランジスタの放熱構成例を示す断面図である。なお、図10では、図1と同様の作用効果を奏する部材には同一の符号を付して説明する。 FIG. 10 is a cross-sectional view showing a heat dissipation configuration example of a MOS transistor in another peripheral circuit of the radiation detection semiconductor device 20E according to the sixth embodiment of the present invention. In FIG. 10, members having the same functions and effects as those in FIG.
 図10において、本実施形態6のSOI構造を持つ放射線検出用半導体装置20Eは、OI構造として、絶縁体層2と、この絶縁体層2の下面に配置された第1の半導体層(または半導体基板)としての単結晶シリコン層3(またはシリコン基板)と、絶縁体層2の上面に配置された第2の半導体層としての単結晶シリコン層4とを有している。このSOI構造の厚い単結晶シリコン層3には、前述したが、フォトダイオードやアバランシェフォトダイオードなどの放射線検出素子5が形成されている。そのSOI構造の薄い単結晶シリコン層4には、絶縁体層2内に形成された埋め込み性のよいタングステンWなどからなる前述したコンタクト電極6、10によりメタル配線9を介して放射線検出素子5で検出した信号電荷を読み出して増幅など処理する読出し回路8が形成されている。 In FIG. 10, the radiation detecting semiconductor device 20E having the SOI structure according to the sixth embodiment has an insulator layer 2 and a first semiconductor layer (or semiconductor) disposed on the lower surface of the insulator layer 2 as an OI structure. A single crystal silicon layer 3 (or silicon substrate) as a substrate) and a single crystal silicon layer 4 as a second semiconductor layer disposed on the upper surface of the insulator layer 2. As described above, a radiation detecting element 5 such as a photodiode or an avalanche photodiode is formed on the thick single crystal silicon layer 3 having the SOI structure. The thin single crystal silicon layer 4 having the SOI structure is formed on the radiation detection element 5 through the metal wiring 9 by the contact electrodes 6 and 10 made of tungsten W or the like having good embeddability formed in the insulator layer 2. A readout circuit 8 for reading out the detected signal charge and processing it such as amplification is formed.
 本実施形態6では、MOSトランジスタを含む読出し回路8の他に、MOSトランジスタを含む一または複数の周辺回路17が形成されている。 In the sixth embodiment, in addition to the readout circuit 8 including the MOS transistor, one or a plurality of peripheral circuits 17 including the MOS transistor are formed.
 薄い単結晶シリコン層4に形成された周辺回路17におけるMOSトランジスタのゲート電極の上部が、コンタクト電極10を介してメタル配線9に接続され、このメタル配線9がコンタクト電極10を介して上層のメタル配線9に接続され、この上層のメタル配線9は、信号配線用のコンタクト電極1を介して電極12に接続されると共に、放熱用のコンタクト電極10Aを介して熱伝導部11に接続されている。 The upper part of the gate electrode of the MOS transistor in the peripheral circuit 17 formed in the thin single crystal silicon layer 4 is connected to the metal wiring 9 through the contact electrode 10, and the metal wiring 9 is connected to the upper metal through the contact electrode 10. The upper metal wiring 9 is connected to the electrode 9 via the signal wiring contact electrode 1 and is connected to the heat conducting portion 11 via the heat dissipation contact electrode 10A. .
 これらの配線構造により熱伝導部11が接続されており、周辺回路17や放射線検出素
子5で発生する熱を放熱することができる。
The heat conduction part 11 is connected by these wiring structures, and the heat generated in the peripheral circuit 17 and the radiation detection element 5 can be radiated.
 コンタクト電極10,10Aは複数形成してもよく、コンタクト電極10Aは信号配線用のコンタクト電極10と共に用いてもよく、信号配線用のコンタクト電極10に加えて放熱用の専用コンタクト電極10Aやメタル配線9を配置してもよい。 A plurality of contact electrodes 10 and 10A may be formed, and the contact electrode 10A may be used together with the contact electrode 10 for signal wiring. In addition to the contact electrode 10 for signal wiring, a dedicated contact electrode 10A for heat dissipation or metal wiring 9 may be arranged.
 また、熱伝導部11を厚いシリコン層である絶縁体層2の下部の単結晶シリコン層3の下面側に設けてもよく、図10に示すように熱伝導部11は単結晶シリコン層4の上側以外にも、熱伝導部11が単結晶シリコン層3の下面側にまたはその上下両面に設けてもよい。さらに、熱伝導部11は周辺回路17毎に配置してもよく、また機能ブロック内のMOSトランジスタの熱容量に応じて配置してもよく、またチップ全面または一部面に配置してもよい。 Further, the heat conducting portion 11 may be provided on the lower surface side of the single crystal silicon layer 3 below the insulator layer 2 which is a thick silicon layer. As shown in FIG. Besides the upper side, the heat conducting portion 11 may be provided on the lower surface side of the single crystal silicon layer 3 or on both upper and lower surfaces thereof. Furthermore, the heat conducting unit 11 may be arranged for each peripheral circuit 17, may be arranged according to the heat capacity of the MOS transistor in the functional block, and may be arranged on the entire surface or a part of the chip.
 即ち、放熱用の熱伝導部11は、機能ブロック毎に信号伝送用の接続電極(コンタクト電極10)および/またはこれに接続される金属配線(メタル配線9)を介して接続されている。また、放熱用の熱伝導部11は、機能ブロック内の一部または全MOSトランジスタの熱容量に応じた放熱容量を有するように設定することができる。さらに、放熱用の熱伝導部11は、チップ全面またはチップ一部面に配置されている。さらに、このMOSトランジスタは部分空乏型SOIトランジスタであってもよい。 That is, the heat conducting part 11 for heat dissipation is connected to each functional block via a connection electrode (contact electrode 10) for signal transmission and / or a metal wiring (metal wiring 9) connected thereto. Further, the heat conducting part 11 for heat radiation can be set to have a heat radiation capacity corresponding to the heat capacity of a part of the functional block or all the MOS transistors. Further, the heat conducting portion 11 for heat dissipation is disposed on the entire surface of the chip or a part of the chip surface. Further, the MOS transistor may be a partially depleted SOI transistor.
 以上により、本実施形態6によれば、絶縁体層2の下面に第1の半導体層3(または半導体基板)が配設され、絶縁体層2の上面に第2の半導体層4が配設されたSOI構造を有し、第1の半導体層3(または該半導体基板)に放射線検出素子4が形成され、第2の半導体層4およびその周辺部に周辺回路素子としての読出し回路8の読出し回路素子(MOSトランジスタ)が形成され、周辺回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置20Eにおいて、周辺回路17の周辺回路素子としてのMOSトランジスタと、その配線構造(メタル配線9とコンタクト電極6、10)とのうちの少なくともいずれかに接続された信号伝送経路とは異なる別系統の放熱経路または/および信号伝送経路から上側に延びて接続される放熱用の絶縁性高放熱材料膜である熱伝導部11が配設されている。 As described above, according to the sixth embodiment, the first semiconductor layer 3 (or the semiconductor substrate) is disposed on the lower surface of the insulator layer 2, and the second semiconductor layer 4 is disposed on the upper surface of the insulator layer 2. The radiation detection element 4 is formed on the first semiconductor layer 3 (or the semiconductor substrate), and the readout circuit 8 serving as a peripheral circuit element is read on the second semiconductor layer 4 and its peripheral portion. In the semiconductor device for radiation detection 20E in which a circuit element (MOS transistor) is formed and a wiring structure connected to the peripheral circuit element is formed on the upper side of the peripheral circuit element, the MOS transistor as the peripheral circuit element of the peripheral circuit 17 and its wiring A heat dissipation path of a different system different from the signal transmission path connected to at least one of the structures (metal wiring 9 and contact electrodes 6, 10) or / and the signal transmission path from the upper side Heat-conducting portion 11 is disposed an insulating high heat dissipation material film for heat dissipation is the Activity connected.
 これによって、十分な放熱効果が得られる絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部11を放熱用に設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。 Thus, an insulating high heat dissipation material film capable of obtaining a sufficient heat dissipation effect, specifically, a heat conducting portion 11 made of a diamond-like carbon film is provided for heat dissipation, thereby having a heat dissipation structure with high heat dissipation efficiency, The rise can be suppressed and high reliability can be obtained.
 なお、上記実施形態1~6では、特に説明しなかったが、熱伝導部11の上面の絶縁膜には開口部が形成されているが、これに限らず、放熱効果を上げるために、熱伝導部11の側面も露出するように熱伝導部11上およびその周辺の絶縁膜に開口部が形成されていてもよい。 Although not specifically described in the first to sixth embodiments, an opening is formed in the insulating film on the upper surface of the heat conducting portion 11. However, the present invention is not limited to this. An opening may be formed in the insulating film on and around the heat conducting portion 11 so that the side surface of the conducting portion 11 is also exposed.
 なお、本発明の実施形態1~6は、本願請求項に示した範囲で種々の変更が可能である。即ち、本願請求項に示した範囲で適宜変更した技術的手段を更に組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、上記実施形態1~6のうちの少なくとも2つを組み合わせて構成することも可能である。 The first to sixth embodiments of the present invention can be variously modified within the scope shown in the claims of the present application. In other words, embodiments obtained by further combining technical means appropriately changed within the scope of the claims of the present application are also included in the technical scope of the present invention. Furthermore, it is possible to combine at least two of the first to sixth embodiments.
 以上のように、本発明の好ましい実施形態1~6を用いて本発明を例示してきたが、本発明は、この実施形態1~6に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1~6の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiments 1 to 6 of the present invention, but the present invention should not be construed as being limited to these embodiments 1 to 6. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of specific preferred embodiments 1 to 6 of the present invention based on the description of the present invention and the common general technical knowledge. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.
 本発明は、同一のSOI(Silicon ON Insulator)基板に放射線検出素子とこれの読出し回路とを絶縁膜で隔てて形成し、この読出し回路を構成するMOSトランジスタなどの能動素子や抵抗やコンデンサなどの受動素子を搭載した放射線検出用半導体装置の分野において、十分な放熱効果が得られる、絶縁性高放熱材料膜、具体的にはダイヤモンドライクカーボン膜からなる熱伝導部を設けることにより、放熱効率の高い放熱構造を有し、温度上昇を抑制して高信頼性を得ることができる。 In the present invention, a radiation detection element and a readout circuit thereof are formed on the same SOI (Silicon ON Insulator) substrate with an insulating film therebetween, and an active element such as a MOS transistor, a resistor, a capacitor, or the like constituting the readout circuit is formed. In the field of radiation detection semiconductor devices equipped with passive elements, by providing a heat conduction part made of an insulating high heat dissipation material film, specifically a diamond-like carbon film, which can provide a sufficient heat dissipation effect, heat dissipation efficiency is improved. It has a high heat dissipation structure and can suppress temperature rise and obtain high reliability.
 本発明のSOI構造を有する放射線検出用半導体装置20、20A~20Eにより、MOSトランジスタや放射線検出素子5などの半導体素子の動作に伴うジュール熱の発生に対して効果的な放熱対策が可能となる。熱の蓄積によって生じる半導体素子の特性劣化や半導体素子を構成する各種構成要素やビアやコンタクト電極を含む配線層の熱劣化を防ぐことができ、自己発熱に強い信頼性の高い回路およびそのような回路を構成として含む信頼性の高い放射線検出用半導体装置を実現できる。 The radiation detection semiconductor devices 20 and 20A to 20E having the SOI structure of the present invention enable effective heat radiation countermeasures against the generation of Joule heat accompanying the operation of semiconductor elements such as MOS transistors and radiation detection elements 5. . It is possible to prevent the deterioration of the characteristics of the semiconductor element caused by the accumulation of heat and the thermal deterioration of the various components constituting the semiconductor element and the wiring layer including vias and contact electrodes, and a highly reliable circuit resistant to self-heating and such a circuit. A highly reliable semiconductor device for radiation detection including a circuit as a configuration can be realized.

Claims (5)

  1.  絶縁体層の下面に第1の半導体層または半導体基板が配設され、該絶縁体層の上面に第2の半導体層が配設されたSOI(Silicon ON Insulator)構造を有し、該第1の半導体層または該半導体基板に放射線検出素子が形成され、該第2の半導体層およびその周辺部に周辺回路素子が形成され、該周辺回路素子の上側にこれと接続される配線構造が形成された放射線検出用半導体装置において、
     該第1の半導体層または該半導体基板と、該放射線検出素子と、該第2の半導体層と、該周辺回路素子と、該配線構造とのうちの少なくともいずれかに接続された信号伝送経路とは異なる別系統の放熱経路または/および該信号伝送経路から上側および下側のうちの少なくともいずれか側に延びて接続される放熱用の熱伝導部が配設されている放射線検出用半導体装置。
    A first semiconductor layer or a semiconductor substrate is disposed on the lower surface of the insulator layer, and an SOI (Silicon ON Insulator) structure is disposed in which the second semiconductor layer is disposed on the upper surface of the insulator layer. A radiation detection element is formed on the semiconductor layer or the semiconductor substrate, a peripheral circuit element is formed on the second semiconductor layer and its peripheral portion, and a wiring structure connected to the peripheral circuit element is formed above the peripheral circuit element. In the semiconductor device for radiation detection
    A signal transmission path connected to at least one of the first semiconductor layer or the semiconductor substrate, the radiation detection element, the second semiconductor layer, the peripheral circuit element, and the wiring structure; A radiation detecting semiconductor device in which a different heat dissipation path or / and a heat conducting portion for heat dissipation extending from and connected to at least one of an upper side and a lower side from the signal transmission path are disposed.
  2.  請求項1に記載の放射線検出用半導体装置において、
     前記周辺回路素子は、前記放射線検出素子で検出した信号電荷を処理する少なくともMOSトランジスタを含む読出し回路素子を有し、前記放熱用の熱伝導部は、該読出し回路素子に接続される信号伝送経路とは異なる別系統の放熱経路または/および該信号伝送経路から上側および下側のうちの少なくともいずれか側に延びて接続される放熱用の熱伝導部が配設されている放射線検出用半導体装置。
    The semiconductor device for radiation detection according to claim 1,
    The peripheral circuit element has a readout circuit element including at least a MOS transistor for processing a signal charge detected by the radiation detection element, and the heat conducting part for heat dissipation is a signal transmission path connected to the readout circuit element Radiation detection semiconductor device in which a heat dissipation part for heat dissipation is provided which extends from and is connected to at least one of the upper side and the lower side of the heat dissipation path of a different system different from the above and / or the signal transmission path .
  3.  請求項1または2に記載の放射線検出用半導体装置において、
     前記熱伝導部の熱伝導率がシリコンまたはシリコン酸化膜の熱導電率よりも高い放射線検出用半導体装置。
    The semiconductor device for radiation detection according to claim 1 or 2,
    A semiconductor device for radiation detection, wherein the thermal conductivity of the thermal conduction part is higher than that of silicon or a silicon oxide film.
  4.  請求項1または2に記載の放射線検出用半導体装置において、
     前記熱伝導部の熱伝導率は1.2W/(mK)以上である放射線検出用半導体装置。
    The semiconductor device for radiation detection according to claim 1 or 2,
    The semiconductor device for radiation detection whose heat conductivity of the heat conduction part is 1.2 W / (mK) or more.
  5.  請求項1または2に記載の放射線検出用半導体装置において、
     前記熱伝導部が絶縁性高放熱材料膜から構成されている放射線検出用半導体装置。
    The semiconductor device for radiation detection according to claim 1 or 2,
    A semiconductor device for radiation detection, wherein the heat conducting part is composed of an insulating high heat dissipation material film.
PCT/JP2014/003355 2013-07-12 2014-06-23 Semiconductor device for detecting radiation WO2015004867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013147083 2013-07-12
JP2013-147083 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015004867A1 true WO2015004867A1 (en) 2015-01-15

Family

ID=52279577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003355 WO2015004867A1 (en) 2013-07-12 2014-06-23 Semiconductor device for detecting radiation

Country Status (1)

Country Link
WO (1) WO2015004867A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147886A1 (en) * 2015-03-17 2016-09-22 ソニー株式会社 Semiconductor element, signal amplification method, and detection device
JP2017157736A (en) * 2016-03-03 2017-09-07 エスアイアイ・セミコンダクタ株式会社 Semiconductor apparatus having light receiving device
CN107895743A (en) * 2016-10-04 2018-04-10 豪威科技股份有限公司 The apparatus and method of single-photon avalanche photodiode detector
WO2019087764A1 (en) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 Backside irradiation type solid-state imaging device, method for manufacturing backside irradiation type solid-state imaging device, imaging device, and electronic apparatus
WO2021014849A1 (en) * 2019-07-24 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, electronic machine and solid-state imaging device production method
US11495627B2 (en) * 2020-05-10 2022-11-08 United Microelectronics Corp. Single photon avalanche diode fabricated on a silicon-on-insulator substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147861A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Solid state image sensor device
JP2002314061A (en) * 2001-04-18 2002-10-25 Sharp Corp Solid-state image sensing device and its manufacturing method
JP2004072017A (en) * 2002-08-09 2004-03-04 Ricoh Co Ltd Semiconductor integrated circuit device and manufacturing method thereof
JP2004349537A (en) * 2003-05-23 2004-12-09 Renesas Technology Corp Semiconductor device
JP2006173351A (en) * 2004-12-15 2006-06-29 Sony Corp Rear-incident solid-state imaging apparatus and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147861A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Solid state image sensor device
JP2002314061A (en) * 2001-04-18 2002-10-25 Sharp Corp Solid-state image sensing device and its manufacturing method
JP2004072017A (en) * 2002-08-09 2004-03-04 Ricoh Co Ltd Semiconductor integrated circuit device and manufacturing method thereof
JP2004349537A (en) * 2003-05-23 2004-12-09 Renesas Technology Corp Semiconductor device
JP2006173351A (en) * 2004-12-15 2006-06-29 Sony Corp Rear-incident solid-state imaging apparatus and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147886A1 (en) * 2015-03-17 2016-09-22 ソニー株式会社 Semiconductor element, signal amplification method, and detection device
JP2017157736A (en) * 2016-03-03 2017-09-07 エスアイアイ・セミコンダクタ株式会社 Semiconductor apparatus having light receiving device
CN107895743A (en) * 2016-10-04 2018-04-10 豪威科技股份有限公司 The apparatus and method of single-photon avalanche photodiode detector
CN107895743B (en) * 2016-10-04 2020-07-10 豪威科技股份有限公司 Apparatus and method for single photon avalanche photodiode detector
WO2019087764A1 (en) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 Backside irradiation type solid-state imaging device, method for manufacturing backside irradiation type solid-state imaging device, imaging device, and electronic apparatus
JPWO2019087764A1 (en) * 2017-10-30 2020-11-19 ソニーセミコンダクタソリューションズ株式会社 Back-illuminated solid-state image sensor, back-illuminated solid-state image sensor manufacturing method, image sensor, and electronic equipment
TWI788430B (en) * 2017-10-30 2023-01-01 日商索尼半導體解決方案公司 Back-illuminated solid-state imaging device, manufacturing method of back-illuminated solid-state imaging device, imaging device, and electronic equipment
JP7293123B2 (en) 2017-10-30 2023-06-19 ソニーセミコンダクタソリューションズ株式会社 Back-illuminated solid-state imaging device, manufacturing method of back-illuminated solid-state imaging device, imaging device, and electronic device
WO2021014849A1 (en) * 2019-07-24 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, electronic machine and solid-state imaging device production method
US11495627B2 (en) * 2020-05-10 2022-11-08 United Microelectronics Corp. Single photon avalanche diode fabricated on a silicon-on-insulator substrate

Similar Documents

Publication Publication Date Title
WO2015004867A1 (en) Semiconductor device for detecting radiation
US8274101B2 (en) CMOS image sensor with heat management structures
CN108695349B (en) Semiconductor device and apparatus having laminated layers
JP4379295B2 (en) Semiconductor image sensor module and manufacturing method thereof
JP5923668B2 (en) Radiation detection semiconductor device
JP2010278045A (en) Optical semiconductor device
US20080224257A1 (en) Semiconductor device
US10418406B2 (en) Hybrid sensor chip assembly and method for reducing radiative transfer between a detector and read-out integrated circuit
CN105280750A (en) Photosensing device and photosensing module
JP4028441B2 (en) Infrared solid-state imaging device and manufacturing method thereof
CN105981172B (en) Radiographic image sensor
US8004067B2 (en) Semiconductor apparatus
WO2017079937A1 (en) Linear array detector, linear array sensor and method for forming linear array sensor
JP3317740B2 (en) Semiconductor energy ray detector and method of manufacturing the same
US20120220101A1 (en) Internal conductive layer
JP2020098709A (en) Detector
US20110049369A1 (en) Device to detect thermal radiation with high resolution method to manufacture and use the device
JP5766145B2 (en) Infrared sensor array
JP5919789B2 (en) Infrared imaging device
JP2012173156A (en) Infrared sensor module
WO2022118617A1 (en) Imaging device
JP4410071B2 (en) Infrared solid-state imaging device
Arai New techniques in SOI pixel detector
JP7071491B2 (en) An assembly for detecting electromagnetic radiation and a method for manufacturing an assembly for detecting electromagnetic radiation.
CN112928106B (en) Detector device and array panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14823685

Country of ref document: EP

Kind code of ref document: A1