WO2015004375A1 - Procédé de purification du niobium et/ou du tantale - Google Patents

Procédé de purification du niobium et/ou du tantale Download PDF

Info

Publication number
WO2015004375A1
WO2015004375A1 PCT/FR2014/051741 FR2014051741W WO2015004375A1 WO 2015004375 A1 WO2015004375 A1 WO 2015004375A1 FR 2014051741 W FR2014051741 W FR 2014051741W WO 2015004375 A1 WO2015004375 A1 WO 2015004375A1
Authority
WO
WIPO (PCT)
Prior art keywords
niobium
tantalum
solid
concentrate
ore
Prior art date
Application number
PCT/FR2014/051741
Other languages
English (en)
Inventor
Florent DELVALEE
Fatima LACHAIZE
Valérie WEIGEL
Original Assignee
Eramet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eramet filed Critical Eramet
Priority to CA2916921A priority Critical patent/CA2916921A1/fr
Publication of WO2015004375A1 publication Critical patent/WO2015004375A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum

Definitions

  • the present invention relates to the purification of niobium and / or tantalum contained in an ore or concentrate. It also relates to obtaining niobium and / or tantalum of high purity with a high yield.
  • Tantalum and niobium are metals with a very high resistance to heat and corrosion and are used industrially very broadly in metal alloys.
  • recently the demand for niobium and / or pure tantalum has increased due to their use inter alia in electrodes or optical components.
  • niobium (Nb) and tantalum (Ta) are often associated in complex minerals, such as pyrochlore, colombite, tantalite, colombo-tantalite and loparite. Ores or ore concentrates containing these minerals are likely to also contain uranium and rare earths, but also iron and titanium.
  • niobium is mainly carried out by a pyrochlore flotation enrichment process, combined with a pyrometallurgical treatment in an aluminothermic furnace (Minerais Engineering, Volume 14, Number 1, January 2001, pp 99-105 ( 7): "Kinetics of Pyrochlore Flotation from Araxa Ore Deposits" by Oliveira JF, Saraiva SM, Pimenta JS, Oliveira APA, Mining Magazine, February 1982: “Araxa niobium mine”).
  • the patent application WO 2012/093170 also describes the leaching of pyrochlore ore, in particular ore from the Mabounié deposit, located in Gabon, by quantitative solution of the valuable elements (Nb, rare earths (TR), Ta and you).
  • the leachate obtained contains not only Nb and / or Ta but also iron, in particular ferric iron (Fe III), aluminum (Al), titanium (Ti) and phosphates (P). It is therefore necessary to purify the product obtained.
  • patent application FR2075933 describes a method of recovering niobium of high purity from a niobium concentrate cooked with sulfuric acid by treatment with ammonia or an alkali metal hydroxide at a pH greater than 7 and at a temperature above 25 ° C, followed by roasting the mixture thus obtained and its leaching with water to obtain a solution containing the niobium before the precipitation of the niobium compounds.
  • a wet mass it is necessary to use a lot of energy. The process is therefore industrially expensive.
  • to eliminate titanium it it is necessary to add an additional leaching step under atmospheric pressure under reducing conditions.
  • US Pat. No. 2,953,453 discloses a niobium recovery process comprising a soda melting step of colombite ore or treatment with sulfuric acid or with hydrofluoric acid.
  • the product thus obtained is subject to various leaching operations in order to eliminate the contaminants: firstly washing with water and then washing with 1M sodium hydroxide solution before reducing acidic leaching (hydrochloric acid or nitric and iron powder). It is this last leaching which makes it possible to remove the titanium.
  • the product obtained is then brought into contact with hydrofluoric acid to recover Nb and Ta.
  • the method described is therefore long and produces a lot of effluents. In addition it is expensive in energy and it requires the use of HF which is expensive and toxic.
  • US3058825 discloses a process for recovering niobium and tantalum from ores or ore concentrate. It uses pressure leaching in concentrated KOH colombite medium to solubilize niobates and tantalates. They are then precipitated by addition of a sodium salt and washed with a sodium solution. The precipitate is optionally hydrolysed with an acidic solution. The problem is that KOH solutions are not recyclable and that KOH is expensive. In addition it is necessary to strictly control the amount of KOH used under penalty of forming an insoluble salt.
  • US4182744 discloses a process for extracting niobium and tantalum from bario-pyrochlore ore by treatment with CaCl 2 at about 1000 ° C.
  • JP2004224619 discloses a method of purifying tantalum oxide or niobium so as to separate it from aluminum and silicon present by using sodium hydroxide at a concentration of between 2 and 20 mol / L, at a temperature between 100 and 300 ° C, preferably between 150 and 250 ° C, and a pressure between 0.1 and 30 MPa.
  • this process does not eliminate titanium or iron if it is present in the original ore.
  • the temperature and pressure recommended are very high which is economically expensive.
  • the present invention therefore relates to a process for purifying niobium and / or tantalum from a niobium and / or tantalum ore or concentrate containing titanium and / or iron, the process comprising the following steps:
  • step b) washing the solid recovered in step b) with an aqueous solution containing at most 30 g / l of NaOH and recovery of the washed solid;
  • step e) acidifying the aqueous solution obtained in step e) to a pH of between 1 and 5, advantageously between 3 and 4, in particular 4, so as to precipitate niobium and / or tantalum;
  • the ore or concentrate of niobium and / or tantalum treated according to the invention may of course consist of, respectively, a mixture of ores or a mixture of concentrates.
  • the treated raw material may also consist of a mixed mixture of ore (s) / concentrate (s), which the skilled person also usually qualifies as ore or concentrate according to its niobium / tantalum contents.
  • the invention therefore relates to the treatment of a raw material selected from ores, niobium and / or tantalum concentrates and mixtures thereof, advantageously of the invention relates to the treatment of niobium and / or tantalum concentrate, in particular containing between 6 and 26% by weight of niobium and / or tantalum, more particularly between 6 and 25% by mass niobium, advantageously between 8 and 24% by weight niobium, and between 0 and 1% by weight of tantalum, advantageously between 0.1 and 0.5% by weight of tantalum, more particularly it contains only niobium, in particular it contains a mixture of tantalum and niobium.
  • the niobium and / or tantalum concentrate can be of any type. It may in particular be a mineralurgical concentrate resulting from an enrichment or a concentrate resulting from chemical enrichment (such as a leach residue).
  • the process of the invention comprises, upstream of step a), enrichment of the ore or concentrate of niobium and / or tantalum to be treated.
  • enrichment can be a physical enrichment based on any conventional method of physical enrichment of a solid material, for example it can consist of a low-intensity magnetic separation (to remove the magnetic) or a flotation (of the silica flotation type or flotation apatite).
  • the method described above, for the purification of niobium and / or tantalum, is suitable for treating any ore or concentrate containing niobium and / or tantalum.
  • Such ores and concentrates contain iron and / or titanium.
  • it is ore pyrochlore or colombite or niobium concentrate and / or tantalum from these ores.
  • it is pyrochlore ore, in particular ore from the Mabounié deposit located in Gabon, or niobium and / or tantalum concentrate obtained from this ore, and even more advantageously from concentrate of pyrochlore ore. niobium and / or tantalum obtained from this ore.
  • this ore or concentrate of niobium and / or tantalum contains iron and / or titanium, more particularly it contains between 2 and 15% by weight of titanium, advantageously between 4 and 13% by weight, and / or between 5 and 10% by weight of iron, more particularly it contains iron and titanium, more particularly between 2 and 15% by weight of titanium, advantageously between 4 and 13% by weight, and between 5 and 10% by weight of iron.
  • the concentrate or ore of niobium and / or tantalum of step a) contains between 6 and 26% by weight of niobium and / or tantalum (more particularly between 6 and 25% by mass niobium, advantageously between 8 and 24% by weight).
  • niobium mass and between 0 and 1% by weight of tantalum, advantageously between 0.1 and 0.5% by weight of tantalum), between 2 and 15% by weight of titanium, advantageously between 4 and 13% by weight, and between 5 and 10% by weight of iron and its purification yield is at least 55%, advantageously at least 60%, more preferably at least 65%, in particular at least 70%.
  • the ore or concentrate of niobium and / or tantalum also contains aluminum, advantageously in a content of less than 2% by weight, of phosphorus, advantageously in a content of between 3 and 12% by weight, advantageously between and 11% by weight of zirconium, advantageously in a content of less than 2% by weight, of sulfur, advantageously in a content of between 1 and 4% by weight, of silicon, advantageously in a content of less than 2% by weight, and / or radioactive elements, in particular U and / or Th, advantageously in a content of less than 1% by weight each.
  • the niobium and / or tantalum ore or concentrate has the following composition:
  • Niobium (from 6 to 25% by weight, advantageously from 8 to 24%
  • Titanium from 2 to 15% by weight, advantageously from 4 to 13% by weight
  • Phosphorus from 3 to 12% by weight, advantageously from 4 to 11% by weight
  • niobium and / or tantalum is in the form of oxide, hydroxides and or phosphates in the ore or concentrate to be purified.
  • Step a) according to the present invention therefore consists in suspending the ore or niobium and / or tantalum concentrate in a concentrated aqueous solution of NaOH under particular temperature conditions to recover a solid in step b).
  • Step a) of sodium conversion of the process according to the present invention allows the conversion of niobium and / or tantalum ore or solid ore concentrate in the form of niobate and / or tantalate, also being in solid form.
  • niobium and / or tantalum is not soluble at the end of step a) in the concentrated aqueous NaOH solution which will allow Al, P, S and Si to be eliminated. solubilize in the aqueous NaOH solution.
  • the concentrated NaOH solution contains at least 200 g / l of NaOH, advantageously between 200 and 500 g / l of NaOH, more advantageously between 300 and 500 g / l of NaOH. and 450 g / L, more particularly between 320 and 400 g / L.
  • the duration of step a) according to the present invention is between 2 and 24 hours, advantageously between 2 and 18 hours, more particularly between 2 and 16 hours.
  • the L / S ratio of step a) of the process according to the present invention is between 3 and 50 L / kg, in particular between 5 and 50 L / kg, more particularly between 10 and 50 L / kg. and 50 L / kg.
  • step a) of the process according to the present invention is carried out with stirring.
  • the solid / liquid separation steps b) e) and g) of the process according to the present invention are carried out by filtration, decantation or centrifugation, in particular by filtration or centrifugation.
  • Step c) of the process according to the present invention makes it possible to eliminate the impregnant of the solid recovered in step b) and the remainder of the elements soluble in basic medium such as aluminum and phosphorus, if they are present in ore or niobium and / or tantalum concentrate.
  • step c) is carried out at a temperature of between room temperature and 80 ° C., advantageously at a L / S ratio of between 5 and 15 L / kg, in particular between 8 and HL. / kg.
  • the diluted NaOH solution contains between 3 and 30 g / l of NaOH, advantageously between 10 and 26 g / l of NaOH.
  • the washing solution used does not contain NaOH. It is therefore only water.
  • the volume of water used is controlled and / or step c) is implemented against the current. The use of water against the current makes it possible to reduce as much as possible the quantity of washing liquid used and therefore the quantity of effluents generated.
  • step c) is repeated several times, in particular at least four times.
  • Stage d) of the process according to the present invention makes it possible to dissolve niobium and / or tantalum in water and to separate them from insolubles such as titanium, iron, zirconium and radioactive elements if these are present in the ore or niobium concentrate and / or tantalum starting material.
  • step d) of the process according to the present invention is carried out at a temperature of between room temperature and 90 ° C, advantageously at 40 ° C.
  • the aqueous solution obtained in step d) has a pH of between 11 and 13, advantageously 11.5.
  • a pH regulation can be implemented during this step d), for example by adding acid, such as sulfuric acid, in order to keep a pH of between 11 and 13, advantageously a pH of 11, 5.
  • the L / S ratio of step d) of the process according to the present invention is ⁇ 200 L / kg, advantageously between 10 and 100 L / kg, advantageously between 10 and 60 L / kg. in particular between 13 and 50 L / kg.
  • the solid is only partially dissolved and step d) is repeated, advantageously up to two more times, on the solid recovered in step e) of the process according to the present invention, the aqueous solutions obtained at each step e) being mixed together before the implementation of step f) according to the present invention.
  • Step f) of the process according to the present invention makes it possible to precipitate niobium and / or tantalum in the form of niobic acid and / or hydrated oxide of tantalum and / or tantalum in order to recover a purified solid.
  • the acid used in step f) is acid chosen from sulfuric acid, hydrochloric acid, nitric acid or their mixture, advantageously it is sulfuric acid.
  • the ore or concentrate of niobium and / or tantalum of step a) additionally contains aluminum, phosphorus, zirconium, sulfur, silicon and / or radioactive elements, such as Uranium (U) and / or thorium (Th), and the niobium and / or tantalum precipitate is quantitatively purified from these elements, typically with purification efficiencies greater than 98%.
  • the process according to the present invention comprises an additional step h) washing the precipitate, preferably with water, and calcining the washed precipitate. If necessary, an extra step can be added to separate niobium and tantalum. This step uses methods well known to those skilled in the art.
  • the concentrate or ore of step a) does not contain tantalum and a purified niobium precipitate is obtained in step g).
  • the concentrated NaOH solution obtained after the separation step b) is recycled, advantageously after purification by crystallization of the impurities at a temperature below 50.degree. 30 ° C.
  • the crystalline impurities are, for example, sodium phosphate and sodium sulphate.
  • This crystallization step consists in cooling the sodium conversion filtrate obtained in step b) to a temperature below 50 ° C., advantageously 30 ° C.
  • the solution thus obtained, after crystallization is depleted in pollutant but still relatively rich in soda. It is therefore reused in part in the sodium conversion step a) of the process according to the present invention with a fresh addition of concentrated sodium hydroxide to reduce the concentration to the desired value.
  • the process according to the present invention comprises a prior step a), before step a), washing the concentrate or ore with an aqueous solution of NaOH diluted so as to eliminate the phosphorus present in the concentrate or ore and the concentrated NaOH solution obtained after the separation step b) is recycled, advantageously directly without crystallization.
  • the sodium hydroxide is reused in the sodium conversion step a) of the process according to the present invention. with a refill of fresh concentrated soda to reduce the concentration to the desired value. Part of it is eliminated to avoid the accumulation of pollutants.
  • a niobium / tantalum concentrate of the following mass elemental composition is introduced into a soda solution at 330 g / L at a rate of 10L / kg of solid.
  • the suspension is heated at 110 ° C for 18 h and then the solid is separated from the liquid by centrifugation.
  • the solid obtained is washed 4 times with sodium hydroxide at 26 g / l at a rate of 10 L / kg of starting solid and then the solid is partially dissolved in water at the rate of 35 L / kg of starting solid.
  • the remaining solid is separated from the liquid by centrifugation and the solid is subjected to a new water dissolution step at 35 L / kg of starting solid.
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • the niobium is recovered at 76% by this process, with an increase in the mass ratio Nb / Ti which goes from 1.2 in the starting concentrate to more than 100 in the solutions of niobium.
  • Example 2 A niobium / tantalum concentrate of the following mass elemental composition: is introduced into a 320 g / l sodium hydroxide solution at a rate of 10 L / kg of solid. The suspension is heated at 110 ° C for 18 h and then the solid is separated from the liquid by centrifugation. The solid obtained is washed 4 times with sodium hydroxide at 26 g / l at a rate of 10 L / kg of starting solid and then the solid is partially dissolved in water at a rate of 50 L / kg of starting solid. The remaining solid is separated from the liquid by centrifugation and the solid is subjected to a new water dissolution step at 50 L / kg of starting solid.
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • the niobium is recovered at 83% by this process, with an increase in the Nb / Ti mass ratio which goes from 5 in the starting concentrate to over 30 in the niobium solutions.
  • Example 3 A niobium / tantalum concentrate of the following mass elemental composition:
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • Niobium is recovered at 80% by this process, with an increase in the Nb / Ti mass ratio from 1.2 in the starting concentrate to greater than 140 in the first niobium solution.
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • Niobium is 85% recovered by this process, with an increase in the Nb / Ti mass ratio from 1.0 in the starting concentrate to greater than 90 in the first niobium solution.
  • the Nb / P ratio goes from 1.0 to 970.
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • Niobium is recovered at 45% by this process (we would have had more if we had dissolved once more), with an increase in the mass ratio Nb / Ti which goes from 0.85 in the starting concentrate to more than 960 in the first solution of niobium and 110 in the second. Therefore, a very good selectivity towards titanium is maintained.
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • Niobium is 65% recovered by this process, with an increase in the Nb / Ti mass ratio from 1.0 in the starting concentrate to over 100 in the niobium solutions.
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • Niobium is 64% recovered by this process, with an increase in the Nb / Ti mass ratio from 1.0 in the starting concentrate to greater than 100 in the first niobium solution.
  • niobium solutions obtained contain the following elemental contents (in g / L):
  • the niobium is recovered at 57% by this process, with an increase in the Nb / Ti mass ratio from 1.0 in the starting concentrate to over 100 in the first niobium solution.
  • the niobium solutions obtained contain the following elemental contents (in g / L):
  • Niobium is 66% recovered by this process, with an increase in the Nb / Ti mass ratio from 1.3 in the starting concentrate to greater than 130 in the first niobium solution.
  • the solid is then separated from the liquid by filtration.
  • the solid obtained is washed 4 times in succession by repulping in 10 g / l sodium hydroxide at a solid content of approximately 100 g / l.
  • the resulting solid is then partially dissolved in water at 40 ° C at a solid level of 1.9% for 2 h.
  • the liquid is then separated from the solid and the latter is washed with water to remove the impregnant which is recovered with the other liquid phase.
  • the solid is then separated from the liquid and the solid is washed with distilled water.
  • Example 11 Examples of precipitation according to step ⁇ of the process according to the invention
  • the precipitation yield of niobium is under these conditions of 98.5%.
  • the precipitation yield of niobium is under these conditions of 99.9%.
  • Comparative Example 1 Low Sodium Concentration A niobiu m / tantalum concentrate of the following mass elemental composition:
  • a dilute sodium hydroxide solution (from 10 to 100 g / l) at a rate of 80 L / kg of solid.
  • the suspension is heated at 90 ° C for 1 h and then the solid is separated from the liquid by centrifugation.
  • the resulting solution contains a portion of the niobium, and the solid is washed with water twice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

La présente invention concerne un procédé de purification du niobium et/ou du tantale à partir d'un minerai ou d'un concentré de niobium et/ou tantale contenant du titane et/ou du fer, le procédé comprenant les étapes suivantes: a) conversion sodique d'un minerai ou concentré de niobium et/ou tantale contenant du titane et/ou du fer par ajout d'une solution de NaOH concentrée à une température comprise entre 50°C et 150°C; b) séparation solide/liquide et récupération du solide obtenu à l'étape a); c) lavage du solide récupéré à l'étape b) avec une solution aqueuse contenant au plus 30g/L de NaOH et récupération du solide lavé; d) ajout d'eau de façon à dissoudre le niobium et/ou tantale; e) séparation solide/liquide et récupération de la solution aqueuse contenant le niobium et/ou tantale obtenue à l'étape d); f) acidification de la solution aqueuse obtenue l'étape e) jusqu'à un pH compris entre 1 et 5, avantageusement entre 3 et 4, de façon à précipiter le niobium et/ou tantale; g) séparation solide/liquide et récupération du précipité de niobium et/ou tantale purifié obtenu à l'étape f).

Description

PROCEDE DE PURIFICATION DU NIOBIUM ET/OU DU TANTALE
La présente invention concerne la purification du niobium et/ou du tantale contenu dans un minerai ou concentré. Elle concerne également l'obtention de niobium et/ou tantale de pureté élevée avec un rendement élevé.
Le tantale et le niobium sont des métaux ayant une très grande résistance à la chaleur et à la corrosion et qui sont utilisés industriellement de façon très large dans des alliages métalliques. De plus, récemment, la demande en niobium et/ou tantale pur a augmenté en raison de leur utilisation entre autres dans des électrodes ou des composants optiques.
A l'état naturel, le niobium (Nb) et le tantale (Ta) sont souvent associés dans des minéraux complexes, tels que le pyrochlore, la colombite, la tantalite, la colombo-tantalite et la loparite. Les minerais ou concentrés de minerai contenant ces minéraux sont susceptibles de renfermer également de l'uranium et des terres rares, mais également du fer et du titane.
A ce jour, la production de niobium est principalement réalisée par un procédé d'enrichissement par flottation de pyrochlore, combiné à un traitement pyrométallurgique en four d'aluminothermie (Minerais Engineering, Volume 14, Number 1, January 2001, pp 99-105 (7) : "Kinetics of Pyrochlore Flotation from Araxa Minerai Deposits " par Oliveira J.F.; Saraiva S.M.; Pimenta J.S.; Oliveira A.P.A. ; Mining Magazine, February 1982 : "Araxa niobium mine"). Des alternatives à ce procédé, pour la production de niobium et de tantale, consistent essentiellement en des procédés d'attaque par action d'acide fluorhydrique, sur des concentrés portés par des phases minérales chimiquement réfractaires, telles que la tantalite et la colombo-tantalite ("Extractive Metallurgy of Niobium (Chapter 2 : Sources and their treatment procédures" par C.K. Gupta et A.K. Suri, CRC Press, London, pages 49-62)). Des procédés, qui n'ont pas recours à l'acide fluorhydrique, basés sur l'emploi d'acide sulfurique, ont également été décrits dans la littérature. Ils requièrent généralement un grillage acide ou sulfatant, combiné à une mise en solution du niobium et/ou du tantale dans un milieu très acide (H2SO4 > 35 % pds/pds) (US 3 087 809), ou dans un milieu contenant soit des acides carboxyliques (US 2 481 584), soit des ions ammonium (Tsvetnye Metally/non-ferrous metals, 1986, Vol. 27, n° 11, pages 61-62 : "Industriel tests and introduction of the sulphate extraction technology for the processing of low-grade tantalum- niobium concentrâtes", par A.I. Karpukhin, G.I. Il'ina, V.G. Kharlov, A.I. Usenko et Yu. G. Popov).
La demande de brevet WO 2012/093170 décrit également la lixiviation du minerai de pyrochlore, en particulier du minerai issu du gisement de Mabounié, situé au Gabon, par mise en solution quantitative des éléments de valeur (Nb, terres rares (TR), Ta et U). Le lixiviat obtenu contient non seulement du Nb et/ou du Ta mais également du fer, en particulier du fer ferrique (Fe III), de l'aluminium (Al), du titane (Ti) et des phosphates (P). Il est donc nécessaire de purifier le produit obtenu.
Différents procédés de purification sont décrits dans l'art antérieur.
Ainsi par exemple la demande de brevet FR2075933 décrit un procédé de récupération de niobium de pureté élevée à partir d'un concentré de niobium cuit avec l'acide sulfurique par traitement avec de l'ammoniaque ou un hydroxyde de métal alcalin à un pH supérieur à 7 et à une température supérieure à 25 °C, suivie d'un grillage du mélange ainsi obtenu et de sa lixiviation par de l'eau afin d'obtenir une solution contenant le niobium avant la précipitation des composés de niobium. Toutefois, pour effectuer le grillage d'une masse humide, il est nécessaire d'utiliser beaucoup d'énergie. Le procédé est donc coûteux industriellement parlant. En outre, pour éliminer le titane, il est nécessaire de rajouter une étape supplémentaire de lixiviation sous pression atmosphérique dans des conditions réductrices.
Le brevet US2953453 décrit un procédé de récupération de niobium comprenant une étape de traitement de fusion à la soude du minerai de colombite ou de traitement avec de l'acide sulfurique ou avec de l'acide fluorhydrique. Le produit ainsi obtenu est sujet à différentes opérations de lixiviation afin d'éliminer les contaminants : tout d'abord un lavage à l'eau puis un lavage avec une solution d'hydroxyde de sodium à 1M avant une lixiviation acide réductrice (acide chlorhydrique ou nitrique et poudre de fer). C'est cette dernière lixiviation qui permet de supprimer le titane. Le produit obtenu est ensuite mis en contact avec de l'acide fluorhydrique pour récupérer Nb et Ta. Le procédé décrit est donc long et produit beaucoup d'effluents. En outre il est coûteux en énergie et il nécessite l'utilisation d'HF ce qui est cher et toxique. Le brevet US3058825 décrit un procédé pour récupérer du niobium et du tantale à partir de minerais ou de concentré de minerai. Il utilise une lixiviation sous pression en milieu KOH concentré de colombite pour solubiliser les niobates et tantalates. Ils sont ensuite précipités par ajout d'un sel de sodium et lavés avec une solution sodique. Le précipité est éventuellement hydrolysé par une solution acide. Le problème est que les solutions de KOH ne sont pas recyclables et que le KOH est cher. En outre il est nécessaire de contrôler de façon stricte la quantité de KOH utilisée sous peine de former un sel insoluble. Le brevet US4182744 décrit un procédé d'extraction de niobium et de tantale à partir de minerai de bario-pyrochlore par traitement avec du CaCI2 aux environs de 1000 °C. Le calcio-pyrochlore ainsi formé est ensuite traité par fusion à la soude en présence d'un sel fluoré. La masse obtenue après refroidissement est broyée et lavée à l'eau avant d'être lavé à l'acide chlorhydrique à 2,5 mol/L. Ce procédé nécessite deux fusions ce qui est coûteux énergétiquement parlant. La demande JP2004224619 décrit un procédé de purification d'oxyde de tantale ou de niobium de façon à le séparer de l'aluminium et du silicium présent par utilisation de soude à une concentration comprise entre 2 et 20 mol/L, à une température comprise entre 100 et 300 °C, avantageusement entre 150 et 250 °C, et une pression comprise entre 0,1 et 30 MPa. Toutefois ce procédé ne permet pas d'éliminer le titane ni le fer si celui-ci est présent dans le minerai initial. En outre la température et la pression préconisées sont très élevées ce qui est cher économiquement parlant.
Ainsi donc il est nécessaire de trouver un procédé permettant de purifier le niobium et le tantale du fer et/ou du titane présents dans les minerai ou concentrés de minerai, sans utilisation de lixiviation réductrice qui nécessite une consommation importante de réactifs et rallonge le procédé, sans utilisation de fusion ce qui permettrait des économies d'énergie et sans utilisation de produits fluorés ou de KOH qui sont coûteux, toxiques et coûteux à éliminer.
Les inventeurs ont découvert de façon surprenante un tel procédé qui permettait d'obtenir du niobium et/ou du tantale purifié avec un bon rendement de purification. La présente invention concerne donc un procédé de purification du niobium et/ou du tantale à partir d'un minerai ou d'un concentré de niobium et/ou tantale contenant du titane et/ou du fer, le procédé comprenant les étapes suivantes :
a) conversion sodique d'un minerai ou concentré de niobium et/ou tantale contenant du titane et/ou du fer par ajout d'une solution de NaOH concentrée à une température comprise entre 50°C et 150°C (en effet au-delà de 150°C et en dessous de 50°C, les rendements chutent), avantageusement à une température comprise entre 90 et 130 °C ; b) séparation solide/liquide et récupération du solide obtenu à l'étape a) ;
c) lavage du solide récupéré à l'étape b) avec une solution aqueuse contenant au plus 30g/L de NaOH et récupération du solide lavé ;
d) ajout d'eau de façon à dissoudre le niobium et/ou tantale ;
e) séparation solide/liquide et récupération de la solution aqueuse contenant le niobium et/ou tantale obtenue à l'étape d);
f) acidification de la solution aqueuse obtenue l'étape e) jusqu'à un pH compris entre 1 et 5, avantageusement entre 3 et 4, en particulier 4, de façon à précipiter le niobium et/ou tantale ;
g) séparation solide/liquide et récupération du précipité de niobium et/ou tantale purifié obtenu à l'étape f)-
Le minerai ou concentré de niobium et/ou tantale traité selon l'invention peut bien évidemment consister en, respectivement, un mélange de minerais ou un mélange de concentrés. De surcroit, la matière première traitée peut aussi consister en un mélange mixte minerai(s)/concentré(s), que l'homme du métier qualifie généralement aussi de minerai ou concentré selon ses teneurs en niobium/tantale. On comprend que l'invention concerne donc le traitement d'une matière première choisie parmi les minerais, les concentrés de niobium et/ou tantale et leurs mélanges, de façon avantageuse d'invention concerne le traitement de concentré de niobium et/ou tantale, en particulier contenant entre 6 et 26% en masse de niobium et/ou tantale, plus particulièrement entre 6 et 25 % en masse niobium, avantageusement entre 8 et 24% en masse niobium, et entre 0 et 1 % en masse de tantale, avantageusement entre 0,1 et 0,5% en masse de tantale, encore plus particulièrement il contient uniquement du niobium, en particulier il contient un mélange de tantale et niobium.
Le concentré de niobium et/ou tantale peut être de tout type. Il peut notamment s'agir d'un concentré minéralurgique, résultant d'un enrichissement physique ou d'un concentré résultant d'un enrichissement chimique (tel un résidu de lixiviation).
Ainsi, selon une variante, le procédé de l'invention comprend, en amont de l'étape a), un enrichissement du minerai ou concentré de niobium et/ou tantale à traiter. Un tel enrichissement peut être un enrichissement physique basé sur toute méthode classique d'enrichissement physique d'un matériau solide, par exemple il peut consister en une séparation magnétique basse intensité (pour écarter la magnétique) ou en une flottation (du type flottation silice ou flottation apatite).
Le procédé décrit ci-dessus, pour la purification du niobium et/ou du tantale, convient pour traiter tout minerai ou concentré renfermant du niobium et/ou tantale. Ce minerai ou concentré se trouve sous forme solide. Il convient notamment pour traiter minerais et concentrés, le minerai en cause étant choisi parmi les minerais des groupes pyrochlore (de formule générale : A2B206(0,OH,F) avec A= U, TR, Na, Ca, Ba, Th, Bi (notamment) et B= Nb, Ta, Ti, Fe (notamment)), colombite, tantalite, colombo-tantalite, loparite, euxenite, smarskite, perovskite, fergusonite et leurs mélanges. De tels minerais et concentrés contiennent du fer et/ou du titane. Avantageusement, il s'agit de minerai de pyrochlore ou de colombite ou de concentré de niobium et/ou tantale issu de ces minerais. De façon avantageuse il s'agit de minerai de pyrochlore, en particulier du minerai issu du gisement de Mabounié, situé au Gabon, ou de concentré de niobium et/ou tantale obtenus à partir de ce minerai, de façon encore plus avantageuse de concentré de niobium et/ou tantale obtenus à partir de ce minerai. En particulier ce minerai ou concentré de niobium et/ou tantale contient du fer et/ou du titane, plus particulièrement il contient entre 2 et 15 % en masse de titane, avantageusement entre 4 et 13% en masse, et/ou entre 5 et 10 % en masse de fer, encore plus particulièrement il contient du fer et du titane, de façon plus particulière entre 2 et 15 % en masse de titane, avantageusement entre 4 et 13% en masse, et entre 5 et 10 % en masse de fer. Avantageusement le concentré ou minerai de niobium et/ou tantale de l'étape a) contient entre 6 et 26% en masse de niobium et/ou tantale (plus particulièrement entre 6 et 25 % en masse niobium, avantageusement entre 8 et 24% en masse niobium, et entre 0 et 1 % en masse de tantale, avantageusement entre 0,1 et 0,5% en masse de tantale), entre 2 et 15 % en masse de titane, avantageusement entre 4 et 13% en masse, et entre 5 et 10 % en masse de fer et son rendement de purification est d'au moins 55%, avantageusement d'au moins 60%, plus avantageusement d'au moins 65%, en particulier d'au moins 70 %.
En particulier le minerai ou concentré de niobium et/ou tantale contient en outre de l'aluminium, avantageusement en une teneur inférieure à 2 % en masse, du phosphore, avantageusement en une teneur comprise entre 3 et 12 % en masse, avantageusement entre 4 et 11% en masse, du zirconium, avantageusement en une teneur inférieure à 2 % en masse, du soufre, avantageusement en une teneur comprise entre 1 et 4 % en masse, du silicium, avantageusement en une teneur inférieure à 2 % en masse, et/ou des éléments radioactifs, en particulier U et/ou Th, avantageusement en une teneur inférieure à 1 % en masse chacun.
Dans un autre mode de réalisation particulier de la présente invention, le minerai ou concentré de niobium et/ou tantale a la composition suivante :
- Niobium (de 6 à 25 % massique, avantageusement de 8 à 24%
massique)
- Tantale (de 0 à 1 % massique, avantageusement de 0,1 à 0,5%
massique)
- Titane (de 2 à 15 % massique, avantageusement de 4 à 13% massique) - Phosphore (de 3 à 12 % massique, avantageusement de 4 à 11% massique)
- Soufre (de 1 à 4 % massique)
- Fer (de 5 à 8 % massique)
- Aluminium (moins de 2 % massique)
- Zirconium (moins de 2 % massique)
- Silicium (moins de 2 % massique)
- éléments radioactifs, en particulier U et/ou Th ( moins de 1 % massique chacun) Dans un mode de réalisation avantageux de la présente invention, le niobium et/ou le tantale se trouve sous la forme d'oxyde, d'hydroxydes et/ou de phosphates dans le minerai ou concentré destiné à être purifié.
L'étape a) selon la présente invention consiste donc en la mise en suspension du minerai ou concentré de niobium et/ou tantale dans une solution aqueuse concentrée de NaOH dans des conditions de température particulière pour récupérer un solide à l'étape b). L'étape a) de conversion sodique du procédé selon la présente invention permet la conversion du niobium et/ou tantale du minerai ou concentré de minerai solide sous forme de niobate et/ou tantalate, se trouvant également sous forme solide. Dans les conditions du procédé, le niobium et/ou le tantale n'est pas soluble à la fin de l'étape a) dans la solution aqueuse de NaOH concentrée ce qui va permettre d'éliminer Al, P, S et Si qui se solubilisent dans la solution aqueuse de NaOH. En revanche, si une solution aqueuse de NaOH diluée est utilisée, une partie du niobium et/ou du tantale (en général entre 12 et 30 % en masse) se retrouve dans la solution aqueuse et ne peut être récupérée, le procédé purification ayant ainsi un rendement peu élevé. Dans un mode de réalisation avantageux, dans l'étape a) du procédé selon la présente invention, la solution de NaOH concentrée contient au moins 200 g/L de NaOH, avantageusement entre 200 et 500 g/L de NaOH , plus avantageusement entre 300 et 450 g/L, plus particulièrement entre 320 et 400 g/L.
Dans un autre mode de réalisation avantageux, la durée de l'étape a) procédé selon la présente invention est comprise entre 2 et 24 heures, avantageusement entre 2 et 18 heures, plus particulièrement entre 2 et 16 heures. Dans encore un autre mode de réalisation avantageux, le ratio L/S de l'étape a) du procédé selon la présente invention est compris entre 3 et 50 L/kg, en particulier entre 5 et 50 L/kg, plus particulièrement entre 10 et 50 L/kg.
En particulier l'étape a) du procédé selon la présente invention est mise en oeuvre sous agitation. Dans un mode de réalisation avantageux, les étapes de séparation solide/liquide b) e) et g) du procédé selon la présente invention sont mises en œuvre par filtration, décantation ou centrifugation, en particulier par filtration ou centrifugation.
L'étape c) du procédé selon la présente invention permet d'éliminer l'imprégnant du solide récupéré à l'étape b) et le restant des éléments solubles en milieu basique comme l'aluminium et le phosphore, si ces derniers sont présents dans le minerai ou le concentré de niobium et/ou tantale de départ. De façon avantageuse l'étape c) est mise en œuvre à une température comprise entre la température ambiante et 80 °C, de façon avantageuse à un ratio L/S compris entre 5 et 15 L/kg, en particulier compris entre 8 et HL/kg. Dans un mode de réalisation avantageux du procédé selon la présente invention, dans l'étape c) la solution de NaOH diluée contient entre 3 et 30 g /L de NaOH, avantageusement entre 10 et 26 g/L de NaOH.
Dans un autre mode de réalisation avantageux, la solution de lavage utilisée ne contient pas de NaOH. Il s'agit donc uniquement d'eau. Dans ce cas avantageusement le volume d'eau utilisé est contrôlé et/ou l'étape c) est mise en œuvre à contre-courant. L'utilisation d'eau à contre-courant permet de diminuer au maximum la quantité de liquide de lavage utilisé et donc la quantité d'effluents générée. Dans encore un mode de réalisation avantageux, l'étape c) est répétée plusieurs fois, en particulier au moins quatre fois.
L'étape d) du procédé selon la présente invention permet de dissoudre le niobium et/ou le tantale dans l'eau et de les séparer des insolubles tels que le titane, le fer, le zirconium et les éléments radioactifs si ceux-ci sont présents dans le minerai ou le concentré de niobium et/ou tantale de départ. De façon avantageuse l'étape d) du procédé selon la présente invention est mise en œuvre à une température comprise entre la température ambiante et 90 °C, avantageusement à 40°C. Avantageusement la solution aqueuse obtenue à l'étape d) a un pH compris entre 11 et 13, de façon avantageuse il est de 11,5. Une régulation de pH peut être mise en place lors de cette étape d), par exemple par ajout d'acide, tel que l'acide sulfurique, afin de garder un pH compris entre 11 et 13, de façon avantageuse un pH de 11,5.
Dans un mode de réalisation avantageux le ratio L/S de l'étape d) du procédé selon la présente invention est < 200 L/kg, avantageusement compris entre 10 et 100 L/kg, de façon avantageuse entre 10 et 60 L/kg, en particulier entre 13 et 50 L/kg. Dans un autre mode de réalisation avantageux, le solide n'est dissout que partiellement et l'étape d) est répétée, avantageusement jusqu'à deux fois supplémentaires, sur le solide récupéré à l'étape e) du procédé selon la présente invention, les solutions aqueuses obtenues à chaque étape e) étant mélangés entre elles avant la mise en uvre de l'étape f) selon la présente invention.
L'étape f) du procédé selon la présente invention permet de précipiter le niobium et/ou tantale sous forme d'acide niobique et/ou d'oxyde hydraté de tantale et/ou tantale afin de récupérer un solide purifié. Avantageusement l'acide utilisé à l'étape f) est de l'acide choisi parmi l'acide sulfurique, l'acide chlorhydrique, l'acide nitrique ou leur mélange, avantageusement il s'agit de l'acide sulfurique.
Dans un autre mode de réalisation, le minerai ou concentré de niobium et/ou tantale de l'étape a) contient en outre de l'aluminium, du phosphore, du zirconium, du soufre, du silicium et/ou des éléments radioactifs, tels qu'Uranium (U) et/ou thorium (Th), et le précipité de niobium et/ou tantale est quantitativement purifié de ces éléments, typiquement avec des rendements de purification supérieurs à 98%.
Le rendement de purification (rdt) répond à la formule suivante :
rdt=100x(l-(teneur impureté du précipité final)/(teneur en impureté du concentré ou minerai de départ)x(Teneur Nb et/ou Ta du concentré ou minerai de départ)/(Teneur Nb et/ou Ta du précipité final))
Dans encore un autre mode de réalisation, le procédé selon la présente invention comprend une étape supplémentaire h) de lavage du précipité, avantageusement avec de l'eau, et calcination du précipité lavé. Si nécessaire, une étape supplémentaire peut être ajoutée afin de séparer le niobium et le tantale. Cette étape utilise des méthodes bien connues de l'homme du métier.
Dans un mode de réalisation particulier du procédé selon la présente invention, le concentré ou minerai de l'étape a) ne contient pas de tantale et on obtient à l'étape g) un précipité de niobium purifié.
Dans encore un autre mode de réalisation particulier du procédé selon la présente invention, la solution de NaOH concentré obtenue après l'étape de séparation b) est recyclée, avantageusement après purification par cristallisation des impuretés à une température inférieure à 50°C, avantageusement de 30°C. Les impuretés cristallisées sont par exemple le phosphate de sodium et le sulfate de sodium. Cette étape de cristallisation consiste en un refroidissement du filtrat de conversion sodique obtenue l'étape b) à une température inférieure à 50°C, avantageusement de 30°C. La solution ainsi obtenue, après cristallisation, est appauvrie en polluant mais encore relativement riche en soude. Elle est donc réemployée en partie dans l'étape a) de conversion sodique du procédé selon la présente invention avec un appoint de soude fraîche concentrée pour ramener la concentration à la valeur voulue. Une partie est éliminée pour éviter l'accumulation d'éléments qui ne cristallisent pas. Dans encore un autre mode de réalisation particulier, le procédé selon la présente invention comprend une étape préalable a), avant l'étape a), de lavage du concentré ou minerai avec une solution aqueuse de NaOH diluée de façon à éliminer le phosphore présent dans le concentré ou minerai et la solution de NaOH concentré obtenue après l'étape de séparation b) est recyclée, avantageusement directement sans cristallisation. Comme dans le mode de réalisation précédent, seule une partie de la soude est réemployée dans l'étape a) de conversion sodique du procédé selon la présente invention avec un appoint de soude fraîche concentrée pour ramener la concentration à la valeur voulue. Une partie est éliminée pour éviter l'accumulation d'éléments polluants.
L'invention sera mieux comprise à la lumière des exemples qui suivent et qui sont donnés à titre indicatif non limitatif.
Exemple 1 :
Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000014_0001
est introduit dans une solution de soude à 330 g/L à raison de 10L/kg de solide. La suspension est chauffée à 110 °C pendant 18 h puis le solide est séparé du liquide par centrifugation. Le solide obtenu est lavé 4 fois à la soude à 26 g/L à raison de 10 L/kg de solide de départ puis le solide est partiellement dissout dans de l'eau à raison de 35 L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à une nouvelle étape de dissolution à l'eau à raison de 35 L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Fe Al P Nb Ta Ti S Na U Th
Mise en 0,007 0,001 0,01 0,6 0,02 0,004 0,01 1,00 <0,0005 <0,0005 solution
1
Mise en 0,001 0,0001 0,0003 2,0 0,009 0,002 0,0002 0,76 <0,0005 <0,0005 solution
2 que l'on peut précipiter quantitativement en ajoutant lentement ces solutions dans 3 fois leur volume d'une solution acide à pH=3 (acidifiée à l'acide sulfurique) en maintenant le pH par ajout d'acide sulfurique.
Le niobium est récupéré à 76 % par ce procédé, avec une augmentation du rapport massique Nb/Ti qui passe de 1,2 dans le concentré de départ à plus de 100 dans les solutions de niobium.
Exemple 2 Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000015_0001
est introduit dans une solution de soude à 320 g/L à raison de 10 L/kg de solide. La suspension est chauffée à 110 °C pendant 18 h puis le solide est séparé du liquide par centrifugation. Le solide obtenu est lavé 4 fois à la soude à 26 g/L à raison de 10 L/kg de solide de départ puis le solide est partiellement dissout dans de l'eau à raison de 50 L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à une nouvelle étape de dissolution à l'eau à raison de 50 L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Fe Al P Nb Ta Ti S Na
Mise en 0,02 0,004 0,01 2,1 0,04 0,03 0,37 1,45 solution 1
Mise en 0,06 0,003 0,01 1,9 0,04 0,06 0,009 0,65 solution 2 que l'on peut précipiter quantitativement en ajoutant lentement ces solutions dans 3 fois leur volume d'une solution acide à pH=3 (acidifiée à l'acide sulfurique) en maintenant le pH par ajout d'acide sulfurique.
Le niobium est récupéré à 83 % par ce procédé, avec une augmentation du rapport massique Nb/Ti qui passe de 5 dans le concentré de départ à plus de 30 dans les solutions de niobium.
Exemple 3 Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000016_0001
est introduit dans une solution de soude à 350 g/L à raison de 12 L/kg de solide. La suspension est chauffée à 110 °C pendant 18 h puis le solide est séparé du liquide par centrifugation. Le solide obtenu est lavé 4 fois à la soude à 26 g/L à raison de 10 L/kg de solide de départ puis le solide est partiellement dissout dans de l'eau à raison de 50 L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à une nouvelle étape de dissolution à l'eau à raison de 50 L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Fe Al P Nb Ta Ti S Na
Mise en 0,004 0,0006 0,01 1,1 0,03 0,008 0,003 1,0 solution 1
Mise en 0,1 0,001 0,00005 1,9 0,05 0,25 0,002 0,74 solution 2 que l'on peut précipiter quantitativement en ajoutant lentement ces solutions dans 3 fois leur volume d'une solution acide à pH=3 (acidifiée à l'acide sulfurique) en maintenant le pH par ajout d'acide sulfurique.
Le niobium est récupéré à 80 % par ce procédé, avec une augmentation du rapport massique Nb/Tï qui passe de 1,2 dans le concentré de départ à plus de 140 dans la première solution de niobium.
Exemple 4 :
Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000017_0001
est introduit dans une solution de soude à 400 g/L à raison de 50 L/kg de solide. La suspension est chauffée à 110 °C pendant 18 h puis le solide est séparé du liquide par centrifugation. Le solide obtenu est lavé 4 fois à la soude à 10 g/L à raison de 10 L/kg de solide de départ puis le solide est partiellement dissout dans de l'eau à raison de 50 L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à deux nouvelles étapes de dissolution à l'eau/centrifugation à raison de 50 L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Fe Al P Nb Ta Ti S Na
Mise en 0,002 0,0002 0,0006 1,55 0,035 0,0095 0,0002 0,84 solution 1
Mise en 0,004 0,00004 0,00005 0,043 0,001 0,006 0,0001 0,11 solution 2
Mise en 0,0085 0,00004 0,00002 0,012 0,0003 0,013 0,00005 0,048 solution 3 La précipitation quantitative de la première mise en solution en ajoutant lentement cette solution dans 3 fois son volume d'une solution acide à pH=3 (acidifiée à l'acide sulfurique) et en maintenant le pH par ajout d'acide sulfurique permet de récupérer un solide blanc dont la composition est la suivante (teneur massiques élémentaires sur solide non calciné) :
Figure imgf000018_0001
Le niobium est récupéré à 85 % par ce procédé, avec une augmentation du rapport massique Nb/Ti qui passe de 1,0 dans le concentré de départ à plus de 90 dans la première solution de niobium. Le rapport Nb/P passe de 1,0 à 970.
Exemple 5 :
Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000018_0002
est introduit dans une solution de soude à 340 g/L à raison de 11 L/kg de solide. La suspension est chauffée à 110 °C pendant 18 h puis le solide est séparé du liquide par centrifugation. Le solide obtenu est lavé 4 fois à la soude à 10 g/L à raison de 310 L/kg de solide de départ puis le solide est partiellement dissout dans de l'eau à raison de 13 L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à une nouvelle étape de dissolution à l'eau à raison de 13 L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Figure imgf000019_0001
que l'on peut précipiter quantitativement en ajoutant lentement ces solutions dans 3 fois leur volume d'une solution acide à pH=3 (acidifiée à l'acide sulfurique) en maintenant le pH par ajout d'acide sulfurique.
Le niobium est récupéré à 45 % par ce procédé (on aurait eu plus si on avait dissout une fois de plus), avec une augmentation du rapport massique Nb/Tï qui passe de 0,85 dans le concentré de départ à plus de 960 dans la première solution de niobium et 110 dans la seconde. On conserve donc une très bonne sélectivité vis-à-vis du titane.
Exemple 6 :
Un concentré de niobium/tantale de composition élémentaire massique suivante :
Fe Al P Nb Ta Ti s Na
7 % 0,3 % 7 % 12 % 0,2 % 11 % 4 % 0,04 % est introduit dans une solution de soude à 340g/L à raison de 10L/kg de solide. La suspension est chauffée à 90°C pendant 5h puis le solide est séparé du liquide par centrifugation. Le solide obtenu est lavé 4 fois à la soude à 26g/L à raison de 9L/kg de solide de départ puis le solide est partiellement dissous dans de l'eau à raison de 50L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à une nouvelle étape de dissolution à l'eau à raison de 50L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Figure imgf000020_0001
Le niobium est récupéré à 65% par ce procédé, avec une augmentation du rapport massique Nb/Tï qui passe de 1,0 dans le concentré de départ à plus de 100 dans les solutions de niobium.
Exemple 7 :
Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000020_0002
est introduit dans une solution de soude à 400g/L à raison de 15L/kg de solide. La suspension est chauffée à 110°C pendant lOh puis le solide est séparé du liquide par filtration. Le solide obtenu est lavé 3 fois à la soude à lOg/L à raison de 10L/kg de solide de départ puis le solide est partiellement dissous dans de l'eau à raison de 50L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à deux nouvelles étapes de dissolution successives à l'eau à raison de 50L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Figure imgf000021_0001
Le niobium est récupéré à 64% par ce procédé, avec une augmentation du rapport massique Nb/Ti qui passe de 1,0 dans le concentré de départ à plus de 100 dans la première solution de niobium.
Exemple 8
Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000021_0002
est introduit dans une solution de soude à 200g/L à raison de 15L/kg de solide. La suspension est chauffée à 130°C pendant lOh puis le solide est séparé du liquide par filtration. Le solide obtenu est lavé 3 fois à la soude à lOg/L à raison de 10L/kg de solide de départ puis le solide est partiellement dissous dans de l'eau à raison de 5017kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à deux nouvelles étapes de dissolution successives à l'eau à raison de 50L/Kg de solide de départ.
Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Figure imgf000022_0001
Le niobium est récupéré à 57% par ce procédé, avec une augmentation du rapport massique Nb/Tï qui passe de 1,0 dans le concentré de départ à plus de 100 dans la première solution de niobium.
Exemple 9 :
Un concentré de niobium/tantale de composition élémentaire massique suivante :
Figure imgf000022_0002
est introduit dans une solution de soude à 350g/L à raison de 10L/kg de solide. La suspension est chauffée à 90°C pendant lOh puis le solide est séparé du liquide par filtration. Le solide obtenu est lavé 3 fois à la soude à 26g/L à raison de 10L/kg de solide de départ puis le solide est partiellement dissous dans de l'eau à raison de 50L/kg de solide de départ. Le solide restant est séparé du liquide par centrifugation et le solide est soumis à deux nouvelles étapes de dissolution successives à l'eau à raison de 50L/Kg de solide de départ. Les solutions de niobium obtenues contiennent les teneurs élémentaires suivantes (en g/L):
Figure imgf000023_0001
Le niobium est récupéré à 66% par ce procédé, avec une augmentation du rapport massique Nb/Ti qui passe de 1,3 dans le concentré de départ à plus de 130 dans la première solution de niobium.
Exemple 10
Un concentré de niobium et de tantale de composition suivante :
Figure imgf000023_0002
est introduit dans une solution de soude à 400 g/L à un taux de solide de 3,5 %. La suspension est chauffée à 110 °C pendant 8 h.
Le solide est ensuite séparé du liquide par filtration. Le solide obtenu est lavé 4 fois de suite par repulpage dans de la soude à 10 g/L à un taux de solide d'environ 100 g/L.
Le solide obtenu est ensuite dissous partiellement dans l'eau à 40 °C à un taux de solide de 1,9 % pendant 2 h. Le liquide est ensuite séparé du solide et ce dernier est lavé à l'eau pour éliminer l'imprégnant qui est récupéré avec l'autre phase liquide.
La phase liquide de composition suivante : Fe Nb Ta Ti S P Na
0,6 mg/L 1,4 g/L 30 mg/L 3 mg/L 35 mg/L l mg/L 0,9 g/L est introduite dans un grand volume d'eau acidifiée à pH=4 en maintenant le pH par ajout d'acide sulfurique à 1 mol/L.
Le solide est ensuite séparé du liquide et le solide est lavé à l'eau distillée.
Le solide à la composition suivante :
Figure imgf000024_0001
Exemple 11 : Exemples de précipitation selon l'étape Π du procédé selon l'invention:
Exemple 11-1
Une solution contenant :
Figure imgf000024_0002
est introduite lentement dans trois fois son volume d'eau acidifiée à pH=4 par de l'acide chlorhydrique. Lors de l'ajout, on maintient le pH à la valeur de 4 par ajout d'une solution d'acide chlorhydrique à 1 mol/L. Lorsque l'ajout de la solution de niobium est terminé, on sépare le liquide du solide par
centrifugation. Après séchage à 115 °C, le solide à la composition massique suivante :
Figure imgf000025_0001
Le rendement de précipitation du niobium est dans ces conditions de 98,5%.
Exemple 11-2
Une solution contenant :
Figure imgf000025_0002
est introduite lentement dans trois fois son volume d'eau acidifiée à pH=4 par de l'acide nitrique. Lors de l'ajout, on maintient le pH à la valeur de 4 par ajout d'une solution d'acide nitrique à 1 mol/L. Lorsque l'ajout de la solution de niobium est terminé, on sépare le liquide du solide par centrifugation. Après séchage à 115 °C, le solide à la composition massique suivante :
Figure imgf000025_0003
Le filtrat de précipitation à la composition suivante Fe Nb Ta Ti S P Na
0,1 mg/L 0,4 mg/L 0,02 mg/L 0,02 mg/L 9,3 mg/L 0,05 mg/L 0,31 g/L
Le rendement de précipitation du niobium est dans ces conditions de 99,9%.
Exemple comparatif 1 : Concentration en soude faible Un concentré de niobiu m/tantale de composition élémentaire massique suivante :
Figure imgf000026_0001
est introduit dans une solution de soude diluée (de 10 à 100 g/L) à raison de 80 L/kg de solide. La suspension est chauffée à 90 °C pendant 1 h puis le solide est séparé du liquide par centrifugation. La solution obtenue contient une partie du niobium, puis le solide est lavé à l'eau deux fois.
Figure imgf000026_0002
Ainsi lorsqu'on utilise une concentration de soude faible (10 à 100 g/L) avec de faible durée de conversion (lh), le Nb n'est pas reprécipité mais reste partiellement soluble dans le filtrat de conversion. Ainsi on récupère entre 12 et 30 % du niobium dans le liquide avec l'intégralité ou presque du soufre et du phosphore. En résumé, avec des concentrations faibles on perd une partie du Nb avec le phosphore.

Claims

REVENDICATIONS
1. Procédé de purification du niobium et/ou du tantale à partir d'un minerai ou d'un concentré de niobium et/ou tantale contenant du titane et/ou du fer, avantageusement d'un concentré de niobium et/ou tantale contenant du titane et/ou du fer, le procédé comprenant les étapes suivantes :
a) conversion sodique d'un minerai ou concentré de niobium et/ou tantale contenant du titane et/ou du fer par ajout d'une solution de NaOH concentrée à une température comprise entre 50°C et 150°C ;
b) séparation solide/liquide et récupération du solide obtenu à l'étape a) ;
c) lavage du solide récupéré à l'étape b) avec une solution aqueuse contenant au plus 30g/L de NaOH et récupération du solide lavé ;
d) ajout d'eau de façon à dissoudre le niobium et/ou tantale ;
e) séparation solide/liquide et récupération de la solution aqueuse contenant le niobium et/ou tantale obtenue à l'étape d);
f) acidification de la solution aqueuse obtenue l'étape e) jusqu'à un pH compris entre 1 et 5, avantageusement entre 3 et 4, de façon à précipiter le niobium et/ou tantale ;
g) séparation solide/liquide et récupération du précipité de niobium et/ou tantale purifié obtenu à l'étape f)-
2. Procédé selon la revendication 1 caractérisé en ce que dans l'étape a) la solution de NaOH concentrée contient au moins 200 g/L de NaOH, avantageusement entre 200 et 500 g /L de NaOH.
3. Procédé selon l'une quelconque des revendications 1 ou 2 caractérisé en ce que la durée de l'étape a) est comprise entre 2 et 24 heures.
4. Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que le ratio L/S de l'étape a) est compris entre 3 et 50 L/kg.
5. Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que les étapes de séparation solide/liquide b), e) et g) sont mises en œuvre par filtration, décantation ou centrifugation.
6. Procédé selon l'une quelconque des revendications 1 à 5 caractérisé en ce que dans l'étape c) la solution de NaOH diluée contient entre 3 et 30 g /L de NaOH.
7. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que le ratio L/S de l'étape d) est < 200 L/kg, avantageusement compris entre
10 et 100 L/kg.
8. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que la solution aqueuse obtenue à l'étape d) a un pH compris entre 11 et 13, avantageusement il est de 11,5.
9. Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que l'acide utilisé à l'étape f) est de l'acide sulfurique.
10. Procédé selon l'une quelconque des revendications 1 à 9 caractérisé en ce que le niobium et/ou le tantale se trouve sous la forme d'oxyde, d'hydroxydes et/ou de phosphates dans le minerai ou concentré destiné à être purifié.
11. Procédé selon l'une quelconque des revendications 1 à 10 caractérisé en ce que le minerai ou concentré de niobium et/ou tantale de l'étape a) contient en outre de l'aluminium, du phosphore, du zirconium, du soufre, du silicium et/ou des éléments radioactifs et en ce que le précipité de niobium et/ou tantale est quantitativement purifié de ces éléments, typiquement avec des rendements de purification supérieurs à 98%
12. Procédé selon l'une quelconque des revendications 1 à 11 caractérisé en ce qu'il comprend une étape supplémentaire h) de lavage du précipité, avantageusement avec de l'eau, et calcination du précipité lavé.
13. Procédé selon l'une quelconque des revendications 1 à 12 caractérisé en ce que le concentré ou minerai de niobium et/ou tantale de l'étape a) contient entre 6 et 26% en masse de niobium et/ou tantale, entre 2 et 15 % en masse de titane et entre 5 et 10 % en masse de fer et en ce que ce son rendement de purification est d'au moins 70 %.
14. Procédé selon l'une quelconque des revendications 1 à 13 caractérisé en ce que le concentré ou minerai de l'étape a) ne contient pas de tantale et en ce que l'on obtient à l'étape g) un précipité de niobium purifié.
15. Procédé selon l'une quelconque des revendications 1 à 14 caractérisé en ce que la solution de NaOH concentré obtenue après l'étape de séparation b) est recyclée, avantageusement après purification par cristallisation des impuretés à une température inférieure à 50°C, avantageusement de 30°C.
16. Procédé selon l'une quelconque des revendications 1 à 15 caractérisé en ce qu'il comprend une étape préalable i) avant l'étape a) de lavage du concentré ou minerai avec une solution aqueuse de NaOH diluée de façon à éliminer le phosphore présent dans le concentré ou minerai et en ce que la solution de NaOH concentré obtenue après l'étape de séparation b) est recyclée.
PCT/FR2014/051741 2013-07-09 2014-07-07 Procédé de purification du niobium et/ou du tantale WO2015004375A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2916921A CA2916921A1 (fr) 2013-07-09 2014-07-07 Procede de purification du niobium et/ou du tantale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356738A FR3008425B1 (fr) 2013-07-09 2013-07-09 Procede de purification du niobium et/ou du tantale
FR1356738 2013-07-09

Publications (1)

Publication Number Publication Date
WO2015004375A1 true WO2015004375A1 (fr) 2015-01-15

Family

ID=49322579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051741 WO2015004375A1 (fr) 2013-07-09 2014-07-07 Procédé de purification du niobium et/ou du tantale

Country Status (3)

Country Link
CA (1) CA2916921A1 (fr)
FR (1) FR3008425B1 (fr)
WO (1) WO2015004375A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014095A1 (fr) 2019-07-25 2021-01-28 Paris Sciences Et Lettres - Quartier Latin Procédé d'extraction d'un métal réfractaire à partir d'un minerai, d'un concentré ou d'un déchet
CN115838872A (zh) * 2023-02-13 2023-03-24 锦益创典(天津)科技有限责任公司 钽铌浆料分解液的压滤洗涤方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043696A1 (fr) 2015-11-17 2017-05-19 Eramet Procede hydrometallurgique pour la separation et la purification du tantale et du niobium
CN107236860B (zh) * 2017-05-16 2019-08-30 中国科学院地球化学研究所 一种从粘土岩回收铝和硅并富集铌和钛的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956857A (en) * 1957-11-25 1960-10-18 Mallinckrodt Chemical Works Methods of decomposing complex uranium-rare earth tantalo-columbates
US3058825A (en) * 1958-09-22 1962-10-16 Paul B Cardon Process for recovering columbium and tantalum from ores and ore concentrates containing same
WO2013040694A1 (fr) * 2011-09-23 2013-03-28 Francois Cardarelli Procédé de valorisation de minerais et de concentrés de tantale et de niobium avec récupération d'oxydes de manganèse et de terres rares

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956857A (en) * 1957-11-25 1960-10-18 Mallinckrodt Chemical Works Methods of decomposing complex uranium-rare earth tantalo-columbates
US3058825A (en) * 1958-09-22 1962-10-16 Paul B Cardon Process for recovering columbium and tantalum from ores and ore concentrates containing same
WO2013040694A1 (fr) * 2011-09-23 2013-03-28 Francois Cardarelli Procédé de valorisation de minerais et de concentrés de tantale et de niobium avec récupération d'oxydes de manganèse et de terres rares

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014095A1 (fr) 2019-07-25 2021-01-28 Paris Sciences Et Lettres - Quartier Latin Procédé d'extraction d'un métal réfractaire à partir d'un minerai, d'un concentré ou d'un déchet
FR3099184A1 (fr) 2019-07-25 2021-01-29 Paris Sciences Et Lettres - Quartier Latin Procédé d’extraction d’un métal réfractaire à partir d’un minerai, d’un concentré ou d’un déchet
CN115838872A (zh) * 2023-02-13 2023-03-24 锦益创典(天津)科技有限责任公司 钽铌浆料分解液的压滤洗涤方法

Also Published As

Publication number Publication date
FR3008425B1 (fr) 2015-08-07
CA2916921A1 (fr) 2015-01-15
FR3008425A1 (fr) 2015-01-16

Similar Documents

Publication Publication Date Title
JP6336469B2 (ja) スカンジウム高含有のスカンジウム含有固体材料の生産方法
FR2650583A1 (fr) Procede pour recuperer le scandium, l&#39;yttrium et les lanthanides du minerai de titane
CN110494575A (zh) 回收锂的方法
WO2015004375A1 (fr) Procédé de purification du niobium et/ou du tantale
EP2771280A1 (fr) Procede de traitement de roches phosphatees
FR2641287A1 (fr) Procede d&#39;extraction du scandium a partir de minerai
CN101514396A (zh) 从含锡铅阳极泥中分离锡、锑的方法
BE1006385A3 (fr) Procede pour l&#39;extraction de tantale et de niobium.
FR2616157A1 (fr) Procede d&#39;extraction et de purification du gallium des liqueurs bayer
FR2766842A1 (fr) Procede de precipitation selective de nickel et de cobalt
JP2010138490A (ja) 亜鉛の回収方法等
JP2008297608A (ja) スズの分離回収方法
JP2009209421A (ja) 高純度銀の製造方法
KR101314067B1 (ko) 폐 ito로부터 주석을 분리 회수하는 방법
OA17664A (fr) Procédé de purification du niobium et/ou du tantale.
CN111850296B (zh) 稀土矿中回收制备高纯锶化物的方法
CN104195330A (zh) 粉煤灰酸浸提钒中回收十二水硫酸铝钾结晶工艺方法
JP2001207225A (ja) Ga,Ge,Inの分離方法
JP2007039798A (ja) インジウム回収方法とその用途
RU2305066C2 (ru) Способ получения йодата и йодида калия
EP0309312B1 (fr) Procédé de récupération de gallium par extraction liquide-liquide
EP0290318B1 (fr) Procédé de récupération de gallium par extraction liquide-liquide
NO150321B (no) Fr
JP7359059B2 (ja) カドミウム水酸化物の製造方法
JP7415275B2 (ja) カドミウム溶液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14750558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2916921

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000390

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14750558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016000390

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160108