WO2015004364A1 - Dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice - Google Patents

Dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice Download PDF

Info

Publication number
WO2015004364A1
WO2015004364A1 PCT/FR2014/051618 FR2014051618W WO2015004364A1 WO 2015004364 A1 WO2015004364 A1 WO 2015004364A1 FR 2014051618 W FR2014051618 W FR 2014051618W WO 2015004364 A1 WO2015004364 A1 WO 2015004364A1
Authority
WO
WIPO (PCT)
Prior art keywords
probes
blades
flexible
deformable material
longitudinal direction
Prior art date
Application number
PCT/FR2014/051618
Other languages
English (en)
Inventor
Luc Henri Chatenet
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to EP14749884.4A priority Critical patent/EP3019859B1/fr
Priority to BR112016000327-6A priority patent/BR112016000327B1/pt
Priority to CN201480039255.7A priority patent/CN105378470B/zh
Priority to RU2016103911A priority patent/RU2655050C2/ru
Priority to US14/903,155 priority patent/US10101300B2/en
Priority to JP2016524865A priority patent/JP6411490B2/ja
Priority to CA2917412A priority patent/CA2917412C/fr
Publication of WO2015004364A1 publication Critical patent/WO2015004364A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Definitions

  • the invention is in the field of techniques for inspection of mechanical parts, including engine parts, for example parts of turbomachines, and in particular parts with holes.
  • cracks may appear during the machining of the hole, for example by electrical discharge machining (EDM process), or during the use of the part, for example in a motor. It is necessary in many situations to perform a parts check to ensure that no risk is caused by the presence of such cracks. Such checks may be carried out on new parts or on parts that have already been used.
  • EDM process electrical discharge machining
  • parts check may be carried out on new parts or on parts that have already been used.
  • a known control principle is the eddy current method, consisting of checking the continuity of the material from the measurement of currents induced by a magnetic field.
  • Such a method is implemented with a sophisticated measuring device generally comprising a plurality of eddy current point probes.
  • a sophisticated measuring device generally comprising a plurality of eddy current point probes.
  • Such devices are known mounted on articulated metal arms spring or brushes, which are fragile, which is a first problem.
  • the invention aims to solve these difficulties.
  • a device for inspecting a surface of an electrically conductive part, in particular the inner surface of a hole comprising a plurality of eddy current probes disposed on a convex surface of the device and means for applying the probes against the surface to be inspected in which the device is introduced, characterized in that the probes are fixed on flexible blades each extending in a longitudinal direction of the device next to each other, said application means comprising a deformable material whose compression in said longitudinal direction causes the expansion transversely to the longitudinal direction, said expansion deforming said blades to apply the probes against the surface.
  • the probe can be manipulated by an automatism (robot), and the measurement is still satisfactory, because of the adaptation of the probe to the surfaces on which it is applied.
  • the surfaces concerned include the internal surfaces of holes, but the device can be used to inspect other surfaces.
  • the device In particular with respect to hole surface inspection, the device generally allows both the bottom, the mouth, and the main surface of the hole to be inspected, thereby providing an improved field of view. Finally, the control time is decreased.
  • the flexible blades are flexible printed circuits, interesting because inexpensive, or flexible metal blades.
  • the deformable material may be silicone or any other deformable material.
  • the deformable material is placed longitudinally between two compression parts and the longitudinal compression of the deformable material is obtained by means of a cable fixed to one of the two parts and sliding relative to the second room. It is proposed in some embodiments that the compression in the longitudinal direction is limited by a stop.
  • said convex surface is a circular or elliptical circumference of the device. This makes it possible to inspect holes in the section of which the circumference of the device is adapted.
  • the device comprises at least one additional set of flexible blades on a circumference of the device, the blades being compressed towards the outside of the device, for guiding the probe perpendicularly to the wall of the hole or protecting the current probes. Foucault when entering or exiting the device in or out of the hole. The device thus protects the eddy probes to prevent them being damaged at the time of introduction or exit of the device into the hole to be inspected.
  • the device may further comprise two such additional sets of flexible blades, called "guides", one upstream of said plurality of eddy probes and the other downstream of said plurality of eddy probes.
  • the flexible blades of the assembly for guiding preferably exert on the walls a pressure greater than that exerted by the flexible blades carrying the probes when they are applied against the walls.
  • the invention also proposes a method of manufacturing a device as evoked comprising the forming of notches in a flexible plate, to form flexible blades held together at their ends, to carry at least one probe per blade, and a step of molding the deformable material on the face of the flexible plate opposite the eddy current probes. This method of manufacture is particularly practical and simple to implement, and is part of the contributions of the present invention.
  • Figure 1 shows a part with a hole to inspect.
  • FIG 2 shows an inspection device developed for inspecting the hole in the part of Figure 1, in accordance with the principles of the invention.
  • Figure 3 shows a step of manufacturing such an inspection device.
  • Figure 4 shows a subsequent manufacturing step.
  • Figure 5 shows a central assembly of the inspection device of Figure 2, obtained at the end of the steps shown in Figures 3 and 4.
  • Figure 6 shows the same assembly in operation.
  • FIG. 1 there is shown a part to inspect, here a disc, 10, whose axis 11 is on the right of the figure, and which comprises an elongated hole 12, elliptical section and whose axis is curvilinear.
  • a disc 10
  • elliptical section whose axis is curvilinear.
  • the hole 12 is twice open, since its two ends open on the faces of the room, but once-through holes must also be inspected in many situations.
  • the inspection device 100 designed to search for cracks in the hole 12 is presented. It has an elongated shape, and comprises a flexible drive sheath 110 at the end of which is fixed a head 120 composed of several elements. Specifically, this head comprises, from the sheath 110 to the free end of the device, a first flexible assembly in compression, qualified "guide” 121, a flexible link 122, a flexible assembly in adjustable compression constituting the functional core 123 of the inspection device, a second flexible link 124, and a second flexible assembly in compression, described as "guide” 125. A cone-shaped end 126 terminates the device. It is pointed out that although they are often advantageous, the guides 121 and 125 are not absolutely necessary for the implementation of the invention.
  • the concept governing its functioning of the functional heart is novel and makes it possible to increase, compared to the previous devices, the number of eddy current probes that can be applied to the surface to be inspected, and to reduce the time associated control.
  • a plate 300 of flexible printed circuit of rectangular shape is the subject of through cuts 310, 311, 312, ... parallel to each other and here parallel to the large dimension of the plate. As regards their length, these notches each extend over, for example, the central two-thirds of the plate 300. They are equidistant from each other and make it possible to define blades 320, 312, 322,... are maintained to each other by the non-notched material outside the central two-thirds of the plate 300. Between two adjacent cuts, at equal distance from each of them and at mid-length thereof, current probes Foucault 330, 331, 332 are deposited, before or after the cuts are made. An electrical connection 340, 341, 342, ... is implemented by probe.
  • FIG 4 there is shown the subsequent step of manufacturing the inspection device.
  • the plate 300 is rolled in cylinder 400 about an axis parallel to the notches, so that the probes are facing outside, and that the deformable material 490 can be injected or poured inside by one of the two mouths of the cylinder, to marry the shape by molding.
  • the electrical connections 340, 341, 342 ... probes are arranged to exit the cylinder by the second mouth.
  • An axis 410 is placed in the center of the cylinder so as to create a cylindrical reserve in the middle of the injected or cast material.
  • a bottom 420 further prevents the deformable material 490 from coming out of the cylinder by the second mouth.
  • a belting tool 430 (or external molding tool) finally surrounds the blades to prevent them from extending axially during the deposition of the deformable material 490. It preferably has the shape of the hole to be inspected for which the probe is manufactured. with slightly smaller dimensions than this one.
  • the cylinder shown in the figures is of circular base, but that an elliptical base cylinder or of another shape can be used.
  • the plate 300 is not necessarily shaped to take a closed cylindrical shape, although the example presented relates to such a closed cylindrical shape, but it in any case deformed to take a convex cylindrical shape, within which the molding is performed.
  • the assembly of Figure 4 is carried out by transferring the plate of Figure 3 on two supports (not shown) defining the upstream and downstream mouths of the structure.
  • a sheath or an adhesive tape makes it possible to maintain the printed circuit on the supports and to achieve the necessary sealing at these mouths.
  • the axis 410 allows, in some embodiments, to align the two supports.
  • the cylinder is formed, it is inserted into two molding preforms, one being a central cylindrical axis (corresponding to the axis 410) and the other an external enclosure (corresponding to the tool of belts 430).
  • the two molding preforms are coated with release agents, such as Teflon (trademark), obtained by spraying, or deposited in sheet form.
  • the Teflon sheets also allow to reserve a game between the external speaker and the printed circuit.
  • a plug (corresponding to the bottom 420), for example a silicone plug, is placed to obstruct one of the mouths of the cylinder, through which nevertheless are extracted the electrical connection wires of the probes.
  • the deformable product 490 is injected or cast, so as to fill, partially or completely, the volume of the cylinder 400.
  • the belt 430 and the axis 410 are removed.
  • the belt has allowed the deformable product 490 to take the form of the cylinder 400 without deforming it, and the axis 410 has made it possible to create a central cylindrical reservation from one end to the other of the device, in the deformable product 490.
  • FIG 5 the device is shown at a later stage of manufacture.
  • a cable 510 has been inserted in the reservation created in the center of the device, and is attached at one end to a pressing piece 520 placed at one of the mouths of the cylinder 400 so as to be able to press the product
  • the pressure member 520 is, if necessary, fixed to the cylinder 400, for example by means of an adhesive tape or a sheath placed on the end of the cylinder.
  • the cable 510 leaves the cylinder 400 through the other mouth, through or beside a retaining piece 530 which also relies on the deformable product 490, and which is, if necessary, fixed to the cylinder 400, for example using an adhesive tape or sheath placed on the end of the cylinder.
  • the pressure and containment pieces 520 and 530 may be, for example, supports used to secure the plate 300 as the cylinder 400 prior to molding. Other solutions are possible, these two pieces can be introduced at one time or another in the structure. Furthermore the bottom 420, shown in Figure 4, is preserved, but in some embodiments, it could be removed if necessary, once the deformable product 490 molded.
  • the cable 510 may in particular be crimped on the pressing piece 520. Furthermore, the cable 510 may have a limited stroke by a stop formed by a cable tube torque (not shown) / thrust washer (not shown).
  • the cable 510 is inserted into a tube which starts at the pressure piece 520, and which ends, when the cable is not pulled, at a given distance from the 530.
  • the cable 510 and the tube are integral relative to each other in their translational movement relative to the deformable product 490 and to the retaining piece 530.
  • the thrust washer surrounds the cable at its exit from the retaining piece 530, allows it to progress but blocks the tube. Thus, during a pull of the cable 510, the stroke thereof is blocked by the meeting between the tube and the washer.
  • the cable 510 may, on the side of the retaining piece 530, be subjected to traction which acts by pulling on the pressure piece 520.
  • a pull on the cable 510 therefore causes a longitudinal pressure (according to direction L) of the pressure member 520 on the deformable product 490 molded in the cylinder 400.
  • the retainer 430 has the function of retaining the deformable product, which is then compressed longitudinally. This has the consequence that the deformable product bears on the walls of the cylinder, and allows the radial expansion of the blades 320, 321, 322 .... which bulge and deviate from each other.
  • the retaining parts 530 and pressure 520 being arranged symmetrically with respect to the eddy current probes 330, 331, 332 ... and with respect to the mass of deformable product 490 molded in the cylinder, the maximum expansion deformable product is along the circumference of the cylinder carrying the probes 330, 331, 332 so that, in use of the device, they are pressed against the wall of the hole to be inspected in which the device is inserted.
  • the length of the cable travel determines the maximum expansion that will be given, in use, to the circumference of the cylinder, and therefore the pressure that will be applied to the eddy current sensors 330, 331, 332. It is proposed to define this length by probing the probe, depending on the type of hole to be inspected.
  • the compression is controlled from a control station (not shown), by a human operator or by an automation.
  • the guides 121 and 125 can be made in the same way as the functional heart 123, in accordance with the principles presented in FIGS. 4 to 6, omitting, of course, the eddy current probes and their electrical connections.
  • the compression of the flexible printed circuits can be defined definitively at the mounting, by fixing the second end of the cable 510, or by fixing the compression with means other than a cable. It can also be adapted when making the hole to be inspected, to take into account the exact dimensions of it.
  • the plate 300 into a cylinder whose base is a semi-circle or a half-ellipse, which therefore constitutes a convex surface, the shape being closed by a third part, for example flat and preferably non-deformable.
  • the deformable product (silicone) is then molded in a cavity formed by the plate 300 and the third part.
  • the probes are equidistant, or equally distributed on the convex surface, or that the blades are all the same width .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

L'invention porte sur un dispositif (100; 500) pour l'inspection d'une surface d'une pièce électriquement conductrice, comprenant une pluralité de sondes à courant de Foucault (330, 331, 332...) disposés sur une surface convexe du dispositif et des moyens d'application des sondes contre la surface à inspecter dans lequel le dispositif est introduit, caractérisé en ce que les sondes (330, 331, 332...) sont fixées sur des lames flexibles (320, 321, 322...) s'étendant chacune selon une direction longitudinale (L) du dispositif les unes à côté des autres, lesdits moyens d'application comprenant un matériau déformable (490) dont la compression selon ladite direction longitudinale (L) entraîne l'expansion transversalement à la direction longitudinale, ladite expansion déformant lesdites lames (320, 321, 322...) pour appliquer les sondes (330, 331, 332...) contre la surface.

Description

Dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice
Contexte technique
L'invention s'inscrit dans le domaine des techniques pour inspection de pièces mécaniques, notamment de pièces de moteurs, par exemple des pièces de turbomachines, et en particulier des pièces comportant des trous.
De nombreuses pièces de moteurs sont critiques, et leur rupture est susceptible d'avoir des répercussions graves sur l'ensemble du système, par exemple l'aéronef. On s'intéresse ici, en particulier mais pas exclusivement, à des pièces dans lesquelles un trou a été pratiqué. De tels trous, qui peuvent avoir des géométries diverses, notamment une géométrie allongée avec un axe médian, sont susceptibles de comporter des criques, c'est-à-dire des anfractuosités de surface qui peuvent servir de point de départ à une rupture de la pièce.
Ces criques peuvent apparaître au cours de l'usinage du trou, par exemple par usinage à décharge électrique (procédé EDM pour « electrical discharge machining »), ou au cours de l'utilisation de la pièce, par exemple dans un moteur. Il est nécessaire, dans de nombreuses situations, d'effectuer un contrôle des pièces pour s'assurer qu'aucun risque n'est causé par la présence de telles criques. De tels contrôles peuvent être effectués sur les pièces neuves ou sur des pièces ayant déjà servi.
Un principe connu de contrôle est le procédé par courant de Foucault, consistant à vérifier la continuité de la matière à partir de la mesure de courants induits par un champ magnétique.
Un tel procédé est mis en œuvre avec un dispositif de mesure sophistiqué comprenant en général plusieurs sondes ponctuelles à courant de Foucault. On connaît de tels dispositifs montés sur des bras métalliques articulés avec ressort ou des balais, qui sont fragiles, ce qui constitue un premier problème.
Mais de plus, la construction de tels systèmes de sondes doit en général être revue dès que l'on s'intéresse à un trou de géométrie différente de celui pour lequel le système a initialement été conçu, pour prendre en compte la courbure de l'axe médian du trou. Ainsi, le positionnement et la longueur des bras ou des balais doit être revue, ce qui est complexe et coûteux. De plus, il est très malaisé de bien positionner ces dispositifs en utilisant un protocole automatique, à l'aide d'un robot ou d'un outillage de positionnement complexe.
Enfin, souvent, on est amené à devoir changer de sonde pour finaliser l'observation d'un trou donné et de son embouchure ou de son fond. En effet, le guidage d'un système de sondes à l'embouchure ou au fond d'un trou est particulièrement malaisé, et on préfère utiliser des sondes spécifiques pour ces zones difficiles.
Au final, les systèmes existants sont complexes à mettre en œuvre, et excessivement chers du fait de la multiplicité des dispositifs à concevoir pour des trous différents ou même pour un unique type de trou.
L'invention vise à résoudre ces difficultés.
Définition de l'invention et avantages associés
Pour résoudre ces difficultés, il est proposé un dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice, en particulier la surface interne d'un trou, comprenant une pluralité de sondes à courant de Foucault disposés sur une surface convexe du dispositif et des moyens d'application des sondes contre la surface à inspecter dans lequel le dispositif est introduit, caractérisé en ce que les sondes sont fixées sur des lames flexibles s'étendant chacune selon une direction longitudinale du dispositif les unes à côté des autres, lesdits moyens d'application comprenant un matériau déformable dont la compression selon ladite direction longitudinale entraine l'expansion transversalement à la direction longitudinale, ladite expansion déformant lesdites lames pour appliquer les sondes contre la surface. Grâce à ce dispositif, on dispose d'un outil beaucoup plus simple à utiliser, s'adaptant à de nombreuses situations, et qui est robuste et peu coûteux à fabriquer et à utiliser. Le nombre de sondes à courant de Foucault disposées sur l'outil peut être élevé, dans la mesure où il n'est pas nécessaire de placer un bras métallique avec ressort pour chacune d'entre elles.
La sonde peut être manipulée par un automatisme (robot), et la mesure est tout de même satisfaisante, du fait de l'adaptation de la sonde aux surfaces sur laquelle elle est appliquée. Les surfaces concernées sont notamment les surfaces internes de trous, mais le dispositif peut être utilisé pour inspecter d'autres surfaces. De manière générale, il n'est nul besoin, avec ce dispositif, de multiplier le développement de nombreuses sondes pour une application ou pour plusieurs applications, car le dispositif s'adapte à la plupart des configurations. Notamment en ce qui concerne l'inspection de surface de trous, le dispositif permet en général d'inspecter à la fois le fond, l'embouchure, et la surface principale du trou, offrant ainsi un champ d'observation amélioré. Finalement, le temps de contrôle est diminué.
Selon les modes de réalisation, les lames flexibles sont des circuits imprimés souples, intéressants car peu coûteux, ou des lames métalliques flexibles. Le matériau déformable peut être du silicone ou tout autre matériau déformable.
Selon un aspect de mise en œuvre intéressant, le matériau déformable est placé longitudinalement entre deux pièces de compression et la compression longitudinale du matériau déformable est obtenue à l'aide d'un câble fixé à une des deux pièces et coulissant par rapport à la deuxième pièce. On propose, dans certaines réalisations, que la compression selon la direction longitudinale soit limitée par une butée.
Avantageusement, ladite surface convexe est une circonférence circulaire ou elliptique du dispositif. Cela permet d'inspecter des trous à la section desquels la circonférence du dispositif est adaptée.
Dans une telle configuration, le dispositif comprend au moins un ensemble supplémentaire de lames flexibles sur une circonférence du dispositif, les lames étant comprimées vers l'extérieur du dispositif, pour guider la sonde perpendiculairement à la paroi du trou ou protéger les sondes à courant de Foucault lors de l'entrée ou la sortie du dispositif dans ou hors du trou. Le dispositif protège ainsi les sondes de Foucault pour éviter qu'elles ne soient endommagées au moment de l'introduction ou de la sortie du dispositif dans le trou à inspecter.
Le dispositif peut comprendre de plus deux tels ensembles supplémentaires de lames flexibles, dits « guides », l'un en amont de ladite pluralité de sondes de Foucault et l'autre en aval de la dite pluralité de sondes de Foucault. Les lames flexibles de l'ensemble pour guider exercent de préférence sur les parois une pression supérieure à celle exercée par les lames flexibles portant les sondes quand celles-ci sont appliquées contre les parois. L'invention propose aussi une méthode de fabrication d'un dispositif tel qu'évoqué comprenant la formation d'entailles dans une plaque flexible, pour former des lames flexibles maintenues entre elles à leurs extrémités, pour porter au moins une sonde par lame, et une étape de moulage du matériau déformable sur la face de la plaque flexible opposée aux sondes à courant de Foucault. Cette méthode de fabrication est particulièrement pratique et simple à mettre en œuvre, et fait partie des apports de la présente invention.
Celle-ci va maintenant être décrite en relation avec les figures.
Liste des figures
La figure 1 présente une pièce comportant un trou à inspecter.
La figure 2 présente un dispositif d'inspection développé pour inspecter le trou de la pièce de la figure 1, conformément aux principes de l'invention.
La figure 3 présente une étape de fabrication d'un tel dispositif d'inspection.
La figure 4 présente une étape ultérieure de fabrication.
La figure 5 présente un ensemble central du dispositif d'inspection de la figure 2, obtenu à l'issu des étapes présentées aux figures 3 et 4.
La figure 6 présente ce même ensemble en fonctionnement.
Description détaillée
En référence à la figure 1, on a représenté une pièce à inspecter, ici un disque, 10, dont l'axe 11 est à droite de la figure, et qui comprend un trou 12 allongé, de section elliptique et dont l'axe est curviligne. Jusqu'ici, plusieurs outils à sondes à courant de Foucault étaient nécessaires pour inspecter un tel trou. Or ces outils étaient à la fragile et chers, ce qui rendait l'opération délicate. Qui plus est, le contrôle du trou doit être fait de manière particulièrement fine, car la pièce est tout à fait critique. On note ici que le trou 12 est deux fois débouchant, puisque ses deux extrémités débouchent sur des faces de la pièce, mais des trous une seule fois débouchant doivent également être inspectés dans de nombreuses situations.
En figure 2, le dispositif d'inspection 100 conçu pour la recherche de criques dans le trou 12 est présenté. Il a une forme allongé, et comprend une gaine flexible d'entraînement 110 à l'extrémité de laquelle est fixée une tête 120 composée de plusieurs éléments. Précisément, cette tête comporte, depuis la gaine 110 vers l'extrémité libre du dispositif, un premier ensemble flexible en compression, qualifié de « guide » 121, une liaison flexible 122, un ensemble flexible en compression réglable, constituant le cœur fonctionnel 123 du dispositif d'inspection, une deuxième liaison flexible 124, ainsi qu'un deuxième ensemble flexible en compression, qualifié de « guide » 125. Une extrémité 126 en forme de cône termine le dispositif. On précise que même s'ils sont souvent avantageux, les guides 121 et 125 ne sont pas absolument nécessaires à la mise en œuvre de l'invention.
En ce qui concerne le cœur fonctionnel, le concept gouvernant son fonctionnement du cœur fonctionnel est novateur et permet d'augmenter, par rapport aux dispositifs antérieurs le nombre de sondes à courant de Foucault pouvant être appliquées sur la surface à inspecter, et diminuer le temps de contrôle associé.
En figure 3, une étape d'un processus de fabrication d'un dispositif d'inspection tel que présenté en figure 2 est présentée. Une plaque 300 de circuit imprimé souple de forme rectangulaire fait l'objet d'entailles traversantes 310, 311, 312, ... parallèles les unes aux autres et, ici parallèles à la grande dimension de la plaque. En ce qui concerne leur longueur, ces entailles s'étendent chacune sur, par exemple, les deux tiers centraux de la plaque 300. Elles sont équidistantes les unes des autres et permettent de définir des lames 320, 312, 322, ... qui sont maintenues les unes aux autres par la matière non entaillée en dehors des deux tiers centraux de la plaque 300. Entre deux entailles adjacentes, à égale distance de chacune d'entre elles et à mi-longueur de celles-ci, des sondes à courant de Foucault 330, 331, 332 sont déposées, avant ou après que les entailles soient pratiquées. Une connexion électrique 340, 341, 342, ... est mise en place par sonde.
En figure 4, on a représenté l'étape ultérieure de fabrication du dispositif d'inspection. La plaque 300 est roulée en cylindre 400 autour d'un axe parallèle aux entailles, en sorte que les sondes soient face à l'extérieur, et que du matériau déformable 490 puisse être injecté ou coulé à l'intérieur par une des deux embouchures du cylindre, pour en épouser la forme par moulage.
Préalablement à l'injection ou au coulage du produit déformable 490, les connexions électriques 340, 341, 342... des sondes sont disposées pour sortir du cylindre par la deuxième embouchure. Un axe 410 est placé au centre du cylindre en sorte de créer une réservation cylindrique au milieu du matériau injecté ou coulé. Un fond 420 empêche de plus le matériau déformable 490 de sortir du cylindre par la deuxième embouchure. Enfin, un outil de ceinturage 430 (ou outil extérieur de moulage) entoure enfin les lames pour les empêcher de s'étendre axialement lors du dépôt du matériau déformable 490. Il a de préférence la forme du trou à inspecter pour lequel la sonde est fabriquée avec des dimensions légèrement plus faibles que celui-ci.
On précise que le cylindre représenté sur les figures est de base circulaire, mais qu'un cylindre de base elliptique ou encore d'une autre forme peut être utilisée. Comme cela sera évoqué à la fin du document, la plaque 300 n'est pas nécessairement conformée pour prendre une forme cylindrique fermée, bien que l'exemple présenté porte sur une telle forme cylindrique fermée, mais elle en tout état de cause déformée pour prendre une forme cylindrique convexe, à l'intérieur de laquelle le moulage est effectué.
Dans un mode de réalisation particulier, le montage de la figure 4 est réalisé par report de la plaque de la figure 3 sur deux supports (non représentés) définissant les embouchures amont et aval de la structure. Une gaine ou un ruban adhésif permet de maintenir le circuit imprimé sur les supports et de réaliser l'étanchéité nécessaire au niveau de ces embouchures. L'axe 410 permet, dans certaines réalisations, d'aligner les deux supports. Dans ce mode de réalisation, une fois le cylindre formé, il est inséré dans deux préformes de moulage, l'une étant un axe cylindrique central (correspondant à l'axe 410) et l'autre une enceinte externe (correspondant à l'outil de ceinturage 430). Les deux préformes de moulage sont enduites de produits démoulant, tel que du Téflon (marque déposée), obtenu par pulvérisation, ou déposé sous forme de feuille. Les feuilles de Téflon permettent de plus de réserver un jeu entre l'enceinte externe et le circuit imprimé. Un bouchon (correspondant au fond 420), par exemple un bouchon en silicone, est placé pour obstruer une des embouchures du cylindre, par laquelle sont néanmoins extraits les fils de connexion électrique des sondes.
Le produit déformable 490 est injecté ou coulé, de manière à remplir, partiellement ou entièrement, le volume du cylindre 400.
Une fois le produit déformable 490 injecté ou coulé et sa prise en forme achevée, la ceinture 430 et l'axe 410 sont retirés. La ceinture a permis au produit déformable 490 de prendre la forme du cylindre 400 sans le déformer, et l'axe 410 a permis de créer une réservation cylindrique centrale d'un bout à l'autre du dispositif, dans le produit déformable 490.
En figure 5, on a représenté le dispositif à une étape ultérieure de la fabrication. Un câble 510 a été inséré dans la réservation créée au centre du dispositif, et est fixé par une extrémité, à une pièce de pression 520 placée à l'une des embouchures du cylindre 400 de manière à être en mesure d'appuyer sur le produit déformable 490 moulé dans le cylindre 400. La pièce de pression 520 est, si besoin, fixée au cylindre 400, par exemple à l'aide d'un ruban adhésif ou d'une gaine placée sur l'extrémité du cylindre. Le câble 510 sort du cylindre 400 par l'autre embouchure, à travers ou à côté, une pièce de retenue 530 qui s'appuie elle aussi sur le produit déformable 490, et qui est, si besoin, fixée au cylindre 400, par exemple à l'aide d'un ruban adhésif ou d'une gaine placée sur l'extrémité du cylindre.
Les pièces de pression et de retenue 520 et 530 peuvent être par exemple des supports utilisés pour fixer la plaque 300 sous la forme du cylindre 400 avant le moulage. D'autres solutions sont possibles, ces deux pièces pouvant être introduites à un moment ou un autre dans la structure. Par ailleurs le fond 420, présenté en figure 4, est conservé, mais dans certaines réalisations, il pourrait être retiré si nécessaire, une fois le produit déformable 490 moulé.
Le câble 510 peut notamment être serti sur la pièce de pression 520. Par ailleurs, le câble 510 peut avoir une course limitée par une butée formée par un couple tube de câble (non représenté) / rondelle de butée (non représentée). Dans une telle réalisation, le câble 510 est inséré dans un tube qui débute au niveau de la pièce de pression 520, et qui s'achève, quand le câble ne fait pas l'objet d'une traction, à une distance donnée de la sortie de la pièce de retenu 530. Le câble 510 et le tube sont solidaires l'un par rapport à l'autre dans leur mouvement de translation par rapport au produit déformable 490 et à la pièce de retenu 530. La rondelle de butée entoure le câble à sa sortie de la pièce de retenu 530, laisse progresser celui-ci mais bloque le tube. Ainsi, lors d'une traction du câble 510, la course de celui-ci est bloquée par la rencontre entre le tube et la rondelle.
Comme cela est représenté en figure 6, le câble 510 peut, du côté de la pièce de retenu 530, faire l'objet d'une traction qui agit en tirant sur la pièce de pression 520. Une traction sur la câble 510 entraine donc une pression longitudinale (selon la direction L) de la pièce de pression 520 sur le produit déformable 490 moulé dans le cylindre 400. La pièce de retenu 430 a pour fonction quant à elle de retenir le produit déformable, qui est alors compressé longitudinalement. Cela a pour conséquence que le produit déformable appui sur les parois du cylindre, et permet l'expansion radiale des lames 320, 321, 322.... qui se bombent et s'écartent les unes des autres. De préférence, les pièces de retenu 530 et de pression 520 étant disposées symétriquement par rapport aux sondes à courant de Foucault 330, 331, 332 ... et par rapport à la masse de produit déformable 490 moulé dans le cylindre, l'expansion maximale du produit déformable se fait le long de la circonférence du cylindre qui porte les sondes 330, 331, 332 de manière à ce que, en situation d'utilisation du dispositif, celles-ci soient plaquées contre la paroi du trou à inspecter dans lequel le dispositif est inséré. La longueur de la course du câble détermine l'expansion maximale qui sera donnée, en situation d'utilisation, à la circonférence du cylindre, et donc la pression qui sera appliquée aux sondes à courant de Foucault 330, 331, 332.... Il est proposé de définir cette longueur par essai de la sonde, en fonction du type de trou à inspecter.
On précise que d'autres systèmes de compression longitudinale pourraient être utilisés, de manière à provoquer l'expansion du produit déformable 490 dans un plan perpendiculaire à la direction L.
La compression est commandée depuis un poste de contrôle (non représenté), par un opérateur humain ou par un automatisme.
Pour revenir à la structure de la figure 2, les guides 121 et 125 peuvent être réalisés de la même manière que le c ur fonctionnel 123, conformément aux principes présentés aux figures 4 à 6, en omettant bien sûr les sondes à courant de Foucault et leurs connexions électriques. Mais pour les guides 121 et 125, la compression des circuits imprimés flexibles peut être définie au montage de manière définitive, en fixant la deuxième extrémité du câble 510, ou en fixant la compression avec d'autres moyens qu'un câble. Elle peut aussi être adaptée lors de la réalisation du trou à inspecter, pour tenir compte des dimensions exactes de celui-ci.
Cela est différent de ce qui est pratiqué pour le cœur fonctionnel 123, pour lequel le câble 510 permet la mise en compression commandée, une fois le dispositif inséré dans le trou à inspecter, depuis un poste de contrôle. On précise à ce sujet que le câble 510 du cœur fonctionnel 123 et les connexions électriques 340, 341, 342... sont amenés vers un poste de contrôle par l'intérieur de la gaine flexible d'entraînement 110.
L'invention n'est pas limitée aux modes de réalisation présentés mais s'étend à toutes les variantes dans le cadre de la portée des revendications.
Notamment, il est possible de ne pas disposer les sondes à courant de Foucault autour d'une circonférence fermée du dispositif, notamment dans l'hypothèse où la surface à inspecter ne constitue pas une section fermée de trou.
Ainsi on peut utiliser les principes de l'invention en conformant la plaque 300 en un cylindre dont la base est un demi-cercle ou une demi-ellipse, qui constitue donc une surface convexe, la forme étant fermée par une pièce tierce, par exemple plane et de préférence non déformable. Le produit déformable (silicone) est alors moulé dans une cavité formée, par la plaque 300 et la pièce tierce. Ainsi, l'effet de déformation des lames ne se produit que sur un demi-cercle ou une demi-ellipse.
On précise aussi, indépendamment des commentaires qui précèdent, qu'il n'est pas indispensable, pour mettre en œuvre l'invention, que les sondes soient équidistantes, ou également réparties sur la surface convexe, ou que les lames aient toutes la même largeur.

Claims

REVENDICATIONS
1. Dispositif (100 ; 500) pour l'inspection d'une surface d'une pièce électriquement conductrice, comprenant une pluralité de sondes à courant de Foucault (330, 331, 332...) disposés sur une surface convexe du dispositif et des moyens d'application des sondes contre la surface à inspecter dans lequel le dispositif est introduit, caractérisé en ce que les sondes (330, 331, 332...) sont fixées sur des lames flexibles (320, 321, 322...) s'étendant chacune selon une direction longitudinale (L) du dispositif les unes à côté des autres, lesdits moyens d'application comprenant un matériau déformable (490) dont la compression selon ladite direction longitudinale (L) entraine l'expansion transversalement à la direction longitudinale, ladite expansion déformant lesdites lames (320, 321, 322...) pour appliquer les sondes (330, 331, 332...) contre la surface.
2. Dispositif selon la revendication 1, dans lequel les lames flexibles (320, 321, 322...) sont des circuits imprimés souples.
3. Dispositif selon la revendication 1, dans lequel les lames flexibles (320, 321, 322...) sont des lames métalliques flexibles.
4. Dispositif selon l'une des revendications 1 à 3, dans lequel le matériau déformable (490) est du silicone.
5. Dispositif selon l'une des revendications 1 à 4, dans lequel le matériau déformable (490) est placé longitudinalement entre deux pièces de compression (520, 530), et la compression longitudinale du matériau déformable (490) est obtenue à l'aide d'un câble (510) fixé à une des deux pièces (520) et coulissant par rapport à la deuxième pièce (530).
6. Dispositif selon l'une des revendications 1 à 5, dans lequel la compression selon la direction longitudinale est limitée par une butée.
7. Dispositif selon l'une des revendications 1 à 6, dans lequel ladite surface convexe est une circonférence du dispositif.
8. Dispositif selon la revendication 7, dans lequel le dispositif comprend de plus au moins un ensemble supplémentaire de lames flexibles (121, 125) sur une circonférence du dispositif, les lames étant comprimées vers l'extérieur du dispositif, pour guider la sonde perpendiculairement à la paroi du trou ou protéger les sondes à courant de Foucault lors de l'entrée ou la sortie du dispositif dans ou hors du trou.
9. Dispositif selon la revendication 8, dans lequel le dispositif comprend de plus deux tels ensembles supplémentaires de lames flexibles (121, 125), l'un en amont de ladite pluralité de sondes de Foucault (330, 331, 332...) et l'autre en aval de la dite pluralité de sondes de Foucault (330, 331, 332...).
10. Dispositif selon la revendication 8 ou la revendication 9, dans lequel les lames flexibles de l'ensemble pour guider (121, 125) exercent sur les parois une pression supérieure à celle exercée par les lames flexibles (320, 321, 322...) portant les sondes (330, 331, 332...) quand celle-ci sont appliquées contre les parois.
11. Méthode de fabrication d'un dispositif selon l'une des revendications 1 à 10, comprenant la formation d'entailles (310, 311, 312...) dans une plaque flexible, pour former des lames flexibles (320, 321, 322, ...) maintenues entre elles à leurs extrémités, pour porter au moins une sonde par lame, et une étape de moulage du matériau déformable (490) sur la face de la plaque flexible opposée aux sondes à courant de Foucault.
PCT/FR2014/051618 2013-07-10 2014-06-26 Dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice WO2015004364A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14749884.4A EP3019859B1 (fr) 2013-07-10 2014-06-26 Dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice
BR112016000327-6A BR112016000327B1 (pt) 2013-07-10 2014-06-26 dispositivo para a inspeção de uma superfície de uma peça eletricamente condutora e método de fabricação de tal dispositivo
CN201480039255.7A CN105378470B (zh) 2013-07-10 2014-06-26 用于检查导电部件表面的设备
RU2016103911A RU2655050C2 (ru) 2013-07-10 2014-06-26 Устройство для контроля поверхности электропроводной части
US14/903,155 US10101300B2 (en) 2013-07-10 2014-06-26 Device for inspecting a surface of an electrically conductive part
JP2016524865A JP6411490B2 (ja) 2013-07-10 2014-06-26 導電性部品の表面を検査する装置
CA2917412A CA2917412C (fr) 2013-07-10 2014-06-26 Dispositif pour l'inspection d'une surface d'une piece electriquement conductrice

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356779A FR3008490B1 (fr) 2013-07-10 2013-07-10 Dispositif pour l'inspection d'une surface d'une piece electriquement conductrice
FR1356779 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015004364A1 true WO2015004364A1 (fr) 2015-01-15

Family

ID=49151209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051618 WO2015004364A1 (fr) 2013-07-10 2014-06-26 Dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice

Country Status (9)

Country Link
US (1) US10101300B2 (fr)
EP (1) EP3019859B1 (fr)
JP (1) JP6411490B2 (fr)
CN (1) CN105378470B (fr)
BR (1) BR112016000327B1 (fr)
CA (1) CA2917412C (fr)
FR (1) FR3008490B1 (fr)
RU (1) RU2655050C2 (fr)
WO (1) WO2015004364A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024533A (zh) * 2016-02-01 2017-08-08 通用电器技术有限公司 用于确定管的完整性的设备和方法
WO2020078564A1 (fr) 2018-10-19 2020-04-23 Alfred Kärcher SE & Co. KG Machine d'aspiration munie d'un angle d'insonorisation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015106385A1 (de) * 2015-04-24 2016-10-27 Krick Messtechnik & Partner Kg Temperaturmesseinrichtung mit Korbfeder
JP7073617B2 (ja) * 2016-07-13 2022-05-24 株式会社Ihi 探触子、漏洩磁束探傷装置、および漏洩磁束探傷方法
CN112505140B (zh) * 2020-12-15 2024-01-23 爱德森(厦门)电子有限公司 一种可变径涡流检测传感器设计方法及装置
CN113405679B (zh) * 2021-05-14 2022-11-29 中国原子能科学研究院 一种用于管道内壁的测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668912A (en) * 1985-02-05 1987-05-26 Westinghouse Electric Corp. Eddy current inspection probe and method for assembling same
US4889679A (en) * 1988-02-16 1989-12-26 Westinghouse Electric Corp. Eddy current probe apparatus having an expansible sleeve
EP1245953A1 (fr) * 2001-03-26 2002-10-02 General Electric Company Sonde à courants de foucault
US20030155914A1 (en) * 2000-09-12 2003-08-21 Jentek Sensors, Inc. Fluid supports for sensors
US20040217759A1 (en) * 2003-04-21 2004-11-04 Burkhardt Gary L System and Method for Inspection of Pipelines Having Internal Restrictions
US20070120559A1 (en) * 2005-11-30 2007-05-31 Yuri Plotnikov Pulsed eddy current pipeline inspection system and method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1488833A (en) * 1975-04-18 1977-10-12 Atomic Energy Authority Uk Non-destructive testing
DE2837486C3 (de) * 1978-08-28 1985-10-10 Kraftwerk Union AG, 4330 Mülheim Sonde zur Wirbelstromprüfung von Rohren
US4303884A (en) * 1978-10-19 1981-12-01 Westinghouse Electric Corp. Inflatable eddy current inspection probe for inspection of tubular means
CA1158182A (fr) * 1981-02-25 1983-12-06 Eric G. De Buda Furet pneumatique
US4851773A (en) * 1981-09-28 1989-07-25 Samuel Rothstein Rotating head profilometer probe
US4506219A (en) * 1982-07-30 1985-03-19 Schlumberger Technology Corporation Borehole tool outrigger arm displacement control mechanism
JP3072860B2 (ja) * 1991-02-19 2000-08-07 東京瓦斯株式会社 配管探傷センサ
JPH05119023A (ja) * 1991-09-26 1993-05-14 Ishikawajima Harima Heavy Ind Co Ltd 渦流探傷検査用プローブ
US5365331A (en) * 1993-01-27 1994-11-15 Welch Allyn, Inc. Self centering device for borescopes
US5465045A (en) 1993-10-28 1995-11-07 Derock; Richard Eddy current probe with deflectable sidewalls
JPH1151906A (ja) * 1997-08-04 1999-02-26 Tokyo Gas Co Ltd 腐食診断装置
US6220099B1 (en) * 1998-02-17 2001-04-24 Ce Nuclear Power Llc Apparatus and method for performing non-destructive inspections of large area aircraft structures
JP2000298117A (ja) * 1999-04-13 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd 探傷装置
FR2862384B3 (fr) * 2003-11-18 2005-11-04 Usinor Procede et systeme de detection de defauts de surface d'un demi-produit metallique brut de coulee continue
JP4284663B2 (ja) * 2006-12-26 2009-06-24 住友金属工業株式会社 内面フィン付き管の渦流探傷方法、渦流探傷用差動コイル及び渦流探傷用プローブ
US8018228B2 (en) * 2008-06-13 2011-09-13 Olympus Ndt High resolution and flexible eddy current array probe
JP5707556B2 (ja) * 2009-12-14 2015-04-30 ウラカミ合同会社 管内面封止用セルフシール式フレキシブルシールまたは該シールを具備した管内移動体
CN201673141U (zh) * 2010-05-18 2010-12-15 国核电站运行服务技术有限公司 内穿式柔性涡流传感器
MX2013004133A (es) * 2010-10-14 2013-05-20 Halliburton Energy Serv Inc Metodo para medir el grosor de la corriente parasita de un campo remoto en una configuracion tubular multiple.
ES2511645T3 (es) * 2012-05-29 2014-10-23 Hesan Gmbh Dispositivo para el control y sellado de uniones de tubos y un procedimiento para su uso
WO2014011196A1 (fr) * 2012-07-11 2014-01-16 Electric Power Research Institute, Inc. Sonde à courant de foucault flexible
CN102928504B (zh) * 2012-11-14 2016-03-23 西部钛业有限责任公司 检测管材用内穿式涡流检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668912A (en) * 1985-02-05 1987-05-26 Westinghouse Electric Corp. Eddy current inspection probe and method for assembling same
US4889679A (en) * 1988-02-16 1989-12-26 Westinghouse Electric Corp. Eddy current probe apparatus having an expansible sleeve
US20030155914A1 (en) * 2000-09-12 2003-08-21 Jentek Sensors, Inc. Fluid supports for sensors
EP1245953A1 (fr) * 2001-03-26 2002-10-02 General Electric Company Sonde à courants de foucault
US20040217759A1 (en) * 2003-04-21 2004-11-04 Burkhardt Gary L System and Method for Inspection of Pipelines Having Internal Restrictions
US20070120559A1 (en) * 2005-11-30 2007-05-31 Yuri Plotnikov Pulsed eddy current pipeline inspection system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024533A (zh) * 2016-02-01 2017-08-08 通用电器技术有限公司 用于确定管的完整性的设备和方法
CN107024533B (zh) * 2016-02-01 2021-12-24 通用电器技术有限公司 用于确定管的完整性的设备和方法
WO2020078564A1 (fr) 2018-10-19 2020-04-23 Alfred Kärcher SE & Co. KG Machine d'aspiration munie d'un angle d'insonorisation

Also Published As

Publication number Publication date
CA2917412C (fr) 2021-07-27
CN105378470A (zh) 2016-03-02
RU2655050C2 (ru) 2018-05-23
EP3019859A1 (fr) 2016-05-18
CA2917412A1 (fr) 2015-01-15
RU2016103911A (ru) 2017-08-15
EP3019859B1 (fr) 2018-04-18
US20160161449A1 (en) 2016-06-09
BR112016000327B1 (pt) 2020-11-10
JP6411490B2 (ja) 2018-10-24
FR3008490A1 (fr) 2015-01-16
CN105378470B (zh) 2019-06-11
RU2016103911A3 (fr) 2018-03-20
JP2016524164A (ja) 2016-08-12
FR3008490B1 (fr) 2015-08-07
US10101300B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
EP3019859B1 (fr) Dispositif pour l'inspection d'une surface d'une pièce électriquement conductrice
EP0089348B1 (fr) Cellule de centrage pour raccordement de fibres optiques
FR2998662B1 (fr) Dispositif de mesure de deformation et implantation d'un tel dispositif dans un element
EP0271413B1 (fr) Connecteur par déplacement d'isolant pour câble monoconducteur
EP2424047B1 (fr) Contact électrique femelle, ensemble connecteur et procédé de réalisation
EP0023163A1 (fr) Sonde souple destinée au contrôle non destructif de tubes de grande longueur
WO2002092257A1 (fr) Dispositif d'assemblage par sertissage de pieces de liaison sur des moyens a assembler
FR2865579A1 (fr) Contact electrique serti a fut ferme, procede de sertissage d'un tel contact, et outil de sertissage correspondant.
EP1771923B1 (fr) Outil et procede de sertissage d'un contact sur un cable
FR3028947A1 (fr) Capteur de temperature
FR3008147A1 (fr) Dispositif de serrage d'ecrou
EP1542322B1 (fr) Dispositif de sertissage d'un contact sur un cânle
FR2489721A1 (fr) Procede de chemisage d'alesages cylindriques et alesages obtenus par ce procede
EP3221674A1 (fr) Capteur de température
EP3221675B1 (fr) Capteur de température
EP3546141A1 (fr) Dispositif à câbles pour l'application d'efforts égaux en au moins deux points écartés l'un de l'autre
WO2012143086A1 (fr) Connecteur a insertion par pression
FR3030733A1 (fr) Capteur de temperature
EP0677901A1 (fr) Procédé de sertissage d'une extrémité d'une âme de conducteur et élément de contact à sertir
FR2932021A1 (fr) Installation et procede de fabrication d'un article comprenant un cable electrique
FR3026065A1 (fr) Pendule de connexion et son dispositif de suspension
FR2930082A1 (fr) Ensemble connecteur et procede de cablage d'un fil electrique dans un tel ensemble connecteur.
FR2745213A1 (fr) Procede permettant d'augmenter la resistance a l'arrachement de pieces de liaison serties sur les extremites denudees de l'isolant d'un cable de liaison mecanique
EP2808569A1 (fr) Réalisation d'excroissances de retenue des corps roulants d'une cage de roulement.
FR2597775A1 (fr) Dispositif a leviers a grande demultiplication et pince en comportant application.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2917412

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14903155

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016524865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000327

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014749884

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016103911

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016000327

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160107