WO2015003657A1 - 一种K3NaMgCl6、制备方法及其用途 - Google Patents

一种K3NaMgCl6、制备方法及其用途 Download PDF

Info

Publication number
WO2015003657A1
WO2015003657A1 PCT/CN2014/082083 CN2014082083W WO2015003657A1 WO 2015003657 A1 WO2015003657 A1 WO 2015003657A1 CN 2014082083 W CN2014082083 W CN 2014082083W WO 2015003657 A1 WO2015003657 A1 WO 2015003657A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
chloride
amount
magnesium
Prior art date
Application number
PCT/CN2014/082083
Other languages
English (en)
French (fr)
Inventor
卢旭晨
张志敏
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Publication of WO2015003657A1 publication Critical patent/WO2015003657A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/04Electrolytic production, recovery or refining of metals by electrolysis of melts of magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides
    • C01F5/32Preparation of anhydrous magnesium chloride by chlorinating magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention belongs to the technical field of preparation of inorganic materials and metal materials, in particular to a K 3 NaMgCl 6 , a preparation method and a method for preparing magnesium metal by electrolysis thereof.
  • Magnesium metal is the most promising light metal in the 21st century. Its density is 1.74g/cm 3 , which is 1/4 of stainless steel and 1/3 of aluminum. With the development of technology, the weight reduction of large energy-consuming machines such as aerospace, aerospace and automobiles has become the theme of energy conservation, and the demand for magnesium is also increasing.
  • the methods for preparing magnesium metal are as follows:
  • Pi Jiang method It grinds the dolomite and ferrosilicon after calcination into fine powder according to a certain ratio, and adds 2.5% fluorite to the finely ground raw material, and mixes and presses into agglomerates.
  • the briquettes are sealed in a distillation tank made of seamless stainless steel tubes, using gas or coal as fuel, and externally heated to carry out reduction reaction under high temperature (1150 ⁇ 1200 °C) and high vacuum (13.3 ⁇ 133.3Pa).
  • the Pijiang process is simple in process, short in process, small in investment, fast in construction, flexible in scale, high in product quality and available in place of electric energy.
  • China's abundant dolomite and ferrosilicon resources, relatively cheap labor and loose environmental supervision system have made Pijiang Law rise rapidly in China and gradually rule the world magnesium market.
  • the production of raw magnesium produced by China's Pijiang method was 660,600 tons, accounting for 85.5% of the world's total magnesium production.
  • problems in the Pijiang method which are summarized as follows: 1. High energy consumption, low thermal efficiency, and serious environmental pollution.
  • each reduction tank The life of each reduction tank is 40 ⁇ 90 days, and each production cycle (8 ⁇ 10h) produces 18 ⁇ 22kg of magnesium in a single tank .
  • the reduction heat efficiency is low, heat transfer is a limiting part of the reaction, and the product impurity content is high (mainly Fe, Mn, Si, Al, Ni, etc.; 5
  • the operating conditions of high temperature and high vacuum limit the scale of the Pijiang method, and also determine the characteristics of its intermittent production, resulting in low labor productivity and low mechanization.
  • Electrolysis method The electrolysis magnesium smelting process is at 680 ⁇ 750 °C, using a chloride molten salt mixture containing anhydrous magnesium chloride (main components are anhydrous magnesium chloride, potassium chloride, sodium chloride, etc.) as an electrolyte. Under the action of an applied electric field, magnesium ions are reduced at the cathode to form magnesium metal, which is oxidized at the anode to form chlorine gas.
  • anhydrous magnesium chloride main components are anhydrous magnesium chloride, potassium chloride, sodium chloride, etc.
  • the process for preparing magnesium metal by electrolysis using hydrated magnesium chloride as the raw material has the following methods: 1 Hydrogen chloride gas protection Dehydration electrolysis Preparation of magnesium metal: Magnesium chloride hexahydrate is subjected to three-stage dehydration in a boiling furnace to prepare anhydrous magnesium chloride.
  • the first and second sections are heated by hot air, the furnace temperature is 180 ° C and 250 ° C, respectively, and the obtained dehydrated material is equivalent to MgCl 2 2-2.5) H 2 0 (MgO content is less than 1
  • the purity is 99.5% in a hydrogen chloride atmosphere, the dehydration temperature is 330 ° C, and finally anhydrous magnesium chloride (MgCl 2 >95%, MgO ⁇ l) prepared anhydrous magnesium chloride as raw material, added potassium chloride, chlorinated In the electrolyte molten salt of sodium chloride, etc., the metal magnesium is produced by electrolysis.
  • the method has advanced technology, low energy consumption, high automation level (the material is transported by a closed conveying system), chemical balance of the material in the electrolytic cell is easy to control, and the product is not
  • the high quality of water magnesium chloride represents the highest level of magnesium electrolysis production.
  • hydrogen chloride gas can be recycled for recycling, and only a small amount of hydrogen chloride gas can be added during the production process.
  • the disadvantage of this process is that the process is complicated and the equipment is High corrosion resistance, high sealing requirements for the entire system, difficulty in separating hydrogen chloride from water vapor (purity of hydrogen chloride gas for dehydration of 99.5% or more)
  • Magnesium chloride during storage and transport is very easy to absorb water, and dried over anhydrous It takes a certain time for the magnesium chloride to be melted after being added to the electrolytic cell, resulting in an unstable electrolysis process.
  • MgCl 2 l-2)H 2 0 is obtained by concentrating and dehydrating magnesium chloride hexahydrate.
  • the hydrated magnesium chloride prepared above is used as a raw material, and is added to a MgCl 2 -NaCl-CaCl 2 ternary electrolyte (20% MgCl 2 , 20% CaCl 2 , 60% NaCl), and the electrolysis temperature is 700 to 720 ° C.
  • the voltage is 6 ⁇ 6.5V
  • the current efficiency is 75 ⁇ 85%
  • the electrical energy consumption per ton of magnesium is 18000 ⁇ 18500kW.
  • the production process of the method is simple, but due to the water content of the raw material, the graphite anode consumes a large amount, the current efficiency is low, the power consumption is high, and the slag amount is large during electrolysis; in addition, the purity of the electrolysis product chlorine gas is not easy to utilize. There is still a large amount of hydrogen chloride gas in the by-products, which is seriously polluting the environment.
  • This method does not take measures to eliminate the influence of moisture on the electrolysis process, resulting in an excessively high comprehensive cost.
  • MgCl 2 NH 3 is deaerated in a drying oven to 400 ⁇ 450 ° C to form anhydrous magnesium chloride (MgO and 3 ⁇ 40 content are less than 0.09%).
  • the anhydrous magnesium chloride prepared above is used as a raw material, and is added to an electrolyte containing a chloride such as potassium chloride or sodium chloride to obtain metallic magnesium by electrolysis.
  • the hydrolysis process does not occur in the whole process of the process, and the ammonia gas can be recycled after being cooled.
  • the chlorine produced by the electrolysis can be used to prepare hydrochloric acid, thereby realizing the low-temperature dehydration and low-energy electrolysis process.
  • the complex dehydration process and the cleaning of hexaammonium chloride require a large amount of organic solvent, which increases the cost, and the obtained anhydrous magnesium chloride is easily absorbed during storage and transportation at a normal temperature, and it takes a certain time to melt during the addition to the electrolytic cell. , causing the electrolysis process to be unstable.
  • K MgO content of less than 0.1 wt% K prepared in high purity in a relatively simple process conditions 3 NaMgCl 6, under certain preferred conditions can be prepared 3 NaMgCl 6.
  • K 3 NaMgClJ has weak water absorption, easy to store and transport, and K 3 NaMgCl 6 has a low melting point. It is easily dissolved and diffused evenly after being added to the electrolytic cell, which can ensure the smoothness of the electrolysis process and improve the electrolytic magnesium production. The current efficiency of the process reduces energy consumption.
  • One of the objects of the present invention is to provide a method of preparing K 3 NaMgCl 6 , the method comprising the steps of:
  • the K 3 NaMgCl 6 is anhydrous K 3 NaMgCl 6 .
  • the hydrated magnesium chloride is represented by the formula: MgCl ⁇ mH 2 0, wherein m represents the number of crystal water contained in the hydrated magnesium chloride per molecule, m>0, m is, for example, 1, 2, 3, 4, 5, or 6.
  • m 6 the hydrated magnesium chloride is magnesium chloride hexahydrate.
  • the mixture obtained in the step (a) is: a mixture of hydrated magnesium chloride, sodium chloride, potassium chloride and ammonium chloride, or a mixture of magnesium oxide, sodium chloride, potassium chloride and ammonium chloride.
  • step (a) when hydrated magnesium chloride is used as a raw material, magnesium chloride (in terms of crystal water) is used.
  • the feed amount is 1.00 parts by weight
  • the amount of hydrated magnesium chloride (MgCl 2 'mH 2 0) is (1+0.19 m) parts by weight
  • the amount of sodium chloride is 0.40 to 0.95 parts by weight
  • the potassium chloride is added.
  • the amount is 1.95 to 2.90 parts by weight
  • the amount of ammonium chloride added is 0.11 to 3.38 parts by weight, wherein m represents the number of water of crystallization contained per molecule of the hydrated magnesium chloride, m>0.
  • the amount of the ammonium chloride added is, for example, 0.12 parts by weight, and 0.25 parts by weight, based on the amount of magnesium chloride (based on the absence of crystal water). 0.55 parts by weight, 1.05 parts by weight, 1.45 parts by weight, 1.75 parts by weight, 2.25 parts by weight, 2.65 parts by weight, 2.95 parts by weight, 3.15 parts by weight or 3.32 parts by weight.
  • the amount of the magnesium chloride added is 1.00 part by weight, and the amount of the sodium chloride is, for example, 0.50 part by weight, 0.55 part by weight. 0.60 parts by weight, 0.65 parts by weight, 0.70 parts by weight, 0.75 parts by weight, 0.80 parts by weight, 0.85 parts by weight, 0.90 parts by weight or 0.95 parts by weight.
  • the amount of the potassium chloride (based on the absence of the crystal water) is 1.00 part by weight, and the amount of the potassium chloride is, for example, 2.00 parts by weight and 2.15 parts by weight. 2.30 parts by weight, 2.45 parts by weight, 2.60 parts by weight, 2.75 parts by weight or 2.90 parts by weight.
  • the amount of the magnesium chloride (MgCl ⁇ mH 2 0) is (the amount of magnesium chloride (in terms of no crystal water) is 1.00 part by weight). l+0.19m) parts by weight, the amount of sodium chloride added is 0.62 parts by weight, the amount of potassium chloride added is 2.35 parts by weight, and the amount of ammonium chloride added is 0.11 to 3.38 parts by weight, wherein m represents each molecule
  • the number of crystal water contained in the hydrated magnesium chloride is m>0. Under such conditions, a high purity such as K 3 NaMgCl 6 having a MgO content of less than 0.1% by weight can be prepared.
  • the amount of the sodium chloride is 1.20 to 1.70 parts by weight, and the potassium chloride is added in an amount of 5.00 to 6.20 by weight of the magnesium oxide.
  • the amount of ammonium chloride fed is 2.68 to 8.03 parts by weight.
  • the amount of the ammonium chloride added is, for example, 2.78 parts by weight, 3.23 parts by weight, 3.55 parts by weight, 3.95 by weight, based on the amount of the magnesium oxide added.
  • the amount of the sodium chloride added is, for example, 1.25 parts by weight, 1.30 parts by weight, 1.35 parts by weight, 1.40 by weight, based on the amount of magnesium oxide added. Parts, 1.45 parts by weight, 1.50 parts by weight, 1.55 parts by weight, 1.60 parts by weight, 1.65 parts by weight or 1.70 parts by weight.
  • the potassium chloride is added in an amount of, for example, 5.15 parts by weight, 5.30 parts by weight, 5.45 parts by weight, 5.60 parts by weight of the magnesium oxide. Parts, 5.75 parts by weight, 5.90 parts by weight, 6.15 parts by weight or 6.20 parts by weight.
  • the amount of the sodium chloride is 1.46 parts by weight, and the amount of potassium chloride is 5.59 parts by weight, based on the amount of the magnesium oxide charged.
  • the amount of ammonium chloride fed is 2.68-8.03 parts by weight. Under such conditions, a high purity such as K 3 NaMgCl 6 having a MgO content of less than 0.1% by weight can be prepared.
  • the heating process is: first, at 150 to 400 ° C for 0.5 to 3.5 hours, and then at 400 to 465 ° C for 0.5 to 4.0 hours.
  • the heating temperature is 150 to 400 ° C, for example, 170 ° C, 190 ° C, 210 ° C, 230 ° C, 250 ° C, 270 ° C, 290 ° C, 310 ° C, 350 ° C, 370 ° C Or 390 ° C.
  • the incubation time of 0.5 to 3.5 hours is, for example, 0.8 hours, 1.1 hours, 1.4 hours, 1.7 hours, 2 hours, 2.3 hours, 2.6 hours, 2.9 hours, 3.2 hours or 3.4 hours.
  • the heating temperature is 400 to 465 ° C, for example, 405 ° C, 410 ° C, 415 ° C, 420 ° C, 425 ° C, 430 ° C, 435 ° C, 440 ° C, 445 ° C, 450 ° C, 455 ° C or 460 ° C.
  • the incubation time of 0.5 to 4.0 hours is, for example, 0.8 hours, 1.1 hours, 1.4 hours, 1.7 hours, 2 hours, 2.3 hours, 2.6 hours, 2.9 hours, 3.2 hours, 3.4 hours, 3.7 hours, and 3.9 hours.
  • step (b) wherein the ammonium chloride released in step (b) is recovered and returned to the step
  • Figure 1 shows a process flow diagram for the preparation of K 3 NaMgCl 6 in accordance with the process of the present invention.
  • the method
  • step (a) mixing hydrated magnesium chloride or magnesium oxide with a mixture of sodium chloride, potassium chloride and ammonium chloride; (b) first maintaining the mixture obtained in step (a) at 150 to 400 for 0.5 to 3.5 hours, then K 3 NaMgCl 6 was obtained by keeping at 400 to 465 ° C for 0.5 to 4.0 hours.
  • magnesium oxide reacts with ammonium chloride to form a double salt NH 4 Cl-MgCl 2 -nH 2 O (0 ⁇ n ⁇ 6) (Zhang ZM, Lu XC etal, Preparation of anhydrous magnesium chloride from magnesia, Industrial & Engineering Chemistry Research, 2012, 51(29): 9713-9718); below 300 ° C, hydrated magnesium chloride reacts with ammonium chloride to form complex Salt NH 4 Cl-MgCl 2 -nH 2 O(0 ⁇ n ⁇ 6) (Zhang ZM, Lu XC etal, Preparation of anhydrous magnesium chloride from magnesium chloride hexahydrate, Metallurgical and Materials Transactions B, 2013 , 44(2): 354 -358
  • the structure of the double salt weakens the combination of crystal water and magnesium chloride, which is beneficial to the dehydration process and reduces the hydrolysis
  • ammonium chloride can react with the hydrolyzate (hydroxy magnesium chloride or oxidation at a certain temperature).
  • Magnesium reacts to form anhydrous magnesium chloride, thereby ensuring the purity of the product anhydrous magnesium chloride.
  • the inventors found through experiments that when the temperature rises to about 400 ° C, anhydrous chlorine Magnesium can form a double salt KMgCl 3 with potassium chloride.
  • the double salt is relatively stable at high temperature, and is not easy to react with oxygen and water vapor in the air, inhibiting the occurrence of hydrolysis reaction of anhydrous magnesium chloride, and ensuring the product at high temperature. Purity.
  • the inventors also found through experiments that when the temperature continues to rise, a double salt K 3 NaMgCl 6 is formed , which is stable at high temperatures and is not easy to with air.
  • the reaction between oxygen and water vapor further inhibits the occurrence of hydrolysis reaction of anhydrous magnesium chloride at a high temperature, thereby ensuring the purity of the product.
  • the inventors have found that the sintering shrinkage of the chloride mixture at 200 to 500 ° C slows down the escape rate of ammonium chloride, so that ammonium chloride can sufficiently chemically react.
  • the ammonium chloride discharged in the step (b) is returned to the step (a) for recycling, and the released ammonia gas is recycled, thereby reducing the production cost and improving the productivity.
  • the object of the present invention is to provide a two K 3 NaMgCl 6, the K 3 NaMgCl 6 was prepared by the method described above.
  • the K 3 NaMgCl prepared by the above method has a high degree of MgO content of less than 0.1% by weight.
  • K 3 NaMgCl 6 obtained by the method of the invention has weak water absorption, is easy to store and transport, and has a low melting point of K 3 NaMgCl 6 , and is easily dissolved and diffused evenly after being added to the electrolytic cell. Ensure the smoothness of the electrolysis process, improve the current efficiency of the electrolysis and magnesium production process, and reduce energy consumption.
  • a third object of the present invention is to provide a method for electrolytically preparing magnesium metal, the method comprising the steps of:
  • the method comprises the following steps:
  • step (b) heating the mixture obtained in step (a) to obtain K 3 NaMgCl 6;
  • the hydrated magnesium chloride in the step (a) is represented by the following formula: MgCl 2 -mH 2 0, wherein m represents the number of crystal water contained in the hydrated magnesium chloride per molecule, m>0.
  • the additive is CaF 2,, a mixture of any of KF, NaF, MgF 2, CaCl 2 B a Cl 2 or N a Cl or at least in two, its role is to regulate the electrolyte The physicochemical properties of the melt for good operation of the electrolysis process.
  • the mixture is, for example, a mixture of ⁇ 2 and KF, a mixture of NaF and MgF 2 and >, a mixture of BaCl 2 and NaCl, a mixture of CaF 2 , KF and NaF, a mixture of MgF 2 , CaCl 2 and BaCl 2 . , a mixture of NaCl, CaCl 2 , BaCl 2 and KF.
  • the physicochemical properties of the electrolyte melt mainly include: conductivity, viscosity, surface tension, melting temperature and density of the electrolyte melt, etc.
  • the conductivity of the electrolyte melt is high, Low viscosity is beneficial to the electrolysis process.
  • Adding sodium chloride is beneficial to increase the conductivity of the electrolyte melt.
  • Adding calcium chloride and lanthanum chloride can increase the electrolyte density, make the magnesium easy to float and separate from the electrolyte.
  • the addition of fluoride is beneficial to the addition. The collection of metallic magnesium in the electrolyte melt.
  • the amount of magnesium chloride hydrate added is (l + 0.19 m) by weight, based on the amount of magnesium chloride (based on the absence of crystal water) of 1.00 part by weight, chlorine
  • the amount of sodium added is 0.40 to 0.95 parts by weight
  • the amount of potassium chloride added is 1.95 to 2.90 parts by weight
  • the amount of ammonium chloride added is 0.11 to 3.38 parts by weight
  • the amount of the additive is 0.02 to 0.60 parts by weight.
  • m represents the number of crystal water contained in the molecule of the hydrated magnesium chloride, m>0.
  • the amount of ammonium chloride added is, for example, 0.12 parts by weight, 0.25 parts by weight, 0.55 parts by weight, 1.05, based on the amount of magnesium chloride (based on the absence of crystal water). Parts by weight, 1.45 parts by weight, 1.75 parts by weight, 2.25 parts by weight, 2.65 parts by weight, 2.95 parts by weight, 3.15 parts by weight or 3.32 parts by weight.
  • the amount of the additive is 1.00 part by weight based on the amount of magnesium chloride (excluding crystal water), and the amount of the additive is, for example, 0.04 part by weight, 0.08 part by weight, 0.12 part by weight, or 0.16 part by weight. 0.20 parts by weight, 0.25 parts by weight, 0.30 parts by weight, 0.35 parts by weight, 0.40 Parts by weight, 0.45 parts by weight, 0.50 parts by weight, 0.55 parts by weight or 0.58 parts by weight.
  • the amount of the sodium chloride added is, for example, 0.50 parts by weight, 0.55 parts by weight, 0.60 parts by weight, 0.65, based on the amount of magnesium chloride (based on the absence of crystal water). Parts by weight, 0.70 parts by weight, 0.75 parts by weight, 0.80 parts by weight, 0.85 parts by weight, 0.90 parts by weight or 0.95 parts by weight.
  • the amount of the potassium chloride added is 1.00 part by weight, and the amount of the potassium chloride is, for example, 2.00 parts by weight, 2.15 parts by weight, 2.30 parts by weight, 2.45. Parts by weight, 2.60 parts by weight, 2.75 parts by weight or 2.90 parts by weight.
  • the amount of magnesium chloride hydrate (MgCl ⁇ mH 2 0 ) is 1.00 part by weight based on the amount of magnesium chloride (excluding crystal water). (l+0.19m) parts by weight, the amount of sodium chloride added is 0.62 parts by weight, the amount of potassium chloride added is 2.35 parts by weight, the amount of ammonium chloride added is 0.11 to 3.38 parts by weight, and the amount of additives is 0.02. ⁇ 0.60 parts by weight, wherein m represents the number of water of crystallization contained per molecule of the hydrated magnesium chloride, m>0 o
  • the amount of sodium chloride added is 1.20 to 1.70 parts by weight, and the amount of potassium chloride is 5.00 to 6.20 parts by weight, based on the amount of magnesium oxide added.
  • the amount of the feed is 2.68 to 8.03 parts by weight, and the amount of the additive to be added is 0.04 to 1.50 parts by weight.
  • the amount of ammonium chloride added is, for example, 2.78 parts by weight, 3.23 parts by weight, 3.55 parts by weight, 3.95 parts by weight, 4.42 parts by weight, based on the amount of magnesium oxide added. 4.78 parts by weight, 5.12 parts by weight, 5.68 parts by weight, 6.45 parts by weight, 6.85 parts by weight, 7.25 parts by weight, 7.65 parts by weight or 7.95 parts by weight.
  • the amount of the additive to be added is, for example, 0.10 parts by weight, 0.20 parts by weight, 0.30 parts by weight, 0.40 parts by weight, 0.50 parts by weight, 0.60 parts by weight, based on the amount of the magnesium oxide added. 0.70 parts by weight, 0.80 parts by weight, 0.90 parts by weight, 1.10 parts by weight, 1.20 Parts by weight or 1.30 parts by weight.
  • the amount of the sodium chloride added is, for example, 1.25 parts by weight, 1.30 parts by weight, 1.35 parts by weight, 1.40 parts by weight, 1.45 parts by weight, based on the amount of magnesium oxide added. 1.50 parts by weight, 1.55 parts by weight, 1.60 parts by weight, 1.65 parts by weight or 1.70 parts by weight.
  • the potassium chloride is added in an amount of, for example, 5.15 parts by weight, 5.30 parts by weight, 5.45 parts by weight, 5.60 parts by weight, 5.75 parts by weight, based on the amount of magnesium oxide added. 5.90 parts by weight, 6.15 parts by weight or 6.20 parts by weight.
  • the amount of sodium chloride added is 1.46 parts by weight, and the amount of potassium chloride is 5.59 parts by weight, based on the amount of magnesium oxide added, 1.00 parts by weight.
  • the amount is 2.68 to 8.03 parts by weight, and the additive is added in an amount of 0.04 to 1.50 parts by weight.
  • the heating process in the step (b) is: first, at 150 to 400 ° C for 0.5 to 3.5 hours, and then at 400 to 465 ° C for 0.5 to 4.0 hours.
  • the heating temperature is 150 to 400 ° C, for example, 170 ° C, 190 ° C, 210 ° C, 230 ° C, 250 ° C, 270 ° C, 290 ° C, 310 ° C, 350 ° C, 370 ° C Or 390 ° C.
  • the incubation time of 0.5 to 3.5 hours is, for example, 0.8 hours, 1.1 hours, 1.4 hours, 1.7 hours, 2 hours, 2.3 hours, 2.6 hours, 2.9 hours, 3.2 hours or 3.4 hours.
  • the heating temperature is 400 to 465 ° C, for example, 405 ° C, 410 ° C, 415 ° C, 420 ° C, 425 ° C, 430 ° C, 435 ° C, 440 ° C, 445 ° C, 450 ° C. , 455 ° C or 460 ° C.
  • the incubation time of 0.5 to 4.0 hours is, for example, 0.8 hours, 1.1 hours, 1.4 hours, 1.7 hours, 2 hours, 2.3 hours, 2.6 hours, 2.9 hours, 3.2 hours, 3.4 hours, 3.7 hours, and 3.9 hours.
  • the ammonium chloride released in the step (b) is recovered and returned to the step (a) for recycling, and the released ammonia gas is recycled.
  • the anode is made of a graphite material
  • the cathode is made of a steel material having an electrolysis temperature of 650 to 750 ° C, an electrolysis voltage of 3.0 to 7.0 V, and a cathode current density of 0.30 to 1.0 A/cm 2 , but is not limited thereto.
  • the cathode is made of a steel material, which is in a solid form, and may be a commercially available product, preferably a steel having a carbon content of less than 0.2 wt./cm.
  • the anode is made of a graphite material, which is in a solid form, and can be commercially available. During the electrolysis process, chlorine is evolved from the anode.
  • the waste electrolyte melt discharged in the electrolysis process of the step (d) is returned to the step (a) for recycling, and the produced chlorine gas is purified and recycled.
  • FIG. 2 shows a process flow diagram for the electrolytic preparation of magnesium metal in accordance with the method of the present invention.
  • the method (a) mixing hydrated magnesium chloride or magnesium oxide with a mixture of sodium chloride, potassium chloride and ammonium chloride; (b) first obtaining the mixture obtained in step (a) at 150 to 400 ° C The mixture is kept for 0.5 to 3.5 hours, and then kept at 400 to 465 ° C for 0.5 to 4.0 hours to obtain K 3 NaMgCl 6 ; (c) the mixture of K 3 NaMgCl 6 obtained in the step (b) and the additive is heated to a molten state to obtain An anhydrous electrolyte melt; (d) electrolyzing the electrolyte melt obtained in the step (c), preferably at the anode as a graphite material, the cathode as a steel material, at an electrolysis temperature of 650-750 ° C, and an electrolysis voltage of 3.0 to 7.0 V Electrolysis was carried out under the conditions of a ca
  • magnesium oxide reacts with ammonium chloride to form a double salt ⁇ 4 ⁇ ⁇ ⁇ 2 ⁇ ⁇ 2 ⁇ (0 ⁇ ⁇ 6)
  • Zhang ZM, Lu XC etal Preparation of anhydrous magnesium chloride from magnesia, Industrial & Engineering Chemistry Research, 2012, 51(29): 9713-9718
  • hydrated magnesium chloride reacts with ammonium chloride to form Complex salt ⁇ 4 ⁇ ⁇ ⁇ 2 ⁇ ⁇ 2 ⁇ (0 ⁇ 6)
  • Zhang ZM, Lu XC etal Preparation of anhydrous magnesium chloride from magnesium chloride hexahydrate , Metallurgical and Materials Transactions B, 2013, 44(2) : 354 ⁇ 358 ).
  • the structure of the double salt weakens the combination of crystal water and magnesium chloride, is beneficial to the progress of dehydration, and reduces the hydrolysis of the dehydration process. Even if hydrolysis occurs, ammonium chloride can be produced with hydrolysis at a certain temperature.
  • the reaction magnesium hydroxychloride or magnesium oxide
  • the reaction is reacted to form anhydrous magnesium chloride, thereby ensuring the purity of the product anhydrous magnesium chloride.
  • the inventors found through experiments that when the temperature rises to about 400 ° C, anhydrous magnesium chloride can form a double salt KMgCl 3 with potassium chloride.
  • the double salt is stable at high temperature, and is not easy to interact with oxygen and water in the air.
  • the vapor reacts to inhibit the occurrence of hydrolysis of anhydrous magnesium chloride, ensuring the purity of the product at high temperatures.
  • the inventors also found through experiments that when the temperature continues to rise, a double salt K 3 NaMgCl 6 is formed , which is relatively stable at high temperatures, and is not easily reacted with oxygen and water vapor in the air, further suppressing the high temperature of anhydrous magnesium chloride.
  • the occurrence of the lower hydrolysis reaction ensures the purity of the product.
  • the inventors have found through extensive experimental studies that K 3 NaMgCl 6 has poor water absorption (see Figure 3) than anhydrous MgCl 2 and is relatively easy to store and transport.
  • the raw materials e.g., hydrated magnesium chloride, magnesium oxide, ammonium chloride, potassium chloride, sodium chloride, and the like
  • the raw material is preferably in the form of a powder, and the particle diameter of the powder is not particularly limited as long as it does not affect uniform mixing.
  • hydrated magnesium chloride means magnesium chloride (MgCl ⁇ mH 2 0, wherein m represents the number of crystal water contained per molecule of the hydrated magnesium chloride, m>0) unless otherwise indicated.
  • anhydrous electrolyte melt means a non-aqueous electrolyte melt containing anhydrous magnesium chloride, potassium chloride and sodium chloride as a main component, in addition to anhydrous magnesium chloride, potassium chloride, according to the method of the present invention.
  • the electrolyte melt may also include calcium chloride, barium chloride, calcium fluoride, potassium fluoride, and sodium fluoride.
  • aste electrolyte means an electrolyte having less than 5% by weight of anhydrous magnesium chloride in the electrolyte melt.
  • the magnesium oxide (MgO) content in the K 3 NaMgCl 6 means the weight percentage of magnesium oxide with respect to 100% by weight of anhydrous magnesium chloride, unless otherwise stated.
  • the reaction of the present invention can be carried out, for example, in a crucible. In order to effectively suppress the volatilization and decomposition of ammonium chloride during heating, the crucible can be capped.
  • the advantages of the invention are as follows: (1) preparing high-purity K 3 NaMgCl 6 (which can be used as a raw material for advanced electrolytic cells) by using hydrated magnesium chloride or magnesium oxide as a raw material, and then electrolyzing The metal magnesium is prepared, the method has the advantages of easy raw materials, simple process and low production cost; (2) The inventors have proved through experiments that K 3 NaMgCl 6 is much weaker than anhydrous MgCl 2 under the same conditions (see Figure 3).
  • the method is highly versatile for the electrolytic preparation of magnesium metal. Since magnesium metal is gradually being widely used, its development potential is very large. At present, the preparation of anhydrous magnesium chloride as raw material is difficult and its storage and feeding difficulties are difficult, which restricts the development of electrolytic magnesium smelting. This method provides an economically feasible method for electrolytic magnesium smelting. Way.
  • the invention provides a method for preparing magnesium metal by utilizing abundant hexahydrate magnesium chloride resources and magnesite resources in China, which can shorten the production process of metal magnesium preparation, reduce production cost, improve production efficiency, and can solve the problem of saving and feeding of anhydrous magnesium chloride. Difficult to wait for the question.
  • Figure 1 is a process flow diagram of the process for producing K 3 NaMgCl 6 according to the method of the present invention
  • FIG. 2 is a flow chart of a process for electrolytically preparing magnesium metal according to the method of the present invention
  • FIG. 3 is a comparison of water absorption at room temperature of K 3 NaMgCl 6 (magnesium oxide content 0.07%) and anhydrous MgCl 2 (magnesium oxide content 0.08%) prepared by using hexahydrate magnesium chloride as a raw material according to the method of the present invention
  • Figure 4 is an XRD pattern of K 3 NaMgCl 6 prepared by using magnesium chloride hexahydrate as a raw material according to the method of the present invention
  • Figure 5 is an SEM image of K 3 NaMgCl 6 prepared by using magnesium chloride hexahydrate as a raw material according to the method of the present invention
  • the method of the invention adopts K 3 NaMgClJ TG-DSC chart prepared by using magnesium chloride hexahydrate as raw material;
  • Figure 7 is an XRD pattern of magnesium metal prepared by using magnesium chloride hexahydrate as a raw material according to the method of the present invention
  • Figure 8 is an electron micrograph and an energy spectrum of metallic magnesium prepared by using magnesium chloride hexahydrate as a raw material according to the method of the present invention, wherein (a ) for the electron microscope scan, (b) for the energy spectrum;
  • Figure 9 is an XRD pattern of K 3 NaMgCl 6 prepared by using magnesium oxide as a raw material according to the method of the present invention
  • Figure 10 is an SEM image of K 3 NaMgCl 6 prepared by using magnesium oxide as a raw material according to the method of the present invention
  • Method XRD pattern of magnesium metal prepared by using magnesium oxide as raw material.
  • the K 3 NaMgCl 6 prepared according to the present method was measured according to the following method.
  • the aqueous solution precipitate was determined by titration to determine the content of magnesium oxide in K 3 NaMgCl 6 .
  • the specific operation was as follows: The obtained K 3 NaMgCl 6 sample was dissolved in water, and four ⁇ 90 ⁇ quantitative filter papers were used (Hangzhou Special Paper Co., Ltd.) The company:) repeatedly filters the aqueous solution at least three times until the filtrate is particularly clear.
  • the filter paper is repeatedly rinsed with deionized water to wash away the magnesium ions attached thereto, and the filter paper containing the magnesium oxide particles after washing is placed in a beaker, and an excess of prepared 1:100 sulfuric acid is added (analytical purity, purity 95.98%; Manufacturer: Beijing Beihua Fine Chemicals Co., Ltd., heat the beaker on an electric furnace and let it stand for five minutes to complete the reaction of magnesium oxide.
  • the solution in the beaker is subjected to EDTA titration to determine the content of magnesium ions, and then pass through The calculation is converted to the content of magnesium oxide in the sample.
  • K 3 NaMgCl 6 The phase composition of K 3 NaMgCl 6 was determined by X-ray diffractometry (model: X'Pert PRO MPD; manufacturer: Philips) by X-ray diffraction XRD.
  • K 3 NaMgCl standard XRD pattern see the following Reference 6: Fink H, Seifert HJ, Quaternary compounds in the system KCl / NaCl / MgC12, Thermochim.Acta, 1984, 72:. 195-200
  • K 3 NaMgCl 6 was carried out using a TG-DSC synchronous thermal analyzer from Germany NETZSCH.
  • the test conditions were as follows: High purity nitrogen atmosphere, gas flow rate 50 mL/min, test temperature from room temperature to 650 ° C, heating rate 10 °C/min.
  • the magnesium metal electrolytically prepared according to the present method was measured according to the following method.
  • phase composition of the product metal was determined by X-ray diffraction (XRD) using an X-ray diffractometer (Model: X'Pert PRO MPD; Manufacturer: Philips).
  • the current efficiency is determined by the following formula:
  • the electrolytic energy consumption is determined according to the following formula:
  • Typical but non-limiting embodiments of the invention are as follows:
  • the raw materials involved in the present invention are all commercially available products, including:
  • Ammonium chloride Xiqiao Chemical Co., Ltd., purity 99.5%;
  • Hydrated magnesium chloride home-made: The above-mentioned product is judged according to the weight loss condition by heating the above magnesium chloride hexahydrate at a temperature of 80-160 ° C for different times.
  • the obtained K 3 NaMgCl 6 was mixed with the additive calcium chloride and sodium chloride and heated to 700 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (18.0 wt%)-NaCl (22.6) Wt%)-KCl (42.4 wt%)-CaCl 2 (15.0 wt%) - CaF 2 (2.0 wt%)), the melt was very pure, and no impurities were observed.
  • the melt is electrolyzed in an electrolytic bath under the following conditions: the melt is an electrolyte, a 06 mm spectral pure graphite rod is an anode, a 06 mm steel rod is a cathode, and a volume of 200 mL of corundum is an electrolytic bath.
  • the electrolysis temperature was 700 ° C
  • the pole pitch was 4 cm
  • the cathode current density was 0.42 A/cm 2
  • the cell voltage was 3.7 V
  • the electrolysis time was 4 h.
  • phase composition of the metal is ⁇ -Mg (JCPDS no. 01-089-4894);
  • the energy spectrum analysis of the product metal is shown in Fig. 8.
  • the phase composition of the product metal is pure magnesium metal.
  • the obtained K 3 NaMgCl 6 was mixed with the additive calcium fluoride and heated to 680 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (29.7 wt%)-NaCl (11.9 wt%) - KCl (57.8 wt%)-CaF 2 (0.6 wt%)), the melt was very pure, and no impurities were observed.
  • the melt is electrolyzed in an electrolytic bath, and the electrolysis conditions are: the melt is an electrolyte, a 06 mm spectral pure graphite rod is an anode, a 06 mm steel rod is a cathode, and a volume of 200 mL of corundum is an electrolytic bath.
  • an electrolysis temperature 680 ° C, pole pitch 4cm, cathode current density of 0.35 A / cm 2, the cell voltage of 3.7V, an electrolysis time of 4h.
  • the content of magnesium oxide in the obtained K 3 NaMgCl 6 was 0.06% by weight; the XRD pattern of the product showed that the phase was K 3 NaMgCl 6 ; the current efficiency during the electrolysis was 96.1%; the energy consumption was 8470 k h / t ; The purity of magnesium was 99.3%; the XRD pattern of the product metal showed that the phase composition was ⁇ -Mg (JCPDS no. 01-089-4894).
  • the obtained K 3 NaMgCl 6 was mixed with the additive calcium chloride and heated to 680 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (18.3 wt%)-NaCl (17.4 wt%) - KCl (53.2 wt%)-CaF 2 (ll.lwt%)), the melt was very pure, and no impurities were observed.
  • the melt is electrolyzed in an electrolytic bath, and the electrolysis conditions are: the melt is electricity Dissolution, 06mm spectral pure graphite rod is anode, 06mm steel rod is cathode, volume 200mL corundum is electrolytic cell, electrolysis temperature is 680 °C, pole pitch is 4cm, cathode current density is 0.72A/cm 2 The tank voltage is 6.4V and the electrolysis time is 4h.
  • the content of magnesium oxide in the obtained K 3 NaMgCl 6 was 0.08% by weight; the XRD pattern of the product showed that the phase was K 3 NaMgCl 6; the current efficiency during the electrolysis was 99.2%; the energy consumption was 14194 kwM ; the purity of the product magnesium metal It was 99.0%; the XRD pattern of the product metal showed a phase composition of a-Mg (JCPDS no. 01-089-4894).
  • K 3 NaMgCl 6 was mixed with the additive calcium chloride, sodium chloride and calcium fluoride and heated to 680 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (18.0 wt%) -NaCl (22.6wt%) -KC1
  • the melt was very pure, and no impurities were observed. Then, the melt is electrolyzed in an electrolytic bath, and the electrolysis conditions are: the melt is an electrolyte, the spectral pure graphite rod of ⁇ 6 ⁇ is an anode, the 06mm steel rod is a cathode, and the corundum crucible having a volume of 200 mL is an electrolytic bath.
  • the electrolysis temperature was 680 ° C
  • the pole pitch was 4 cm
  • the cathode current density was 0.46 A/cm 2
  • the cell voltage was 3.8 V
  • the electrolysis time was 4 h.
  • the content of magnesium oxide in the obtained K 3 NaMgCl 6 was 0.04% by weight; the XRD pattern of the product showed The phase is K 3 NaMgCl 6; the current efficiency is 97.9% during electrolysis; the energy consumption is 8539k h / t ; the purity of the product magnesium is 99.1%; the XRD pattern of the product metal shows that the phase composition is ⁇ -Mg ( JCPDS no. 01-089-4894). 20 g of magnesium oxide, 29.3 g of sodium chloride, 111.8 g of potassium chloride and 80.3 g of ammonium chloride were mixed and added to 200 mL of mash.
  • the lid was covered with a lid and incubated at 350 ° C for 2.0 hours, and then held at 450 ° C for 3.0 hours to obtain K 3 NaMgCl 6 .
  • the obtained K 3 NaMgCl 6 was mixed with the additive calcium chloride, sodium chloride and calcium fluoride and heated to 700 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (18.0 wt%) -NaCl (22.6 wt%) - KCl (42.4 wt%) - CaCl 2 (15.0 wt%) - CaF 2 (2.0 wt%)), the melt was very pure, and no impurities were observed.
  • the melt is electrolyzed in an electrolytic bath, and the electrolysis conditions are: the melt is an electrolyte, a 06 mm spectral pure graphite rod is an anode, a 06 mm steel rod is a cathode, and a volume of 200 mL of corundum is an electrolytic bath.
  • the electrolysis temperature was 700 ° C
  • the pole pitch was 4 cm
  • the cathode current density was 0.45 A/cm 2
  • the cell voltage was 3.7 V
  • the electrolysis time was 4 h.
  • the obtained K 3 NaMgCl 6 with additives calcium chloride, sodium chloride and fluorine The calcium was mixed and heated to 700 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (18.0 wt%) - NaCl (22.6 wt%) - KCl (42.4 wt%) - CaCl 2 - (15.0 wt%) - CaF 2 (2.0 wt%)), the melt was very pure, and no impurities were observed.
  • the melt is electrolyzed in an electrolytic bath, and the electrolysis conditions are: the melt is an electrolyte, a 06 mm spectral pure graphite rod is an anode, a 06 mm steel rod is a cathode, and a volume of 200 mL of corundum is an electrolytic bath.
  • the electrolysis temperature was 700 ° C
  • the pole pitch was 4 cm
  • the cathode current density was 0.40 A/cm 2
  • the cell voltage was 3.7 V
  • the electrolysis time was 4 h.
  • the content of magnesium oxide in the obtained K 3 NaMgCl 6 was 0.02% by weight; the XRD pattern of the product showed that the phase was K 3 NaMgCl 6; the current efficiency during electrolysis was 97.1%; the energy consumption was 8383 k h / t ; The purity of magnesium was 99.6%; the XRD pattern of the product metal showed that the phase was ⁇ -Mg (JCPDS no. 01-089-4894).
  • the obtained K 3 NaMgCl 6 was mixed with the additive calcium fluoride and heated to 700 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (27.6 wt%)-NaCl (13.9 wt%)- KCl (58.0 wt%) - CaF 2 (0.5 wt%)), the melt was very pure, and no impurities were observed. Then, the melt is electrolyzed in an electrolytic bath, and the electrolysis conditions are: the melt is an electrolyte, a 06 mm spectral pure graphite rod is an anode, a 06 mm steel rod is a cathode, and a volume of 200 mL of corundum is an electrolytic bath.
  • the electrolysis temperature was 700 ° C
  • the pole pitch was 4 cm
  • the cathode current density was 0.38 A/cm 2
  • the cell voltage was 3.5 V
  • the electrolysis time was 4 h.
  • the content of magnesium oxide in the obtained K 3 NaMgCl 6 was 0.04% by weight; the XRD pattern of the product showed that the phase was K 3 NaMgCl 6 ; the current efficiency during the electrolysis was 96.0%; the energy consumption was 8021 k h / t ; The purity of magnesium was 99.4%; the XRD pattern of the product metal showed that the phase was ⁇ -Mg (JCPDS no. 01-089-4894).
  • the obtained K 3 NaMgCl 6 was mixed with the additive calcium chloride and heated to 700 ° C to obtain a melt containing anhydrous magnesium chloride (melt composition: MgCl 2 (20.2 wt%)-NaCl (14.4 wt%)- KCl (52.7 wt%) - CaF 2 (12.7 wt%)), the melt was very pure, and no impurities were observed. Then, the melt is electrolyzed in an electrolytic bath, and the electrolysis conditions are: the melt is an electrolyte, a 06 mm spectral pure graphite rod is an anode, a 06 mm steel rod is a cathode, and a volume of 200 mL of corundum is an electrolytic bath.
  • the electrolysis temperature was 700 ° C
  • the pole pitch was 4 cm
  • the cathode current density was 0.46 A/cm 2
  • the cell voltage was 5.1 V
  • the electrolysis time was 4 h.
  • the content of magnesium oxide in the obtained K 3 NaMgCl 6 was 0.02% by weight; the XRD pattern of the product showed that the phase was K 3 NaMgCl 6; the current efficiency during the electrolysis was 98.9%; the energy consumption was 11345 k M ; The purity was 99.5%; the XRD pattern of the product metal showed a phase of a-Mg (JCPDS no. 01-089-4894).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明公开了一种制备K3NaMgCl6的方法,所述方法包括下列步骤:(a)将水合氯化镁或氧化镁与氯化钠、氯化钾和氯化铵三者的混合物混合;(b)将步骤(a)得到的混合物加热,制得K3NaMgCl6。本发明还公开了采用K3NaMgCl6电解制备金属镁的方法。本发明为利用我国丰富的六水氯化镁资源和菱镁矿资源制备金属镁提供了方法,它能缩短金属镁制备的生产流程、降低生产成本和提高生产效率,能够解决无水氯化镁保存难和加料难等问题。

Description

一种 K3NaMgCl6、 制备方法及其用途 技术领域
本发明属于无机材料和金属材料的制备技术领域, 具体地说, 涉及一种 K3NaMgCl6、 制备方法及利用其电解制备金属镁的方法。
背景技术
金属镁是 21 世纪最具前景的轻金属, 它的密度为 1.74g/cm3, 是不锈钢的 1/4, 铝的 1/3。 随着科技的发展, 航空、 航天和汽车等大型耗能机器的轻量化成 为节能的主题, 镁的需求量也在日益增加。
制备金属镁的方法有:
( 1 ) 皮江法: 它是将煅烧后的白云石和硅铁按照一定的比例磨成细粉, 往 细磨的原料中添加 2.5%的萤石, 混合后压成团块。 将团块密封在无缝不锈钢管 制成的蒸馏罐内, 以燃气或煤为燃料, 采用外部加热, 在高温 (1150〜1200°C )、 高真空 (13.3〜133.3Pa) 的条件下进行还原反应, 得到金属镁, 反应式如下: 2(CaOMgO)(s)+Si(s)=2Mg(g)+2CaOSi02(s)
皮江法工艺简单、 流程短、 投资小、 建厂快、 规模灵活、 产品质量高且可 用燃料代替电能。 我国丰富的白云石和硅铁资源、 相对廉价的劳动力以及宽松 的环境监管制度使得皮江法在中国迅速崛起并逐渐统治世界镁市场。 2011 年我 国皮江法生产的原镁产量为 66.06万吨, 占世界原镁总产量的 85.5%。 然而, 皮 江法存在很多问题, 总结如下: ①能耗大, 热效率低, 环境污染严重。 每生产 lkg金属镁大约释放出 37〜47kg的二氧化碳 (该值是炼铝的 1.6倍), 大量二氧 化碳的产生抵消了镁在汽车工业上带来的环境保护效应。 另外, 每生产 lkg金 属镁耗能 354.5MJ。 其中, 还原剂硅铁的制备能耗占总能耗的 42%。 每生产 lkg 镁产生粉尘和渣 6.5〜7.0kg; ②自然资源消耗量大。每生产 It金属镁消耗 10〜15t 白云石, l.l〜1.2t硅铁, 8〜13t煤; ③还原罐消耗比较大, 单罐产能低。 每个还 原罐的寿命为 40〜90天, 每个生产周期 (8〜10h) 单罐产镁 18〜22kg; ④还原热 效率低, 热传递为反应的限制性环节, 产品杂质含量高 (主要含 Fe, Mn, Si, Al, Ni等); ⑤高温和高真空的操作条件限制了皮江法的规模, 也决定了其间歇 式生产的特点, 致使劳动生产率低, 机械化程度低。
(2) 电解法: 电解法炼镁工艺是在 680〜750°C, 采用含无水氯化镁的氯化 物熔盐混合物 (主要成分为无水氯化镁、 氯化钾、 氯化钠等) 为电解质, 在外 加电场的作用下镁离子在阴极发生还原反应生成金属镁, 氯离子在阳极发生氧 化反应生成氯气。
以水合氯化镁为原料, 利用电解法制备金属镁的工艺有以下几种: ①氯化氢气体保护脱水电解制备金属镁方法: 将六水氯化镁在沸腾炉中进 行三段脱水制备无水氯化镁。 其中, 一段和二段用热空气进行加热, 炉膛温度 分别为 180°C和 250°C, 得到的脱水料相当于 MgCl2 2-2.5)H20(MgO含量小于 1 第三段彻底脱水在纯度为 99.5%的氯化氢气氛下进行, 脱水温度为 330°C, 最终制得无水氯化镁 (MgCl2>95%, MgO< l 将制备的无水氯化镁为原料, 加入含氯化钾、 氯化钠等氯化物的电解质熔盐中, 通过电解制得金属镁。 该方 法工艺先进、 能耗低、 自动化水平高 (物料用封闭的传送系统运输)、 电解槽内 物质化学平衡易控制、 产品无水氯化镁质量高, 代表了镁电解生产的最高水平。 另外, 氯化氢气体可经过回收实现循环利用, 生产过程中只需补充少量的氯化 氢气体即可。 该工艺的缺点是工艺比较复杂、 对设备的耐腐蚀性要求高、 对整 个系统的封闭性要求高、 氯化氢与水蒸气分离困难 (脱水用氯化氢气体纯度达 99.5%以上), 得到的无水氯化镁在保存和运输的过程中很容易吸水, 并且无水 氯化镁加入到电解槽后熔融需要一定时间, 导致电解过程不平稳。
②道屋炼镁法: 将六水氯化镁经过浓缩和多层脱水后制得 MgCl2 l-2)H20。 以上制得的水合氯化镁为原料,将其加入 MgCl2-NaCl-CaCl2三元系电解质(20% MgCl2, 20% CaCl2, 60% NaCl) 中, 电解温度为 700〜720°C, 槽电压为 6〜6.5V, 电流效率为 75〜85%, 每吨镁电能消耗为 18000〜18500kW 。 该方法生产过程简 单, 但是由于原料含水, 电解时石墨阳极消耗大、 电流效率低、 电耗高、 渣量 大; 另外, 电解产物氯气纯度低不易利用。 副产物中仍有大量氯化氢气体, 对 环境的污染严重。 该方法由于没有采取消除水分对电解过程影响的措施, 导致 综合成本过高而无法维持下去。
③ AMC 法。 氯化镁溶液在脱水过程中加入气态氨, 在有机溶剂 (乙二胺- 乙烯溶液或甘醇溶液) 中进行络合脱水, 再在氨中喷淋得到 MgCl2.6NH3。 MgCl2 NH3在干燥炉中加热到 400〜450°C脱氨生成无水氯化镁(MgO和 ¾0含 量均小于 0.09%)。 将以上制得的无水氯化镁为原料, 加入含氯化钾、 氯化钠等 氯化物的电解质中, 通过电解制得金属镁。 该工艺整个过程都不会发生水解反 应, 氨气冷却后可以回收利用, 电解副产的氯气可用来制备盐酸, 从而实现了 低温脱水和低能耗的电解工艺。 然而, 络合脱水过程以及清洗六氨氯化镁需要 消耗大量的有机溶剂, 增加了成本, 并且得到的无水氯化镁在常温下的保存和 运输过程中很容易吸水, 加入电解槽过程中熔融需要一定时间, 导致电解过程 不平稳。
相对于皮江法炼镁, 电解法制备金属镁优点突出, 它显示出具有工业化和 商业化的良好前景。 但是, 目前金属镁生产中皮江法工艺占了主导, 这主要原 因是皮江法直接生产成本比电解法的低。 制约电解法制备金属镁发展的关键问 题有: (1 ) 电解用原料无水氯化镁的制备工艺过程复杂, 生产成本高; (2) 原 料无水氯化镁吸水性很强, 在保存和运输的过程中很容易再次吸水, 这样造成 电解时能耗增大; (3 ) 无水氯化镁熔点为 714°C, 加入到 680〜750°C的电解槽中 后从熔融到完全扩散均匀需要一段时间, 在这期间中电解过程不平稳, 电流效 率低, 能耗增大。
发明内容
基于上述问题, 本发明人进行了深入细致的研究开发工作, 提供了一种制 备 K3NaMgCl6及其电解制备金属镁的方法, 通过所述方法可以利用六水氯化镁 或氧化镁为原料, 在相对简单的工艺条件下制备出高纯度的 K3NaMgCl6, 在某 些优选的条件下可制备出 MgO含量小于 0.1重量%的 K3NaMgCl6。 与无水氯化 镁相比, K3NaMgClJ 吸水性很弱, 容易保存和运输, 并且 K3NaMgCl6熔点低, 加入电解槽后很容易溶解并扩散均匀, 能保证电解过程的平稳, 提高电解制镁 过程的电流效率, 降低能耗。
本发明的目的之一在于提供一种制备 K3NaMgCl6的方法, 所述方法包括下 列步骤:
(a)将水合氯化镁或氧化镁与氯化钠、氯化钾和氯化铵三者的混合物混合;
(b) 将步骤 (a) 得到的混合物加热, 制得 K3NaMgCl6
所述 K3NaMgCl6为无水 K3NaMgCl6
根据本发明的实施方案, 其中所述水合氯化镁由下式表示: MgCl^mH20, 其中 m表示每分子所述水合氯化镁中含有的结晶水的个数, m>0, m例如为 1、 2、 3、 4、 5、 或 6。 当 m=6时, 所述水合氯化镁即六水氯化镁。
步骤 (a) 得到的混合物即: 水合氯化镁、 氯化钠、 氯化钾和氯化铵的混合 物, 或者为, 氧化镁、 氯化钠、 氯化钾和氯化铵的混合物。
在步骤(a)中当采用水合氯化镁作为原料时, 以氯化镁(以不含结晶水计) 的加料量为 1.00重量份计, 水合氯化镁 (MgCl2'mH20) 的加料量为(l+0.19m) 重量份, 氯化钠的加料量为 0.40〜0.95重量份, 氯化钾的加料量为 1.95〜2.90重 量份, 氯化铵的加料量为 0.11〜3.38重量份, 其中, m表示每分子所述水合氯化 镁中含有的结晶水的个数, m>0。
在步骤(a)中当采用水合氯化镁作为原料时, 以氯化镁(以不含结晶水计) 的加料量为 1.00重量份计, 所述氯化铵的加料量例如为 0.12重量份、 0.25重量 份、 0.55重量份、 1.05重量份、 1.45重量份、 1.75重量份、 2.25重量份、 2.65 重量份、 2.95重量份、 3.15重量份或 3.32重量份。
在步骤(a)中当采用水合氯化镁作为原料时, 以氯化镁(以不含结晶水计) 的加料量为 1.00重量份计, 所述氯化钠的加料量例如为 0.50重量份、 0.55重量 份、 0.60重量份、 0.65重量份、 0.70重量份、 0.75重量份、 0.80重量份、 0.85 重量份、 0.90重量份或 0.95重量份。
在步骤(a)中当采用水合氯化镁作为原料时, 以氯化镁(以不含结晶水计) 的加料量为 1.00重量份计, 所述氯化钾的加料量例如为 2.00重量份、 2.15重量 份、 2.30重量份、 2.45重量份、 2.60重量份、 2.75重量份或 2.90重量份。
优选地, 在步骤 (a) 中当采用水合氯化镁作为原料时, 以氯化镁 (以不含 结晶水计) 的加料量为 1.00重量份计, 水合氯化镁(MgCl^mH20) 的加料量为 (l+0.19m)重量份, 氯化钠的加料量为 0.62重量份, 氯化钾的加料量为 2.35重量 份, 氯化铵的加料量为 0.11〜3.38重量份, 其中, m表示每分子所述水合氯化镁 中含有的结晶水的个数, m>0。 在该条件下可以制备出高纯度的例如 MgO含量 小于 0.1重量%的 K3NaMgCl6
在步骤(a) 中当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份 计, 氯化钠的加料量为 1.20〜1.70重量份, 氯化钾的加料量为 5.00〜6.20重量份, 氯化铵的加料量为 2.68〜8.03重量份。
在步骤(a) 中当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份 计, 所述氯化铵的加入量例如为 2.78重量份、 3.23重量份、 3.55重量份、 3.95 重量份、 4.42重量份、 4.78重量份、 5.12重量份、 5.68重量份、 6.45重量份、 6.85重量份、 7.25重量份、 7.65重量份或 7.95重量份。
在步骤(a) 中当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份 计, 所述氯化钠的加入量例如为 1.25重量份、 1.30重量份、 1.35重量份、 1.40 重量份、 1.45重量份、 1.50重量份、 1.55重量份、 1.60重量份、 1.65重量份或 1.70重量份。
在步骤(a) 中当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份 计, 所述氯化钾的加入量例如为 5.15重量份、 5.30重量份、 5.45重量份、 5.60 重量份、 5.75重量份、 5.90重量份、 6.15重量份或 6.20重量份。
优选地,在步骤(a)中当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00 重量份计, 氯化钠的加料量为 1.46重量份, 氯化钾的加料量为 5.59重量份, 氯 化铵的加料量为 2.68-8.03 重量份。 在该条件下可以制备出高纯度的例如 MgO 含量小于 0.1重量%的 K3NaMgCl6
根据本发明的实施方案, 其中在步骤 (b ) 中, 所述加热过程为: 首先在 150〜400°C保温 0.5〜3.5小时, 然后在 400〜465 °C保温 0.5〜4.0小时。
所述加热温度 150〜400°C例如为 170°C、190°C、210°C、230°C、250°C、270°C、 290°C、 310°C、 350°C、 370°C或 390°C。
所述保温时间 0.5〜3.5小时例如为 0.8小时、 1.1小时、 1.4小时、 1.7小时、 2小时、 2.3小时、 2.6小时、 2.9小时、 3.2小时或 3.4小时。
所述加热温度 400〜465 °C例如为 405 °C、 410 °C、 415 °C、 420 °C、 425 °C、 430 °C、 435°C、 440°C、 445°C、 450°C、 455°C或 460°C。
所述保温时间 0.5〜4.0小时例如为 0.8小时、 1.1小时、 1.4小时、 1.7小时、 2小时、 2.3小时、 2.6小时、 2.9小时、 3.2小时、 3.4小时、 3.7小时 3.9小时。
根据本发明的实施方案, 其中步骤 (b) 释放出的氯化铵回收并返回到步骤
(a) 中循环使用, 并且将释放出的氨气回收利用。
图 1 显示了根据本发明方法制备 K3NaMgCl6的工艺流程图。 在该方法中,
(a)将水合氯化镁或氧化镁与氯化钠、氯化钾和氯化铵三者的混合物混合; (b) 将步骤(a)得到的混合物首先在 150〜400 保温0.5〜3.5小时,然后在 400〜465°C 保温 0.5〜4.0小时, 制得 K3NaMgCl6。 本发明人通过大量的实验研究发现, 上述 反应的机理如下: 在 200〜300 °C左右, 氧化镁与氯化铵反应形成复盐 NH4Cl-MgCl2-nH2O(0^n<6) (Zhang ZM, Lu XC etal, Preparation of anhydrous magnesium chloride from magnesia, Industrial & Engineering Chemistry Research, 2012, 51(29): 9713-9718 ); 在 300°C以下, 水合氯化镁与氯化铵反应生成复盐 NH4Cl-MgCl2-nH2O(0^n<6) (Zhang ZM, Lu XC etal, Preparation of anhydrous magnesium chloride from magnesium chloride hexahydrate, Metallurgical and Materials Transactions B, 2013 , 44(2): 354-358 复盐的结构减弱了结晶水和氯 化镁的结合, 有利于脱水的进行, 减小脱水过程的水解。 即使发生了水解, 氯 化铵在一定温度下还可以与水解产物 (羟基氯化镁或氧化镁) 反应, 生成无水 氯化镁, 从而保证了产物无水氯化镁的纯度。 同时, 发明人通过实验研究发现, 当温度升至 400°C左右时, 无水氯化镁可与氯化钾形成复盐 KMgCl3, 该复盐在 高温下比较稳定, 不易与空气中的氧气和水蒸气发生反应, 抑制了无水氯化镁 水解反应的发生, 保证了高温下产物的纯度。 发明人通过实验研究还发现, 温 度继续升高时, 形成复盐 K3NaMgCl6, 该复盐在高温下比较稳定, 不易与空气 中的氧气和水蒸气发生反应, 进一步抑制了无水氯化镁高温下水解反应的发生, 保证了产物的纯度。 另外, 发明人研究发现, 在 200〜500°C之间氯化物混合物料 烧结收缩减缓了氯化铵的逸出速度, 使得氯化铵能充分发生化学反应作用。 将 在步骤 (b) 出的氯化铵返回到步骤 (a) 中以循环利用, 并且将释放出的氨气 回收利用, 从而降低了生产成本, 提高了生产率。
本发明的目的之二在于提供一种 K3NaMgCl6, 所述 K3NaMgCl6由如上所述 方法制备得到。采用上述方法制备得到的 K3NaMgCl 度高,可达到 MgO含量 小于 0.1 重量%。 与无水氯化镁相比, 采用本发明所述方法得到的 K3NaMgCl6 的吸水性很弱, 容易保存和运输, 并且 K3NaMgCl6熔点低, 加入电解槽后很容 易溶解并扩散均匀, 能保证电解过程的平稳, 提高电解制镁过程的电流效率, 降低能耗。
本发明的目的之三在于提供一种电解制备金属镁的方法, 所述方法包括如 下步骤:
(c)将上述 i^NaMgi^^P添加剂的混合物加热至熔融状态, 得到无水的电 解质熔体;
(d) 将上述电解质熔体电解从而制得金属镁。
优选地, 所述方法包括如下步骤:
(a)将水合氯化镁或氧化镁与氯化钠、氯化钾和氯化铵三者的混合物混合;
(b) 将步骤 (a) 得到的混合物加热, 制得 K3NaMgCl6;
(c)将上述 i^NaMgi^^P添加剂的混合物加热至熔融状态, 得到无水的电 解质熔体;
(d) 将上述电解质熔体电解从而制得金属镁。
根据本发明的实施方案, 其中在步骤 (a) 中所述水合氯化镁由下式表示: MgCl2-mH20,其中 m表示每分子所述水合氯化镁中含有的结晶水的个数, m>0。 根据本发明的实施方案, 所述添加剂为 CaF2、 KF、 NaF、 MgF2、 CaCl2、 BaCl2或NaCl中的任意一种或者至少两种的混合物, 它的作用是调节电解质熔 体的物理化学性质, 以便电解过程良好运行。 所述混合物例如( ^2和 KF的混 合物, NaF和 MgF2和 &(¾的混合物, BaCl2和 NaCl的混合物, CaF2、 KF和 NaF的混合物, MgF2、 CaCl2禾卩 BaCl2的混合物, NaCl、 CaCl2、 BaCl2禾卩 KF的 混合物。 电解质熔体的物理化学性质主要包含: 电解质熔体的电导率、 粘度、 表面张力、 熔融温度和密度等。 电解质熔体的电导率高、 粘度低对电解过程有 利。 加入氯化钠有利于提高电解质熔体的电导率。 加入氯化钙和氯化钡能增大 电解质密度, 使镁易于上浮, 与电解质分离。 氟化物的加入有利于电解质熔体 中金属镁液的汇集。
根据本发明的实施方案, 当采用水合氯化镁作为原料时, 以氯化镁 (以不 含结晶水计) 的加料量为 1.00重量份计, 水合氯化镁的加料量为 (l+0.19m)重量 份, 氯化钠的加料量为 0.40〜0.95重量份, 氯化钾的加料量为 1.95〜2.90重量份, 氯化铵的加料量为 0.11〜3.38重量份, 添加剂的加料量为 0.02〜0.60重量份, 其 中, m表示每分子所述水合氯化镁中含有的结晶水的个数, m>0。
当采用水合氯化镁作为原料时, 以氯化镁 (以不含结晶水计) 的加料量为 1.00重量份计, 所述氯化铵的加料量例如为 0.12重量份、 0.25重量份、 0.55重 量份、 1.05重量份、 1.45重量份、 1.75重量份、 2.25重量份、 2.65重量份、 2.95 重量份、 3.15重量份或 3.32重量份。
当采用水合氯化镁作为原料时, 以氯化镁 (以不含结晶水计) 的加料量为 1.00重量份计, 所述添加剂的加料量例如为 0.04重量份、 0.08重量份、 0.12重 量份、 0.16重量份、 0.20重量份、 0.25重量份、 0.30重量份、 0.35重量份、 0.40 重量份、 0.45重量份、 0.50重量份、 0.55重量份或 0.58重量份。
当采用水合氯化镁作为原料时, 以氯化镁 (以不含结晶水计) 的加料量为 1.00重量份计, 所述氯化钠的加料量例如为 0.50重量份、 0.55重量份、 0.60重 量份、 0.65重量份、 0.70重量份、 0.75重量份、 0.80重量份、 0.85重量份、 0.90 重量份或 0.95重量份。 当采用水合氯化镁作为原料时, 以氯化镁 (以不含结晶 水计)的加料量为 1.00重量份计,所述氯化钾的加料量例如为 2.00重量份、 2.15 重量份、 2.30重量份、 2.45重量份、 2.60重量份、 2.75重量份或 2.90重量份。
优选地, 根据本发明的实施方案, 当采用水合氯化镁作为原料时, 以氯化 镁 (以不含结晶水计) 的加料量为 1.00重量份计, 水合氯化镁 (MgCl^mH20 ) 的加料量为 (l+0.19m)重量份, 氯化钠的加料量为 0.62重量份, 氯化钾的加料量 为 2.35 重量份, 氯化铵的加料量为 0.11〜3.38 重量份, 添加剂的加料量为 0.02〜0.60重量份,其中, m表示每分子所述水合氯化镁中含有的结晶水的个数, m>0 o
当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 氯化钠的 加料量为 1.20〜1.70重量份, 氯化钾的加料量为 5.00〜6.20重量份, 氯化铵的加 料量为 2.68〜8.03重量份, 添加剂的加料量为 0.04〜1.50重量份。
当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 所述氯化 铵的加入量例如为 2.78重量份、 3.23重量份、 3.55重量份、 3.95重量份、 4.42 重量份、 4.78重量份、 5.12重量份、 5.68重量份、 6.45重量份、 6.85重量份、 7.25重量份、 7.65重量份或 7.95重量份。
当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 添加剂的 加料量例如为 0.10重量份、 0.20重量份、 0.30重量份、 0.40重量份、 0.50重量 份、 0.60重量份、 0.70重量份、 0.80重量份、 0.90重量份、 1.10重量份、 1.20 重量份或 1.30重量份。
当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 所述氯化 钠的加入量例如为 1.25重量份、 1.30重量份、 1.35重量份、 1.40重量份、 1.45 重量份、 1.50重量份、 1.55重量份、 1.60重量份、 1.65重量份或 1.70重量份。 当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 所述氯化钾的 加入量例如为 5.15重量份、 5.30重量份、 5.45重量份、 5.60重量份、 5.75重量 份、 5.90重量份、 6.15重量份或 6.20重量份。
优选地, 当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 氯化钠的加料量为 1.46重量份, 氯化钾的加料量为 5.59重量份, 氯化铵的加料 量为 2.68〜8.03重量份, 添加剂的加料量为 0.04〜1.50重量份。
根据本发明的实施方案, 其中在步骤 (b ) 中所述加热过程为: 首先在 150〜400°C保温 0.5〜3.5小时, 然后在 400〜465 °C保温 0.5〜4.0小时。
所述加热温度 150〜400°C例如为 170°C、190°C、210°C、230°C、250°C、270°C、 290°C、 310°C、 350°C、 370°C或 390°C。
所述保温时间 0.5〜3.5小时例如为 0.8小时、 1.1小时、 1.4小时、 1.7小时、 2小时、 2.3小时、 2.6小时、 2.9小时、 3.2小时或 3.4小时。
所述加热温度 400〜465 °C例如为 405 °C、 410 °C、 415 °C、 420 °C、 425 °C、 430 °C、 435°C、 440°C、 445°C、 450°C、 455°C或 460°C。
所述保温时间 0.5〜4.0小时例如为 0.8小时、 1.1小时、 1.4小时、 1.7小时、 2小时、 2.3小时、 2.6小时、 2.9小时、 3.2小时、 3.4小时、 3.7小时 3.9小时。
根据本发明的实施方案,其中将步骤(b )释放的氯化铵回收并返回步骤(a) 中循环使用, 并且将释放的氨气回收利用。
根据本发明的实施方案, 其中步骤 (d ) 中电解的条件为: 阳极由石墨材料 制成, 并且阴极由钢材料制成, 电解温度为 650〜750°C, 电解电压为 3.0〜7.0V, 阴极电流密度为 0.30-1.0A/cm2, 但并不限于此。
阴极由钢材料制成, 其为固态形式, 可以采用普通商购产品, 优选为含碳 量小于 0.2wt°/c^ 钢材。 阳极由石墨材料制成, 其为固态形式, 可以采用普通商 购产品。 在电解过程中, 阳极析出氯气。
根据本发明的实施方案, 其中将步骤 (d) 的电解过程中排出的废电解质熔 体返回步骤 (a) 中循环使用, 并且将产生的氯气净化回收利用。
图 2显示了根据本发明方法电解制备金属镁的工艺流程图。在该方法中,(a) 将水合氯化镁或氧化镁与氯化钠、 氯化钾和氯化铵三者的混合物混合; (b ) 将 步骤(a)得到的混合物首先在 150〜400°C保温 0.5〜3.5小时, 然后在 400〜465°C 保温 0.5〜4.0小时, 制得 K3NaMgCl6 ; (c) 将步骤 (b) 得到的 K3NaMgCl6和添 加剂的混合物加热至熔融状态, 得到无水的电解质熔体; (d) 将步骤 (c) 得到 的电解质熔体电解, 优选在阳极为石墨材料, 阴极为钢材料, 电解温度为 650-750 °C , 电解电压为 3.0〜7.0V, 阴极电流密度为 0.30〜1.0A/cm2的条件下进 行电解, 得到金属镁。 本发明人通过大量的实验研究发现, 上述反应的机理如 下: 在 200〜300°C左右, 氧化镁与氯化铵反应形成复盐 ΝΗ4α·Μ§α2·ηΗ2Ο(0 η <6) (Zhang ZM, Lu XC etal, Preparation of anhydrous magnesium chloride from magnesia, Industrial & Engineering Chemistry Research, 2012, 51(29): 9713-9718); 在 300 °C以下, 水合氯化镁与氯化铵反应生成复盐 ΝΗ4α·Μ§α2·ηΗ2Ο(0 η<6) ( Zhang ZM, Lu XC etal, Preparation of anhydrous magnesium chloride from magnesium chloride hexahydrate , Metallurgical and Materials Transactions B, 2013, 44(2): 354〜358 )。复盐的结构减弱了结晶水和氯化镁的结合,有利于脱水的进行, 减小脱水过程的水解。 即使发生了水解, 氯化铵在一定温度下还可以与水解产 物 (羟基氯化镁或氧化镁) 反应, 生成无水氯化镁, 从而保证了产物无水氯化 镁的纯度。 同时, 发明人通过实验研究发现, 当温度升至 400°C左右时, 无水氯 化镁可与氯化钾形成复盐 KMgCl3, 该复盐在高温下比较稳定, 不易与空气中的 氧气和水蒸气发生反应, 抑制了无水氯化镁水解反应的发生, 保证了高温下产 物的纯度。发明人通过实验研究还发现,温度继续升高时,形成复盐 K3NaMgCl6, 该复盐在高温下比较稳定, 不易与空气中的氧气和水蒸气发生反应, 进一步抑 制了无水氯化镁高温下水解反应的发生, 保证了产物的纯度。 发明人通过大量 实验研究发现, K3NaMgCl6比无水 MgCl2的吸水性差 (见附图 3 ), 相对容易保 存和运输。 并且 K3NaMgCl6的熔点只有 470°C (见附图 6), 比无水 MgCl2的熔 点 (714°C )低很多。 以K3NaMgCl6为原料电解制备金属镁时, 这些优点得以充 分体现。
对于本发明中所采用原料 (如, 水合氯化镁、 氧化镁、 氯化铵、 氯化钾和 氯化钠等) 没有具体限制, 它们均可以采用普通商购产品。 所述原料优选粉末 形态, 对所述粉末粒径没有特别限制, 只要不影响其均匀混合即可。
在本发明中, 除非另外指出, 术语 "水合氯化镁"是指含有结晶水的氯化 镁 (MgCl^mH20, 其中 m表示每分子所述水合氯化镁中含有的结晶水的个数, m>0)。 术语 "无水的电解质熔体"是指根据本发明方法制备的包含无水氯化镁、 氯化钾、 氯化钠为主要组分的不含水的电解质熔体, 除无水氯化镁、 氯化钾、 氯化钠以外, 这种电解质熔体还可以包括氯化钙、 氯化钡、 氟化钙、 氟化钾和 氟化钠等。 术语 "废电解质"是指电解质熔体中无水氯化镁的重量百分数小于 5%的电解质。
另外, 在本发明中, 除非另外指出, 所述 K3NaMgCl6中的氧化镁 (MgO)含 量是指相对于 100重量%的无水氯化镁而言的氧化镁的重量百分数。 本发明所述反应例如可以在坩埚中进行, 为了有效抑制加热过程中氯化铵 的挥发和分解, 坩埚可盖上盖子。
与现有电解法制备金属镁技术相比, 本发明的优点在于: (1 ) 利用水合氯 化镁或氧化镁为原料制备高纯度的 K3NaMgCl6 (可作为先进电解槽用原料), 进 而通过电解制备出金属镁, 本方法原料易得、 工艺简单、 生产成本低; (2) 本 发明人通过实验证明, 相同条件下 K3NaMgCl6比无水 MgCl2吸水性弱很多 (见 附图 3 ), 容易保存和运输、 不易吸水, 其电解时降低了能耗; (3 ) 本发明人通 过实验证明, K3NaMgCl6的熔点约为 470°C (见附图 6), 比无水 MgCl2的熔点 (714°C ) 低很多, 加入电解槽后很容易熔化并扩散均匀, 电解过程中电流效率 高、 降低能耗。
对于电解制备金属镁而言, 本方法通用性很强。 由于金属镁正在逐步广泛 应用, 发展潜力很大, 目前原料无水氯化镁的制备难度大并且其保存和加料困 难, 制约了电解法炼镁的发展, 本方法为电解法炼镁提供了一条经济可行的途 径。
本发明为利用我国丰富的六水氯化镁资源和菱镁矿资源制备金属镁提供了 方法, 它能缩短金属镁制备的生产流程、 降低生产成本、 提高生产效率, 能够 解决无水氯化镁保存难和加料难等问题。
附图说明
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
图 1为根据本发明方法制 K3NaMgCl6的工艺流程图;
图 2为根据本发明方法电解制备金属镁的工艺流程图;
图 3为根据本发明方法以六水氯化镁为原料制备的 K3NaMgCl6 (氧化镁含 量为 0.07%) 与无水 MgCl2 (氧化镁含量为 0.08%) 在常温吸水性的比较; 图 4为根据本发明方法以六水氯化镁为原料制备的 K3NaMgCl6的 XRD图; 图 5为根据本发明方法以六水氯化镁为原料制备的 K3NaMgCl6的 SEM图; 图 6为根据本发明方法以六水氯化镁为原料制备的 K3NaMgClJ TG-DSC 图;
图 7为根据本发明方法以六水氯化镁为原料制备的金属镁的 XRD图; 图 8 为根据本发明方法以六水氯化镁为原料制备的金属镁的电镜扫描图和 能谱图, 其中 (a) 为电镜扫描图, (b) 为能谱图;
图 9为根据本发明方法以氧化镁为原料制备的 K3NaMgCl6的 XRD图; 图 10为根据本发明方法以氧化镁为原料制备的 K3NaMgCl6的 SEM图; 图 11为根据本发明方法以氧化镁为原料制备的金属镁的 XRD图。
具体实 式
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限 制性的实施例如下:
测试方法:
根据下列方法对根据本方法制备的 K3NaMgCl6进行测定。
1. K3NaMgCl6中氧化镁含量的测定
滴定法测定样品水溶液沉淀物以确定在 K3NaMgCl6中的氧化镁的含量, 具 体操作如下:将得到的 K3NaMgCl6样品溶于水中,用四张 Φ90ηιηι的定量滤纸 (杭 州特种纸业有限公司:)对水溶液反复过滤至少三次直至滤液特别澄清为止。 将滤 纸用去离子水反复冲洗以洗去上面附着的镁离子, 将洗完后含有氧化镁颗粒的 滤纸放入烧杯中, 加入过量的配制的 1:100的硫酸 (分析纯, 纯度 95.98%; 厂家: 北京北化精细化学品有限责任公司), 在电炉上将烧杯加热煮沸并静置五分钟使 氧化镁反应完全。 将烧杯中溶液进行 EDTA滴定以确定镁离子的含量, 进而通 过计算转化为样品中氧化镁的含量。
2. X射线衍射分析
利用 X射线衍射仪 (型号: X'Pert PRO MPD; 厂家: Philips)采用 X射线衍 射XRD)确定 K3NaMgCl6的物相组成。 K3NaMgCl6的标准 XRD图谱见如下参考 文献: Fink H, Seifert H J, Quaternary compounds in the system KCl/NaCl/MgC12, Thermochim.Acta. , 1984, 72: 195-200
3. 电镜扫描分析
采用日本电子 JSM-6700F型冷场发射扫描电镜 (分辨率: 2.2nm(lkV), 工 作电压: 0.5〜30kV, 放大倍数: 25〜650000倍) 观察 K3NaMgCl6的形貌。
4. 热分析
用德国耐驰公司的 TG-DSC同步热分析仪对 K3NaMgCl6进行热分析, 测试 条件如下: 高纯氮气气氛, 气体流量 50mL/min, 测试温度为室温至 650 °C, 升 温速率为 10°C/min。
根据下列方法对根据本方法电解制备的金属镁进行测定。
1. 金属镁纯度的测定
测定方法见 GB/T 15428-95 《工业循环冷却水中 Ca2+和 Mg2+的测定 -EDTA 滴定法》。 将金属镁样品用配制的 1:100的硫酸 (分析纯, 纯度 95.98%; 厂家: 北京北化精细化学品有限责任公司) 溶液溶解后测定其中的镁离子, 以确定金 属镁的纯度。
2. X射线衍射分析
利用 X射线衍射仪 (型号: X'Pert PRO MPD; 厂家: Philips)采用 X射线衍 射 (XRD)确定产物金属的物相组成。
3. 能谱分析 利用矿物解离分析仪(型号: FEI MLA250; 厂家: 美国 FEI电子化学公司; 该仪器自带 Quanta 250环境扫描电镜和 EDAX GENESIS能谱仪) 对样品进行 能谱分析。
4. 电流效率测定
电流效率按照下式来确定:
77 = ^—— Xl00%
0.453xlxt 其中, 实际产出的金属镁的重量, g; I: 电角军电^, A;
1: 电解时间, h。
5. 能耗测定
电解能耗按照下式确定:
η 其中, υ: 电解电压, V;
77: 电流效率, %。
本发明典型但非限制性的实施例如下: 本发明所涉及的原料均为可商购产品, 包括:
六水氯化镁: 西陇化工股份有限公司, 纯度 98.0%;
氧化镁: 国药集团化学试剂有限公司, 纯度 98.5%;
氯化铵: 西陇化工股份有限公司, 纯度 99.5%;
氯化钾: 西陇化工股份有限公司, 纯度 99.5%; 氯化钠: 西陇化工股份有限公司, 纯度 99.5%;
氯化钙: 西陇化工股份有限公司, 纯度 96.0%;
水合氯化镁 (自制 ): 由上述六水氯化镁在 80-160°C温度下加热不同时间, 根 据失重情况判断最终产物。
实施例 1
将 101.5g六水氯化镁、 29.3g氯化钠、 111.8g氯化钾和 26.8g氯化铵混匀后 加入 200mL坩埚中。将坩埚盖上盖子后在 300°C保温 1.5小时, 然后在 460°C保 温 2.0小时, 得到了 K3NaMgCl6。 将得到的 K3NaMgCl6与添加剂氯化钙和氯化 钠混匀并加热至 700 °C, 得到含无水氯化镁的熔体 (熔体组成为: MgCl2(18.0wt%)-NaCl(22.6wt%)-KCl(42.4wt% )-CaCl2(15.0wt%)- CaF2(2.0wt%) ), 熔体很纯净, 观察不到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条 件为:该熔体为电解质, 06mm的光谱纯石墨棒为阳极, 06mm的钢棒为阴极, 容积为 200mL的刚玉坩埚为电解槽, 电解温度为 700°C, 极距为 4cm, 阴极电 流密度为 0.42 A/cm2, 槽电压为 3.7V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.03重量%; 制得的 K3NaMgCl6的 XRD 图谱见附图 4 ; 制得的 K3NaMgCl6的电镜扫描图见附图 5 ; 制得的 K3NaMgCl6的热分析图见附图 6, 由图可见, K3NaMgCl6的熔点为 470°C左右, 低于无水氯化镁的熔点 714 °C ; 电解过程中电流效率为 96.7% ; 能耗为 8418kwh/t; 产物金属镁的纯度为 99.3%; 产物金属的 XRD图谱见附图 7, 由图 可见, 金属的物相组成为 α-Mg (JCPDS no. 01-089-4894); 产物金属的能谱分析 见附图 8, 由图可见, 产物金属的物相组成为纯金属镁。 实施例 2
将 101.5g水合氯化镁、 19.0g氯化钠、 92.6g氯化钾和 5.2g氯化铵混匀后加 入 200mL坩埚中。将坩埚盖上盖子后在 400°C保温 0.5小时, 然后在 465°C保温 0.5小时,得到了 K3NaMgCl6。将得到的 K3NaMgCl6与添加剂氟化钙混匀并加热 至 680 °C , 得到含无水氯化镁的熔体 (熔体组成为 : MgCl2 (29.7wt% )-NaCl(11.9wt%) -KCl (57.8wt% )-CaF2(0.6wt%)), 熔体很纯净, 观察不 到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条件为: 该熔体为电解 质, 06mm的光谱纯石墨棒为阳极, 06mm的钢棒为阴极, 容积为 200mL的 刚玉坩埚为电解槽,电解温度为 680°C,极距为 4cm,阴极电流密度为 0.35 A/cm2, 槽电压为 3.7V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.06重量%; 产物的 XRD图谱显示 其物相为 K3NaMgCl6; 电解过程中电流效率为 96.1%; 能耗为 8470k h/t; 产物 金属镁的纯度为 99.3%;产物金属的 XRD图谱显示其物相组成为 α-Mg (JCPDS no. 01-089-4894)。
实施例 3
将 101.5g水合氯化镁、 45.1g氯化钠、 137.8g氯化钾和 160.5g氯化铵混匀 后加入 200mL坩埚中。将坩埚盖上盖子后在 150°C保温 3.5小时, 然后在 400°C 保温 4.0小时, 得到了 K3NaMgCl6。 将得到的 K3NaMgCl6与添加剂氯化钙混匀 并加热至 680 °C, 得到含无水氯化镁的熔体 (熔体组成为: MgCl2 (18.3wt% )-NaCl(17.4wt%) -KCl (53.2wt% )-CaF2(ll.lwt%)), 熔体很纯净, 观察 不到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条件为: 该熔体为电 解质, 06mm 的光谱纯石墨棒为阳极, 06mm 的钢棒为阴极, 容积为 200mL 的刚玉坩埚为电解槽, 电解温度为 680 °C, 极距为 4cm, 阴极电流密度为 0.72A/cm2, 槽电压为 6.4V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.08重量%; 产物的 XRD图谱显示 其物相为 K3NaMgCl6; 电解过程中电流效率为 99.2%; 能耗为 14194kwM; 产 物金属镁的纯度为 99.0%;产物金属的 XRD图谱显示其物相组成为 a-Mg(JCPDS no. 01-089-4894)。
实施例 4
将 61.9g水合氯化镁(MgCl2'1.6H20)、 29.3g氯化钠、 111.8g氯化钾和 26.8g 氯化铵混匀后加入 200mL坩埚中。将坩埚盖上盖子后在 250°C保温 1.5小时,然 后在 450°C保温 3.0小时,得到了 K3NaMgCl6。将得到的 K3NaMgCl6与添加剂氯 化钙、 氯化钠和氟化钙混匀并加热至 680°C, 得到含无水氯化镁的熔体(熔体组 成 为 : MgCl2 (18.0wt% )-NaCl(22.6wt%) -KC1
(42.4wt% )-CaCl2(15.0wt%)-CaF2(2.0wt%)), 熔体很纯净, 观察不到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条件为: 该熔体为电解质, Φ6ηιηι的光 谱纯石墨棒为阳极, 06mm的钢棒为阴极,容积为 200mL的刚玉坩埚为电解槽, 电解温度为 680°C, 极距为 4cm, 阴极电流密度为 0.46 A/cm2, 槽电压为 3.8V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.04重量%; 产物的 XRD图谱显示 其物相为 K3NaMgCl6; 电解过程中电流效率为 97.9%; 能耗为 8539k h/t; 产物 金属镁的纯度为 99.1%;产物金属的 XRD图谱显示其物相组成为 α-Mg (JCPDS no. 01-089-4894)。 将 20g氧化镁、 29.3g氯化钠、 111.8g氯化钾和 80.3g氯化铵混匀后加入 200mL坩埚中。将坩埚盖上盖子后在 350°C保温 2.0小时,然后在 450°C保温 3.0 小时, 得到了 K3NaMgCl6。 将得到的K3NaMgCl6与添加剂氯化钙、 氯化钠和氟 化钙混匀并加热至 700 °C, 得到含无水氯化镁的熔体 (熔体组成为: MgCl2 (18.0wt% )-NaCl(22.6wt%) -KCl(42.4wt% )-CaCl2 (15.0wt%)-CaF2(2.0wt%) ) ,熔体 很纯净, 观察不到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条件为: 该熔体为电解质, 06mm的光谱纯石墨棒为阳极, 06mm的钢棒为阴极, 容积 为 200mL的刚玉坩埚为电解槽, 电解温度为 700°C, 极距为 4cm, 阴极电流密 度为 0.45A/cm2, 槽电压为 3.7V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.05重量%; 制得的 K3NaMgCl6的 XRD图谱见附图 9; 制得的 K3NaMgCl6的电镜扫描图见附图 10; 电解过程中电 流效率为 96.6%; 能耗为 8427kwM; 产物金属镁的纯度为 99.4%; 产物金属的 XRD图谱见附图 11, 由图可见, 其物相组成为 α-Mg (JCPDS no. 01-089-4894)。
实施例 6
将 20g氧化镁、 29.3g氯化钠、 111.8g氯化钾和 93.6g氯化铵混匀后加入 200mL坩埚中。将坩埚盖上盖子后在 300°C保温 2.0小时,然后在 460°C保温 3.0 小时, 得到了 K3NaMgCl6。 将得到的K3NaMgCl6与添加剂氯化钙、 氯化钠和氟 化钙混匀并加热至 700 °C, 得到含无水氯化镁的熔体 (熔体组成为: MgCl2 (18.0wt% )-NaCl(22.6wt%)-KCl(42.4wt%)-CaCl2- (15.0wt%)-CaF2(2.0wt%)), 熔体 很纯净, 观察不到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条件为: 该熔体为电解质, 06mm的光谱纯石墨棒为阳极, 06mm的钢棒为阴极, 容积 为 200mL的刚玉坩埚为电解槽, 电解温度为 700°C, 极距为 4cm, 阴极电流密 度为 0.40A/cm2, 槽电压为 3.7V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.02重量%; 产物的 XRD图谱显示 其物相为 K3NaMgCl6; 电解过程中电流效率为 97.1%; 能耗为 8383k h/t; 产物 金属镁的纯度为 99.6%; 产物金属的 XRD图谱显示其物相为 α-Mg (JCPDS no. 01-089-4894)。
实施例 7
将 20g氧化镁、 24.0g氯化钠、 lOO.Og氯化钾和 53.6g氯化铵混匀后加入 200mL坩埚中。将坩埚盖上盖子后在 400°C保温 0.5小时,然后在 465°C保温 0.5 小时, 得到了 K3NaMgCl6。 将得到的K3NaMgCl6与添加剂氟化钙混匀并加热至 700 °C , 得 到 含 无 水 氯 化镁 的 熔 体 ( 熔 体 组 成 为 : MgCl2 (27.6wt% )-NaCl(13.9wt%)-KCl(58.0wt%)-CaF2(0.5wt%) ) , 熔体很纯净, 观察不 到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条件为: 该熔体为电解 质, 06mm的光谱纯石墨棒为阳极, 06mm的钢棒为阴极, 容积为 200mL的 刚玉坩埚为电解槽,电解温度为 700°C,极距为 4cm,阴极电流密度为 0.38A/cm2, 槽电压为 3.5V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.04重量%; 产物的 XRD图谱显示 其物相为 K3NaMgCl6; 电解过程中电流效率为 96.0%; 能耗为 8021k h/t; 产物 金属镁的纯度为 99.4%; 产物金属的 XRD图谱显示其物相为 α-Mg (JCPDS no. 01-089-4894)。
实施例 8
将 20g氧化镁、 34.0g氯化钠、 124.0g氯化钾和 160.6g氯化铵混匀后加入 200mL坩埚中。将坩埚盖上盖子后在 150°C保温 3.5小时,然后在 400°C保温 4.0 小时, 得到了 K3NaMgCl6。 将得到的K3NaMgCl6与添加剂氯化钙混匀并加热至 700 °C , 得 到 含 无 水 氯 化镁 的 熔 体 ( 熔 体组 成 为 : MgCl2 (20.2wt% )-NaCl(14.4wt%)-KCl(52.7wt%)-CaF2(12.7wt%)), 熔体很纯净, 观察不 到杂质。 然后, 将所述熔体在电解槽中进行电解, 电解条件为: 该熔体为电解 质, 06mm的光谱纯石墨棒为阳极, 06mm的钢棒为阴极, 容积为 200mL的 刚玉坩埚为电解槽,电解温度为 700°C,极距为 4cm,阴极电流密度为 0.46A/cm2, 槽电压为 5.1V, 电解时间为 4h。
根据上述测量方法对 K3NaMgCl6、 电解过程和产物金属镁进行表征。 其结 果如下:
制得的 K3NaMgCl6中氧化镁的含量为 0.02重量%; 产物的 XRD图谱显示 其物相为 K3NaMgCl6; 电解过程中电流效率为 98.9%; 能耗为 11345k M; 产 物金属镁的纯度为 99.5%;产物金属的 XRD图谱显示其物相为 a-Mg(JCPDS no. 01-089-4894)。
申请人声明, 本发明通过上述实施例来说明本发明的详细方法, 但本发明 并不局限于上述详细方法, 即不意味着本发明必须依赖上述详细方法才能实施。 所属技术领域的技术人员应该明了, 对本发明的任何改进, 对本发明产品各原 料的等效替换及辅助成分的添加、 具体方式的选择等, 均落在本发明的保护范 围和公开范围之内。

Claims

WO 2015/003657 权 利 要 求 书 PCT/CN2014/082083
1、 一种制 K3NaMgCl6的方法, 其特征在于, 所述方法包括下列步骤:
(a)将水合氯化镁或氧化镁与氯化钠、氯化钾和氯化铵三者的混合物混合;
(b ) 将步骤 (a) 得到的混合物加热, 制得 K3NaMgCl6
2、如权利要求 1所述的方法,其特征在于, 当采用水合氯化镁作为原料时, 以不含结晶水的氯化镁的加料量为 1.00 重量份计, 水合氯化镁的加料量为 (l+0.19m)重量份, 氯化钠的加料量为 0.40〜0.95 重量份, 氯化钾的加料量为 1.95〜2.90重量份, 氯化铵的加料量为 0.11〜3.38重量份, 其中, m表示每分子所 述水合氯化镁中含有的结晶水的个数, m>0;
优选地, 当采用水合氯化镁作为原料时, 以不含结晶水的氯化镁的加料量 为 1.00重量份计, 水合氯化镁的加料量为 (l+0.19m)重量份, 氯化钠的加料量为 0.62重量份, 氯化钾的加料量为 2.35重量份, 氯化铵的加料量为 0.11〜3.38重量 份, 其中, m表示每分子所述水合氯化镁中含有的结晶水的个数, m>0。
3、 如权利要求 1所述的方法, 其特征在于, 当采用氧化镁作为原料时, 以 氧化镁的加料量为 1.00重量份计, 氯化钠的加料量为 1.20〜1.70重量份, 氯化钾 的加料量为 5.00〜6.20重量份, 氯化铵的加料量为 2.68〜8.03重量份;
优选地, 当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 氯化钠的加料量为 1.46重量份, 氯化钾的加料量为 5.59重量份, 氯化铵的加料 量为 2.68-8.03重量份。
4、 如权利要求 1-3之一所述的方法, 其特征在于, 在步骤(b) 中, 所述加 热过程为: 首先在 150〜400°C保温 0.5〜3.5小时, 然后在 400〜465°C保温 0.5〜4.0 小时;
优选地, 步骤 (b ) 释放出的氯化铵回收并返回到步骤 (a) 中循环使用, 并且将释放出的氨气回收利用。
5、 一种 K3NaMgCl6, 其特征在于, 所述 K3NaMgCl6由如权利要求 1-4之一 所述方法制备得到。
6、 一种电解制备金属镁的方法, 其特征在于, 所述方法包括如下步骤:
(c) 将权利要求 5所述的 i^NaMgi^^P添加剂的混合物加热至熔融状态, 得到无水的电解质熔体;
( d ) 将上述电解质熔体电解从而制得金属镁。
7、 如权利要求 6所述的方法, 其特征在于, 所述方法包括如下步骤:
(a)将水合氯化镁或氧化镁与氯化钠、氯化钾和氯化铵三者的混合物混合;
(b) 将步骤 (a) 得到的混合物加热, 制得 K3NaMgCl6;
(c)将上述 i^NaMgi^^P添加剂的混合物加热至熔融状态, 得到无水的电 解质熔体;
( d ) 将上述电解质熔体电解从而制得金属镁;
优选地, 所述添加剂为 CaF2、 KF、 NaF、 MgF2、 CaCl2、 BaCl2或 NaCl中 的任意一种或者至少两种的混合物。
8、如权利要求 7所述的方法,其特征在于, 当采用水合氯化镁作为原料时, 以不含结晶水的氯化镁的加料量为 1.00 重量份计, 水合氯化镁的加料量为 (l+0.19m)重量份, 氯化钠的加料量为 0.40〜0.95 重量份, 氯化钾的加料量为 1.95-2.90 重量份, 氯化铵的加料量为 0.11〜3.38 重量份, 添加剂的加料量为 0.02〜0.60重量份,其中, m表示每分子所述水合氯化镁中含有的结晶水的个数, m>0;
优选地, 当采用水合氯化镁作为原料时, 以不含结晶水的氯化镁的加料量 为 1.00重量份计, 水合氯化镁的加料量为 (l+0.19m)重量份, 氯化钠的加料量为 0.62重量份, 氯化钾的加料量为 2.35重量份, 氯化铵的加料量为 0.11〜3.38重量 份, 添加剂的加料量为 0.02〜0.60重量份, 其中, m表示每分子所述水合氯化镁 中含有的结晶水的个数, m>0;
优选地, 当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 氯化钠的加料量为 1.20〜1.70重量份, 氯化钾的加料量为 5.00〜6.20重量份, 氯 化铵的加料量为 2.68〜8.03重量份, 添加剂的加料量为 0.04〜1.50重量份;
优选地, 当采用氧化镁作为原料时, 以氧化镁的加料量为 1.00重量份计, 氯化钠的加料量为 1.46重量份, 氯化钾的加料量为 5.59重量份, 氯化铵的加料 量为 2.68〜8.03重量份, 添加剂的加料量为 0.04〜1.50重量份。
9、 如权利要求 7或 8所述的方法, 其特征在于, 在步骤 (b) 中所述加热 过程为: 首先在 150〜400°C保温 0.5〜3.5小时, 然后在 400〜465°C保温 0.5〜4.0小 时;
优选地, 将步骤 (b ) 释放的氯化铵回收并返回步骤 (a) 中循环使用, 并 且将释放的氨气回收利用。
10、 如权利要求 6-9之一所述的方法, 其特征在于, 步骤 (d) 中电解的条 件为: 阳极由石墨材料制成, 并且阴极由钢材料制成, 电解温度为 650〜750°C, 电解电压为 3.0〜7.0V, 阴极电流密度为 0.30-l.OA/cm2;
优选地, 将步骤 (d) 的电解过程中排出的废电解质熔体返回步骤 (a) 中 循环使用, 并且将产生的氯气净化回收利用。
PCT/CN2014/082083 2013-07-12 2014-07-11 一种K3NaMgCl6、制备方法及其用途 WO2015003657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310294037.5 2013-07-12
CN201310294037.5A CN104278293A (zh) 2013-07-12 2013-07-12 一种K3NaMgCl6、制备方法及其用途

Publications (1)

Publication Number Publication Date
WO2015003657A1 true WO2015003657A1 (zh) 2015-01-15

Family

ID=52253624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082083 WO2015003657A1 (zh) 2013-07-12 2014-07-11 一种K3NaMgCl6、制备方法及其用途

Country Status (2)

Country Link
CN (1) CN104278293A (zh)
WO (1) WO2015003657A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620324A (zh) * 2021-08-03 2021-11-09 安徽亚格盛电子新材料有限公司 利用水蒸气使六氨氯化镁的脱氨的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109953A2 (en) * 1982-11-19 1984-05-30 Hiroshi Ishizuka Method for electrolytically obtaining magnesium metal
AU734286B3 (en) * 2000-09-20 2001-06-07 State Titanium Research And Design Institute Method of continuous magnesium refining
CN1736872A (zh) * 2005-07-29 2006-02-22 华东理工大学 水氯镁石脱水—电解炼镁的方法
CN1978680A (zh) * 2005-12-07 2007-06-13 中国科学院过程工程研究所 由含镁矿物制备金属镁的方法
CN102992360A (zh) * 2011-09-08 2013-03-27 中国科学院过程工程研究所 利用氧化镁直接制备含无水氯化镁的电解质熔体的方法
CN102992361A (zh) * 2011-09-08 2013-03-27 中国科学院过程工程研究所 利用水合氯化镁直接制备含无水氯化镁的电解质熔体的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593566A (en) * 1995-06-09 1997-01-14 General Motors Corporation Electrolytic production process for magnesium and its alloys
RU2200704C2 (ru) * 2001-02-27 2003-03-20 Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт" Способ получения магния и хлора из растворов хлористого магния, содержащих хлористый аммоний
CN102586805B (zh) * 2012-03-29 2014-09-17 北京科技大学 一种含镁矿物制备金属镁的方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109953A2 (en) * 1982-11-19 1984-05-30 Hiroshi Ishizuka Method for electrolytically obtaining magnesium metal
AU734286B3 (en) * 2000-09-20 2001-06-07 State Titanium Research And Design Institute Method of continuous magnesium refining
CN1736872A (zh) * 2005-07-29 2006-02-22 华东理工大学 水氯镁石脱水—电解炼镁的方法
CN1978680A (zh) * 2005-12-07 2007-06-13 中国科学院过程工程研究所 由含镁矿物制备金属镁的方法
CN102992360A (zh) * 2011-09-08 2013-03-27 中国科学院过程工程研究所 利用氧化镁直接制备含无水氯化镁的电解质熔体的方法
CN102992361A (zh) * 2011-09-08 2013-03-27 中国科学院过程工程研究所 利用水合氯化镁直接制备含无水氯化镁的电解质熔体的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620324A (zh) * 2021-08-03 2021-11-09 安徽亚格盛电子新材料有限公司 利用水蒸气使六氨氯化镁的脱氨的方法

Also Published As

Publication number Publication date
CN104278293A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
Kipouros et al. A thermochemical analysis of the production of anhydrous MgCl2
WO2019080487A1 (zh) 一种含锂铝电解质晶型改变方法
CN110240182A (zh) 富锂铝电解质的资源化处理方法
CN101949038B (zh) 一种电解法制备碳氧钛复合阳极的方法
US20220144658A1 (en) Method for preparing aluminum fluoride and aluminum oxide by decarburization and sodium removal of aluminum electrolysis carbon residue
CN102583421A (zh) 以钠基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钠冰晶石的循环制备方法
CN113501536A (zh) 一种多废料联合处理制备氟化铝产品的方法及氟化铝产品
CN102703929B (zh) 一种钛铁矿直接还原制取Ti-Fe合金的方法
CN115156238B (zh) 一种铝电解废阴极碳块综合回收资源化利用方法及其应用
CN103603014B (zh) 一种以钾冰晶石作为补充体系的电解铝的方法
CN104418370A (zh) 一种无水氯化镁的制备方法及装置
CN113149052B (zh) 一种处理含氟废电解质的方法
Feng et al. Optimal V2O3 extraction by sustainable vanadate electrolysis in molten salts
CN104213154B (zh) 利用氧化镁为原料电解制备镁合金的方法
CN112921360B (zh) 一种熔盐电解制备稀土金属的方法
CN102703932B (zh) 铝电解过程中的电解质补充体系及其制备方法
WO2015003657A1 (zh) 一种K3NaMgCl6、制备方法及其用途
CN102674420A (zh) 用于铝电解工业的低分子比冰晶石及其制备方法
CN101386996B (zh) 一种高电导率铝电解用低温电解质及其使用方法
CN109721090A (zh) 一种降低冰晶石分子比的方法
Telgerafchi et al. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation
CN110344084B (zh) 一种熔盐电解生产铝锂中间合金的方法
CN106673029A (zh) 一种利用水氯镁石生产高纯无水氯化镁的方法
CN102649577A (zh) 用于铝电解工业的钠冰晶石及其制备方法
WO2014194745A1 (zh) 利用水合氯化镁为原料电解制备镁合金的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822955

Country of ref document: EP

Kind code of ref document: A1