WO2015003407A1 - 一种有机硅组合物、制备方法及应用 - Google Patents

一种有机硅组合物、制备方法及应用 Download PDF

Info

Publication number
WO2015003407A1
WO2015003407A1 PCT/CN2013/079663 CN2013079663W WO2015003407A1 WO 2015003407 A1 WO2015003407 A1 WO 2015003407A1 CN 2013079663 W CN2013079663 W CN 2013079663W WO 2015003407 A1 WO2015003407 A1 WO 2015003407A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone
silicone composition
viscosity
integer
mpa
Prior art date
Application number
PCT/CN2013/079663
Other languages
English (en)
French (fr)
Inventor
吴飞
池跃芹
曹添
杨有忠
章强
黄伟
Original Assignee
南京四新科技应用研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京四新科技应用研究所有限公司 filed Critical 南京四新科技应用研究所有限公司
Publication of WO2015003407A1 publication Critical patent/WO2015003407A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • B01D19/04Foam dispersion or prevention by addition of chemical substances
    • B01D19/0404Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance
    • B01D19/0409Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance compounds containing Si-atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers

Definitions

  • the invention relates to the technical field of fine chemical preparations, in particular to a silicone composition, a preparation method thereof and application thereof in preparing a solid antifoaming agent or an antifoaming agent.
  • Bubbles are a common phenomenon in life and work.
  • many aqueous systems used in food processing, textile dyeing, paper production, sewage treatment, and cleaning applications it is desirable to control or prevent the generation of foam.
  • the detergent industry there is a tendency to use more efficient detergent compositions. Increasing the surfactant level and using a surfactant having a higher bubble distribution than conventional surfactants results in more foaming. There is therefore a need to develop a less effective and more effective foam control composition for addition to a detergent composition.
  • the silicone composition is the core of the defoamer, and its defoaming speed and antifoaming properties directly affect the performance of the final product.
  • the improvement in the antifoaming properties of the actives is an improved direction of silicone defoamers.
  • the most original silicone antifoam actives are obtained by treatment of polydimethylsiloxane and silica by a specific processing process, such as the antifoam composition described in U.S. Patent 3,383,327, but It can last for a long time, that is, it has poor foam inhibition performance. Therefore, researchers at home and abroad have conducted extensive research on their performance.
  • a polyorganosiloxane synthetic antifoaming agent having a long-chain alkyl group as a side chain is very effective for use in a washing powder.
  • EP-A-1075683 discloses a bubble control.
  • An organopolysiloxane material comprising (A) at least one silicon-bonded substituent of the formula X-Ph, wherein X represents a divalent aliphatic hydrocarbon group and Ph represents an aryl group, (B) a water-insoluble organic liquid, (C) a silicone resin and (D) a hydrophobic filler.
  • the water-insoluble organic liquid (B) may be mineral oil, liquid polyisobutadiene, isoparaffin oil or vegetable oil.
  • EP-A-1075684 discloses a similar composition of a foam control agent. The difference is that it does not contain a water-insoluble organic liquid (B).
  • EP-A-578424 discloses a foam control agent comprising a polydiorganosiloxane having a side chain of an alkyl group in which each alkyl side chain contains 9 to 35 carbons. atom. The polydiorganosiloxane is used with a fine hydrophobic particulate material such as hydrophobic silica and optionally MQ silicone resin.
  • EP-A-1076526 discloses such a foam control composition additionally comprising a stabilizing aid which is an organic compound having a melting point of 40 to 80 ° C, preferably a fatty acid, a fatty alcohol or an alkyl phosphate.
  • a stabilizing aid which is an organic compound having a melting point of 40 to 80 ° C, preferably a fatty acid, a fatty alcohol or an alkyl phosphate.
  • a similar composition of the foam control agent is disclosed in US Pat. No. 5,048, 306, A, CN1, 674, 967 A, WO 101048212 A, and WO 2012/075962 A1. The difference is that CN1674967A contains a non-polar organic material with a melting point of 35 ⁇ 100 °C. The average number of carbon atoms of all groups R in CN101048212A is 3 to 6.
  • W02012/075962A contains an organic polymer with a melting point of 45 to 100 °C and an electrostatic charge.
  • All of the above patents are non-crosslinked silicone polymers, which are effective defoamers in detergent compositions, but such compositions have poor antifoaming properties, and the addition of emulsifiers greatly reduces their elimination. Antifoaming properties, easy to attenuate, defoaming properties are also greatly reduced by the intervention of surfactants, and surfactants in detergents are indispensable components.
  • Increasing the viscosity of the silicone composition is an effective solution to this problem, as described, for example, in EP-A 301 531, which is said to be useful in the case of partially crosslinked polydimethylsiloxane which is already rubbery in some cases.
  • the agent is not easy to reduce its antifoaming properties.
  • the invention relates to a cross-linked network obtained by processing an addition reaction of a hydrogen-containing polyorganosiloxane and a silicone resin, an unsaturated hydrocarbon, and then adding a crosslinking agent containing a reactive group and silicon dioxide.
  • the structured silicone composition can be used as a foam control component in industrial production.
  • the present invention also provides a solid antifoaming agent prepared by using the organosilicon composition of the present invention, and a preparation method of the solid antifoaming agent, the silicone active material prepared from the organosilicon composition of the present invention finally
  • the prepared solid antifoaming agent reduces the problem that the silicone grease is not easily emulsified and dispersed, and the agglomeration is unevenly distributed on the carrier, and the defoaming property of the defoaming agent is ensured. Compatibility makes the entire cleaning process fully defoaming and foam suppression.
  • the technical solution adopted by the present invention is: a silicone composition characterized in that the raw material and each raw material account for the total mass percentage of the organosilicon composition. :
  • the substituent R is the same or different and is a hydrocarbon group having 1 to 20 carbon atoms, and specifically includes an alkyl group such as a methyl group, an ethyl group, a n-propyl group, an n-butyl group, an isobutyl group, an n-pentyl group, and a ring.
  • the subscript c is 0, 1 or 2, and the subscript is 0 or an integer of 200, preferably 1 (an integer of ⁇ 180, most preferably 4 (an integer of ⁇ 160, and c+i/ ⁇ l, subscript b is wide)
  • Hydrogen-containing polyorganosiloxane is preferred Selecting a side chain hydrogen-containing polyorganosiloxane and a terminal side hydrogen-containing polyorganosiloxane;
  • the crosslinking agent is at least one polysiloxane of the formula: wherein R 1 is the same or different and is an alkyl group having a carbon number of 10, a hydrogen atom or a vinyl group; R 2 is the same or different and is a carbon atom R 10 is preferably a methyl group; the subscript m is preferably an integer of ⁇ 50, preferably an integer of 5 to 40, and most preferably an integer of 10 to 30; n is (an integer of ⁇ 5, preferably an integer of 3; s is an integer of ⁇ 30, preferably an integer of 2 to 25, and most preferably an integer of 5 to 20.
  • Each molecule has at least one silicon-bonded hydrogen An atom or a vinyl group, preferably at least 2 silicon-bonded hydrogen atoms or a vinyl group;
  • R 3 is an alkyl group having a carbon number of 10, such as methyl, ethyl, propyl, n-propyl, butyl, isobutyl Base, f is an integer from 3 to 6;
  • cross-linking agents are preferred: (1) linear hydrogen-containing or vinyl polysiloxanes, mainly containing hydrogen or vinyl in the side chain; (2) cyclic hydrogen-containing polyorganosiloxane and vinyl Polyorganosiloxane, f and main values are 4 and 5; R 3 mainly selects methyl and ethyl;
  • the commonly used silicone resin is a spatially structured silicone resin, preferably a siloxane-containing unit R a Si0 4 — a/2 , wherein R is a hydroxyl group, a hydrocarbon group or a hydrocarbyloxy group, and a is from 0.5 to 2.4; more preferably The M functional group R* 3 Si0 1/2 and the Q functional group Si0 4/2 , wherein R* is a monovalent hydrocarbon group,
  • the molar ratio of M:Q is (0.4 to 1.2): 1.0, preferably (0.5 to 0.8): 1.0.
  • the silicone resin consists only of the M unit and the Q unit as defined above, but a resin containing an M unit, a trivalent R*Si0 3/2 (T) unit, and a Q unit can also be used.
  • the silicone resin may also contain a divalent unit R*Si0 2/2 , preferably no more than 20% of all siloxane units present.
  • the groups R (and R*) are preferably alkyl groups having a wide range of 6 carbon atoms, and most preferably substantially all of the R (and R*) groups present are methyl groups.
  • hydrocarbon groups may also be present, such as alkenyl groups having up to 6 carbon atoms in the presence of dimethylvinylsilyl groups, and also hydroxyl and/or alkoxy groups bonded to silicon, such as methoxy groups.
  • alkenyl groups having up to 6 carbon atoms in the presence of dimethylvinylsilyl groups
  • hydroxyl and/or alkoxy groups bonded to silicon such as methoxy groups.
  • it can be produced by hydrolysis of certain silane materials, in a solvent or in situ.
  • precursors of tetravalent siloxy groups for example tetraorthosilicates, tetraethyl orthosilicates, polyethyl silicates or sodium silicates, in the presence of a solvent such as xylene.
  • a monovalent trialkylsiloxy unit for example, a precursor of trimethylchlorosilane, trimethylethoxysilane, hexamethyldisiloxane or hexamethyldisilazane is hydrolyzed and condensed.
  • the resulting MQ resin may be trimethylsilylated to react with residual Si-OH groups, or it may be heated in the presence of a base to self-condense the resin by eliminating Si-OH groups;
  • the olefin is a mixture of any one or more of a linear ⁇ -olefin, an alicyclic olefin, an aromatic olefin or a branched olefin;
  • the alkyne is acetylene, C a mixture of any one or more of alkyne, butyne, pentyne, hexyne, heptyne, octyne;
  • the catalyst is used to catalyze the polymerization of the component hydrogen-containing polyorganosiloxane and the silicone resin and the olefin.
  • the catalyst is selected from the group consisting of a platinum-alcohol complex, a platinum-olefin complex, Platinum-alkoxide complex, platinum-ether complex, platinum-ketone complex, chloroplatinic acid isopropanol solution or platinum-vinyl complex.
  • the catalyst has a platinum content of 20 ppm, preferably a chloroplatinic acid isopropanol solution;
  • Silica is classified into two types: precipitated silica and fumed silica according to the production method, and is classified into hydrophilic silica and hydrophobic silica according to surface properties.
  • the present invention is preferably a hydrophobic silica having a specific surface area of 5 (T500 m 2 /g, including a vapor-phase hydrophobic silica and a precipitated hydrophobic silica.
  • Hydrophobization treatment is carried out by using a methyl-substituted silicone material. Hydrophobic agents include polydimethylsiloxane, silanol or silicon-bonded alkoxy-terminated dimethylsiloxane polymers, hexamethyldisilazane and hexamethyldisiloxane. The hydrophobization treatment is carried out at at least 80 °C.
  • the hydrogen-containing polyorganosiloxane described in the above-mentioned A has a kinematic viscosity at 25 ° C of 10 to 2000 mPa ⁇ s, preferably 100 to 1500 mPa ⁇ s, and the crosslinking agent described in B is at 25 °.
  • the kinematic viscosity at the time of ⁇ is 5 to 50 mPa ⁇ s, preferably 10 to 40 mPa ⁇ s.
  • the linear ⁇ -olefins described in the above-mentioned D are ⁇ -hexene, ⁇ -octene, ⁇ -decene, ⁇ -dodecene, ⁇ -tetradecene, ⁇ -hexadecene, ⁇ _ Octadecene, ⁇ -icosene, a-C2 (a mixture of TC24 olefins, a mixture of a-C24-C28 olefins, ⁇ -trienylene; the alicyclic olefin is terpene, benzene, dipentene , cyclopentene, norbornene; the aromatic olefin is ⁇ -methyl styrene or styrene; the branched aliphatic group: such as isoamylene, isooctene. More preferably not The saturated olefin is a mixture of any one or more of a linear
  • a method for preparing the organosilicon composition is as follows: 1 The hydrogen-containing polyorganosiloxane A and the silicone resin (the unsaturated hydrocarbon D is added to the reaction vessel, the temperature is raised to 5 (T80 ° C, the temperature is 0. 2 ⁇ 5h, the silicone resin is dissolved;
  • a silicone active prepared from the organosilicon composition, the raw materials and the percentage of each raw material in the total mass of the organosilicon active material are:
  • the silicone composition of the present invention is 35 to 65%;
  • emulsifier is a nonionic surfactant, including nonylphenol ethoxylate, octylphenol ethoxylate, lauric acid polyoxyethylene ether, oleic acid polyoxygen Vinyl ether, lauryl polyoxyethylene ether, hexadecanol polyoxyethylene ether, octadecyl polyoxyethylene ether, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monohard Fatty acid ester, sorbitan monooleate, sorbitan tristearate, sorbitan trioleate, sorbitan monostearate polyoxyethylene ether ester, sorbitan Monooleic acid polyoxyethylene ether ester, sorbitan tristearate polyoxyethylene ether ester, castor oil polyoxyethylene ether, and the like, used alone or in combination; Mixture of any one or more of a salt or polyvinylpyrrolidone
  • the acrylic polymer is polyacrylic acid or a partial sodium salt thereof, a maleic acid acrylic acid copolymer;
  • the cellulose ether means a water-soluble or water-swellable cellulose ether such as sodium carboxymethyl cellulose.
  • the citric acid or citrate is sodium citrate or potassium citrate; these structurants may be used singly or in combination in any ratio.
  • the method of preparing the organosilicon active material the formulated amount of the silicone composition, the emulsifier and the structurant are directly mixed and homogenized by a colloid mill. 0. 5h, and then loaded into the container while stirring The temperature was raised to 80 ° C and thoroughly mixed with 0.5 to 2 hours to obtain a silicone active having a viscosity of 1000 to 10, OOOmPa ⁇ s.
  • the silicone composition having a viscosity of 20, 00 (T100, OOOmPa ⁇ s in the process of preparing a silicone active material is homogenized by a colloid mill, which reduces the amount of the emulsifier and can control the particle size. At about 20 ⁇ m; during the homogenization process, the viscosity of the silicone active after the strong shearing is reduced to 100 (T10, OOOmPa ⁇ s; it is easy to mix with the carrier to ensure the silicone Active substance compatibility and antifoaming properties.
  • a solid antifoaming agent prepared by using the organosilicon active agent, the raw material and the percentage of each raw material in the total mass of the solid antifoaming agent are:
  • the organosilicon active of the present invention is 18 to 45%;
  • the carrier is selected from the group consisting of sulfates, carbonates, phosphates, polyphosphates, starches,
  • the body is preferably a starch or a sulfate or carbonate having a particle diameter of more than 300 mesh;
  • the solvent is a solvent which is easily removed during the drying process, and the evaporation thereof forms voids inside the solid particles, increasing the ratio of the solid particles.
  • the surface area specifically, the solvent is a mixture of any one or more of an alcohol or water, preferably methanol, ethanol, isopropanol, more preferably ethanol or water.
  • a method for preparing the solid antifoaming agent the specific operation steps are as follows: First, the formulated amount of the silicone active material and the carrier are added to the mixer, stirred uniformly, and then the formula amount of the solvent is mixed and granulated. drying.
  • the invention relates to a polymer with a crosslinked network structure obtained by processing a hydrogen-containing polyorganosiloxane and a silicone resin, an olefin addition reaction, a crosslinking agent and a silica, and the defoaming performance is improved. It has a good antifoaming effect, is easy to handle and process, and the addition of emulsifier does not reduce its antifoaming effect.
  • the principle is to use a polyorganosiloxane having a low viscosity and containing a reactive group. Such a polyorganosiloxane has high reactivity, and a functional group on the link can react with Si-H to form a new chemical bond.
  • the linear structure of the polymer is transformed into a three-dimensional network structure of the polymer, that is, a crosslinked structure, and the polymer forms a crosslinked structure, while the silicone resin and the silica are embedded in the polymer crosslinked network structure, since the network structure is passed The chemical bonds between the molecules are connected. Therefore, the antifoaming performance is good, the attenuation is not attenuated, the emulsifier has no obvious weakening of the defoaming performance, and the formed polymer is easy to be processed further, and the silicone active material prepared by the silicone composition is finally produced.
  • the obtained solid defoaming agent ensures the defoaming performance and compatibility of the defoaming agent, so that the entire cleaning process can fully defoam and suppress foaming.
  • a silicone composition characterized by comprising the following raw materials, and the total mass percentage of silicone occupied by each raw material is:
  • the difference between the embodiment 2 and the embodiment 1 is that the raw material of the silicone composition and the total mass percentage of each raw material to the silicone are:
  • the difference between the embodiment 5 and the embodiment 1 is that the raw material of the silicone composition and the total mass percentage of each raw material to the silicone are:
  • a silicone composition characterized by comprising the following raw materials, and the total mass percentage of silicone occupied by each raw material is:
  • Vapor-processed hydrophobic silica having a specific surface area of 80 m 2 /g 45 g 500 g of a hydrogen-containing polyorganosiloxane Me 3 SiO (MeHSiO) 55 (Me 2 Si0) 50 SiMe 3 having a viscosity of 100 mPa*s was placed in a vessel.
  • 45g M: Q 0.65:1 silicone resin, adding 275g ⁇ -pinene at 50 ° C for 5h, 70 ° C plus 1.2g platinum content is 5ppm
  • the chloroplatinic acid isopropanol solution was reacted at 150 ° C for 1.
  • the raw material of the silicone composition and the total mass percentage of each raw material to the silicone are:
  • Me 3 SiO (MeHSiO) 16 having a viscosity of 180 mPa ⁇ s. Me 2 SiOSiMe 3 748. 8g
  • the raw material of the silicone composition and the total mass percentage of each raw material to the silicone are:
  • Viscosity is 16mPa ⁇ s (MeHSiO) 6 lg
  • Me 2 HSiO (MeHSiO) 155 (Me 2 SiO) 5 having a viscosity of 1500 mPa ⁇ s. . Si show e:
  • a silicone composition characterized by comprising the following raw materials, and the total mass percentage of silicone occupied by each raw material is:
  • the difference between the embodiment 11 and the embodiment 10 is that the raw material of the silicone composition and the total mass percentage of each raw material to the silicone are:
  • Me 3 SiO (MeHSiO) 16 having a viscosity of 800 mPa ⁇ s. (Me 2 SiO) 180 SiMe 3 600g
  • Example 12 Precipitated hydrophobic silica having a specific surface area of 300 m 2 /g 35. 5g
  • Example 12 Precipitated hydrophobic silica having a specific surface area of 300 m 2 /g 35. 5g
  • the difference between the embodiment 12 and the embodiment 10 is that the raw material of the silicone composition, and the total mass percentage of each raw material to the silicone are:
  • the difference between the embodiment 13 and the embodiment 10 is that the raw material of the silicone composition and the total mass percentage of each raw material to the silicone are:
  • Example 14 Precipitated hydrophobic silica having a specific surface area of 250 m 2 /g 42. 5g
  • Example 14 Precipitated hydrophobic silica having a specific surface area of 250 m 2 /g 42. 5g
  • a silicone composition characterized by comprising the following raw materials, and the total mass percentage of silicone occupied by each raw material is:
  • Me 3 SiO (MeHSiO) 2 having a viscosity of 550 mPa ⁇ s. . (Me 2 SiO) 100 SiMe 3 500g
  • the difference between the embodiment 15 and the embodiment 14 is that the raw material of the silicone composition, and the total mass percentage of each raw material to the silicone are:
  • a silicone composition characterized by comprising the following raw materials, and the total mass percentage of silicone occupied by each raw material is:
  • the difference between the embodiment 16 and the embodiment 14 is that the raw material of the silicone composition and the total mass percentage of each raw material to the silicone are:
  • Me 3 SiO (MeHSiO) 18 having a viscosity of 2000 mPa ⁇ s. (Me 2 SiO) 8 . . SiMe 3 560g
  • a silicone composition characterized by comprising the following raw materials, and the total mass percentage of silicone occupied by each raw material is:
  • hydrophobic silica 40g having a specific surface area of 130 m 2 /g.
  • 500 g of a hydrogen-containing polyorganosiloxane Me 3 SiO (MeHSiO) 75 (Me 2 SiO) 80 SiMe 3 having a viscosity of 170 mPa* s was added to the vessel.
  • 39g M: Q 0.75:1 silicone resin, adding 885g ⁇ -octadecene, incubated at 70 ° C for 0.5h, 70 ° C plus 1.
  • Example 19 The difference between Example 19 and Example 18 is that B in the raw material of the silicone composition has a structural formula of a branched polysiloxane having a viscosity of 34 mPa ⁇ s as follows.
  • Example 20
  • Example 20 has a structural formula of a branched polysiloxane having a viscosity of 39 mPa ⁇ s as follows.
  • Example 21 The difference between Example 21 and Example 18 is that B in the raw material of the silicone composition has a structural formula of a branched polysiloxane having a viscosity of 48 mPa ⁇ s as follows.
  • Example 26 The difference between Example 22 and Example 18 is that B in the raw material of the silicone composition has a structural formula of a branched polysiloxane having a viscosity of 52 mPa ⁇ s as follows.
  • Example 23 is that the difference, B of the starting material of formula selected silicone composition below, having a viscosity of 60 mPa, S, a branched silicone embankment.
  • a silicone composition characterized by comprising the following raw materials, and the total mass percentage of silicone occupied by each raw material is:
  • the hydrophobic silica is heated to 160 ° C for 2 h, and maintained at 0. l ⁇ 1.5 h under a vacuum of 0.06 MPa. After falling to room temperature, a pale yellow viscous silicone composition having a viscosity of 1500 mPa ⁇ s is obtained. FS1.
  • Silicone active prepared by the silicone composition S1 described in Example 1 35 g of the silicone composition S1, 20 g of lauric acid polyoxyethylene ether and 45 g of polyacrylic acid were directly mixed, and then homogenized by a colloid mill. After 0.2 h, it was placed in a container, and the mixture was heated to 80 ° with stirring. The mixture was thoroughly mixed for 0.5 h to obtain a silicone active material AS1 having a viscosity of 2000 mPa ⁇ s.
  • the sodium hydride active material AS2 has a viscosity of 2900 mPa ⁇ s. The mixture is heated to 80 ° C while stirring. .
  • Silicone active prepared by the silicone composition S3 described in Example 10 57 g of the silicone composition S3, 30 g of oleic acid polyoxyethylene ether and 13 g of sodium citrate were directly mixed, and then the colloid was homogenized. After 0. 2h, it was placed in a container, heated to 80 ° with stirring, and thoroughly mixed for 1 h to obtain a silicone active material AS3 having a viscosity of 3500 mPa ⁇ s.
  • Examples 24 to 27 Silicone actives were prepared by using the silicone composition prepared by the present invention, wherein the colloidal mill homogenization treatment was carried out, and the obtained silicone active materials were excellent in compatibility and excellent in defoaming performance.
  • the silicone active prepared by the silicone composition FS1 of Comparative Example 1 65 g of the silicone composition FS1, 15 g of lauric acid polyoxyethylene ether and 20 g of sodium carboxymethylcellulose were directly mixed, and then passed through a colloid mill. After the O. lh, the mixture was placed in a container, and the mixture was heated to 80 ° C with stirring and mixed well for 0.5 h to obtain a silicone active material AFS1 having a viscosity of 6000 mPa ⁇ s.
  • Comparative example 4 Silicone active prepared by the silicone composition S5 of Example 17: 47 g of the silicone composition S5, 33 g of lauric acid polyoxyethylene ether and 20 g of sodium citrate were directly mixed, and the temperature was raised to 80 ° with stirring. C is thoroughly mixed for 2 h to obtain a silicone active AFS2 having a viscosity of 30, OOO mPa ⁇ s.
  • the silicone active prepared by the silicone composition FS2 described in Comparative Example 2 52 g of the silicone composition FS2, 23 g of lauric acid polyoxyethylene ether and 25 g of sodium citrate were directly mixed, and then homogenized by a colloid mill. After the O. lh, the container was placed in a container, and the mixture was heated to 80 ° C with stirring and mixed well for 0.5 h to obtain a silicone active material AFS3 having a viscosity of 20, OOO mPa ⁇ s.
  • the solid antifoaming agents of Examples 28-31 and the solid antifoam samples of Comparative Examples 6 to 8 were tested as follows. Powder, 0.75 g of solid defoamer, the test procedure was a cotton fabric procedure. The door of the washing machine is marked with 10 metrics, which are 0, 10, 20, 30 ⁇ ..100 ⁇ for the door height, and each is "0", "10", "20”, “30” ⁇ ⁇ .. "100". "0" is the starting point, indicating no bubble, and "100" means full of bubbles. The bubble height is recorded every 5 minutes and recorded when the machine is stopped. The larger the value, the higher the bubble height in the washing machine, and the worse the foam inhibition; the lower the bubble height in the same time, the better the foam suppression performance of the product.
  • the test results are as follows: Table 1 Washing machine test results
  • the solid antifoaming agent in Examples 28-31 is prepared by using the silicone composition of the present invention and homogenizing the colloidal mill to obtain a silicone active material.
  • the foaming agent is rich in foaming in the early stage of washing, and the foaming effect is good in the later rinsing stage, thereby saving cost.
  • the solid antifoaming agent of Comparative Example 7 was prepared by using the silicone composition of the present invention, but since the silicone composition was not subjected to homogenization treatment, the viscosity was large, and the carrier was difficult to be uniformly mixed, and it was not easily spread and spread during the test, resulting in Poor performance.
  • Test Method Horizontal Cycling Bubbler (Nanjing Sixin Technology Application Research Institute Co., Ltd. The glass audition on the manufacturing) is marked with four metrics 0, 1, 2, and 3. "0" is the starting point, indicating no bubble, and "3" means full of bubbles.
  • the bubble pump is raised to a certain height (the time to rise to a certain height is the blank time), 0.5 g of antifoaming agent is added thereto, and the change of the bubble height with time is recorded. The longer it takes for the bubble to rise to the same scale, the better the foam suppression performance.
  • Table 2 The test results are shown in Table 2:
  • the homogenization by the colloid mill in the preparation of the silicone active material can sufficiently mix the silicone composition and the emulsifier, lower the viscosity, and then adsorb to the carrier, and the obtained defoaming agent is defoamed.
  • the obtained defoaming agent is defoamed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及一种基于含氢聚有机硅氧烷和有机硅树脂、不饱和烃发生加成反应后再加入一种含有活性基团的交联剂、二氧化硅经加工处理得到的交联网状结构的聚合物,消泡性能提高、抑泡效果好,易于处理和加工,乳化剂的加入不会削减其消抑泡效果。其抑泡性能好,不衰减,并且形成的聚合物易于加工处理。

Description

一种有机硅组合物、 制备方法及应用 技术领域
本发明涉及精细化工制剂技术领域, 具体涉及一种有机硅组合 物、 制备方法及其在制备固体消泡剂或消泡剂方面的应用。
背景技术
泡沬是生活和工作中常见的现象。例如在食品加工、纺织品染色、 纸张生产、污水处理和清洗场合中使用的许多含水体系内, 需要控制 或防止泡沬的产生。特别的是, 当在自动洗衣机、滚筒洗衣机中进行 洗涤时, 需保持泡沬的形成在可接受的水平下。过多的泡沬将引起洗 涤液在地板上溢流以及降低洗涤操作本身的效率。 在洗涤剂行业中, 倾向于使用更高效率的洗涤剂组合物。增加表面活性剂含量、使用比 常规表面活性剂具有更高泡沬分布的表面活性剂会导致更多的泡沬。 因此需要开发添加量少且更有效的泡沬控制组合物添加到洗涤剂组 合物中。
有机硅组合物是消泡剂的核心,它的消泡速度和抑泡性能直接影 响最终产品的性能。对于有机硅类的消泡剂而言, 其活性物的消抑泡 性能的改进是有机硅消泡剂的改进方向。最原始的聚硅氧烷消泡剂活 性物是由聚二甲基硅氧烷和二氧化硅经过特定加工工艺处理得到的, 如 US3383327介绍的消泡剂组合物就是这样的,但是由于其不能够持 久抑泡, 即抑泡性能差。 因此, 国内外的研究人员都对其性能进行了 大规模的拓展研究。以长链烷基为侧链的聚有机硅氧烷合成消泡剂用 于洗衣粉中是十分有效的, 例如 EP-A-1075683公开了一种泡沬控制 剂, 它包括(A)具有分子式 X-Ph的至少一个硅键合的取代基的有机 聚硅氧烷材料, 其中 X表示二价脂肪烃基和 Ph表示芳基, (B) 水不 溶性有机液体, (C ) 有机硅树脂和 (D ) 疏水填料。 水不溶性有机液 体 (B ) 可以是矿物油、 液体聚异丁二烯、 异链烷烃油或植物油。 EP-A-1075684 公开了一种类似组成的泡沬控制剂。 所不同的是它不 含有水不溶性有机液体 (B)。 EP-A-578424公开了一种泡沬控制剂, 它含有带烷基的侧链的聚二有机硅氧烷, 在所述烷基侧链中, 各烷基 侧链含有 9〜35个碳原子。聚二有机硅氧烷与微细的疏水粒状材料例 如疏水二氧化硅和任选的 MQ有机硅树脂一起使用。 EP-A-1076526公 开了另外包括稳定助剂的这样一种泡沬控制组合物,所述稳定助剂是 熔点为 40〜80°C的有机化合物, 优选脂肪酸、 脂肪醇或烷基磷酸酯。 US005486306A, CN1674967A, CN101048212A, W02012/075962A1公开 了一种类似组成的泡沬控制剂。 所不同的是 CN1674967A 含有熔点 35〜100°C非极性有机材料。 CN101048212A中全部基团 R的碳原子平 均数为 3〜6。 W02012/075962A中含有熔点 45〜100 °C有机材料外还 含有带静电荷的有机聚合物。以上专利中提到的都是不交联的有机硅 聚合物, 在洗涤剂组合物是有效的消泡剂, 但是这种组合物抑泡性能 较差, 加入乳化剂会极大的降低其消抑泡性能, 易衰减, 消泡性也会 因为表面活性剂的介入而大幅减弱,而洗衣粉中表面活性剂是不可缺 少的组分。提高有机硅组合物粘度是解决这一问题的有效方法, 例如 EP-A301531 中所描述的, 据称使用在某些情况下已经是橡胶状的部 分交联的聚二甲基硅氧烷有助于提高消泡剂的效果, 抑泡好, 加入乳 化剂不易降低其消抑泡性能, 关于这一点可以参照例如 US-2 , 632, 736、 EP-A-273448和 EP-A434060 , 这些产品具有非常高的粘度, 但 也因为达到的支化或交联程度较高使得其在体系中分散困难,很难进 一歩处理或加工。
此外,作为固体消泡剂除了应具备作为消泡助剂的相应的性能要 求外, 相容性和消泡稳定性也是非常重要的指标之一。采用大量的乳 化剂乳化低粘度的硅脂能够使乳液粒径控制在 20 μ m左右,相容性较 好, 但是这样的消泡剂消泡效果都不理想, 抑泡性能更差; 为了达到 更好的消泡、抑泡效果,就必须采用抑泡效果更强的高粘度交联硅脂, 但这种硅脂仅依赖少量乳化剂乳化困难、分散不均匀, 会导致载体吸 附硅脂时不能均匀吸附;乳化剂量大又会影响固体消泡剂自身的干燥 度、硬度、 吸附量和消抑泡性能; 如何使固体消泡剂自身状态不受影 响, 又兼顾到消泡剂的消泡性, 也是很多专家和学者关心的问题。 发明内容
本发明涉及一种基于含氢聚有机硅氧烷和有机硅树脂、不饱和烃 发生加成反应后再加入一种含有活性基团的交联剂和二氧化硅经加 工处理得到的交联网状结构的有机硅组合物,可用于工业生产中的泡 沬控制成分。
本发明还提供一种采用本发明所述的有机硅组合物制备的固体 消泡剂, 及该固体消泡剂的制备方法, 由本发明所述的有机硅组合物 所制备的有机硅活性物最终所制备的固体消泡剂,减少了硅脂不易乳 化分散、 附聚到载体上分布不均匀的问题, 保证了消泡剂的消泡性和 相容性, 使得整个清洗过程都能充分消泡和抑泡。
为解决上述现有技术存在的问题和达到本发明的目的,本发明所 采取的技术方案为: 一种有机硅组合物, 其特征在于, 其原料及各原 料占有机硅组合物总质量百分比为:
A. 含氢聚有机硅氧垸 45~75%
至少一种通式如下的含氢聚有机硅氧烷:
HcR。3cSiO (^HSiO) , (R。2SiO) ASiRVcHc
其中, 取代基 R°相同或不同, 为碳原子数 1〜20的烃基, 具体的 包括烷基, 如甲基 、 乙基、 正丙基、 正丁基、 异丁基、 正戊基、 环 戊基、 正己基、 正庚基、 正辛基、 异辛基、 正壬基、 正癸基、 正十二 烷基和正十八烷基; 芳基, 如苯基、 苯甲基, 优选 80%以上的取代基 团 R°是甲基。 下标 c是 0、 1或 2, 下标 是 0或广 200的整数, 优 选为 1(Γ180的整数, 最优选为 4(Γ160的整数, 且 c+i/^ l , 下标 b 是广 1000的整数,优选为 5CT800的整数,最优选为 10CT500的整数, 每个分子具有至少 1个硅键合的氢原子,优选至少 2个硅键合的氢原 子。含氢聚有机硅氧烷优先选择侧链含氢聚有机硅氧烷和端侧含氢聚 有机硅氧烷;
B. 交联剂 0.广5%
所述交联剂为至少一种结构式如下聚硅氧烷: 其中 R1相同或不 同, 为碳原子数为 广 10的烷基、 氢原子或乙烯基; R2相同或不同, 为碳原子数为 广 10的烷基、 氢原子或乙烯基, R2基优选为甲基; 下 标 m为 (Γ50的整数, 优选为 5〜40的整数, 最优选为 10〜30的整数; n为 (Γ5的整数,优选为广 3的整数; s为 (Γ30的整数,优选为 2〜25 的整数, 最优选为 5〜20的整数。 每个分子具有至少 1个硅键合的氢 原子或乙烯基, 优选至少 2个硅键合的氢原子或乙烯基;
Figure imgf000006_0001
或通式为(R¾SiO)f的环状含氢聚有机硅氧烷, R3为碳原子数广 10 的烷基, 如甲基 、 乙基、 丙基、 正丙基、 丁基、 异丁基, f 为 3〜6 的整数;
或通式为 [CH2=CH(Me)SiOL的环状乙烯基聚有机硅氧烷, Me为甲 基, 为: Γ5的整数;
以上交联剂优先选择: (1)直链的含氢或乙烯基聚硅氧烷, 以侧 链含氢或乙烯基为主; (2)环状的含氢聚有机硅氧烷和乙烯基聚有机 硅氧烷, f和 主要取值都为 4和 5; R3主要选择甲基和乙基;
C. 有机硅树脂 广 10%
常用的有机硅树脂为一种空间结构的有机硅树脂,优选的含硅氧 烷单元 RaSi04a/2, 其中 R为羟基、 烃基或烃氧基, a为 0.5〜2.4; 更 优选的是含 M官能团 R*3Si01/2和 Q官能团 Si04/2, 其中 R*为单价烃基,
M:Q的摩尔比为 (0.4〜1.2): 1.0, 优选为 (0.5〜0.8): 1.0。 最优选 的有机硅树脂仅由如上定义的 M单元和 Q单元组成,但也可以使用包 含 M单元、 三价 R*Si03/2 (T) 单元和 Q单元的树脂。 有机硅树脂也可 以含有二价单元 R*Si02/2, 优选其不超过所有存在的硅氧烷单元的 20%。 基团 R (和 R*) 优选为具有广 6个碳原子的烷基, 最优选基本 上所有存在的 R (和 R*) 基为甲基。 也可存在其它烃基, 例如以二甲 基乙烯基甲硅烷基存在的具有广 6个碳原子的链烯基,也可以存在与 硅键合的羟基和 /或烷氧基, 例如甲氧基。 例如可通过水解某些硅烷 材料,在溶剂中或原位生产。特别优选在溶剂,例如二甲苯的存在下, 使四价甲硅烷氧基基团, 例如四原硅酸酯、 四乙基原硅酸酯、 聚乙基 硅酸酯或硅酸钠的前体和一价三烷基甲硅烷氧基单元, 例如, 三甲基 氯硅烷、三甲基乙氧基硅烷、六甲基二硅氧烷或六甲基二硅氮烷的前 体水解并缩合。 如果需要, 所得 MQ树脂可进一歩三甲基甲硅烷基化 以反应掉残留的 Si-OH基, 或可将其在碱的存在下加热以通过消除 Si-OH基使树脂自缩合;
D. 不饱和烃 10~50%
包括烯烃和炔烃, 所述的烯烃为直链的 α -烯烃、 脂环族烯烃、 芳香族烯烃或分支型烯烃中的任意一种或多种的混合;所述的炔烃为 乙炔、 丙炔、 丁炔、 戊炔、 己炔、 庚炔、 辛炔中的任意一种或多种的 混合;
Ε. 催化剂 0. 01~0. 2%
所述的催化剂用来催化组分含氢聚有机硅氧烷和有机硅树脂、烯 烃发生聚合反应。 所述的催化剂选自铂 -醇络合物、 铂-烯烃络合物、 铂-醇盐络合物、 铂 -醚络合物、 铂 -酮络合物、 氯铂酸异丙醇溶液或 铂-乙烯基络合物。 所述催化剂的铂含量为 广 20ppm, 优选为氯铂酸 异丙醇溶液;
F. 二氧化硅 2~6%
二氧化硅按制造方法分为沉淀法二氧化硅和气相法二氧化硅两 种, 按表面性质分为亲水二氧化硅和疏水二氧化硅两种。本发明优选 为疏水二氧化硅, 比表面积为 5(T500m2/g, 包括气相法疏水二氧化硅 和沉淀法疏水二氧化硅。通过使用甲基取代的有机硅材料进行疏水化 处理。合适的疏水剂包括聚二甲基硅氧烷、硅烷醇或与硅键合的烷氧 基封端二甲基硅氧烷聚合物、六甲基二硅氮烷和六甲基二硅氧烷。通 常在至少 80 °C下进行疏水化处理。
进一歩地 A中所述的含氢聚有机硅氧烷在 25 °C时的动力粘度为 10〜2000mPa · s, 优选为 100〜1500 mPa · s, B中所述的交联剂在 25 °〇时的动力粘度为 5〜50 mPa · s, 优选为 10〜40 mPa · s。
进一歩地 D中所述的直链的 α -烯烃为 α -己烯、 α -辛烯、 α _ 癸烯、 α -十二烯、 α -十四烯、 α -十六烯、 α _十八烯、 α _二十烯、 a -C2(TC24烯烃的混合物、 a -C24〜C28烯烃的混合物、 α -三十烯; 所述脂环族烯烃为蒎烯、 茨烯、 双戊烯、 环戊烯、 降冰片烯; 所述的 芳香族烯烃为 α -甲基苯乙烯或苯乙烯; 所述的分枝型脂族基团: 如 异戊烯、 异辛烯。 更优选的不饱和烯烃为: C24以下的直链的 α -烯 烃、 茨烯或 α -甲基苯乙烯中的任意一种或多种的混合。
一种所述的有机硅组合物的制备方法, 具体歩骤如下: ① 将含氢聚有机硅氧烷 A和有机硅树脂(、 不饱和烃 D加入到反应 容器中, 升温至 5(T80°C, 保温 0. 2〜5h, 使有机硅树脂溶解;
② 加入催化剂 E, 在 10(T200°C反应广 3h后, 加入交联剂 B和二氧 化硅 F, 在 15(T200°C保温 0. 5〜5h, 形成交联的聚合物;
③ 保温结束后, 并在一 0. 0Γ-0. 08MPa真空度下维持 0. 1〜1. 5h; 最后, 冷却到室温即得到粘稠的交联有机硅组合物, 粘度为 20, 000〜100, OOOmPa · s。
所述有机硅组合物在制备有机硅活性物中的应用。
一种所述的有机硅组合物制备的有机硅活性物,其原料及各原料 占有机硅活性物总质量的百分比为:
I . 本发明所述的有机硅组合物 35〜65%;
II . 乳化剂, 为非离子表面活性剂 5〜35%;
III. 结构剂 9〜50%; 其中,所述乳化剂为非离子表面活性剂,包括壬基酚聚氧乙烯醚、 辛基酚聚氧乙烯醚、 月桂酸聚氧乙烯醚、 油酸聚氧乙烯醚、 月桂醇聚 氧乙烯醚、 十六醇聚氧乙烯醚、 十八醇聚氧乙烯醚、 失水山梨醇单月 桂酸酯、 失水山梨醇单棕榈酸酯、 失水山梨醇单硬脂酸酯、 失水山梨 醇单油酸酯、 失水山梨醇三硬脂酸酯、 失水山梨醇三油酸酯、 失水山 梨醇单硬脂酸聚氧乙烯醚酯、失水山梨醇单油酸聚氧乙烯醚酯、失水 山梨醇三硬脂酸聚氧乙烯醚酯、蓖麻油聚氧乙烯醚以及诸如此类, 单 独使用或混合使用; 盐类或聚乙烯吡咯烷酮中的任意一种或多种的混合。
进一歩地所述丙烯酸类聚合物为聚丙烯酸或其部分钠盐、马来酸 丙烯酸共聚物; 所述纤维素醚指水溶性的或可水溶胀的纤维素醚, 例 如羧甲基纤维素钠; 所述柠檬酸或柠檬酸盐类为柠檬酸钠、 柠檬酸 钾; 这些结构剂可以单独使用, 也可以任意比例混合使用。
一种所述有机硅活性物的制备方法: 将配方量的有机硅组合物、 乳化剂和结构剂直接混合均匀, 经过胶体磨均质化 0. Γ0. 5h后装入 容器中, 边搅拌边升温至 80 °C充分混匀 0. 5〜2h, 得到粘度为 1000〜10, OOOmPa · s的有机硅活性物。
本发明粘度为 20, 00(T100, OOOmPa · s的有机硅组合物在制备有 机硅活性物的过程中, 采用过胶体磨均质化处理, 减少了乳化剂的使 用量, 同时能控制粒径在 20 μ ιη左右; 在均质化过程中, 有机硅活性 物经过强剪切后, 粘度得到降低, 降低为: 100(T10, OOOmPa · s ; 使 其便于和载体进行混合, 保证了有机硅活性物的相容性及消抑泡性 能。
一种所述有机硅活性物制备的固体消泡剂,其原料及各原料占固 体消泡剂总质量的百分比为:
本发明所述有机硅活性物 18〜45%;
载体 50〜75%;
溶剂 2〜10%;
其中, 所述载体选自硫酸盐、碳酸盐、磷酸盐、聚磷酸盐、淀粉、 体, 优选为淀粉、 粒径大于 300目的硫酸盐或碳酸盐; 所述溶剂为在干燥过程中很容易除去的溶剂,它们的蒸发会在固 体颗粒内部形成空穴, 增加了固体颗粒的比表面积, 具体来说, 溶剂 为醇类物质或水中的任意一种或多种的混合, 优选甲醇、 乙醇、 异丙 醇, 更优选乙醇或水。
一种所述的固体消泡剂的制备方法, 具体操作歩骤如下: 首先将 配方量的有机硅活性物和载体加入到混合器中,搅拌均匀后向其中加 入配方量的溶剂混合, 造粒烘干。
本发明涉及一种基于含氢聚有机硅氧烷和有机硅树脂、烯烃发生 加成反应后再加入交联剂、二氧化硅经加工处理得到的交联网状结构 的聚合物, 消泡性能提高、 抑泡效果好, 易于处理和加工, 乳化剂的 加入不会削减其消抑泡效果。其原理是利用具有低粘度含有活性基团 的聚有机硅氧烷, 这类聚有机硅氧烷具有很高的反应活性, 其链节上 的官能团能和 Si-H相互反应, 形成新的化学键, 高分子线性结构就 转变为高分子三维网状结构, 即交联结构, 高分子形成交联结构的同 时, 有机硅树脂、 二氧化硅嵌入高分子交联网络结构, 由于网状结构 是通过分子间的化学键连接起来的。所以其抑泡性能好, 不衰减, 乳 化剂对其消抑泡性能减弱不明显,并且形成的聚合物易于进一歩的加 工处理,通过该有机硅组合物所制备的有机硅活性物最终所制得的固 体消泡剂, 保证了消泡剂的消泡性能和相容性, 使得整个清洗过程都 能充分消泡和抑泡。
具体实施方式 实施例 1
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 600mPa · s的 Me3SiO (MeHSiO) 45 (Me2SiO) 26。SiMe3 500g
B. 粘度为 20mPa · s 的 Me3SiO (MeHSiO) 1QSiMe3 3.5g
C. M: Q = 0.75:1的有机硅树脂 18g
D. a-十二烯 165g
E. 铂含量为 llppm的氯铂酸异丙醇溶液 1. lg
F. 比表面积为 90m2/g的沉淀法疏水二氧化硅 30g 在容器中加入 500g 粘度为 600mPa* s 的含氢聚有机硅氧烷 Me3SiO (MeHSiO) 45(Me2SiO) 260SiMe3、 18g的 M: Q = 0.75: 1的有机硅树 脂, 再加入 165g α-十二烯在 70°C保温 0.5h后, 60°C加 1. lg铂含 量为 llppm 的氯铂酸异丙醇溶液, 在 120°C反应 lh, 加入 3.5g Me3SiO (MeHSiO) 1QSiMe3和 30g比表面积为 90m2/g的沉淀法疏水二氧化 硅, 升温至 150°C反应保温 0.5h, 形成交联的有机硅组合物后, 在一 0.05MPa真空度下维持 0.8h, 降至室温后即得到粘度为 30000mPa · s 的淡黄色的粘稠状有机硅组合物 Sl。
实施例 2
实施例 2与实施例 1的区别在于, 所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 1200mPa · s的(C2¾) 2HSiO (MeHSiO) 13。(Me2SiO) 45。Si H(C2H5)2
450g B. 粘度为 6mPa · s 的(CH2=CH) Me2 SiOSiMe2 (CH=CH2) 20g
C. M: Q = 0. 5 : 1的有机硅树脂 10g
D. 双戊烯 458g
E. 铂含量为 3ppm的铂 -醇盐络合物 2g
F. 比表面积为 50m2/g的沉淀法疏水二氧化硅 60g 实施例 3
实施例 3与实施例 1的区别在于, 所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 1500mPa · s的 Me3SiO (MeHSiO) 155 (Me2SiO) 5ooSiMe3 750g
B. 粘度为 7mPa · s 的 Me3SiO (MeHSiO) 2SiMe3 30g
C. M: Q = 0. 8 : 1的有机硅树脂 50g
D. 苯乙烯 150g
E. 铂含量为 7ppm的铂 -烯烃络合物 0. lg
F. 比表面积为 420m2/g的沉淀法疏水二氧化硅 20g 实施例 4
实施例 4与实施例 1的区别在于, 所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 15mPa · s的 Me3SiO (MeHSiO) 5 (Me2SiO) 10SiMe3 500g
B. 粘度为 50mPa · s 的 Me3Si0 (MeHSiO) 4QSiMe3 lg
C. M: Q =1. 2 : 1的有机硅树脂 lOOg
D. a -辛烯 368. 2g
E. 铂含量为 14ppm的氯铂酸异丙醇溶液 0. 8g F. 比表面积为 500m2/g的气相法疏水二氧化硅 30g 实施例 5
实施例 5与实施例 1的区别在于, 所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 lOOOmPa · s的 Me2HSiO (MeHSiO) 1()5 (Me2SiO) 3。。Si顯 e2 600g
B. 粘度为 32mPa · s 的 Me3SiO (Me (CH2=CH) SiO) 2。SiMe3 2g
C. M: Q = 0.7:1的有机硅树脂 80g
D. a-十八烯 219g
E. 铂含量为 9ppm的铂-醚络合物 lg
F. 比表面积为 250m2/g的气相法疏水二氧化硅 50g 实施例 6
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 lOOmPa · s的 Me3Si0 (MeHSiO) 55 (Me2SiO) 5oSiMe3 500g
B. 粘度为 lOmPa · s的( HSiO)4 45g
C. M: Q = 0.65:1的有机硅树脂 45g
D. a-癸烯 275g
E. 铂含量为 5ppm的氯铂酸异丙醇溶液 1.2g
F. 比表面积为 80m2/g的气相法疏水二氧化硅 45g 在容器中加入 500g 粘度为 100mPa* s 的含氢聚有机硅氧烷 Me3Si0 (MeHSiO) 55 (Me2Si0)50SiMe3、 45g M: Q = 0.65:1的有机硅树脂, 加入 275g α -癸烯在 50°C保温 5h后, 70°C加 1.2g铂含量为 5ppm 的氯铂酸异丙醇溶液,在 150°C反应 1. 2h,加入 45g (MeHSiO) 4和 45g 比表面积为 80m2/g 的气相法疏水二氧化硅, 升温至 160°C反应保温 2h, 形成交联的有机硅组合物后, 在一 O. OlMPa真空度下维持 1. 5h, 降至室温后即得到粘度为 45000mPa · s 的淡黄色的粘稠状有机硅组 合物 S2。
实施例 7
实施例 7与实施例 6的不同在于: 所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 180mPa · s的 Me3SiO (MeHSiO) 16。Me2SiOSiMe3 748. 8g
B. 粘度为 9mPa · s的(Me (CH2=CH) SiO) 3 40g
C. M: Q=0. 72 : 1的有机硅树脂 60g
D. a -己烯 10g
E. 铂含量为 l lppm的铂-乙烯基络合物 1. 2g
F. 比表面积为 160m2/g的气相法疏水二氧化硅 55g 实施例 8
实施例 8与实施例 6的不同在于: 所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 1850mPa · s的 Me3SiO (MeHSiO) 65 (Me2SiO) 80oSiMe3 460g
B. 粘度为 16mPa · s的(MeHSiO) 6 lg
C. M: Q = 0. 78 : 1的有机硅树脂 lOg
D. α -十六烯 500g
E. 铂含量为 16ppm的铂-醇络合物 lg F. 比表面积为 360m2/g的气相法疏水二氧化硅 28g 实施例 9
A.粘度为 1500mPa · s的 Me2HSiO (MeHSiO) 155 (Me2SiO) 5。。Si顯 e:
B. 粘度为 13mPa · s 的 Me3SiO (MeHSiO) 5SiMe3 10g
C. M: Q = 0.8:1的有机硅树脂 30g
D. α-甲基苯乙烯 400g
E. 铂含量为 15ppm的铂 -烯烃络合物 1.7g
F. 比表面积为 420m2/g的沉淀法疏水二氧化硅 48.3g 实施例 10
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 120mPa · s的 Me3SiO (MeHSiO) 40 (Me2SiO) 70SiMe3 500g
B. 粘度为 36mPa · s的 Me3Si0 (MeHSiO) 25SiMe3 33g
C. M: Q = 0.75:1的有机硅树脂 35g
D. 丙炔 728g
E. 铂含量为 9ppm的氯铂酸异丙醇 溶液 1.05g
F. 比表面积为 380m2/g的气相法疏水二氧化硅 28g 在容器中加入 500g 粘度为 120mPa* S 的含氢聚有机硅氧烷 Me3Si0 (MeHSiO) 40 (Me2Si0)70SiMe3、 35g M: Q = 0.75:1的有机硅树脂, 加入 728g 丙炔,在 80°C保温 0.2h后, 80°C加 1.05g铂含量为 9ppm 的氯铂酸异丙醇溶液, 在 170 °C 反应 2h, 加入 33g Me3SiO (MeHSiO) 25SiMe3和 28g比表面积为 380m2/g的气相法疏水二氧 化硅, 升温至 200°C反应保温 lh, 形成交联的有机硅组合物后在一 0. 05MPa真空度下维持 0. lh, 降至室温后即得到粘度为 60000mPa · s 的淡黄色的粘稠状有机硅组合物 S3。
实施例 11
实施例 11与实施例 10的区别在于,所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 800mPa · s的 Me3SiO (MeHSiO) 16。 (Me2SiO) 180SiMe3 600g
B. 粘度为 16mPa · s的(MeHSiO) 6 44g
C. M: Q = 0. 78 : 1的有机硅树脂 70g
D. 茨烯 25g
E. 铂含量为 20ppm的铂-醇络合物 0. 5g
F. 比表面积为 300m2/g的沉淀法疏水二氧化硅 35. 5g 实施例 12
实施例 12与实施例 10的区别在于,所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 250mPa · s的 Me3SiO (MeHSiO) 100 (Me2SiO) 100SiMe3 610g
B. 粘度为 32mPa · s的 Me3SiO (MeHSiO) 2QSiMe3 28g
C. M: Q = 0. 77 : 1的有机硅树脂 20g
D. a -二十烯 300g
E. 铂含量为 17ppm的铂-醇络合物 1. 5g F. 比表面积为 100m2/g的气相法疏水二氧化硅 40. 5g 实施例 13
实施例 13与实施例 10的区别在于,所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 300mPa · s的 Me3SiO (MeHSiO) 200 (Me2SiO) 50SiMe3 620g
B. 粘度为 40mPa · s的 Me3SiO (MeHSiO) 3QSiMe3 16g
C. M: Q = 0. 73 : 1的有机硅树脂 40g
D. a -甲基苯乙烯 8g、 a -蒎烯 9g、 a -十六烯 l lg
E. 铂含量为 6ppm的氯铂酸异丙醇 溶液 1. 5g
F. 比表面积为 250m2/g的沉淀法疏水二氧化硅 42. 5g 实施例 14
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 550mPa · s的 Me3SiO (MeHSiO) 2。。 (Me2SiO) 100SiMe3 500g
B. 粘度为 45mPa · s的 Me3SiO (MeHSiO) 35SiMe3 33g
C. M: Q = 0. 68 : 1的有机硅树脂 35g
D. a -甲基苯乙烯 54g、 双戊烯 70g、 a -十六烯 784g
E. 铂含量为 15ppm的氯铂酸异丙醇溶液 1. 05g
F. 比表面积为 380m2/g的气相法疏水二氧化硅 28g 在容器中加入 500g 粘度为 550mPa * s 的含氢聚有机硅氧烷 Me3Si0 (MeHSiO) 200 (Me2SiO) 100SiMe3, 35g M: Q = 0. 68: 1的有机硅树脂, 加入 54g α -甲基苯乙烯、 70g双戊烯、 784g α -十六烯在 70°C保温 0. 5h后, 60°C加 1. 05g铂含量为 15ppm的氯铂酸异丙醇溶液,在 110 °C反应 2. 5h , 加入 33g Me3SiO (MeHSiO) 35SiMe3和 28g 比表面积为 380m2/g的气相法疏水二氧化硅, 升温至 180°C反应保温 2. 5h, 形成 交联的有机硅组合物后在一 0. 06MPa真空度下维持 0. 9h,降至室温后 即得到粘度为 73000mPa · s的淡黄色的粘稠状有机硅组合物 S4。
实施例 15
实施例 15与实施例 14的区别在于,所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 1700mPa · s的 Me3SiO (MeHSiO) 35 (Me2SiO) 70oSiMe3 660g
B. 粘度为 13mPa · s的(MeHSiO) 5 25g
C. M: Q = 0. 4 : 1的有机硅树脂 90g
D. a -己烯 200g
E. 铂含量为 lOppm的氯铂酸异丙醇溶液 1. 4g
F. 比表面积为 450m2/g的沉淀法疏水二氧化硅 23. 6g 实施例 16
实施例 16与实施例 14的区别在于,所述的有机硅组合物的原料, 及各原料占有机硅总质量百分比为:
A. 粘度为 2000mPa · s的 Me3SiO (MeHSiO) 18。 (Me2SiO) 8。。SiMe3 560g
B. 粘度为 40mPa · s的 Me3Si0 (Me (CH2=CH) SiO) 3。SiMe3 35g
C. M: Q = 0. 9 : 1的有机硅树脂 50g D. α-蒎烯 320g
E. 铂含量为 6ppm的铂-醇络合物 1.6g
F. 比表面积为 320m2/g的气相法疏水二氧化硅 33.4g 实施例 17
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 250mPa · s的 Me3SiO (MeHSiO) 100 (Me2SiO) 100SiMe3 500g
B. 粘度为 13mPa · s的(Me (CH2=CH) SiO) 5 10g
C. M: Q =0.75:1的有机硅树脂 62g
D. α-十二烯 301g、 双戊烯 99g、 苯乙烯 123g
E. 铂含量为 14ppm的氯铂酸异丙醇溶液 l.Og
F. 比表面积为 150m2/g的沉淀法疏水二氧化硅 40g 在容器中加入 500g 粘度为 250mPa * S 的含氢聚有机硅氧烷 Me3Si0 (MeHSiO) 100 (Me2SiO) 100SiMe3、 62g M: Q = 0.75:1的有机硅树脂, 加入 301g α-十二烯、 99g双戊烯、 123g苯乙烯的混合物在 70°C保 温 0.5h后, 60°C加 1.0g铂含量为 14ppm的氯铂酸异丙醇溶液, 在 180°C反应 3h, 加入 10g (Me(CH2=CH)SiO)5和 40g比表面积为 150m2/g 的沉淀法疏水二氧化硅, 升温至 200°C反应保温 3h, 形成交联的有机 硅组合物后, 在一 0.08MPa真空度下维持 0. l〜1.5h, 降至室温后即 得到粘度为 65000mPa · s的淡黄色的粘稠状有机硅组合物 S5。
实施例 18
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 170mPa · s的 Me3SiO (MeHSiO) 75 (Me2SiO) 80SiMe3 500g
B. 粘度为 5mPa · s的 Me2HSiOSi顯 e2 35g
C. M: Q = 0.75:1的有机硅树脂 39g
D. a-十八烯 885g
E. 铂含量为 16ppm的氯铂酸异丙醇溶液 1. lg
F. 比表面积为 130m2/g的沉淀法疏水二氧化硅 40g 在容器中加入 500g 粘度为 170mPa * S 的含氢聚有机硅氧烷 Me3SiO (MeHSiO) 75 (Me2SiO)80SiMe3、 39g M: Q = 0.75:1的有机硅树脂, 加入 885g α-十八烯、 在 70°C保温 0.5h后, 70°C加 1. lg铂含量为 16ppm 的氯铂酸异丙醇溶液, 在 130°C反应 1.5h, 加入 35g Me2HSiOSi顯 和 40g比表面积为 130m2/g的沉淀法疏水二氧化硅,升 温至 150°C反应保温 0.8h,形成交联的有机硅组合物后,在一 0.08MPa 真空度下维持 0.1〜1.5h, 降至室温后即得到粘度为 35000mPa · s的 淡黄色的粘稠状有机硅组合物 S6。
实施例 19
实施例 19与实施例 18的区别在于,所述的有机硅组合物的原料 中的 B选择结构式如下, 粘度为 34mPa · s的支链聚硅氧烷。 实施例 20
实施例 20与实施例 18的区别在于,所述的有机硅组合物的原料 中的 B选择结构式如下, 粘度为 39mPa · s的支链聚硅氧垸。
Figure imgf000022_0002
实施例 21
实施例 21与实施例 18的区别在于,所述的有机硅组合物的原料 中的 B选择结构式如下, 粘度为 48mPa · s的支链聚硅氧垸。
Figure imgf000022_0003
替换页 (细则第 26条) 实施例 22与实施例 18的区别在于,所述的有机硅组合物的原料 中的 B选择结构式如下, 粘度为 52mPa · s的支链聚硅氧垸。
Figure imgf000023_0001
实施例 23
实施例 23与实施例 18的区别在于,所述的有机硅组合物的原料 中的 B选择结构式如下, 粘度为 60mPa, S的支链聚硅氧垸。
Figure imgf000023_0002
H
对比例 1
一种有机硅组合物, 其特征在于, 包括以下原料, 及各原料占有 机硅总质量百分比为:
A. 粘度为 550mPa · s的 MesSiC MeHSiO MeaSiC ^SiMe: 500g
替换页 (细则第 26条) B. M: Q = 0.65:1的有机硅树脂 45g
C. a -癸烯 275g
D. 铂含量为 lOppm的氯铂酸异丙醇溶液 1.2g
E. 比表面积为 200m2/g的沉淀法疏水二氧化硅 45g
在容器中加入 500g 粘度为 550mPa * s 的含氢聚有机硅氧烷 Me3SiO(MeHSiO) 200 (Me2SiO)100SiMe3、 45gM: Q = 0.65: 1的有机硅树脂, 加入 275g α-癸烯在 70°C保温 0.5h后, 70°C加 1.2g铂含量为 lOppm 的氯铂酸异丙醇溶液, 在 110°C反应 2.5h, 加入 45g 比表面积为 200m2/g 的沉淀法疏水二氧化硅, 升温至 160°C反应保温 2h, 在一 0.06MPa 真空度下维持 0. l〜1.5h, 降至室温后即得到粘度为 1500mPa · s的淡黄色的粘稠状有机硅组合物 FS1。
对比例 2:
按照专利 【CN200610040821.3】 实施例 【1】制备有机硅组合物 实施例 24
实施例 1所述的有机硅组合物 S1制备的有机硅活性物: 将 35g 的有机硅组合物 Sl、 20g的月桂酸聚氧乙烯醚和 45g的聚丙烯酸直接 混合, 而后过胶体磨均质化 0.2h后装入容器中, 边搅拌边升温至 80 °〇充分混匀 0.5h即得有机硅活性物 AS1, 粘度为 2000mPa · s。
实施例 25
实施例 6所述的有机硅组合物 S2制备的有机硅活性物: 将 65g 的有机硅组合物 S2、 5g的失水山梨醇三油酸酯和 30g 的羧甲基纤 维素钠直接混合, 而后过胶体磨均质化 0. 5h后装入容器中, 边搅拌 边升温至 80 °C充分混匀 0. 7h, 即得有机硅活性物 AS2 , 粘度为 2900mPa · s。
实施例 26
实施例 10所述的有机硅组合物 S3制备的有机硅活性物: 将 57g 的有机硅组合物 S3、 30g的油酸聚氧乙烯醚和 13g的柠檬酸钠直 接混合, 而后过胶体均质化 0. 2h后装入容器中, 边搅拌边升温至 80 °〇充分混匀 lh, 即得有机硅活性物 AS3, 粘度为 3500mPa · s。
实施例 27
实施例 14所述的有机硅组合物 S4制备的有机硅活性物:将 48g 的有机硅组合物 S4、 17g的蓖麻油聚氧乙烯醚和 35g的柠檬酸钾直 接混合, 而后过胶体均质化 0. 4h后装入容器中, 边搅拌边升温至 80 °〇充分混匀 1. 5h, 即得有机硅活性物 AS4, 粘度为 4100mPa * s。
实施例 24〜27 采用本发明制备的有机硅组合物制备有机硅活性 物,其中采用过胶体磨均质化处理,得到的有机硅活性物的相容性好, 消抑泡性能更优良。
对比例 3
对比例 1所述的有机硅组合物 FS1制备的有机硅活性物: 将 65g 的有机硅组合物 FS1、 15g月桂酸聚氧乙烯醚和 20g羧甲基纤维素钠 直接混合, 而后过胶体磨均质化 O. lh后装入容器中, 搅拌边升温至 80°C充分混匀 0. 5h, 即得有机硅活性物 AFS1 , 粘度为 6000mPa · s。
对比例 4 实施例 17所述的有机硅组合物 S5制备的有机硅活性物: 将 47g 的有机硅组合物 S5、 33g的月桂酸聚氧乙烯醚和 20g的柠檬酸钠直接 混合, 搅拌边升温至 80°C充分混匀 2h, 即得有机硅活性物 AFS2 , 粘 度为 30, OOOmPa · s。
对比例 5
对比例 2 中所述的有机硅组合物 FS2制备的有机硅活性物: 将 52g的有机硅组合物 FS2、 23g的月桂酸聚氧乙烯醚和 25g柠檬酸钠 直接混合, 而后过胶体磨均质化 O. lh后装入容器中, 搅拌边升温至 80°C充分混匀 0. 5h,即得有机硅活性物 AFS3 ,粘度为 20, OOOmPa · s。
以下实施例 28〜31、 对比例 6〜8分别采用不同有机硅活性物制备 固体消泡剂:
实施例 28
将 75g淀粉和 45g有机硅活性物 AS1加入到混合器中,搅拌均匀 后向其中加入 10g无水乙醇; 搅拌均匀后将得到的混合物造粒烘干, 即得到所制备的固体消泡剂。
实施例 29
将 60g硫酸钠 (800目) 和 18g有机硅活性物 AS2加入到混合器 中, 搅拌均匀后向其中加入 3g无水乙醇和 3g去离子水; 搅拌均匀后 将得到的混合物造粒烘干, 即得到所制备的固体消泡剂。
实施例 30
将 50g硅铝酸钠和 20g有机硅活性物 AS3加入到混合器中,搅拌 均匀后向其中加入 2g去离子水; 搅拌均匀后将得到的混合物造粒烘 干, 即得到所制备的固体消泡剂。
实施例 31
将 65g淀粉和 35g有机硅活性物 AS4加入到混合器中,搅拌均匀 后向其中加入 7g无水乙醇; 搅拌均匀后将得到的混合物造粒烘干, 即得到所制备的固体消泡剂。
对比例 6
将 75g淀粉和 45g有机硅活性物 AFS1加入到混合器中, 搅拌均 匀后向其中加入 10g 无水乙醇; 搅拌均匀后将得到的混合物造粒烘 干, 即得到所制备的固体消泡剂。
对比例 7
将 75g淀粉和 45g有机硅活性物 AFS2加入到混合器中, 搅拌均 匀后向其中加入 10g 无水乙醇; 搅拌均匀后将得到的混合物造粒烘 干, 即得到所制备的固体消泡剂。
对比例 8
将 75g淀粉和 45g有机硅活性物 AFS3加入到混合器中, 搅拌均 匀后向其中加入 10g水; 搅拌均匀后将得到的混合物造粒烘干, 即得 到所制备的固体消泡剂。
消抑泡性能测试
将实施例 28-31的固体消泡剂与对比例 6〜8的固体消泡剂样品按 下述方法进行测试。 衣粉, 0.75g固体消泡剂, 测试程序为棉织物程序。 洗衣机的门上标 有 10个度量标示, 分别为门高的 0, 10, 20, 30···..100ο 并各记为 "0" , "10" , "20" , "30" ···.. "100" 。 "0"为起始, 表 示无泡沬, "100"表示充满泡沬。每 5min记录一次泡沬高度, 停机 时记录。 数值越大, 表明洗衣机中的泡沬高度越高, 抑泡性就越差; 相同时间内泡沬高度越低, 说明产品抑泡性能越好。 测试结果如下: 表 1 洗衣机测试结果
Figure imgf000028_0001
由上表可示,实施例 28-31中的固体消泡剂是采用本发明所述的 有机硅组合物, 经过胶体磨均质化处理得到有机硅活性物制备而成 的, 所述固体消泡剂在洗涤前期泡沬丰富, 在后期漂洗阶段抑泡效果 好, 节约了成本。对比例 7的固体消泡剂采用本发明的有机硅组合物 制备, 但由于有机硅组合物未进行均质化处理, 粘度大, 和载体难以 混合均匀, 且在测试过程中不易扩散铺展, 导致性能较差。
② 卧式循环鼓泡法:
测试方法: 卧式循环鼓泡仪(南京四新科技应用研究所有限公司 制造) 的玻璃试镜上标 0, 1, 2, 3四个度量标示。 "0"为起始, 表 示无泡沬, "3 " 表示充满泡沬。 在卧式循环鼓泡仪里加入 14kg的 0. 3%十二烷基苯磺酸钠水溶液 (pH值为 13 ) , 然后打开温控开关, 将起泡液加热至测试温度 80°C,开启循环泵等泡沬升至一定高度(升 至一定高度的时间即为空白时间) 时, 再向其中加入 0. 5g消泡剂, 记录泡沬高度随着时间的变化规律。泡沬上升到同一刻度所用的时间 越长, 说明抑泡性能越好。 测试结果见表 2:
表 2 卧式循环测试结果
Figure imgf000029_0001
通过上述测试,可以看出制备有机硅活性物时通过胶体磨均质化 可以使有机硅组合物和乳化剂得以充分混合, 并降低粘度, 再吸附到 载体上, 所得的消泡剂消泡较好, 完全达到并超过正常工艺制得的消 泡剂性能。

Claims

权 利 要 求
1. 一种有机硅组合物, 其特征在于, 其原料及各原料占有机硅组合 物总质量百分比为:
A. 含氢聚有机硅氧垸 45~75%
至少一种通式为 H。RV。SiO (R0HSiO) , (R°2SiO) ASiRV。H。的含氢聚有 机硅氧烷; 其中, 取代基 R°相同或不同, 为碳原子数 1〜20的烃基; 下标 c是 0、 1或 2, 下标 d是 0或广 200的整数, 且 c+i/ l, 下标 是广 1000的整数, 每个分子具有至 1个硅键合的氢原子;
B. 交联剂 0.广5%
所述交联剂为至少一种结构式如下聚硅氧烷: 其中 R1相同或不同, 为碳原子数为 广 10的烷基、 氢原子或乙烯基; R2相同或不同, 为碳 原子数为广 10的烷基、 氢原子或乙烯基; 下标 m为 (Γ50的整数; n 为 0〜5的整数; s为(Γ30的整数; 每个分子具有至少 1个硅键合的 氢原子或乙烯基;
Figure imgf000030_0001
或通式为(R¾SiO) f的环状含氢聚有机硅氧烷, R3为碳原子数广 10 的烷基, "为: Γ6的整数; 或通式为 [CH2=CH (Me) SiOL的环状乙烯基聚有机硅氧烷, Me为甲 基, 为: Γ5的整数;
C. 含硅氧垸单元 RaSi04 a/2的有机硅树脂 广 10%
D. 不饱和烃 10~50%
所述不饱和烃包括烯烃和炔烃, 所述的烯烃为直链的 α -烯烃、 脂环族烯烃、 芳香族烯烃或分支型烯烃中的任意一种或多种的混合; 所述的炔烃为乙炔、 丙炔、 丁炔、 戊炔、 己炔、 庚炔或辛炔中的任意 一种或多种的混合;
Ε. 催化剂 0. 01~0. 2%
所述的催化剂选自铂 -醇络合物、 铂-烯烃络合物、 铂-醇盐络合 物、 铂 -醚络合物、 铂 -酮络合物、 氯铂酸异丙醇溶液或铂-乙烯基络 合物; 所述催化剂的铂含量为广 20ppm;
F. 二氧化硅 2~6%;
具体为疏水二氧化硅, 比表面积为 5(T500m2/g, 包括气相法疏水二氧 化硅和沉淀法疏水二氧化硅。
2. 根据权利要求 1所述的有机硅组合物, 其特征在于: 所述的 A中 含氢聚有机硅氧烷在 25°C时的动力粘度为 l(T2000mPa * s, B 中 所述的交联剂的在 25 °C时动力粘度为 5〜50 mPa · s。
3. 根据权利要求 1所述的有机硅组合物, 其特征在于: 所述的 B中 的聚硅氧烷中: R2基为甲基; 下标 m为 5〜40的整数, n为广 3 的整数; s为 2〜25的整数。
4. 根据权利要求 1所述的有机硅组合物, 其特征在于: 所述的 D中 直链的 α -烯烃为 α -己烯、 α -辛烯、 α _癸烯、 α _十二烯、 α _ 十四烯、 α _十六烯、 α _十八烯、 α _二十烯、 α _C2(TC24 烯烃 的混合物、 a -C24〜C28烯烃的混合物或 α -三十烯; 所述脂环族 烯烃为蒎烯、 茨烯、 双戊烯、 环戊烯或降冰片烯; 所述的芳香族 烯烃为 α -甲基苯乙烯或苯乙烯; 所述的分枝型烯烃为异戊烯或 异辛烯。
5. 一种权利要求 1-4任一项所述的有机硅组合物的制备方法, 具体 歩骤如下:
①将含氢聚有机硅氧烷 Α、 有机硅树脂 C和不饱和烃 D加入到反应容 器中, 升温至 5(T80°C, 保温 0. 2〜5h, 使有机硅树脂溶解;
②加入催化剂 E,在 10(T200°C反应广 3h后加入交联剂 B和二氧化硅 F, 在 15(T200°C保温直至形成交联的聚合物;
③保温结束后, 并在一 0. 0Γ-0. 08MPa真空度下维持 0. 1〜1. 5h; 最后, 冷却到室温即得到粘稠的交联有机硅组合物, 粘度为 20, 000〜100, OOOmPa · s。
6. 一种权利要求 1-4任一项所述的有机硅组合物制备的有机硅活性 物, 其原料及各原料占有机硅活性物总质量的百分比为:
I . 权利要求 1-4任一项所述的有机硅组合物 35〜65%;
II . 乳化剂, 为非离子表面活性剂 5〜35%;
III. 结构剂 9〜50%.
其中, 所述乳化剂为非离子表面活性剂; 所述的结构剂为丙烯酸 类聚合物、 纤维素醚、 柠檬酸或柠檬酸盐类或聚乙烯吡咯烷酮中的 任意一种或多种的混合。
7. 根据权利要求 6所述有机硅活性物, 其特征在于: 所述丙烯酸类 聚合物为马来酸丙烯酸共聚物、 聚丙烯酸或其部分钠盐; 所述纤 维素醚指水溶性的或可水溶胀的纤维素醚; 所述柠檬酸盐类为柠 檬酸钠或柠檬酸钾; 这些结构剂可以单独使用, 也可以任意比例 混合使用。
8. —种权利要求 6所述的有机硅活性物的制备方法: 将配方量的有 机硅组合物、 乳化剂和结构剂直接混合均匀, 经过胶体磨均质化 0. Γ0. 5h后装入容器中, 边搅拌边升温至 80°C充分混匀 0. 5〜2h, 得到粘度为 100(Tl0, OOOmPa · s的有机硅活性物。
9. 一种权利要求 6所述的有机硅活性物制备的固体消泡剂, 其原料 及各原料占固体消泡剂总质量的百分比为:
权利要求 6所述的有机硅活性物 18〜45%;
载体 50〜75%;
溶剂 2〜10%;
其中, 所述载体选自硫酸盐、碳酸盐、磷酸盐、聚磷酸盐、淀粉、 纤维素或硅铝酸盐中的任意一种或多种的混合;
所述溶剂为醇类物质或水中的任意一种或多种的混合。
10.一种权利要求 9所述的固体消泡剂的制备方法, 具体操作歩骤如 下: 首先将配方量的有机硅活性物和载体加入到混合器中, 搅拌均匀 后向其中加入配方量的溶剂混合, 造粒烘干。
PCT/CN2013/079663 2013-07-11 2013-07-19 一种有机硅组合物、制备方法及应用 WO2015003407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310290304.1A CN104274998B (zh) 2013-07-11 2013-07-11 一种有机硅组合物、制备方法及应用
CN2013102903041 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015003407A1 true WO2015003407A1 (zh) 2015-01-15

Family

ID=52250639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079663 WO2015003407A1 (zh) 2013-07-11 2013-07-19 一种有机硅组合物、制备方法及应用

Country Status (3)

Country Link
CN (1) CN104274998B (zh)
CL (1) CL2015000712A1 (zh)
WO (1) WO2015003407A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646543A (zh) * 2020-12-22 2021-04-13 深圳斯多福新材料科技有限公司 一种有机硅液态光学胶及其制备方法
CN113355122A (zh) * 2021-05-29 2021-09-07 浙江红狮环保股份有限公司 一种水泥窑协同处置钻井岩屑的方法
CN113730964A (zh) * 2021-09-14 2021-12-03 浙江传化华洋化工有限公司 消泡剂及其制备方法和应用
CN114316599A (zh) * 2021-06-07 2022-04-12 南京瑞思化学技术有限公司 一种有机硅组合物的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106890485A (zh) * 2015-12-18 2017-06-27 滁州四新科技有限责任公司 一种用于漂洗的消泡组合物的制备方法
CN106799069A (zh) * 2016-12-28 2017-06-06 广东中联邦精细化工有限公司 一种洗涤用品生产专用消泡剂及其制备方法
CN109107229A (zh) * 2018-08-23 2019-01-01 南京瑞思化学技术有限公司 有机硅组合物
CN109234071B (zh) * 2018-10-01 2021-03-05 南京瑞思化学技术有限公司 一种泡沫控制剂及其制备方法
CN109260771B (zh) * 2018-10-17 2021-04-27 南京瑞思化学技术有限公司 一种有机硅控泡组合物
CN109592690B (zh) * 2018-12-18 2020-06-26 山东东岳有机硅材料股份有限公司 一种利用气相二氧化硅制备疏水性二氧化硅的方法
CN111013201B (zh) * 2019-12-03 2022-05-03 江苏四新科技应用研究所股份有限公司 消泡剂组合物
CN112795367A (zh) * 2020-12-29 2021-05-14 苏州添易朗科技有限公司 一种快速脱泡的高折光学硅凝胶的制备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422712A (zh) * 2008-11-25 2009-05-06 南京四新科技应用研究所有限公司 一种消泡剂组合物的制备
CN101632908A (zh) * 2009-08-19 2010-01-27 南京四新科技应用研究所有限公司 一种消泡剂组合物的制备
CN102337031A (zh) * 2011-06-29 2012-02-01 南京四新科技应用研究所有限公司 低粘度有机硅组合物及其制备方法
CN102489048A (zh) * 2011-12-26 2012-06-13 滁州四新科技有限责任公司 一种消泡剂组合物及其制备方法
CN102698475A (zh) * 2012-06-29 2012-10-03 南京四新科技应用研究所有限公司 一种消泡组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139513A (zh) * 2007-10-19 2008-03-12 深圳市金科特种材料股份有限公司 有机硅耐高温导热粘合剂
CN101348571B (zh) * 2008-09-02 2011-08-03 南京四新科技应用研究所有限公司 一种分散高粘度有机硅组合物于水中的方法
CN101884852A (zh) * 2010-06-30 2010-11-17 南京四新科技应用研究所有限公司 一种改进聚醚消泡剂性能的方法
CN101885916B (zh) * 2010-06-30 2012-08-22 南京四新科技应用研究所有限公司 一种有机硅组合物及其制备方法
CN101991976B (zh) * 2010-12-13 2012-08-22 南京四新科技应用研究所有限公司 一种固体消泡剂及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422712A (zh) * 2008-11-25 2009-05-06 南京四新科技应用研究所有限公司 一种消泡剂组合物的制备
CN101632908A (zh) * 2009-08-19 2010-01-27 南京四新科技应用研究所有限公司 一种消泡剂组合物的制备
CN102337031A (zh) * 2011-06-29 2012-02-01 南京四新科技应用研究所有限公司 低粘度有机硅组合物及其制备方法
CN102489048A (zh) * 2011-12-26 2012-06-13 滁州四新科技有限责任公司 一种消泡剂组合物及其制备方法
CN102698475A (zh) * 2012-06-29 2012-10-03 南京四新科技应用研究所有限公司 一种消泡组合物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646543A (zh) * 2020-12-22 2021-04-13 深圳斯多福新材料科技有限公司 一种有机硅液态光学胶及其制备方法
CN112646543B (zh) * 2020-12-22 2024-01-16 深圳斯多福新材料科技有限公司 一种有机硅液态光学胶及其制备方法
CN113355122A (zh) * 2021-05-29 2021-09-07 浙江红狮环保股份有限公司 一种水泥窑协同处置钻井岩屑的方法
CN113355122B (zh) * 2021-05-29 2022-12-13 浙江红狮环保股份有限公司 一种水泥窑协同处置钻井岩屑的方法
CN114316599A (zh) * 2021-06-07 2022-04-12 南京瑞思化学技术有限公司 一种有机硅组合物的制备方法
CN114316599B (zh) * 2021-06-07 2023-04-07 南京瑞思化学技术有限公司 一种有机硅组合物的制备方法
CN113730964A (zh) * 2021-09-14 2021-12-03 浙江传化华洋化工有限公司 消泡剂及其制备方法和应用

Also Published As

Publication number Publication date
CN104274998B (zh) 2016-12-28
CN104274998A (zh) 2015-01-14
CL2015000712A1 (es) 2015-06-26

Similar Documents

Publication Publication Date Title
WO2015003407A1 (zh) 一种有机硅组合物、制备方法及应用
CN104130879B (zh) 一种用于液体洗涤剂的消泡剂
CN101632908B (zh) 一种消泡剂组合物的制备
EP2393909B1 (en) Foam control composition
CN103272411B (zh) 一种泡沫抑制剂及其制备方法
JP4664472B2 (ja) シリコーン制泡剤
JP5922305B2 (ja) オルガノポリシロキサンを含有する消泡剤調合物
CN102698475B (zh) 一种消泡组合物
CN101884852A (zh) 一种改进聚醚消泡剂性能的方法
CN110898467B (zh) 消泡活性物、其制备方法及消泡剂
CN104069656B (zh) 一种消泡组合物
WO2016101568A1 (zh) 一种有机硅组合物及其制备、应用
US6207722B1 (en) Foam control compositions having resin-fillers
EP3494171A1 (en) Foam control compositions comprising silicone materials
CN105498305A (zh) 一种有机硅消泡组合物
CN103275493B (zh) 一种有机硅组合物
WO2020224156A1 (zh) 一种有机硅组合物
CN106215466A (zh) 一种高稳定性有机硅消泡剂的制备方法
CN109758794A (zh) 一种有机硅组合物的制备方法
CN103669108A (zh) 一种造纸工业用有机硅消泡剂及其制备方法
WO2014075422A1 (zh) 一种有机硅组合物及其制备方法
CN106890485A (zh) 一种用于漂洗的消泡组合物的制备方法
CN106267913A (zh) 一种高稳定性有机硅消泡剂
CN106215467A (zh) 一种有机硅消泡剂
WO2021254171A1 (zh) 一种有机硅消泡组合物及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014/14676

Country of ref document: TR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015000712

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC DATED 04.07.2016(F1205A).

122 Ep: pct application non-entry in european phase

Ref document number: 13889304

Country of ref document: EP

Kind code of ref document: A1