WO2015003361A1 - 一种液晶面板、驱动方法和液晶显示装置 - Google Patents

一种液晶面板、驱动方法和液晶显示装置 Download PDF

Info

Publication number
WO2015003361A1
WO2015003361A1 PCT/CN2013/079202 CN2013079202W WO2015003361A1 WO 2015003361 A1 WO2015003361 A1 WO 2015003361A1 CN 2013079202 W CN2013079202 W CN 2013079202W WO 2015003361 A1 WO2015003361 A1 WO 2015003361A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
thin film
driving
film transistor
turned
Prior art date
Application number
PCT/CN2013/079202
Other languages
English (en)
French (fr)
Inventor
朱江
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/111,546 priority Critical patent/US9286844B2/en
Publication of WO2015003361A1 publication Critical patent/WO2015003361A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage

Definitions

  • Liquid crystal panel driving method and liquid crystal display device
  • the present invention relates to the field of liquid crystal display, and more particularly to a liquid crystal panel, a driving method, and a liquid crystal display device.
  • the liquid crystal display device includes a liquid crystal panel, and a backlight module that supplies a light source to the liquid crystal panel.
  • the liquid crystal panel includes a plurality of thin film transistors (TFTs), and vertical and horizontal interlaced scan lines and data lines.
  • the scan lines of each row control the gates of the TFTs of one row, and the data lines of each column are connected to the sources of one column of TFTs, and the TFTs of each of the TFTs
  • the drain is connected to a pixel electrode to form a pixel capacitor, the pixel capacitor includes an opposite pixel electrode and a common electrode, the pixel electrode is connected to the drain of the TFT, and the common electrode is generally connected to a constant voltage signal.
  • the pixel electrode and the common electrode are filled with liquid crystal molecules.
  • the liquid crystal panel In order to prevent irreversible damage to the liquid crystal molecules caused by a constant electric field, the liquid crystal panel must be driven in a "polarity inversion” manner, that is, the voltage of the data line is reversed, and the voltage difference between the pixel electrode and the common electrode is maintained. It does not change, so the liquid crystal molecules change the orientation with the reversal of the electric field, but the deflection angle remains unchanged, and the display effect is not affected.
  • “Polarity reversal” includes line inversion, column inversion, and dot inversion, among which the display with dot inversion is the best.
  • this driving method consumes the most power. Because the data line and its connected pixel capacitance have a large capacitance, the power consumption of the data driving circuit accounts for the majority of the entire driving circuit. How to reduce the dynamic power consumption of the data driving circuit has become a research hotspot.
  • the technical problem to be solved by the present invention is to provide a liquid crystal panel, a driving method, and a liquid crystal display device which can reduce power consumption in a dot-reversed liquid crystal panel.
  • the object of the present invention is achieved by the following technical solutions:
  • a liquid crystal panel comprising a plurality of thin film transistors, a vertical and horizontal interlaced scan lines and data lines, a scan drive chip for driving the scan lines, and a data drive chip for driving the data lines; each gate of the thin film transistor is connected to one scan line, each column The source of the thin film transistor is connected to one data line, the drain of each thin film transistor is connected to one pixel electrode, and the scan driving chip comprises a compensation driving unit coupled with the scan line;
  • the compensation driving unit drives the thin film transistor corresponding to the scan line of the next row to be turned on when the scan driving chip drives the thin film transistor corresponding to the current scan line to be turned on, and the data of the data driving chip is received by the thin film transistor corresponding to the current scan line.
  • the thin film transistor corresponding to the scan line of the next row is driven off or before. After the current scan line drive ends, the thin film transistor corresponding to the next scan line is re-driven, and is turned off after a scan interval.
  • the one scan interval time refers to a time during which the scan signal of each scan line continues in one frame display screen.
  • the liquid crystal panel further includes a first switch module, and the control end of the first switch module is coupled with the first drive module; the data line is connected by the first switch module and its adjacent data line;
  • the driving module drives the first switching module to be turned on when the scan driving chip drives the thin film transistor corresponding to the current scan line to be turned on, or drives the first time when the thin film transistor corresponding to the current scan line receives the data signal of the data driving chip or before The switch module is turned off.
  • the technical solution adds a first switch module.
  • the pixel electrodes corresponding to the thin film transistors connected by the same row of scan lines can also implement charge sharing, that is, for the current Any pixel electrode corresponding to the scan line can not only share the charge with the pixel electrode of the same column, but also share the charge with the pixel electrode of the same row, and the pixel electrode can supplement more electric negative polarity capacitors in the same time.
  • the power consumption of the data driving circuit is further reduced.
  • each of the data lines and the adjacent one of the data lines are connected to the first switch module. Assuming that there are N data lines, if any two data lines can be electrically connected to each other, N-1 first switch modules are needed; and the technical solution can reduce the number of the first switch modules by half. Test Considering that the first switch module itself and its first drive module also need to consume electrical energy, the technical solution can not only save material cost, but also further reduce energy consumption.
  • a second switch module is connected in series between the data driving chip and each data line, and a second driving module is coupled to the control end of the second switch module; the second driving module is driven by the scan driving chip
  • the second switch module is controlled to be turned on, and is turned on after a preset delay time, and the data signal output by the data driving chip passes the second switch after the delay time.
  • the module is coupled to the thin film transistor corresponding to the current scan line; the next scan line drives the corresponding thin film transistor to turn off at or before the end of the delay time.
  • the technical solution does not need to change the original data driving chip, and the second switching module is added to control the turning on or off of the data signal, so as to flexibly adjust the charge sharing time between the pixel electrodes. Since it is not necessary to change the existing data driving chip, it is advantageous to increase the multiplexing rate of the circuit.
  • a driving method of a liquid crystal panel comprising a plurality of thin film transistors, a vertical and horizontal scanning line and a data line, a scanning driving chip for driving the scanning lines, and a data driving chip for driving the data lines; and a gate of each of the thin film transistors A scan line is connected, a source of each thin film transistor is connected to one data line, and a drain of each thin film transistor is connected to one pixel electrode; the driving method includes:
  • the scan driving chip drives the thin film transistor corresponding to the current scan line to be turned on;
  • the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to be turned on;
  • the first switch module is further connected to the adjacent data lines, and the step B further includes: controlling the first switch module to be turned on; the step C further includes: determining that the current scan line corresponds to Whether the thin film transistor starts to receive the data driving signal of the data driving chip, and controls the first switching module to be turned off before or when the thin film transistor corresponding to the current scanning line starts to receive the data driving signal of the data driving chip.
  • the technical solution adds a first switch module.
  • the pixel electrodes corresponding to the thin film transistors connected by the same row of scan lines can also be To achieve charge sharing, that is, for any pixel electrode corresponding to the current scan line, not only the charge can be shared with the pixel electrode of the same column, but also the charge can be shared with the pixel electrode of the same row, and the pixel electrode can be supplemented at the same time. More charge, which means that the data drive chip injects less power into the charge.
  • the step B includes: first controlling the first switch module to be turned on, and after the first switch module is turned off, the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to be turned on. The same row of charge sharing is performed first, and then the charge sharing of the same column is performed.
  • the step B includes: the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to be turned on; and the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to turn off, and controls the first switch module to be turned on; Alternatively, the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to be turned on, and at the same time, controls the first switch module to be turned on.
  • the same column of charge sharing is performed first, and then the charge sharing of the same row is performed. Or the same column charge sharing and charge sharing of the same row at the same time, so that each pixel electrode can simultaneously obtain electric charges from two sets of charges, and more charges can be obtained in the same time, and the charging speed is increased.
  • a second switch module is connected in series between the data driving chip and each of the data lines; the step A further includes a step A1, and the second switch module is disconnected;
  • the step C includes the following steps: After the preset delay time is reached, the second switch module is controlled to be turned on; at this time, it is determined that the thin film transistor corresponding to the current scan line starts to receive the data drive signal of the data driving chip.
  • the technical solution does not need to change the original data driving chip, and the second switching module is added to control the turning on or off of the data signal, so as to flexibly adjust the charge sharing time between the pixel electrodes. Since there is no need to change the existing data driving chip, it is advantageous to increase the multiplexing rate of the circuit.
  • a liquid crystal panel comprising: a scan line and a data line which are criss-crossed, a scan drive chip for driving the scan line, and a data drive chip for driving the data line;
  • the scan drive chip includes a compensation drive unit coupled to the scan line;
  • the time allocated for driving each scanning line is one scanning interval, and the compensation driving unit outputs a driving film in one scanning interval of each scanning line.
  • the compensation driving unit outputs a first driving signal of the scanning line of the next row when the second driving signal of the current scanning line is output, or corresponding to the current scanning line
  • the thin film transistor receives the data signal of the data driving chip or before, turns off the first driving signal; and after the second driving signal of the current scanning line ends, outputs the second driving signal of the scanning line in the next row.
  • the present invention is provided with a compensation driving unit inside the scan driving chip; the compensation driving unit drives the next scanning line corresponding to when the scanning driving chip drives the thin film transistor (hereinafter referred to as the first thin film transistor) corresponding to the current scanning line to be turned on or after
  • the thin film transistor is hereinafter referred to as a second thin film transistor) turned on (ie, outputs a first driving signal of the next line of scanning lines).
  • the first thin film transistor and the second thin film transistor are both in an on state, a pixel capacitance (assuming a positive polarity capacitance) formed between the pixel electrode and the common electrode connected to the first thin film transistor, and a pixel connected to the second thin film transistor.
  • the pixel capacitance formed between the electrode and the common electrode (assumed to be a negative polarity capacitor) can be electrically connected through the same data line, and the mutual charge can be shared, causing the voltage of the positive polarity capacitor to drop and the voltage of the negative polarity capacitor to rise.
  • the second thin film transistor is turned off (i.e., the first driving signal of the next row of scanning lines is turned off)
  • the data signal of the data driving chip is coupled to the positive polarity capacitor through the first thin film transistor.
  • the original positive polarity capacitor needs to be converted into a negative polarity capacitor, and the voltage of the original positive polarity capacitor has been pulled down by the charge sharing, and the data driving chip only needs to inject less charge.
  • FIG. 1 is a schematic view showing the principle of a liquid crystal panel of the present invention
  • FIG. 2 is a schematic diagram of the principle of a liquid crystal panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a driving method of a liquid crystal panel according to Embodiment 2 of the present invention
  • 4a is a schematic diagram showing the principle of charge sharing of pixel capacitors in the same row according to Embodiment 2 of the present invention
  • FIG. 4b is a schematic diagram showing the principle of charge sharing of pixel capacitors in the same column according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of waveforms of charge sharing of a pixel capacitor according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the principle of simultaneously sharing charges in two rows and columns according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of waveforms of charge sharing of a second type of pixel capacitor according to Embodiment 2 of the present invention.
  • the invention discloses a liquid crystal display device.
  • the liquid crystal display device includes a liquid crystal panel and a backlight module.
  • the liquid crystal panel includes a plurality of thin film transistors (TFTs), vertical and horizontal scanning lines 10 and data lines 20, a scan driving chip 30 for driving the scan lines 10, and a driving device.
  • TFTs thin film transistors
  • the data of the data line 20 drives the chip 40; the gate of each row of TFTs is connected to a scan line 10, the source of each column of TFTs is connected to a data line 20, and the drain of each TFT is connected to a pixel electrode, the pixel electrode and the common electrode Forming a pixel capacitance, the scan driving chip 30 includes a compensation driving unit 31 coupled to the scan line 10; the compensation driving unit 31 is when the scan driving chip 30 drives the thin film transistor corresponding to the current scan line C1 to be turned on or after The thin film transistor corresponding to the scan line C2 of the next row is turned on, and the thin film transistor corresponding to the scan line C2 of the next row is turned off before or when the thin film transistor corresponding to the current scan line C1 receives the data signal of the data drive chip.
  • the time allocated to each scan line drive is one scan interval. After the current scan line C1 is driven, the scan driver chip will drive the next thin film transistor corresponding to the next scan line C2 to turn on, and then turn off again after one scan interval.
  • the scan driving chip outputs only one scan interval driving signal in one frame image; in the present invention, the compensation driving unit outputs the driving thin film transistor in one scanning interval of each scanning line. a first driving signal and a second driving signal that are turned on; the compensation driving unit outputs a first driving signal of the scanning line of the next row when the second driving signal of the current scanning line is output, or a film corresponding to the current scanning line
  • the transistor receives the data signal of the data driving chip or before turning off the first driving signal; and after the second driving signal of the current scanning line ends, outputting the next line of scanning scanning The second drive signal of the trace.
  • each scan line drives the corresponding thin film transistor to be turned on until the data signal arrives
  • the scan line is shared with the next scan line for charge sharing; of course, each scan line can also be a group. Sharing the two schemes, when the first scan line drives the corresponding thin film transistor to be turned on until the data signal arrives, the scan line is shared with the next scan line for charge sharing, when the next scan line of the group When the corresponding thin film transistor is turned on, the data signal is directly loaded, and charge sharing is no longer performed.
  • the present invention is provided with a compensation driving unit inside the scan driving chip; the compensation driving unit drives the next scanning line corresponding to when the scanning driving chip drives the thin film transistor (hereinafter referred to as the first thin film transistor) corresponding to the current scanning line to be turned on or after
  • the thin film transistor is hereinafter referred to as a second thin film transistor) turned on (ie, outputs a first driving signal of the next line of scanning lines).
  • the first thin film transistor and the second thin film transistor are both in an on state, a pixel capacitance (assuming a positive polarity capacitance) formed between the pixel electrode and the common electrode connected to the first thin film transistor, and a pixel connected to the second thin film transistor.
  • the pixel capacitance formed between the electrode and the common electrode (assumed to be a negative polarity capacitor) can be electrically connected through the same data line, and the mutual charge can be shared, causing the voltage of the positive polarity capacitor to drop and the voltage of the negative polarity capacitor to rise.
  • the second thin film transistor is turned off (ie, the first driving signal of the next row of scanning lines is turned off)
  • the data signal of the data driving chip is coupled to the positive polarity capacitor through the first thin film transistor.
  • the original positive polarity capacitor needs to be converted into a negative polarity capacitor, and the voltage of the original positive polarity capacitor has been pulled down by the charge sharing, and the data driving chip only needs to inject less charge.
  • Converting the original positive polarity capacitor to the expected negative polarity capacitance reduces the power consumption of the data drive circuit. Furthermore, since the scanning time of each scanning line in one frame of image is shorter, the data signal can be loaded after the charge sharing, so that the liquid crystal molecules can reach the predetermined tilt position more quickly, and the response speed of the liquid crystal molecules is improved, and the improvement is improved. Display quality.
  • the liquid crystal panel includes a plurality of thin film transistors, a vertical and horizontal interlaced scan line 10 and data lines 20, a scan drive chip 30 for driving the scan lines 10, and a data drive chip 40 for driving the data lines 20;
  • the gate of each row of TFTs is connected to a scan line 10
  • the source of each column of TFTs is connected to a data line 20
  • the drain of each TFT is connected to a pixel electrode
  • the scan driver chip 30 includes a compensation drive coupled to the scan line 10.
  • Unit 31 the scan driver chip 30 includes a compensation drive coupled to the scan line 10.
  • the compensation driving unit 31 drives the thin film transistor corresponding to the next scan line C2 to be turned on when the scan driving chip 30 drives the thin film transistor corresponding to the current scan line C1 to be turned on, or the thin film transistor corresponding to the current scan line C1.
  • the thin film transistor corresponding to the scanning line C2 of the next row is driven off, and after the driving of the current scanning line C1 is finished, the thin film transistor corresponding to the scanning line C2 of the next row is re-driven to continue for one scanning interval. Then close again.
  • the one scanning interval time refers to the time during which the scanning signal of each scanning line 10 continues in one frame display screen.
  • a first switch module 51 is further connected between the adjacent data lines 20, and a first drive module 61 is coupled to the control end of the first switch module 51.
  • the first drive module 61 drives the current scan drive chip 30.
  • the first switch module 51 is turned on, and the first switch module 51 is turned off when the thin film transistor corresponding to the current scan line C1 receives the data signal of the data drive chip.
  • the first switch module 51 is turned on, the adjacent two data lines 20 are electrically connected, so that the pixel capacitance corresponding to the thin film transistor connected to the scan line 10 of the same row can also achieve charge sharing, that is, the pixel corresponding to the first thin film transistor Q1.
  • the capacitor can share the charge not only with the pixel capacitance corresponding to the second thin film transistor Q2 of the same column, but also with the pixel capacitance corresponding to the third thin film transistor Q3 of the same row, and the pixel capacitor can add more charges in the same time. This means that the capacity of the data drive circuit is further reduced.
  • each data line 20 is connected to the adjacent one of the data lines 20 with the first switch module 51.
  • N-1 first switch modules 51 are required; and the first switch module 51 can be reduced by half by the technical solution. quantity.
  • the technical solution can not only save material cost, but also further reduce Energy consumption.
  • the data signals output by the general data line driving chip 40 are continuous, and there is no space between the data signals between the thin film transistors corresponding to the adjacent two scanning lines 10.
  • the present invention can change the data line driving.
  • the output timing of the chip 40 increases the interval time between the two data signals.
  • the present embodiment selects an external expansion circuit outside the data driving chip to implement the interval between two adjacent data signals.
  • a second switch module 52 is connected in series between the data driving chip and each of the data lines 20, and a second driving module 62 is coupled to the control end of the second switch module 52.
  • the second driving module 62 controls the second switch module 52 to be turned on when the scan driving chip 30 drives the thin film transistor corresponding to the current scan line C1 to be turned on, and is turned on after a preset delay time.
  • the data signal output by the data driving chip is coupled to the thin film transistor corresponding to the current scanning line C1 through the second switching module 52 after the delay time.
  • the second switching module 52 is added to control the turning on or off of the data signal, so as to flexibly adjust the charge sharing time between the pixel capacitors. Since there is no need to change the existing data driving chip, it is beneficial to increase the multiplexing rate of the circuit.
  • the embodiment discloses a driving method of a liquid crystal panel, wherein the liquid crystal panel includes a plurality of thin film transistors, scan lines and data lines crisscrossed, scan driving chips for driving scan lines, and data for driving data lines.
  • a driving chip a gate of each row of TFTs is connected to one scanning line, a source of each TFT is connected to one data line, and a drain of each TFT is connected to one pixel electrode;
  • the driving method includes:
  • the scan driver chip drives the current scan line C1 corresponding to the thin film transistor turned on;
  • the scan driver chip drives the next row of scan lines C2 corresponding thin film transistor is turned on;
  • a first switch module is further connected between the adjacent data lines, and the step B further includes: controlling the The first switch module is turned on; the step C further includes: determining whether the thin film transistor corresponding to the current scan line starts to receive the data driving signal of the data driving chip, and starting to receive the data of the data driving chip in the thin film transistor corresponding to the current scan line The first switch module is turned off when the signal is driven or before.
  • the adjacent two data lines are electrically connected, so that the pixel capacitance corresponding to the thin film transistor connected by the same row of scan lines can also achieve charge sharing, that is, for any pixel capacitor corresponding to the current scan line, not only can
  • the charge is shared with the pixel capacitance of the same column, and the charge can be shared with the pixel capacitance of the same row.
  • the pixel capacitance can add more charge, which means that the number further reduces the power consumption of the data driving circuit.
  • each pixel capacitor can share the charge with the pixel capacitor of the same row, or share the charge with the pixel capacitor of the same column.
  • step B can have multiple action logics.
  • the step B includes: first controlling the first switch module to be turned on, and after the first switch module is turned off, the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to be turned on.
  • the first drive module drives the first switch module to be turned off briefly, and the second drive module drives the second switch module to be closed, and the opposite charge stored by the two columns of pixel capacitors adjacent to the current scan line Neutralize each other, as shown in Figure 4a, to achieve the first charge sharing.
  • the next line of scan lines is connected to a very short scan signal, and the pixel capacitance of the same column charges the pixel capacitance of the previous column, as shown in Figure 4b, which achieves a second charge sharing.
  • the first switch module is closed, the second switch module is disconnected, and the data signal outputted by the data drive chip is output to the pixel electrode corresponding to the current scan line through the data lines D1 to Dn, thus completing a line scan process.
  • the next line of scan lines is also supplemented by the third line of scan lines, and so on, up to the last line. See Figure 5 for the specific drive waveform.
  • the step B includes: the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to be turned on; and the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to turn off, and controls the first switch module to be turned on; 3. Share at the same time.
  • the step B includes: the scan driving chip drives the thin film transistor corresponding to the scan line of the next row to be turned on, and controls the first switch module to be turned on.
  • Each pixel capacitor can simultaneously obtain charge from two sets of charges, and more charge can be obtained in the same time, increasing the charging speed. See Figure 7 for specific drive waveforms.
  • the data signal outputted by the general data line driving chip is continuous, and there is no space between the data signals between the thin film transistors corresponding to the adjacent two scanning lines.
  • the present invention can change the data line driving chip.
  • the output timing increases the interval between the two data signals.
  • the present embodiment selects an external expansion circuit outside the data driving chip to implement the interval between two adjacent data signals.
  • the present invention has a second switching module serially connected between the data driving chip and each of the data lines.
  • step A1 before step A: controlling the second switch module to be disconnected;
  • Step C includes: controlling the second switch module to be turned on after reaching the preset delay time; determining that the thin film transistor corresponding to the current scan line starts to receive the data drive signal of the data drive chip, that is, whether the second switch module is turned on. It is determined whether the thin film transistor corresponding to the current scan line starts to receive the data driving signal of the data driving chip.
  • the original data driving chip does not need to be changed, and the second switching module is added to control the turning on or off of the data signal, so as to flexibly adjust the charge sharing time between the pixel capacitors. Since there is no need to change the existing data driver chip, it is beneficial to increase the multiplexing rate of the circuit.
  • All controllable switch modules in the present invention can be controlled by a controllable semiconductor switch such as a TFT, a MOS transistor or a triode. It is to be understood by those skilled in the art that the present invention can be delineated or substituted without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种液晶面板,包括多个薄膜晶体管、纵横交错的扫描线(10)和数据线(20)、驱动扫描线(10)的扫描驱动芯片(30)、驱动数据线(20)的数据驱动芯片(40);每一行薄膜晶体管的闸极连接一条扫描线(10),每一列薄膜晶体管的源极连接一条数据线(20),每个薄膜晶体管的漏极连接一个像素电极,扫描驱动芯片(30)包括与扫描线(10)耦合的补偿驱动单元(31);补偿驱动单元(31)在扫描驱动芯片(30)驱动当前扫描线(C1)对应的薄膜晶体管导通时或之后驱动下一行扫描线(C2)对应的薄膜晶体管导通,在当前扫描线(C1)对应的薄膜晶体管接收数据驱动芯片(40)的数据信号时或之前驱动下一行扫描线(C2)对应的薄膜晶体管关闭,因此可以降低数据驱动电路的功耗。

Description

一种液晶面板、 驱动方法和液晶显示装置
【技术领域】
本发明涉及液晶显示领域, 更具体的说, 涉及一种液晶面板、 驱动方法和 液晶显示装置。
【背景技术】
液晶显示装置包括液晶面板, 给液晶面板提供光源的背光模组。 液晶面板 包括多个薄膜晶体管 (TFT )、 以及纵横交错的扫描线和数据线, 每一行的扫描 线控制一行的 TFT的闸极,每一列的数据线连接一列 TFT的源极,每个 TFT的 漏极连接一个像素电极以形成像素电容, 像素电容包括相对置的像素电极和公 共电极, 像素电极连接到 TFT的漏极, 公共电极一般连接到一个恒定的电压信 号。 像素电极和公共电极之间充满了液晶分子, 通过调整数据线的输出电压就 可以控制像素电极和公共电极之间的压差, 从而调整液晶分子的偏转角度, 实 现光通量的控制。
实现为了防止恒定的电场对液晶分子造成不可逆的损坏, 液晶面板必须以 "极性反转" 的方式来驱动, 即控制数据线的电压的反转, 此时像素电极和公 共电极的压差保持不变, 因此液晶分子虽然也跟着电场的反转改变了方位, 但 其偏转角度仍然不变, 不会影响显示效果。 "极性反转" 包括行反转、 列反转和 点反转, 其中又以点反转进行驱动的显示效果最好。 但由于采用点反转驱动方 式的液晶像素电压在正负之间不停地切换, 因此这种驱动方式的功耗最大。 又 因为数据线及其连接的像素电容有较大的电容, 故数据驱动电路的功耗占整个 驱动电路的绝大部分, 如何减少数据驱动电路的动态功耗已成为研究的热点。
【发明内容】
本发明所要解决的技术问题是提供一种可以在点反转的液晶面板中降低功 耗的液晶面板、 驱动方法和液晶显示装置。 本发明的目的是通过以下技术方案来实现的:
一种液晶面板, 包括多个薄膜晶体管、 纵横交错的扫描线和数据线、 驱动 扫描线的扫描驱动芯片、 驱动数据线的数据驱动芯片; 每一行薄膜晶体管的闸 极连接一条扫描线, 每一列薄膜晶体管的源极连接一条数据线, 每个薄膜晶体 管的漏极连接一个像素电极, 所述扫描驱动芯片包括与扫描线耦合的补偿驱动 单元;
所述补偿驱动单元在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管 导通时或之后驱动下一行扫描线对应的薄膜晶体管导通, 在当前扫描线对应的 薄膜晶体管接收数据驱动芯片的数据信号时或之前驱动下一行扫描线对应的薄 膜晶体管关闭。 在当前扫描线驱动结束后, 重新驱动下一行扫描线对应的薄膜 晶体管导通, 持续一个扫描间隔时间后重新关闭。 所述一个扫描间隔时间是指 在一帧显示画面中, 每条扫描线的扫描信号持续的时间。
进一步的, 所述液晶面板还包括第一开关模块, 第一开关模块的控制端耦 合有第一驱动模块; 所述数据线通过第一开关模块和其相邻的数据线连接; 所述第一驱动模块在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管 导通时或之后驱动第一开关模块导通, 在当前扫描线对应的薄膜晶体管接收数 据驱动芯片的数据信号时或之前驱动第一开关模块关闭。 本技术方案增加了第 一开关模块, 当第一开关模块导通, 相邻的两条数据线电连接, 这样同一行扫 描线连接的薄膜晶体管对应的像素电极也可以实现电荷共享, 即对于当前扫描 线对应的任意一个像素电极不仅可以跟同一列的像素电极共享电荷, 还可以跟 同一行的像素电极共享电荷, 在相同的时间内, 该像素电极可以补充更多的电 的负极性电容, 进一步降低了数据驱动电路的功耗。
进一步的, 所述每条数据线与相邻的其中一根数据线连接有第一开关模块。 假设数据线有 N条, 如果任一两根数据线之间都可以互相电连接, 则需要 N-1 个第一开关模块; 而采用本技术方案可以缩减一半的第一开关模块的数量。 考 虑到第一开关模块本身及其第一驱动模块也需要消耗电能, 因此采用本技术方 案不仅可以节约材料成本, 还可以进一步的降低能耗。
进一步的, 所述数据驱动芯片与每条数据线之间串接有第二开关模块, 第 二开关模块的控制端耦合有第二驱动模块; 所述第二驱动模块在所述扫描驱动 芯片驱动当前扫描线对应的薄膜晶体管导通时或之后控制所述第二开关模块导 通, 并在预设的延迟时间后导通, 所述数据驱动芯片输出的数据信号在延迟时 间后通过第二开关模块耦合到当前扫描线对应的薄膜晶体管; 所述下一行扫描 线在延迟时间结束时或之前驱动对应的薄膜晶体管关闭。 本技术方案无须改变 原有的数据驱动芯片, 通过增加第二开关模块来控制数据信号的导通或关掉, 以便灵活调整像素电极之间的电荷共享时间。 由于无须更改现有的数据驱动芯 片, 有利于提高电路的复用率。
一种液晶面板的驱动方法, 所述液晶面板包括多个薄膜晶体管、 纵横交错 的扫描线和数据线、 驱动扫描线的扫描驱动芯片、 驱动数据线的数据驱动芯片; 每一行薄膜晶体管的闸极连接一条扫描线, 每一列薄膜晶体管的源极连接一条 数据线, 每个薄膜晶体管的漏极连接一个像素电极; 所述驱动方法包括:
A、 扫描驱动芯片驱动当前扫描线对应的薄膜晶体管导通;
B、 扫描驱动芯片驱动下一行扫描线对应的薄膜晶体管导通;
C、 判断当前扫描线对应的薄膜晶体管是否开始接收数据驱动芯片的数据 驱动信号, 并在当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱 动信号时或之前驱动下一行扫描线对应的薄膜晶体管关闭。
进一步的, 所述相邻数据线之间还连接有第一开关模块, 所述步骤 B中还 包括, 控制所述第一开关模块导通; 所述步骤 C中还包括: 判断当前扫描线对 应的薄膜晶体管是否开始接收数据驱动芯片的数据驱动信号, 并在当前扫描线 对应的薄膜晶体管开始接收数据驱动芯片的数据驱动信号时或之前控制第一开 关模块关闭。 本技术方案增加了第一开关模块, 当第一开关模块导通, 相邻的 两条数据线电连接, 这样同一行扫描线连接的薄膜晶体管对应的像素电极也可 以实现电荷共享, 即对于当前扫描线对应的任意一个像素电极不仅可以跟同一 列的像素电极共享电荷, 还可以跟同一行的像素电极共享电荷, 在相同的时间 内, 该像素电极可以补充更多的电荷, 这意味着数据驱动芯片注入更少的电荷 的功耗。
进一步的, 所述步骤 B 中包括: 先控制所述第一开关模块导通, 等所述第 一开关模块关闭后, 扫描驱动芯片驱动下一行扫描线对应的薄膜晶体管导通。 先进行同一行电荷共享, 再进行同一列的电荷共享。
进一步的, 所述步骤 B 中包括: 扫描驱动芯片驱动下一行扫描线对应的薄 膜晶体管导通; 等扫描驱动芯片驱动下一行扫描线对应的薄膜晶体管关闭后控 制所述第一开关模块导通; 或者, 扫描驱动芯片驱动下一行扫描线对应的薄膜 晶体管导通, 同时, 控制所述第一开关模块导通。 先进行同一列电荷共享, 再 进行同一行的电荷共享。 或者同时进行同一列电荷共享和同一行的电荷共享, 这样每个像素电极可以同时从两组电荷中获得电荷, 相同的时间内可以获得更 多电荷, 提高充电速度。
进一步的, 所述数据驱动芯片与每条数据线之间串接有第二开关模块; 所述步骤 A之前还包括步骤 Al、 控制第二开关模块断开;
所述步骤 C中包括步骤: 达到预设的延迟时间后控制第二开关模块导通; 此时判定当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱动信 号。 本技术方案无须改变原有的数据驱动芯片, 通过增加第二开关模块来控制 数据信号的导通或关掉, 以便灵活调整像素电极之间的电荷共享时间。 由于无 须更改现有的数据驱动芯片, 有利于提高电路的复用率。
一种液晶面板, 包括纵横交错的扫描线和数据线、 驱动扫描线的扫描驱动 芯片、 驱动数据线的数据驱动芯片; 所述扫描驱动芯片包括与扫描线耦合的补 偿驱动单元; 在液晶面板的一帧图像中, 分配给每条扫描线驱动的时间为一个 扫描间隔, 所述补偿驱动单元在每条扫描线的一个扫描间隔内输出有驱动薄膜 晶体管导通的第一驱动信号和第二驱动信号; 所述补偿驱动单元在输出当前扫 描线的第二驱动信号时或之后输出下一行扫描扫描线的第一驱动信号, 在当前 扫描线对应的薄膜晶体管接收数据驱动芯片的数据信号时或之前关断第一驱动 信号; 并在当前扫描线的第二驱动信号结束后, 输出下一行扫描扫描线的第二 驱动信号。
本发明在扫描驱动芯片内部设有补偿驱动单元; 补偿驱动单元在所述扫描 驱动芯片驱动当前扫描线对应的薄膜晶体管 (以下称为第一薄膜晶体管)导通 时或之后驱动下一行扫描线对应的薄膜晶体管以下称为第二薄膜晶体管)导通 (即输出下一行扫描线的第一驱动信号)。 此时, 第一薄膜晶体管和第二薄膜晶 体管都处于导通状态, 第一薄膜晶体管连接的像素电极与公共电极之间形成的 像素电容(假设为正极性电容)和第二薄膜晶体管连接的像素电极与公共电极 之间形成的像素电容(假设为负极性电容)可以通过同一根数据线电连接, 相 互之间的电荷可以共享, 造成正极性电容的电压下降, 负极性电容的电压上升。 等第二薄膜晶体管关断(即关断下一行扫描线的第一驱动信号), 数据驱动芯片 的数据信号通过第一薄膜晶体管耦合到正极性电容。 根据点反转的特性, 需要 将原正极性电容转变成负极性的电容, 而前面通过电荷共享已经拉低了原正极 性电容的电压, 此时数据驱动芯片只需要注入较少的电荷就可以将原正极性电 容转变成预期的负极性电容, 降低了数据驱动电路的功耗。 再者, 由于在一帧 图像中, 每条扫描线的扫描时间 [艮短, 通过电荷共享后再加载数据信号, 可以 让液晶分子更快达到预定的倾角位置, 提高液晶分子的响应速度, 改善显示品
【附图说明】
图 1是本发明液晶面板的原理示意图;
图 2是本发明实施例一液晶面板的原理示意图;
图 3是本发明实施例二液晶面板的驱动方法示意图; 图 4a是本发明实施例二同一行像素电容电荷共享的原理示意图; 图 4b是本发明实施例二同一列像素电容电荷共享的原理示意图;
图 5是本发明实施例二第一种像素电容电荷共享的波形示意图;
图 6是本发明实施例二行、 列同时共享电荷的原理示意图;
图 7是本发明实施例二第二种像素电容电荷共享的波形示意图。
【具体实施方式】
本发明公开一种液晶显示装置。 液晶显示装置包括液晶面板和背光模组, 如 图 1所示, 液晶面板包括多个薄膜晶体管 (TFT)、 纵横交错的扫描线 10和数据 线 20、 驱动扫描线 10的扫描驱动芯片 30、 驱动数据线 20的数据驱动芯片 40; 每一行 TFT的闸极连接一条扫描线 10, 每一列 TFT的源极连接一条数据线 20, 每个 TFT的漏极连接一个像素电极, 像素电极与公共电极之间形成像素电容, 所述扫描驱动芯片 30包括与扫描线 10耦合的补偿驱动单元 31; 所述补偿驱动 单元 31在所述扫描驱动芯片 30驱动当前扫描线 C1对应的薄膜晶体管导通时或 之后驱动下一行扫描线 C2对应的薄膜晶体管导通, 在当前扫描线 C1对应的薄 膜晶体管接收数据驱动芯片的数据信号时或之前驱动下一行扫描线 C2对应的薄 膜晶体管关闭。
定义液晶面板的一帧图像中, 分配给每条扫描线驱动的时间为一个扫描间 隔。 当前扫描线 C1驱动结束后, 扫描驱动芯片会重新驱动下一行扫描线 C2对 应的薄膜晶体管导通, 持续一个扫描间隔时间后重新关闭。
在现有的扫描驱动中, 扫描驱动芯片在一帧的图像中只会输出一个扫描间隔 的驱动信号; 而本发明中, 补偿驱动单元在每条扫描线的一个扫描间隔内输出 有驱动薄膜晶体管导通的第一驱动信号和第二驱动信号; 所述补偿驱动单元在 输出当前扫描线的第二驱动信号时或之后输出下一行扫描扫描线的第一驱动信 号, 在当前扫描线对应的薄膜晶体管接收数据驱动芯片的数据信号时或之前关 断第一驱动信号; 并在当前扫描线的第二驱动信号结束后, 输出下一行扫描扫 描线的第二驱动信号。
具体来说, 在每一条扫描线驱动对应的薄膜晶体管导通到数据信号抵达的这 段时间内, 该扫描线都跟下一条扫描线进行电荷共享; 当然也可以每两条扫描 线为一组进行共享两种方案, 当第一条扫描线驱动对应的薄膜晶体管导通到数 据信号抵达的这段时间内, 该扫描线都跟下一条扫描线进行电荷共享, 当该组 的下一条扫描线驱动对应的薄膜晶体管导通时, 直接加载数据信号, 不再进行 电荷共享。
本发明在扫描驱动芯片内部设有补偿驱动单元; 补偿驱动单元在所述扫描驱 动芯片驱动当前扫描线对应的薄膜晶体管 (以下称为第一薄膜晶体管)导通时 或之后驱动下一行扫描线对应的薄膜晶体管以下称为第二薄膜晶体管)导通(即 输出下一行扫描线的第一驱动信号)。 此时, 第一薄膜晶体管和第二薄膜晶体管 都处于导通状态, 第一薄膜晶体管连接的像素电极与公共电极之间形成的像素 电容(假设为正极性电容)和第二薄膜晶体管连接的像素电极与公共电极之间 形成的像素电容(假设为负极性电容)可以通过同一根数据线电连接, 相互之 间的电荷可以共享, 造成正极性电容的电压下降, 负极性电容的电压上升。 等 第二薄膜晶体管关断(即关断下一行扫描线的第一驱动信号), 数据驱动芯片的 数据信号通过第一薄膜晶体管耦合到正极性电容。 根据点反转的特性, 需要将 原正极性电容转变成负极性的电容, 而前面通过电荷共享已经拉低了原正极性 电容的电压, 此时数据驱动芯片只需要注入较少的电荷就可以将原正极性电容 转变成预期的负极性电容, 降低了数据驱动电路的功耗。 再者, 由于在一帧图 像中, 每条扫描线的扫描时间 [艮短, 通过电荷共享后再加载数据信号, 可以让 液晶分子更快达到预定的倾角位置, 提高液晶分子的响应速度, 改善显示品质。
下面结合附图和较佳的实施例对本发明作进一步说明。
实施例一
如图 2所示, 液晶面板包括多个薄膜晶体管、 纵横交错的扫描线 10和数据 线 20、 驱动扫描线 10的扫描驱动芯片 30、 驱动数据线 20的数据驱动芯片 40; 每一行 TFT的闸极连接一条扫描线 10, 每一列 TFT的源极连接一条数据线 20, 每个 TFT的漏极连接一个像素电极, 所述扫描驱动芯片 30包括与扫描线 10耦 合的补偿驱动单元 31。
所述补偿驱动单元 31在所述扫描驱动芯片 30驱动当前扫描线 C1对应的薄 膜晶体管导通时或之后驱动下一行扫描线 C2对应的薄膜晶体管导通,在当前扫 描线 C1对应的薄膜晶体管接收数据驱动芯片的数据信号时或之前驱动下一行扫 描线 C2对应的薄膜晶体管关闭, 并在当前扫描线 C1驱动结束后, 重新驱动下 一行扫描线 C2对应的薄膜晶体管导通, 持续一个扫描间隔时间后重新关闭。 所 述一个扫描间隔时间是指在一帧显示画面中, 每条扫描线 10的扫描信号持续的 时间。
所述相邻数据线 20之间还连接有第一开关模块 51 ,第一开关模块 51的控制 端耦合有第一驱动模块 61 ; 所述第一驱动模块 61在所述扫描驱动芯片 30驱动 当前扫描线 C1对应的薄膜晶体管导通时或之后驱动第一开关模块 51导通, 在 当前扫描线 C1对应的薄膜晶体管接收数据驱动芯片的数据信号时或之前驱动第 一开关模块 51关闭。 当第一开关模块 51导通, 相邻的两条数据线 20电连接, 这样同一行扫描线 10连接的薄膜晶体管对应的像素电容也可以实现电荷共享, 即对于第一薄膜晶体管 Q1 对应的像素电容不仅可以跟同一列第二薄膜晶体管 Q2对应的像素电容共享电荷, 还可以跟同一行第三薄膜晶体管 Q3对应的像素 电容共享电荷, 在相同的时间内, 该像素电容可以补充更多的电荷, 这意味着 容, 进一步降低了数据驱动电路的功耗。
为了节约能耗, 每条数据线 20只与相邻的其中一根数据线 20连接有第一开 关模块 51。 假设数据线 20有 N条, 如果任一两根数据线 20之间都可以互相电 连接, 则需要 N-1个第一开关模块 51; 而采用本技术方案可以缩减一半的第一 开关模块 51的数量。 考虑到第一开关模块 51本身及其第一驱动模块 61也需要 消耗电能, 因此采用本技术方案不仅可以节约材料成本, 还可以进一步的降低 能耗。
一般的数据线驱动芯片 40输出的数据信号是连续的, 相邻两条扫描线 10对 应的薄膜晶体管之间的数据信号之间没有间隔, 为了给电荷共享提供时间, 本 发明可以更改数据线驱动芯片 40的输出时序, 在两个数据信号之间增加间隔时 间, 不过这样需要重新设计数据线驱动芯片 40, 难度较大, 成本较高。
本实施方式选择在数据驱动芯片外部扩展电路来实现相邻两个数据信号的 间隔。 具体来说, 本发明在数据驱动芯片与每条数据线 20之间串接有第二开关 模块 52, 第二开关模块 52的控制端耦合有第二驱动模块 62。 所述第二驱动模 块 62在所述扫描驱动芯片 30驱动当前扫描线 C1对应的薄膜晶体管导通时或之 后控制所述第二开关模块 52导通, 并在预设的延迟时间后导通, 所述数据驱动 芯片输出的数据信号在延迟时间后通过第二开关模块 52耦合到当前扫描线 C1 对应的薄膜晶体管。 因此, 无须改变原有的数据驱动芯片, 通过增加第二开关 模块 52来控制数据信号的导通或关掉, 以便灵活调整像素电容之间的电荷共享 时间。 由于无须更改现有的数据驱动芯片, 有利于提高电路的复用率。
实施例二
如图 3所示, 本实施方式公开一种液晶面板的驱动方法, 所述液晶面板包括 多个薄膜晶体管、 纵横交错的扫描线和数据线、 驱动扫描线的扫描驱动芯片、 驱动数据线的数据驱动芯片; 每一行 TFT的闸极连接一条扫描线, 每一歹l TFT 的源极连接一条数据线, 每个 TFT的漏极连接一个像素电极; 所述驱动方法包 括:
A、 扫描驱动芯片驱动当前扫描线 C1对应的薄膜晶体管导通;
B、 扫描驱动芯片驱动下一行扫描线 C2对应的薄膜晶体管导通;
C、 判断当前扫描线对应的薄膜晶体管是否开始接收数据驱动芯片的数据驱 动信号 D, 并在当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱 动信号时或之前驱动下一行扫描线对应的薄膜晶体管关闭。
相邻数据线之间还连接有第一开关模块, 所述步骤 B 中还包括, 控制所述 第一开关模块导通; 所述步骤 C中还包括: 判断当前扫描线对应的薄膜晶体管 是否开始接收数据驱动芯片的数据驱动信号, 并在当前扫描线对应的薄膜晶体 管开始接收数据驱动芯片的数据驱动信号时或之前控制第一开关模块关闭。 当 第一开关模块导通, 相邻的两条数据线电连接, 这样同一行扫描线连接的薄膜 晶体管对应的像素电容也可以实现电荷共享, 即对于当前扫描线对应的任意一 个像素电容不仅可以跟同一列的像素电容共享电荷, 还可以跟同一行的像素电 容共享电荷, 在相同的时间内, 该像素电容可以补充更多的电荷, 这意味着数 进一步降低了数据驱动电路的功耗。
增加第一开关模块后 , 每个像素电容既可以跟同一行的像素电容共享电荷, 也可以跟同一列的像素电容共享电荷。 共享电荷的先后顺序有多种选择。 即步 骤 B可以有多种动作逻辑。
1、 先进行同一行电荷共享, 再进行同一列的电荷共享。 此时所述步骤 B 中 包括: 先控制所述第一开关模块导通, 等所述第一开关模块关闭后, 扫描驱动 芯片驱动下一行扫描线对应的薄膜晶体管导通。
在当前扫描线的扫描信号到来后, 第一驱动模块驱动第一开关模块短暂关 断, 第二驱动模块驱动第二开关模块闭合, 则当前扫描线相邻的两列像素电容 所储存的异性电荷互相中和, 如图 4a所示, 实现第一次电荷分享。 然后下一行 扫描线接到一个很短的扫描信号, 同一列的像素电容给上一列的像素电容充电, 如图 4b所示, 这样实现了第二次电荷分享。 最后, 第一开关模块闭合, 第二开 关模块断开, 由数据驱动芯片输出数据信号通过数据线 Dl ~ Dn输出到当前扫 描线对应的像素电极, 这样也就完成一次行扫描过程。 同理, 下一行扫描线也 由第三行扫描线补充电压, 以此类推, 直至最后一行。 具体驱动波形参见图 5。
2、 先进行同一列电荷共享, 再进行同一行的电荷共享。 此时所述步骤 B 中 包括: 扫描驱动芯片驱动下一行扫描线对应的薄膜晶体管导通; 等扫描驱动芯 片驱动下一行扫描线对应的薄膜晶体管关闭后控制所述第一开关模块导通; 3、 同时共享。 参见图 6, 此时所述步骤 B 中包括: 扫描驱动芯片驱动下一 行扫描线对应的薄膜晶体管导通, 同时, 控制所述第一开关模块导通。 每个像 素电容可以同时从两组电荷中获得电荷, 相同的时间内可以获得更多电荷, 提 高充电速度。 具体驱动波形参见图 7。
一般的数据线驱动芯片输出的数据信号是连续的, 相邻两条扫描线对应的薄 膜晶体管之间的数据信号之间没有间隔, 为了给电荷共享提供时间, 本发明可 以更改数据线驱动芯片的输出时序, 在两个数据信号之间增加间隔时间, 不过 这样需要重新设计数据线驱动芯片, 难度较大, 成本较高。
本实施方式选择在数据驱动芯片外部扩展电路来实现相邻两个数据信号的 间隔。 具体来说, 本发明在数据驱动芯片与每条数据线之间串接有第二开关模 块。
此时需要在步骤 A之前增加步骤 A1: 控制第二开关模块断开;
步骤 C中包括: 达到预设的延迟时间后控制第二开关模块导通; 此时判定当 前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱动信号, 即以第二 开关模块是否导通来判断当前扫描线对应的薄膜晶体管是否开始接收数据驱动 芯片的数据驱动信号。
因此, 本实施方式无须改变原有的数据驱动芯片, 通过增加第二开关模块来 控制数据信号的导通或关掉, 以便灵活调整像素电容之间的电荷共享时间。 由 于无须更改现有的数据驱动芯片, 有利于提高电路的复用率。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能 认定本发明的具体实施只局限于这些说明。 本发明中的所有可控开关模块可以 选用 TFT、 MOS管、 三极管等可控半导体开关。 对于本发明所属技术领域的普 通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干筒单推演或 替换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1.一种液晶面板, 包括多个薄膜晶体管、 纵横交错的扫描线和数据线、 驱 动扫描线的扫描驱动芯片、 驱动数据线的数据驱动芯片; 每一行薄膜晶体管的 闸极连接一条扫描线, 每一列薄膜晶体管的源极连接一条数据线, 每个薄膜晶 体管的漏极连接一个像素电极, 所述扫描驱动芯片包括与扫描线耦合的补偿驱 动单元;
所述补偿驱动单元在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管 导通时或之后驱动下一行扫描线对应的薄膜晶体管导通, 在当前扫描线对应的 薄膜晶体管接收数据驱动芯片的数据信号时或之前驱动下一行扫描线对应的薄 膜晶体管关闭。
2. 如权利要求 1所述液晶面板, 其中, 所述数据驱动芯片与每条数据线之 间串接有第二开关模块, 第二开关模块的控制端耦合有第二驱动模块; 所述第 二驱动模块在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管导通时或之 后控制所述第二开关模块导通, 并在预设的延迟时间后导通, 所述数据驱动芯 片输出的数据信号在延迟时间后通过第二开关模块耦合到当前扫描线对应的薄 膜晶体管; 所述下一行扫描线在延迟时间结束时或之前驱动对应的薄膜晶体管 关闭。
3. 如权利要求 1所述液晶面板, 其中, 所述液晶面板还包括第一开关模块, 第一开关模块的控制端耦合有第一驱动模块; 所述数据线通过第一开关模块和 其相邻的数据线连接;
所述第一驱动模块在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管 导通时或之后驱动第一开关模块导通, 在当前扫描线对应的薄膜晶体管接收数 据驱动芯片的数据信号时或之前驱动第一开关模块关闭。
4. 如权利要求 3所述液晶面板, 其中, 所述每条数据线与相邻的其中一根 数据线连接有第一开关模块。
5. 如权利要求 4所述液晶面板, 其中, 所述数据驱动芯片与每条数据线之 间串接有第二开关模块, 第二开关模块的控制端耦合有第二驱动模块; 所述第 二驱动模块在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管导通时或之 后控制所述第二开关模块导通, 并在预设的延迟时间后导通, 所述数据驱动芯 片输出的数据信号在延迟时间后通过第二开关模块耦合到当前扫描线对应的薄 膜晶体管; 所述下一行扫描线在延迟时间结束时或之前驱动对应的薄膜晶体管 关闭。
6. 一种液晶面板的驱动方法, 所述液晶面板包括多个薄膜晶体管、 纵横交 错的扫描线和数据线、 驱动扫描线的扫描驱动芯片、 驱动数据线的数据驱动芯 片; 每一行薄膜晶体管的闸极连接一条扫描线, 每一列薄膜晶体管的源极连接 一条数据线, 每个薄膜晶体管的漏极连接一个像素电极; 所述驱动方法包括:
A、 扫描驱动芯片驱动当前扫描线对应的薄膜晶体管导通;
B、 扫描驱动芯片驱动下一行扫描线对应的薄膜晶体管导通;
C、 判断当前扫描线对应的薄膜晶体管是否开始接收数据驱动芯片的数据 驱动信号, 并在当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱 动信号时或之前驱动下一行扫描线对应的薄膜晶体管关闭。
7. 如权利要求 6所述液晶面板的驱动方法, 其中, 所述数据驱动芯片与每 条数据线之间串接有第二开关模块;
所述步骤 A之前还包括步骤 A1: 控制第二开关模块断开;
所述步骤 C中包括步骤: 达到预设的延迟时间后控制第二开关模块导通; 此时判定当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱动信 号。
8. 如权利要求 6所述液晶面板的驱动方法, 其中, 所述相邻数据线之间还 连接有第一开关模块, 所述步骤 B中还包括, 控制所述第一开关模块导通; 所 述步骤 C中还包括: 判断当前扫描线对应的薄膜晶体管是否开始接收数据驱动 芯片的数据驱动信号, 并在当前扫描线对应的薄膜晶体管开始接收数据驱动芯 片的数据驱动信号时或之前控制第一开关模块关闭。
9. 如权利要求 8所述液晶面板的驱动方法, 其中, 所述步骤 B中包括: 先 控制所述第一开关模块导通, 等所述第一开关模块关闭后, 扫描驱动芯片驱动 下一行扫描线对应的薄膜晶体管导通。
10. 如权利要求 9所述液晶面板的驱动方法, 其中, 所述数据驱动芯片与每 条数据线之间串接有第二开关模块;
所述步骤 A之前还包括步骤 A1: 控制第二开关模块断开;
所述步骤 C中包括步骤: 达到预设的延迟时间后控制第二开关模块导通; 此时判定当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱动信 号。
11. 如权利要求 8所述液晶面板的驱动方法, 其中, 所述步骤 B中包括: 扫 描驱动芯片驱动下一行扫描线对应的薄膜晶体管导通; 等扫描驱动芯片驱动下 一行扫描线对应的薄膜晶体管关闭后控制所述第一开关模块导通。
12. 如权利要求 11所述液晶面板的驱动方法, 其中, 所述数据驱动芯片与 每条数据线之间串接有第二开关模块;
所述步骤 A之前还包括步骤 A1: 控制第二开关模块断开;
所述步骤 C中包括步骤: 达到预设的延迟时间后控制第二开关模块导通; 此时判定当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱动信 号。
13. 如权利要求 8所述液晶面板的驱动方法, 其中, 所述步骤 B中包括: 扫 描驱动芯片驱动下一行扫描线对应的薄膜晶体管导通, 同时, 控制所述第一开 关模块导通。
14. 如权利要求 13所述液晶面板的驱动方法, 其中, 所述数据驱动芯片与 每条数据线之间串接有第二开关模块;
所述步骤 A之前还包括步骤 A1: 控制第二开关模块断开;
所述步骤 C中包括步骤: 达到预设的延迟时间后控制第二开关模块导通; 此时判定当前扫描线对应的薄膜晶体管开始接收数据驱动芯片的数据驱动信 号。
15. 一种液晶面板, 包括纵横交错的扫描线和数据线、驱动扫描线的扫描驱 动芯片、 驱动数据线的数据驱动芯片; 其中, 所述扫描驱动芯片包括与扫描线 耦合的补偿驱动单元;
在液晶面板的一帧图像中, 分配给每条扫描线驱动的时间为一个扫描间隔, 所述补偿驱动单元在每条扫描线的一个扫描间隔内输出有驱动薄膜晶体管导通 的第一驱动信号和第二驱动信号;
所述补偿驱动单元在输出当前扫描线的第二驱动信号时或之后输出下一行 扫描扫描线的第一驱动信号, 在当前扫描线对应的薄膜晶体管接收数据驱动芯 片的数据信号时或之前关断第一驱动信号; 并在当前扫描线的第二驱动信号结 束后, 输出下一行扫描扫描线的第二驱动信号。
16. 如权利要求 15所述液晶面板, 其中, 所述数据驱动芯片与每条数据线 之间串接有第二开关模块, 第二开关模块的控制端耦合有第二驱动模块; 所述 第二驱动模块在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管导通时或 之后控制所述第二开关模块导通, 并在预设的延迟时间后导通, 所述数据驱动 芯片输出的数据信号在延迟时间后通过第二开关模块耦合到当前扫描线对应的 薄膜晶体管; 所述下一行扫描线在延迟时间结束时或之前驱动对应的薄膜晶体 管关闭。
17. 如权利要求 15所述液晶面板, 其中, 所述液晶面板还包括第一开关模 块, 第一开关模块的控制端耦合有第一驱动模块; 所述数据线通过第一开关模 块和其相邻的数据线连接;
所述第一驱动模块在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管 导通时或之后驱动第一开关模块导通, 在当前扫描线对应的薄膜晶体管接收数 据驱动芯片的数据信号时或之前驱动第一开关模块关闭。
18. 如权利要求 17所述液晶面板, 其中, 所述每条数据线与相邻的其中一 根数据线连接有第一开关模块。
19. 如权利要求 18所述液晶面板, 其中, 所述数据驱动芯片与每条数据线 之间串接有第二开关模块, 第二开关模块的控制端耦合有第二驱动模块; 所述 第二驱动模块在所述扫描驱动芯片驱动当前扫描线对应的薄膜晶体管导通时或 之后控制所述第二开关模块导通, 并在预设的延迟时间后导通, 所述数据驱动 芯片输出的数据信号在延迟时间后通过第二开关模块耦合到当前扫描线对应的 薄膜晶体管; 所述下一行扫描线在延迟时间结束时或之前驱动对应的薄膜晶体 管关闭。
PCT/CN2013/079202 2013-07-09 2013-07-11 一种液晶面板、驱动方法和液晶显示装置 WO2015003361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/111,546 US9286844B2 (en) 2013-07-09 2013-07-11 LC panel having switch unit, and LCD device having switch unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310286902.1 2013-07-09
CN201310286902.1A CN103345094B (zh) 2013-07-09 2013-07-09 一种液晶面板、驱动方法和液晶显示装置

Publications (1)

Publication Number Publication Date
WO2015003361A1 true WO2015003361A1 (zh) 2015-01-15

Family

ID=49279904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079202 WO2015003361A1 (zh) 2013-07-09 2013-07-11 一种液晶面板、驱动方法和液晶显示装置

Country Status (2)

Country Link
CN (1) CN103345094B (zh)
WO (1) WO2015003361A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204496890U (zh) 2015-04-10 2015-07-22 京东方科技集团股份有限公司 显示驱动电路及显示装置
CN108020967B (zh) * 2016-11-01 2021-01-26 京东方科技集团股份有限公司 阵列基板、液晶显示面板以及显示装置
CN106297723B (zh) * 2016-11-09 2020-02-07 厦门天马微电子有限公司 一种像素驱动电路、显示面板以及像素驱动方法
CN106601180B (zh) * 2017-03-01 2019-11-05 京东方科技集团股份有限公司 电压错位电路及其驱动方法、驱动装置和显示设备
US10417971B2 (en) * 2017-03-17 2019-09-17 Apple Inc. Early pixel reset systems and methods
CN108694898B (zh) * 2017-06-09 2022-03-29 京东方科技集团股份有限公司 驱动控制方法、组件及显示装置
CN107831614A (zh) * 2017-11-07 2018-03-23 深圳市华星光电半导体显示技术有限公司 像素驱动架构及显示装置
TWI706406B (zh) * 2018-05-15 2020-10-01 矽創電子股份有限公司 面板驅動電路
CN109410853B (zh) * 2018-10-23 2020-10-13 深圳市华星光电技术有限公司 一种改善垂直串扰的电路与方法
CN110164396B (zh) * 2019-06-12 2021-09-03 京东方科技集团股份有限公司 一种显示面板及其驱动方法、显示装置
CN115113446B (zh) * 2022-06-13 2023-08-08 武汉华星光电技术有限公司 显示模组、驱动方法及显示装置
CN116416928B (zh) * 2023-06-08 2023-09-19 惠科股份有限公司 显示装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274013A1 (en) * 2005-06-07 2006-12-07 Sunplus Technology Co., Ltd. LCD panel driving method and device with charge sharing
CN101598879A (zh) * 2009-07-10 2009-12-09 昆山龙腾光电有限公司 液晶显示面板及液晶显示器
CN102054456A (zh) * 2010-11-18 2011-05-11 友达光电股份有限公司 液晶显示器及其源极驱动装置与面板的驱动方法
CN102346341A (zh) * 2010-08-04 2012-02-08 北京京东方光电科技有限公司 阵列基板和制造方法、液晶面板、液晶显示器和驱动方法
CN102347327A (zh) * 2010-08-04 2012-02-08 北京京东方光电科技有限公司 阵列基板及其制造方法、液晶面板
CN102779492A (zh) * 2011-10-08 2012-11-14 北京京东方光电科技有限公司 一种液晶显示的驱动方法及驱动装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100549983B1 (ko) * 2003-07-30 2006-02-07 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 구동방법
KR101032948B1 (ko) * 2004-04-19 2011-05-09 삼성전자주식회사 액정 표시 장치 및 그 구동 방법
CN100529860C (zh) * 2006-08-31 2009-08-19 联詠科技股份有限公司 可通过电荷分享来降低能量消耗的液晶显示装置
CN101609651B (zh) * 2008-06-18 2012-02-29 北京京东方光电科技有限公司 液晶面板驱动电压极性反转方法和装置
JP4706729B2 (ja) * 2008-07-14 2011-06-22 カシオ計算機株式会社 液晶表示装置
TWI517128B (zh) * 2010-04-08 2016-01-11 友達光電股份有限公司 顯示器、顯示器驅動方法以及源極驅動電路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274013A1 (en) * 2005-06-07 2006-12-07 Sunplus Technology Co., Ltd. LCD panel driving method and device with charge sharing
CN101598879A (zh) * 2009-07-10 2009-12-09 昆山龙腾光电有限公司 液晶显示面板及液晶显示器
CN102346341A (zh) * 2010-08-04 2012-02-08 北京京东方光电科技有限公司 阵列基板和制造方法、液晶面板、液晶显示器和驱动方法
CN102347327A (zh) * 2010-08-04 2012-02-08 北京京东方光电科技有限公司 阵列基板及其制造方法、液晶面板
CN102054456A (zh) * 2010-11-18 2011-05-11 友达光电股份有限公司 液晶显示器及其源极驱动装置与面板的驱动方法
CN102779492A (zh) * 2011-10-08 2012-11-14 北京京东方光电科技有限公司 一种液晶显示的驱动方法及驱动装置

Also Published As

Publication number Publication date
CN103345094B (zh) 2016-06-29
CN103345094A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
WO2015003361A1 (zh) 一种液晶面板、驱动方法和液晶显示装置
CN104094345B (zh) 显示装置及其驱动方法
CN103280201B (zh) 栅极驱动装置和显示装置
US9721522B2 (en) Array substrate including a charge sharing unit, driving method thereof, and display device
CN103915052B (zh) 一种栅极驱动电路、方法及显示装置
US10332466B2 (en) Method of driving display panel and display apparatus for performing the same
WO2019033823A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN102013244B (zh) 液晶显示器驱动电路及相关驱动方法
WO2013163883A1 (zh) 一种阵列基板、显示装置和显示装置的驱动方法
US8493308B2 (en) Source driver having charge sharing function for reducing power consumption and driving method thereof
US11482184B2 (en) Row drive circuit of array substrate and display device
US20140340297A1 (en) Liquid crystal display device
CN103617775A (zh) 移位寄存器单元、栅极驱动电路及显示器
WO2013078725A1 (zh) 液晶显示装置及其驱动电路、驱动方法和液晶面板模组
US20100134400A1 (en) Liquid crystal display device with reduced power consumption and driving method thereof
KR100886061B1 (ko) 픽셀 구동 회로와 방법 및 이의 애플리케이션
US20140191936A1 (en) Driving Module and Driving Method
US9666153B2 (en) Driving method and driving device for liquid crystal pixel unit, and liquid crystal display device
US8179392B2 (en) Pre-charge system for on glass LCD driving circuit
WO2023005592A1 (zh) 显示面板的驱动电路和显示装置
US20200152150A1 (en) Drive circuit of display panel and methods thereof and display device
CN108615509B (zh) 显示装置及其驱动方法
TWI508053B (zh) 閘極驅動電路及閘極驅動方法
CN108986757B (zh) Goa电路的驱动方法及goa电路的驱动装置
CN103093719B (zh) 一种驱动电路及驱动方法和显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14111546

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889145

Country of ref document: EP

Kind code of ref document: A1