WO2015002263A1 - Heat-resistant silane crosslinked resin molded article and method for manufacturing same, and heat-resistant product equipped with heat-resistant silane crosslinked resin molded article - Google Patents

Heat-resistant silane crosslinked resin molded article and method for manufacturing same, and heat-resistant product equipped with heat-resistant silane crosslinked resin molded article Download PDF

Info

Publication number
WO2015002263A1
WO2015002263A1 PCT/JP2014/067768 JP2014067768W WO2015002263A1 WO 2015002263 A1 WO2015002263 A1 WO 2015002263A1 JP 2014067768 W JP2014067768 W JP 2014067768W WO 2015002263 A1 WO2015002263 A1 WO 2015002263A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
mass
inorganic filler
coupling agent
silane coupling
Prior art date
Application number
PCT/JP2014/067768
Other languages
French (fr)
Japanese (ja)
Inventor
稔 齋藤
西口 雅己
有史 松村
宏樹 千葉
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201480031113.6A priority Critical patent/CN105308102B/en
Priority to JP2015525271A priority patent/JP6329948B2/en
Publication of WO2015002263A1 publication Critical patent/WO2015002263A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/242Applying crosslinking or accelerating agent onto compounding ingredients such as fillers, reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate

Definitions

  • the present invention relates to a heat-resistant silane cross-linked resin molded body, a method for producing the same, and a heat-resistant product using the heat-resistant silane cross-linked resin molded body, and in particular, excellent heat-resistant silane having mechanical properties, insulation resistance and flame retardancy.
  • the present invention relates to a cross-linked resin molded body, a method for producing the same, and a heat-resistant product using the heat-resistant silane cross-linked resin molded body as an electric wire insulator or sheath.
  • Insulated wires, cables, cords, optical fiber cores and optical fiber cords used for internal and external wiring of electrical and electronic equipment are flame retardant, heat resistant, mechanical properties (for example, tensile properties), and abrasion resistance Various characteristics such as insulation resistance are required.
  • a resin composition containing a large amount of an inorganic filler such as magnesium hydroxide, aluminum hydroxide, or calcium carbonate is usually used.
  • wiring materials used in electric / electronic devices may be heated to 80 to 105 ° C. or even 125 ° C. when used for a long time, and heat resistance against this may be required.
  • a method of bridging also referred to as crosslinking
  • the coating material resin by an electron beam crosslinking method, a chemical crosslinking method, or the like is employed.
  • Silane cross-linking methods are known as a method of crosslinking a polyolefin resin such as polyethylene, an electron beam crosslinking method in which an electron beam is irradiated to crosslink, a chemical crosslinking method in which an organic peroxide is decomposed by applying heat after molding, and a crosslinking reaction is performed.
  • the silane crosslinking method is a method in which a hydrolyzable silane coupling agent having an unsaturated group is grafted to a polymer in the presence of an organic peroxide to obtain a silane graft polymer, and then water and moisture in the presence of a silanol condensation catalyst. This is a method of obtaining a cross-linked molded article by contacting them.
  • the silane crosslinking method in particular does not require special equipment, and can be used in a wide range of fields.
  • the silane crosslinking method includes a silane master batch obtained by grafting a silane coupling agent having an unsaturated group to a polyolefin resin, a heat resistant master batch obtained by kneading a polyolefin resin and an inorganic filler, and a silanol condensation catalyst.
  • a method of melt-mixing the contained catalyst master batch There is a method of melt-mixing the contained catalyst master batch.
  • the silane master batch and the heat-resistant master batch are dry-mixed to obtain a single screw extruder or a twin screw extruder.
  • a hydrolyzable silane coupling agent having an unsaturated group is added to the heat-resistant masterbatch obtained by melting and mixing a polyolefin resin and an inorganic filler with a Banbury mixer. And an organic peroxide may be added and graft polymerization may be performed with a single screw extruder.
  • a defective appearance occurs in the molded body due to variation in reaction, and a desired molded body cannot be obtained.
  • the compounding ratio of the inorganic filler in the heat resistant masterbatch must be increased. For this reason, the extrusion load becomes large, the production becomes very difficult, and a desired material or molded product cannot be obtained. Furthermore, this is a two-step process, which is a difficult point in terms of manufacturing cost.
  • Patent Document 1 an inorganic filler surface-treated with a silane coupling agent, a silane coupling agent, an organic peroxide, and a crosslinking catalyst are sufficiently melt-kneaded with a kneader and then molded with a single screw extruder.
  • a method has been proposed. However, in this method, the resin is partially crosslinked during melt kneading in a kneader, causing the molded body to have a poor appearance (formation of a large number of protrusions protruding on the surface).
  • most of the silane coupling agents other than the silane coupling agent surface-treated on the inorganic filler may volatilize or the silane coupling agents may condense. For this reason, desired heat resistance cannot be obtained, and condensation between silane coupling agents may cause deterioration of the appearance of the electric wire.
  • Patent Documents 2 to 4 disclose a vinyl aromatic thermoplastic elastomer composition having a block copolymer or the like as a base resin and a non-aromatic rubber softener added as a softener.
  • a technique of partially crosslinking using an organic peroxide through a filler has been proposed.
  • the resin does not yet have a sufficient network structure, and the bond between the resin and the inorganic filler is released at a high temperature. For this reason, there is a problem that it melts at a high temperature, for example, the insulating material melts during soldering of the electric wire, or deforms or foams when the molded body is secondarily processed.
  • the appearance is remarkably deteriorated or deformed.
  • the present invention solves the above-mentioned problems and is produced by suppressing volatilization of the hydrolyzable silane coupling agent, and has excellent mechanical properties, insulation resistance and flame retardancy, and its molded product It is an object to provide a manufacturing method. Moreover, this invention makes it a subject to provide the heat resistant product using the heat resistant silane crosslinked resin molded object obtained with the manufacturing method of the heat resistant silane crosslinked resin molded object.
  • the present inventors When using the silane cross-linking method as described above, the present inventors previously mixed a hydrolyzable silane coupling agent that easily volatilizes with an inorganic filler (this is referred to as premixing), and hydrolyzable silane coupling.
  • premixing a hydrolyzable silane coupling agent that easily volatilizes with an inorganic filler
  • hydrolyzable silane coupling When combined with a silane coupling agent premixed inorganic filler bonded to a level that suppresses the volatilization of the agent and a specific amount of brominated flame retardant, insulation is achieved while maintaining the excellent mechanical properties of the heat-resistant silane crosslinked resin molding It has been found that the flame retardancy can be improved to be equal to or higher than that of a molded article obtained by increasing resistance and electron beam crosslinking.
  • step (a), step (b) and step (c) Step (a): 100 parts by mass of resin component (A), 0.01 to 0.6 parts by mass of organic peroxide (P), and 100 parts by mass of inorganic filler (C) including surface-treated inorganic filler (B) 10 to 150 parts by mass of a silane coupling agent premixed inorganic filler (D) obtained by mixing 0.5 to 30.0 parts by mass of a hydrolyzable silane coupling agent (q) with respect to a brominated flame retardant ( h1) Step of melt-mixing 15-60 parts by mass of silanol condensation catalyst (e1) 0.001-0.5 parts by mass
  • the step (a) includes the following step (a1) and step (a3), and further includes the following step (a2) when a part of the resin component (A) is melt-mixed in the following step (a1).
  • Step (a1) Part or all of the resin component (A), the organic peroxide (P), and the silane coupling agent premixed inorganic filler (D) are combined with the organic peroxide (P).
  • the resin component (A) comprises at least (i) 10 to 50% by mass of a polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, and (ii) an ethylene- ⁇ -olefin copolymer
  • At least one of the (i) polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component is an ethylene-vinyl acetate copolymer or an ethylene- (meth) acrylic acid ester copolymer.
  • a heat resistant product comprising the heat resistant silane crosslinked resin molded article according to (7).
  • a numerical range represented by using “to” means a range including numerical values described before and after that as a lower limit value and an upper limit value.
  • the heat resistant silane crosslinked resin molding excellent in the mechanical characteristic, the insulation resistance, and the flame retardance manufactured by suppressing volatilization of a hydrolysable silane coupling agent, and its manufacturing method can be provided.
  • the heat resistant product using the heat resistant silane crosslinked resin molding obtained by the manufacturing method of the heat resistant silane crosslinked resin molding of this invention can be provided.
  • the “method for producing a heat-resistant silane-crosslinked resin molded product” of the present invention (hereinafter sometimes referred to as the production method of the present invention) is as described above, and in short, the steps (a), (b) and the steps described above.
  • a method for producing a heat-resistant silane cross-linked resin molded article having (c) The resin component (A) is a specific resin component (A),
  • the step (a) includes the following step (a1) and step (a3), and further includes the following step (a2) when a part of the resin component (A) is melt-mixed in the following step (a1).
  • the brominated flame retardant (h1) is mixed in at least one of the following step (a1) and the following step (a2).
  • the silanol condensation catalyst (e1) is melted in the silane master batch in the step (a3) without performing the step (a2). Can be mixed.
  • the step (a2) and the step (a3) can be performed continuously or all at once (in the same step).
  • the resin component used in the production method of the present invention is “resin component (A)”, the heat-resistant silane crosslinkable resin composition (F) obtained in step (a) and the heat resistance produced by the production method of the present invention.
  • the resin component contained in the functional silane cross-linked resin molded product is referred to as “resin component (G)”.
  • the resin component (G) is synonymous with a mixture of the resin component (A) and the carrier resin (e2). Therefore, in the present invention, the resin component (A), the carrier resin (e2), and the resin component (G) may be simply referred to as a resin component without clearly distinguishing them.
  • the resin component (A) used in the present invention is a crosslinking site that undergoes a crosslinking reaction in the presence of the crosslinking group of the hydrolyzable silane coupling agent (q) and the organic peroxide (P) described below, for example, unsaturated carbon chain.
  • examples thereof include a binding site and a resin, elastomer, rubber, or the like having a carbon atom having a hydrogen atom in the main chain or at the terminal thereof.
  • examples of such resins include polyolefin resins and styrene elastomers.
  • the polyolefin-based resin is not particularly limited as long as it is a resin obtained by polymerizing or copolymerizing a compound having an ethylenically unsaturated bond, and is a known one conventionally used in heat-resistant resin compositions. Can be used. Examples thereof include polyethylene (PE), polypropylene (PP), ethylene- ⁇ -olefin copolymer, polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, and rubbers and elastomers thereof.
  • PE polyethylene
  • PP polypropylene
  • ethylene- ⁇ -olefin copolymer polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component
  • rubbers and elastomers thereof are examples thereof.
  • receptivity to various inorganic fillers including metal hydrates is high, there is an effect of maintaining the mechanical strength even if a large amount of inorganic filler is blended, and withstand voltage while ensuring heat resistance
  • a copolymer having polyethylene (PE), polypropylene (PP), an ethylene- ⁇ -olefin copolymer and an acid copolymer component or an acid ester copolymer component from the viewpoint of suppressing a decrease in withstand voltage characteristics at high temperatures. Etc. are suitable.
  • These polyolefin resins may be used alone or in combination of two or more.
  • polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component
  • polyolefin copolymer (i) having an acid copolymerization component or an acid ester copolymerization component
  • the acid copolymerization component or the acid ester copolymerization component include a vinyl acetate component, a (meth) acrylic acid component, an (meth) acrylic acid alkyl component, and the like.
  • examples of the polyolefin copolymer (i) include an ethylene-vinyl acetate copolymer, an ethylene- (meth) acrylic acid copolymer, and an ethylene- (meth) acrylic acid alkyl copolymer.
  • an ethylene-vinyl acetate copolymer and an ethylene- (meth) acrylate copolymer are preferable, and an ethylene-vinyl acetate copolymer is more preferable from the viewpoint of acceptability to an inorganic filler and heat resistance.
  • the alkyl group of the alkyl (meth) acrylate preferably has 1 to 12 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group.
  • the ethylene-vinyl acetate copolymer may be an alternating copolymer obtained by alternately polymerizing an ethylene component and a vinyl acetate component as long as it is a copolymer of ethylene and vinyl acetate.
  • a block copolymer formed by combining a polymer block and a polymer block of a vinyl acetate component may be used, and further, a random copolymer in which an ethylene component and a vinyl acetate component are randomly polymerized may be used.
  • the ethylene-vinyl acetate copolymer preferably has a vinyl acetate content of 17 to 80% by mass, more preferably 20 to 50% by mass, still more preferably 25 to 41% by mass.
  • the vinyl acetate component content can be determined according to JIS K 7192. Two or more copolymers having different vinyl acetate contents may be combined. By using an ethylene-vinyl acetate copolymer having a vinyl acetate content within the above range, sufficient flame retardancy can be ensured.
  • Examples of the ethylene-vinyl acetate copolymer include “Evaflex” (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.) and “Revaprene” (trade name, manufactured by Bayer).
  • the ethylene- (meth) acrylic acid ester copolymer includes both an ethylene-acrylic acid ester copolymer and an ethylene-methacrylic acid ester copolymer.
  • ethylene- (Meth) acrylate copolymer ethylene- (Meth) acrylate copolymer .
  • the ethylene- (meth) acrylic acid ester copolymer is a copolymer of ethylene and (meth) acrylic acid ester, like the above-mentioned ethylene-vinyl acetate copolymer, alternating copolymer, block copolymer. Either a polymer or a random copolymer may be used.
  • the (meth) acrylic acid ester component is not particularly limited, but preferably has an alkyl group having 1 to 4 carbon atoms, such as methyl acrylate, methyl methacrylate, ethyl methacrylate, ethyl acrylate, butyl acrylate, etc. Is mentioned.
  • the content of the (meth) acrylic acid ester component that is a copolymerization component of the ethylene- (meth) acrylic acid ester copolymer is preferably 15 to 80% by mass. When this content is in the above range, sufficient flame retardancy can be ensured.
  • Examples of such ethylene- (meth) acrylic acid ester copolymers include ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, and ethylene-ethyl methacrylate. Examples thereof include a copolymer and an ethylene-butyl acrylate copolymer.
  • Examples of the ethylene- (meth) acrylic acid copolymer include Nucrel (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.). Further, examples of the ethylene-ethyl acrylate copolymer include “Evalroy” (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.). Polyolefin copolymer (i) is used individually by 1 type, or 2 or more types are used together.
  • the ethylene- ⁇ -olefin copolymer (ii) is preferably a copolymer of ethylene and an ⁇ -olefin having 4 to 12 carbon atoms (the polyethylene described later) (Excluding those contained in (PE)).
  • Specific examples of the ⁇ -olefin component include 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like.
  • ethylene- ⁇ -olefin copolymer (ii) specifically, an ethylene-butylene copolymer (EBR), an ethylene- ⁇ -olefin copolymer synthesized in the presence of a single site catalyst, a linear chain Type low density polyethylene (LLDPE) and the like.
  • the ethylene- ⁇ -olefin copolymer (ii) may also contain a copolymer containing a diene component, such as an ethylene-propylene rubber (for example, ethylene-propylene-diene rubber).
  • ethylene- ⁇ -olefin copolymer may be used alone, or two or more ethylene- ⁇ -olefin copolymers may be used in combination.
  • Examples of the ethylene- ⁇ -olefin copolymer include Evolue SP0540 (trade name, manufactured by Prime Polymer, LLDPE resin), UE320 (trade name, density 0.922 g / cm 3 , manufactured by Ube Maruzen Polyethylene), UBEC 180 ( trade name, density 0.924 g / cm 3, manufactured by Ube Maruzen polyethylene Co., Ltd.), HI-ZEX 540E (trade name, density 0.956 g / cm 3, manufactured by Prime polymer Co., Ltd.).
  • Evolue SP0540 trade name, manufactured by Prime Polymer, LLDPE resin
  • UE320 trade name, density 0.922 g / cm 3 , manufactured by Ube Maruzen Polyethylene
  • UBEC 180 trade name, density 0.924 g / cm 3, manufactured by Ube Maruzen polyethylene Co., Ltd.
  • HI-ZEX 540E trade name, density 0.956 g / cm 3, manufactured by Prime polymer Co., Ltd.
  • Polypropylene (iii) may be a resin in which one of the polymerization components is a propylene component, and includes random polypropylene and block polypropylene in addition to a homopolymer of propylene (also referred to as homopolypropylene).
  • Random polypropylene as used herein is a copolymer of propylene and ethylene in general, and is a propylene copolymer having an ethylene component content of 1 to 6% by mass, such as ethylene in the propylene chain. It means that the copolymerization component is taken in at random.
  • the “block polypropylene” is a composition containing a homopolypropylene and an ethylene-propylene copolymer, generally having an ethylene component content of about 18% by mass or less, and having a propylene component and a copolymer component. The thing which exists as an independent component.
  • any of these polypropylenes can be used without any particular limitation.
  • Block polypropylene and random polypropylene are preferable in that heat resistance and heat deformation characteristics can be improved.
  • Polypropylene may be used alone or in combination of two or more. Examples of polypropylene include BC8A (trade name, manufactured by Nippon Polypro), PB222A (trade name, manufactured by Sun Allomer), and E150GK (trade name, manufactured by Prime Polymer).
  • the MFR (ASTM-D-1238) of polypropylene is preferably 0.1 to 60 g / 10 minutes, more preferably 0.3 to 25 g / 10 minutes, and further preferably 0.5 to 15 g / 10 minutes. By blending polypropylene in this range, the appearance is improved when the wire is coated.
  • Polyethylene may be a resin in which one of the polymerization components is an ethylene component, and examples thereof include high-density polyethylene (HDPE), high-pressure low-density polyethylene (HPLDPE), and medium-density polyethylene (MDPE). Among these, high pressure low density polyethylene (HPLDPE) is preferable. Polyethylene may be used individually by 1 type, and may use 2 or more types together.
  • HDPE high-density polyethylene
  • HPLDPE high-pressure low-density polyethylene
  • MDPE medium-density polyethylene
  • HPLDPE high pressure low density polyethylene
  • Polyethylene may be used individually by 1 type, and may use 2 or more types together.
  • styrene elastomer examples include block copolymers and random copolymers of conjugated diene compounds and aromatic vinyl compounds, or hydrogenated products thereof.
  • aromatic vinyl compound examples include styrene, p- (t-butyl) styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl.
  • examples thereof include styrene, vinyl toluene, p- (t-butyl) styrene and the like.
  • styrene is preferable as the aromatic vinyl compound.
  • This aromatic vinyl compound is used individually by 1 type, or 2 or more types are used together.
  • the conjugated diene compound include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compound is preferably butadiene.
  • This conjugated diene compound is used individually by 1 type, or 2 or more types are used together.
  • the styrene-based elastomer an elastomer that does not contain a styrene component and contains an aromatic vinyl compound other than styrene may be used.
  • styrene-based elastomer examples include, for example, Septon 4077, Septon 4055, Septon 8105 (all trade names, manufactured by Kuraray Co., Ltd.), Dynalon 1320P, Dynalon 4600P, 6200P, 8601P, and 9901P (all trade names, JSR Etc.).
  • the resin component (A) may optionally contain an oil as a plasticizer or a mineral oil softener for rubber.
  • oils include paraffinic, naphthenic, and aromatic oils. Paraffin oil has 50% or more of the total number of carbon atoms in the paraffin chain, and naphthenic oil has 30 to 40% naphthenic ring carbon.
  • Aroma oil also called aromatic oil
  • Oils may be used alone or in combination of two or more.
  • the oil is preferably contained in the resin component (A) at a mass ratio of 20% by mass or less.
  • the organic peroxide (P) generates radicals by thermal decomposition and promotes the grafting reaction of the hydrolyzable silane coupling agent to the resin component (A), particularly the hydrolyzable silane coupling agent (q). Acts to promote a grafting reaction by a radical reaction (including a hydrogen radical abstraction reaction from the resin component (A)) between the group and the resin component (A) in the case where contains an ethylenically unsaturated group.
  • the organic peroxide (P) is not particularly limited as long as it generates radicals.
  • R 1 —OO—R 2 , R 1 —OO—C ( ⁇ O) R 3 , A compound represented by R 4 C ( ⁇ O) —OO (C ⁇ O) R 5 is preferably used.
  • R 1 , R 2 , R 3 , R 4 and R 5 each independently represents an alkyl group, an aryl group, or an acyl group.
  • R 1 , R 2 , R 3 , R 4 and R 5 are all alkyl groups, or any one is an alkyl group and the rest is an acyl group.
  • organic peroxides examples include dicumyl peroxide (DCP), di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy). Hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert- Butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate Diacetyl peroxide, lauroyl peroxide, may benzoyl per
  • DCP dicumyl peroxide
  • 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane 2,5-in terms of odor, colorability, and scorch stability.
  • Dimethyl-2,5-di- (tert-butylperoxy) hexyne-3 is preferred.
  • the decomposition temperature of the organic peroxide (P) is preferably from 80 to 195 ° C., particularly preferably from 125 to 180 ° C.
  • the decomposition temperature of the organic peroxide (P) means that when the organic peroxide (P) having a single composition is heated, the organic peroxide (P) itself becomes two or more kinds of compounds at a certain temperature or temperature range. It means the temperature at which decomposition reaction occurs, and refers to the temperature at which heat absorption or heat generation starts when heated from room temperature in a nitrogen gas atmosphere at a rate of temperature increase of 5 ° C./min by thermal analysis such as DSC method.
  • the hydrolyzable silane coupling agent (q) is mixed with an inorganic filler (C) described later, and surface-treats at least a part of the inorganic filler (C).
  • a hydrolyzable silane coupling agent (q) is not particularly limited, and a hydrolyzable silane coupling agent having an unsaturated group used in the silane crosslinking method can be used.
  • a hydrolyzable silane coupling for example, a hydrolyzable silane coupling agent represented by the following general formula (1) can be suitably used.
  • R a11 is a group containing an ethylenically unsaturated group
  • R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 .
  • Y 11 , Y 12 and Y 13 are each an independently hydrolyzable organic group.
  • Y 11 , Y 12 and Y 13 may be the same as or different from each other.
  • the group R a11 containing an ethylenically unsaturated group is preferably a group containing an ethylenically unsaturated group, and examples thereof include a vinyl group, a (meth) acryloyloxyalkylene group, a p-styryl group, and the like.
  • a vinyl group is preferred.
  • R b11 is an aliphatic hydrocarbon group or a hydrogen atom or Y 13 to be described later.
  • the aliphatic hydrocarbon group is a monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms excluding the aliphatic unsaturated hydrocarbon group. Can be mentioned. Examples of the monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms include those similar to those having 1 to 8 carbon atoms among alkyl groups of alkyl (meth) acrylate.
  • R b11 is preferably Y 13 .
  • Y 11 , Y 12 and Y 13 are each independently an organic group that can be hydrolyzed, such as an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or an alkyl group having 1 to 4 carbon atoms.
  • An acyloxy group is mentioned.
  • an alkoxy group having 1 to 6 carbon atoms is preferable.
  • Specific examples of the alkoxy group having 1 to 6 carbon atoms include, for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, and the like. From the viewpoint of hydrolysis reactivity, a methoxy group or An ethoxy group is preferred.
  • the hydrolyzable silane coupling agent represented by the general formula (1) is preferably an unsaturated group-containing silane coupling agent having a high hydrolysis rate, and more preferably R b11 is Y in the general formula (1). 13 and a hydrolyzable silane coupling agent in which Y 11 , Y 12 and Y 13 are the same organic group.
  • Specific preferred hydrolyzable silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinyldimethoxyethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxy.
  • Examples include silane, allyltriethoxysilane, vinyltriacetoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropylmethyldimethoxysilane, and the like.
  • a hydrolyzable silane coupling agent having a vinyl group and an alkoxy group at the terminal is more preferable, and vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.
  • a hydrolysable silane coupling agent (q) may be used individually by 1 type, and may use 2 or more types together. Further, the hydrolyzable silane coupling agent (q) may be used alone or as a liquid diluted with a solvent.
  • the inorganic filler used in the present invention is a surface untreated inorganic filler (c1) that has not been surface treated with a surface treatment agent, a surface treated inorganic filler (B) that has been surface treated with a surface treatment agent, and the surface treated inorganic filler (B).
  • the various inorganic fillers used in the present invention preferably have an average particle size of 0.2 to 10 ⁇ m, more preferably 0.3 to 8 ⁇ m, and more preferably 0.35 to 5 ⁇ m, regardless of their form and type. More preferably, it is particularly preferably 0.35 to 3 ⁇ m.
  • the average particle size is in the above range, secondary aggregation is difficult to occur when the hydrolyzable silane coupling agent (q) is mixed, and no fluff is generated, the appearance of the molded article is excellent, and the hydrolyzable silane The resin component (A) is sufficiently crosslinked due to the retention effect of the coupling agent (q).
  • the average particle size is determined by an optical particle size measuring device such as a laser diffraction / scattering type particle size distribution measuring device after being dispersed with alcohol or water.
  • (C1) Surface Untreated Inorganic Filler As the surface untreated inorganic filler (c1) surface-treated in the surface treated inorganic filler (B), and the surface untreated inorganic filler (c1) that can be contained in the inorganic filler (C) If the surface of the inorganic filler has a site capable of forming a hydrogen bond or a reactive site such as a silanol group of a hydrolyzable silane coupling agent, or a site capable of chemical bonding by a covalent bond, it can be used without particular limitation. it can.
  • an OH group hydroxyl, water-containing or water molecule of crystal water, OH group such as carboxyl group), amino group, SH group etc. are mentioned.
  • Such a surface untreated inorganic filler (c1) is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, Magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate, hydrated aluminum silicate, alumina, hydrated magnesium silicate, basic magnesium carbonate, metal hydroxides such as metal compounds having water or crystal water such as hydrotalcite, Metal hydrates, boron nitride, silica (crystalline silica, amorphous silica, etc.), carbon, clay, zinc oxide, tin oxide, titanium oxide, molybdenum oxide, antimony trioxide, silicone compound, quartz, Talc, zinc borate, white carbo , It can be used zinc borate, hydroxy stannate, zinc stannate and the like.
  • the surface untreated inorganic filler (c1) is preferably a metal hydroxide, calcium carbonate, or silica, and more preferably magnesium hydroxide, aluminum hydroxide, or calcium carbonate, as described above.
  • the surface-treated inorganic filler (B) is obtained by surface-treating the surface untreated inorganic filler (c1) with a surface treatment agent.
  • the surface-treated inorganic filler (B) may be a surface-treated inorganic filler that has already been surface-treated.
  • the surface untreated inorganic filler (c1) or the already surface treated inorganic filler for forming the surface treated inorganic filler (B) is not particularly limited, but the above-described metal hydroxide and metal hydrate are preferable. Furthermore, aluminum hydroxide, magnesium hydroxide and calcium carbonate are preferred.
  • a surface treating agent is not specifically limited, A fatty acid, phosphate ester, polyester, a titanate coupling agent, a silane coupling agent, etc. are mentioned. Of these, fatty acids and silane coupling agents are preferred. Although it does not specifically limit as a fatty acid, A stearic acid, an oleic acid, a lauric acid etc. are preferable. Although it does not specifically limit as a silane coupling agent, The silane coupling agent which has an amino group at the terminal, the silane coupling agent which has double bonds, such as a vinyl group and a methacryloyl group, and the silane which has an epoxy group at the terminal A coupling agent is preferred.
  • the surface-treated inorganic filler (B) may be one that has been surface-treated with one of the aforementioned surface-treating agents, or one that has been surface-treated with two or more.
  • the surface-treated inorganic filler (B) surface-treated with a fatty acid or silane coupling agent is obtained by mixing a surface untreated inorganic filler (c1) and the like with a fatty acid or silane coupling agent.
  • the method of mixing the surface untreated inorganic filler (c1) and the like with the fatty acid or silane coupling agent is not particularly limited, but the surface untreated inorganic filler (c1) or an appropriate surface treatment agent (for example, fatty acid) Or a method in which a fatty acid or a silane coupling agent is added to a surface-treated inorganic filler surface-treated with a silane coupling agent) without heating or heating, and these inorganic fillers are dispersed in a solvent such as water.
  • the amount of these surface treatments is not particularly limited, but it is usually preferably 0.1 to 4% by mass relative to the inorganic filler before the surface treatment such as the untreated inorganic filler (c1).
  • the surface treatment amount is within this range, the mechanical strength and wear resistance can be improved, the elongation and appearance can be improved, and the extrusion load can be reduced.
  • Examples of the surface-treated inorganic filler (B) surface-treated with stearic acid, such as magnesium hydroxide include Kisuma 5AL (trade name, manufactured by Kyowa Chemical Co., Ltd.).
  • Examples of the surface-treated inorganic filler (B) obtained by surface treatment with a silane coupling agent include silane coupling agent surface-treated magnesium hydroxide and silane coupling agent surface-treated aluminum hydroxide.
  • Examples of the silane coupling agent surface-treated magnesium hydroxide include Kisuma 5L, Kisuma 5P (both trade names, manufactured by Kyowa Chemical Co., Ltd.), Magsees S6, Magseeds S4 (both trade names are Kamishima Chemical Co., Ltd.), and the like.
  • Examples of commercially available silane coupling agent surface-treated aluminum hydroxide include Popelite H42-ST-V and Heidilite H42-ST-E (both trade names, Showa Denko KK).
  • the surface treatment inorganic filler (B) may be used alone or in combination of two or more.
  • the inorganic filler (C) used in the present invention is the above-mentioned hydrolyzable silane coupling agent (q) before being melt-mixed with the above-described resin component (A) or the like in the step (a). It is an inorganic filler (C) processed in advance.
  • the inorganic filler (C) may include at least a part of the surface-treated inorganic filler (B), and the whole may be the surface-treated inorganic filler (B), and the remaining part of the surface-untreated inorganic filler (c1) or the like. May be included.
  • inorganic filler (C) contains surface-treated inorganic filler (B)
  • bonding of the hydrolysable silane coupling agent (q) and inorganic filler added later.
  • a hydrolyzable silane coupling agent that binds to the inorganic filler with a certain weak bond can be created.
  • this hydrolyzable silane coupling agent that binds to the inorganic filler with a weak bond it is possible to obtain a heat-resistant silane cross-linked resin molded product having a certain degree of cross-linking, whereby high heat resistance can be obtained.
  • the ratio of the surface-treated inorganic filler (B) in the inorganic filler (C) is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more.
  • the ratio of the surface-treated inorganic filler (B) is preferably 100% by mass or less. When this ratio is 30% by mass or more, the heat resistance of the heat-resistant silane crosslinked resin molded article is improved.
  • the surface-treated inorganic filler (B) and the surface untreated inorganic filler can be used alone or in combination of two or more.
  • silane coupling agent premixed inorganic filler (D) Silane coupling agent premixed inorganic filler
  • the silane coupling agent premixed inorganic filler (D) is prepared by previously mixing the above-mentioned inorganic filler (C) with a hydrolyzable silane coupling agent (q).
  • the inorganic filler (C) is surface-treated with a functional silane coupling agent (q).
  • the silane coupling agent premixed inorganic filler (D) includes the resin component (A), the organic peroxide (P), and the like, as will be described later, and the inorganic filler (C) and the hydrolyzable silane coupling agent (q). And the surface treated by mixing with.
  • the silane coupling agent premixed inorganic filler (D) can also be referred to as a silane coupling agent-containing inorganic filler and a silane coupling agent-treated inorganic filler.
  • the hydrolyzable silane coupling agent (q) for surface-treating the inorganic filler (C) is as described above.
  • the silane coupling agent premixed inorganic filler (D) is obtained by mixing the inorganic filler (C) and the hydrolyzable silane coupling agent (q).
  • a wet process in which the hydrolyzable silane coupling agent (q) and the inorganic filler (C) are mixed in alcohol or water inorganic Examples thereof include a dry treatment for blending the filler (C) and the hydrolyzable silane coupling agent (q), and both.
  • the inorganic filler (C) and the hydrolyzable silane coupling agent (q) are premixed before or simultaneously with the organic peroxide (P) in the step (a) described later, A part of the decomposable silane coupling agent (q) is strongly bonded to the inorganic filler (C) (the reason is, for example, formation of a chemical bond with a hydroxyl group on the surface of the inorganic filler is considered), and silane coupling An agent premixed inorganic filler (D) is prepared.
  • the hydrolyzable silane coupling agent (q) which binds strongly to the inorganic filler (C), and the inorganic filler (C) are weakly bonded (interaction by hydrogen bonds, ions And a hydrolyzable silane coupling agent (q) that interacts between partial charges or dipoles, an action by adsorption, etc.), as described later, shows a different behavior. Therefore, the effect obtained by the ratio of these hydrolyzable silane coupling agents (q) differs.
  • a method for adjusting the ratio of the hydrolyzable silane coupling agent (q) that is weakly bonded to the inorganic filler (C) is, for example, a hydrolyzable silane coupling agent ( q) and a method of adjusting by mixing inorganic filler (C) at room temperature, a method of storing at normal temperature or preheated after premixing, or hydrolysis by heating inorganic filler (C) before premixing And a method of mixing with a functional silane coupling agent (q).
  • the brominated flame retardant (h1) is used together with the silane coupling agent premixed inorganic filler (D).
  • the brominated flame retardant (h1) is used, even if the amount of the silane coupling agent premixed inorganic filler (D) is reduced, excellent flame retardancy equivalent to or higher than that of a molded article by electron beam crosslinking is exhibited.
  • the brominated flame retardant (h1) used in the present invention is not particularly limited as long as it is used as a flame retardant.
  • organic bromine-containing flame retardants such as hexabromocyclododecane, brominated polystyrene, hexabromobenzene and the like can be used.
  • the “derivative” means one having an organic group such as an alkyl group as a substituent, or one having a different number of bromine atoms.
  • brominated bisphenol particularly tetrabromobisphenol A
  • 1,2-bis (bromophenyl) ethane 1,2-bis (bromophenyl) ethane
  • brominated polystyrene brominated ethylene bisphthalimide represented by the following structural formula 1
  • a 1,2-bis (bromophenyl) ethane derivative represented by the following structural formula 2 is preferred, a brominated ethylene bisphthalimide represented by the following structural formula 1, a 1,2-bis ( More preferred are bromophenyl) ethane derivatives.
  • each n is independently an integer of 1 to 5, preferably an integer of 3 to 5.
  • silanol condensation catalyst (e1) functions to bind the hydrolyzable silane coupling agent (q) grafted to the resin component (A) in the presence of moisture by a condensation reaction. Based on the function of the silanol condensation catalyst (e1), the resin components (A) are cross-linked through the hydrolyzable silane coupling agent (q). As a result, a heat-resistant silane cross-linked resin molded product having excellent heat resistance can be obtained.
  • silanol condensation catalyst (e1) an organic tin compound, a metal soap, a platinum compound, or the like is used.
  • Common silanol condensation catalysts (e1) include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, stearin Sodium acid, lead naphthenate, lead sulfate, zinc sulfate, organic platinum compounds and the like are used.
  • organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, and dibutyltin diacetate are particularly preferable.
  • the carrier resin (e2) is not particularly limited, but is preferably a polyolefin resin of the resin component (A), and a part of the resin component (A) can be used. What is this resin component (A)? Another resin can also be used.
  • the carrier resin (e2) is preferably an ethylene-vinyl acetate copolymer (i) or polypropylene (iii) in that it has an affinity with the silanol condensation catalyst (e1) and is excellent in heat resistance.
  • a flame retardant aid can be used. It is preferable to use antimony trioxide (h3) as a flame retardant aid. When antimony trioxide is used, the flame retardancy of the heat-resistant silane crosslinked resin molded product can be further improved.
  • additives generally used for electric wires, electric cables, electric cords, sheets, foams, tubes, pipes, etc. for example, crosslinking aids, antioxidants (also referred to as anti-aging agents), Lubricants, metal deactivators, fillers, other resins, and the like may be appropriately used as long as the object of the present invention is not impaired.
  • These additives may be contained in any component, but may be contained in the catalyst master batch (Mx).
  • the antioxidant and the metal deactivator are mixed with the carrier resin (e2) of the catalyst masterbatch (Mx) so as not to inhibit the grafting of the hydrolyzable silane coupling agent (q) to the resin component (A). Preferably it is done.
  • a crosslinking aid is not substantially contained.
  • the crosslinking aid is not substantially mixed in the step (a) for preparing the silane master batch (Dx).
  • the crosslinking aid reacts with the organic peroxide (P) during kneading, crosslinking between the resin components (A) occurs, gelation occurs, and the heat resistant silane crosslinked resin molded article is formed. Appearance may deteriorate. Further, the graft reaction of the hydrolyzable silane coupling agent (q) to the resin component (A) is difficult to proceed, and the heat resistance of the final heat-resistant silane crosslinked resin molded product may not be obtained.
  • being substantially not contained or not mixed means that a crosslinking aid is not actively added or mixed, and does not exclude inclusion or mixing unavoidably.
  • the crosslinking aid refers to one that forms a partially crosslinked structure with the resin component (A) in the presence of an organic peroxide, for example, a methacrylate compound such as polypropylene glycol diacrylate, trimethylolpropane triacrylate, Examples include allyl compounds such as triallyl cyanurate, polyfunctional compounds such as maleimide compounds, and divinyl compounds.
  • an organic peroxide for example, a methacrylate compound such as polypropylene glycol diacrylate, trimethylolpropane triacrylate, Examples include allyl compounds such as triallyl cyanurate, polyfunctional compounds such as maleimide compounds, and divinyl compounds.
  • antioxidants examples include amine-based oxidation such as a polymer of 4,4′-dioctyldiphenylamine, N, N′-diphenyl-p-phenylenediamine, and 2,2,4-trimethyl-1,2-dihydroquinoline.
  • Inhibitor pentaerythrityl-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) Phenol-based antioxidants such as propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, bis (2-methyl-4- (3-n-alkylthiopropionyloxy) -5-tert-butylphenyl) sulfide, 2-mercaptoben ⁇ imidazole and its zinc salt, penta Risuritoru - tetrakis (3-lauryl - thiopropionate) sulfur-based antioxidants such as and the like.
  • the antioxidant can be added in an amount of preferably 0.1 to 15.0 parts by weight, more preferably 0.1 to 10 parts by
  • metal deactivators examples include N, N′-bis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4. -Triazole, 2,2'-oxamidobis- (ethyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and the like.
  • lubricant examples include hydrocarbons, siloxanes, fatty acids, fatty acid amides, esters, alcohols, metal soaps and the like. These lubricants should be added to the carrier resin (E).
  • the “method for producing a heat-resistant silane cross-linked resin molded article” of the present invention includes the step (a), the step (b), and the step (c).
  • the step (a) comprises 0.01 to 0.6 parts by mass of an organic peroxide (P), 100 parts by mass of the resin component (A), and a silane coupling agent premixed inorganic.
  • a heat-resistant silane is obtained by melt-mixing 10 to 150 parts by mass of a filler (D), 15 to 60 parts by mass of a brominated flame retardant (h1), and 0.001 to 0.5 parts by mass of a silanol condensation catalyst (e1).
  • This is a step of preparing a crosslinkable resin composition (F).
  • the resin component (A) used in the step (a) is subjected to a crosslinking reaction in the presence of the crosslinking group of the hydrolyzable silane coupling agent (q) and the organic peroxide (P).
  • the resins, elastomers, rubbers, and the like which may contain various oils if desired
  • the polyolefin copolymer (i) and the ethylene- ⁇ -olefin copolymer (ii) are contained.
  • the heat resistance silane crosslinked resin molded article is excellent in insulation resistance, appearance, flexibility, and cold resistance.
  • at least one of the polyolefin copolymers (i) is preferably one selected from an ethylene-vinyl acetate copolymer and an ethylene- (meth) acrylic ester copolymer, and an ethylene- ⁇ -olefin.
  • the copolymer (ii) is preferably linear low density polyethylene (LLDPE).
  • the resin component (A) may be composed of the polyolefin copolymer (i) and the ethylene- ⁇ -olefin copolymer (ii), or may contain other resin components.
  • Resin component (A) is selected from the ranges described below for the respective resins and various oils so that the total of the various resins constituting the resin component and various oils is 100% by mass as required.
  • the content of the polyolefin copolymer (i) with respect to the entire resin component (A) And the ethylene- ⁇ -olefin copolymer (ii) content is selected from the range of 10 to 90% by mass.
  • the content of the polyolefin copolymer (i) and the content of the ethylene- ⁇ -olefin copolymer (ii) are within the above ranges, the mechanical properties, insulation resistance, and flame resistance of the heat-resistant silane crosslinked resin molded product High quality, heat resistance and appearance.
  • the content of the polyolefin copolymer (i) is more preferably selected from the range of 10 to 50% by mass with respect to the entire resin component (A).
  • the content of the ethylene- ⁇ -olefin copolymer (ii) is more preferably selected from the range of 20 to 80% by mass with respect to the entire resin component (A).
  • the total content of the polyolefin copolymer (i) and the ethylene- ⁇ -olefin copolymer (ii) is preferably 30 to 100 with respect to the entire resin component (A) in terms of excellent mechanical properties and insulation resistance.
  • Each content is selected from the above-mentioned range so as to be mass%, more preferably 35 to 98 mass%, and still more preferably 40 to 95 mass%.
  • the balance of the resin component (A) is the polyolefin copolymer (i) and the ethylene- ⁇ -olefin.
  • Resin components other than the copolymer (ii) for example, polypropylene (iii), polyethylene (iv), styrene-based elastomer (v), and in some cases, the oil described above may be used.
  • the total amount of the resin component (A) is The content of polypropylene (iii) is preferably selected in the range of 0.2 to 20% by mass, more preferably in the range of 0.5 to 15% by mass. When the content of polypropylene (iii) is within the above range, the appearance and flexibility of the heat-resistant silane crosslinked resin molded article can be achieved at a higher level.
  • resin component (A) contains polyethylene (iv)
  • the content rate of polyethylene (iv) is 30 mass% or less with respect to the whole resin component (A).
  • the resin component (A) contains the styrene elastomer (v)
  • the content of the styrene elastomer (v) is 30% by mass or less based on the entire resin component (A). preferable.
  • the oil content is as described above.
  • the resin component (A) may be used entirely in the step (a1), or a part thereof may be used in the step (a1) and the rest in the step (a2). May be.
  • a part of the resin component (A) is used in the step (a1) and the rest in the step (a2).
  • the mass ratio of the resin component (A) used in the step (a1) and the step (a2) at this time will be described later.
  • the compounding amount of the organic peroxide (P) is 0.01 to 0.6 parts by weight, preferably 0.03 to 0.00 parts per 100 parts by weight of the resin component (A). 5 parts by mass.
  • the organic peroxide (P) within this range, the polymerization can be carried out in an appropriate range, and the heat-resistant silane cross-linking property is excellent in extrudability without generating an agglomerate due to a cross-linked gel or the like.
  • a resin composition (F) can be obtained.
  • the crosslinking reaction does not proceed at the time of crosslinking and the crosslinking reaction does not proceed at all, or the released silane coupling agents are bonded to each other.
  • Heat resistance, mechanical strength, wear resistance, and reinforcement cannot be obtained sufficiently, and if it exceeds 0.6 parts by mass, many resin components are directly cross-linked by side reaction. In addition, the extrudability deteriorates and there is a risk that bumps will occur.
  • the blending amount of the silane coupling agent premixed inorganic filler (D) can be reduced by the combined use with a brominated flame retardant described later, specifically, 10 to 150 parts by mass with respect to 100 parts by mass of the resin component (A). Part, preferably 20 to 120 parts by weight.
  • the blending amount of the silane coupling agent premixed inorganic filler (D) is less than 10 parts by mass, the graft reaction of the silane coupling agent (q) to the resin component (A) becomes non-uniform, and the desired heat resistance is obtained. It may not be obtained or the appearance may deteriorate due to a non-uniform graft reaction.
  • it exceeds 150 parts by mass the load during molding or kneading becomes very large, and secondary molding may be difficult.
  • the amount of the brominated flame retardant (h1) is 15 to 60 parts by weight, preferably 20 to 60 parts by weight, more preferably 100 parts by weight of the resin component (A). Is 20 to 40 parts by mass.
  • the amount of the brominated flame retardant (h1) is less than 15 parts by mass, desired flame retardancy cannot be obtained. On the other hand, when it exceeds 60 mass parts, mechanical strength may fall.
  • a flame retardant aid such as antimony trioxide, an additive and the like can be mixed.
  • the blending amount of antimony trioxide (h3) is preferably 5 to 30 parts by mass, more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the resin component (A). When the blending amount of antimony trioxide (h3) is within the above range, desired flame retardancy is obtained and high mechanical properties are exhibited.
  • the additive is mixed in the above-described amount or an appropriate amount.
  • the step (a) has the following step (a1) and step (a3), and when the part of the resin component (A) is melt-mixed in the following step (a1), the following step is further performed. (A2).
  • the step (a) includes these steps, each component can be uniformly melted and mixed, and the desired effect can be obtained.
  • Step (a1) A part or all of the resin component (A), the organic peroxide (P), and the silane coupling agent premixed inorganic filler (D) are at or above the decomposition temperature of the organic peroxide (P).
  • Step (a2) for preparing a silane masterbatch (Dx) by melt-mixing in step 2 Melting and mixing the remainder of the resin component (A) as the carrier resin (e2) and the silanol condensation catalyst (e1)
  • Step (a3) of preparing master batch (Ex) Step of melt-mixing silane master batch (Dx) and silanol condensation catalyst (e1) or catalyst master batch (Ex)
  • the step (a2) is performed when a part of the resin component (A) is melt-mixed in the step (a1), and the whole resin component (A) is melt-mixed in the step (a1). If not done.
  • the silanol condensation catalyst (e1) is used alone instead of the catalyst master batch (Ex).
  • the brominated flame retardant (h1) may be mixed in any one of the steps (a1) and (a2), and the brominated flame retardant (h1) is more uniformly mixed. In view of exhibiting high flame retardancy, it is preferable to mix at least in step (a1), and may be mixed in both step (a1) and step (a2).
  • antimony trioxide (h3) when used in step (a), it is preferably mixed in either step (a1) or step (a2), and antimony trioxide (h3) is more uniform. It is more preferable to mix at least in the step (a1) from the viewpoint of exhibiting high flame retardancy, and it may be mixed in both the step (a1) and the step (a2).
  • step (a1) part or all of the resin component (A), the organic peroxide (P), the silane coupling agent premixed inorganic filler (D), and preferably the brominated flame retardant (h1) A part or all of the above is put into a mixer and melt-kneaded while being heated above the decomposition temperature of the organic peroxide (P) to prepare a silane masterbatch (Dx).
  • step (a) mixing of resin component (A), organic peroxide (P), silane coupling agent premixed inorganic filler (D), brominated flame retardant (h1), antimony trioxide (h3), etc.
  • the method is not particularly limited.
  • the organic peroxide (P) may be mixed alone with the resin component (A) and the silane coupling agent premixed inorganic filler (D).
  • the silane coupling agent premixed inorganic filler is used. It is preferable to be included in (D). That is, in the step (a), a silane coupling agent premixed inorganic filler (D) that does not contain an organic peroxide (P) may be used, but a silane coupling agent that contains an organic peroxide (P). It is preferable to use a premixed inorganic filler (D).
  • the silane coupling agent premixed inorganic filler (D) prior to the step (a1).
  • the hydrolyzable silane coupling agent (q) is mixed with the inorganic filler (C) as described above.
  • a silane coupling agent premixed inorganic filler (D) that is strongly or weakly bonded is obtained.
  • the step of preparing the silane coupling agent premixed inorganic filler (D) is performed prior to the step (a1), it is possible to suppress the occurrence of defects due to local crosslinking.
  • the hydrolyzable silane coupling agent (q), the organic peroxide (P) and the inorganic filler (C) are mixed, and then the mixture and the resin component (A) are mixed.
  • the brominated flame retardant (h1) is melt-kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide (P) to prepare a silane masterbatch (graftmer) (Dx).
  • the inorganic filler (C), the hydrolyzable silane coupling agent (q) and the organic peroxide (P) are mixed with the organic peroxide (P) at a predetermined mass ratio.
  • the mixture is prepared by dry or wet mixing at a temperature lower than the decomposition temperature, preferably at room temperature (25 ° C.).
  • the hydrolyzable silane coupling agent (q) mixed with the inorganic filler (C) is 0.5 to 30.0 parts by mass with respect to 100 parts by mass of the inorganic filler (C), preferably 1.0 to 20.0 parts by mass.
  • the amount of the hydrolyzable silane coupling agent (q) is less than 0.5 parts by mass, the crosslinking is not sufficient, and the desired heat resistance and mechanical properties can be obtained in the heat-resistant silane crosslinked resin molded product. It may not be possible.
  • the hydrolyzable silane coupling agent (q) that does not adsorb on the surface of the inorganic filler (C) increases, and thus volatilizes during kneading, which is not economical. Condensation of the hydrolyzable silane coupling agent (q) that is not adsorbed may result in cross-linked gels and burns in the heat-resistant silane cross-linked resin molded article, and the appearance may deteriorate. In particular, the appearance defect is remarkable when it exceeds 30.0 parts by mass.
  • the hydrolyzable silane coupling agent (q) is preferably 0.5 to 18.0 parts by weight, and 1.0 to 10.0 parts by weight with respect to 100 parts by weight of the resin component (A). It is more preferable that When the amount of the hydrolyzable silane coupling agent (q) used is less than 0.5 parts by mass, the crosslinking is not sufficiently performed, and desired heat resistance and mechanical properties can be obtained in the heat-resistant silane crosslinked resin molded product. It may not be possible.
  • the hydrolyzable silane coupling agents (q) are condensed with each other, and there is a risk that the heat-resistant silane crosslinked resin molded product may be damaged or burnt by the crosslinked gel and the appearance may be deteriorated. is there.
  • the mixture thus obtained includes a silane coupling agent premixed inorganic filler (D) obtained by mixing an inorganic filler (C) and a hydrolyzable silane coupling agent (q), and an organic peroxide (P). Containing.
  • D silane coupling agent premixed inorganic filler
  • q hydrolyzable silane coupling agent
  • P organic peroxide
  • Mixing with the inorganic filler (C) and the hydrolyzable silane coupling agent (q) is a state of adding and mixing with heating or non-heating (dry type), or a state in which the inorganic filler (C) is dispersed in a solvent such as water.
  • a method of adding a hydrolyzable silane coupling agent (q) (wet).
  • a treatment in which the hydrolyzable silane coupling agent (q) is added to the inorganic filler (C), preferably the dried inorganic filler (C), with heating or non-heating, that is, dry processing is preferable. .
  • the hydrolyzable silane coupling agent (q) is strongly bonded to the inorganic filler (C).
  • the subsequent cross-linking reaction may be difficult to proceed.
  • the method of adding and mixing the hydrolyzable silane coupling agent (q) in the inorganic filler (C) with heating or non-heating (dry mixing) is a relatively inorganic filler (C) and hydrolyzable silane coupling. Since the bond of the agent (q) becomes weak, the crosslinking easily proceeds efficiently.
  • the hydrolyzable silane coupling agent (q) and the organic peroxide (P) may be mixed together and dispersed in the inorganic filler (C), or separately. It is better to mix together substantially.
  • the hydrolyzable silane coupling agent (q) to be added to the inorganic filler (C) exists so as to surround the surface of the inorganic filler (C), and part or all of the hydrolyzable silane coupling agent (q) is adsorbed on the inorganic filler (C) or inorganic. It may cause a loose chemical bond with the filler (C) surface.
  • step (a1) depending on the production conditions, only the hydrolyzable silane coupling agent (q) can be mixed with the inorganic filler (C), and then the organic peroxide (P) can be added.
  • the organic peroxide (P) may be dispersed in the resin component (A), or may be added alone or dispersed in oil or the like. Disperse in A).
  • the prepared mixture, the resin component (A), preferably the brominated flame retardant (h1), and, if desired, the flame retardant aids and additives are each added to a mixer. In addition, they are melt-kneaded while heating to prepare a silane masterbatch (Dx).
  • the kneading temperature is not less than the decomposition temperature of the organic peroxide (P), preferably the decomposition temperature of the organic peroxide (P) + (25 to 110) ° C.
  • This decomposition temperature is preferably set after the resin component (A) is melted.
  • kneading conditions such as kneading time can be set as appropriate.
  • the kneading method any method usually used for rubber, plastic, etc. can be used, and the kneading apparatus is appropriately selected according to the amount of the silane coupling agent premixed inorganic filler (D), for example.
  • a kneading apparatus a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, or various kneaders are used.
  • a closed mixer such as a Banbury mixer or various kneaders is used for the dispersibility of the resin component (A) and the crosslinking reaction. It is preferable in terms of stability.
  • the step of preparing the silane coupling agent premixed inorganic filler (D) as in the preferred step (a1) in advance, but when the above components are kneaded in the above blending amounts, local crosslinking is performed. Can be suppressed. Therefore, the step (a1) can also be carried out without making the preparation step separate from the melt-kneading step. That is, the silane master batch (Dx) can be prepared by mixing the above-described components together at a temperature higher than the decomposition temperature of the organic peroxide (P).
  • step (a1) is performed to prepare a silane master batch (also referred to as silane MB) (Dx).
  • the silane masterbatch prepared in step (a1) is a decomposition product of an organic peroxide (P), preferably a brominated flame retardant (h1), a resin component (A) and a silane coupling agent premixed inorganic filler. It is a reaction mixture of (D), and contains a silane crosslinkable resin in which a hydrolyzable silane coupling agent (q) is grafted to the resin component (A) to such an extent that it can be molded by the step (b) described later.
  • step (a2) is performed.
  • Step (a2) is a step of preparing a catalyst master batch (Ex) by melting and mixing the remainder of the resin component (A) as the carrier resin (e2) and the silanol condensation catalyst (e1).
  • the compounding amount of the silanol condensation catalyst (e1) is 0.001 to 0.5 parts by mass, preferably 0.003 to 0.1 parts per 100 parts by mass of the resin component (A) used in the step (a). Part by mass.
  • the blending amount of the silanol condensation catalyst (e1) is less than 0.001 part by mass, crosslinking due to the condensation reaction of the hydrolyzable silane coupling agent (q) is difficult to proceed, and the heat resistance of the heat-resistant silane crosslinked resin molded article is sufficient. However, the productivity may be reduced, and the crosslinking may be uneven.
  • the silanol condensation reaction proceeds very rapidly, resulting in partial gelation and the appearance of the heat-resistant silane crosslinked resin molded product being reduced, or heat-resistant silane crosslinked resin molding Physical properties of the body may be reduced.
  • the blending amount of the carrier resin (e2) is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, and further preferably 2 to 40 parts by mass with respect to 100 parts by mass of the resin component (A) in the step (a). Part by mass.
  • the carrier resin (e2) it is preferable to use a part of the resin component (A) within the range satisfying the above-mentioned blending amount. In this case, the resin component (A) and the carrier resin (e2) are added so that the total of the resin component (A) used in the step (a1) and the carrier resin (e2) used in the step (a2) is 100 parts by mass. The usage amount of is appropriately set.
  • the carrier resin (e2) is preferably 5 to 40 parts by mass, particularly preferably 10 to 30 parts by mass, out of a total of 100 parts by mass with the resin component (A).
  • the resin component (A) used in the step (a1) is 60 to 95 parts by mass, and the total amount of the resin component (A) and the carrier resin (e2) is a reference for the blending amount of each component. .
  • the catalyst master batch (Ex) may contain other components in addition to the silanol condensation catalyst (e1) and the carrier resin (e2).
  • you may contain the inorganic filler.
  • content of an inorganic filler is not specifically limited, 350 mass parts or less are preferable with respect to 100 mass parts of carrier resin (e2). This is because if the amount of the inorganic filler is too large, the silanol condensation catalyst (e1) is difficult to disperse and the crosslinking is difficult to proceed.
  • carrier resin (e2) there exists a possibility that the crosslinking degree of a molded object may fall and appropriate heat resistance may not be acquired.
  • a resin other than the resin component (A) can be used as the carrier resin (e2).
  • the melt mixing conditions with the silanol condensation catalyst (e1) and the carrier resin (e2) are appropriately set according to the melting temperature of the carrier resin (e2).
  • the kneading temperature can be 80 to 250 ° C., more preferably 100 to 240 ° C.
  • the kneading conditions such as kneading time can be set as appropriate.
  • the kneading method can be performed by the same method as the kneading method in the step (a1).
  • the catalyst master batch (Ex) (also referred to as catalyst MB) thus obtained is a mixture of a silanol condensation catalyst (e1), a carrier resin (e2), and a filler that is added as desired.
  • the process (a3) which melt-mixes a silane masterbatch (Dx), a silanol condensation catalyst (e1), or a catalyst masterbatch (Ex) is performed.
  • the catalyst master batch (Ex) prepared in the step (a2) is used, and when the step (a2) is not performed, the silanol condensation catalyst (e1) is used.
  • step (a3) the silane master batch (Dx), the catalyst master batch (Ex), and the like are melt-kneaded while heating.
  • this melt-kneading there is a resin component (A) whose melting point cannot be measured by DSC or the like, for example, an elastomer, but kneading is performed at a temperature at which at least one of the resin component (A) and the organic peroxide (P) is melted.
  • the carrier resin (e2) is preferably melted to disperse the silanol condensation catalyst (e2).
  • the kneading conditions such as kneading time can be set as appropriate.
  • the melt-kneading method can be performed by the same method as the kneading method in the step (a1).
  • a heat-resistant silane crosslinkable resin composition (F) containing at least two different silane crosslinkable resins with different crosslinking methods is prepared.
  • This heat-resistant silane crosslinkable resin composition (F) is a composition prepared by the step (a), and is a resin component (A), a silane coupling agent premixed inorganic filler (D), preferably bromine It is considered as a mixture of the silane masterbatch (Dx) and the silanol condensation catalyst (e1) or the catalyst masterbatch (Ex) containing the flame retardant (h1) as a raw material component.
  • the step (b) of molding the heat-resistant silane crosslinkable resin composition (F) is then performed to obtain a molded product.
  • the molding method only needs to mold the heat-resistant silane crosslinkable resin composition (F), and the molding method and molding conditions are appropriately selected according to the form of the heat-resistant product of the present invention. For example, when the heat-resistant product of the present invention is an electric wire or an optical fiber cable, extrusion molding or the like is selected.
  • This step (b) can be performed simultaneously or continuously with the mixing of the silane masterbatch (Dx) and the catalyst masterbatch (Ex).
  • a silane masterbatch (Dx) and a catalyst masterbatch (Ex) are melt-kneaded in a coating apparatus (step (a)), and then covered with, for example, an extruded wire or fiber and formed into a desired shape (step (b) )) Can be adopted.
  • the step (c) is then performed in which the molded product (uncrosslinked product) obtained in the step (b) is brought into contact with water to be crosslinked.
  • the hydrolyzable group of the hydrolyzable silane coupling agent is hydrolyzed into silanol by bringing the molded product into contact with water, and the silanol condensation catalyst (e2) present in the resin.
  • the hydroxyl groups of silanol are condensed to each other to cause a crosslinking reaction, thereby obtaining a heat-resistant silane-crosslinked resin molded body in which the heat-resistant silane-crosslinkable resin composition (F) is crosslinked.
  • the process itself of this process (c) can be performed by a normal method.
  • the hydrolyzable group of the hydrolyzable silane coupling agent is hydrolyzed, and the hydrolyzable silane coupling agents are condensed to form a crosslinked structure.
  • Condensation between hydrolyzable silane coupling agents proceeds only by storage at room temperature, but in order to further accelerate the cross-linking, when contacting with moisture, water is immersed in warm water, put into a wet heat tank, For example, exposure to water vapor. In this case, pressure may be applied to allow moisture to penetrate inside.
  • the production method of the present invention is carried out, and a heat-resistant silane cross-linked resin molded product is produced from the heat-resistant silane cross-linkable resin composition (F). Therefore, the heat-resistant silane cross-linked resin molded product of the present invention is a molded product obtained by performing the step (a) and, if desired, the step (b) and the step (c).
  • the resin component (A) is heated and kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide (P) together with the silane coupling agent premixed inorganic filler (D) in the presence of the organic peroxide (P) component. And grafted with a hydrolyzable silane coupling agent by radicals generated by the decomposition of the organic peroxide (P).
  • resin component (A) couple
  • An agent can be formed.
  • the hydrolyzable silane coupling agent having a strong bond with the inorganic filler (C) is an ethylenically unsaturated group which is a cross-linking group.
  • the hydrolyzable silane coupling agent having a weak bond with the inorganic filler (C) is from the surface of the inorganic filler (C).
  • the ethylenically unsaturated group, which is a crosslinkable group of the hydrolyzable silane coupling agent, was released by hydrogen radical abstraction by radicals generated by decomposition of the organic peroxide (P) of the resin component (A).
  • a graft reaction occurs by reacting with a resin radical. It is considered that the hydrolyzable silane coupling agent in the graft portion thus produced is then mixed with a silanol condensation catalyst and brought into contact with moisture to cause a crosslinking reaction by a condensation reaction.
  • hydrolysis reaction in which a hydroxyl group on the surface of the inorganic filler is chemically bonded by a covalent bond by a condensation reaction in the presence of water by this silanol condensation catalyst.
  • Decomposable silane coupling agents also undergo a condensation reaction to further expand the cross-linking network.
  • the cross-linking reaction by condensation using a silanol condensation catalyst in the presence of water is performed after forming the formed body, whereby the formed body is obtained after the conventional final cross-linking reaction.
  • it is excellent in workability in the process up to forming the molded body, and can bind a plurality of hydrolyzable silane coupling agents on the surface of one inorganic filler particle, and has higher heat resistance than before, For example, it becomes possible to obtain solder heat resistance at 380 ° C., which will be described later, and to obtain high mechanical strength, insulation resistance and flame retardancy.
  • the hydrolyzable silane coupling agent bonded to the inorganic filler (C) with a strong bond contributes to high mechanical strength, insulation resistance and flame retardancy, and has a weak bond to the inorganic filler (C).
  • the bonded hydrolyzable silane coupling agent contributes to the improvement of the degree of crosslinking.
  • the inorganic filler (C) when a surface-treated inorganic filler that has been slightly surface-treated with a silane coupling agent or other surface treatment agent in advance is used, a pre-treated silane coupling agent or a post-added hydrolyzable silane A large amount of the silane coupling agent premixed inorganic filler (D) to which the coupling agent (q) is strongly bonded is formed, and a molded article having high mechanical properties (for example, mechanical strength), insulation resistance and flame retardancy can be obtained.
  • a surface-treated inorganic filler that has been slightly surface-treated with a silane coupling agent or other surface treatment agent in advance when used, a pre-treated silane coupling agent or a post-added hydrolyzable silane A large amount of the silane coupling agent premixed inorganic filler (D) to which the coupling agent (q) is strongly bonded is formed, and a molded article having high mechanical properties (for example, mechanical strength), insulation resistance and flame retardancy
  • the hydrolyzable silane coupling agent added later is weakly bonded.
  • a large amount of the silane coupling agent premixed inorganic filler (D) is formed and the mechanical strength is not greatly improved, a molded article having excellent flexibility and the like can be obtained.
  • the brominated flame retardant (h1) contains a large amount of bromine having a high electronegativity and has a high polarity. Therefore, the brominated flame retardant (h1) is further incorporated into the strong network between the resin component (A) and the silane coupling agent premixed inorganic filler (D) via the hydrolyzable silane coupling agent (q). Therefore, it is considered that the interaction is increased and the flame retardancy is improved.
  • the manufacturing method of the present invention can be applied to the manufacture of components (including semi-finished products, parts, and members) that require heat resistance, products that require strength, components of products such as rubber materials, or members thereof. it can.
  • Examples of such products include electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-resistant cable coating materials, rubber substitute electric wires and cable materials, other heat-resistant and flame-resistant electric wire components, flame-resistant and heat-resistant sheets, and flame-resistant and heat-resistant films.
  • Electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-resistant cable coating materials, rubber substitute electric wires and cable materials, other heat-resistant and flame-resistant electric wire components, flame-resistant and heat-resistant sheets, and flame-resistant and heat-resistant films.
  • power plugs, connectors, sleeves, boxes, tape substrates, tubes, sheets, packing materials, cushioning materials, anti-vibration materials, electrical and electronic equipment, and wiring materials especially electric wires and optical cables.
  • the heat-resistant product of the present invention is the above-mentioned various heat-resistant products including a heat-resistant silane cross-linked resin molded article, and a heat-resistant product containing the heat-resistant silane cross-linked resin molded article as a coating for an insulator or a sheath, for example, an electric wire And optical cables.
  • Insulators, sheaths, and the like can be formed by coating them in such a shape while melt-kneading them in an extrusion coating apparatus.
  • Such a molded body such as an insulator or a sheath is a general-purpose extrusion coating apparatus that uses a large amount of an inorganic filler and a highly heat-resistant and non-melting crosslinked composition without using a special machine such as an electron beam crosslinking machine.
  • any conductor such as an annealed copper single wire or stranded wire can be used as the conductor.
  • the conductor may be tin-plated or an enamel-covered insulating layer.
  • the thickness of the insulating layer formed around the conductor is not particularly limited, but is usually about 0.15 to 8 mm.
  • EVA1 EV360, ethylene-vinyl acetate copolymer resin “Evaflex” (trade name) manufactured by Mitsui DuPont Chemical Co., Ltd., VA content 25% by mass
  • EVA2 EV180 Ethylene-vinyl acetate copolymer resin “Evaflex” (trade name) manufactured by Mitsui DuPont Chemical Co., Ltd., VA content 33% by mass
  • LLDPE “Evolue SP0540” (trade name), LLDPE resin manufactured by Prime Polymer Co.
  • Random polypropylene “PB222A” (trade name), random PP resin manufactured by Sun Allomer (v) Styrene "Septon 4077” (trade name) as a base elastomer, "Diana Process Oil PW90” (trade name) as a process oil made by Kuraray, "XP650” (trade name) as a silane graft polyethylene made by Idemitsu Kosan, manufactured by Hyundai Silane grafted polyethylene
  • DCP decomposition temperature 151 ° C.
  • antimony trioxide As antimony trioxide, as an antimony trioxide crosslinking aid manufactured by Toyota Tsusho Corporation, “Ogmont T200” (trade name), manufactured by Shin-Nakamura Chemical Co., Ltd., or trimethylolpropane trimethacrylate as an anti-aging agent, “Irganox 1010” (trade name), pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], manufactured by BASF as a lubricant, “NS-M” (trade name), Magnesium stearate, manufactured by Nippon Oil & Fats, or “X21-3043” (trade name), polyorganosiloxane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 1 First, the inorganic filler (B), hydrolyzable silane coupling agent (q) and organic peroxide (P) shown in the “Silane MB (D1)” column of Table 1 are blended in the amounts shown in Table 1, The mixture was put into a Toyo Seiki 10 L Henschel mixer and mixed at room temperature for 10 minutes to obtain a powder mixture containing an organic peroxide (P) and a silane coupling agent premixed inorganic filler (D). Next, this powder mixture, resin component (A), brominated flame retardant (h1), antimony trioxide (h3) and lubricant shown in the “Silane MB (D1)” column of Table 1 are manufactured by Nippon Roll.
  • the mixture was put into a 2 L Banbury mixer, kneaded in the mixer for about 12 minutes, and then discharged at a material discharge temperature of 180 to 190 ° C. to obtain a silane master batch (D1) (step (a1)).
  • the mixture Prior to discharge, the mixture was kneaded at a temperature not lower than the decomposition temperature of the organic peroxide (P), specifically 180 to 190 ° C. for 5 minutes.
  • P organic peroxide
  • the blending amount (part by mass) of the hydrolyzable silane coupling agent (q) with respect to 100 parts by mass of the inorganic filler (C) at this time is shown in the “Silane MB (D1)” column of Table 1. Indicated.
  • the carrier resin (e2), the silanol condensation catalyst (e1) and the anti-aging agent shown in the “Catalyst MB (E1)” column of Table 1 are separately mixed with a Banbury mixer at 120 to 160 ° C., and a material discharge temperature of 120 to The mixture was melted and mixed at 180 ° C. to obtain a catalyst master batch (E1) (step (a2)).
  • the temperature was introduced at a temperature of 180 ° C. and melted and mixed at 180 ° C., and the outside of the 21 / 0.18TA conductor was coated with a wall thickness of 0.84 mm to obtain an electric wire having an outer diameter of 2.63 mm (step (a3) and Step (b)).
  • This electric wire was left in an atmosphere of a temperature of 60 ° C. and a humidity of 95% for 48 hours (step (c)). In this way, an insulated wire having a coating (insulating layer) made of a heat-resistant silane cross-linked resin molded article was produced.
  • Table 1 shows the blending ratio (mixing ratio) of each component used in Example 1, that is, the raw material composition ratio of the heat-resistant silane cross-linked resin molded article, as “heat-resistant silane cross-linkable resin composition (F)”.
  • Examples 2 to 15, Comparative Examples 1 and 2 A silane masterbatch (Dx) and a catalyst masterbatch (Ex) were prepared in the same manner as in Example 1 with the formulations shown in Tables 1 to 4 (step (a1) and step (a2)), and the respective blending ratios are shown. Except for the mass ratios shown in Tables 1 to 4, the outside of the 21 / 0.18 TA conductor was coated with a thickness of 0.84 mm in the same manner as in Example 1 to obtain an electric wire with an outer diameter of 2.63 mm (step ( a3) and step (b)). The electric wire was left in an atmosphere of temperature 60 ° C. and humidity 95% for 48 hours (step (c)) to produce an insulated electric wire having a coating (insulating layer) made of a heat-resistant silane crosslinked resin molded product.
  • Example 2 brominated flame retardant (h1) and antimony trioxide (h3) were melt-kneaded in step (a2).
  • Example 13 the brominated flame retardant (h1) was melt-kneaded in the step (a2), and antimony trioxide (h3) was melt-kneaded in the step (a1).
  • Example 11 and 12 brominated flame retardant (h1) was melt-kneaded in both steps (a1) and (a2), and antimony trioxide (h3) was melt-kneaded in step (a2).
  • inorganic filler (C), hydrolyzable silane coupling agent (q), organic peroxide (P), resin component (A), brominated flame retardant (h1), antimony trioxide ( h3) and the lubricant were put into a 2 L Banbury mixer made by Nippon Roll, then kneaded for about 12 minutes with the mixer, and then discharged at a material discharge temperature of 180 to 190 ° C. to obtain a silane master batch (D16 to 20) ( Step (a1)). Prior to discharge, the mixture was kneaded at a temperature not lower than the decomposition temperature of the organic peroxide (P), specifically 180 to 190 ° C. for 5 minutes.
  • Catalyst master batches (E16 to 20) were prepared in the same manner as in Example 1 with the formulation shown in Table 3.
  • Example 1 except that the silane master batch (D16-20) and the catalyst master batch (E16-20) were used in the mass ratios shown in Table 3 instead of the silane master batch (D1) and the catalyst master batch (E1).
  • the outside of the 21 / 0.18 TA conductor was coated with a thickness of 0.84 mm to obtain an electric wire with an outer diameter of 2.63 mm (step (a3) and step (b)).
  • the electric wire was left in an atmosphere of temperature 60 ° C. and humidity 95% for 48 hours (step (c)) to produce an insulated electric wire having a coating (insulating layer) made of a heat-resistant silane crosslinked resin molded product.
  • Comparative Examples 3 to 6 silane cross-linked resin molded articles were produced by a silane cross-linking method different from that of the present invention.
  • Tables 1 to 4 the silane crosslinking method of the present invention using the resin component (A), the silane coupling agent premixed inorganic filler (D) and the organic peroxide (P) is referred to as “silane crosslinking 1”,
  • silane crosslinking 2 The silane crosslinking method of Comparative Examples 3 to 6 using a resin grafted with a coupling agent was designated as “silane crosslinking 2”.
  • Silanol condensation catalyst (e1), anti-aging agent and lubricant are mixed with a Banbury mixer at 120 to 180 ° C., and melt mixed at a material discharge temperature of 180 to 190 ° C. to obtain catalyst master batches (E23) to (E26).
  • the resin component (A), surface treatment inorganic filler (B), brominated flame retardant (h1), antimony trioxide (h3), crosslinking aid, anti-aging agent and lubricant shown in Table 4 are banbury.
  • the mixture was mixed at 120 to 180 ° C. with a mixer, and melt mixed at a material discharge temperature of 120 to 180 ° C. to obtain a resin composition.
  • a wire having an outer diameter of 2.63 mm was obtained by coating with 0.84 mm.
  • the obtained electric wire was subjected to electron beam irradiation (15 Mrad) to crosslink the coating resin layer to produce an insulated electric wire.
  • the “crosslinking method” of the reference example was “electron beam”.
  • Insulation resistance As for the insulation resistance, the initial value (after 1 hour in water) of the insulation resistance defined in JISC3005 was measured. 2500 M ⁇ ⁇ km or more was regarded as acceptable.
  • solder heat resistance test was performed as a heat resistance test of the insulated wires. Specifically, one layer of aluminum foil was wound around the outer periphery of the insulated wire, and a portion of 3 cm in length was immersed in a solder bath set at 380 ° C. and held for 5 seconds. Thereafter, the insulated wire was pulled from the solder bath, and the presence or absence of melting of the outer periphery of the insulated wire and the presence of foaming inside the coating layer were confirmed except for the aluminum foil. As a result, if there is no abnormality such as melting or foaming of the coating layer, the test is accepted. In Tables 1 to 4, “ ⁇ ” is indicated, and if there is an abnormality such as melting or foaming of the coating layer, the test is rejected. ".
  • This VW-1 test is an evaluation method in which a combustion level is confirmed by holding a sample vertically and applying a burner, and is a test method that requires a higher flame retardant level than a horizontal flame retardant test. Therefore, this VW-1 test is a severe test and was evaluated for reference, and it is not always necessary to pass all the tests.
  • Extruded appearance also called electric wire appearance
  • An extrusion appearance test was conducted as an extrusion appearance characteristic of the insulated wire. The extrusion appearance was observed when the insulated wire was manufactured. Extrusion appearance was as follows: “ ⁇ ” when the appearance of the extrudate was good when produced with a 40 mm extruder at a linear speed of 10 m, “ ⁇ ” when the appearance was slightly bad, “ ⁇ ”, and “ ⁇ ” or higher was regarded as a product level.
  • Comparative Examples 3 to 6 Silane cross-linking 2) using silane-grafted polyethylene without using the silane coupling agent premixed inorganic filler (D) and organic peroxide (P) are both insulation resistance and solder. It was inferior in heat resistance.
  • the comparative example 3 which reduced the compounding quantity of the surface treatment inorganic filler (B) and increased the compounding quantity of antimony trioxide (h3) has a material price in order to mix
  • Comparative Examples 4 and 5 in which the blending amount of the surface-treated inorganic filler (B) was increased and the blending amount of antimony trioxide (h3) was decreased, in addition to the insulation resistance and the solder heat resistance, although the material price decreased. Also inferior in tensile strength.
  • Comparative Example 6 in which the amount of the surface-treated inorganic filler (B) was increased as compared with Comparative Example 5, in addition to insulation resistance, tensile strength and solder heat resistance, the elongation at break was inferior.
  • the specific resin component (A) is crosslinked, and by blending an appropriate amount of the silane coupling agent premixed inorganic filler (D) and the brominated flame retardant (h1), A heat-resistant silane-crosslinked resin molded article having superior tensile strength, elongation, insulation resistance, and heat resistance compared to the silane-crosslinking method “silane-crosslinked 2 (Comparative Examples 3 to 6)” using silane-grafted polyethylene. Can be obtained.
  • the heat-resistant silane cross-linked resin molded article is more excellent in flame retardancy that is comparable to or surpassing electron beam cross-linking (reference example). Can be obtained.
  • the polyolefin copolymer (i) is 10 to 50% by mass and the ethylene- ⁇ -olefin copolymer (ii) is 20% with respect to the entire resin component (A).
  • an insulation resistance value of 3000 M ⁇ ⁇ km or more is exhibited, and the insulation resistance is further improved, which is preferable.
  • Examples 1 to 6 and 11 to 20 when 5 parts by mass or more of antimony trioxide (h3) is blended, both the horizontal flame retardant test and the VW-1 test pass all, and further excellent flame retardant It is preferable because it exhibits its properties. Further, as in Examples 1 to 5 and 11 to 20, it is preferable to add 0.2 to 15% by mass or more of polypropylene (iii) with respect to the entire resin component (A) because the appearance of the electric wire is good.
  • the step of preparing the silane coupling agent premixed inorganic filler (D) in advance is omitted, and when the respective components are mixed in the mixer, By adsorbing the silane coupling agent (q) to the inorganic filler (C), the silane coupling agent premixed inorganic filler (D) is prepared, and then each of the above-described temperatures above the decomposition temperature of the organic peroxide (P).
  • a silane masterbatch (Dx) can also be prepared by mixing the components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A method for manufacturing a heat-resistant silane crosslinked resin molded article, in which a step (a) of melt-mixing a specific resin component, an organic peroxide, an inorganic filler having a silane coupling agent premixed therewith, a bromine-containing flame retardant agent and a silanol condensing catalyst together comprises a step (a1) of melt-mixing a portion or the whole of the resin component, the organic peroxide and the inorganic filler having the silane coupling agent premixed therewith together to prepare a silane MB, a step (a2) of optionally melt-mixing the remainder of the resin component with the silanol condensing catalyst to prepare a catalyst MB, and a step (a3) of melt-mixing the silane MB with the silanol condensing catalyst or the catalyst MB, wherein the bromine-containing flame retardant agent is mixed in step (a1) and/or step (a2); a heat-resistant silane crosslinked resin molded article manufactured by the method; and a heat-resistant product equipped with the heat-resistant silane crosslinked resin molded article.

Description

耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品Heat-resistant silane cross-linked resin molded body, method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded body
 本発明は、耐熱性シラン架橋樹脂成形体及びその製造方法並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品に関し、特に、優れた、機械特性、絶縁抵抗及び難燃性を有する耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を電線の絶縁体やシース等として用いた耐熱性製品に関するものである。 The present invention relates to a heat-resistant silane cross-linked resin molded body, a method for producing the same, and a heat-resistant product using the heat-resistant silane cross-linked resin molded body, and in particular, excellent heat-resistant silane having mechanical properties, insulation resistance and flame retardancy. The present invention relates to a cross-linked resin molded body, a method for producing the same, and a heat-resistant product using the heat-resistant silane cross-linked resin molded body as an electric wire insulator or sheath.
 電気・電子機器の内部及び外部配線に使用される絶縁電線、ケーブル、コード、光ファイバ心線及び光ファイバコードには、難燃性、耐熱性、機械特性(例えば、引張特性)、耐摩耗性、絶縁抵抗など種々の特性が要求されている。これらの配線材に使用される材料としては、通常、水酸化マグネシウム、水酸化アルミニウム、炭酸カルシウム等の無機フィラーを多量に配合した樹脂組成物が用いられる。 Insulated wires, cables, cords, optical fiber cores and optical fiber cords used for internal and external wiring of electrical and electronic equipment are flame retardant, heat resistant, mechanical properties (for example, tensile properties), and abrasion resistance Various characteristics such as insulation resistance are required. As a material used for these wiring materials, a resin composition containing a large amount of an inorganic filler such as magnesium hydroxide, aluminum hydroxide, or calcium carbonate is usually used.
 また、電気・電子機器に使用される配線材は、長時間使用すると80~105℃、さらには125℃位にまで昇温することがあり、これに対する耐熱性が要求される場合がある。このような場合、配線材に高耐熱性を付与することを目的として、被覆材料樹脂を電子線架橋法、化学架橋法等によって橋架け(架橋ともいう)する方法が採られている。 In addition, wiring materials used in electric / electronic devices may be heated to 80 to 105 ° C. or even 125 ° C. when used for a long time, and heat resistance against this may be required. In such a case, for the purpose of imparting high heat resistance to the wiring material, a method of bridging (also referred to as crosslinking) the coating material resin by an electron beam crosslinking method, a chemical crosslinking method, or the like is employed.
 従来、ポリエチレン等のポリオレフィン樹脂を架橋する方法として、電子線を照射して架橋させる電子線架橋法、成形後に熱を加えることにより有機過酸化物等を分解させて架橋反応させる化学架橋法や、シラン架橋法が知られている。
 シラン架橋法とは、有機過酸化物の存在下で不飽和基を有する加水分解性シランカップリング剤をポリマーにグラフト反応させてシラングラフトポリマーを得た後に、シラノール縮合触媒の存在下で水分と接触させることにより架橋成形体を得る方法である。
 上述の架橋法の中でも特にシラン架橋法は特殊な設備を要しないことが多いため、幅広い分野で使用することができる。
Conventionally, as a method of crosslinking a polyolefin resin such as polyethylene, an electron beam crosslinking method in which an electron beam is irradiated to crosslink, a chemical crosslinking method in which an organic peroxide is decomposed by applying heat after molding, and a crosslinking reaction is performed, Silane cross-linking methods are known.
The silane crosslinking method is a method in which a hydrolyzable silane coupling agent having an unsaturated group is grafted to a polymer in the presence of an organic peroxide to obtain a silane graft polymer, and then water and moisture in the presence of a silanol condensation catalyst. This is a method of obtaining a cross-linked molded article by contacting them.
Among the crosslinking methods described above, the silane crosslinking method in particular does not require special equipment, and can be used in a wide range of fields.
 具体的には、シラン架橋法としては、ポリオレフィン樹脂に不飽和基を有するシランカップリング剤をグラフトさせたシランマスターバッチと、ポリオレフィン樹脂と無機フィラーを混練した耐熱性マスターバッチと、シラノール縮合触媒を含有した触媒マスターバッチとを溶融混合させる方法がある。しかし、この方法ではポリオレフィン樹脂100質量部に対して無機フィラーの使用量が100質量部を超える場合では、シランマスターバッチと耐熱性マスターバッチとを乾式混合して、単軸押出機や二軸押出機内にて均一に溶融混練することが困難になる。このように、シランマスターバッチと耐熱性マスターバッチとを乾式混合で溶融混練を均一に行うには、シランマスターバッチの割合が制限されてしまうため、より高難燃化、高耐熱化することが困難であった。しかも、このような方法を用いて製造すると架橋樹脂とした場合に優れた強度や耐摩耗性、補強性を付与することが困難であった。 Specifically, the silane crosslinking method includes a silane master batch obtained by grafting a silane coupling agent having an unsaturated group to a polyolefin resin, a heat resistant master batch obtained by kneading a polyolefin resin and an inorganic filler, and a silanol condensation catalyst. There is a method of melt-mixing the contained catalyst master batch. However, in this method, when the amount of the inorganic filler used exceeds 100 parts by mass with respect to 100 parts by mass of the polyolefin resin, the silane master batch and the heat-resistant master batch are dry-mixed to obtain a single screw extruder or a twin screw extruder. It becomes difficult to melt and knead uniformly in the machine. Thus, in order to uniformly melt and knead a silane masterbatch and a heat-resistant masterbatch by dry mixing, the ratio of the silane masterbatch is limited, so that it is possible to achieve higher flame retardancy and higher heat resistance. It was difficult. Moreover, when manufactured using such a method, it is difficult to impart excellent strength, wear resistance, and reinforcing properties when a crosslinked resin is used.
 通常、このような無機フィラーが、ポリオレフィン樹脂100質量部に対して100質量部を超える場合の混練には、連続混練機、加圧式ニーダーやバンバリーミキサー等の密閉型ミキサーを用いることが一般的である。
 ところが、ニーダーやバンバリーミキサーでシラングラフトを行う場合には、不飽和基を有する加水分解性シランカップリング剤は一般に揮発性が高く、グラフト反応する前に揮発してしまうという問題がある。そのため所望のシラン架橋マスターバッチを作製することが、まず非常に困難である。
Usually, when such inorganic filler exceeds 100 parts by mass with respect to 100 parts by mass of polyolefin resin, it is common to use a continuous mixer, a closed mixer such as a pressure kneader or a Banbury mixer. is there.
However, when silane grafting is carried out with a kneader or Banbury mixer, the hydrolyzable silane coupling agent having an unsaturated group is generally highly volatile and volatilizes before the graft reaction. Therefore, it is very difficult to produce a desired silane cross-linked master batch.
 そこで、バンバリーミキサーやニーダーにて、耐熱性シランマスターバッチを製造する場合、ポリオレフィン樹脂及び無機フィラーをバンバリーミキサー等で溶融混合した耐熱性マスターバッチに、不飽和基を有する加水分解性シランカップリング剤と有機過酸化物を加え、単軸押出機にてグラフト重合させる方法が考えられる。
 しかし、この方法では反応のばらつきによって成形体に外観不良が生じて、所望の成形体を得ることができない。また、耐熱性マスターバッチ中の無機フィラーの配合割合を多くしなければならない。そのため押出負荷が大きくなり、製造が非常に難しくなって、所望の材料や成形体を得ることができない。さらに、2工程となり、製造コスト面でもこれが難点となっている。
Therefore, when producing a heat-resistant silane masterbatch with a Banbury mixer or kneader, a hydrolyzable silane coupling agent having an unsaturated group is added to the heat-resistant masterbatch obtained by melting and mixing a polyolefin resin and an inorganic filler with a Banbury mixer. And an organic peroxide may be added and graft polymerization may be performed with a single screw extruder.
However, in this method, a defective appearance occurs in the molded body due to variation in reaction, and a desired molded body cannot be obtained. Moreover, the compounding ratio of the inorganic filler in the heat resistant masterbatch must be increased. For this reason, the extrusion load becomes large, the production becomes very difficult, and a desired material or molded product cannot be obtained. Furthermore, this is a two-step process, which is a difficult point in terms of manufacturing cost.
 特許文献1にはポリオレフィン系樹脂にシランカップリング剤で表面処理した無機フィラー、シランカップリング剤、有機過酸化物、架橋触媒をニーダーにて十分に溶融混練した後に、単軸押出機にて成形する方法が提案されている。
 しかし、この方法では、ニーダーでの溶融混練中に樹脂が一部架橋してしまい成形体は外観不良(表面に突出した多数のツブ状物の形成)を引き起こす。これに加えて、無機フィラーに表面処理されたシランカップリング剤以外のシランカップリング剤の大部分は、揮発するか又はシランカップリング剤同士が縮合するおそれがある。そのため、所望の耐熱性を得ることができないばかりか、シランカップリング剤同士の縮合が電線の外観悪化の要因となるおそれがある。
In Patent Document 1, an inorganic filler surface-treated with a silane coupling agent, a silane coupling agent, an organic peroxide, and a crosslinking catalyst are sufficiently melt-kneaded with a kneader and then molded with a single screw extruder. A method has been proposed.
However, in this method, the resin is partially crosslinked during melt kneading in a kneader, causing the molded body to have a poor appearance (formation of a large number of protrusions protruding on the surface). In addition to this, most of the silane coupling agents other than the silane coupling agent surface-treated on the inorganic filler may volatilize or the silane coupling agents may condense. For this reason, desired heat resistance cannot be obtained, and condensation between silane coupling agents may cause deterioration of the appearance of the electric wire.
 また、特許文献2~4にはブロック共重合体等をベース樹脂とし、軟化剤として非芳香族系ゴム用軟化剤を加えたビニル芳香族系熱可塑性エラストマー組成物を、シラン表面処理された無機フィラーを介して有機過酸化物を用いて部分架橋する技術が提案されている。
 しかし、このような技術であっても、まだ、樹脂が十分な網状構造になっておらず、樹脂と無機フィラーの結合は高温で結合が外れる。そのため、高温下では溶融し、例えば電線のハンダ加工中に絶縁材が熔けてしまったり、また成形体を2次加工する際に変形したり、発泡を生じたりする問題がある。さらに200℃程度に短時間加熱されると、外観が著しく劣化したり、変形したりする問題がある。
Further, Patent Documents 2 to 4 disclose a vinyl aromatic thermoplastic elastomer composition having a block copolymer or the like as a base resin and a non-aromatic rubber softener added as a softener. A technique of partially crosslinking using an organic peroxide through a filler has been proposed.
However, even with such a technique, the resin does not yet have a sufficient network structure, and the bond between the resin and the inorganic filler is released at a high temperature. For this reason, there is a problem that it melts at a high temperature, for example, the insulating material melts during soldering of the electric wire, or deforms or foams when the molded body is secondarily processed. Furthermore, when heated to about 200 ° C. for a short time, there is a problem that the appearance is remarkably deteriorated or deformed.
特開2001-101928号公報JP 2001-101928 A 特開2000-143935号公報JP 2000-143935 A 特開2000-315424号公報JP 2000-315424 A 特開2001-240719号公報JP 2001-240719 A
 本発明は、上記の問題点を解決し、加水分解性シランカップリング剤の揮発を抑えて製造した、優れた、機械特性、絶縁抵抗及び難燃性を有する耐熱性シラン架橋樹脂成形体及びその製造方法を提供することを課題とする。
 また、本発明は、耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供することを課題とする。
The present invention solves the above-mentioned problems and is produced by suppressing volatilization of the hydrolyzable silane coupling agent, and has excellent mechanical properties, insulation resistance and flame retardancy, and its molded product It is an object to provide a manufacturing method.
Moreover, this invention makes it a subject to provide the heat resistant product using the heat resistant silane crosslinked resin molded object obtained with the manufacturing method of the heat resistant silane crosslinked resin molded object.
 本発明者らは、上記のようなシラン架橋法を利用するに当たり、揮発しやすい加水分解性シランカップリング剤を無機フィラーと予め混合して(これを予備混合という)、加水分解性シランカップリング剤の揮発を抑える程度に結合させたシランカップリング剤予備混合無機フィラーと、特定量の臭素系難燃剤とを併用すると、耐熱性シラン架橋樹脂成形体の優れた機械特性を保持しつつも絶縁抵抗を高め、かつ電子線架橋による成形体と同等又はそれ以上に難燃性を向上できることを、見出した。しかも、臭素系難燃剤と併用するとシランカップリング剤予備混合無機フィラーの配合量を低減できることも見出した。
 本発明者らはこれらの知見に基づきさらに研究を重ね、本発明をなすに至った。
When using the silane cross-linking method as described above, the present inventors previously mixed a hydrolyzable silane coupling agent that easily volatilizes with an inorganic filler (this is referred to as premixing), and hydrolyzable silane coupling. When combined with a silane coupling agent premixed inorganic filler bonded to a level that suppresses the volatilization of the agent and a specific amount of brominated flame retardant, insulation is achieved while maintaining the excellent mechanical properties of the heat-resistant silane crosslinked resin molding It has been found that the flame retardancy can be improved to be equal to or higher than that of a molded article obtained by increasing resistance and electron beam crosslinking. In addition, it has also been found that when used in combination with a brominated flame retardant, the amount of the silane coupling agent premixed inorganic filler can be reduced.
The present inventors have further studied based on these findings, and have come to make the present invention.
 すなわち、本発明の課題は以下の手段によって達成された。
(1)下記工程(a)、工程(b)及び工程(c)
   工程(a):樹脂成分(A)100質量部と、有機過酸化物(P)0.01~0.6質量部と、表面処理無機フィラー(B)を含む無機フィラー(C)100質量部に対して加水分解性シランカップリング剤(q)0.5~30.0質量部を混合してなるシランカップリング剤予備混合無機フィラー(D)10~150質量部と、臭素系難燃剤(h1)15~60質量部と、シラノール縮合触媒(e1)0.001~0.5質量部とを溶融混合する工程
   工程(b):前記工程(a)で得られた耐熱性シラン架橋性樹脂組成物(F)を成形する工程及び
   工程(c):前記工程(b)で得られた成形物を水分と接触させて架橋させて成形体とする工程
を有する耐熱性シラン架橋樹脂成形体の製造方法であって、
 前記樹脂成分(A)が、(i)酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体10~90質量%、及び、(ii)エチレン-α-オレフィン共重合体10~90質量%を含み、
 前記工程(a)が、下記工程(a1)及び工程(a3)を有し、下記工程(a1)で樹脂成分(A)の一部を溶融混合する場合にさらに下記工程(a2)を有し、
   工程(a1):前記樹脂成分(A)の一部又は全部と、前記有機過酸化物(P)と、前記シランカップリング剤予備混合無機フィラー(D)とを前記有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチ(Dx)を調製する工程
   工程(a2):キャリヤ樹脂(e2)としての前記樹脂成分(A)の残部とシラノール縮合触媒(e1)とを溶融混合して、触媒マスターバッチ(Ex)を調製する工程及び
   工程(a3):前記シランマスターバッチ(Dx)と前記シラノール縮合触媒(e1)又は前記触媒マスターバッチ(Ex)とを溶融混合する工程
 前記臭素系難燃剤(h1)が前記工程(a1)及び前記工程(a2)の少なくとも一方において混合される、耐熱性シラン架橋樹脂成形体の製造方法。
That is, the subject of this invention was achieved by the following means.
(1) The following step (a), step (b) and step (c)
Step (a): 100 parts by mass of resin component (A), 0.01 to 0.6 parts by mass of organic peroxide (P), and 100 parts by mass of inorganic filler (C) including surface-treated inorganic filler (B) 10 to 150 parts by mass of a silane coupling agent premixed inorganic filler (D) obtained by mixing 0.5 to 30.0 parts by mass of a hydrolyzable silane coupling agent (q) with respect to a brominated flame retardant ( h1) Step of melt-mixing 15-60 parts by mass of silanol condensation catalyst (e1) 0.001-0.5 parts by mass Step (b): Heat-resistant silane crosslinkable resin obtained in step (a) A step of molding the composition (F) and a step (c): a heat-resistant silane cross-linked resin molded product having a step of bringing the molded product obtained in the step (b) into contact with moisture to form a molded product A manufacturing method comprising:
The resin component (A) is (i) a polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component in an amount of 10 to 90% by mass, and (ii) an ethylene-α-olefin copolymer in an amount of 10 to 90% by mass. %
The step (a) includes the following step (a1) and step (a3), and further includes the following step (a2) when a part of the resin component (A) is melt-mixed in the following step (a1). ,
Step (a1): Part or all of the resin component (A), the organic peroxide (P), and the silane coupling agent premixed inorganic filler (D) are combined with the organic peroxide (P). Step of preparing a silane masterbatch (Dx) by melting and mixing at a temperature equal to or higher than the decomposition temperature of step Step (a2): Melting the remainder of the resin component (A) as the carrier resin (e2) and the silanol condensation catalyst (e1) Step of mixing and preparing a catalyst master batch (Ex) and Step (a3): Melting and mixing the silane master batch (Dx) and the silanol condensation catalyst (e1) or the catalyst master batch (Ex) A method for producing a heat-resistant silane-crosslinked resin molded product, wherein the brominated flame retardant (h1) is mixed in at least one of the step (a1) and the step (a2).
(2)前記樹脂成分(A)が、少なくとも、(i)酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体10~50質量%、及び、(ii)エチレン-α-オレフィン共重合体20~80質量%を含む(1)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(3)前記(i)酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体の少なくとも1種が、エチレン-酢酸ビニル共重合体又はエチレン-(メタ)アクリル酸エステル共重合体である(1)又は(2)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(4)前記臭素系難燃剤(h1)が、前記工程(a1)及び前記工程(a2)の両工程において混合される(1)~(3)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(5)前記工程(a1)及び前記工程(a2)の少なくとも一方の工程において、(h3)三酸化アンチモンが前記樹脂成分(A)100質量部に対して合計で5~30質量部混合される(1)~(4)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(6)前記樹脂成分(A)が、(iii)ポリプロピレン0.2~20質量%を含む(1)~(5)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(2) The resin component (A) comprises at least (i) 10 to 50% by mass of a polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, and (ii) an ethylene-α-olefin copolymer The method for producing a heat-resistant silane crosslinked resin molded article according to (1), comprising 20 to 80% by mass of the coalescence.
(3) At least one of the (i) polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component is an ethylene-vinyl acetate copolymer or an ethylene- (meth) acrylic acid ester copolymer. (1) The manufacturing method of the heat-resistant silane crosslinked resin molding as described in (2).
(4) The heat-resistant silane cross-linking according to any one of (1) to (3), wherein the brominated flame retardant (h1) is mixed in both steps (a1) and (a2). Manufacturing method of resin molding.
(5) In at least one of the step (a1) and the step (a2), (h3) antimony trioxide is mixed in a total of 5 to 30 parts by mass with respect to 100 parts by mass of the resin component (A). (1) The method for producing a heat-resistant silane crosslinked resin molded article according to any one of (4).
(6) The method for producing a heat-resistant silane crosslinked resin molded article according to any one of (1) to (5), wherein the resin component (A) comprises (iii) 0.2 to 20% by mass of polypropylene.
(7)(1)~(6)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法により、樹脂成分(A)100質量部と、有機過酸化物(P)0.01~0.6質量部と、表面処理無機フィラー(B)を含む無機フィラー(C)100質量部に対して加水分解性シランカップリング剤(q)0.5~30.0質量部を混合してなるシランカップリング剤予備混合無機フィラー(D)10~150質量部と、臭素系難燃剤(h1)15~60質量部と、シラノール縮合触媒(e1)0.001~0.5質量部とを溶融混合してなる耐熱性シラン架橋性樹脂組成物(F)が架橋されてなる耐熱性シラン架橋樹脂成形体。
(8)(7)に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。
(9)前耐熱性シラン架橋樹脂成形体が、電線又は光ファイバケーブルの被覆として設けられている(8)に記載の耐熱性製品。
(7) 100 parts by mass of the resin component (A) and 0.01% of the organic peroxide (P) are produced by the method for producing a heat-resistant silane-crosslinked resin molded article according to any one of (1) to (6). 0.5 to 30.0 parts by mass of a hydrolyzable silane coupling agent (q) is mixed with ~ 0.6 parts by mass and 100 parts by mass of the inorganic filler (C) containing the surface-treated inorganic filler (B). Silane coupling agent premixed inorganic filler (D) 10 to 150 parts by mass, brominated flame retardant (h1) 15 to 60 parts by mass, silanol condensation catalyst (e1) 0.001 to 0.5 parts by mass, A heat-resistant silane cross-linked resin molded product obtained by cross-linking the heat-resistant silane cross-linkable resin composition (F) obtained by melting and mixing the above.
(8) A heat resistant product comprising the heat resistant silane crosslinked resin molded article according to (7).
(9) The heat-resistant product according to (8), wherein the pre-heat-resistant silane-crosslinked resin molded body is provided as a coating for an electric wire or an optical fiber cable.
 本明細書において「~」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after that as a lower limit value and an upper limit value.
 本発明によれば、加水分解性シランカップリング剤の揮発を抑えて製造した、機械特性、絶縁抵抗、難燃性に優れた耐熱性シラン架橋樹脂成形体、並びに、その製造方法を提供できる。また、本発明によれば、本発明の耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供できる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
ADVANTAGE OF THE INVENTION According to this invention, the heat resistant silane crosslinked resin molding excellent in the mechanical characteristic, the insulation resistance, and the flame retardance manufactured by suppressing volatilization of a hydrolysable silane coupling agent, and its manufacturing method can be provided. Moreover, according to this invention, the heat resistant product using the heat resistant silane crosslinked resin molding obtained by the manufacturing method of the heat resistant silane crosslinked resin molding of this invention can be provided.
These and other features and advantages of the present invention will become more apparent from the following description.
 以下に、本発明及び本発明における好ましい実施の形態を詳細に説明する。
 本発明の「耐熱性シラン架橋樹脂成形体の製造方法」(以下、本発明の製造方法ということがある)は、上述のとおりであり、要するに、前記工程(a)、工程(b)及び工程(c)を有する耐熱性シラン架橋樹脂成形体の製造方法であって、
 樹脂成分(A)が特定の樹脂成分(A)であり、
 前記工程(a)が、下記工程(a1)及び工程(a3)を有し、下記工程(a1)で樹脂成分(A)の一部を溶融混合する場合にさらに下記工程(a2)を有し、
 臭素系難燃剤(h1)が下記工程(a1)及び下記工程(a2)の少なくとも一方において混合されることを特徴とする。
工程(a1):樹脂成分(A)の一部又は全部と、有機過酸化物(P)と、シランカップリング剤予備混合無機フィラー(D)とを有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチ(Dx)を調製する工程
工程(a2):工程(a1)で樹脂成分(A)の一部を溶融混合する場合に、キャリヤ樹脂(e2)としての樹脂成分(A)の残部とシラノール縮合触媒(e1)とを溶融混合して、触媒マスターバッチ(Ex)を調製する工程
工程(a3):シランマスターバッチ(Dx)とシラノール縮合触媒(e1)又は触媒マスターバッチ(Ex)とを溶融混合する工程
Below, this invention and preferable embodiment in this invention are demonstrated in detail.
The “method for producing a heat-resistant silane-crosslinked resin molded product” of the present invention (hereinafter sometimes referred to as the production method of the present invention) is as described above, and in short, the steps (a), (b) and the steps described above. A method for producing a heat-resistant silane cross-linked resin molded article having (c),
The resin component (A) is a specific resin component (A),
The step (a) includes the following step (a1) and step (a3), and further includes the following step (a2) when a part of the resin component (A) is melt-mixed in the following step (a1). ,
The brominated flame retardant (h1) is mixed in at least one of the following step (a1) and the following step (a2).
Step (a1): A part or all of the resin component (A), the organic peroxide (P), and the silane coupling agent premixed inorganic filler (D) are at or above the decomposition temperature of the organic peroxide (P). Step (a2) for preparing a silane master batch (Dx) by melting and mixing in step: A resin component as a carrier resin (e2) when part of the resin component (A) is melt-mixed in step (a1) Process step (a3) for preparing catalyst master batch (Ex) by melt-mixing the remainder of (A) and silanol condensation catalyst (e1): Silane master batch (Dx) and silanol condensation catalyst (e1) or catalyst master Process of melt-mixing batch (Ex)
 本発明の製造方法において、工程(a1)において樹脂成分(A)の全部を使用する場合、工程(a2)を行うことなく、工程(a3)でシラノール縮合触媒(e1)をシランマスターバッチに溶融混合することができる。
 また、工程(a2)と工程(a3)は、連続して又は一挙に(同一工程で)行うこともできる。
In the production method of the present invention, when all of the resin component (A) is used in the step (a1), the silanol condensation catalyst (e1) is melted in the silane master batch in the step (a3) without performing the step (a2). Can be mixed.
In addition, the step (a2) and the step (a3) can be performed continuously or all at once (in the same step).
 まず、本発明に用いる各成分について説明する。 First, each component used in the present invention will be described.
<(A)樹脂成分及び(G)樹脂成分>
 便宜上、本発明の製造方法に用いる樹脂成分を「樹脂成分(A)」とし、工程(a)で得られる耐熱性シラン架橋性樹脂組成物(F)及び本発明の製造方法で製造される耐熱性シラン架橋樹脂成形体に含有される樹脂成分を「樹脂成分(G)」と称する。後述するように、樹脂成分(G)は、樹脂成分(A)とキャリヤ樹脂(e2)との混合物と同義である。したがって、本発明において、樹脂成分(A)、キャリヤ樹脂(e2)及び樹脂成分(G)を明確に区別しないで単に樹脂成分ということもある。
<(A) Resin component and (G) Resin component>
For convenience, the resin component used in the production method of the present invention is “resin component (A)”, the heat-resistant silane crosslinkable resin composition (F) obtained in step (a) and the heat resistance produced by the production method of the present invention. The resin component contained in the functional silane cross-linked resin molded product is referred to as “resin component (G)”. As will be described later, the resin component (G) is synonymous with a mixture of the resin component (A) and the carrier resin (e2). Therefore, in the present invention, the resin component (A), the carrier resin (e2), and the resin component (G) may be simply referred to as a resin component without clearly distinguishing them.
 本発明に用いる樹脂成分(A)は、後述する加水分解性シランカップリング剤(q)の架橋基と有機過酸化物(P)の存在下で架橋反応する架橋部位、例えば炭素鎖の不飽和結合部位や、水素原子を有する炭素原子を主鎖中又はその末端に有する樹脂、エラストマー及びゴム等が挙げられる。このような樹脂等として、例えば、ポリオレフィン系樹脂、スチレン系エラストマー等が挙げられる。 The resin component (A) used in the present invention is a crosslinking site that undergoes a crosslinking reaction in the presence of the crosslinking group of the hydrolyzable silane coupling agent (q) and the organic peroxide (P) described below, for example, unsaturated carbon chain. Examples thereof include a binding site and a resin, elastomer, rubber, or the like having a carbon atom having a hydrogen atom in the main chain or at the terminal thereof. Examples of such resins include polyolefin resins and styrene elastomers.
 ポリオレフィン系樹脂としては、エチレン性不飽和結合を有する化合物を重合又は共重合して得られる樹脂であれば特に限定されるものではなく、従来、耐熱性樹脂組成物に使用されている公知のものを使用することができる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-α-オレフィン共重合体、酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体、及びそれらのゴム、エラストマー等が挙げられる。これらの中でも、金属水和物等をはじめとする各種無機フィラーに対する受容性が高く、無機フィラーを多量に配合しても機械強度を維持する効果があり、また耐熱性を確保しつつ耐電圧、特に、高温での耐電圧特性の低下を抑制する点から、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-α-オレフィン共重合体及び酸共重合成分又は酸エステル共重合成分を有する共重合体等が好適である。これらのポリオレフィン系樹脂は、1種を単独で用いても2種以上を混合して用いてもよい。 The polyolefin-based resin is not particularly limited as long as it is a resin obtained by polymerizing or copolymerizing a compound having an ethylenically unsaturated bond, and is a known one conventionally used in heat-resistant resin compositions. Can be used. Examples thereof include polyethylene (PE), polypropylene (PP), ethylene-α-olefin copolymer, polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, and rubbers and elastomers thereof. Among these, receptivity to various inorganic fillers including metal hydrates is high, there is an effect of maintaining the mechanical strength even if a large amount of inorganic filler is blended, and withstand voltage while ensuring heat resistance, In particular, a copolymer having polyethylene (PE), polypropylene (PP), an ethylene-α-olefin copolymer and an acid copolymer component or an acid ester copolymer component from the viewpoint of suppressing a decrease in withstand voltage characteristics at high temperatures. Etc. are suitable. These polyolefin resins may be used alone or in combination of two or more.
 (i)酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体
 酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体(i)(単に、ポリオレフィン共重合体(i)ということがある)における酸共重合成分又は酸エステル共重合成分としては、酢酸ビニル成分、(メタ)アクリル酸成分、(メタ)アクリル酸アルキル成分等が挙げられる。すなわち、ポリオレフィン共重合体(i)としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸アルキル共重合体等が挙げられる。この中でも、エチレン-酢酸ビニル共重合体及びエチレン-(メタ)アクリル酸エステル共重合体が好ましく、無機フィラーへの受容性及び耐熱性の点から、エチレン-酢酸ビニル共重合体がさらに好ましい。ここで、(メタ)アクリル酸アルキルのアルキル基は、炭素数1~12のものが好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基が挙げられる。
(I) Polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component Polyolefin copolymer (i) having an acid copolymerization component or an acid ester copolymerization component (simply referred to as a polyolefin copolymer (i)) Examples of the acid copolymerization component or the acid ester copolymerization component include a vinyl acetate component, a (meth) acrylic acid component, an (meth) acrylic acid alkyl component, and the like. That is, examples of the polyolefin copolymer (i) include an ethylene-vinyl acetate copolymer, an ethylene- (meth) acrylic acid copolymer, and an ethylene- (meth) acrylic acid alkyl copolymer. Among these, an ethylene-vinyl acetate copolymer and an ethylene- (meth) acrylate copolymer are preferable, and an ethylene-vinyl acetate copolymer is more preferable from the viewpoint of acceptability to an inorganic filler and heat resistance. Here, the alkyl group of the alkyl (meth) acrylate preferably has 1 to 12 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group.
 エチレン-酢酸ビニル共重合体は、エチレンと酢酸ビニルとの共重合体であれば、エチレン成分及び酢酸ビニル成分が交互に重合してなる交互共重合体であってもよく、また、エチレン成分の重合ブロック及び酢酸ビニル成分の重合ブロックが結合してなるブロック共重合体でもよく、さらにエチレン成分及び酢酸ビニル成分がランダムに重合しているランダム共重合体であってもよい。 The ethylene-vinyl acetate copolymer may be an alternating copolymer obtained by alternately polymerizing an ethylene component and a vinyl acetate component as long as it is a copolymer of ethylene and vinyl acetate. A block copolymer formed by combining a polymer block and a polymer block of a vinyl acetate component may be used, and further, a random copolymer in which an ethylene component and a vinyl acetate component are randomly polymerized may be used.
 エチレン-酢酸ビニル共重合体は、酢酸ビニル含有量が17~80質量%のものを使用することが好ましく、より好ましくは20~50質量%、さらに好ましくは25~41質量%である。酢酸ビニル成分含有量は、JIS K 7192に準拠して求めることができる。酢酸ビニル含有量の異なる共重合体を二種以上組み合わせてもよい。上述の範囲内の酢酸ビニル含有量のエチレン-酢酸ビニル共重合体を用いることにより、十分な難燃性を確保することができる。エチレン-酢酸ビニル共重合体としては、例えば、「エバフレックス」(商品名、三井デュポンポリケミカル(株)製)、「レバプレン」(商品名、バイエル社製)を挙げることができる。 The ethylene-vinyl acetate copolymer preferably has a vinyl acetate content of 17 to 80% by mass, more preferably 20 to 50% by mass, still more preferably 25 to 41% by mass. The vinyl acetate component content can be determined according to JIS K 7192. Two or more copolymers having different vinyl acetate contents may be combined. By using an ethylene-vinyl acetate copolymer having a vinyl acetate content within the above range, sufficient flame retardancy can be ensured. Examples of the ethylene-vinyl acetate copolymer include “Evaflex” (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.) and “Revaprene” (trade name, manufactured by Bayer).
 エチレン-(メタ)アクリル酸エステル共重合体には、エチレン-アクリル酸エステル共重合体と、エチレン-メタクリル酸エステル共重合体の両者を含み、本明細書において、両者を含むものとして「エチレン-(メタ)アクリル酸エステル共重合体」と記載する。
 エチレン-(メタ)アクリル酸エステル共重合体は、エチレンと(メタ)アクリル酸エステルとの共重合体であれば、上述のエチレン-酢酸ビニル共重合体と同様に、交互共重合体、ブロック共重合体、ランダム共重合体のいずれであってもよい。(メタ)アクリル酸エステル成分は、特に限定されないが、炭素数1~4のアルキル基を有するのが好ましく、例えば、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、アクリル酸エチル、アクリル酸ブチル等が挙げられる。
The ethylene- (meth) acrylic acid ester copolymer includes both an ethylene-acrylic acid ester copolymer and an ethylene-methacrylic acid ester copolymer. In the present specification, “ethylene- (Meth) acrylate copolymer ”.
The ethylene- (meth) acrylic acid ester copolymer is a copolymer of ethylene and (meth) acrylic acid ester, like the above-mentioned ethylene-vinyl acetate copolymer, alternating copolymer, block copolymer. Either a polymer or a random copolymer may be used. The (meth) acrylic acid ester component is not particularly limited, but preferably has an alkyl group having 1 to 4 carbon atoms, such as methyl acrylate, methyl methacrylate, ethyl methacrylate, ethyl acrylate, butyl acrylate, etc. Is mentioned.
 エチレン-(メタ)アクリル酸エステル共重合体の共重合成分である(メタ)アクリル酸エステル成分の含有量は、15~80質量%であるのが好ましい。この含有量が上述の範囲にあると十分な難燃性を確保することができる。 The content of the (meth) acrylic acid ester component that is a copolymerization component of the ethylene- (meth) acrylic acid ester copolymer is preferably 15 to 80% by mass. When this content is in the above range, sufficient flame retardancy can be ensured.
 このようなエチレン-(メタ)アクリル酸エステル共重合体として、例えば、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体等を挙げることができる。エチレン-(メタ)アクリル酸共重合体としては、例えば、ニュクレル(商品名、三井デュポンポリケミカル(株)製)等を挙げることができる。さらにエチレン-アクリル酸エチル共重合体としては、例えば、「エバルロイ」(商品名、三井デュポンポリケミカル(株)製)等を挙げることができる。
 ポリオレフィン共重合体(i)は1種単独で使用され、又は2種以上が併用される。
Examples of such ethylene- (meth) acrylic acid ester copolymers include ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, and ethylene-ethyl methacrylate. Examples thereof include a copolymer and an ethylene-butyl acrylate copolymer. Examples of the ethylene- (meth) acrylic acid copolymer include Nucrel (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.). Further, examples of the ethylene-ethyl acrylate copolymer include “Evalroy” (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.).
Polyolefin copolymer (i) is used individually by 1 type, or 2 or more types are used together.
 (ii)エチレン-α-オレフィン共重合体
 エチレン-α-オレフィン共重合体(ii)としては、好ましくは、エチレンと炭素数4~12のα-オレフィンとの共重合体(なお、後述するポリエチレン(PE)に含まれるものを除く。)が挙げられる。α-オレフィン成分の具体例としては、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン等の各成分が挙げられる。エチレン-α-オレフィン共重合体(ii)としては、具体的には、エチレン-ブチレン共重合体(EBR)、及びシングルサイト触媒存在下に合成されたエチレン-α-オレフィン共重合体、直鎖型低密度ポリエチレン(LLDPE)等が挙げられる。また、このエチレン-α-オレフィン共重合体(ii)には、ジエン成分を含有する共重合体、例えばエチレン-プロピレン系ゴム(例えば、エチレン-プロピレン-ジエンゴム)等を含んでもよい。エチレン-α-オレフィン共重合体は1種単独で使用してもよく、また2種以上を併用してもよい。
 エチレン-α-オレフィン共重合体としては、例えば、エボリューSP0540(商品名、プライムポリマー社製、LLDPE樹脂)、UE320(商品名、密度0.922g/cm、宇部丸善ポリエチレン社製)、UBEC180(商品名、密度0.924g/cm、宇部丸善ポリエチレン社製)、ハイゼックス540E(商品名、密度0.956g/cm、プライムポリマー社製)が挙げられる。
(Ii) Ethylene-α-olefin copolymer The ethylene-α-olefin copolymer (ii) is preferably a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms (the polyethylene described later) (Excluding those contained in (PE)). Specific examples of the α-olefin component include 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like. As the ethylene-α-olefin copolymer (ii), specifically, an ethylene-butylene copolymer (EBR), an ethylene-α-olefin copolymer synthesized in the presence of a single site catalyst, a linear chain Type low density polyethylene (LLDPE) and the like. The ethylene-α-olefin copolymer (ii) may also contain a copolymer containing a diene component, such as an ethylene-propylene rubber (for example, ethylene-propylene-diene rubber). One ethylene-α-olefin copolymer may be used alone, or two or more ethylene-α-olefin copolymers may be used in combination.
Examples of the ethylene-α-olefin copolymer include Evolue SP0540 (trade name, manufactured by Prime Polymer, LLDPE resin), UE320 (trade name, density 0.922 g / cm 3 , manufactured by Ube Maruzen Polyethylene), UBEC 180 ( trade name, density 0.924 g / cm 3, manufactured by Ube Maruzen polyethylene Co., Ltd.), HI-ZEX 540E (trade name, density 0.956 g / cm 3, manufactured by Prime polymer Co., Ltd.).
 (iii)ポリプロピレン(PP)
 ポリプロピレン(iii)は、重合成分の1つがプロピレン成分である樹脂であればよく、プロピレンの単独重合体(ホモポリプロピレンともいう)のほか、ランダムポリプロピレン及びブロックポリプロピレンを包含する。ここでいう「ランダムポリプロピレン」は、一般的にはプロピレンとエチレンとの共重合体であって、エチレン成分含有量が1~6質量%のプロピレン系共重合体でプロピレン連鎖の中にエチレン等の共重合成分がランダムに取り込まれているものをいう。また、「ブロックポリプロピレン」は、ホモポリプロピレンとエチレン-プロピレン共重合体とを含む組成物であって、一般的にはエチレン成分含有量が18質量%程度以下で、プロピレン成分と共重合成分とが独立した成分として存在するものをいう。
(Iii) Polypropylene (PP)
Polypropylene (iii) may be a resin in which one of the polymerization components is a propylene component, and includes random polypropylene and block polypropylene in addition to a homopolymer of propylene (also referred to as homopolypropylene). “Random polypropylene” as used herein is a copolymer of propylene and ethylene in general, and is a propylene copolymer having an ethylene component content of 1 to 6% by mass, such as ethylene in the propylene chain. It means that the copolymerization component is taken in at random. The “block polypropylene” is a composition containing a homopolypropylene and an ethylene-propylene copolymer, generally having an ethylene component content of about 18% by mass or less, and having a propylene component and a copolymer component. The thing which exists as an independent component.
 本発明においては、これらのポリプロピレンのいずれをも特に制限されることなく、用いることができる。耐熱性、加熱変形特性を向上させることができる点で、ブロックポリプロピレン及びランダムポリプロピレンが好ましい。ポリプロピレンは、1種を単独で用いても2種以上を混合して用いてもよい。
 ポリプロピレンとしては、BC8A(商品名、日本ポリプロ社製)、PB222A(商品名、サンアロマー社製)、E150GK(商品名、プライムポリマー社製)が挙げられる。
In the present invention, any of these polypropylenes can be used without any particular limitation. Block polypropylene and random polypropylene are preferable in that heat resistance and heat deformation characteristics can be improved. Polypropylene may be used alone or in combination of two or more.
Examples of polypropylene include BC8A (trade name, manufactured by Nippon Polypro), PB222A (trade name, manufactured by Sun Allomer), and E150GK (trade name, manufactured by Prime Polymer).
 ポリプロピレンのMFR(ASTM-D-1238)は、好ましくは0.1~60g/10分、より好ましくは0.3~25g/10分、さらに好ましくは0.5~15g/10分である。この範囲内のポリプロピレンを配合することにより、電線に被覆した際、外観が良好になる。 The MFR (ASTM-D-1238) of polypropylene is preferably 0.1 to 60 g / 10 minutes, more preferably 0.3 to 25 g / 10 minutes, and further preferably 0.5 to 15 g / 10 minutes. By blending polypropylene in this range, the appearance is improved when the wire is coated.
 (iv)ポリエチレン(PE)
 ポリエチレン(iv)は、重合成分の1つがエチレン成分である樹脂であればよく、高密度ポリエチレン(HDPE)、高圧低密度ポリエチレン(HPLDPE)、中密度ポリエチレン(MDPE)が挙げられる。なかでも、高圧低密度ポリエチレン(HPLDPE)が好ましい。ポリエチレンは1種単独で使用してもよく、また2種以上を併用してもよい。
(Iv) Polyethylene (PE)
Polyethylene (iv) may be a resin in which one of the polymerization components is an ethylene component, and examples thereof include high-density polyethylene (HDPE), high-pressure low-density polyethylene (HPLDPE), and medium-density polyethylene (MDPE). Among these, high pressure low density polyethylene (HPLDPE) is preferable. Polyethylene may be used individually by 1 type, and may use 2 or more types together.
 (v)スチレン系エラストマー
 スチレン系エラストマー(v)としては、共役ジエン化合物と芳香族ビニル化合物とのブロック共重合体及びランダム共重合体、又は、それらの水素添加物等が挙げられる。芳香族ビニル化合物としては、例えば、スチレン、p-(t-ブチル)スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルトルエン、p-(t-ブチル)スチレン等が挙げられる。芳香族ビニル化合物は、これらの中でも、スチレンが好ましい。この芳香族ビニル化合物は、1種単独で使用され、又は2種以上が併用される。共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。共役ジエン化合物は、これらの中でも、ブタジエンが好ましい。この共役ジエン化合物は、1種単独で使用され、又は2種以上が併用される。また、スチレン系エラストマーとして、スチレン成分が含有されてなく、スチレン以外の芳香族ビニル化合物を含有するエラストマーを使用してもよい。
 スチレン系エラストマーとして、具体的には、例えば、セプトン4077、セプトン4055、セプトン8105(いずれも商品名、株式会社クラレ製)、ダイナロン1320P、ダイナロン4600P、6200P、8601P、9901P(いずれも商品名、JSR株式会社製)等が挙げられる。
(V) Styrene Elastomer Examples of the styrene elastomer (v) include block copolymers and random copolymers of conjugated diene compounds and aromatic vinyl compounds, or hydrogenated products thereof. Examples of the aromatic vinyl compound include styrene, p- (t-butyl) styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl. Examples thereof include styrene, vinyl toluene, p- (t-butyl) styrene and the like. Among these, styrene is preferable as the aromatic vinyl compound. This aromatic vinyl compound is used individually by 1 type, or 2 or more types are used together. Examples of the conjugated diene compound include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. Among these, the conjugated diene compound is preferably butadiene. This conjugated diene compound is used individually by 1 type, or 2 or more types are used together. Further, as the styrene-based elastomer, an elastomer that does not contain a styrene component and contains an aromatic vinyl compound other than styrene may be used.
Specific examples of the styrene-based elastomer include, for example, Septon 4077, Septon 4055, Septon 8105 (all trade names, manufactured by Kuraray Co., Ltd.), Dynalon 1320P, Dynalon 4600P, 6200P, 8601P, and 9901P (all trade names, JSR Etc.).
 オイル
 樹脂成分(A)は、所望により、可塑剤又はゴムの鉱物油軟化剤としてのオイルを含有していてもよい。このようなオイルとして、例えば、パラフィン系、ナフテン系、アロマ系のオイル等が挙げられる。パラフィン系オイルはパラフィン鎖炭素数が全炭素数の50%以上を占めるものであり、ナフテン系オイルはナフテン環炭素数が30~40%のものであり、アロマ系オイル(芳香族系オイルともいう)は芳香族炭素数が30%以上のものをいう。オイルは1種単独で使用してもよく、また2種以上を併用してもよい。なお、オイルは、樹脂成分(A)中20質量%以下の質量割合で含有されているのが好ましい。
Oil The resin component (A) may optionally contain an oil as a plasticizer or a mineral oil softener for rubber. Examples of such oils include paraffinic, naphthenic, and aromatic oils. Paraffin oil has 50% or more of the total number of carbon atoms in the paraffin chain, and naphthenic oil has 30 to 40% naphthenic ring carbon. Aroma oil (also called aromatic oil) ) Refers to those having an aromatic carbon number of 30% or more. Oils may be used alone or in combination of two or more. The oil is preferably contained in the resin component (A) at a mass ratio of 20% by mass or less.
<(P)有機過酸化物>
 有機過酸化物(P)は、熱分解によりラジカルを発生して、加水分解性シランカップリング剤の樹脂成分(A)へのグラフト化反応の促進、特に加水分解性シランカップリング剤(q)がエチレン性不飽和基を含む場合における該基と樹脂成分(A)とのラジカル反応(樹脂成分(A)からの水素ラジカルの引き抜き反応を含む)によるグラフト化反応を促進させる働きをする。有機過酸化物(P)は、ラジカルを発生させるものであれば、特に制限はないが、例えば、一般式:R-OO-R、R-OO-C(=O)R、RC(=O)-OO(C=O)Rで表される化合物が好ましく用いられる。ここで、R、R、R、R及びRは各々独立にアルキル基、アリール基、アシル基を表す。このうち、本発明においては、R、R、R、R及びRがいずれもアルキル基であるか、いずれかがアルキル基で残りがアシル基であるものが好ましい。
<(P) Organic peroxide>
The organic peroxide (P) generates radicals by thermal decomposition and promotes the grafting reaction of the hydrolyzable silane coupling agent to the resin component (A), particularly the hydrolyzable silane coupling agent (q). Acts to promote a grafting reaction by a radical reaction (including a hydrogen radical abstraction reaction from the resin component (A)) between the group and the resin component (A) in the case where contains an ethylenically unsaturated group. The organic peroxide (P) is not particularly limited as long as it generates radicals. For example, the general formula: R 1 —OO—R 2 , R 1 —OO—C (═O) R 3 , A compound represented by R 4 C (═O) —OO (C═O) R 5 is preferably used. Here, R 1 , R 2 , R 3 , R 4 and R 5 each independently represents an alkyl group, an aryl group, or an acyl group. Among these, in the present invention, it is preferable that R 1 , R 2 , R 3 , R 4 and R 5 are all alkyl groups, or any one is an alkyl group and the rest is an acyl group.
 このような有機過酸化物(P)としては、例えば、ジクミルパーオキサイド(DCP)、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルクミルパーオキサイド等を挙げることができる。これらのうち、臭気性、着色性、スコーチ安定性の点で、ジクミルパーオキサイド(DCP)、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3が好ましい。 Examples of such organic peroxides (P) include dicumyl peroxide (DCP), di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy). Hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert- Butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate Diacetyl peroxide, lauroyl peroxide, may be mentioned tert- butyl cumyl peroxide and the like. Of these, dicumyl peroxide (DCP), 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-in terms of odor, colorability, and scorch stability. Dimethyl-2,5-di- (tert-butylperoxy) hexyne-3 is preferred.
 有機過酸化物(P)の分解温度は、80~195℃であるのが好ましく、125~180℃であるのが特に好ましい。
 本発明において、有機過酸化物(P)の分解温度とは、単一組成の有機過酸化物(P)を加熱したとき、ある一定の温度又は温度域でそれ自身が2種類以上の化合物に分解反応を起こす温度を意味し、DSC法等の熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
The decomposition temperature of the organic peroxide (P) is preferably from 80 to 195 ° C., particularly preferably from 125 to 180 ° C.
In the present invention, the decomposition temperature of the organic peroxide (P) means that when the organic peroxide (P) having a single composition is heated, the organic peroxide (P) itself becomes two or more kinds of compounds at a certain temperature or temperature range. It means the temperature at which decomposition reaction occurs, and refers to the temperature at which heat absorption or heat generation starts when heated from room temperature in a nitrogen gas atmosphere at a rate of temperature increase of 5 ° C./min by thermal analysis such as DSC method.
<(q)加水分解性シランカップリング剤>
 加水分解性シランカップリング剤(q)は、後述する無機フィラー(C)と混合され、無機フィラー(C)の少なくとも一部を表面処理する。
 このような加水分解性シランカップリング剤(q)としては、特に限定されるものではなく、シラン架橋法に用いられる、不飽和基を有する加水分解性シランカップリング剤を使用することができる。このような加水分解性シランカップリングとしては、例えば、下記一般式(1)で表される加水分解性シランカップリング剤を好適に用いることができる。
<(Q) Hydrolyzable silane coupling agent>
The hydrolyzable silane coupling agent (q) is mixed with an inorganic filler (C) described later, and surface-treats at least a part of the inorganic filler (C).
Such a hydrolyzable silane coupling agent (q) is not particularly limited, and a hydrolyzable silane coupling agent having an unsaturated group used in the silane crosslinking method can be used. As such a hydrolyzable silane coupling, for example, a hydrolyzable silane coupling agent represented by the following general formula (1) can be suitably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Ra11はエチレン性不飽和基を含有する基、Rb11は脂肪族炭化水素基若しくは水素原子又はY13である。Y11、Y12及びY13は各々独立に加水分解しうる有機基である。Y11、Y12及びY13は互いに同じでも異なっていてもよい。 In the general formula (1), R a11 is a group containing an ethylenically unsaturated group, R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 . Y 11 , Y 12 and Y 13 are each an independently hydrolyzable organic group. Y 11 , Y 12 and Y 13 may be the same as or different from each other.
 エチレン性不飽和基を含有する基Ra11は、エチレン性不飽和基を含有する基が好ましく、例えば、ビニル基、(メタ)アクリロイルオキシアルキレン基、p-スチリル基等を挙げることができ、より好ましくはビニル基である。 The group R a11 containing an ethylenically unsaturated group is preferably a group containing an ethylenically unsaturated group, and examples thereof include a vinyl group, a (meth) acryloyloxyalkylene group, a p-styryl group, and the like. A vinyl group is preferred.
 Rb11は脂肪族炭化水素基若しくは水素原子又は後述のY13であり、脂肪族炭化水素基としては脂肪族不飽和炭化水素基を除く炭素数1~8の1価の脂肪族炭化水素基が挙げられる。炭素数1~8の1価の脂肪族炭化水素基としては、例えば、(メタ)アクリル酸アルキルのアルキル基のうち炭素数が1~8のものと同様のものが挙げられる。Rb11は好ましくはY13である。 R b11 is an aliphatic hydrocarbon group or a hydrogen atom or Y 13 to be described later. The aliphatic hydrocarbon group is a monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms excluding the aliphatic unsaturated hydrocarbon group. Can be mentioned. Examples of the monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms include those similar to those having 1 to 8 carbon atoms among alkyl groups of alkyl (meth) acrylate. R b11 is preferably Y 13 .
 Y11、Y12及びY13は、各々独立に、加水分解しうる有機基であり、例えば、炭素数1~6のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~4のアシルオキシ基が挙げられる。これらの中でも炭素数1~6のアルコキシ基が好ましい。炭素数1~6のアルコキシ基としては、具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基等が挙げられ、加水分解の反応性の点で、メトキシ基又はエトキシ基が好ましい。 Y 11 , Y 12 and Y 13 are each independently an organic group that can be hydrolyzed, such as an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. An acyloxy group is mentioned. Among these, an alkoxy group having 1 to 6 carbon atoms is preferable. Specific examples of the alkoxy group having 1 to 6 carbon atoms include, for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, and the like. From the viewpoint of hydrolysis reactivity, a methoxy group or An ethoxy group is preferred.
 一般式(1)で示される加水分解性シランカップリング剤としては、好ましくは、加水分解速度の速い不飽和基含有シランカップリング剤であり、より好ましくは一般式(1)においてRb11がY13であり、かつY11、Y12及びY13が互いに同じ有機基である加水分解性シランカップリング剤である。好ましい加水分解性シランカップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン、(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルメチルジメトキシシラン等を挙げることができる。これらの中でも、末端にビニル基とアルコキシ基を有する加水分解性シランカップリング剤がさらに好ましく、ビニルトリメトキシシラン、ビニルトリエトキシシランが特に好ましい。
 加水分解性シランカップリング剤(q)は1種単独で使用してもよく、また2種以上を併用してもよい。また、加水分解性シランカップリング剤(q)は、単独で用いられてもよく、溶剤で希釈された液として用いられてもよい。
The hydrolyzable silane coupling agent represented by the general formula (1) is preferably an unsaturated group-containing silane coupling agent having a high hydrolysis rate, and more preferably R b11 is Y in the general formula (1). 13 and a hydrolyzable silane coupling agent in which Y 11 , Y 12 and Y 13 are the same organic group. Specific preferred hydrolyzable silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinyldimethoxyethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxy. Examples include silane, allyltriethoxysilane, vinyltriacetoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropylmethyldimethoxysilane, and the like. Among these, a hydrolyzable silane coupling agent having a vinyl group and an alkoxy group at the terminal is more preferable, and vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.
A hydrolysable silane coupling agent (q) may be used individually by 1 type, and may use 2 or more types together. Further, the hydrolyzable silane coupling agent (q) may be used alone or as a liquid diluted with a solvent.
<無機フィラー>
 本発明で用いる無機フィラーは、表面処理剤で表面処理されていない表面未処理無機フィラー(c1)、表面処理剤で表面処理された表面処理無機フィラー(B)、該表面処理無機フィラー(B)等を含む無機フィラー(C)、及び、無機フィラー(C)と上述の加水分解性シランカップリング剤(q)と混合してなるシランカップリング剤予備混合無機フィラー(D)等が挙げられる。
 以下に、本発明で用いる無機フィラーを説明する。
<Inorganic filler>
The inorganic filler used in the present invention is a surface untreated inorganic filler (c1) that has not been surface treated with a surface treatment agent, a surface treated inorganic filler (B) that has been surface treated with a surface treatment agent, and the surface treated inorganic filler (B). Silane coupling agent premixed inorganic filler (D) formed by mixing the inorganic filler (C) and the like, and the inorganic filler (C) and the hydrolyzable silane coupling agent (q).
Below, the inorganic filler used by this invention is demonstrated.
 本発明で用いる各種無機フィラーは、その形態、種類に関わらず、平均粒径が0.2~10μmであるのが好ましく、0.3~8μmであるのがより好ましく、0.35~5μmであるのがさらに好ましく、0.35~3μmであるのが特に好ましい。平均粒径が上述の範囲内にあると、加水分解性シランカップリング剤(q)の混合時に2次凝集を引き起こしにくく、ブツも生じにくく、成形体の外観に優れ、しかも、加水分解性シランカップリング剤(q)の保持効果により樹脂成分(A)が十分に架橋する。
 なお、平均粒径は、アルコールや水で分散させて、レーザ回折/散乱式粒子径分布測定装置等の光学式粒径測定器によって求められる。
The various inorganic fillers used in the present invention preferably have an average particle size of 0.2 to 10 μm, more preferably 0.3 to 8 μm, and more preferably 0.35 to 5 μm, regardless of their form and type. More preferably, it is particularly preferably 0.35 to 3 μm. When the average particle size is in the above range, secondary aggregation is difficult to occur when the hydrolyzable silane coupling agent (q) is mixed, and no fluff is generated, the appearance of the molded article is excellent, and the hydrolyzable silane The resin component (A) is sufficiently crosslinked due to the retention effect of the coupling agent (q).
The average particle size is determined by an optical particle size measuring device such as a laser diffraction / scattering type particle size distribution measuring device after being dispersed with alcohol or water.
 (c1)表面未処理無機フィラー
 表面処理無機フィラー(B)において表面処理される表面未処理無機フィラー(c1)、及び、無機フィラー(C)に含有されうる表面未処理無機フィラー(c1)としては、無機フィラーの表面に、加水分解性シランカップリング剤のシラノール基等の反応部位と水素結合等が形成できる部位もしくは共有結合による化学結合しうる部位を有するものであれば特に制限なく用いることができる。表面未処理無機フィラーにおける、加水分解性シランカップリング剤の反応部位と化学結合しうる部位としては、OH基(水酸基、含水もしくは結晶水の水分子、カルボキシル基等のOH基)、アミノ基、SH基等が挙げられる。
(C1) Surface Untreated Inorganic Filler As the surface untreated inorganic filler (c1) surface-treated in the surface treated inorganic filler (B), and the surface untreated inorganic filler (c1) that can be contained in the inorganic filler (C) If the surface of the inorganic filler has a site capable of forming a hydrogen bond or a reactive site such as a silanol group of a hydrolyzable silane coupling agent, or a site capable of chemical bonding by a covalent bond, it can be used without particular limitation. it can. In the surface untreated inorganic filler, as the site capable of chemically bonding with the reaction site of the hydrolyzable silane coupling agent, an OH group (hydroxyl, water-containing or water molecule of crystal water, OH group such as carboxyl group), amino group, SH group etc. are mentioned.
 このような表面未処理無機フィラー(c1)としては、特に限定されるものではないが、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミニウム、水和珪酸アルミニウム、アルミナ、水和珪酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト等の水酸基あるいは結晶水を有する金属化合物のような金属水酸化物や金属水和物、さらには、窒化ほう素、シリカ(結晶質シリカ、非晶質シリカ等)、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、ほう酸亜鉛、ホワイトカーボン、硼酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛等を使用することができる。 Such a surface untreated inorganic filler (c1) is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, Magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate, hydrated aluminum silicate, alumina, hydrated magnesium silicate, basic magnesium carbonate, metal hydroxides such as metal compounds having water or crystal water such as hydrotalcite, Metal hydrates, boron nitride, silica (crystalline silica, amorphous silica, etc.), carbon, clay, zinc oxide, tin oxide, titanium oxide, molybdenum oxide, antimony trioxide, silicone compound, quartz, Talc, zinc borate, white carbo , It can be used zinc borate, hydroxy stannate, zinc stannate and the like.
 表面未処理無機フィラー(c1)は、上述した中でも、金属水酸化物、炭酸カルシウム、シリカが好ましく、水酸化マグネシウム、水酸化アルミニウム、炭酸カルシウムがさらに好ましい。 The surface untreated inorganic filler (c1) is preferably a metal hydroxide, calcium carbonate, or silica, and more preferably magnesium hydroxide, aluminum hydroxide, or calcium carbonate, as described above.
 (B)表面処理無機フィラー
 表面処理無機フィラー(B)は、表面未処理無機フィラー(c1)を表面処理剤で表面処理してなる。また、表面処理無機フィラー(B)は、既に表面処理された表面処理無機フィラーをさらに表面処理したものでもよい。
 表面処理無機フィラー(B)を形成するための表面未処理無機フィラー(c1)又は既に表面処理された表面処理無機フィラーは、特に限定されないが、上述の金属水酸化物及び金属水和物が好ましく、さらに水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウムが好ましい。
 表面処理剤は、特には限定しないが、脂肪酸、リン酸エステル、ポリエステル、チタネート系カップリング剤、シランカップリング剤等が挙げられる。これらの中でも脂肪酸及びシランカップリング剤が好ましい。脂肪酸としては、特に限定しないが、ステアリン酸、オレイン酸、ラウリル酸等が好ましい。シランカップリング剤としては、特には限定しないが、アミノ基を末端に有するシランカップリング剤、ビニル基やメタクロイル基等の二重結合を末端に有するシランカップリング剤、エポキシ基を末端に有するシランカップリング剤が好ましい。このようなシランカップリング剤として、例えば、上述の加水分解性シランカップリング剤(q)が挙げられる。
 表面処理無機フィラー(B)は、上述の表面処理剤の1種で表面処理されたものでも、また2種以上で表面処理されたものでもよい。
(B) Surface-treated inorganic filler The surface-treated inorganic filler (B) is obtained by surface-treating the surface untreated inorganic filler (c1) with a surface treatment agent. The surface-treated inorganic filler (B) may be a surface-treated inorganic filler that has already been surface-treated.
The surface untreated inorganic filler (c1) or the already surface treated inorganic filler for forming the surface treated inorganic filler (B) is not particularly limited, but the above-described metal hydroxide and metal hydrate are preferable. Furthermore, aluminum hydroxide, magnesium hydroxide and calcium carbonate are preferred.
Although a surface treating agent is not specifically limited, A fatty acid, phosphate ester, polyester, a titanate coupling agent, a silane coupling agent, etc. are mentioned. Of these, fatty acids and silane coupling agents are preferred. Although it does not specifically limit as a fatty acid, A stearic acid, an oleic acid, a lauric acid etc. are preferable. Although it does not specifically limit as a silane coupling agent, The silane coupling agent which has an amino group at the terminal, the silane coupling agent which has double bonds, such as a vinyl group and a methacryloyl group, and the silane which has an epoxy group at the terminal A coupling agent is preferred. Examples of such a silane coupling agent include the hydrolyzable silane coupling agent (q) described above.
The surface-treated inorganic filler (B) may be one that has been surface-treated with one of the aforementioned surface-treating agents, or one that has been surface-treated with two or more.
 脂肪酸又はシランカップリング剤で表面処理された表面処理無機フィラー(B)は、表面未処理無機フィラー(c1)等と脂肪酸又はシランカップリング剤を混合して、得られる。表面未処理無機フィラー(c1)等と脂肪酸又はシランカップリング剤とを混合する方法としては、特には限定しないが、表面未処理無機フィラー(c1)、又は、適宜の表面処理剤(例えば、脂肪酸若しくはシランカップリング剤)で表面処理された表面処理無機フィラー中に、脂肪酸又はシランカップリング剤を、加熱又は加熱せずに加え混合する方法、これらの無機フィラーを水等の溶媒に分散させた状態で脂肪酸又はシランカップリング剤を加える方法等がある。これらの表面処理量は特には限定しないが、通常、表面未処理無機フィラー(c1)等の、表面処理前の無機フィラーに対して0.1~4質量%であるのが好ましい。表面処理量がこの範囲内にあると、機械強度、耐摩耗性を改善できるうえ、伸び及び外観にも優れ、押出負荷も低減できる。 The surface-treated inorganic filler (B) surface-treated with a fatty acid or silane coupling agent is obtained by mixing a surface untreated inorganic filler (c1) and the like with a fatty acid or silane coupling agent. The method of mixing the surface untreated inorganic filler (c1) and the like with the fatty acid or silane coupling agent is not particularly limited, but the surface untreated inorganic filler (c1) or an appropriate surface treatment agent (for example, fatty acid) Or a method in which a fatty acid or a silane coupling agent is added to a surface-treated inorganic filler surface-treated with a silane coupling agent) without heating or heating, and these inorganic fillers are dispersed in a solvent such as water. There is a method of adding a fatty acid or a silane coupling agent in the state. The amount of these surface treatments is not particularly limited, but it is usually preferably 0.1 to 4% by mass relative to the inorganic filler before the surface treatment such as the untreated inorganic filler (c1). When the surface treatment amount is within this range, the mechanical strength and wear resistance can be improved, the elongation and appearance can be improved, and the extrusion load can be reduced.
 ステアリン酸で表面処理された表面処理無機フィラー(B)、例えば水酸化マグネシウムとして、キスマ5AL(商品名、協和化学社製)等が挙げられる。
 シランカップリング剤で表面処理してなる表面処理無機フィラー(B)としては、例えば、シランカップリング剤表面処理水酸化マグネシウム及びシランカップリング剤表面処理水酸化アルミニウム等が挙げられる。シランカップリング剤表面処理水酸化マグネシウムとして、キスマ5L、キスマ5P(いずれも商品名、協和化学社製)、マグシーズS6、マグシーズS4(いずれも商品名 神島化学工業(株))等が挙げられ、シランカップリング剤表面処理水酸化アルミニウムの市販品として、ハイジライトH42-ST-V、ハイジライトH42-ST-E(いずれも商品名、昭和電工(株))等が挙げられる。
Examples of the surface-treated inorganic filler (B) surface-treated with stearic acid, such as magnesium hydroxide, include Kisuma 5AL (trade name, manufactured by Kyowa Chemical Co., Ltd.).
Examples of the surface-treated inorganic filler (B) obtained by surface treatment with a silane coupling agent include silane coupling agent surface-treated magnesium hydroxide and silane coupling agent surface-treated aluminum hydroxide. Examples of the silane coupling agent surface-treated magnesium hydroxide include Kisuma 5L, Kisuma 5P (both trade names, manufactured by Kyowa Chemical Co., Ltd.), Magsees S6, Magseeds S4 (both trade names are Kamishima Chemical Co., Ltd.), and the like. Examples of commercially available silane coupling agent surface-treated aluminum hydroxide include Heidilite H42-ST-V and Heidilite H42-ST-E (both trade names, Showa Denko KK).
 表面処理無機フィラー(B)は、1種類を単独で配合してもよいし、2種類以上を混合して用いてもよい。 The surface treatment inorganic filler (B) may be used alone or in combination of two or more.
 (C)無機フィラー
 本発明に用いる無機フィラー(C)は、工程(a)において、上述の樹脂成分(A)等と溶融混合される前に、上述の加水分解性シランカップリング剤(q)で予め処理される無機フィラー(C)である。この無機フィラー(C)は、少なくとも一部に表面処理無機フィラー(B)を含み、全部が表面処理無機フィラー(B)であってもよく、残部に表面未処理理無機フィラー(c1)等を含んでいてもよい。このように、無機フィラー(C)が表面処理無機フィラー(B)を含んでいると、本発明の製造方法において、後で加えられる加水分解性シランカップリング剤(q)と無機フィラーとの結合を抑え、ある程度の弱い結合で無機フィラーと結合する加水分解性シランカップリング剤を作り出すことが出来る。この弱い結合で無機フィラーと結合する加水分解性シランカップリング剤によりある程度の架橋度を有する耐熱性シラン架橋樹脂成形体を得ることが出来、これにより高い耐熱性を得ることが出来る。
(C) Inorganic filler The inorganic filler (C) used in the present invention is the above-mentioned hydrolyzable silane coupling agent (q) before being melt-mixed with the above-described resin component (A) or the like in the step (a). It is an inorganic filler (C) processed in advance. The inorganic filler (C) may include at least a part of the surface-treated inorganic filler (B), and the whole may be the surface-treated inorganic filler (B), and the remaining part of the surface-untreated inorganic filler (c1) or the like. May be included. Thus, when inorganic filler (C) contains surface-treated inorganic filler (B), in the manufacturing method of this invention, the coupling | bonding of the hydrolysable silane coupling agent (q) and inorganic filler added later. And a hydrolyzable silane coupling agent that binds to the inorganic filler with a certain weak bond can be created. With this hydrolyzable silane coupling agent that binds to the inorganic filler with a weak bond, it is possible to obtain a heat-resistant silane cross-linked resin molded product having a certain degree of cross-linking, whereby high heat resistance can be obtained.
 無機フィラー(C)中の表面処理無機フィラー(B)の割合は、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上である。表面処理無機フィラー(B)の割合は好ましくは100質量%以下である。この割合が30質量%以上であると、耐熱性シラン架橋樹脂成形体の耐熱性が向上する。
 表面処理無機フィラー(B)及び表面未処理無機フィラーは、それぞれ、1種単独で、又は2種以上を併用使用することができる。
The ratio of the surface-treated inorganic filler (B) in the inorganic filler (C) is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more. The ratio of the surface-treated inorganic filler (B) is preferably 100% by mass or less. When this ratio is 30% by mass or more, the heat resistance of the heat-resistant silane crosslinked resin molded article is improved.
The surface-treated inorganic filler (B) and the surface untreated inorganic filler can be used alone or in combination of two or more.
 (D)シランカップリング剤予備混合無機フィラー
 シランカップリング剤予備混合無機フィラー(D)は、上述の無機フィラー(C)に加水分解性シランカップリング剤(q)を予め混合し、この加水分解性シランカップリング剤(q)で無機フィラー(C)を表面処理してなる。また、シランカップリング剤予備混合無機フィラー(D)は、後述するように樹脂成分(A)および有機過酸化物(P)等とともに無機フィラー(C)と加水分解性シランカップリング剤(q)とを混合して表面処理したものも含まれる。したがって、シランカップリング剤予備混合無機フィラー(D)は、シランカップリング剤含有無機フィラー、シランカップリング剤処理無機フィラーともいうことができる。ここで、無機フィラー(C)を表面処理する加水分解性シランカップリング剤(q)は上述した通りである。
(D) Silane coupling agent premixed inorganic filler The silane coupling agent premixed inorganic filler (D) is prepared by previously mixing the above-mentioned inorganic filler (C) with a hydrolyzable silane coupling agent (q). The inorganic filler (C) is surface-treated with a functional silane coupling agent (q). In addition, the silane coupling agent premixed inorganic filler (D) includes the resin component (A), the organic peroxide (P), and the like, as will be described later, and the inorganic filler (C) and the hydrolyzable silane coupling agent (q). And the surface treated by mixing with. Therefore, the silane coupling agent premixed inorganic filler (D) can also be referred to as a silane coupling agent-containing inorganic filler and a silane coupling agent-treated inorganic filler. Here, the hydrolyzable silane coupling agent (q) for surface-treating the inorganic filler (C) is as described above.
 シランカップリング剤予備混合無機フィラー(D)は、無機フィラー(C)と加水分解性シランカップリング剤(q)とを混合して得られる。加水分解性シランカップリング剤(q)及び無機フィラー(C)を混合する方法としては、アルコールや水中で加水分解性シランカップリング剤(q)と無機フィラー(C)を混合させる湿式処理、無機フィラー(C)と加水分解性シランカップリング剤(q)とをブレンドする乾式処理、及び、その両方が挙げられる。 The silane coupling agent premixed inorganic filler (D) is obtained by mixing the inorganic filler (C) and the hydrolyzable silane coupling agent (q). As a method of mixing the hydrolyzable silane coupling agent (q) and the inorganic filler (C), a wet process in which the hydrolyzable silane coupling agent (q) and the inorganic filler (C) are mixed in alcohol or water, inorganic Examples thereof include a dry treatment for blending the filler (C) and the hydrolyzable silane coupling agent (q), and both.
 このようにして無機フィラー(C)と加水分解性シランカップリング剤(q)とを、後述する工程(a)で有機過酸化物(P)と混合される前または同時に予備混合等すると、加水分解性シランカップリング剤(q)の一部が無機フィラー(C)と強く結合(その理由は、例えば、無機フィラー表面の水酸基等との化学結合の形成が考えられる)して、シランカップリング剤予備混合無機フィラー(D)が調製される。 Thus, if the inorganic filler (C) and the hydrolyzable silane coupling agent (q) are premixed before or simultaneously with the organic peroxide (P) in the step (a) described later, A part of the decomposable silane coupling agent (q) is strongly bonded to the inorganic filler (C) (the reason is, for example, formation of a chemical bond with a hydroxyl group on the surface of the inorganic filler is considered), and silane coupling An agent premixed inorganic filler (D) is prepared.
 このシランカップリング剤予備混合無機フィラー(D)において、無機フィラー(C)と強く結合する加水分解性シランカップリング剤(q)と無機フィラー(C)と弱く結合(水素結合による相互作用、イオン、部分電荷もしくは双極子間での相互作用、吸着による作用等)する加水分解性シランカップリング剤(q)とは、後述するように、異なる挙動を示す。したがって、これら加水分解性シランカップリング剤(q)の割合によって得られる効果が相違する。無機フィラー(C)と弱く結合する加水分解性シランカップリング剤(q)は樹脂成分(A)同士の架橋に寄与し、無機フィラー(C)と強く結合する加水分解性シランカップリング剤(q)は加水分解性シランカップリング剤(q)同士の縮合も含み、シランカップリング剤予備混合無機フィラー(D)と樹脂成分(A)との結合等に寄与する。したがって、両加水分解性シランカップリング剤の割合を特定の範囲にすると、シラン架橋法において、耐熱性と、機械特性、難燃性及び外観とを両立できる。 In this silane coupling agent premixed inorganic filler (D), the hydrolyzable silane coupling agent (q), which binds strongly to the inorganic filler (C), and the inorganic filler (C) are weakly bonded (interaction by hydrogen bonds, ions And a hydrolyzable silane coupling agent (q) that interacts between partial charges or dipoles, an action by adsorption, etc.), as described later, shows a different behavior. Therefore, the effect obtained by the ratio of these hydrolyzable silane coupling agents (q) differs. The hydrolyzable silane coupling agent (q) that binds weakly to the inorganic filler (C) contributes to the cross-linking of the resin components (A) and strongly binds to the inorganic filler (C) (q ) Also includes condensation of hydrolyzable silane coupling agents (q), and contributes to bonding between the silane coupling agent premixed inorganic filler (D) and the resin component (A). Therefore, when the ratio of the both hydrolyzable silane coupling agents is set to a specific range, in the silane crosslinking method, both heat resistance, mechanical properties, flame retardancy, and appearance can be achieved.
 シランカップリング剤予備混合無機フィラー(D)において、無機フィラー(C)と弱く結合する加水分解性シランカップリング剤(q)の割合を調整する方法は、例えば、加水分解性シランカップリング剤(q)と無機フィラー(C)とを常温で混合することにより調整する方法、予備混合後に常温保管若しくは加熱保管するする方法、又は、予備混合前に無機フィラー(C)を加熱しておき加水分解性シランカップリング剤(q)と混合する方法等が挙げられる。 In the silane coupling agent premixed inorganic filler (D), a method for adjusting the ratio of the hydrolyzable silane coupling agent (q) that is weakly bonded to the inorganic filler (C) is, for example, a hydrolyzable silane coupling agent ( q) and a method of adjusting by mixing inorganic filler (C) at room temperature, a method of storing at normal temperature or preheated after premixing, or hydrolysis by heating inorganic filler (C) before premixing And a method of mixing with a functional silane coupling agent (q).
<(h1)臭素系難燃剤>
 本発明においては、シランカップリング剤予備混合無機フィラー(D)と共に、臭素系難燃剤(h1)を用いる。臭素系難燃剤(h1)を用いると、シランカップリング剤予備混合無機フィラー(D)の使用量を低減しても、電子線架橋による成形体と同等以上の優れた難燃性を発揮する。
<(H1) Brominated flame retardant>
In the present invention, the brominated flame retardant (h1) is used together with the silane coupling agent premixed inorganic filler (D). When the brominated flame retardant (h1) is used, even if the amount of the silane coupling agent premixed inorganic filler (D) is reduced, excellent flame retardancy equivalent to or higher than that of a molded article by electron beam crosslinking is exhibited.
 本発明に用いる臭素系難燃剤(h1)としては、難燃剤として用いられるものであれば特に限定されず、例えば、臭素化エチレンビスフタルイミド及びその誘導体、ビス臭素化フェニルテレフタルアミド及びその誘導体、臭素化ビスフェノール(例えばテトラブロモビスフェノールA)及びその誘導体、1,2-ビス(ブロモフェニル)エタン及びその誘導体、ポリブロモジフェニルエーテル(例えばデカブロモジフェニルエーテル)及びその誘導体、並びに、ポリブロモビフェニル(例えばトリブロモフェニル)及びその誘導体、ヘキサブロモシクロドデカン、臭素化ポリスチレン、ヘキサブロモベンゼン等の有機系臭素含有難燃剤が使用可能である。ここで、「誘導体」とは、アルキル基等の有機基を置換基として有するもの、又は、臭素原子の数が相違するもの等をいう。
 これらの中でも、安全性の点で、臭素化ビスフェノール(特にテトラブロモビスフェノールA)、1,2-ビス(ブロモフェニル)エタン、臭素化ポリスチレン、下記構造式1で表される臭素化エチレンビスフタルイミド及び下記構造式2で表される1,2-ビス(ブロモフェニル)エタン誘導体が好ましく、下記構造式1で表される臭素化エチレンビスフタルイミド、下記構造式2で表される1,2-ビス(ブロモフェニル)エタン誘導体がさらに好ましい。
 構造式2において、nは各々独立に1~5の整数であり、好ましくは3~5の整数である。
The brominated flame retardant (h1) used in the present invention is not particularly limited as long as it is used as a flame retardant. For example, brominated ethylene bisphthalimide and derivatives thereof, bisbrominated phenylterephthalamide and derivatives thereof, bromine Bisphenols (eg tetrabromobisphenol A) and derivatives thereof, 1,2-bis (bromophenyl) ethane and derivatives thereof, polybromodiphenyl ethers (eg decabromodiphenyl ether) and derivatives thereof, and polybromobiphenyls (eg tribromophenyl) ) And derivatives thereof, organic bromine-containing flame retardants such as hexabromocyclododecane, brominated polystyrene, hexabromobenzene and the like can be used. Here, the “derivative” means one having an organic group such as an alkyl group as a substituent, or one having a different number of bromine atoms.
Among these, in terms of safety, brominated bisphenol (particularly tetrabromobisphenol A), 1,2-bis (bromophenyl) ethane, brominated polystyrene, brominated ethylene bisphthalimide represented by the following structural formula 1 and A 1,2-bis (bromophenyl) ethane derivative represented by the following structural formula 2 is preferred, a brominated ethylene bisphthalimide represented by the following structural formula 1, a 1,2-bis ( More preferred are bromophenyl) ethane derivatives.
In Structural Formula 2, each n is independently an integer of 1 to 5, preferably an integer of 3 to 5.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
<(e1)シラノール縮合触媒>
 シラノール縮合触媒(e1)は、樹脂成分(A)にグラフト化された加水分解性シランカップリング剤(q)を縮合反応により水分の存在下で結合させる働きがある。このシラノール縮合触媒(e1)の働きに基づき、加水分解性シランカップリング剤(q)を介して、樹脂成分(A)同士が架橋される。その結果、耐熱性に優れた耐熱性シラン架橋樹脂成形体を得ることができる。
<(E1) Silanol condensation catalyst>
The silanol condensation catalyst (e1) functions to bind the hydrolyzable silane coupling agent (q) grafted to the resin component (A) in the presence of moisture by a condensation reaction. Based on the function of the silanol condensation catalyst (e1), the resin components (A) are cross-linked through the hydrolyzable silane coupling agent (q). As a result, a heat-resistant silane cross-linked resin molded product having excellent heat resistance can be obtained.
 シラノール縮合触媒(e1)としては、有機スズ化合物、金属石けん、白金化合物等が用いられる。一般的なシラノール縮合触媒(e1)としては、例えば、ジブチルスズジラウリレート、ジオクチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテート、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸ナトリウム、ナフテン酸鉛、硫酸鉛、硫酸亜鉛、有機白金化合物等が用いられる。これらの中でも、特に好ましくはジブチルスズジラウリレート、ジオクチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物である。 As the silanol condensation catalyst (e1), an organic tin compound, a metal soap, a platinum compound, or the like is used. Common silanol condensation catalysts (e1) include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, stearin Sodium acid, lead naphthenate, lead sulfate, zinc sulfate, organic platinum compounds and the like are used. Among these, organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, and dibutyltin diacetate are particularly preferable.
<(e2)キャリヤ樹脂>
 キャリヤ樹脂(e2)としては、特に限定されないが、樹脂成分(A)のポリオレフィン系樹脂であるのが好ましく、樹脂成分(A)の一部を用いることもでき、この樹脂成分(A)とは別の樹脂を用いることもできる。キャリヤ樹脂(e2)は、シラノール縮合触媒(e1)と親和性がよく耐熱性にも優れる点で、エチレン-酢酸ビニル共重合体(i)及びポリプロピレン(iii)が好ましい。
<(E2) Carrier resin>
The carrier resin (e2) is not particularly limited, but is preferably a polyolefin resin of the resin component (A), and a part of the resin component (A) can be used. What is this resin component (A)? Another resin can also be used. The carrier resin (e2) is preferably an ethylene-vinyl acetate copolymer (i) or polypropylene (iii) in that it has an affinity with the silanol condensation catalyst (e1) and is excellent in heat resistance.
<その他の成分>
 本発明において、難燃助剤を用いることができる。難燃助剤として三酸化アンチモン(h3)を用いるのが好ましい。三酸化アンチモンを用いると、耐熱性シラン架橋樹脂成形体の難燃性をさらに向上させることができる。
<Other ingredients>
In the present invention, a flame retardant aid can be used. It is preferable to use antimony trioxide (h3) as a flame retardant aid. When antimony trioxide is used, the flame retardancy of the heat-resistant silane crosslinked resin molded product can be further improved.
 本発明において、電線、電気ケーブル、電気コード、シート、発泡体、チューブ、パイプ等に一般的に使用される各種の添加剤、例えば、架橋助剤、酸化防止剤(老化防止剤ともいう)、滑剤、金属不活性剤、充填剤、他の樹脂等を、本発明の目的を損なわない範囲で、適宜用いてもよい。これらの添加剤は、いずれの成分に含有されてもよいが、触媒マスターバッチ(Mx)に含有されるのがよい。特に酸化防止剤、金属不活性剤は、加水分解性シランカップリング剤(q)の樹脂成分(A)へのグラフトを阻害しないように、触媒マスターバッチ(Mx)のキャリヤ樹脂(e2)に混合されるのが好ましい。このとき、架橋助剤は実質的に含有していないことが好ましい。特に架橋助剤はシランマスターバッチ(Dx)を調製する工程(a)において実質的に混合されないのが好ましい。架橋助剤を加えると、混練り中に有機過酸化物(P)により架橋助剤が反応し、樹脂成分(A)同士の架橋が生じ、ゲル化が生じて耐熱性シラン架橋樹脂成形体の外観が低下することがある。また、加水分解性シランカップリング剤(q)の樹脂成分(A)へのグラフト反応が進行しにくく、最終的な耐熱性シラン架橋樹脂成形体の耐熱性が得られなくなるおそれがある。ここで、実質的に含有しない又は混合されないとは、架橋助剤を積極的に添加又は混合しないことを意味し、不可避的に含有又は混合されることを除外するものではない。 In the present invention, various additives generally used for electric wires, electric cables, electric cords, sheets, foams, tubes, pipes, etc., for example, crosslinking aids, antioxidants (also referred to as anti-aging agents), Lubricants, metal deactivators, fillers, other resins, and the like may be appropriately used as long as the object of the present invention is not impaired. These additives may be contained in any component, but may be contained in the catalyst master batch (Mx). In particular, the antioxidant and the metal deactivator are mixed with the carrier resin (e2) of the catalyst masterbatch (Mx) so as not to inhibit the grafting of the hydrolyzable silane coupling agent (q) to the resin component (A). Preferably it is done. At this time, it is preferable that a crosslinking aid is not substantially contained. In particular, it is preferable that the crosslinking aid is not substantially mixed in the step (a) for preparing the silane master batch (Dx). When a crosslinking aid is added, the crosslinking aid reacts with the organic peroxide (P) during kneading, crosslinking between the resin components (A) occurs, gelation occurs, and the heat resistant silane crosslinked resin molded article is formed. Appearance may deteriorate. Further, the graft reaction of the hydrolyzable silane coupling agent (q) to the resin component (A) is difficult to proceed, and the heat resistance of the final heat-resistant silane crosslinked resin molded product may not be obtained. Here, being substantially not contained or not mixed means that a crosslinking aid is not actively added or mixed, and does not exclude inclusion or mixing unavoidably.
 架橋助剤は、有機過酸化物の存在下において、樹脂成分(A)との間に部分架橋構造を形成するものをいい、例えばポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート等のメタクリレート系化合物、トリアリルシアヌレート等のアリル系化合物、マレイミド系化合物、ジビニル系化合物等の多官能性化合物を挙げることができる。 The crosslinking aid refers to one that forms a partially crosslinked structure with the resin component (A) in the presence of an organic peroxide, for example, a methacrylate compound such as polypropylene glycol diacrylate, trimethylolpropane triacrylate, Examples include allyl compounds such as triallyl cyanurate, polyfunctional compounds such as maleimide compounds, and divinyl compounds.
 酸化防止剤としては、例えば、4,4’-ジオクチルジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のアミン系酸化防止剤、ペンタエリスリチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等のフェノール系酸化防止剤、ビス(2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル)スルフィド、2-メルカプトベンヅイミダゾール及びその亜鉛塩、ペンタエリスリトール-テトラキス(3-ラウリル-チオプロピオネート)等のイオウ系酸化防止剤等が挙げられる。酸化防止剤は、樹脂成分(A)100質量部に対して、好ましくは0.1~15.0質量部、さらに好ましくは0.1~10質量部で加えることができる。 Examples of the antioxidant include amine-based oxidation such as a polymer of 4,4′-dioctyldiphenylamine, N, N′-diphenyl-p-phenylenediamine, and 2,2,4-trimethyl-1,2-dihydroquinoline. Inhibitor, pentaerythrityl-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) Phenol-based antioxidants such as propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, bis (2-methyl-4- (3-n-alkylthiopropionyloxy) -5-tert-butylphenyl) sulfide, 2-mercaptoben ヅ imidazole and its zinc salt, penta Risuritoru - tetrakis (3-lauryl - thiopropionate) sulfur-based antioxidants such as and the like. The antioxidant can be added in an amount of preferably 0.1 to 15.0 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the resin component (A).
 金属不活性剤としては、N,N’-ビス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル)ヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2,2’-オキサミドビス-(エチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)等が挙げられる。 Examples of metal deactivators include N, N′-bis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4. -Triazole, 2,2'-oxamidobis- (ethyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and the like.
 滑剤としては、炭化水素系、シロキサン系、脂肪酸系、脂肪酸アミド系、エステル系、アルコール系、金属石けん系等が挙げられる。これらの滑剤はキャリヤ樹脂(E)に加えた方がよい。 Examples of the lubricant include hydrocarbons, siloxanes, fatty acids, fatty acid amides, esters, alcohols, metal soaps and the like. These lubricants should be added to the carrier resin (E).
 次に、本発明の製造方法を具体的に説明する。
 本発明の「耐熱性シラン架橋樹脂成形体の製造方法」は、上記の通り、工程(a)と工程(b)と工程(c)とを有している。
Next, the production method of the present invention will be specifically described.
As described above, the “method for producing a heat-resistant silane cross-linked resin molded article” of the present invention includes the step (a), the step (b), and the step (c).
 本発明の製造方法において、工程(a)は、樹脂成分(A)100質量部に対して、有機過酸化物(P)0.01~0.6質量部と、シランカップリング剤予備混合無機フィラー(D)10~150質量部と、臭素系難燃剤(h1)15~60質量部と、シラノール縮合触媒(e1)0.001~0.5質量部とを溶融混合して、耐熱性シラン架橋性樹脂組成物(F)を調製する工程である。 In the production method of the present invention, the step (a) comprises 0.01 to 0.6 parts by mass of an organic peroxide (P), 100 parts by mass of the resin component (A), and a silane coupling agent premixed inorganic. A heat-resistant silane is obtained by melt-mixing 10 to 150 parts by mass of a filler (D), 15 to 60 parts by mass of a brominated flame retardant (h1), and 0.001 to 0.5 parts by mass of a silanol condensation catalyst (e1). This is a step of preparing a crosslinkable resin composition (F).
 本発明の製造方法において、工程(a)で用いる樹脂成分(A)は、上述の、加水分解性シランカップリング剤(q)の架橋基と有機過酸化物(P)の存在下で架橋反応する架橋部位を有する樹脂、エラストマー及びゴム等(所望により各種オイルを含んでもよい。)のうち、ポリオレフィン共重合体(i)とエチレン-α-オレフィン共重合体(ii)とを含有する。樹脂成分(A)がポリオレフィン共重合体(i)とエチレン-α-オレフィン共重合体(ii)とを含有すると、耐熱性シラン架橋樹脂成形体の絶縁抵抗、外観及び柔軟性、耐寒性に優れる。
 特に、ポリオレフィン共重合体(i)の少なくとも1種はエチレン-酢酸ビニル共重合体及びエチレン-(メタ)アクリル酸エステル共重合体から選択される1種であるのが好ましく、エチレン-α-オレフィン共重合体(ii)は直鎖型低密度ポリエチレン(LLDPE)が好ましい。このとき、樹脂成分(A)は、ポリオレフィン共重合体(i)とエチレン-α-オレフィン共重合体(ii)とからなっていてもよく、他の樹脂成分を含有していてもよい。
In the production method of the present invention, the resin component (A) used in the step (a) is subjected to a crosslinking reaction in the presence of the crosslinking group of the hydrolyzable silane coupling agent (q) and the organic peroxide (P). Among the resins, elastomers, rubbers, and the like (which may contain various oils if desired), the polyolefin copolymer (i) and the ethylene-α-olefin copolymer (ii) are contained. When the resin component (A) contains the polyolefin copolymer (i) and the ethylene-α-olefin copolymer (ii), the heat resistance silane crosslinked resin molded article is excellent in insulation resistance, appearance, flexibility, and cold resistance. .
In particular, at least one of the polyolefin copolymers (i) is preferably one selected from an ethylene-vinyl acetate copolymer and an ethylene- (meth) acrylic ester copolymer, and an ethylene-α-olefin. The copolymer (ii) is preferably linear low density polyethylene (LLDPE). At this time, the resin component (A) may be composed of the polyolefin copolymer (i) and the ethylene-α-olefin copolymer (ii), or may contain other resin components.
 樹脂成分(A)は、それを構成する各樹脂、及び、所望により各種オイルの合計が100質量%となるように、各樹脂及び各種オイルの含有率それぞれが後述する範囲から選択される。 Resin component (A) is selected from the ranges described below for the respective resins and various oils so that the total of the various resins constituting the resin component and various oils is 100% by mass as required.
 樹脂成分(A)がポリオレフィン共重合体(i)及びエチレン-α-オレフィン共重合体(ii)を含有する場合、樹脂成分(A)全体に対して、ポリオレフィン共重合体(i)の含有率及びエチレン-α-オレフィン共重合体(ii)の含有率が、それぞれ、10~90質量%の範囲から選択される。ポリオレフィン共重合体(i)の含有率及びエチレン-α-オレフィン共重合体(ii)の含有率が上述の範囲内にあると、耐熱性シラン架橋樹脂成形体の機械特性、絶縁抵抗、難燃性、耐熱性及び外観を高い水準で兼ね備える。
 これらをより一層高い水準で兼ね備える点で、ポリオレフィン共重合体(i)の含有率は、樹脂成分(A)全体に対して、10~50質量%の範囲から選択されるのがより好ましく、また、エチレン-α-オレフィン共重合体(ii)の含有率は、樹脂成分(A)全体に対して、20~80質量%の範囲から選択されるのがより好ましい。
 ポリオレフィン共重合体(i)及びエチレン-α-オレフィン共重合体(ii)の合計含有率は、機械特性及び絶縁抵抗に優れる点で、樹脂成分(A)全体に対して、好ましくは30~100質量%、より好ましくは35~98質量%、さらに好ましくは40~95質量%となるように、各含有率が上述の範囲から選択される。
When the resin component (A) contains the polyolefin copolymer (i) and the ethylene-α-olefin copolymer (ii), the content of the polyolefin copolymer (i) with respect to the entire resin component (A) And the ethylene-α-olefin copolymer (ii) content is selected from the range of 10 to 90% by mass. When the content of the polyolefin copolymer (i) and the content of the ethylene-α-olefin copolymer (ii) are within the above ranges, the mechanical properties, insulation resistance, and flame resistance of the heat-resistant silane crosslinked resin molded product High quality, heat resistance and appearance.
In view of combining these at an even higher level, the content of the polyolefin copolymer (i) is more preferably selected from the range of 10 to 50% by mass with respect to the entire resin component (A). The content of the ethylene-α-olefin copolymer (ii) is more preferably selected from the range of 20 to 80% by mass with respect to the entire resin component (A).
The total content of the polyolefin copolymer (i) and the ethylene-α-olefin copolymer (ii) is preferably 30 to 100 with respect to the entire resin component (A) in terms of excellent mechanical properties and insulation resistance. Each content is selected from the above-mentioned range so as to be mass%, more preferably 35 to 98 mass%, and still more preferably 40 to 95 mass%.
 樹脂成分(A)が上述の共重合体(i)及び(ii)以外の成分を含有する場合には、樹脂成分(A)の残部は、ポリオレフィン共重合体(i)及びエチレン-α-オレフィン共重合体(ii)以外の樹脂成分、例えば、ポリプロピレン(iii)、ポリエチレン(iv)、スチレン系エラストマー(v)、場合によっては上述のオイルであってもよい。 When the resin component (A) contains components other than the above-mentioned copolymers (i) and (ii), the balance of the resin component (A) is the polyolefin copolymer (i) and the ethylene-α-olefin. Resin components other than the copolymer (ii), for example, polypropylene (iii), polyethylene (iv), styrene-based elastomer (v), and in some cases, the oil described above may be used.
 樹脂成分(A)が、ポリオレフィン共重合体(i)及びエチレン-α-オレフィン共重合体(ii)に加えて、ポリプロピレン(iii)を含有する場合には、樹脂成分(A)全体に対して、ポリプロピレン(iii)の含有率は、好ましくは0.2~20質量%の範囲、より好ましくは0.5~15質量%の範囲から選択される。ポリプロピレン(iii)の含有率が上述の範囲内にあると、耐熱性シラン架橋樹脂成形体の外観及び柔軟性をより一層高い水準で両立できる。
 樹脂成分(A)がポリエチレン(iv)を含有する場合には、ポリエチレン(iv)の含有率は、樹脂成分(A)全体に対して、30質量%以下であるのが好ましい。
 また、樹脂成分(A)がスチレン系エラストマー(v)を含有する場合には、スチレン系エラストマー(v)の含有率は、樹脂成分(A)全体に対して、30質量%以下であるのが好ましい。
 なお、オイルの含有率は、上述した通りである。
When the resin component (A) contains polypropylene (iii) in addition to the polyolefin copolymer (i) and the ethylene-α-olefin copolymer (ii), the total amount of the resin component (A) is The content of polypropylene (iii) is preferably selected in the range of 0.2 to 20% by mass, more preferably in the range of 0.5 to 15% by mass. When the content of polypropylene (iii) is within the above range, the appearance and flexibility of the heat-resistant silane crosslinked resin molded article can be achieved at a higher level.
When resin component (A) contains polyethylene (iv), it is preferable that the content rate of polyethylene (iv) is 30 mass% or less with respect to the whole resin component (A).
When the resin component (A) contains the styrene elastomer (v), the content of the styrene elastomer (v) is 30% by mass or less based on the entire resin component (A). preferable.
The oil content is as described above.
 工程(a)において、樹脂成分(A)は、後述するように、そのすべてを工程(a1)で用いてもよく、また、一部を工程(a1)で、残部を工程(a2)で用いてもよい。シラノール縮合触媒(e1)の混合性の点で、樹脂成分(A)は、一部を工程(a1)で、残部を工程(a2)で用いるのが好ましい。このときの、工程(a1)と工程(a2)とで用いる樹脂成分(A)の質量割合は後述する。 In the step (a), as described later, the resin component (A) may be used entirely in the step (a1), or a part thereof may be used in the step (a1) and the rest in the step (a2). May be. In terms of the mixing property of the silanol condensation catalyst (e1), it is preferable that a part of the resin component (A) is used in the step (a1) and the rest in the step (a2). The mass ratio of the resin component (A) used in the step (a1) and the step (a2) at this time will be described later.
 工程(a)において、有機過酸化物(P)の配合量は、樹脂成分(A)100質量部に対して、0.01~0.6質量部であり、好ましくは0.03~0.5質量部である。有機過酸化物(P)をこの範囲内にすることにより、適切な範囲で重合を行うことができ、架橋ゲル等に起因する凝集塊も発生することなく押し出し性に優れた耐熱性シラン架橋性樹脂組成物(F)が得ることができる。
 すなわち、有機過酸化物(P)の配合量が0.01質量部未満では、架橋時に架橋反応が進行せずに全く架橋反応が進まなかったり、遊離したシランカップリング剤同士が結合してしまったりして耐熱性や機械強度、耐摩耗性、補強性を十分に得ることが出来ず、一方、0.6質量部を超えると、副反応によって樹脂成分同士が多く直接的に架橋してしまい、押し出し性が低下するうえ、ブツが生じるおそれがある。
In the step (a), the compounding amount of the organic peroxide (P) is 0.01 to 0.6 parts by weight, preferably 0.03 to 0.00 parts per 100 parts by weight of the resin component (A). 5 parts by mass. By making the organic peroxide (P) within this range, the polymerization can be carried out in an appropriate range, and the heat-resistant silane cross-linking property is excellent in extrudability without generating an agglomerate due to a cross-linked gel or the like. A resin composition (F) can be obtained.
That is, when the amount of the organic peroxide (P) is less than 0.01 parts by mass, the crosslinking reaction does not proceed at the time of crosslinking and the crosslinking reaction does not proceed at all, or the released silane coupling agents are bonded to each other. Heat resistance, mechanical strength, wear resistance, and reinforcement cannot be obtained sufficiently, and if it exceeds 0.6 parts by mass, many resin components are directly cross-linked by side reaction. In addition, the extrudability deteriorates and there is a risk that bumps will occur.
 シランカップリング剤予備混合無機フィラー(D)の配合量は、後述する臭素系難燃剤との併用によって低減でき、具体的には、樹脂成分(A)100質量部に対して、10~150質量部であり、好ましくは20~120質量部である。シランカップリング剤予備混合無機フィラー(D)の配合量が10質量部未満の場合は、シランカップリング剤(q)の樹脂成分(A)へのグラフト反応が不均一となり、所望の耐熱性が得られず、又は、不均一なグラフト反応により外観が低下するおそれがある。一方、150質量部を超えると、成型時や混練時の負荷が非常に大きくなり、2次成形が難しくなるおそれがある。 The blending amount of the silane coupling agent premixed inorganic filler (D) can be reduced by the combined use with a brominated flame retardant described later, specifically, 10 to 150 parts by mass with respect to 100 parts by mass of the resin component (A). Part, preferably 20 to 120 parts by weight. When the blending amount of the silane coupling agent premixed inorganic filler (D) is less than 10 parts by mass, the graft reaction of the silane coupling agent (q) to the resin component (A) becomes non-uniform, and the desired heat resistance is obtained. It may not be obtained or the appearance may deteriorate due to a non-uniform graft reaction. On the other hand, if it exceeds 150 parts by mass, the load during molding or kneading becomes very large, and secondary molding may be difficult.
 工程(a)において、臭素系難燃剤(h1)の配合量は、樹脂成分(A)100質量部に対して、15~60質量部であり、好ましくは20~60質量部であり、より好ましくは20~40質量部である。臭素系難燃剤(h1)の配合量が15質量部未満であると、所望の難燃性が得られない。一方、60質量部を超えると機械強度が低下することがある。 In the step (a), the amount of the brominated flame retardant (h1) is 15 to 60 parts by weight, preferably 20 to 60 parts by weight, more preferably 100 parts by weight of the resin component (A). Is 20 to 40 parts by mass. When the amount of the brominated flame retardant (h1) is less than 15 parts by mass, desired flame retardancy cannot be obtained. On the other hand, when it exceeds 60 mass parts, mechanical strength may fall.
 工程(a)において、三酸化アンチモン等の難燃助剤、添加剤等を混合することもできる。三酸化アンチモン(h3)の配合量は、樹脂成分(A)100質量部に対して、好ましくは5~30質量部、より好ましくは10~20質量部である。三酸化アンチモン(h3)の配合量が上述の範囲内にあると、所望の難燃性が得られ、しかも、高い機械特性を発揮する。
 添加剤は上述の配合量又は適宜の配合量で混合される。
In the step (a), a flame retardant aid such as antimony trioxide, an additive and the like can be mixed. The blending amount of antimony trioxide (h3) is preferably 5 to 30 parts by mass, more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the resin component (A). When the blending amount of antimony trioxide (h3) is within the above range, desired flame retardancy is obtained and high mechanical properties are exhibited.
The additive is mixed in the above-described amount or an appropriate amount.
 本発明の製造方法において、工程(a)は、下記工程(a1)及び工程(a3)を有し、下記工程(a1)で樹脂成分(A)の一部を溶融混合する場合にさらに下記工程(a2)を有している。工程(a)がこれらの工程を有していると、各成分を均一に溶融混合でき、所期の効果を得ることができる。
工程(a1):樹脂成分(A)の一部又は全部と、有機過酸化物(P)と、シランカップリング剤予備混合無機フィラー(D)とを有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチ(Dx)を調製する工程
工程(a2):キャリヤ樹脂(e2)としての樹脂成分(A)の残部とシラノール縮合触媒(e1)とを溶融混合して、触媒マスターバッチ(Ex)を調製する工程
工程(a3):シランマスターバッチ(Dx)とシラノール縮合触媒(e1)又は触媒マスターバッチ(Ex)とを溶融混合する工程
In the production method of the present invention, the step (a) has the following step (a1) and step (a3), and when the part of the resin component (A) is melt-mixed in the following step (a1), the following step is further performed. (A2). When the step (a) includes these steps, each component can be uniformly melted and mixed, and the desired effect can be obtained.
Step (a1): A part or all of the resin component (A), the organic peroxide (P), and the silane coupling agent premixed inorganic filler (D) are at or above the decomposition temperature of the organic peroxide (P). Step (a2) for preparing a silane masterbatch (Dx) by melt-mixing in step 2: Melting and mixing the remainder of the resin component (A) as the carrier resin (e2) and the silanol condensation catalyst (e1) Step (a3) of preparing master batch (Ex): Step of melt-mixing silane master batch (Dx) and silanol condensation catalyst (e1) or catalyst master batch (Ex)
 工程(a)において、工程(a2)は、工程(a1)で樹脂成分(A)の一部を溶融混合する場合に行われ、工程(a1)で樹脂成分(A)の全部を溶融混合する場合は行われない。この場合、工程(a3)においては、触媒マスターバッチ(Ex)に代わりにシラノール縮合触媒(e1)を単独で用いる。
 また、工程(a)において、臭素系難燃剤(h1)は、工程(a1)及び工程(a2)のいずれか一方において混合されればよく、臭素系難燃剤(h1)がより均一に混合され、高い難燃性を発揮する点で、少なくとも工程(a1)において混合されるのが好ましく、工程(a1)及び工程(a2)の両工程において混合されてもよい。
 さらに、工程(a)において、三酸化アンチモン(h3)を用いる場合には、工程(a1)及び工程(a2)のいずれか一方において混合されるのが好ましく、三酸化アンチモン(h3)がより均一に混合され、高い難燃性を発揮する点で、少なくとも工程(a1)において混合されるのがより好ましく、工程(a1)及び工程(a2)の両工程において混合されてもよい。
In the step (a), the step (a2) is performed when a part of the resin component (A) is melt-mixed in the step (a1), and the whole resin component (A) is melt-mixed in the step (a1). If not done. In this case, in the step (a3), the silanol condensation catalyst (e1) is used alone instead of the catalyst master batch (Ex).
In the step (a), the brominated flame retardant (h1) may be mixed in any one of the steps (a1) and (a2), and the brominated flame retardant (h1) is more uniformly mixed. In view of exhibiting high flame retardancy, it is preferable to mix at least in step (a1), and may be mixed in both step (a1) and step (a2).
Furthermore, when antimony trioxide (h3) is used in step (a), it is preferably mixed in either step (a1) or step (a2), and antimony trioxide (h3) is more uniform. It is more preferable to mix at least in the step (a1) from the viewpoint of exhibiting high flame retardancy, and it may be mixed in both the step (a1) and the step (a2).
 工程(a1)においては、樹脂成分(A)の一部又は全部と、有機過酸化物(P)と、シランカップリング剤予備混合無機フィラー(D)と、好ましくは臭素系難燃剤(h1)の一部又は全部とを、混合機に投入し、有機過酸化物(P)の分解温度以上に加熱しながら溶融混練して、シランマスターバッチ(Dx)を調製する。
 工程(a)において、樹脂成分(A)と有機過酸化物(P)とシランカップリング剤予備混合無機フィラー(D)と臭素系難燃剤(h1)と三酸化アンチモン(h3)等との混合方法は、特に限定されない。例えば、有機過酸化物(P)は、単独で樹脂成分(A)及びシランカップリング剤予備混合無機フィラー(D)に混合してもよいが、本発明においてはシランカップリング剤予備混合無機フィラー(D)に含まれるのが好ましい。すなわち、工程(a)において、有機過酸化物(P)を含有しないシランカップリング剤予備混合無機フィラー(D)を用いてもよいが、有機過酸化物(P)を含有するシランカップリング剤予備混合無機フィラー(D)を用いるのが好ましい。
In the step (a1), part or all of the resin component (A), the organic peroxide (P), the silane coupling agent premixed inorganic filler (D), and preferably the brominated flame retardant (h1) A part or all of the above is put into a mixer and melt-kneaded while being heated above the decomposition temperature of the organic peroxide (P) to prepare a silane masterbatch (Dx).
In step (a), mixing of resin component (A), organic peroxide (P), silane coupling agent premixed inorganic filler (D), brominated flame retardant (h1), antimony trioxide (h3), etc. The method is not particularly limited. For example, the organic peroxide (P) may be mixed alone with the resin component (A) and the silane coupling agent premixed inorganic filler (D). In the present invention, the silane coupling agent premixed inorganic filler is used. It is preferable to be included in (D). That is, in the step (a), a silane coupling agent premixed inorganic filler (D) that does not contain an organic peroxide (P) may be used, but a silane coupling agent that contains an organic peroxide (P). It is preferable to use a premixed inorganic filler (D).
 ここで、シランカップリング剤予備混合無機フィラー(D)は、工程(a1)に先立って、調製又は準備するのが好ましい。例えば、常法等により、無機フィラー(C)と加水分解性シランカップリング剤(q)とを混合すると、上述のように、加水分解性シランカップリング剤(q)が無機フィラー(C)と強く又は弱く結合してなるシランカップリング剤予備混合無機フィラー(D)が得られる。このようにシランカップリング剤予備混合無機フィラー(D)の調製工程を、工程(a1)に先立って行うと局所的な架橋によるブツの発生を抑えることができる。 Here, it is preferable to prepare or prepare the silane coupling agent premixed inorganic filler (D) prior to the step (a1). For example, when the inorganic filler (C) and the hydrolyzable silane coupling agent (q) are mixed by a conventional method or the like, the hydrolyzable silane coupling agent (q) is mixed with the inorganic filler (C) as described above. A silane coupling agent premixed inorganic filler (D) that is strongly or weakly bonded is obtained. As described above, when the step of preparing the silane coupling agent premixed inorganic filler (D) is performed prior to the step (a1), it is possible to suppress the occurrence of defects due to local crosslinking.
 具体的には、好適な工程(a1)は、加水分解性シランカップリング剤(q)、有機過酸化物(P)及び無機フィラー(C)を混合した後、この混合物と樹脂成分(A)及び好ましくは臭素系難燃剤(h1)を有機過酸化物(P)の分解温度以上で溶融混練して、シランマスターバッチ(グラフトマー)(Dx)を調製する。 Specifically, in the preferred step (a1), the hydrolyzable silane coupling agent (q), the organic peroxide (P) and the inorganic filler (C) are mixed, and then the mixture and the resin component (A) are mixed. And preferably, the brominated flame retardant (h1) is melt-kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide (P) to prepare a silane masterbatch (graftmer) (Dx).
 好適な工程(a1)においては、まず、所定の質量割合で、無機フィラー(C)と加水分解性シランカップリング剤(q)と有機過酸化物(P)を、有機過酸化物(P)の分解温度未満、好ましくは室温(25℃)で、乾式又は湿式混合して、混合物を調製する。 In the preferred step (a1), first, the inorganic filler (C), the hydrolyzable silane coupling agent (q) and the organic peroxide (P) are mixed with the organic peroxide (P) at a predetermined mass ratio. The mixture is prepared by dry or wet mixing at a temperature lower than the decomposition temperature, preferably at room temperature (25 ° C.).
 ここで、無機フィラー(C)に混合される加水分解性シランカップリング剤(q)は、無機フィラー(C)100質量部に対して、0.5~30.0質量部であり、好ましくは1.0~20.0質量部である。加水分解性シランカップリング剤(q)の混合量が0.5質量部未満の場合は、架橋が十分になされず、耐熱性シラン架橋樹脂成形体に所望の耐燃性や機械特性を得ることができないおそれがある。一方、30.0質量部を超えると、無機フィラー(C)の表面に吸着しない加水分解性シランカップリング剤(q)が多くなるので、混練中に揮発してしまい、経済的でないばかりか、吸着しない加水分解性シランカップリング剤(q)が縮合することで、耐熱性シラン架橋樹脂成形体に架橋ゲルブツや焼けが生じ外観が悪化するおそれがある。特に外観不良は30.0質量部を超える場合に顕著である。 Here, the hydrolyzable silane coupling agent (q) mixed with the inorganic filler (C) is 0.5 to 30.0 parts by mass with respect to 100 parts by mass of the inorganic filler (C), preferably 1.0 to 20.0 parts by mass. When the amount of the hydrolyzable silane coupling agent (q) is less than 0.5 parts by mass, the crosslinking is not sufficient, and the desired heat resistance and mechanical properties can be obtained in the heat-resistant silane crosslinked resin molded product. It may not be possible. On the other hand, if it exceeds 30.0 parts by mass, the hydrolyzable silane coupling agent (q) that does not adsorb on the surface of the inorganic filler (C) increases, and thus volatilizes during kneading, which is not economical. Condensation of the hydrolyzable silane coupling agent (q) that is not adsorbed may result in cross-linked gels and burns in the heat-resistant silane cross-linked resin molded article, and the appearance may deteriorate. In particular, the appearance defect is remarkable when it exceeds 30.0 parts by mass.
 また、加水分解性シランカップリング剤(q)は、樹脂成分(A)100質量部に対して、0.5~18.0質量部であることが好ましく、1.0~10.0質量部であることがより好ましい。加水分解性シランカップリング剤(q)の使用量が0.5質量部未満の場合は、架橋が十分に行われず、耐熱性シラン架橋樹脂成形体に所望の耐燃性や機械特性を得ることができないおそれがある。一方、18.0質量部を超えると、加水分解性シランカップリング剤(q)同士が縮合してしまい、耐熱性シラン架橋樹脂成形体に架橋ゲルのブツや焼けが生じ外観が悪くなるおそれがある。 The hydrolyzable silane coupling agent (q) is preferably 0.5 to 18.0 parts by weight, and 1.0 to 10.0 parts by weight with respect to 100 parts by weight of the resin component (A). It is more preferable that When the amount of the hydrolyzable silane coupling agent (q) used is less than 0.5 parts by mass, the crosslinking is not sufficiently performed, and desired heat resistance and mechanical properties can be obtained in the heat-resistant silane crosslinked resin molded product. It may not be possible. On the other hand, when it exceeds 18.0 parts by mass, the hydrolyzable silane coupling agents (q) are condensed with each other, and there is a risk that the heat-resistant silane crosslinked resin molded product may be damaged or burnt by the crosslinked gel and the appearance may be deteriorated. is there.
 このようにして得られる混合物は、無機フィラー(C)及び加水分解性シランカップリング剤(q)が混合されてなるシランカップリング剤予備混合無機フィラー(D)と、有機過酸化物(P)とを含有している。 The mixture thus obtained includes a silane coupling agent premixed inorganic filler (D) obtained by mixing an inorganic filler (C) and a hydrolyzable silane coupling agent (q), and an organic peroxide (P). Containing.
 無機フィラー(C)及び加水分解性シランカップリング剤(q)との混合は、加熱又は非加熱で加え混合する処理(乾式)や、水等の溶媒に無機フィラー(C)を分散させた状態で加水分解性シランカップリング剤(q)を加える処理(湿式)等の方法がある。本発明においては、無機フィラー(C)、好ましくは乾燥させた無機フィラー(C)中に加水分解性シランカップリング剤(q)を、加熱又は非加熱で加え混合する処理、すなわち乾式処理が好ましい。 Mixing with the inorganic filler (C) and the hydrolyzable silane coupling agent (q) is a state of adding and mixing with heating or non-heating (dry type), or a state in which the inorganic filler (C) is dispersed in a solvent such as water. There is a method of adding a hydrolyzable silane coupling agent (q) (wet). In the present invention, a treatment in which the hydrolyzable silane coupling agent (q) is added to the inorganic filler (C), preferably the dried inorganic filler (C), with heating or non-heating, that is, dry processing is preferable. .
 無機フィラー(C)を分散させた状態で加水分解性シランカップリング剤(q)を加える方法(湿式混合)では、加水分解性シランカップリング剤(q)が無機フィラー(C)と強く結合しやすく、その後の架橋反応が進みにくくなることがある。一方で、無機フィラー(C)中に加水分解性シランカップリング剤(q)を、加熱又は非加熱で加え混合する方法(乾式混合)は比較的無機フィラー(C)と加水分解性シランカップリング剤(q)の結合が弱くなるため、効率的に架橋が進みやすくなる。その際に加水分解性シランカップリング剤(q)と有機過酸化物(P)を一緒に混合して、無機フィラー(C)に分散させても良いし、分けて分散させてもよいが、実質的に一緒に混合した方がよい。 In the method of adding the hydrolyzable silane coupling agent (q) with the inorganic filler (C) dispersed (wet mixing), the hydrolyzable silane coupling agent (q) is strongly bonded to the inorganic filler (C). The subsequent cross-linking reaction may be difficult to proceed. On the other hand, the method of adding and mixing the hydrolyzable silane coupling agent (q) in the inorganic filler (C) with heating or non-heating (dry mixing) is a relatively inorganic filler (C) and hydrolyzable silane coupling. Since the bond of the agent (q) becomes weak, the crosslinking easily proceeds efficiently. At that time, the hydrolyzable silane coupling agent (q) and the organic peroxide (P) may be mixed together and dispersed in the inorganic filler (C), or separately. It is better to mix together substantially.
 無機フィラー(C)に加える加水分解性シランカップリング剤(q)は、無機フィラー(C)の表面を取り囲むように存在し、その一部又は全部は無機フィラー(C)に吸着されたり、無機フィラー(C)表面とゆるやかな化学的な結合を生じたりする。このような状態になることにより、その後のニーダーやバンバリーミキサー等で混練り加工する際の加水分解性シランカップリング剤(q)の揮発は大幅に低減するとともに、同時に加える有機過酸化物(P)によって加水分解性シランカップリング剤(q)の不飽和基はポリオレフィン系樹脂と結合反応すると考えられる。また、成形の際にシラノール縮合触媒(e1)によって加水分解性シランカップリング剤(q)同士が縮合反応すると考えられる。 The hydrolyzable silane coupling agent (q) to be added to the inorganic filler (C) exists so as to surround the surface of the inorganic filler (C), and part or all of the hydrolyzable silane coupling agent (q) is adsorbed on the inorganic filler (C) or inorganic. It may cause a loose chemical bond with the filler (C) surface. In such a state, volatilization of the hydrolyzable silane coupling agent (q) during subsequent kneading and processing with a kneader or a Banbury mixer is greatly reduced, and an organic peroxide (P ), The unsaturated group of the hydrolyzable silane coupling agent (q) is considered to undergo a binding reaction with the polyolefin resin. Further, it is considered that the hydrolyzable silane coupling agent (q) undergoes a condensation reaction with the silanol condensation catalyst (e1) during molding.
 なお、工程(a1)においては、生産条件によっては、加水分解性シランカップリング剤(q)のみを無機フィラー(C)に混合し、次いで、有機過酸化物(P)を加えることもできる。有機過酸化物(P)を加える方法としては、樹脂成分(A)に分散させたものでもよいし、単体で加えても、油等に分散させて加えてもよいが、好ましくは樹脂成分(A)に分散させる。 In step (a1), depending on the production conditions, only the hydrolyzable silane coupling agent (q) can be mixed with the inorganic filler (C), and then the organic peroxide (P) can be added. As a method of adding the organic peroxide (P), the organic peroxide (P) may be dispersed in the resin component (A), or may be added alone or dispersed in oil or the like. Disperse in A).
 好適な工程(a1)においては、次いで、調製した混合物と、樹脂成分(A)と、好ましくは臭素系難燃剤(h1)と、所望により難燃助剤及び添加剤とをそれぞれを混合機に加え、それらを加熱しながら溶融混練して、シランマスターバッチ(Dx)を調製する。 In the preferred step (a1), the prepared mixture, the resin component (A), preferably the brominated flame retardant (h1), and, if desired, the flame retardant aids and additives are each added to a mixer. In addition, they are melt-kneaded while heating to prepare a silane masterbatch (Dx).
 工程(a1)において、混練温度は、有機過酸化物(P)の分解温度以上、好ましくは有機過酸化物(P)の分解温度+(25~110)℃である。この分解温度は樹脂成分(A)が溶融してから設定することが好ましい。また、混練時間等の混練条件も適宜設定することができる。有機過酸化物(P)の分解温度未満で混練りすると、シラングラフト反応、シランカップリング剤予備混合無機フィラー(D)と樹脂成分(A)との結合、シランカップリング剤予備混合無機フィラー(D)間の結合が起こらず、所望の耐熱性を得ることができないばかりか、押出中に有機過酸化物(P)が反応してしまい、所望の形状に成形できない場合がある。 In the step (a1), the kneading temperature is not less than the decomposition temperature of the organic peroxide (P), preferably the decomposition temperature of the organic peroxide (P) + (25 to 110) ° C. This decomposition temperature is preferably set after the resin component (A) is melted. Also, kneading conditions such as kneading time can be set as appropriate. When kneaded below the decomposition temperature of the organic peroxide (P), a silane graft reaction, a bond between the silane coupling agent premixed inorganic filler (D) and the resin component (A), a silane coupling agent premixed inorganic filler ( The bond between D) does not occur and the desired heat resistance cannot be obtained, and the organic peroxide (P) reacts during the extrusion and may not be molded into a desired shape.
 混練方法としては、ゴム、プラスチック等で通常用いられる方法であれば使用でき、混練装置は例えばシランカップリング剤予備混合無機フィラー(D)の量に応じて適宜に選択される。混練装置として、一軸押出機、二軸押出機、ロール、バンバリーミキサー又は各種のニーダー等が用いられ、バンバリーミキサー又は各種のニーダー等の密閉型ミキサーが樹脂成分(A)の分散性及び架橋反応の安定性の面で好ましい。 As the kneading method, any method usually used for rubber, plastic, etc. can be used, and the kneading apparatus is appropriately selected according to the amount of the silane coupling agent premixed inorganic filler (D), for example. As a kneading apparatus, a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, or various kneaders are used. A closed mixer such as a Banbury mixer or various kneaders is used for the dispersibility of the resin component (A) and the crosslinking reaction. It is preferable in terms of stability.
 また、通常、このようなシランカップリング剤予備混合無機フィラー(D)が樹脂組成分(A)100質量部に対して100質量部を超えて混合される場合、連続混練機、加圧式ニーダー、バンバリーミキサーでの混練りが一般的である。 Moreover, normally, when such a silane coupling agent premixed inorganic filler (D) is mixed in excess of 100 parts by mass with respect to 100 parts by mass of the resin component (A), a continuous kneader, a pressure kneader, Kneading with a Banbury mixer is common.
 なお、好適な工程(a1)のように、シランカップリング剤予備混合無機フィラー(D)を準備する工程を先立って行うのが好ましいが、上記各成分を上記配合量で混練すると局所的な架橋を抑制できる。したがって、工程(a1)は、準備する工程を溶融混練工程と別工程とすることなく、実施することもできる。すなわち、上述の各成分を一緒に有機過酸化物(P)の分解温度以上で混合して、シランマスターバッチ(Dx)を調製することもできる。 In addition, it is preferable to perform the step of preparing the silane coupling agent premixed inorganic filler (D) as in the preferred step (a1) in advance, but when the above components are kneaded in the above blending amounts, local crosslinking is performed. Can be suppressed. Therefore, the step (a1) can also be carried out without making the preparation step separate from the melt-kneading step. That is, the silane master batch (Dx) can be prepared by mixing the above-described components together at a temperature higher than the decomposition temperature of the organic peroxide (P).
 このようにして工程(a1)を実施して、シランマスターバッチ(シランMBともいう)(Dx)が調製される。 Thus, the step (a1) is performed to prepare a silane master batch (also referred to as silane MB) (Dx).
 工程(a1)で調製されるシランマスターバッチは、有機過酸化物(P)の分解物と、好ましくは臭素系難燃剤(h1)と、樹脂成分(A)及びシランカップリング剤予備混合無機フィラー(D)の反応混合物であり、後述の工程(b)により成形可能な程度に加水分解性シランカップリング剤(q)が樹脂成分(A)にグラフトしたシラン架橋性樹脂を含有している。 The silane masterbatch prepared in step (a1) is a decomposition product of an organic peroxide (P), preferably a brominated flame retardant (h1), a resin component (A) and a silane coupling agent premixed inorganic filler. It is a reaction mixture of (D), and contains a silane crosslinkable resin in which a hydrolyzable silane coupling agent (q) is grafted to the resin component (A) to such an extent that it can be molded by the step (b) described later.
 本発明の製造方法における工程(a)においては、工程(a1)で樹脂成分(A)の一部を溶融混合する場合には、工程(a2)を行う。工程(a2)は、キャリヤ樹脂(e2)としての樹脂成分(A)の残部とシラノール縮合触媒(e1)とを溶融混合して、触媒マスターバッチ(Ex)を調製する工程である。 In step (a) in the production method of the present invention, when part of the resin component (A) is melt-mixed in step (a1), step (a2) is performed. Step (a2) is a step of preparing a catalyst master batch (Ex) by melting and mixing the remainder of the resin component (A) as the carrier resin (e2) and the silanol condensation catalyst (e1).
 シラノール縮合触媒(e1)の配合量は、工程(a)で用いる樹脂成分(A)100質量部に対して、0.001~0.5質量部であり、好ましくは0.003~0.1質量部である。
 シラノール縮合触媒(e1)の配合量が、0.001質量部未満では加水分解性シランカップリング剤(q)の縮合反応による架橋が進みにくくなり、耐熱性シラン架橋樹脂成形体の耐熱性が十分に向上せず、生産性が低下したり、架橋が不均一であったりするおそれがある。一方、0.5質量部を超えると、シラノール縮合反応が非常に速く進行し、部分的なゲル化が生じて耐熱性シラン架橋樹脂成形体の外観が低下し、又は、耐熱性シラン架橋樹脂成形体の物性が低下するおそれがある。
The compounding amount of the silanol condensation catalyst (e1) is 0.001 to 0.5 parts by mass, preferably 0.003 to 0.1 parts per 100 parts by mass of the resin component (A) used in the step (a). Part by mass.
When the blending amount of the silanol condensation catalyst (e1) is less than 0.001 part by mass, crosslinking due to the condensation reaction of the hydrolyzable silane coupling agent (q) is difficult to proceed, and the heat resistance of the heat-resistant silane crosslinked resin molded article is sufficient. However, the productivity may be reduced, and the crosslinking may be uneven. On the other hand, if it exceeds 0.5 parts by mass, the silanol condensation reaction proceeds very rapidly, resulting in partial gelation and the appearance of the heat-resistant silane crosslinked resin molded product being reduced, or heat-resistant silane crosslinked resin molding Physical properties of the body may be reduced.
 キャリヤ樹脂(e2)の配合量は、工程(a)における樹脂成分(A)100質量部に対して、好ましくは1~60質量部、より好ましくは2~50質量部、さらに好ましくは2~40質量部である。
 キャリヤ樹脂(e2)は、上述の配合量を満たす範囲内で、樹脂成分(A)の一部を用いるのが好ましい。この場合、工程(a1)で用いる樹脂成分(A)と工程(a2)で用いるキャリヤ樹脂(e2)との合計が100質量部となるように、樹脂成分(A)とキャリヤ樹脂(e2)との使用量を適宜に設定する。具体的には、キャリヤ樹脂(e2)は、樹脂成分(A)との合計100質量部のうち5~40質量部であるのがよく、10~30質量部であるのが特によい。この場合、工程(a1)で使用される樹脂成分(A)は60~95質量部になり、樹脂成分(A)とキャリヤ樹脂(e2)との合計量が各成分の配合量の基準になる。
The blending amount of the carrier resin (e2) is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, and further preferably 2 to 40 parts by mass with respect to 100 parts by mass of the resin component (A) in the step (a). Part by mass.
As the carrier resin (e2), it is preferable to use a part of the resin component (A) within the range satisfying the above-mentioned blending amount. In this case, the resin component (A) and the carrier resin (e2) are added so that the total of the resin component (A) used in the step (a1) and the carrier resin (e2) used in the step (a2) is 100 parts by mass. The usage amount of is appropriately set. Specifically, the carrier resin (e2) is preferably 5 to 40 parts by mass, particularly preferably 10 to 30 parts by mass, out of a total of 100 parts by mass with the resin component (A). In this case, the resin component (A) used in the step (a1) is 60 to 95 parts by mass, and the total amount of the resin component (A) and the carrier resin (e2) is a reference for the blending amount of each component. .
 触媒マスターバッチ(Ex)は、シラノール縮合触媒(e1)及びキャリヤ樹脂(e2)に加えて他の成分を含有していてもよい。例えば、無機フィラーを含有していてもよい。無機フィラーの含有量は、特には限定しないが、キャリヤ樹脂(e2)100質量部に対して350質量部以下が好ましい。あまり無機フィラー量が多いとシラノール縮合触媒(e1)が分散しにくく、架橋が進行しにくくなるためである。また、キャリヤ樹脂(e2)が多すぎると、成形体の架橋度が低下してしまい、適正な耐熱性が得られなくなるおそれがある。
 なお、工程(a1)において樹脂成分(A)の全部を使用する場合に、キャリヤ樹脂(e2)として樹脂成分(A)以外の他の樹脂を用いることができる。この場合は、他の樹脂とシラノール縮合触媒(e1)とを溶融混合する工程を行うのが好ましい。
The catalyst master batch (Ex) may contain other components in addition to the silanol condensation catalyst (e1) and the carrier resin (e2). For example, you may contain the inorganic filler. Although content of an inorganic filler is not specifically limited, 350 mass parts or less are preferable with respect to 100 mass parts of carrier resin (e2). This is because if the amount of the inorganic filler is too large, the silanol condensation catalyst (e1) is difficult to disperse and the crosslinking is difficult to proceed. Moreover, when there is too much carrier resin (e2), there exists a possibility that the crosslinking degree of a molded object may fall and appropriate heat resistance may not be acquired.
When all of the resin component (A) is used in the step (a1), a resin other than the resin component (A) can be used as the carrier resin (e2). In this case, it is preferable to perform a step of melt-mixing the other resin and the silanol condensation catalyst (e1).
 シラノール縮合触媒(e1)及びキャリヤ樹脂(e2)との溶融混合条件は、キャリヤ樹脂(e2)の溶融温度に応じて適宜に設定される。例えば、混練温度は、80~250℃、より好ましくは100~240℃で行うことができる。なお、混練時間等の混練条件は適宜設定することができる。混練方法は、上記工程(a1)の混練方法と同様の方法で行うことができる。 The melt mixing conditions with the silanol condensation catalyst (e1) and the carrier resin (e2) are appropriately set according to the melting temperature of the carrier resin (e2). For example, the kneading temperature can be 80 to 250 ° C., more preferably 100 to 240 ° C. The kneading conditions such as kneading time can be set as appropriate. The kneading method can be performed by the same method as the kneading method in the step (a1).
 このようにして得られる触媒マスターバッチ(Ex)(触媒MBともいう)は、シラノール縮合触媒(e1)及びキャリヤ樹脂(e2)、所望により添加されるフィラーの混合物である。 The catalyst master batch (Ex) (also referred to as catalyst MB) thus obtained is a mixture of a silanol condensation catalyst (e1), a carrier resin (e2), and a filler that is added as desired.
 本発明の製造方法における工程(a)においては、シランマスターバッチ(Dx)とシラノール縮合触媒(e1)又は触媒マスターバッチ(Ex)とを溶融混合する工程(a3)を行う。
 工程(a3)において、工程(a2)で調製した触媒マスターバッチ(Ex)を用い、工程(a2)を行わない場合はシラノール縮合触媒(e1)を用いる。
In the process (a) in the manufacturing method of this invention, the process (a3) which melt-mixes a silane masterbatch (Dx), a silanol condensation catalyst (e1), or a catalyst masterbatch (Ex) is performed.
In the step (a3), the catalyst master batch (Ex) prepared in the step (a2) is used, and when the step (a2) is not performed, the silanol condensation catalyst (e1) is used.
 工程(a3)においては、シランマスターバッチ(Dx)と触媒マスターバッチ(Ex)等とを加熱しながら溶融混練する。この溶融混練は、DSC等で融点が測定できない樹脂成分(A)、例えばエラストマーもあるが、少なくとも樹脂成分(A)及び有機過酸化物(P)のいずれかが溶融する温度で混練する。キャリヤ樹脂(e2)はシラノール縮合触媒(e2)を分散させるために溶融させるのが好ましい。なお、混練時間等の混練条件は適宜設定することができる。溶融混練方法は工程(a1)の混練方法と同様の方法で行うことができる。 In step (a3), the silane master batch (Dx), the catalyst master batch (Ex), and the like are melt-kneaded while heating. In this melt-kneading, there is a resin component (A) whose melting point cannot be measured by DSC or the like, for example, an elastomer, but kneading is performed at a temperature at which at least one of the resin component (A) and the organic peroxide (P) is melted. The carrier resin (e2) is preferably melted to disperse the silanol condensation catalyst (e2). The kneading conditions such as kneading time can be set as appropriate. The melt-kneading method can be performed by the same method as the kneading method in the step (a1).
 このようにして、少なくとも2種の架橋方法の異なるシラン架橋性樹脂を含有する耐熱性シラン架橋性樹脂組成物(F)が調製される。この耐熱性シラン架橋性樹脂組成物(F)は、工程(a)によって調製される組成物であって、樹脂成分(A)、シランカップリング剤予備混合無機フィラー(D)、好ましくは臭素系難燃剤(h1)を原料成分として含む、シランマスターバッチ(Dx)とシラノール縮合触媒(e1)又は触媒マスターバッチ(Ex)との混和物と考えられる。 Thus, a heat-resistant silane crosslinkable resin composition (F) containing at least two different silane crosslinkable resins with different crosslinking methods is prepared. This heat-resistant silane crosslinkable resin composition (F) is a composition prepared by the step (a), and is a resin component (A), a silane coupling agent premixed inorganic filler (D), preferably bromine It is considered as a mixture of the silane masterbatch (Dx) and the silanol condensation catalyst (e1) or the catalyst masterbatch (Ex) containing the flame retardant (h1) as a raw material component.
 本発明の製造方法においては、次いで、耐熱性シラン架橋性樹脂組成物(F)を成形する工程(b)を行い、成形物を得る。成形方法は、耐熱性シラン架橋性樹脂組成物(F)を成形できればよく、本発明の耐熱性製品の形態に応じて、適宜に成形方法及び成形条件が選択される。例えば、本発明の耐熱性製品が電線又は光ファイバケーブルである場合には、押出成形等が選択される。 In the production method of the present invention, the step (b) of molding the heat-resistant silane crosslinkable resin composition (F) is then performed to obtain a molded product. The molding method only needs to mold the heat-resistant silane crosslinkable resin composition (F), and the molding method and molding conditions are appropriately selected according to the form of the heat-resistant product of the present invention. For example, when the heat-resistant product of the present invention is an electric wire or an optical fiber cable, extrusion molding or the like is selected.
 この工程(b)は、シランマスターバッチ(Dx)及び触媒マスターバッチ(Ex)等の混合と同時に又は連続して行うことができる。例えば、シランマスターバッチ(Dx)と触媒マスターバッチ(Ex)とを被覆装置内で溶融混練(工程(a))し、次いで例えば押出し電線やファイバに被覆して所望の形状に成形(工程(b))する一連の工程を採用できる。 This step (b) can be performed simultaneously or continuously with the mixing of the silane masterbatch (Dx) and the catalyst masterbatch (Ex). For example, a silane masterbatch (Dx) and a catalyst masterbatch (Ex) are melt-kneaded in a coating apparatus (step (a)), and then covered with, for example, an extruded wire or fiber and formed into a desired shape (step (b) )) Can be adopted.
 このようにして、未架橋の耐熱性シラン架橋性樹脂組成物(F)の成形物が得られる。 In this way, a molded product of an uncrosslinked heat-resistant silane crosslinkable resin composition (F) is obtained.
 本発明の製造方法においては、次いで、工程(b)で得られた成形物(未架橋体)を水と接触させて架橋させる工程(c)を行う。この工程(c)においては、成形物を水と接触させることにより、加水分解性シランカップリング剤の加水分解性の基を加水分解してシラノールとし、樹脂中に存在するシラノール縮合触媒(e2)により、シラノールの水酸基同士が縮合して架橋反応が起こり、耐熱性シラン架橋性樹脂組成物(F)が架橋した耐熱性シラン架橋樹脂成形体を得る。この工程(c)の処理自体は通常の方法によって行うことができる。成形物に水分を接触させることで、加水分解性シランカップリング剤の加水分解しうる基が加水分解し、加水分解性シランカップリング剤同士が縮合し、架橋構造を形成する。 In the production method of the present invention, the step (c) is then performed in which the molded product (uncrosslinked product) obtained in the step (b) is brought into contact with water to be crosslinked. In this step (c), the hydrolyzable group of the hydrolyzable silane coupling agent is hydrolyzed into silanol by bringing the molded product into contact with water, and the silanol condensation catalyst (e2) present in the resin. As a result, the hydroxyl groups of silanol are condensed to each other to cause a crosslinking reaction, thereby obtaining a heat-resistant silane-crosslinked resin molded body in which the heat-resistant silane-crosslinkable resin composition (F) is crosslinked. The process itself of this process (c) can be performed by a normal method. By bringing moisture into contact with the molded product, the hydrolyzable group of the hydrolyzable silane coupling agent is hydrolyzed, and the hydrolyzable silane coupling agents are condensed to form a crosslinked structure.
 加水分解性シランカップリング剤同士の縮合は、常温で保管するだけで進行するが、架橋をさらに加速させるために、水分と接触させる際に、温水への浸水、湿熱槽への投入、高温の水蒸気への暴露等が挙げられる。また、その際に水分を内部に浸透させるために圧力をかけてもよい。 Condensation between hydrolyzable silane coupling agents proceeds only by storage at room temperature, but in order to further accelerate the cross-linking, when contacting with moisture, water is immersed in warm water, put into a wet heat tank, For example, exposure to water vapor. In this case, pressure may be applied to allow moisture to penetrate inside.
 このようにして、本発明の製造方法が実施され、耐熱性シラン架橋性樹脂組成物(F)から耐熱性シラン架橋樹脂成形体が製造される。したがって、この発明の耐熱性シラン架橋樹脂成形体は、工程(a)、所望により工程(b)及び工程(c)を行うことによって得られる成形体である。 Thus, the production method of the present invention is carried out, and a heat-resistant silane cross-linked resin molded product is produced from the heat-resistant silane cross-linkable resin composition (F). Therefore, the heat-resistant silane cross-linked resin molded product of the present invention is a molded product obtained by performing the step (a) and, if desired, the step (b) and the step (c).
 本発明の製造方法について、反応機構の詳細についてはまだ定かではないが、以下のように考えられる。
 すなわち、樹脂成分(A)は、有機過酸化物(P)成分の存在下、シランカップリング剤予備混合無機フィラー(D)と共に、有機過酸化物(P)の分解温度以上で加熱混練されると、有機過酸化物(P)の分解により発生したラジカルによって、加水分解性シランカップリング剤でグラフト化される。これにより、樹脂成分(A)同士が結合(架橋)し、また樹脂成分(A)とシランカップリング剤予備混合無機フィラー(D)とが結合する。
The details of the reaction mechanism of the production method of the present invention are not yet clear, but are considered as follows.
That is, the resin component (A) is heated and kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide (P) together with the silane coupling agent premixed inorganic filler (D) in the presence of the organic peroxide (P) component. And grafted with a hydrolyzable silane coupling agent by radicals generated by the decomposition of the organic peroxide (P). Thereby, resin component (A) couple | bonds together (bridge | crosslinking), and a resin component (A) and a silane coupling agent premixed inorganic filler (D) couple | bond together.
 また、これら反応が生じる理由はまだ定かではないが次のように推定される。 Also, the reason why these reactions occur is not clear yet, but is estimated as follows.
 すなわち、樹脂成分(A)と混練り前及び/又は混練り時に、加水分解性シランカップリング剤を、その揮発を抑える程度に、無機フィラーに結合させたシランカップリング剤予備混合無機フィラー(D)を用いることにより、混練り時の加水分解性シランカップリング剤の揮発を抑えると共に、無機フィラーに対して強い結合で結びつく加水分解性シランカップリング剤と弱い結合で結びつく加水分解性シランカップリング剤を形成出来る。
 このようなシランカップリング剤予備混合無機フィラー(D)を有機過酸化物(P)の存在下で樹脂成分(A)と共に有機過酸化物(P)の分解温度以上で混練りを行うと、シランカップリング剤予備混合無機フィラー(D)の加水分解性シランカップリング剤のうち無機フィラー(C)と強い結合を有する加水分解性シランカップリング剤は、その架橋基であるエチレン性不飽和基等が樹脂成分(A)の架橋部位とグラフト反応、特に、1つの無機フィラー(C)粒子の表面に複数の加水分解性シランカップリング剤が強い結合を介して存在した場合、この無機フィラー(C)粒子を介して樹脂成分(A)のポリマー分子が複数結合することになり、この無機フィラーでの架橋ネットワークが広がると考える。
That is, a silane coupling agent premixed inorganic filler (D) in which a hydrolyzable silane coupling agent is bonded to an inorganic filler to such an extent that volatilization is suppressed before and / or during kneading with the resin component (A). ) Suppresses volatilization of the hydrolyzable silane coupling agent during kneading, and hydrolyzable silane coupling that binds to the inorganic filler with a strong bond and a weak bond. An agent can be formed.
When such a silane coupling agent premixed inorganic filler (D) is kneaded with the resin component (A) in the presence of the organic peroxide (P) above the decomposition temperature of the organic peroxide (P), Among hydrolyzable silane coupling agents of the silane coupling agent premixed inorganic filler (D), the hydrolyzable silane coupling agent having a strong bond with the inorganic filler (C) is an ethylenically unsaturated group which is a cross-linking group. When a plurality of hydrolyzable silane coupling agents are present on the surface of one inorganic filler (C) particle through a strong bond, such as the crosslinking site of the resin component (A) and the graft reaction, C) It is considered that a plurality of polymer molecules of the resin component (A) are bonded through the particles, and a crosslinked network with the inorganic filler is expanded.
 一方、シランカップリング剤予備混合無機フィラー(D)の加水分解性シランカップリング剤のうち無機フィラー(C)と弱い結合を有する加水分解性シランカップリング剤は、無機フィラー(C)の表面から離脱して、加水分解性シランカップリング剤の架橋基であるエチレン性不飽和基等が、樹脂成分(A)の有機過酸化物(P)の分解で生じたラジカルによる水素ラジカル引き抜きで生じた樹脂ラジカルと反応してグラフト反応が起こる。このようにして生じたグラフト部分の加水分解性シランカップリング剤は、その後シラノール縮合触媒と混合され、水分と接触することにより、縮合反応により架橋反応が生じると考える。 On the other hand, among the hydrolyzable silane coupling agents of the silane coupling agent premixed inorganic filler (D), the hydrolyzable silane coupling agent having a weak bond with the inorganic filler (C) is from the surface of the inorganic filler (C). The ethylenically unsaturated group, which is a crosslinkable group of the hydrolyzable silane coupling agent, was released by hydrogen radical abstraction by radicals generated by decomposition of the organic peroxide (P) of the resin component (A). A graft reaction occurs by reacting with a resin radical. It is considered that the hydrolyzable silane coupling agent in the graft portion thus produced is then mixed with a silanol condensation catalyst and brought into contact with moisture to cause a crosslinking reaction by a condensation reaction.
 なお、上記の無機フィラーと強い結合を有する加水分解性シランカップリング剤の場合は、このシラノール縮合触媒による水存在下での縮合反応で、無機フィラーの表面の水酸基を共有結合による化学結合した加水分解性シランカップリング剤同士も縮合反応して、さらに架橋のネットワークが広がる。 In the case of a hydrolyzable silane coupling agent having a strong bond with the above-mentioned inorganic filler, a hydrolysis reaction in which a hydroxyl group on the surface of the inorganic filler is chemically bonded by a covalent bond by a condensation reaction in the presence of water by this silanol condensation catalyst. Decomposable silane coupling agents also undergo a condensation reaction to further expand the cross-linking network.
 特に、本発明では、この工程(c)における、水存在下でのシラノール縮合触媒を使用した縮合による架橋反応を、成形体を形成した後に、行うことにより、従来の最終架橋反応後に成形体を形成する方法と比較して、成形体形成までの工程での作業性に優れるとともに、1つの無機フィラー粒子表面に複数の加水分解性シランカップリング剤を複数結合でき、従来以上に高い耐熱性、例えば、後述する380℃でのハンダ耐熱性を得ることが可能となると共に、高い機械強度、絶縁抵抗及び難燃性を得ることができる。 In particular, in the present invention, in this step (c), the cross-linking reaction by condensation using a silanol condensation catalyst in the presence of water is performed after forming the formed body, whereby the formed body is obtained after the conventional final cross-linking reaction. Compared to the method of forming, it is excellent in workability in the process up to forming the molded body, and can bind a plurality of hydrolyzable silane coupling agents on the surface of one inorganic filler particle, and has higher heat resistance than before, For example, it becomes possible to obtain solder heat resistance at 380 ° C., which will be described later, and to obtain high mechanical strength, insulation resistance and flame retardancy.
 このように無機フィラー(C)に対して強い結合で結合した加水分解性シランカップリング剤は高い機械強度、絶縁抵抗及び難燃性に寄与し、また無機フィラー(C)に対して弱い結合で結合した加水分解性シランカップリング剤は架橋度の向上に寄与する。 Thus, the hydrolyzable silane coupling agent bonded to the inorganic filler (C) with a strong bond contributes to high mechanical strength, insulation resistance and flame retardancy, and has a weak bond to the inorganic filler (C). The bonded hydrolyzable silane coupling agent contributes to the improvement of the degree of crosslinking.
 無機フィラー(C)として、予めシランカップリング剤又は他の表面処理剤で少ししか表面処理していない表面処理無機フィラーを用いると、予め処理されたシランカップリング剤又は後添加の加水分解性シランカップリング剤(q)が強く結合したシランカップリング剤予備混合無機フィラー(D)が多く形成され、高い機械特性(例えば機械強度)、絶縁抵抗及び難燃性の成形体を得ることが出来る。一方で、無機フィラー(C)として、予めシランカップリング剤又は他の表面処理剤で多く表面処理された表面処理無機フィラーを用いると、後に添加される加水分解性シランカップリング剤が弱く結合したシランカップリング剤予備混合無機フィラー(D)が多く形成され、機械強度は大きく向上しないものの、柔軟性等の優れた成形体を得ることが出来る。また、加水分解性シランカップリング剤が表面処理無機フィラー又は無機フィラー(C)と弱く結合したシランカップリング剤予備混合無機フィラー(D)が多く形成されると高い架橋度の成形体を得ることが出来、また加水分解性シランカップリング剤が弱く結合したシランカップリング剤予備混合無機フィラー(D)の形成量を少なく制御することにより、架橋度は下がり、マテリアルリサイクル可能な材料を得ることが可能となる。 As the inorganic filler (C), when a surface-treated inorganic filler that has been slightly surface-treated with a silane coupling agent or other surface treatment agent in advance is used, a pre-treated silane coupling agent or a post-added hydrolyzable silane A large amount of the silane coupling agent premixed inorganic filler (D) to which the coupling agent (q) is strongly bonded is formed, and a molded article having high mechanical properties (for example, mechanical strength), insulation resistance and flame retardancy can be obtained. On the other hand, when a surface-treated inorganic filler that has been surface treated in advance with a silane coupling agent or other surface treatment agent is used as the inorganic filler (C), the hydrolyzable silane coupling agent added later is weakly bonded. Although a large amount of the silane coupling agent premixed inorganic filler (D) is formed and the mechanical strength is not greatly improved, a molded article having excellent flexibility and the like can be obtained. Further, when a large amount of the silane coupling agent premixed inorganic filler (D) in which the hydrolyzable silane coupling agent is weakly bonded to the surface-treated inorganic filler or inorganic filler (C), a molded article having a high degree of crosslinking is obtained. In addition, by controlling the formation amount of the silane coupling agent premixed inorganic filler (D) to which the hydrolyzable silane coupling agent is weakly bonded, the degree of cross-linking is lowered and a material that can be recycled can be obtained. It becomes possible.
 このような作用を奏するシランカップリング剤予備混合無機フィラー(D)と臭素系難燃剤(h1)とを併用すると、シランカップリング剤予備混合無機フィラー(D)の使用量を低減させても難燃性に優れる。このように難燃性に優れる理由はまだ定かではないが次のように考えられる。すなわち、臭素系難燃剤(h1)は電気陰性度の高い臭素を多量に含んでおり極性が高い。そのため樹脂成分(A)とシランカップリング剤予備混合無機フィラー(D)との間の強固なネットワークに更に加水分解性シランカップリング剤(q)を介して臭素系難燃剤(h1)も取り込まれることにより、相互作用が高まり難燃性が向上したものと考えられる。 When the silane coupling agent premixed inorganic filler (D) and the brominated flame retardant (h1) exhibiting such actions are used in combination, it is difficult to reduce the amount of the silane coupling agent premixed inorganic filler (D) used. Excellent flammability. The reason why such flame retardancy is excellent is not yet clear, but is considered as follows. That is, the brominated flame retardant (h1) contains a large amount of bromine having a high electronegativity and has a high polarity. Therefore, the brominated flame retardant (h1) is further incorporated into the strong network between the resin component (A) and the silane coupling agent premixed inorganic filler (D) via the hydrolyzable silane coupling agent (q). Therefore, it is considered that the interaction is increased and the flame retardancy is improved.
 本発明の製造方法は、耐熱性が要求される製品(半製品、部品、部材も含む。)、強度が求められる製品、ゴム材料等の製品の構成部品またはその部材の製造に適用することができる。このような製品として、例えば、耐熱性難燃絶縁電線等の電線、耐熱難燃ケーブル被覆材料、ゴム代替電線・ケーブル材料、その他耐熱難燃電線部品、難燃耐熱シート、難燃耐熱フィルム等が挙げられる。また、電源プラグ、コネクター、スリーブ、ボックス、テープ基材、チューブ、シート、パッキン、クッション材、防震材、電気、電子機器の内部及び外部配線に使用される配線材、特に電線や光ケーブルの製造に適用することができる。本発明の製造方法は、上述の製品の構成部品等の中でも、特に電線及び光ケーブルの絶縁体、シース等の製造に好適に適用され、これらの被覆として形成することができる。 The manufacturing method of the present invention can be applied to the manufacture of components (including semi-finished products, parts, and members) that require heat resistance, products that require strength, components of products such as rubber materials, or members thereof. it can. Examples of such products include electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-resistant cable coating materials, rubber substitute electric wires and cable materials, other heat-resistant and flame-resistant electric wire components, flame-resistant and heat-resistant sheets, and flame-resistant and heat-resistant films. Can be mentioned. Also for the production of power plugs, connectors, sleeves, boxes, tape substrates, tubes, sheets, packing materials, cushioning materials, anti-vibration materials, electrical and electronic equipment, and wiring materials, especially electric wires and optical cables. Can be applied. The manufacturing method of the present invention is particularly suitably applied to the manufacture of the insulators and sheaths of electric wires and optical cables among the components of the above-described products, and can be formed as a covering thereof.
 本発明の耐熱性製品は、耐熱性シラン架橋樹脂成形体を含む、上述の各種耐熱性製品であり、耐熱性シラン架橋樹脂成形体を絶縁体又はシース等の被覆として含む耐熱製品、例えば、電線、光ケーブルが挙げられる。
 絶縁体、シース等は、それらの形状に、押出し被覆装置内で溶融混練しながら被覆する等により成形することができる。このような絶縁体、シース等の成形体は、無機フィラーを大量に加えた高耐熱性の高温溶融しない架橋組成物を電子線架橋機等の特殊な機械を使用することなく汎用の押出被覆装置を用いて、導体の周囲に、又は抗張力繊維を縦添えもしくは撚り合わせた導体の周囲に押出被覆することにより、成形することができる。例えば、導体としては軟銅の単線又は撚線等の任意のものを用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いてもよい。導体の周りに形成される絶縁層(本発明の耐熱性シラン架橋樹脂成形体からなる被覆層)の肉厚は特に限定しないが通常0.15~8mm程度である。
The heat-resistant product of the present invention is the above-mentioned various heat-resistant products including a heat-resistant silane cross-linked resin molded article, and a heat-resistant product containing the heat-resistant silane cross-linked resin molded article as a coating for an insulator or a sheath, for example, an electric wire And optical cables.
Insulators, sheaths, and the like can be formed by coating them in such a shape while melt-kneading them in an extrusion coating apparatus. Such a molded body such as an insulator or a sheath is a general-purpose extrusion coating apparatus that uses a large amount of an inorganic filler and a highly heat-resistant and non-melting crosslinked composition without using a special machine such as an electron beam crosslinking machine. Can be formed by extrusion coating around the conductor, or around the conductor that has been stretched or twisted with tensile strength fibers. For example, any conductor such as an annealed copper single wire or stranded wire can be used as the conductor. In addition to the bare wire, the conductor may be tin-plated or an enamel-covered insulating layer. The thickness of the insulating layer formed around the conductor (the coating layer made of the heat-resistant silane crosslinked resin molding of the present invention) is not particularly limited, but is usually about 0.15 to 8 mm.
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、表1~表4において、各実施例及び比較例における数値は特に断らない限り質量部を表し、成分が無含有であることを明確に示す場合に「0」で表示しているが、空白も同様には該当する成分が無含有であることを表す。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these.
In Tables 1 to 4, the numerical values in Examples and Comparative Examples represent parts by mass unless otherwise specified, and are indicated by “0” when clearly indicating that the components are not contained. A blank also indicates that the corresponding component is not contained.
 表1中に示す各化合物としては下記のものを使用した。
<樹脂成分(A)及びキャリヤ樹脂(e2)>
 (i)として、EVA1:EV360、三井・デュポンケミカル社製のエチレン-酢酸ビニル共重合樹脂「エバフレックス」(商品名)、VA含有量25質量%
 EVA2:EV180 三井・デュポンケミカル社製のエチレン-酢酸ビニル共重合樹脂「エバフレックス」(商品名)、VA含有量33質量%
 (ii)として、LLDPE:「エボリューSP0540」(商品名)、プライムポリマー社製のLLDPE樹脂
 (iii)として、ランダムポリプロピレン:「PB222A」(商品名)、サンアロマー社製のランダムPP樹脂
 (v)スチレン系エラストマーとして、「セプトン4077」(商品名)、クラレ社製
 プロセスオイルとして「ダイアナプロセスオイルPW90」(商品名)、出光興産製
 シラングラフトポリエチレンとして、「XP650」(商品名)、ヒュンダイ社製のシラングラフトポリエチレン
The following compounds were used as the compounds shown in Table 1.
<Resin component (A) and carrier resin (e2)>
As (i), EVA1: EV360, ethylene-vinyl acetate copolymer resin “Evaflex” (trade name) manufactured by Mitsui DuPont Chemical Co., Ltd., VA content 25% by mass
EVA2: EV180 Ethylene-vinyl acetate copolymer resin “Evaflex” (trade name) manufactured by Mitsui DuPont Chemical Co., Ltd., VA content 33% by mass
(Ii) LLDPE: “Evolue SP0540” (trade name), LLDPE resin manufactured by Prime Polymer Co. (iii) Random polypropylene: “PB222A” (trade name), random PP resin manufactured by Sun Allomer (v) Styrene "Septon 4077" (trade name) as a base elastomer, "Diana Process Oil PW90" (trade name) as a process oil made by Kuraray, "XP650" (trade name) as a silane graft polyethylene made by Idemitsu Kosan, manufactured by Hyundai Silane grafted polyethylene
<表面処理無機フィラー(B)>
 ステアリン酸で予め表面処理された水酸化マグネシウム:「キスマ5AL」(商品名)、協和化学工業製
<加水分解性シランカップリング剤(q)>
 「KBM1003」(商品名)、信越化学工業社製のビニルトリメトキシシラン
<有機過酸化物(P)>
 ジクミルパーオキサイド(DCP、分解温度151℃)、日本化薬社製
<シラノール縮合触媒(e1)>
 ジオクチルスズラウリレート:「アデカスタブOT-1」(商品名)、ADEKA製のシラノール縮合触媒
<臭素系難燃剤(h1)>
 「サイテックス8010」(商品名)、1,2-ビス(ブロモフェニル)エタン、アルベマール社製
<Surface treatment inorganic filler (B)>
Magnesium hydroxide pretreated with stearic acid: “Kisuma 5AL” (trade name), manufactured by Kyowa Chemical Industry Co., Ltd. <hydrolyzable silane coupling agent (q)>
“KBM1003” (trade name), vinyltrimethoxysilane <organic peroxide (P)> manufactured by Shin-Etsu Chemical Co., Ltd.
Dicumyl peroxide (DCP, decomposition temperature 151 ° C.), manufactured by Nippon Kayaku Co., Ltd. <silanol condensation catalyst (e1)>
Dioctyltin laurate: “ADK STAB OT-1” (trade name), ADEKA silanol condensation catalyst <brominated flame retardant (h1)>
“Cytex 8010” (trade name), 1,2-bis (bromophenyl) ethane, manufactured by Albemarle
<その他>
 (h3)三酸化アンチモンとして、豊田通商社製の三酸化アンチモン
 架橋助剤として、「オグモントT200」(商品名)、新中村化学工業社製、又は、トリメチロールプロパントリメタクリレート
 老化防止剤として、「イルガノックス1010」(商品名)、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート]、BASF社製
 滑剤として、「NS-M」(商品名)、ステアリン酸マグネシウム、日本油脂製、又は、「X21-3043」(商品名)、ポリオルガノシロキサン、信越化学工業社製
<Others>
(H3) As antimony trioxide, as an antimony trioxide crosslinking aid manufactured by Toyota Tsusho Corporation, “Ogmont T200” (trade name), manufactured by Shin-Nakamura Chemical Co., Ltd., or trimethylolpropane trimethacrylate as an anti-aging agent, “Irganox 1010” (trade name), pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], manufactured by BASF as a lubricant, “NS-M” (trade name), Magnesium stearate, manufactured by Nippon Oil & Fats, or “X21-3043” (trade name), polyorganosiloxane, manufactured by Shin-Etsu Chemical Co., Ltd.
(実施例1)
 まず、表1の「シランMB(D1)」欄に示す、無機フィラー(B)、加水分解性シランカップリング剤(q)及び有機過酸化物(P)を、表1に示す配合量で、東洋精機製10Lヘンシェルミキサーに投入して室温で10分混合し、有機過酸化物(P)及びシランカップリング剤予備混合無機フィラー(D)を含む粉体混合物を得た。
 次に、この粉体混合物と、表1の「シランMB(D1)」欄に示す、樹脂成分(A)、臭素系難燃剤(h1)、三酸化アンチモン(h3)及び滑材を日本ロール製2Lバンバリーミキサー内に投入し、そのミキサーで約12分混練り後、材料排出温度180~190℃で排出し、シランマスターバッチ(D1)を得た(工程(a1))。なお、排出前に、有機過酸化物(P)の分解温度以上の温度、具体的には180~190℃で5分間混練した。
 なお、参考までに、このときの、無機フィラー(C)100質量部に対する加水分解性シランカップリング剤(q)の配合量(質量部)を、表1の「シランMB(D1)」欄に示した。
Example 1
First, the inorganic filler (B), hydrolyzable silane coupling agent (q) and organic peroxide (P) shown in the “Silane MB (D1)” column of Table 1 are blended in the amounts shown in Table 1, The mixture was put into a Toyo Seiki 10 L Henschel mixer and mixed at room temperature for 10 minutes to obtain a powder mixture containing an organic peroxide (P) and a silane coupling agent premixed inorganic filler (D).
Next, this powder mixture, resin component (A), brominated flame retardant (h1), antimony trioxide (h3) and lubricant shown in the “Silane MB (D1)” column of Table 1 are manufactured by Nippon Roll. The mixture was put into a 2 L Banbury mixer, kneaded in the mixer for about 12 minutes, and then discharged at a material discharge temperature of 180 to 190 ° C. to obtain a silane master batch (D1) (step (a1)). Prior to discharge, the mixture was kneaded at a temperature not lower than the decomposition temperature of the organic peroxide (P), specifically 180 to 190 ° C. for 5 minutes.
For reference, the blending amount (part by mass) of the hydrolyzable silane coupling agent (q) with respect to 100 parts by mass of the inorganic filler (C) at this time is shown in the “Silane MB (D1)” column of Table 1. Indicated.
 一方、表1の「触媒MB(E1)」欄に示す、キャリヤ樹脂(e2)、シラノール縮合触媒(e1)及び老化防止剤をバンバリーミキサーで120~160℃で別途混合し、材料排出温度120~180℃で溶融混合して、触媒マスターバッチ(E1)を得た(工程(a2))。 On the other hand, the carrier resin (e2), the silanol condensation catalyst (e1) and the anti-aging agent shown in the “Catalyst MB (E1)” column of Table 1 are separately mixed with a Banbury mixer at 120 to 160 ° C., and a material discharge temperature of 120 to The mixture was melted and mixed at 180 ° C. to obtain a catalyst master batch (E1) (step (a2)).
 次いで、シランマスターバッチ(D1)と触媒マスターバッチ(E1)を168.2:24.050の質量割合で、ドライブレンドしてL/D=24の40mm押出機(圧縮部スクリュー温度170℃、ヘッド温度180℃)に導入し、180℃で溶融混合しつつ、21/0.18TA導体の外側に肉厚0.84mmで被覆し、外径2.63mmの電線を得た(工程(a3)及び工程(b))。
 この電線を温度60℃湿度95%の雰囲気に48時間放置した(工程(c))。
 このようにして耐熱性シラン架橋樹脂成形体からなる被覆(絶縁層)を有する絶縁電線を製造した。
Next, the silane masterbatch (D1) and the catalyst masterbatch (E1) were dry blended at a mass ratio of 168.2: 24.050, and an L / D = 24 40 mm extruder (compressor screw temperature 170 ° C., head) The temperature was introduced at a temperature of 180 ° C. and melted and mixed at 180 ° C., and the outside of the 21 / 0.18TA conductor was coated with a wall thickness of 0.84 mm to obtain an electric wire having an outer diameter of 2.63 mm (step (a3) and Step (b)).
This electric wire was left in an atmosphere of a temperature of 60 ° C. and a humidity of 95% for 48 hours (step (c)).
In this way, an insulated wire having a coating (insulating layer) made of a heat-resistant silane cross-linked resin molded article was produced.
 実施例1で用いた各成分の配合比(混合比)、すなわち耐熱性シラン架橋樹脂成形体の原料組成比を、「耐熱性シラン架橋性樹脂組成物(F)」として、表1に示す。 Table 1 shows the blending ratio (mixing ratio) of each component used in Example 1, that is, the raw material composition ratio of the heat-resistant silane cross-linked resin molded article, as “heat-resistant silane cross-linkable resin composition (F)”.
(実施例2~15、比較例1及び2)
 表1~表4に示す配合で実施例1と同様にシランマスターバッチ(Dx)と触媒マスターバッチ(Ex)をそれぞれ作製し(工程(a1)及び工程(a2))、それぞれの配合比率を表1~表4に示す質量割合にした以外は実施例1と同様にして21/0.18TA導体の外側に肉厚0.84mmで被覆し、外径2.63mmの電線を得た(工程(a3)及び工程(b))。その電線を温度60℃湿度95%の雰囲気に48時間放置して(工程(c))、耐熱性シラン架橋樹脂成形体からなる被覆(絶縁層)を有する絶縁電線を製造した。
(Examples 2 to 15, Comparative Examples 1 and 2)
A silane masterbatch (Dx) and a catalyst masterbatch (Ex) were prepared in the same manner as in Example 1 with the formulations shown in Tables 1 to 4 (step (a1) and step (a2)), and the respective blending ratios are shown. Except for the mass ratios shown in Tables 1 to 4, the outside of the 21 / 0.18 TA conductor was coated with a thickness of 0.84 mm in the same manner as in Example 1 to obtain an electric wire with an outer diameter of 2.63 mm (step ( a3) and step (b)). The electric wire was left in an atmosphere of temperature 60 ° C. and humidity 95% for 48 hours (step (c)) to produce an insulated electric wire having a coating (insulating layer) made of a heat-resistant silane crosslinked resin molded product.
 なお、実施例2は、臭素系難燃剤(h1)及び三酸化アンチモン(h3)を工程(a2)で溶融混練した。実施例13は、臭素系難燃剤(h1)を工程(a2)で溶融混練し、三酸化アンチモン(h3)を工程(a1)で溶融混練した。
 また、実施例11及び12は、臭素系難燃剤(h1)を工程(a1)及び工程(a2)の両工程において溶融混練し、三酸化アンチモン(h3)を工程(a2)において溶融混練した。
In Example 2, brominated flame retardant (h1) and antimony trioxide (h3) were melt-kneaded in step (a2). In Example 13, the brominated flame retardant (h1) was melt-kneaded in the step (a2), and antimony trioxide (h3) was melt-kneaded in the step (a1).
In Examples 11 and 12, brominated flame retardant (h1) was melt-kneaded in both steps (a1) and (a2), and antimony trioxide (h3) was melt-kneaded in step (a2).
(実施例16~20)
 表3に示す配合で、無機フィラー(C)、加水分解性シランカップリング剤(q)、有機過酸化物(P)、樹脂成分(A)、臭素系難燃剤(h1)、三酸化アンチモン(h3)及び滑材を日本ロール製2Lバンバリーミキサー内に投入し、その後ミキサーで約12分混練り後、材料排出温度180~190℃で排出し、シランマスターバッチ(D16~20)を得た(工程(a1))。なお、排出前に、有機過酸化物(P)の分解温度以上の温度、具体的には180~190℃で5分間混練した。
 表3に示す配合で実施例1と同様に触媒マスターバッチ(E16~20)を作製した。
 シランマスターバッチ(D1)及び触媒マスターバッチ(E1)に代えてシランマスターバッチ(D16~20)及び触媒マスターバッチ(E16~20)をそれぞれ表3に示す質量割合で用いた以外は実施例1と同様にして、21/0.18TA導体の外側に肉厚0.84mmで被覆し、外径2.63mmの電線を得た(工程(a3)及び工程(b))。その電線を温度60℃湿度95%の雰囲気に48時間放置して(工程(c))、耐熱性シラン架橋樹脂成形体からなる被覆(絶縁層)を有する絶縁電線を製造した。
(Examples 16 to 20)
In the formulation shown in Table 3, inorganic filler (C), hydrolyzable silane coupling agent (q), organic peroxide (P), resin component (A), brominated flame retardant (h1), antimony trioxide ( h3) and the lubricant were put into a 2 L Banbury mixer made by Nippon Roll, then kneaded for about 12 minutes with the mixer, and then discharged at a material discharge temperature of 180 to 190 ° C. to obtain a silane master batch (D16 to 20) ( Step (a1)). Prior to discharge, the mixture was kneaded at a temperature not lower than the decomposition temperature of the organic peroxide (P), specifically 180 to 190 ° C. for 5 minutes.
Catalyst master batches (E16 to 20) were prepared in the same manner as in Example 1 with the formulation shown in Table 3.
Example 1 except that the silane master batch (D16-20) and the catalyst master batch (E16-20) were used in the mass ratios shown in Table 3 instead of the silane master batch (D1) and the catalyst master batch (E1). Similarly, the outside of the 21 / 0.18 TA conductor was coated with a thickness of 0.84 mm to obtain an electric wire with an outer diameter of 2.63 mm (step (a3) and step (b)). The electric wire was left in an atmosphere of temperature 60 ° C. and humidity 95% for 48 hours (step (c)) to produce an insulated electric wire having a coating (insulating layer) made of a heat-resistant silane crosslinked resin molded product.
(比較例3~6)
 比較例3~6は、本発明とは異なるシラン架橋方式でシラン架橋樹脂成形体を製造した。表1~表4において、樹脂成分(A)、シランカップリング剤予備混合無機フィラー(D)及び有機過酸化物(P)を用いる本発明のシラン架橋方式を「シラン架橋1」とし、予めシランカップリング剤がグラフトした樹脂を用いる比較例3~6のシラン架橋方式を「シラン架橋2」とした。
 すなわち、表4の「触媒MB(E23)」欄~「触媒MB(E26)」欄に記載のキャリヤ樹脂(e2)、表面処理無機フィラー(B)、臭素系難燃剤(h1)、三酸化アンチモン(h3)、シラノール縮合触媒(e1)、老化防止剤及び滑剤をバンバリーミキサーで120~180℃で混合し、材料排出温度180~190℃で溶融混合して触媒マスターバッチ(E23)~(E26)を得た。
 次いで、シランマスターバッチ(D23)~(D26)としてシラングラフトポリエチレンと触媒マスターバッチ(E23)~(E26)とを表4に記載の「配合比率」で、ドライブレンドし、L/D=24の40mm押出機(圧縮部スクリュー温度170℃、ヘッド温度180℃)に導入し、180℃で溶融混合しつつ、21/0.18TA導体の外側に肉厚0.84mmで被覆し、外径2.63mmの電線を得た。その電線を温度60℃湿度95%の雰囲気に48時間放置して、絶縁層を有する絶縁電線を製造した。
(Comparative Examples 3 to 6)
In Comparative Examples 3 to 6, silane cross-linked resin molded articles were produced by a silane cross-linking method different from that of the present invention. In Tables 1 to 4, the silane crosslinking method of the present invention using the resin component (A), the silane coupling agent premixed inorganic filler (D) and the organic peroxide (P) is referred to as “silane crosslinking 1”, The silane crosslinking method of Comparative Examples 3 to 6 using a resin grafted with a coupling agent was designated as “silane crosslinking 2”.
That is, carrier resin (e2), surface-treated inorganic filler (B), brominated flame retardant (h1), antimony trioxide described in the “catalyst MB (E23)” column to “catalyst MB (E26)” column of Table 4 (H3) Silanol condensation catalyst (e1), anti-aging agent and lubricant are mixed with a Banbury mixer at 120 to 180 ° C., and melt mixed at a material discharge temperature of 180 to 190 ° C. to obtain catalyst master batches (E23) to (E26). Got.
Next, silane-grafted polyethylene and catalyst master batches (E23) to (E26) were dry blended at the “blending ratio” shown in Table 4 as silane masterbatches (D23) to (D26), and L / D = 24. Introduced into a 40 mm extruder (compressor screw temperature 170 ° C., head temperature 180 ° C.), melted and mixed at 180 ° C., and coated on the outside of the 21 / 0.18 TA conductor with a wall thickness of 0.84 mm. A 63 mm wire was obtained. The electric wire was left in an atmosphere of a temperature of 60 ° C. and a humidity of 95% for 48 hours to produce an insulated wire having an insulating layer.
(参考例)
 参考例として、表4に示される、樹脂成分(A)、表面処理無機フィラー(B)、臭素系難燃剤(h1)、三酸化アンチモン(h3)、架橋助剤、老化防止剤及び滑剤をバンバリーミキサーで120~180℃で混合し、材料排出温度120~180℃で溶融混合して樹脂組成物を得た。
 この樹脂組成物をL/D=24の40mm押出機(圧縮部スクリュー温度170℃、ヘッド温度180℃)に導入し、180℃で溶融混合しつつ、21/0.18TA導体の外側に肉厚0.84mmで被覆し、外径2.63mmの電線を得た。得られた電線の電子線照射(15Mrad)を行い、被覆樹脂層を架橋して、絶縁電線を製造した。
 表4において、参考例の「架橋方式」を「電子線」とした。
(Reference example)
As a reference example, the resin component (A), surface treatment inorganic filler (B), brominated flame retardant (h1), antimony trioxide (h3), crosslinking aid, anti-aging agent and lubricant shown in Table 4 are banbury. The mixture was mixed at 120 to 180 ° C. with a mixer, and melt mixed at a material discharge temperature of 120 to 180 ° C. to obtain a resin composition.
This resin composition was introduced into a 40 mm extruder with L / D = 24 (compressor screw temperature 170 ° C., head temperature 180 ° C.), melted and mixed at 180 ° C., and thickened outside the 21 / 0.18 TA conductor. A wire having an outer diameter of 2.63 mm was obtained by coating with 0.84 mm. The obtained electric wire was subjected to electron beam irradiation (15 Mrad) to crosslink the coating resin layer to produce an insulated electric wire.
In Table 4, the “crosslinking method” of the reference example was “electron beam”.
 製造した各絶縁電線について下記の評価を行った。
(機械特性)
 絶縁電線の機械特性として引張試験を行った。この絶縁電線の引張試験は、UL1581に基づき、標線間25mm、引張速度500mm/分で行い、引張強さ(表1~表4において「TS」と表記する)(MPa)及び破断時伸び(表1~表4において「EL」と表記する)(%)を測定した。引張強さは13.8MPa以上、破断時伸びは300%以上を合格とした。
The following evaluation was performed about each manufactured insulated wire.
(Mechanical properties)
A tensile test was conducted as a mechanical property of the insulated wire. The tensile test of this insulated wire was performed based on UL1581, with a gap between marked lines of 25 mm and a pulling speed of 500 mm / min, tensile strength (indicated as “TS” in Tables 1 to 4) (MPa) and elongation at break ( In Tables 1 to 4, “EL” (%) was measured. The tensile strength was 13.8 MPa or more, and the elongation at break was 300% or more.
(絶縁抵抗)
 絶縁抵抗については、JISC3005に規定される絶縁抵抗の初期値(水中1hr後)を測定した。2500MΩ・km以上を合格とした。
(Insulation resistance)
As for the insulation resistance, the initial value (after 1 hour in water) of the insulation resistance defined in JISC3005 was measured. 2500 MΩ · km or more was regarded as acceptable.
(ハンダ耐熱性)
 絶縁電線の耐熱性試験としてハンダ耐熱性試験を行った。具体的には、絶縁電線の外周にアルミ箔を1層巻き付け、そのうちの長さ3cmの部分を380℃に設定したハンダバスに浸漬し、5秒間そのまま保持した。その後、絶縁電線をハンダバスから引き挙げて、アルミ箔を除いて絶縁電線の外周の溶融の有無及び被覆層内部の発泡の有無を確認した。その結果、被覆層の溶融や発泡等の異常がなければ合格とし、表1~表4において「○」で表記し、被覆層の溶融又は発泡等の異常があった場合を不合格として「×」で表記した。
(Solder heat resistance)
A solder heat resistance test was performed as a heat resistance test of the insulated wires. Specifically, one layer of aluminum foil was wound around the outer periphery of the insulated wire, and a portion of 3 cm in length was immersed in a solder bath set at 380 ° C. and held for 5 seconds. Thereafter, the insulated wire was pulled from the solder bath, and the presence or absence of melting of the outer periphery of the insulated wire and the presence of foaming inside the coating layer were confirmed except for the aluminum foil. As a result, if there is no abnormality such as melting or foaming of the coating layer, the test is accepted. In Tables 1 to 4, “○” is indicated, and if there is an abnormality such as melting or foaming of the coating layer, the test is rejected. ".
(水平難燃試験)
 各絶縁電線について準備した5検体(N=5)それぞれについて、UL1581の Horizontal Flame Testを行い、合格数を示した(合格数/N数)。合格は全数合格「5/5」である。
(Horizontal flame retardant test)
For each of the five specimens (N = 5) prepared for each insulated wire, UL1581 Horizon Flame Test was performed and the number of passing was shown (passing number / N number). All the passes are “5/5”.
(VW-1試験)
 各絶縁電線について準備した5検体(N=5)それぞれについて、UL1581の Vertical Flame Testを行い、合格数を示した(合格数/N数)。合格は全数合格である。このVW-1試験は、試料を垂直に保持してバーナーを当てて燃焼レベルを確認する評価で、水平難燃試験よりもより高い難燃レベルが要求される試験方法である。したがって、このVW-1試験は、過酷試験であって参考までに評価したものであり、必ずしも全数合格しなくてもよい。
(VW-1 test)
Each of the 5 specimens (N = 5) prepared for each insulated wire was subjected to UL1581 Vertical Flame Test to indicate the number of passing (passing number / N number). Pass is all pass. This VW-1 test is an evaluation method in which a combustion level is confirmed by holding a sample vertically and applying a burner, and is a test method that requires a higher flame retardant level than a horizontal flame retardant test. Therefore, this VW-1 test is a severe test and was evaluated for reference, and it is not always necessary to pass all the tests.
(押出外観(電線外観ともいう))
 絶縁電線の押出外観特性として押出外観試験を行った。押出外観は絶縁電線を製造する際に押出外観を観察した。押出外観は、40mm押出機にて線速10mで作製したとき、押出品の外観が良好だったものを「○」、外観がやや悪かったものを「△」、外観が著しく悪かったものを「×」とし、「△」以上を製品レベルとして合格とした。
(Extruded appearance (also called electric wire appearance))
An extrusion appearance test was conducted as an extrusion appearance characteristic of the insulated wire. The extrusion appearance was observed when the insulated wire was manufactured. Extrusion appearance was as follows: “○” when the appearance of the extrudate was good when produced with a 40 mm extruder at a linear speed of 10 m, “△” when the appearance was slightly bad, “×”, and “△” or higher was regarded as a product level.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~表3に示されるように、本発明の製造方法で製造した実施例1~20の絶縁電線は、いずれも、引張強さ、破断時伸び、絶縁抵抗、水平難燃試験及び押出外観、さらにはハンダ耐熱性試験、のいずれも合格していた。すなわち、実施例1~20の絶縁電線は、いずれも、機械特性、絶縁抵抗、難燃性及び外観、さらには耐熱性、に優れていた。
 このように、本発明により、ヘンシェルミキサーやバンバリーミキサーで溶融混合しても加水分解性シランカップリング剤の揮発を抑えることができ、優れた、機械特性、絶縁抵抗及び難燃性を有する耐熱性シラン架橋樹脂成形体を製造できることが分かった。
As shown in Tables 1 to 3, all of the insulated wires of Examples 1 to 20 produced by the production method of the present invention were tensile strength, elongation at break, insulation resistance, horizontal flame test and extrusion appearance. In addition, both the solder heat resistance test passed. That is, all of the insulated wires of Examples 1 to 20 were excellent in mechanical properties, insulation resistance, flame retardancy and appearance, and heat resistance.
Thus, according to the present invention, volatilization of the hydrolyzable silane coupling agent can be suppressed even when melt-mixed with a Henschel mixer or a Banbury mixer, and the heat resistance has excellent mechanical properties, insulation resistance and flame retardancy. It turned out that a silane crosslinked resin molding can be manufactured.
 これに対して、表4に示されるように、樹脂成分(A)としてLLDPE(ii)のみを用いた比較例1では引張強度が不合格であった。また、樹脂成分(A)としてEVA1(i)のみを用いた比較例2では破断時伸びと絶縁抵抗が不合格であった。 In contrast, as shown in Table 4, in Comparative Example 1 using only LLDPE (ii) as the resin component (A), the tensile strength was unacceptable. Moreover, in Comparative Example 2 using only EVA1 (i) as the resin component (A), the elongation at break and the insulation resistance were unacceptable.
 一方、シランカップリング剤予備混合無機フィラー(D)及び有機過酸化物(P)を用いず、シラングラフトポリエチレンを用いた比較例3~6(シラン架橋2)は、いずれも、絶縁抵抗とハンダ耐熱性に劣っていた。
 また、表面処理無機フィラー(B)の配合量を減らし、三酸化アンチモン(h3)の配合量を増やした比較例3は、高価な三酸化アンチモン(h3)を多量に配合するために材料価格が高くなってしまう。
 表面処理無機フィラー(B)の配合量を増やし、三酸化アンチモン(h3)の配合量を減らした比較例4及び5は、共に、材料価格は下がるものの、絶縁抵抗及びハンダ耐熱性に加えて、引張強さにも劣った。
 表面処理無機フィラー(B)の配合量を比較例5よりも増やした比較例6は、絶縁抵抗、引張強さ及びハンダ耐熱性に加えて切断時伸びにも劣った。
On the other hand, Comparative Examples 3 to 6 (Silane cross-linking 2) using silane-grafted polyethylene without using the silane coupling agent premixed inorganic filler (D) and organic peroxide (P) are both insulation resistance and solder. It was inferior in heat resistance.
Moreover, the comparative example 3 which reduced the compounding quantity of the surface treatment inorganic filler (B) and increased the compounding quantity of antimony trioxide (h3) has a material price in order to mix | blend expensive antimony trioxide (h3) in large quantities. It will be high.
In Comparative Examples 4 and 5, in which the blending amount of the surface-treated inorganic filler (B) was increased and the blending amount of antimony trioxide (h3) was decreased, in addition to the insulation resistance and the solder heat resistance, although the material price decreased. Also inferior in tensile strength.
In Comparative Example 6, in which the amount of the surface-treated inorganic filler (B) was increased as compared with Comparative Example 5, in addition to insulation resistance, tensile strength and solder heat resistance, the elongation at break was inferior.
 以上より、本発明によるシラン架橋方式を用いて、特定の樹脂成分(A)を架橋し、シランカップリング剤予備混合無機フィラー(D)と臭素系難燃剤(h1)を適量配合することにより、シラングラフトポリエチレンを用いたシラン架橋方式「シラン架橋2(比較例3~6)」に比べて、引張強さ、伸び及び絶縁抵抗、さらには耐熱性、がより優れた耐熱性シラン架橋樹脂成形体を得ることができる。
 また、本発明のシラン架橋方式「シラン架橋1」を用いることにより、電子線架橋(参考例)に匹敵し、又はこれを凌駕する難燃性等に、より優れた耐熱性シラン架橋樹脂成形体を得ることが出来る。
 更に実施例1~9、11~20のように、樹脂成分(A)全体に対してポリオレフィン共重合体(i)を10~50質量%、エチレン-α-オレフィン共重合体(ii)を20~80質量%配合すると、3000MΩ・km以上の絶縁抵抗値を示し、絶縁抵抗が更に良好となり好ましい。
 加えて、実施例1~6、11~20のように、三酸化アンチモン(h3)を5質量部以上配合すると水平難燃試験及びVW-1試験のいずれも全数合格し、さらに優れた難燃性を発揮し、好ましい。
 また、実施例1~5及び11~20のように、樹脂成分(A)全体に対してポリプロピレン(iii)を0.2~15質量%以上配合すると、電線外観が良好となり好ましい。
 さらに、実施例16~20に示されるように、工程(a)において、予めシランカップリング剤予備混合無機フィラー(D)を準備する工程を省略し、各成分をミキサー内で混合するときに、シランカップリング剤(q)を無機フィラー(C)に吸着させることで、シランカップリング剤予備混合無機フィラー(D)を調製し、その後、有機過酸化物(P)の分解温度以上で上記各成分を混合して、シランマスターバッチ(Dx)を調製することもできる。
From the above, by using the silane crosslinking method according to the present invention, the specific resin component (A) is crosslinked, and by blending an appropriate amount of the silane coupling agent premixed inorganic filler (D) and the brominated flame retardant (h1), A heat-resistant silane-crosslinked resin molded article having superior tensile strength, elongation, insulation resistance, and heat resistance compared to the silane-crosslinking method “silane-crosslinked 2 (Comparative Examples 3 to 6)” using silane-grafted polyethylene. Can be obtained.
Further, by using the silane cross-linking method “silane cross-linking 1” of the present invention, the heat-resistant silane cross-linked resin molded article is more excellent in flame retardancy that is comparable to or surpassing electron beam cross-linking (reference example). Can be obtained.
Further, as in Examples 1 to 9 and 11 to 20, the polyolefin copolymer (i) is 10 to 50% by mass and the ethylene-α-olefin copolymer (ii) is 20% with respect to the entire resin component (A). When blended in an amount of ˜80% by mass, an insulation resistance value of 3000 MΩ · km or more is exhibited, and the insulation resistance is further improved, which is preferable.
In addition, as in Examples 1 to 6 and 11 to 20, when 5 parts by mass or more of antimony trioxide (h3) is blended, both the horizontal flame retardant test and the VW-1 test pass all, and further excellent flame retardant It is preferable because it exhibits its properties.
Further, as in Examples 1 to 5 and 11 to 20, it is preferable to add 0.2 to 15% by mass or more of polypropylene (iii) with respect to the entire resin component (A) because the appearance of the electric wire is good.
Further, as shown in Examples 16 to 20, in the step (a), the step of preparing the silane coupling agent premixed inorganic filler (D) in advance is omitted, and when the respective components are mixed in the mixer, By adsorbing the silane coupling agent (q) to the inorganic filler (C), the silane coupling agent premixed inorganic filler (D) is prepared, and then each of the above-described temperatures above the decomposition temperature of the organic peroxide (P). A silane masterbatch (Dx) can also be prepared by mixing the components.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2013年7月3日に日本国で特許出願された特願2013-139551に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2013-139551 filed in Japan on July 3, 2013, the contents of which are hereby incorporated by reference. Capture as part.

Claims (9)

  1.  下記工程(a)、工程(b)及び工程(c)
      工程(a):樹脂成分(A)100質量部と、有機過酸化物(P)0.01~0.6質量部と、表面処理無機フィラー(B)を含む無機フィラー(C)100質量部に対して加水分解性シランカップリング剤(q)0.5~30.0質量部を混合してなるシランカップリング剤予備混合無機フィラー(D)10~150質量部と、臭素系難燃剤(h1)15~60質量部と、シラノール縮合触媒(e1)0.001~0.5質量部とを溶融混合する工程
      工程(b):前記工程(a)で得られた耐熱性シラン架橋性樹脂組成物(F)を成形する工程及び
      工程(c):前記工程(b)で得られた成形物を水分と接触させて架橋させて成形体とする工程
    を有する耐熱性シラン架橋樹脂成形体の製造方法であって、
     前記樹脂成分(A)が、(i)酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体10~90質量%、及び、(ii)エチレン-α-オレフィン共重合体10~90質量%を含み、
     前記工程(a)が、下記工程(a1)及び工程(a3)を有し、下記工程(a1)で樹脂成分(A)の一部を溶融混合する場合にさらに下記工程(a2)を有し、
      工程(a1):前記樹脂成分(A)の一部又は全部と、前記有機過酸化物(P)と、前記シランカップリング剤予備混合無機フィラー(D)とを前記有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチ(Dx)を調製する工程
      工程(a2):キャリヤ樹脂(e2)としての前記樹脂成分(A)の残部とシラノール縮合触媒(e1)とを溶融混合して、触媒マスターバッチ(Ex)を調製する工程及び
      工程(a3):前記シランマスターバッチ(Dx)と前記シラノール縮合触媒(e1)又は前記触媒マスターバッチ(Ex)とを溶融混合する工程
     前記臭素系難燃剤(h1)が前記工程(a1)及び前記工程(a2)の少なくとも一方において混合される、耐熱性シラン架橋樹脂成形体の製造方法。
    The following step (a), step (b) and step (c)
    Step (a): 100 parts by mass of resin component (A), 0.01 to 0.6 parts by mass of organic peroxide (P), and 100 parts by mass of inorganic filler (C) including surface-treated inorganic filler (B) 10 to 150 parts by mass of a silane coupling agent premixed inorganic filler (D) obtained by mixing 0.5 to 30.0 parts by mass of a hydrolyzable silane coupling agent (q) with respect to a brominated flame retardant ( h1) Step of melt-mixing 15-60 parts by mass of silanol condensation catalyst (e1) 0.001-0.5 parts by mass Step (b): Heat-resistant silane crosslinkable resin obtained in step (a) A step of molding the composition (F) and a step (c): a heat-resistant silane cross-linked resin molded product having a step of bringing the molded product obtained in the step (b) into contact with moisture to form a molded product A manufacturing method comprising:
    The resin component (A) is (i) a polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component in an amount of 10 to 90% by mass, and (ii) an ethylene-α-olefin copolymer in an amount of 10 to 90% by mass. %
    The step (a) includes the following step (a1) and step (a3), and further includes the following step (a2) when a part of the resin component (A) is melt-mixed in the following step (a1). ,
    Step (a1): Part or all of the resin component (A), the organic peroxide (P), and the silane coupling agent premixed inorganic filler (D) are combined with the organic peroxide (P). Step of preparing a silane masterbatch (Dx) by melting and mixing at a temperature equal to or higher than the decomposition temperature of step Step (a2): Melting the remainder of the resin component (A) as the carrier resin (e2) and the silanol condensation catalyst (e1) Step of mixing and preparing a catalyst master batch (Ex) and Step (a3): Melting and mixing the silane master batch (Dx) and the silanol condensation catalyst (e1) or the catalyst master batch (Ex) A method for producing a heat-resistant silane-crosslinked resin molded product, wherein the brominated flame retardant (h1) is mixed in at least one of the step (a1) and the step (a2).
  2.  前記樹脂成分(A)が、少なくとも、(i)酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体10~50質量%、及び、(ii)エチレン-α-オレフィン共重合体20~80質量%を含む請求項1に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The resin component (A) contains at least (i) a polyolefin copolymer having an acid copolymer component or an acid ester copolymer component in an amount of 10 to 50% by mass, and (ii) an ethylene-α-olefin copolymer 20 to The manufacturing method of the heat resistant silane crosslinked resin molding of Claim 1 containing 80 mass%.
  3.  前記(i)酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体の少なくとも1種が、エチレン-酢酸ビニル共重合体又はエチレン-(メタ)アクリル酸エステル共重合体である請求項1又は2に記載の耐熱性シラン架橋樹脂成形体の製造方法。 2. The polyolefin copolymer having (i) an acid copolymerization component or an acid ester copolymerization component is an ethylene-vinyl acetate copolymer or an ethylene- (meth) acrylic acid ester copolymer. Or the manufacturing method of the heat-resistant silane crosslinked resin molding of 2.
  4.  前記臭素系難燃剤(h1)が、前記工程(a1)及び前記工程(a2)の両工程において混合される請求項1~3のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The production of the heat-resistant silane-crosslinked resin molded article according to any one of claims 1 to 3, wherein the brominated flame retardant (h1) is mixed in both the steps (a1) and (a2). Method.
  5.  前記工程(a1)及び前記工程(a2)の少なくとも一方の工程において、(h3)三酸化アンチモンが前記樹脂成分(A)100質量部に対して合計で5~30質量部混合される請求項1~4のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。 2. In at least one of the step (a1) and the step (a2), (h3) antimony trioxide is mixed in a total of 5 to 30 parts by mass with respect to 100 parts by mass of the resin component (A). 5. A method for producing a heat-resistant silane crosslinked resin molded article according to any one of items 1 to 4.
  6.  前記樹脂成分(A)が、(iii)ポリプロピレン0.2~20質量%を含む請求項1~5のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of claims 1 to 5, wherein the resin component (A) contains (iii) 0.2 to 20% by mass of polypropylene.
  7.  請求項1~6のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法により、
     樹脂成分(A)100質量部と、有機過酸化物(P)0.01~0.6質量部と、表面処理無機フィラー(B)を含む無機フィラー(C)100質量部に対して加水分解性シランカップリング剤(q)0.5~30.0質量部を混合してなるシランカップリング剤予備混合無機フィラー(D)10~150質量部と、臭素系難燃剤(h1)15~60質量部と、シラノール縮合触媒(e1)0.001~0.5質量部とを溶融混合してなる耐熱性シラン架橋性樹脂組成物(F)が架橋されてなる耐熱性シラン架橋樹脂成形体。
    By the method for producing a heat-resistant silane cross-linked resin molded article according to any one of claims 1 to 6,
    Hydrolysis with respect to 100 parts by mass of resin component (A), 0.01 to 0.6 parts by mass of organic peroxide (P), and 100 parts by mass of inorganic filler (C) containing surface-treated inorganic filler (B) 10 to 150 parts by mass of a silane coupling agent premixed inorganic filler (D) obtained by mixing 0.5 to 30.0 parts by mass of a functional silane coupling agent (q), and a brominated flame retardant (h1) 15 to 60 parts A heat-resistant silane cross-linked resin molded product obtained by crosslinking a heat-resistant silane cross-linkable resin composition (F) obtained by melting and mixing parts by mass and 0.001 to 0.5 parts by mass of a silanol condensation catalyst (e1).
  8.  請求項7に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。 A heat-resistant product comprising the heat-resistant silane cross-linked resin molded article according to claim 7.
  9.  前耐熱性シラン架橋樹脂成形体が、電線又は光ファイバケーブルの被覆として設けられている請求項8に記載の耐熱性製品。
     
    The heat-resistant product according to claim 8, wherein the pre-heat-resistant silane cross-linked resin molded product is provided as a coating for an electric wire or an optical fiber cable.
PCT/JP2014/067768 2013-07-03 2014-07-03 Heat-resistant silane crosslinked resin molded article and method for manufacturing same, and heat-resistant product equipped with heat-resistant silane crosslinked resin molded article WO2015002263A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480031113.6A CN105308102B (en) 2013-07-03 2014-07-03 Heat resistance crosslinked with silicane resin-formed body and its manufacturing method and the heat resistance product for having used heat resistance crosslinked with silicane resin-formed body
JP2015525271A JP6329948B2 (en) 2013-07-03 2014-07-03 Heat-resistant silane cross-linked resin molded body, method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013139551 2013-07-03
JP2013-139551 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015002263A1 true WO2015002263A1 (en) 2015-01-08

Family

ID=52143832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067768 WO2015002263A1 (en) 2013-07-03 2014-07-03 Heat-resistant silane crosslinked resin molded article and method for manufacturing same, and heat-resistant product equipped with heat-resistant silane crosslinked resin molded article

Country Status (3)

Country Link
JP (1) JP6329948B2 (en)
CN (1) CN105308102B (en)
WO (1) WO2015002263A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117704A1 (en) * 2015-01-23 2016-07-28 株式会社パシフィックウエーブ Flame-resistant three-dimensional lattice-shaped cushion
WO2016140251A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140253A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140252A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
JP2016188306A (en) * 2015-03-30 2016-11-04 古河電気工業株式会社 Heat-resistant silane crosslinked resin molding and heat-resistant silane crosslinkable resin composition and method for producing them, silane master batch and heat-resistant product
JP2017186416A (en) * 2016-04-04 2017-10-12 日立金属株式会社 Fire retardant batch, wire and cable formed by using the same and manufacturing method therefor
JP2018044032A (en) * 2016-09-12 2018-03-22 日立金属株式会社 Catalyst batch, wire and cable formed by using the same and manufacturing method therefor
WO2018070491A1 (en) * 2016-10-12 2018-04-19 リケンテクノス株式会社 Elastomer composition, water-crosslinkable elastomer composition, and method for producing elastomer composition
JP2019026692A (en) * 2017-07-27 2019-02-21 矢崎総業株式会社 Resin composition, and covered wire and wire harness using the same
JP2021028366A (en) * 2019-08-09 2021-02-25 古河電気工業株式会社 Method for manufacturing electric wire/cable, and electric wire/cable
CN116715920A (en) * 2023-08-10 2023-09-08 广东永鑫华新型材料有限公司 High-strength high-temperature-resistant flame-retardant polypropylene material for electric appliances and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681994B (en) * 2017-06-29 2020-01-11 美商陶氏全球科技有限責任公司 Polyolefin composition
CA3068492A1 (en) 2017-06-29 2019-01-03 Dow Global Technologies Llc Polyolefin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302234A (en) * 2000-04-24 2001-10-31 Showa Denko Kk Method for treating surface of aluminum hydroxide
JP2008031354A (en) * 2006-07-31 2008-02-14 Hitachi Cable Ltd Non-halogen flame-retardant thermoplastic elastomer composition and method for producing the same and electric wire/cable using the same
JP2008297453A (en) * 2007-05-31 2008-12-11 Auto Network Gijutsu Kenkyusho:Kk Method for producing flame-retardant silane crosslinked olefinic resin, insulated wire and method for manufacturing insulated wire
JP2009051918A (en) * 2007-08-25 2009-03-12 Furukawa Electric Co Ltd:The Flame-retardant insulated wire
JP2009199783A (en) * 2008-02-19 2009-09-03 Furukawa Electric Co Ltd:The Insulated wire excellent in heat resistance
JP2011080020A (en) * 2009-10-09 2011-04-21 Hitachi Cable Ltd Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same
JP2011219530A (en) * 2010-04-05 2011-11-04 Autonetworks Technologies Ltd Composition for electrical wire covering material, insulated wire and wiring harness
WO2013147148A1 (en) * 2012-03-30 2013-10-03 古河電気工業株式会社 Method for producing heat-resistant resin composition, heat-resistant resin composition produced by method for producing heat-resistant resin composition, and molded article using heat-resistant resin composition
WO2014084047A1 (en) * 2012-11-30 2014-06-05 古河電気工業株式会社 Production method for moulded body using heat-resistant silane-cross-linkable resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302234A (en) * 2000-04-24 2001-10-31 Showa Denko Kk Method for treating surface of aluminum hydroxide
JP2008031354A (en) * 2006-07-31 2008-02-14 Hitachi Cable Ltd Non-halogen flame-retardant thermoplastic elastomer composition and method for producing the same and electric wire/cable using the same
JP2008297453A (en) * 2007-05-31 2008-12-11 Auto Network Gijutsu Kenkyusho:Kk Method for producing flame-retardant silane crosslinked olefinic resin, insulated wire and method for manufacturing insulated wire
JP2009051918A (en) * 2007-08-25 2009-03-12 Furukawa Electric Co Ltd:The Flame-retardant insulated wire
JP2009199783A (en) * 2008-02-19 2009-09-03 Furukawa Electric Co Ltd:The Insulated wire excellent in heat resistance
JP2011080020A (en) * 2009-10-09 2011-04-21 Hitachi Cable Ltd Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same
JP2011219530A (en) * 2010-04-05 2011-11-04 Autonetworks Technologies Ltd Composition for electrical wire covering material, insulated wire and wiring harness
WO2013147148A1 (en) * 2012-03-30 2013-10-03 古河電気工業株式会社 Method for producing heat-resistant resin composition, heat-resistant resin composition produced by method for producing heat-resistant resin composition, and molded article using heat-resistant resin composition
WO2014084047A1 (en) * 2012-11-30 2014-06-05 古河電気工業株式会社 Production method for moulded body using heat-resistant silane-cross-linkable resin composition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248510A4 (en) * 2015-01-23 2018-08-22 Pacific Wave Co., Ltd. Flame-resistant three-dimensional lattice-shaped cushion
WO2016117704A1 (en) * 2015-01-23 2016-07-28 株式会社パシフィックウエーブ Flame-resistant three-dimensional lattice-shaped cushion
WO2016140251A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140253A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140252A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
JPWO2016140251A1 (en) * 2015-03-03 2017-12-14 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded article, production method thereof, and silane-crosslinked rubber molded article
JPWO2016140253A1 (en) * 2015-03-03 2017-12-14 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded article, production method thereof, and silane-crosslinked rubber molded article
JP2016188306A (en) * 2015-03-30 2016-11-04 古河電気工業株式会社 Heat-resistant silane crosslinked resin molding and heat-resistant silane crosslinkable resin composition and method for producing them, silane master batch and heat-resistant product
JP2017186416A (en) * 2016-04-04 2017-10-12 日立金属株式会社 Fire retardant batch, wire and cable formed by using the same and manufacturing method therefor
JP2018044032A (en) * 2016-09-12 2018-03-22 日立金属株式会社 Catalyst batch, wire and cable formed by using the same and manufacturing method therefor
WO2018070491A1 (en) * 2016-10-12 2018-04-19 リケンテクノス株式会社 Elastomer composition, water-crosslinkable elastomer composition, and method for producing elastomer composition
JPWO2018070491A1 (en) * 2016-10-12 2019-07-25 リケンテクノス株式会社 Elastomer composition, water-crosslinkable elastomer composition, and method for producing the same
JP7499006B2 (en) 2016-10-12 2024-06-13 リケンテクノス株式会社 Elastomer composition, water-crosslinkable elastomer composition, and method for producing same
JP2019026692A (en) * 2017-07-27 2019-02-21 矢崎総業株式会社 Resin composition, and covered wire and wire harness using the same
JP2021028366A (en) * 2019-08-09 2021-02-25 古河電気工業株式会社 Method for manufacturing electric wire/cable, and electric wire/cable
JP7157717B2 (en) 2019-08-09 2022-10-20 古河電気工業株式会社 Electric wire/cable manufacturing method
CN116715920A (en) * 2023-08-10 2023-09-08 广东永鑫华新型材料有限公司 High-strength high-temperature-resistant flame-retardant polypropylene material for electric appliances and preparation method thereof
CN116715920B (en) * 2023-08-10 2023-10-20 广东永鑫华新型材料有限公司 High-strength high-temperature-resistant flame-retardant polypropylene material for electric appliances and preparation method thereof

Also Published As

Publication number Publication date
JP6329948B2 (en) 2018-05-23
CN105308102B (en) 2018-05-29
CN105308102A (en) 2016-02-03
JPWO2015002263A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6767438B2 (en) Heat-resistant silane cross-linked resin molded body and its manufacturing method, heat-resistant silane cross-linked resin composition and its manufacturing method, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6329948B2 (en) Heat-resistant silane cross-linked resin molded body, method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6219268B2 (en) Method for producing heat resistant resin composition, heat resistant resin composition produced by the production method, and molded article using the heat resistant resin composition
JP6523407B2 (en) Heat resistant silane cross-linked resin molded article and method for producing the same, heat resistant silane cross-linkable resin composition and method for producing the same, silane master batch, and heat resistant product using heat resistant silane cross-linked resin molded article
JP6391580B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6407339B2 (en) Heat-resistant silane cross-linked resin molded product and method for producing the same, heat-resistant silane cross-linked resin composition and method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded product
JP6523405B2 (en) Heat resistant silane crosslinkable resin composition and method for producing the same, heat resistant silane crosslinked resin molded article and method for producing the same, and heat resistant product using the heat resistant silane crosslinked resin molded article
JP6140140B2 (en) Heat-resistant silane cross-linked resin molded body, cross-linkable resin molded body, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product
JP6452611B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6452610B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6265876B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP2019019327A (en) Silane coupling agent preliminary mixing filler and filler containing the same
JP2022113710A (en) Heat resistant silane crosslinked resin molded body and manufacturing method therefor, and heat resistant product using heat resistant silane crosslinked resin molded body
JP5995813B2 (en) Heat-resistant silane cross-linked resin molded body, method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6219307B2 (en) Method for producing molded article using heat-resistant silane crosslinkable resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031113.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819351

Country of ref document: EP

Kind code of ref document: A1