JP2011080020A - Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same - Google Patents

Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same Download PDF

Info

Publication number
JP2011080020A
JP2011080020A JP2009235640A JP2009235640A JP2011080020A JP 2011080020 A JP2011080020 A JP 2011080020A JP 2009235640 A JP2009235640 A JP 2009235640A JP 2009235640 A JP2009235640 A JP 2009235640A JP 2011080020 A JP2011080020 A JP 2011080020A
Authority
JP
Japan
Prior art keywords
mass
vinyl acetate
parts
ethylene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009235640A
Other languages
Japanese (ja)
Inventor
masafumi Kaga
雅文 加賀
Shu Iwasaki
周 岩崎
Shigehiro Morishita
滋宏 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009235640A priority Critical patent/JP2011080020A/en
Publication of JP2011080020A publication Critical patent/JP2011080020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-halogen flame-retardant resin composition which has high mechanical strength and high heat resistance without the need of crosslinking by electron beams after wire forming, and exhibits high speed extrusion and excellent elongation even when highly filled up with a flame retardant, and to provide its manufacturing method as well as an electric sire and cable using the same. <P>SOLUTION: The non-halogen flame-retardant resin composition includes (A) 40-80 pts.mass of an ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more; (B) 60-20 pts.mass of an ethylene-vinyl acetate copolymer; (C) 150-250 pts.mass of a metal hydroxide based on the total of 100 pts.mass of (A) and (B); (D) 5-30 pts.mass of a phosphorus compound based on the total of 100 pts.mass of (A) and (B); (E) 10-40 pts.mass of a hydrazine compound based on the total of 100 pts.mass of (A) and (B); and (F) 1-10 pts.mass of a zinc compound based on the total of 100 pts.mass of (A) and (B). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、UL規格105℃定格の材料特性かつ難燃性(VW−1合格)を有する非ハロゲン樹脂組成物であり、かつリサイクル性を有する非ハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブルに関するものである。   The present invention is a non-halogen resin composition having material properties and flame retardancy (VW-1 pass) rated at UL standard 105 ° C., and having recyclability, and a method for producing the same, The present invention relates to electric wires and cables using this.

環境問題に対する意識は世界的に高まりつつあり、電線被覆材料においても燃焼時に有害ガスを発生せず、マテリアルリサイクル可能な熱可塑性エラストマ樹脂が普及しつつある(特許文献2,3)。   The awareness of environmental problems is increasing worldwide, and thermoplastic elastomer resins that do not generate harmful gases during combustion and that can be recycled are becoming widespread in wire coating materials (Patent Documents 2 and 3).

これまで、熱可塑性エラストマは様々な開発が行なわれており、例えば動的架橋技術を用いることで流動成分であるオレフイン系樹脂をマトリックスとし、そのマトリックス中にエチレン−酢酸ビニル共重合体(以下EVAと称す)を分散させる技術がある(特許文献1)。   Various thermoplastic elastomers have been developed so far. For example, by using a dynamic cross-linking technique, an olefin resin as a fluid component is used as a matrix, and an ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) is contained in the matrix. (Referred to as Patent Document 1).

特開2008−31354号公報JP 2008-31354 A 特開2000−154287号公報JP 2000-154287 A 特開2000−7852号公報JP 2000-7852 A

しかしながら、非ハロゲン非架橋材料で、材料特性を保持し、しかもUL(電線、ケーブルおよびフレキシブルコードのための関連規格(Reference Standard for Electrical Wires, Cables,and Flexible Cords))に規定されているVW−1試験(Vehical Flame Test)を行うと、ポリマが燃焼時に流動ガス化するため、VW−1試験に合格することは困難であった。   However, it is a non-halogen non-crosslinked material that retains its material properties and is VW- as specified in UL (Reference Standard for Electrical Wires, Cables, and Flexible Cords). When one test (Vehical Flame Test) was performed, it was difficult to pass the VW-1 test because the polymer gasified during combustion.

そこで、本発明の目的は、上記課題を解決し、非ハロゲン難燃性樹脂組成物の製造において、ワイヤ形成後に電子線で架橋することなく、高い機械的強度及び耐熱性を有し、かつ難燃剤を高充填しても高速押出可能でかつ、良好な伸びを示す非ハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブルを提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and in the production of a non-halogen flame retardant resin composition, it has high mechanical strength and heat resistance and is difficult to crosslink with an electron beam after wire formation. An object of the present invention is to provide a non-halogen flame retardant resin composition that can be extruded at high speed even when highly filled with a flame retardant and exhibits good elongation, a method for producing the same, and an electric wire / cable using the same.

上記目的を達成するために請求項1の発明は、(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体40〜80質量部、(B)エチレン−酢酸ビニル共重合体60〜20質量部、(C)金属水酸化物が(A)と(B)の合計100質量部に対して150〜250質量部、(D)リン系化合物が(A)と(B)の合計100質量部に対して5〜30質量部、(E)ヒドラジン系化合物が(A)と(B)の合計100質量部に対して10〜40質量部、(F)亜鉛系化合物が(A)と(B)の合計100質量部に対して1〜10質量部含有してなることを特徴とする非ハロゲン難燃性樹脂組成物である。   In order to achieve the above object, the invention of claim 1 includes (A) 40-80 parts by mass of an ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more, and (B) an ethylene-vinyl acetate copolymer 60. ~ 20 parts by weight, (C) metal hydroxide is 150-250 parts by weight with respect to a total of 100 parts by weight of (A) and (B), and (D) phosphorus compound is the sum of (A) and (B) 5 to 30 parts by mass with respect to 100 parts by mass, (E) the hydrazine compound is 10 to 40 parts by mass with respect to a total of 100 parts by mass of (A) and (B), and (F) the zinc compound is (A). 1 to 10 parts by mass with respect to a total of 100 parts by mass of (B) and a non-halogen flame retardant resin composition.

請求項2の発明は、(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体がシラン架橋されている請求項1記載の非ハロゲン難燃性樹脂組成物である。   The invention according to claim 2 is the non-halogen flame retardant resin composition according to claim 1, wherein (A) an ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more is silane-crosslinked.

請求項3の発明は、(B)エチレン−酢酸ビニル共重合体の相中に(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体が分散している請求項1又は2に記載の非ハロゲン難燃性樹脂組成物である。   According to the invention of claim 3, (B) ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more is dispersed in the phase of (B) ethylene-vinyl acetate copolymer. The non-halogen flame retardant resin composition described in 1.

請求項4の発明は、(C)金属水酸化物が、水酸化マグネシウム若しくは水酸化アルミニウムからなる請求項1記載の非ハロゲン難燃性樹脂組成物である。   The invention according to claim 4 is the non-halogen flame retardant resin composition according to claim 1, wherein the metal hydroxide (C) comprises magnesium hydroxide or aluminum hydroxide.

請求項5の発明は、請求項1〜4いずれかに記載の樹脂組成物を製造する方法において、シラングラフトされた(A)酢酸ビニル含有量が30mass%以上のエチレン−共重合体と、(B)エチレン−酢酸ビニル共重合体と、(C)金属水酸化物と、(E)ヒドラジン系化合物と、シラノール縮合触媒とを混練しながらシラン架橋した後、(D)リン系化合物と(F)亜鉛系化合物とを加えて混練することを特徴とする非ハロゲン難燃性樹脂組成物の製造方法である。   The invention of claim 5 is the method for producing the resin composition according to any one of claims 1 to 4, wherein the silane-grafted (A) ethylene-copolymer having a vinyl acetate content of 30 mass% or more, B) Ethylene-vinyl acetate copolymer, (C) metal hydroxide, (E) hydrazine compound, and silanol condensation catalyst are kneaded with silane and then (D) phosphorus compound and (F ) A method for producing a non-halogen flame retardant resin composition, wherein a zinc-based compound is added and kneaded.

請求項6の発明は、請求項1〜4いずれかに記載の非ハロゲン難燃性樹脂組成物を絶縁体やシースに用いたことを特徴とする電線・ケーブルである。   The invention according to claim 6 is an electric wire / cable characterized by using the non-halogen flame retardant resin composition according to any one of claims 1 to 4 for an insulator or a sheath.

本発明によれば、動的架橋技術を用いてエチレン−酢酸ビニル共重合体マトリックス中に分散相として、エチレン−酢酸ビニル共重合体を用い、(C)金属水酸化物、(E)ヒドラジン系化合物を分散相に高充填し、更に(D)リン系化合物、(F)亜鉛系化合物を連続相に充填することで高い難燃性を有する非ハロゲン難燃性樹脂組成物を作製するもので、これにより、ワイヤ形成後に電子線で架橋することなく、高い機械的強度及び耐熱性を有し、かつ難燃剤を高充填しても高速押出可能でかつ、良好な伸びを示す非ハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブルを提供することができる。   According to the present invention, an ethylene-vinyl acetate copolymer is used as a dispersed phase in an ethylene-vinyl acetate copolymer matrix using a dynamic crosslinking technique, and (C) a metal hydroxide, (E) a hydrazine system. A non-halogen flame retardant resin composition having high flame retardancy is prepared by highly filling a compound in a dispersed phase and further filling a continuous phase with (D) a phosphorus compound and (F) a zinc compound. , This is a non-halogen flame retardant that has high mechanical strength and heat resistance without cross-linking with an electron beam after wire formation, and can be extruded at high speed even when highly filled with a flame retardant and exhibits good elongation The resin composition, the production method thereof, and the electric wire / cable using the same can be provided.

本発明が適応される電線の詳細断面図である。It is a detailed sectional view of an electric wire to which the present invention is applied. 本発明が適応されるケーブルの詳細断面図である。It is a detailed sectional view of a cable to which the present invention is applied. 本発明が適応されるケーブルの詳細断面図である。It is a detailed sectional view of a cable to which the present invention is applied.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

まず、本発明の非ハロゲン難燃性樹脂組成物が適用される電線・ケーブルについて、図1〜図3により説明する。   First, the electric wire and cable to which the non-halogen flame retardant resin composition of the present invention is applied will be described with reference to FIGS.

図1は、銅導体1に、非ハロゲン難燃性樹脂組成物からなる絶縁体2を被覆した電線10を示している。   FIG. 1 shows an electric wire 10 in which a copper conductor 1 is coated with an insulator 2 made of a non-halogen flame retardant resin composition.

図2は、図1に示した電線10を3本撚り合わせ、その外周に、非ハロゲン難燃性樹脂組成物からなるシース3を被覆したケーブル20を示している。   FIG. 2 shows a cable 20 in which three wires 10 shown in FIG. 1 are twisted and the outer periphery thereof is covered with a sheath 3 made of a non-halogen flame-retardant resin composition.

図3は、図1に示した電線10を複数本(図では4本)を撚り合わせ介在4を介して押さえ巻きテープ5を施してコア6を形成し、そのコア6の外周に、非ハロゲン難燃性樹脂組成物からなるシース7を被覆したケーブル30を示している。   FIG. 3 shows a core 6 formed by twisting a plurality of wires 10 (four in the figure) shown in FIG. The cable 30 which coat | covered the sheath 7 which consists of a flame-retardant resin composition is shown.

図1〜図3に示した非ハロゲン難燃性樹脂組成物からなる絶縁体2,シース3,7は押出成形により被覆される。   The insulators 2, sheaths 3 and 7 made of the non-halogen flame retardant resin composition shown in FIGS. 1 to 3 are coated by extrusion molding.

本発明は、動的架橋技術を用いてエチレン−酢酸ビニル共重合体マトリックス中に分散相としてエチレン−酢酸ビニル共重合体を用いることで、分散相に(C)金属水酸化物、(E)ビドラジン系化合物を高充填し脱水効果により初期着火時の難燃性を向上させ、連続相に(D)リン系化合物、(F)亜鉛系化合物を充填しチャー生成を促進し、燃焼拡散を抑制することでVW−1試験の合格を達成する。   The present invention uses an ethylene-vinyl acetate copolymer as a dispersed phase in an ethylene-vinyl acetate copolymer matrix using a dynamic crosslinking technique, so that (C) a metal hydroxide in the dispersed phase, (E) Highly filled with a hydrazine-based compound to improve flame retardancy during initial ignition due to dehydration effect, and (D) phosphorus-based compound and (F) zinc-based compound are filled in the continuous phase to promote char formation and suppress combustion diffusion To achieve a pass of the VW-1 test.

また、本発明は、最初に、シラングラフトされた(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体と、(B)エチレン−酢酸ビニル共重合体と、(C)金属水酸化物と、(E)ヒドラジン系化合物と、シラノール縮合触媒とを混練しながらシラン架橋することにより、シラン架橋されたエチレン−酢酸ビニル共重合体からなる分散相に、(C)金属水酸化物、(E)ヒドラジン系化合物を高充填することができ、その後、(D)リン系化合物と、(F)亜鉛系化合物とを加えて混練することにより、連続相に(D)リン系化合物と(F)亜鉛系化合物を充填させることができる。これは、一般的にフィラーは粘度の低い方に分散するので、(D)リン系化合物と(F)亜鉛系化合物が架橋されていない(架橋されている分散相に対して粘度の低い)連続相に分散するものと考えられる。   In addition, the present invention also includes the first silane-grafted (A) ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more, (B) an ethylene-vinyl acetate copolymer, and (C) a metal. Silane crosslinking while kneading a hydroxide, (E) a hydrazine compound, and a silanol condensation catalyst, and (C) metal hydroxide is converted into a dispersed phase composed of a silane-crosslinked ethylene-vinyl acetate copolymer. And (E) hydrazine compound can be highly charged, and then (D) phosphorus compound and (F) zinc compound are added and kneaded to form (D) phosphorus compound in the continuous phase. And (F) a zinc-based compound can be filled. This is because the filler is generally dispersed in a lower viscosity, so that the (D) phosphorus compound and the (F) zinc compound are not crosslinked (the viscosity is low relative to the crosslinked dispersed phase). It is thought that it is dispersed in the phase.

(A)成分のエチレン−酢酸ビニル共重合体としては、酢酸ビニル含有量30mass%未満では優れた難燃性を得ることが出来ない。(A)成分40質量部未満の場合、十分な架橋度が得られず耐熱性が劣る。また、80質量部より多い場合、溶融流れ性が悪く、押出成形などをした際の外観が悪化する。   As the ethylene-vinyl acetate copolymer of component (A), excellent flame retardancy cannot be obtained when the vinyl acetate content is less than 30 mass%. When the component (A) is less than 40 parts by mass, a sufficient degree of crosslinking cannot be obtained and heat resistance is poor. Moreover, when more than 80 mass parts, melt flowability is bad and the external appearance at the time of extrusion molding etc. deteriorates.

(B)成分のエチレン−酢酸ビニル共重合体は、20質量部以下では十分な機械的強度と伸びが得られない、60質量部以上では十分な難燃性を得ることが出来ない。(B)成分としてのエチレン−酢酸ビニル共重合体の酢酸ビニル含有量は特に規定せず、任意のものを用いることができる。   Component (B), the ethylene-vinyl acetate copolymer, cannot provide sufficient mechanical strength and elongation at 20 parts by mass or less, and cannot provide sufficient flame retardancy at 60 parts by mass or more. The vinyl acetate content of the ethylene-vinyl acetate copolymer as the component (B) is not particularly defined, and an arbitrary one can be used.

(C)成分の金属水酸化物が、(A)と(B)の合計100質量部に対して、150質量部未満の場合、優れた難燃性を得ることが出来ず、一方250質量部より多いと、混練が著しく困難であると共に機械的強度が低下する。   When the metal hydroxide of the component (C) is less than 150 parts by mass with respect to the total of 100 parts by mass of (A) and (B), excellent flame retardancy cannot be obtained, whereas 250 parts by mass If it is more, kneading is extremely difficult and the mechanical strength is lowered.

(D)成分のリン系化合物が、(A)と(B)の合計100質量部に対して5質量部未満だと、十分な難燃性を得ることが出来ず、一方30質量部より多いと機械的強度が低下する。   When the phosphorus compound of component (D) is less than 5 parts by mass with respect to 100 parts by mass in total of (A) and (B), sufficient flame retardancy cannot be obtained, while more than 30 parts by mass. And mechanical strength decreases.

リン系化合物としては、赤リン、ホスファゼン(リンと窒素を構成元素とする化合物)等をを挙げることができる。リン系化合物の含有量は15mass%以上が好ましい。   Examples of the phosphorus compound include red phosphorus and phosphazene (compounds containing phosphorus and nitrogen as constituent elements). The content of the phosphorus compound is preferably 15 mass% or more.

(E)成分のヒドラジン系化合物が(A)と(B)の合計100質量部に対して10質量部未満だと十分な難燃性を得ることが出来ず、40質量部より多いと機械的強度が低下し、外観も悪くなる。   If the hydrazine-based compound of component (E) is less than 10 parts by mass relative to the total of 100 parts by mass of (A) and (B), sufficient flame retardancy cannot be obtained, and if it exceeds 40 parts by mass, it is mechanical. The strength decreases and the appearance also deteriorates.

ヒドラジン化合物としては、メラミンシアヌレート等を挙げることができる。   Examples of the hydrazine compound include melamine cyanurate.

(F)成分の亜鉛系化合物が(A)と(B)の合計100質量部に対して1質量部未満だと、十分な難燃性と外観を得ることが出来ず、一方10質量部より多いと外観が悪くなる。   When the zinc-based compound of component (F) is less than 1 part by mass with respect to 100 parts by mass in total of (A) and (B), sufficient flame retardancy and appearance cannot be obtained, whereas from 10 parts by mass If it is too much, the appearance will deteriorate.

亜鉛化合物としてはスズ酸亜鉛等を挙げることができる。   Examples of the zinc compound include zinc stannate.

シラングラフトされた(A)エチレン−酢酸ビニル共重合体に用いるシラン化合物には、ポリマと反応可能な基とシラノール縮合により架橋を形成するアルコキシ基をともに有していることが要求され、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシラン、ビニルトリス(β−メトキシエトキシ)シラン等のビニルシラン化合物、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン化合物、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン化合物、γ−メタクリロキシプロピルトリメトキシシラン等のアクリルシラン化合物、ビス(3−(トリエトキシシリル)プロピル)ジスルフィド、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのポリスルフィドシラン化合物、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなどのメルカプトシラン化合物等を挙げることができる。   The silane compound used in the silane-grafted (A) ethylene-vinyl acetate copolymer is required to have both a group capable of reacting with a polymer and an alkoxy group that forms a crosslink by silanol condensation. Are vinyl silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) aminosilane compounds such as γ-aminopropyltrimethoxysilane, β- (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxy Silane, γ-glycidoxypropyl Epoxy silane compounds such as methoxysilane, γ-glycidoxypropylmethyldiethoxysilane, acrylic silane compounds such as γ-methacryloxypropyltrimethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- Examples thereof include polysulfide silane compounds such as (triethoxysilyl) propyl) tetrasulfide, mercaptosilane compounds such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane.

シラン化合物を共重合させるにはベースのEVAに所定量のシラン化合物、フリーラジカル発生剤を溶融混練する方法を用いることができる。   In order to copolymerize the silane compound, a method of melt-kneading a predetermined amount of a silane compound and a free radical generator in the base EVA can be used.

フリーラジカル発生剤としては、ジクミルパーオキサイドなどの有機過酸化物が主として使用できる。シラン化合物の添加量は、特に規定しないが良好な物性を得るためにはEVA100質量部に対して、0.5〜10.0質量部が好適である。0.5質量部より少ないと十分な架橋効果が得られず、組成物の強度、耐熱性が劣る。10.0質量部を超えると加工性が著しく低下する。   As the free radical generator, organic peroxides such as dicumyl peroxide can be mainly used. The addition amount of the silane compound is not particularly limited, but 0.5 to 10.0 parts by mass is preferable with respect to 100 parts by mass of EVA in order to obtain good physical properties. If the amount is less than 0.5 parts by mass, a sufficient crosslinking effect cannot be obtained, and the strength and heat resistance of the composition are inferior. If it exceeds 10.0 parts by mass, the workability is remarkably reduced.

また、フリーラジカル発生剤である有機過酸化物の最適な量は、EVA100質量部に対して0.001〜3.0質量部である。0.001質量部より少ないとシラン化合物が十分に共重合せず十分な架橋効果が得られない。3.0質量部を超えるとEVAのスコーチが起きやすくなる。   Moreover, the optimal amount of the organic peroxide which is a free radical generator is 0.001-3.0 mass parts with respect to 100 mass parts of EVA. When the amount is less than 0.001 part by mass, the silane compound is not sufficiently copolymerized and a sufficient crosslinking effect cannot be obtained. When the amount exceeds 3.0 parts by mass, EVA scorch tends to occur.

(C)成分である金属酸化物は、水酸化マグネシウムがもっとも難燃性が優れているが、水酸化アルミニウムや水酸化カルシウムを用いても良い。また、これらの金属水酸化物は、シランカップリング剤、チタネート系カップリング剤、ステアリン酸やステアリン酸カルシウム等の脂肪酸又は、脂肪酸金属塩等によって表面処理されていることが望ましい。   As the metal oxide as the component (C), magnesium hydroxide is most excellent in flame retardancy, but aluminum hydroxide or calcium hydroxide may be used. These metal hydroxides are preferably surface-treated with a silane coupling agent, a titanate coupling agent, a fatty acid such as stearic acid or calcium stearate, or a fatty acid metal salt.

金属水酸化物を表面処理することにより、シラングラフトポリマとの密着性を向上でき、分散層への高充填化を図ることができる。   By surface-treating the metal hydroxide, the adhesion with the silane graft polymer can be improved, and the dispersion layer can be highly filled.

使用できるシラン系カップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシラン、ビニルトリス(β−メトキシエトキシ)シラン等のビニルシラン化合物、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン化合物、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン化合物、γ−メタクリロキシプロピルトリメトキシシラン等のアクリルシラン化合物、ビス(3−(トリエトキシシリル)プロピル)ジスルフィド、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのポリスルフィドシラン化合物、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなどのメルカプトシラン化合物が挙げられる。   Examples of silane coupling agents that can be used include vinyl silane compounds such as vinyl trimethoxy silane, vinyl triethoxy lane, vinyl tris (β-methoxy ethoxy) silane, γ-aminopropyl trimethoxy silane, γ-aminopropyl triethoxy silane, N Aminosilane compounds such as β- (aminoethyl) γ-aminopropyltrimethoxysilane, β- (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, β- (3, 4-epoxycyclohexyl) epoxysilane compounds such as ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and acrylic silanization such as γ-methacryloxypropyltrimethoxysilane , Polysulfide silane compounds such as bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, etc. And mercaptosilane compounds.

これらの表面処理剤を金属水酸化物に処理させる方法としては湿式法、乾式法、直接混練法などの既知のものを用いてよい。   As a method of treating these surface treatment agents with a metal hydroxide, known methods such as a wet method, a dry method, and a direct kneading method may be used.

処理量は特に規定しないが金属水酸化物に対して、0.1〜5mass%の範囲であることが望ましく、処理量が0.1mass%より少ないと樹脂組成物の強度が低下し、5mass%より多いと加工性が悪くなる。   Although the amount of treatment is not particularly specified, it is preferably in the range of 0.1 to 5 mass% with respect to the metal hydroxide. If the amount of treatment is less than 0.1 mass%, the strength of the resin composition is lowered, and 5 mass%. If it is more, the workability becomes worse.

また金属水酸化物の平均粒子径は、機械的特性、分散性、難燃性の点から4μm以下のものがより好適である。   The average particle diameter of the metal hydroxide is more preferably 4 μm or less from the viewpoint of mechanical properties, dispersibility, and flame retardancy.

また、本発明においてシラン架橋剤として用いることのできるシラノール縮合触媒は、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクタエート、酢酸第1錫、カプリル酸第1錫、カプリル酸亜鉛、ナフテン酸鉛、ナフテン酸コバルト等があり、その添加量は触媒の種類によるが、(A)と(B)の合計100質量部当たり0.001〜0.1質量部に設定される。   The silanol condensation catalyst that can be used as a silane crosslinking agent in the present invention includes dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, stannous caprylate, zinc caprylate, lead naphthenate, There are cobalt naphthenate and the like, and the amount of addition depends on the type of catalyst, but is set to 0.001 to 0.1 parts by mass per 100 parts by mass in total of (A) and (B).

添加方法としては、そのまま添加する方法以外にエチレン−酢酸ビニル共重合体やエチレン−エチルアクリルレート共重合体に予め混ぜたマスターバッチを使用する方法などがある。   As an addition method, there is a method of using a master batch previously mixed with an ethylene-vinyl acetate copolymer or an ethylene-ethyl acrylate copolymer in addition to the method of adding as it is.

上記以外にも必要に応じてプロセス油、加工助剤、難燃助剤、架橋剤、架橋助剤、酸化防止剤、滑剤、無機充填剤、相溶化剤、安定剤、カーボンブラック、着色剤等の添加物を加えることも可能である。   In addition to the above, process oil, processing aid, flame retardant aid, crosslinking agent, crosslinking aid, antioxidant, lubricant, inorganic filler, compatibilizer, stabilizer, carbon black, colorant, etc. It is also possible to add other additives.

本発明の組成物を製造する装置に限定は無いが、ニーダー、バンバリーミキサー、ロール、二軸押出機などの汎用のものが使用できる。   Although there is no limitation in the apparatus which manufactures the composition of this invention, general purpose things, such as a kneader, a Banbury mixer, a roll, a twin screw extruder, can be used.

次に本発明の実施例1〜28を比較例1〜16と共に説明する。   Next, Examples 1 to 28 of the present invention will be described together with Comparative Examples 1 to 16.

Figure 2011080020
Figure 2011080020

Figure 2011080020
Figure 2011080020

Figure 2011080020
材料は、二軸押出機にて(A)エチレン−酢酸ビニル共重合体を主フィーダから供給し、シラン化合物をグラフト重合させた後、(B)エチレン−酢酸ビニル共重合体をサイドフィーダから供給、混練しベースポリマを作製する。前記混練物に(C)金属水酸化物、(D)リン系化合物、(E)ヒドラジン系化合物、(F)亜鉛系化合物、シラノール縮合触媒等の配合剤をニーダにて混練し、エチレン酢酸ビニル共重合体をシラン架橋させる工程によって作製する。
Figure 2011080020
The material is (A) ethylene-vinyl acetate copolymer supplied from the main feeder with a twin screw extruder, and after graft polymerization of the silane compound, (B) ethylene-vinyl acetate copolymer is supplied from the side feeder. Kneaded to produce a base polymer. A compounding agent such as (C) a metal hydroxide, (D) a phosphorus compound, (E) a hydrazine compound, (F) a zinc compound, or a silanol condensation catalyst is kneaded with a kneader, and ethylene vinyl acetate is added. The copolymer is prepared by a step of silane crosslinking.

(A)エチレン−酢酸ビニル共重合体にシラン化合物をグラフト共重合させた後、(B)エチレン−酢酸ビニル共重合体を混練する工程では、原料の(A)エチレン−酢酸ビニル共重合体(酢酸ビニル含有量42mass%)/ビニルトリメトキシシラン/ジクミルパーオキサイド/(B)エチレン−酢酸ビニル共重合体を70/3.5/0.02/30質量部の比率で、200℃に設定した40mmの二軸押出機(L/D=60)に投入した。(B)エチレン−酢酸ビニル共重合体は、(A)エチレン−酢酸ビニル共重合体のシラン化合物によるグラフト反応が進んだ後にサイドから投入する。   (A) After graft copolymerizing a silane compound to an ethylene-vinyl acetate copolymer, (B) kneading the ethylene-vinyl acetate copolymer, the raw material (A) ethylene-vinyl acetate copolymer ( (Vinyl acetate content 42 mass%) / vinyltrimethoxysilane / dicumyl peroxide / (B) ethylene-vinyl acetate copolymer at a ratio of 70 / 3.5 / 0.02 / 30 parts by mass and set to 200 ° C. The 40 mm twin screw extruder (L / D = 60) was charged. (B) The ethylene-vinyl acetate copolymer is introduced from the side after the grafting reaction of the (A) ethylene-vinyl acetate copolymer by the silane compound proceeds.

次に表1〜表3の各例に示した配合比となるように各成分をワンダーニーダ(55L)に投入することで混練し、混練中にグラフト共重合させたエチレン−酢酸ビニル共重合体を架橋させることで混練物を作製した。   Next, ethylene-vinyl acetate copolymer kneaded by introducing each component into a wonder kneader (55 L) so as to have the blending ratio shown in each example of Tables 1 to 3, and graft copolymerized during kneading. The kneaded material was produced by crosslinking.

チャンバ温度は120℃〜160℃とし、エチレン−酢酸ビニル共重合体にシラン化合物をグラフト共重合させた後、シラングラフトされていないエチレン−酢酸ビニル共重合体、金属水酸化物、ヒドラジン系化合物を一括してワンダーニーダーに投入する。金属水酸化物の投入は、一括もしくは多分割投入しても差し支えない。十分に混練−分散した後、樹脂温度が150℃〜170℃に達した段階でシラノール縮合触媒を投入・混練し、シラングラフトされたエチレン−酢酸ビニル共重合体をシラン架橋させ、その後、(D)リン系化合物と(F)亜鉛系化合物を混練し、樹脂温度が180℃〜190℃に達した段階でこれをペレット化し、ワイヤ作製用の材料とした。   The chamber temperature was set to 120 ° C. to 160 ° C., and after graft copolymerization of the silane compound with the ethylene-vinyl acetate copolymer, the ethylene-vinyl acetate copolymer, metal hydroxide, and hydrazine-based compound not subjected to silane grafting were added. Put them into the wonder kneader all at once. The metal hydroxide may be added all at once or in multiple divisions. After sufficiently kneading and dispersing, when the resin temperature reaches 150 ° C. to 170 ° C., a silanol condensation catalyst is added and kneaded to crosslink the silane-grafted ethylene-vinyl acetate copolymer with silane, and then (D ) A phosphorus compound and (F) a zinc compound were kneaded and pelletized when the resin temperature reached 180 ° C. to 190 ° C. to obtain a material for wire production.

ワイヤは20mm押出機を用い、芯線外径0.61mmの銅導体に厚さ0.25mmで押出被覆して作製した。   The wire was produced by extrusion coating a copper conductor having a core wire outer diameter of 0.61 mm with a thickness of 0.25 mm using a 20 mm extruder.

上記手順で作製したワイヤを次に示す方法で評価した。   The wire produced by the above procedure was evaluated by the following method.

機械的強度はJIS C3005に準拠して評価した。引張強さ8.27MPa以上、破断伸び100%以上を合格とした。   The mechanical strength was evaluated according to JIS C3005. A tensile strength of 8.27 MPa or more and an elongation at break of 100% or more were considered acceptable.

耐熱性は、136℃で168時間保持した後、引張強さと伸びの残率が75%以上であるものをそれぞれ合格とした。   The heat resistance was determined to be acceptable when the tensile strength and the residual ratio of elongation were 75% or more after holding at 136 ° C. for 168 hours.

引張強さと伸びの残率は、作製したワイヤの芯線を抜き、管状でJISC3005に準拠して測定した。   The tensile strength and the residual ratio of elongation were measured in accordance with JISC3005 by pulling the core wire of the produced wire and forming a tubular shape.

難燃性評価にはUL(電線、ケーブルおよびフレキシブルコードのための関連規格(Reference Standard for Electrical Wires, Cables,and Flexible Cords))に規定されているVW−1試験(Vehical Flame Test)を行った。VW−1試験では、ワイヤを垂直に固定し、メタンガスを用いてワイヤ下部に15秒炎をあて、60秒後に引火点より50cm上部に設置したフラッグに炎が到達せずかつ自然消火したものを5回繰り返し、5回とも60秒以内に自然消火及びフラッグに炎が到達していないものを合格とした。   VW-1 test (Vehical Flame Test) stipulated in UL (Reference Standard for Electrical Wires, Cables, and Flexible Cords) was performed for flame retardancy evaluation. . In the VW-1 test, a wire was fixed vertically, a flame was applied to the lower part of the wire using methane gas for 15 seconds, and after 60 seconds the flame was not reached the flag placed 50 cm above the flash point and the fire was spontaneously extinguished. Repeated 5 times, 5 times, natural fire extinguishing and those that did not reach the flag within 60 seconds was considered as acceptable.

表1、表2に示すように、実施例1〜28は、機械的強度、押出外観、難燃性共に良好である。   As shown in Tables 1 and 2, Examples 1 to 28 have good mechanical strength, extrusion appearance, and flame retardancy.

これに対して、表3の比較例1〜3に示すように、(A)に酢酸ビニル含有量が30mass%未満のエチレン−酢酸ビニル共重合体(酢酸ビニル含有量14mass%)を用いると、難燃性が低下し、VW−1試験に合格しない。   On the other hand, as shown in Comparative Examples 1 to 3 in Table 3, when an ethylene-vinyl acetate copolymer (vinyl acetate content 14 mass%) having a vinyl acetate content of less than 30 mass% is used in (A), Flame retardancy decreases and does not pass the VW-1 test.

また比較例4は、(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体が40質量部未満の35質量部であり、難燃性が低下し、VW−1試験に合格しない。比較例5は、(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体が80質量部を超える90質量部であり、押出外観が著しく悪化する。   Moreover, the comparative example 4 is (A) 35 mass parts of ethylene-vinyl acetate copolymer whose vinyl acetate content is 30 mass% or more is less than 40 mass parts, and flame retardance falls and passes the VW-1 test. do not do. In Comparative Example 5, (A) the ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more is 90 parts by mass exceeding 80 parts by mass, and the extrusion appearance is remarkably deteriorated.

比較例6,7は、(B)にエチレン−酢酸ビニル共重合体以外の例えば、ポリプロピレン、低鎖状低密度ポリエチレンを用いた例であるが、難燃性が低下し、VW−1試験に合格しない。   Comparative Examples 6 and 7 are examples in which, for example, polypropylene and low-chain low-density polyethylene other than the ethylene-vinyl acetate copolymer were used in (B), the flame retardancy decreased, and the VW-1 test was conducted. I do not pass.

比較例8は、(C)金属水酸化物が(A)と(B)の合計100質量部に対して150質量部未満(120質量部)であり、難燃性が低下し、VW−1試験に合格しない。比較例9は、(C)金属水酸化物が(A)と(B)の合計100質量部に対して250質量部を超える(300質量部)ため、混練が著しく困難となり、押出被覆ができなかった。   In Comparative Example 8, (C) the metal hydroxide is less than 150 parts by mass (120 parts by mass) with respect to the total of 100 parts by mass of (A) and (B), flame retardancy decreases, and VW-1 Does not pass the exam. In Comparative Example 9, (C) the metal hydroxide exceeds 250 parts by mass (300 parts by mass) with respect to the total of 100 parts by mass of (A) and (B), so kneading becomes extremely difficult and extrusion coating can be performed. There wasn't.

比較例10は、(D)リン系化合物が(A)と(B)の合計100質量部に対して5質量部未満の未添加であり、難燃性が低下し、VW−1試験に合格できない。比較例11は、(D)リン系化合物が(A)と(B)の合計100質量部に対して30質量部を超える(50質量部)ため、押出外観が低下する。   In Comparative Example 10, (D) the phosphorus compound is not added in an amount of less than 5 parts by mass with respect to 100 parts by mass in total of (A) and (B), the flame retardancy is reduced, and the VW-1 test is passed. Can not. In Comparative Example 11, since the phosphorus compound (D) exceeds 30 parts by mass (50 parts by mass) with respect to 100 parts by mass in total of (A) and (B), the extrusion appearance is deteriorated.

比較例12は、(E)ヒドラジン系化合物であるメラミンシアヌレートが(A)と(B)の合計100質量部に対して10質量部未満の未添加であり、難燃性が低下し、VW−1試験に合格しない。比較例13は、(E)ヒドラジン系化合物(メラミンシアヌレート)が(A)と(B)の合計100質量部に対して40質量部以上(60質量部)であり、機械的強度が低下、押出外観も悪くなり、不合格となる。   In Comparative Example 12, (E) melamine cyanurate, which is a hydrazine-based compound, is not added in an amount of less than 10 parts by mass with respect to a total of 100 parts by mass of (A) and (B), flame retardancy decreases, and VW -1 does not pass the test. In Comparative Example 13, (E) the hydrazine-based compound (melamine cyanurate) is 40 parts by mass (60 parts by mass) with respect to 100 parts by mass in total of (A) and (B), and the mechanical strength decreases. The extrusion appearance also deteriorates and fails.

比較例14は、(F)亜鉛系化合物の合計が(A)と(B)の合計100質量部に対して1質量部以下の未添加であり、難燃性が低下し、VW−1試験に合格しない。比較例15は、(F)亜鉛系化合物の合計が(A)と(B)の合計100質量部に対して10質量部を超える15質量部であり、押出外観が悪化する。   In Comparative Example 14, the total of (F) zinc-based compounds was not added in an amount of 1 part by mass or less with respect to 100 parts by mass in total of (A) and (B), the flame retardancy decreased, and the VW-1 test Does not pass. In Comparative Example 15, the total of (F) zinc-based compounds is 15 parts by mass exceeding 10 parts by mass with respect to 100 parts by mass of (A) and (B) in total, and the extrusion appearance deteriorates.

比較例16は、(D)リン系化合物、(E)ヒドラジン系化合物、(F)亜鉛系化合物のいずれも加えなため、十分な難燃性が得られずVW−1試験に合格しない。   In Comparative Example 16, since all of (D) phosphorus compound, (E) hydrazine compound, and (F) zinc compound are not added, sufficient flame retardancy cannot be obtained and the VW-1 test is not passed.

以上より、本発明で規定した範囲のものとすることで、機械的特性と、押出外観性と、十分な難燃性を有しVW−1試験に合格するワイヤとすることができる。   As mentioned above, it can be set as the wire which has a mechanical characteristic, extrusion external appearance property, sufficient flame retardance, and passes the VW-1 test by setting it as the thing prescribed | regulated by this invention.

本発明に係る樹脂組成物以外にも必要に応じてプロセス油、加工助剤、難燃助剤、架橋剤、酸化防止剤、滑剤、無機充填剤、相溶化剤、安定剤、カーボンブラック、着色剤等の添加物を加えることも可能である。   In addition to the resin composition according to the present invention, process oil, processing aid, flame retardant aid, crosslinking agent, antioxidant, lubricant, inorganic filler, compatibilizer, stabilizer, carbon black, coloring as necessary It is also possible to add additives such as agents.

難燃効果を更に向上させるために、リン系難燃剤を(A)若しくは(B)エチレン−酢酸ビニル共重合体にグラフト反応をさせることも可能である。   In order to further improve the flame retardant effect, it is also possible to graft the phosphorus-based flame retardant to (A) or (B) ethylene-vinyl acetate copolymer.

混練中の混練機のモータ負荷を低減させるために、ポリメチルメタクリレートなどの滑剤を混練することも可能である。ポリメチルメタクリレートの添加量は、(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体と(B)エチレン−酢酸ビニル共重合体の合計100質量部に対して、0.1〜10質量部が適している。   In order to reduce the motor load of the kneader during kneading, it is possible to knead a lubricant such as polymethyl methacrylate. The amount of polymethyl methacrylate added is 0.1 with respect to a total of 100 parts by mass of (A) an ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more and (B) an ethylene-vinyl acetate copolymer. -10 parts by weight is suitable.

1 銅導体
2 絶縁体
3、7 シース
10 電線
20、30 ケーブル
1 Copper conductor 2 Insulator 3, 7 Sheath 10 Electric wire 20, 30 Cable

Claims (6)

(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体40〜80質量部、(B)エチレン−酢酸ビニル共重合体60〜20質量部、(C)金属水酸化物が(A)と(B)の合計100質量部に対して150〜250質量部、(D)リン系化合物が(A)と(B)の合計100質量部に対して5〜30質量部、(E)ヒドラジン系化合物が(A)と(B)の合計100質量部に対して10〜40質量部、(F)亜鉛系化合物が(A)と(B)の合計100質量部に対して1〜10質量部含有してなることを特徴とする非ハロゲン難燃性樹脂組成物。   (A) 40-80 parts by mass of an ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more, (B) 60-20 parts by mass of an ethylene-vinyl acetate copolymer, (C) a metal hydroxide ( 150 to 250 parts by mass with respect to a total of 100 parts by mass of (A) and (B), (D) 5 to 30 parts by mass with respect to a total of 100 parts by mass of (A) and (B), (E ) The hydrazine compound is 10 to 40 parts by mass with respect to a total of 100 parts by mass of (A) and (B), and (F) the zinc compound is 1 to 100 parts by mass with respect to the total of 100 parts by mass of (A) and (B). A non-halogen flame retardant resin composition comprising 10 parts by mass. (A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体がシラン架橋されている請求項1記載の非ハロゲン難燃性樹脂組成物。   (A) The non-halogen flame retardant resin composition according to claim 1, wherein an ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more is silane-crosslinked. (B)エチレン−酢酸ビニル共重合体の相中に(A)酢酸ビニル含有量が30mass%以上のエチレン−酢酸ビニル共重合体が分散している請求項1又は2に記載の非ハロゲン難燃性樹脂組成物。   The non-halogen flame retardant according to claim 1 or 2, wherein (B) an ethylene-vinyl acetate copolymer having a vinyl acetate content of 30 mass% or more is dispersed in the phase of (B) ethylene-vinyl acetate copolymer. Resin composition. (C)金属水酸化物が、水酸化マグネシウム若しくは水酸化アルミニウムからなる請求項1記載の非ハロゲン難燃性樹脂組成物。   The non-halogen flame retardant resin composition according to claim 1, wherein the metal hydroxide comprises magnesium hydroxide or aluminum hydroxide. 請求項1〜4いずれかに記載の樹脂組成物を製造する方法において、シラングラフトされた(A)酢酸ビニル含有量が30mass%以上のエチレン−共重合体と、(B)エチレン−酢酸ビニル共重合体と、(C)金属水酸化物と、(E)ヒドラジン系化合物と、シラノール縮合触媒とを混練しながらシラン架橋した後、(D)リン系化合物と(F)亜鉛系化合物とを加えて混練することを特徴とする非ハロゲン難燃性樹脂組成物の製造方法。   5. The method for producing a resin composition according to claim 1, wherein the silane-grafted (A) ethylene-copolymer having a vinyl acetate content of 30 mass% or more, and (B) an ethylene-vinyl acetate copolymer. After silane crosslinking while kneading the polymer, (C) metal hydroxide, (E) hydrazine compound, and silanol condensation catalyst, (D) phosphorus compound and (F) zinc compound are added. A non-halogen flame retardant resin composition, which comprises kneading and kneading. 請求項1〜4いずれかに記載の非ハロゲン難燃性樹脂組成物を絶縁体やシースに用いたことを特徴とする電線・ケーブル。   An electric wire / cable characterized by using the non-halogen flame retardant resin composition according to any one of claims 1 to 4 for an insulator or a sheath.
JP2009235640A 2009-10-09 2009-10-09 Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same Pending JP2011080020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235640A JP2011080020A (en) 2009-10-09 2009-10-09 Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235640A JP2011080020A (en) 2009-10-09 2009-10-09 Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same

Publications (1)

Publication Number Publication Date
JP2011080020A true JP2011080020A (en) 2011-04-21

Family

ID=44074393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235640A Pending JP2011080020A (en) 2009-10-09 2009-10-09 Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same

Country Status (1)

Country Link
JP (1) JP2011080020A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084047A1 (en) * 2012-11-30 2014-06-05 古河電気工業株式会社 Production method for moulded body using heat-resistant silane-cross-linkable resin composition
WO2014084048A1 (en) * 2012-11-30 2014-06-05 古河電気工業株式会社 Production method for moulded body using heat-resistant silane-cross-linkable resin composition
WO2015002263A1 (en) * 2013-07-03 2015-01-08 古河電気工業株式会社 Heat-resistant silane crosslinked resin molded article and method for manufacturing same, and heat-resistant product equipped with heat-resistant silane crosslinked resin molded article
CN109721793A (en) * 2017-10-30 2019-05-07 华东理工大学 Halogen-free type highly effective flame-retardant cable material of polyolefin
JP2019524906A (en) * 2016-06-24 2019-09-05 ダウ グローバル テクノロジーズ エルエルシー Manufacturing process of high-pressure free radical ethylene copolymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084047A1 (en) * 2012-11-30 2014-06-05 古河電気工業株式会社 Production method for moulded body using heat-resistant silane-cross-linkable resin composition
WO2014084048A1 (en) * 2012-11-30 2014-06-05 古河電気工業株式会社 Production method for moulded body using heat-resistant silane-cross-linkable resin composition
JPWO2014084047A1 (en) * 2012-11-30 2017-01-05 古河電気工業株式会社 Method for producing molded article using heat-resistant silane crosslinkable resin composition
JPWO2014084048A1 (en) * 2012-11-30 2017-01-05 古河電気工業株式会社 Method for producing molded article using heat-resistant silane crosslinkable resin composition
WO2015002263A1 (en) * 2013-07-03 2015-01-08 古河電気工業株式会社 Heat-resistant silane crosslinked resin molded article and method for manufacturing same, and heat-resistant product equipped with heat-resistant silane crosslinked resin molded article
JPWO2015002263A1 (en) * 2013-07-03 2017-02-23 古河電気工業株式会社 Heat-resistant silane cross-linked resin molded body, method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP2019524906A (en) * 2016-06-24 2019-09-05 ダウ グローバル テクノロジーズ エルエルシー Manufacturing process of high-pressure free radical ethylene copolymer
CN109721793A (en) * 2017-10-30 2019-05-07 华东理工大学 Halogen-free type highly effective flame-retardant cable material of polyolefin

Similar Documents

Publication Publication Date Title
JP4270237B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same
JP5640889B2 (en) Electric wire / cable
US9093197B2 (en) Composition for wire coating member, insulated wire, and wiring harness
JP6379776B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, electric wire and cable
JP4692372B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same
US11192984B2 (en) Heat-resistant crosslinked fluorocarbon rubber formed body and method for producing the same, silane master batch, master batch mixture and formed body thereof, and heat-resistant product
JP6407339B2 (en) Heat-resistant silane cross-linked resin molded product and method for producing the same, heat-resistant silane cross-linked resin composition and method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded product
JP5056601B2 (en) Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same
JP2010254883A (en) Non-halogen flame-retardant resin composition, method for producing the same, and electric wire and cable using the same
JP5163597B2 (en) Non-halogen flame retardant resin composition, method for producing the same, and electric wire / cable using the same
US11643487B2 (en) Heat-resistant crosslinked fluororubber formed body and method of producing the same, and heat-resistant product
CN108203546B (en) Chemically-crosslinked elastomer cable material for new energy automobile high-voltage wire capable of being used at 175 ℃ for long time, preparation method of chemically-crosslinked elastomer cable material and cable
JP2011080020A (en) Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same
JP2014005373A (en) Thermoplastic elastomer composition and extra-high voltage cable for railway vehicle using the same
JP7470552B2 (en) Crosslinked fluororubber composition, wiring material using same and method for producing same, and catalyst composition for silane crosslinking
JP2017141384A (en) Heat-resistant chlorine-containing crosslinked resin molded body and method for producing the same, silane masterbatch, masterbatch mixture and molded body of the same, and heat resistant product
JP2005133036A (en) Non-halogen flame retardant thermoplastic resin composition and electric wire and cable using the same
EP2927268A1 (en) Production method for moulded body using heat-resistant silane-cross-linkable resin composition
JP5092912B2 (en) Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same
CN102286186A (en) Organosilane crosslinked polyethylene, wire and cable
JP7426876B2 (en) Crosslinked fluororubber composition, wiring material using the same, and manufacturing method thereof
WO2018180690A1 (en) Molded body of chlorine-containing heat-resistant crosslinked resin, method for producing said body, silane masterbatch, masterbatch mixture, and heat-resistant product
JP2015004025A (en) Non-halogen flame-retardant resin composition and cable using the same
JP6639937B2 (en) Method for producing heat-resistant silane-crosslinked thermoplastic elastomer molded article, silane masterbatch, and heat-resistant product
JP5794216B2 (en) Non-halogen flame retardant resin composition and method for producing the same, insulated wire and cable using the same