JP5092912B2 - Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same - Google Patents

Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same Download PDF

Info

Publication number
JP5092912B2
JP5092912B2 JP2008151498A JP2008151498A JP5092912B2 JP 5092912 B2 JP5092912 B2 JP 5092912B2 JP 2008151498 A JP2008151498 A JP 2008151498A JP 2008151498 A JP2008151498 A JP 2008151498A JP 5092912 B2 JP5092912 B2 JP 5092912B2
Authority
JP
Japan
Prior art keywords
weight
eea
parts
flame retardant
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008151498A
Other languages
Japanese (ja)
Other versions
JP2009298831A (en
Inventor
周 岩崎
滋宏 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008151498A priority Critical patent/JP5092912B2/en
Priority to US12/427,985 priority patent/US20090301751A1/en
Priority to CN200910146574.9A priority patent/CN101602878B/en
Publication of JP2009298831A publication Critical patent/JP2009298831A/en
Application granted granted Critical
Publication of JP5092912B2 publication Critical patent/JP5092912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、動的架橋技術を用いて、オレフィン系樹脂マトリックス中に分散相を形成するノンハロゲン難燃性熱可塑性エラストマ樹脂組成物に係り、特に、分散相としてシラン架橋したEEAを用いることで、難燃剤を高充填しても高速押出可能でかつ良好な伸びを示すノンハロゲン難燃熱可塑性エラストマ樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブルに関するものである。   The present invention relates to a non-halogen flame retardant thermoplastic elastomer resin composition that uses a dynamic crosslinking technique to form a dispersed phase in an olefinic resin matrix, and in particular, by using silane crosslinked EEA as the dispersed phase, The present invention relates to a non-halogen flame-retardant thermoplastic elastomer resin composition that can be extruded at high speed even when highly filled with a flame retardant and exhibits good elongation, a method for producing the same, and an electric wire / cable using the same.

環境問題に対する意識は世界的に高まりつつあり、電線被覆材料においても燃焼時に有害ガスを発生せず、マテリアルリサイクル可能な熱可塑性エラストマ樹脂が普及しつつある。   The awareness of environmental issues is increasing worldwide, and thermoplastic elastomer resins that do not generate harmful gases during combustion and that can be recycled are becoming widespread.

これまで、熱可塑性エラストマは様々な開発が行なわれており、例えば、特許文献1に示されるように、動的架橋技術を用いることで流動成分であるオレフィン系樹脂をマトリックスとし、そのマトリックス中にオレフィン系ゴムを分散させる技術がある。   Various thermoplastic elastomers have been developed so far. For example, as shown in Patent Document 1, by using a dynamic crosslinking technique, a fluid component olefin resin is used as a matrix, and the matrix is contained in the matrix. There is a technique for dispersing olefin rubber.

一般的に電線・ケーブルの絶縁材に用いるノンハロゲン高難燃性熱可塑性樹脂は、水酸化アルミニウムや水酸化マグネシウムなどをはじめとする金属水酸化物を高充填する必要がある。   Generally, non-halogen highly flame-retardant thermoplastic resins used for insulating materials for electric wires and cables need to be highly filled with metal hydroxides such as aluminum hydroxide and magnesium hydroxide.

特開平11−228750号公報JP-A-11-228750

しかしながら、金属水酸化物を高充填させた難燃熱可塑性エラストマ樹脂は、溶融流れ性が悪いため押出加工時に高いトルクがかかり、高速押出が困難となる。そればかりか、伸びが著しく低下する。また、機器用電線などの耐熱性が要求される用途においては、電子線で架橋して耐加熱変形性やカットスルー性等を向上させている。   However, the flame retardant thermoplastic elastomer resin highly filled with metal hydroxide has poor melt flowability, and therefore high torque is applied during extrusion processing, making high-speed extrusion difficult. Not only that, the elongation decreases significantly. In applications where heat resistance is required, such as for electric wires for equipment, the heat deformation resistance, cut-through resistance, and the like are improved by crosslinking with an electron beam.

そこで、本発明の目的は、上記課題を解決し、動的架橋技術を用いてオレフィン系樹脂マトリックス中に分散相を形成する際に、分散相としてシラン架橋したEEAを用いることで、電子線で架橋せずとも高い機械的強度及び耐熱性を有し、かつ難燃剤を高充填しても高速押出可能でかつ、良好な伸びを示すノンハロゲン難燃性熱可塑性エラストマ樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブル提供するものである。   Accordingly, an object of the present invention is to solve the above-mentioned problems and use silane-crosslinked EEA as a dispersed phase when forming a dispersed phase in an olefin resin matrix using a dynamic crosslinking technique. Non-halogen flame retardant thermoplastic elastomer resin composition having high mechanical strength and heat resistance without cross-linking, being capable of high-speed extrusion even when highly filled with a flame retardant, and exhibiting good elongation, and a method for producing the same We provide electric wires and cables using this.

上記目的を達成するために請求項1の発明は、(A)エチルアクリレート含有量が15mass%以上、MFR値が0.8g/10min以上のエチレン−エチルアクリレート共重合体(以下EEAと称す)を30〜80重量部、(B)熱可塑性ポリオレフィン樹脂を20〜70重量部、(C)ノンハロゲン難燃剤を、(A)と(B)の合計100重量部に対して、50〜300重量部、及びシラノール縮合触媒を含有し、前記EEAがシラン架橋され、前記(A)成分の相が前記(B)成分の相中に分散していることを特徴とするノンハロゲン難燃性熱可塑性エラストマ樹脂組成物である。 In order to achieve the above object, the invention of claim 1 is based on (A) an ethylene-ethyl acrylate copolymer (hereinafter referred to as EEA) having an ethyl acrylate content of 15 mass% or more and an MFR value of 0.8 g / 10 min or more. 30 to 80 parts by weight, (B) 20 to 70 parts by weight of a thermoplastic polyolefin resin, (C) 50 to 300 parts by weight of a non-halogen flame retardant with respect to a total of 100 parts by weight of (A) and (B) , And a silanol condensation catalyst , wherein the EEA is silane-crosslinked, and the phase of the component (A) is dispersed in the phase of the component (B). It is a thing.

請求項の発明は、前記(C)成分が、金属水酸化物である請求項1記載のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物である。 The invention according to claim 2 is the non-halogen flame retardant thermoplastic elastomer resin composition according to claim 1, wherein the component (C) is a metal hydroxide.

請求項の発明は、(A)エチルアクリレート含有量が15mass%以上、MFR値が0.8g/10min以上のエチレン−エチルアクリレート共重合体(EEA)を30〜80重量部、(B)熱可塑性ポリオレフィン樹脂を20〜70重量部、(C)ノンハロゲン難燃剤を、(A)と(B)の合計100重量部に対して、50〜300重量部含有させたノンハロゲン難燃性熱可塑性エラストマ樹脂組成物を製造するに際し、EEAにシラン化合物をグラフト共重合させた後、そのシラン化合物をグラフト共重合させたEEAと、(B)熱可塑性ポリオレフィン樹脂と、(C)ノンハロゲン難燃剤及びシラノール縮合触媒を混練し、前記(A)成分は、未架橋のEEAに、シラン化合物を共重合させることによりシラン架橋され、前記(A)成分の相が前記(B)成分の相中に分散していることを特徴とするノンハロゲン難燃性熱可塑性エラストマ樹脂組成物の製造方法である。 Invention of Claim 3 is (A) 30-80 weight part of ethylene-ethyl acrylate copolymer ( EEA ) whose ethyl acrylate content is 15 mass% or more and MFR value is 0.8 g / 10min or more, (B) 20 to 70 parts by weight of a plastic polyolefin resin and (C) a non-halogen flame retardant thermoplastic elastomer resin containing 50 to 300 parts by weight of a non-halogen flame retardant based on a total of 100 parts by weight of (A) and (B) In producing the composition, EEA is obtained by graft copolymerizing a silane compound with EEA and then graft copolymerizing the silane compound, (B) a thermoplastic polyolefin resin, (C) a non-halogen flame retardant and a silanol condensation catalyst. the kneaded, the component (a), the uncrosslinked EEA, a silane compound is a silane crosslinked by copolymerizing the A) component of the phase is a manufacturing method of the (B) non-halogen flame retardant thermoplastic elastomer resin composition characterized in that it dispersed phase in the component.

請求項の発明は、請求項1または2に記載のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物を絶縁体に用いたことを特徴とする電線である。 The invention according to claim 4 is an electric wire characterized by using the non-halogen flame retardant thermoplastic elastomer resin composition according to claim 1 or 2 as an insulator.

請求項の発明は、請求項1または2に記載のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物をシースに用いたことを特徴とするケーブルである。 The invention according to claim 5 is a cable characterized by using the non-halogen flame-retardant thermoplastic elastomer resin composition according to claim 1 or 2 as a sheath.

本発明によれば、難燃剤高充填系での高速押出が可能で良好な伸びを得ることができるノンハロゲン難燃性熱可塑性エラストマ樹脂組成物を提供できる。   According to the present invention, it is possible to provide a non-halogen flame retardant thermoplastic elastomer resin composition capable of high-speed extrusion in a highly filled flame retardant system and capable of obtaining good elongation.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず、本発明のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物が適用される電線・ケーブルについて、図1〜図3により説明する。   First, an electric wire / cable to which the halogen-free flame retardant thermoplastic elastomer resin composition of the present invention is applied will be described with reference to FIGS.

図1は、銅導体1に、ノンハロゲン難燃性熱可塑性エラストマ樹脂組成物からなる絶縁体2を被覆した電線10を示している。   FIG. 1 shows an electric wire 10 in which a copper conductor 1 is coated with an insulator 2 made of a halogen-free flame retardant thermoplastic elastomer resin composition.

図2は、図1に示した電線10を3本撚り合わせ、その外周に、ノンハロゲン難燃性熱可塑性エラストマ樹脂組成物からなるシース3を被覆したケーブル20を示している。   FIG. 2 shows a cable 20 in which three wires 10 shown in FIG. 1 are twisted and the outer periphery thereof is covered with a sheath 3 made of a non-halogen flame-retardant thermoplastic elastomer resin composition.

図3は、図1に示した電線10を複数本(図では4本)を撚り合わせ介在4を介して押さえ巻きテープ5を施してコア6を形成し、そのコア6の外周に、ノンハロゲン難燃性熱可塑性エラストマ樹脂組成物からなるシース7を被覆したケーブル30を示している。   3 shows a core 6 formed by twisting a plurality of wires 10 (four in the figure) shown in FIG. The cable 30 which coat | covered the sheath 7 which consists of a flammable thermoplastic elastomer resin composition is shown.

図1〜図3に示したノンハロゲン難燃性熱可塑性エラストマ樹脂組成物からなる絶縁体2、シース3,7は押出成形により被覆される。   The insulator 2 and the sheaths 3 and 7 made of the non-halogen flame retardant thermoplastic elastomer resin composition shown in FIGS. 1 to 3 are coated by extrusion molding.

この本発明のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物は、(A)EA含有量が15mass%以上、MFR値が0.8g/10min以上のエチレン−エチルアクリレート共重合体(EEA)を30〜80重量部、(B)熱可塑性ポリオレフィン樹脂を20〜70重量部、(C)ノンハロゲン難燃剤を、(A)と(B)の合計100重量部に対して50〜300重量部含有し、EEAがシラン架橋されているものである。   This non-halogen flame retardant thermoplastic elastomer resin composition of the present invention comprises (A) an ethylene-ethyl acrylate copolymer (EEA) having an EA content of 15 mass% or more and an MFR value of 0.8 g / 10 min or more. 80 parts by weight, (B) 20 to 70 parts by weight of thermoplastic polyolefin resin, (C) a non-halogen flame retardant containing 50 to 300 parts by weight with respect to a total of 100 parts by weight of (A) and (B), EEA Are silane cross-linked.

また、(A)成分はシラン架橋させるためにシラン化合物を共重合された樹脂組成物である。   The component (A) is a resin composition obtained by copolymerizing a silane compound for silane crosslinking.

上記(B)熱可塑性ポリオレフィン樹脂の成分中に(A)EEA成分が動的架橋で架橋され分散しているものである。   The component (A) EEA is crosslinked and dispersed by dynamic crosslinking in the component (B) of the thermoplastic polyolefin resin.

(A)成分のEEAとしてはEA含有量が15mass%未満では優れた難燃性を得ることが出来ない。MFR値が0.8g/10min未満では、溶融流れ性が悪く、押出成形などをした際の外観が悪化する。(A)成分30重量部未満の場合、十分な架橋が得られず耐熱性が劣る。また、80重量部より多い場合、溶融流れ性が悪く、押出成形などをした際の外観が悪化する。   As the EEA of the component (A), when the EA content is less than 15 mass%, excellent flame retardancy cannot be obtained. When the MFR value is less than 0.8 g / 10 min, the melt flowability is poor, and the appearance when extrusion molding or the like is deteriorated. When the component (A) is less than 30 parts by weight, sufficient crosslinking cannot be obtained and the heat resistance is poor. Moreover, when more than 80 weight part, melt flowability is bad and the external appearance at the time of extrusion molding etc. deteriorates.

さらに、(C)成分が(A)と(B)の合計100重量部に対して、50重量部未満の場合、優れた難燃性を得ることが出来ず、一方300重量部より多いと機械的強度が著しく低下する。   Furthermore, when the component (C) is less than 50 parts by weight relative to the total of 100 parts by weight of (A) and (B), excellent flame retardancy cannot be obtained, while if it exceeds 300 parts by weight, the machine The mechanical strength is significantly reduced.

このように本発明は、動的架橋技術を用いてオレフィン系マトリックス中に分散相を形成する材料としてEEAを用いることにより、難燃剤を高充填しても流動性が良好で高速押出し可能なノンハロゲン難燃熱可塑性エラストマ樹脂組成物を得ることができる。   In this way, the present invention uses non-halogen capable of high-speed extrusion with good flowability even when highly filled with a flame retardant, by using EEA as a material for forming a dispersed phase in an olefin matrix using dynamic crosslinking technology. A flame retardant thermoplastic elastomer resin composition can be obtained.

すなわち、第1に、本発明においては、金属水酸化物等の難燃剤が動的架橋により形成された分散相(架橋EEA)に主に分布する性質を利用し、分散相(島相)以外の海相(熱可塑性ポリオレフィン系樹脂)における金属水酸化物による機械的特性の低下を防止するとともに、流動性低下の原因となる樹脂中の異物(金属水酸化物等の難燃剤)を分散相(島相)に閉じこめることで、海相における流動性を確保し、良好な押出し性を得ることができる。   That is, firstly, in the present invention, a flame retardant such as a metal hydroxide is mainly distributed in a dispersed phase (crosslinked EEA) formed by dynamic crosslinking, and other than the dispersed phase (island phase). In addition to preventing deterioration of mechanical properties due to metal hydroxide in the sea phase (thermoplastic polyolefin-based resin) of the seawater, it is possible to disperse foreign substances (flame retardants such as metal hydroxide) in the resin that cause a decrease in fluidity. By confining to (island phase), fluidity in the sea phase can be secured and good extrudability can be obtained.

さらに、第2に、EEAにおいては他のエチレン共重合体に比べてシランのグラフトされる量が少ないため架橋がある程度抑制されることを利用し、耐熱性を得るために十分な架橋効果を得つつ、架橋物による押出加工性の低下を防止することができる。   Secondly, in EEA, since the amount of silane grafted is small compared to other ethylene copolymers, crosslinking is suppressed to some extent, and sufficient crosslinking effect is obtained to obtain heat resistance. Meanwhile, it is possible to prevent the extrudability from being lowered due to the crosslinked product.

上記、第1及び第2の理由により、本発明においては、高流動性で高速押出し可能なノンハロゲン難燃熱可塑性エラストマ樹脂組成物を得ることができる。   For the first and second reasons described above, in the present invention, a non-halogen flame-retardant thermoplastic elastomer resin composition that can be extruded at high speed and at high speed can be obtained.

本発明において、シラン架橋を選択した理由は、硫黄による架橋では硫化系ガスの生成に伴う異臭の問題や着色するための成形物の色相を自由に設定することが難しいという問題があり、また有機過酸化物による架橋では流動成分であるポリオレフィン系樹脂を同時に架橋させてしまうため、ポリオレフィン系樹脂として架橋の起こりづらい樹脂を選ぶ必要があり、実質的に硬い部類に入るポリプロピレンしか選択できないという問題があるためである。   In the present invention, the reason for selecting silane cross-linking is that there is a problem of off-flavor associated with the generation of sulfur-based gas in the cross-linking with sulfur and a problem that it is difficult to freely set the hue of the molded product for coloring. In the case of cross-linking with peroxide, the polyolefin resin, which is a fluid component, is simultaneously cross-linked, so it is necessary to select a resin that is difficult to cross-link as the polyolefin-based resin, and there is a problem that only polypropylene that is substantially hard can be selected. Because there is.

シラン化合物には、ポリマと反応可能な基とシラノール縮合により架橋を形成するアルコキシ基をともに有していることが要求され、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシラン、ビニルトリス(β−メトキシエトキシ)シラン等のビニルシラン化合物、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フエニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン化合物、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン化合物、γ−メタクリロキシプロピルトリメトキシシラン等のアクリルシラン化合物、ビス(3−メタクリロキシシリル)プロピル)ジスルフィド、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのポリスルフィドシラン化合物、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなどのメルカプトシラン化合物等を挙げることができる。   The silane compound is required to have both a group capable of reacting with a polymer and an alkoxy group that forms a crosslink by silanol condensation. Specifically, vinyltrimethoxysilane, vinyltriethoxylane, vinyltris (β -Methoxyethoxy) silane and other vinylsilane compounds, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, β- (aminoethyl) γ- Aminosilane compounds such as aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, β- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycid Xylpropylmethyldiethoxysilane Epoxy silane compounds such as γ-methacryloxypropyltrimethoxysilane, and other polysilane silane compounds such as bis (3-methacryloxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide And mercaptosilane compounds such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane.

シラン化合物を共重合させるにはベースのEEAに所定量のシラン化合物、フリーラジカル発生剤を溶融混練する方法を用いることができる。   In order to copolymerize the silane compound, a method of melt kneading a predetermined amount of the silane compound and a free radical generator in the base EEA can be used.

フリーラジカル発生剤としては、ジクミルパーオキサイドなどの有機過酸化物が主として使用できる。シラン化合物の添加量は、特に規定しないが良好な物性を得るためにはEEA100重量部に対して、0.5〜10.0重量部が好適である。0.5重量部より少ないと十分な架橋効果が得られず、組成物の強度、耐熱性が劣る。10.0重量部を超えると加工性が著しく低下する。   As the free radical generator, organic peroxides such as dicumyl peroxide can be mainly used. The addition amount of the silane compound is not particularly limited, but is preferably 0.5 to 10.0 parts by weight with respect to 100 parts by weight of EEA in order to obtain good physical properties. When the amount is less than 0.5 part by weight, a sufficient crosslinking effect cannot be obtained, and the strength and heat resistance of the composition are inferior. If it exceeds 10.0 parts by weight, the workability is remarkably lowered.

また、フリーラジカル発生剤である有機過酸化物の最適な量は、EEA100重量部に対して0.001〜3.0重量部である。0.001重量部より少ないとシラン化合物が十分に共重合せず十分な架橋効果が得られない。3.0重量部を超えるとEEAのスコーチが起きやすくなる。   The optimum amount of the organic peroxide that is a free radical generator is 0.001 to 3.0 parts by weight with respect to 100 parts by weight of EEA. When the amount is less than 0.001 part by weight, the silane compound is not sufficiently copolymerized and a sufficient crosslinking effect cannot be obtained. When the amount exceeds 3.0 parts by weight, EEA scorch tends to occur.

(C)成分である金属酸化物は、水酸化マグネシウムがもっとも難燃性が優れているが、水酸化アルミニウムや水酸化カルシウムなどでも良い。また、これらの金属水酸化物は、シランカップリング剤、チタネート系カップリング剤、ステアリン酸やステアリン酸カルシウム等の脂肪酸又は、脂肪酸金属塩等によって表面処理されているものを用いても良い。   As the metal oxide as the component (C), magnesium hydroxide is most excellent in flame retardancy, but aluminum hydroxide, calcium hydroxide, or the like may be used. In addition, these metal hydroxides may be used which are surface-treated with a silane coupling agent, a titanate coupling agent, a fatty acid such as stearic acid or calcium stearate, or a fatty acid metal salt.

(B)熱可塑性ポリオレフィン系樹脂としては既知のものが使用でき、特にポリプロピレン、高密度ポリエチレン、直鎮状低密度ポリエチレン、超低密度ポリエチレン、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体の中から選ばれる少なくとも1種を含み、単独もしくは2種以上をブレンドして用いるのが望ましい。   (B) Known thermoplastic polyolefin resins can be used, particularly polypropylene, high density polyethylene, straight-chain low density polyethylene, ultra low density polyethylene, ethylene-butene-1 copolymer, ethylene-hexene-1. It contains at least one selected from a copolymer, an ethylene-octene-1 copolymer, an ethylene-vinyl acetate copolymer, and an ethylene-ethyl acrylate copolymer, and is used alone or in combination of two or more. Is desirable.

また、シラン架橋した(A)成分と(B)成分と(C)とを混練して動的架橋させる際に、ジブチル錫ラウリレート等のシラノール縮合触媒を予めEVAに混練したものを添加するとよい。 Further, when kneading the silane-crosslinked component (A), the component (B) and the component (C) for dynamic crosslinking, it is preferable to add a kneaded silanol condensation catalyst such as dibutyltin laurate in advance to EVA.

材料は、EEAにシラン化合物をグラフト共重合させる工程および、シラン化合物をグラフト共重合させたEEA、熱可塑性ポリオレフィン系樹脂、金属水酸化物、シラノール縮合触媒(ジブチル錫ラウリレート)の配合剤を混練し、EEAをシラン架橋させる工程によって作製した。 The material is a process of graft copolymerizing a silane compound with EEA, and a compounding agent of EEA grafted with silane compound, thermoplastic polyolefin resin, metal hydroxide, silanol condensation catalyst ( dibutyltin laurylate ). , EEA was prepared by the step of cross-linking silane.

EEAにシラン化合物をグラフト共重合させる工程では、原料のEEA、ビニルトリメトキシシラン、ジクミルパーオキサイドを表1、2に示した(A)成分の比率で含浸混合したものを準備し、これらを200℃の40mm押出機(L/D=24)で滞留時間が約5分となるように押出し、グラフト反応させた。   In the step of graft-copolymerizing the silane compound with EEA, a material in which raw materials EEA, vinyltrimethoxysilane, and dicumyl peroxide are impregnated and mixed in the ratio of component (A) shown in Tables 1 and 2 is prepared. Extrusion was conducted with a 40 mm extruder (L / D = 24) at 200 ° C. so that the residence time was about 5 minutes, and a graft reaction was carried out.

次に表1の各例に示した配合の各成分を40mm二軸押出機(L/D=60)に一括して投入することで混練し、混練中にシラン化合物がグラフト共重合されたEEAを動的架橋させることで混練物を作製した。   Next, each component of the formulation shown in each example of Table 1 was kneaded by batch feeding into a 40 mm twin screw extruder (L / D = 60), and EEA in which a silane compound was graft copolymerized during kneading. A kneaded product was prepared by dynamically cross-linking.

温度は180℃とし、スクリュ回転数は100rpmとした。これをペレット化し、ケーブル作製用の材料とした。   The temperature was 180 ° C. and the screw rotation speed was 100 rpm. This was pelletized and used as a material for cable production.

ケーブルは180℃に予熱した40mm押出機(L/D=24)を用い、ケーブルコアに厚さ0.41mmでシースを押出被覆して作製した。   The cable was produced by using a 40 mm extruder (L / D = 24) preheated to 180 ° C. and extrusion covering the cable core with a thickness of 0.41 mm.

機械的強度、耐熱性、難燃性はJISC3005に準拠して評価した。引張強さ10MPa以上、破断伸び150%以上を合格とした。耐熱性は加熱変形試験(75℃、荷重10Nの条件)により評価し、被覆厚さ(実施例では0.41mm)に対する減少率10%以下を合格とした。   Mechanical strength, heat resistance, and flame retardancy were evaluated according to JISC3005. A tensile strength of 10 MPa or more and an elongation at break of 150% or more were regarded as acceptable. The heat resistance was evaluated by a heat deformation test (conditions of 75 ° C. and a load of 10 N), and a reduction rate of 10% or less with respect to the coating thickness (0.41 mm in the example) was accepted.

難燃性評価には60度傾斜燃焼試験を行い、炎を取り去った後の延焼時間を測定し60秒以内に自然消火したものを合格とした。   For the flame retardancy evaluation, a 60-degree inclined combustion test was performed, the fire spread time after removing the flame was measured, and the fire extinguisher within 60 seconds was regarded as acceptable.

また、シラン架橋の有無を確認するため、110℃の熱キシレン中で24時間材料の抽出を行った。残存不溶ポリマがあれば架橋が導入されたと判定した。押出加工性は押出成形時の外観を目視で確認し、滑らかであれば「良」、凸凹があれば「不良」と判断した。   Moreover, in order to confirm the presence or absence of silane crosslinking, the material was extracted in hot xylene at 110 ° C. for 24 hours. If there was a residual insoluble polymer, it was determined that crosslinking was introduced. Extrusion processability was confirmed by visual inspection of the appearance at the time of extrusion molding, and judged to be “good” if smooth and “bad” if uneven.

Figure 0005092912
Figure 0005092912

Figure 0005092912
Figure 0005092912

実施例1
EEAとしてA−703(三井デュポンケミカル製、MFR=5g/10min、EA=25%)、ビニルトリメトキシシランとしてS210(チッソ製)、ジクミルパーオキサイドとしてDCP(日本油脂製、半減期温度:179℃、1分)を60/1.2/0.006重量部の比率で上記の混練方法でグラフト反応させた後、この(A)成分に、(B)成分、(C)成分、触媒を表1に示した配合で混練し、評価した。
Example 1
A-703 (manufactured by Mitsui DuPont Chemical Co., MFR = 5 g / 10 min, EA = 25%) as EEA, S210 (manufactured by Chisso) as vinyltrimethoxysilane, DCP (manufactured by NOF Corporation, half-life temperature: 179) 1 minute) at a ratio of 60 / 1.2 / 0.006 parts by weight with the above kneading method, and then the component (A) is mixed with the component (B), the component (C), and the catalyst. It knead | mixed with the mixing | blending shown in Table 1, and evaluated.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

実施例2
A−703(EEA)、S210、DCPを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させた後、表1に示した配合で混練し、評価した。
Example 2
A-703 (EEA), S210, and DCP were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and then kneaded and evaluated according to the formulation shown in Table 1.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

実施例3
EEAとしてA1150(日本ポリエチレン製、MFR=0.8g/10min、EA=15%)を用い、S210、DCPを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させ、表1に示した配合で混練し、評価した。
Example 3
A1150 (manufactured by Nippon Polyethylene, MFR = 0.8 g / 10 min, EA = 15%) was used as EEA, and S210 and DCP were subjected to a graft reaction by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight. These were kneaded with the formulation shown in Table 1 and evaluated.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

実施例4
A−703(EEA)、S210、DCPを30/0.6/0.003重量部の比率で上記の混練方法でグラフト反応させた後、表1に示した配合で混練し、評価した。
Example 4
A-703 (EEA), S210, and DCP were graft-reacted by the above kneading method at a ratio of 30 / 0.6 / 0.003 parts by weight, and then kneaded with the formulation shown in Table 1 and evaluated.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

実施例5
A−703(EEA)、S210、DCPを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させた後、表1に示した配合で混練し、評価した。
Example 5
A-703 (EEA), S210, and DCP were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and then kneaded and evaluated according to the formulation shown in Table 1.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

実施例6
A−703(EEA)、S210、DCPを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させた後、表1に示した配合で混練し、評価した。
Example 6
A-703 (EEA), S210, and DCP were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and then kneaded and evaluated according to the formulation shown in Table 1.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

実施例7
A−703(EEA)、S210、DCPを80/0.4/0.008重量部の比率で上記の混練方法でグラフト反応させた後、表1に示した配合で混練し、評価した。
Example 7
A-703 (EEA), S210, and DCP were grafted by the above kneading method at a ratio of 80 / 0.4 / 0.008 parts by weight, and then kneaded and evaluated according to the formulation shown in Table 1.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

実施例8
A−703(EEA)、S210、DCPを80/8/2.4重量部の比率で上記の混練方法でグラフト反応させた後、表1に示した配合で混練し、評価した。
Example 8
A-703 (EEA), S210, and DCP were grafted by the above kneading method at a ratio of 80/8 / 2.4 parts by weight, and then kneaded with the formulation shown in Table 1 and evaluated.

その結果、どの評価においても良好な結果が得られた。   As a result, good results were obtained in all evaluations.

比較例1
MFR=5g/10min、EA=25%のEEA(A−703)、ビニルトリメトキシシラン(S210)、ジクミルパーオキサイド(DCP)を90/1.8/0.009重量部の比率で上記の混練方法でグラフト反応させた後、表2に示した配合で混練し、評価した。
Comparative Example 1
MFR = 5 g / 10 min, EA = 25% of EEA (A-703), vinyltrimethoxysilane (S210), dicumyl peroxide (DCP) at a ratio of 90 / 1.8 / 0.009 parts by weight After the graft reaction by the kneading method, the mixture shown in Table 2 was kneaded and evaluated.

この比較例1においては、実施例2と比較して(В)成分が少ない(10重量部)ため、引張強さ、伸び、架橋の有無、耐熱性、難燃性については良好であったが、押出成形品表面がざらついており不良と判定した。   In Comparative Example 1, since the component (В) was small (10 parts by weight) compared to Example 2, the tensile strength, elongation, presence / absence of crosslinking, heat resistance, and flame retardancy were good. The surface of the extruded product was rough and judged to be defective.

比較例2
MFR=5g/10min、EA=25%のEEA(A−703)、ビニルトリメトキシシラン、ジクミルパーオキサイドを20/0.4/0.002重量部の比率で上記の混練方法でグラフト反応させ、表2に示した配合で混練し、評価した。
Comparative Example 2
MFR = 5 g / 10 min, EA = 25% EEA (A-703), vinyltrimethoxysilane, dicumyl peroxide were grafted by the above kneading method at a ratio of 20 / 0.4 / 0.002 parts by weight. These were kneaded with the formulation shown in Table 2 and evaluated.

この比較例2においては、実施例4と比較して(В)成分が多い(80重量部)ため、引張強さ、伸び、難燃性、押出加工性については良好であったが、架橋有無の評価で残存ポリマが確認されなかった。よって、耐熱性の加熱変形試験も減少率が10%を下回ったので不良と判定した。   In Comparative Example 2, since there were more (В) components (80 parts by weight) than Example 4, the tensile strength, elongation, flame retardancy, and extrusion processability were good, but there was no crosslinking. As a result, no residual polymer was confirmed. Therefore, the heat resistance heat deformation test was also judged to be defective because the reduction rate was less than 10%.

比較例3
MFR=5g/10min、EA=9%のEEA、ビニルトリメトキシシラン、ジクミルパーオキサイドを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させ、表2に示した配合で混練し、評価した。
Comparative Example 3
MFR = 5 g / 10 min, EA = 9% EEA, vinyltrimethoxysilane, dicumyl peroxide were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and shown in Table 2. The kneading was conducted and evaluated.

この比較例3においては、EEAのEA含有量が低く(9%)、その結果、引張強さ、伸び、押出加工性については良好であったが、難燃性評価においては60秒以上経過しても自然消火せず、不合格と判定した。   In Comparative Example 3, the EA content of EEA was low (9%). As a result, the tensile strength, elongation, and extrudability were good, but 60 seconds or more passed in the flame retardancy evaluation. Even if it did not extinguish spontaneously, it was judged as unacceptable.

比較例4
MFR=0.5g/10min、EA=15%のEEA、ビニルトリメトキシシラン、ジクミルパーオキサイドを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させ、表2に示した配合で混練し、評価した。
Comparative Example 4
MFR = 0.5 g / 10 min, EA = 15% EEA, vinyltrimethoxysilane and dicumyl peroxide were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and Table 2 Kneading was carried out with the formulation shown in Fig. 1 and evaluated.

この比較例4においては、MFRが0.5g/10minであるため、引張強さ、架橋の有無、耐熱性、難燃性については良好であったが、押出加工時のトルクが実施例1〜8よりも高く、外観もメルトフローが目立つため不良と判定した。   In Comparative Example 4, since the MFR was 0.5 g / 10 min, the tensile strength, the presence / absence of crosslinking, heat resistance, and flame retardance were good, but the torque during extrusion processing was 1 to It was higher than 8, and the appearance was also judged as poor because the melt flow was conspicuous.

比較例5
MFR=5g/10min、EA=25%のEEA、ビニルトリメトキシシラン、ジクミルパーオキサイドを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させ、表2に示した配合で混練し、評価した。
Comparative Example 5
MFR = 5 g / 10 min, EA = 25% EEA, vinyltrimethoxysilane, dicumyl peroxide were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and shown in Table 2. The kneading was conducted and evaluated.

この比較例5においては、水酸化マグネシウムの充填量が実施例5に比べて多い(450重量部)ため伸びが150%を下回り、押出加工品表面にざらつきが有ったため押出加工性は不良と判定した。   In Comparative Example 5, the amount of magnesium hydroxide filled was larger than that in Example 5 (450 parts by weight), so the elongation was less than 150% and the surface of the extruded product was rough. Judged.

比較例6
MFR=5g/10min、EA=25%のEEA、ビニルトリメトキシシラン、ジクミルパーオキサイドを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させ、表2に示した配合で混練し、評価した。
Comparative Example 6
MFR = 5 g / 10 min, EA = 25% EEA, vinyltrimethoxysilane, dicumyl peroxide were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and shown in Table 2. The kneading was conducted and evaluated.

この比較例6においては、水酸化マグネシウムの充填量が実施例4に比べて少ない(40重量部)ため、難燃性評価においては60秒以上経過しても自然消火せず、不合格と判定した。   In this comparative example 6, since the filling amount of magnesium hydroxide is smaller (40 parts by weight) than in example 4, in the flame retardancy evaluation, even if 60 seconds or more have passed, the fire does not spontaneously extinguish and it is determined as rejected. did.

比較例7
MFR=30g/10min、VA=42%のEVA、ビニルトリメトキシシラン、ジクミルパーオキサイドを80/1.6/0.008重量部の比率で上記の混練方法でグラフト反応させ、表2に示した配合で混練し、評価した。
Comparative Example 7
MFR = 30 g / 10 min, VA = 42% EVA, vinyltrimethoxysilane, dicumyl peroxide were grafted by the above kneading method at a ratio of 80 / 1.6 / 0.008 parts by weight, and shown in Table 2. The kneading was conducted and evaluated.

この比較例7においては、EVAを用いているため、実施例2、3と比べて押出時のトルクが高く、外観もメルトフローが目立つため押出加工性は不良と判断した。   In Comparative Example 7, since EVA was used, the torque during extrusion was higher than in Examples 2 and 3, and the melt flow was conspicuous in appearance, so that the extrusion processability was judged to be poor.

比較例8
MFR=0.37g/10minのHDPE、ビニルトリメトキシシラン、ジクミルパーオキサイドを80/1.6/0.008重量部の比率で、上記混練方法でグラフト反応させ、表2に示した配合で混練し、評価した。
Comparative Example 8
MFR = 0.37 g / 10 min of HDPE, vinyltrimethoxysilane, and dicumyl peroxide were grafted at a ratio of 80 / 1.6 / 0.008 parts by weight by the above kneading method, and the formulation shown in Table 2 was used. Kneaded and evaluated.

この比較例8においては、HDPEを用いているため、架橋残存ポリマは確認することは出来なかった。また、難燃性評価としては60秒以上経過しても自然消火しなかった。さらに、押出成形品表面にざらつきがあり不良と判定した。   In Comparative Example 8, since HDPE was used, no crosslinked residual polymer could be confirmed. Moreover, as a flame retardant evaluation, even if 60 seconds or more passed, it did not extinguish spontaneously. Furthermore, the surface of the extruded product was rough and judged to be defective.

以上より、動的架橋技術を用いて、オレフィン系樹脂マトリックス中に分散相としてEEAを用いずに、難燃剤を高充填すると、押出トルクが高くなり、高速押出が難しくなるばかりでなく、伸びが著しく低下する。そのため、押出加工性、伸びを良くするためには分散相をEEAにする必要がある。   From the above, using a dynamic cross-linking technique, when the flame retardant is highly charged without using EEA as the dispersed phase in the olefin-based resin matrix, the extrusion torque becomes high, high-speed extrusion becomes difficult, and elongation increases. It drops significantly. Therefore, in order to improve the extrudability and elongation, the dispersed phase needs to be EEA.

また成分(A)のEEAと成分(В)とは、80/20〜20/80の範囲がよく、また(C)成分の難燃剤は、(A)と(B)の合計100重量部に対して50〜300重量部添加することで、難燃性があり、押出加工性も良好であることが判った。   Further, the EEA of the component (A) and the component (В) are preferably in the range of 80/20 to 20/80, and the flame retardant of the component (C) is 100 parts by weight in total of (A) and (B). On the other hand, it was found that addition of 50 to 300 parts by weight has flame retardancy and good extrudability.

本発明が適用される電線の詳細断面図である。It is a detailed sectional view of an electric wire to which the present invention is applied. 本発明が適用されるケーブルの詳細断面図である。It is a detailed sectional view of a cable to which the present invention is applied. 本発明が適用されるケーブルの詳細断面図である。It is a detailed sectional view of a cable to which the present invention is applied.

符号の説明Explanation of symbols

1 銅導体
2 絶縁体
3、7 シース
10 電線
20、30 ケーブル
1 Copper conductor 2 Insulator 3, 7 Sheath 10 Electric wire 20, 30 Cable

Claims (5)

(A)エチルアクリレート含有量が15mass%以上、MFR値が0.8g/10min以上のエチレン−エチルアクリレート共重合体(以下EEAと称す)を30〜80重量部、(B)熱可塑性ポリオレフィン樹脂を20〜70重量部、(C)ノンハロゲン難燃剤を、(A)と(B)の合計100重量部に対して、50〜300重量部、及びシラノール縮合触媒を含有し、前記EEAがシラン架橋され、前記(A)成分の相が前記(B)成分の相中に分散していることを特徴とするノンハロゲン難燃性熱可塑性エラストマ樹脂組成物。 (A) 30-80 parts by weight of an ethylene-ethyl acrylate copolymer (hereinafter referred to as EEA) having an ethyl acrylate content of 15 mass% or more and an MFR value of 0.8 g / 10 min or more, and (B) a thermoplastic polyolefin resin. 20 to 70 parts by weight, (C) a non-halogen flame retardant containing 50 to 300 parts by weight and a silanol condensation catalyst with respect to a total of 100 parts by weight of (A) and (B) , and the EEA is silane-crosslinked The non-halogen flame retardant thermoplastic elastomer resin composition , wherein the phase of the component (A) is dispersed in the phase of the component (B) . 前記(C)成分が、金属水酸化物である請求項1記載のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物。   The non-halogen flame retardant thermoplastic elastomer resin composition according to claim 1, wherein the component (C) is a metal hydroxide. (A)エチルアクリレート含有量が15mass%以上、MFR値が0.8g/10min以上のエチレン−エチルアクリレート共重合体(EEA)を30〜80重量部、(B)熱可塑性ポリオレフィン樹脂を20〜70重量部、(C)ノンハロゲン難燃剤を、(A)と(B)の合計100重量部に対して、50〜300重量部含有させたノンハロゲン難燃性熱可塑性エラストマ樹脂組成物を製造するに際し、EEAにシラン化合物をグラフト共重合させた後、そのシラン化合物をグラフト共重合させたEEAと、(B)熱可塑性ポリオレフィン樹脂と、(C)ノンハロゲン難燃剤及びシラノール縮合触媒を混練し、前記(A)成分は、未架橋のEEAに、シラン化合物を共重合させることによりシラン架橋され、前記(A)成分の相が前記(B)成分の相中に分散していることを特徴とするノンハロゲン難燃性熱可塑性エラストマ樹脂組成物の製造方法。 (A) 30-80 parts by weight of ethylene-ethyl acrylate copolymer (EEA) having an ethyl acrylate content of 15 mass% or more and an MFR value of 0.8 g / 10 min or more, and (B) 20-70 thermoplastic polyolefin resin. In producing a non-halogen flame retardant thermoplastic elastomer resin composition containing 50 parts by weight of (C) a non-halogen flame retardant with respect to a total of 100 parts by weight of (A) and (B), After graft copolymerizing a silane compound with EEA, kneading EEA graft-copolymerized with the silane compound, (B) a thermoplastic polyolefin resin, (C) a non-halogen flame retardant and a silanol condensation catalyst, ) Component is silane-crosslinked by copolymerizing a non-crosslinked EEA with a silane compound, and the phase of the component (A) is (B) The manufacturing method of the halogen-free flame-retardant thermoplastic elastomer resin composition characterized by disperse | distributing in the phase of a component . 請求項1または2に記載のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物を絶縁体に用いたことを特徴とする電線。 An electric wire comprising the non-halogen flame retardant thermoplastic elastomer resin composition according to claim 1 or 2 as an insulator. 請求項1または2に記載のノンハロゲン難燃性熱可塑性エラストマ樹脂組成物をシースに用いたことを特徴とするケーブル。 A cable comprising the non-halogen flame-retardant thermoplastic elastomer resin composition according to claim 1 or 2 as a sheath.
JP2008151498A 2008-06-10 2008-06-10 Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same Expired - Fee Related JP5092912B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008151498A JP5092912B2 (en) 2008-06-10 2008-06-10 Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same
US12/427,985 US20090301751A1 (en) 2008-06-10 2009-04-22 Non-halogen flame retardant thermoplastic elastomer resin composition, method for fabricating same, and electric wire and cable using the same
CN200910146574.9A CN101602878B (en) 2008-06-10 2009-06-08 Non-halogen flame retardant thermoplastic elastomer resin composition, method for fabricating same, and electric wire and cable using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151498A JP5092912B2 (en) 2008-06-10 2008-06-10 Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same

Publications (2)

Publication Number Publication Date
JP2009298831A JP2009298831A (en) 2009-12-24
JP5092912B2 true JP5092912B2 (en) 2012-12-05

Family

ID=41546066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151498A Expired - Fee Related JP5092912B2 (en) 2008-06-10 2008-06-10 Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same

Country Status (1)

Country Link
JP (1) JP5092912B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163597B2 (en) * 2009-06-19 2013-03-13 日立電線株式会社 Non-halogen flame retardant resin composition, method for producing the same, and electric wire / cable using the same
JP6202390B2 (en) * 2012-12-27 2017-09-27 日立金属株式会社 Electric wires and cables
JP6098497B2 (en) * 2013-12-18 2017-03-22 日立金属株式会社 LAN cable using non-halogen flame retardant resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295939A (en) * 1986-06-16 1987-12-23 Sumitomo Bakelite Co Ltd Flame-retardant ethylene/ethyl acrylate resin composition
JPH01206509A (en) * 1988-02-10 1989-08-18 Hitachi Cable Ltd Flame retardant electrical insulating composition
JP2002133963A (en) * 2000-10-23 2002-05-10 Hitachi Cable Ltd Method for manufacturing crosslinked polyolefin electric wire and cable
JP2002146115A (en) * 2000-11-10 2002-05-22 Sumitomo Wiring Syst Ltd Flame-retardant resin composition
JP2003138069A (en) * 2001-11-01 2003-05-14 Fujikura Ltd Flame-retardant resin composition

Also Published As

Publication number Publication date
JP2009298831A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4270237B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same
US9093197B2 (en) Composition for wire coating member, insulated wire, and wiring harness
JP5056601B2 (en) Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same
JP6379776B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, electric wire and cable
US11192984B2 (en) Heat-resistant crosslinked fluorocarbon rubber formed body and method for producing the same, silane master batch, master batch mixture and formed body thereof, and heat-resistant product
US20090301751A1 (en) Non-halogen flame retardant thermoplastic elastomer resin composition, method for fabricating same, and electric wire and cable using the same
JP2009019190A (en) Non-halogen flame-retardant resin composition and non-halogen flame-retardant electric wire or cable
JP2010254883A (en) Non-halogen flame-retardant resin composition, method for producing the same, and electric wire and cable using the same
US11718741B2 (en) Heat-resistant crosslinked fluororubber formed body and method of producing the same, silane masterbatch, masterbatch mixture, and heat-resistant product
JP5269476B2 (en) Electric wire / cable
EP2275477B1 (en) Flame retardant polymer composition comprising an ethylene copolymer with maleic anhydride units as coupling agent
US11643487B2 (en) Heat-resistant crosslinked fluororubber formed body and method of producing the same, and heat-resistant product
JP5163597B2 (en) Non-halogen flame retardant resin composition, method for producing the same, and electric wire / cable using the same
JP2014005373A (en) Thermoplastic elastomer composition and extra-high voltage cable for railway vehicle using the same
JP5092912B2 (en) Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same
JP2011080020A (en) Non-halogen flame-retardant resin composition, manufacturing method therefor, and electric cable using the same
JP3047911B1 (en) Non-halogen flame-retardant resin composition and its applied products
JP2015004025A (en) Non-halogen flame-retardant resin composition and cable using the same
JP7426876B2 (en) Crosslinked fluororubber composition, wiring material using the same, and manufacturing method thereof
JP5794216B2 (en) Non-halogen flame retardant resin composition and method for producing the same, insulated wire and cable using the same
JP6098497B2 (en) LAN cable using non-halogen flame retardant resin composition
US11603460B2 (en) Thermoset insulation composition
JP7214677B2 (en) Crosslinked fluororubber composition, wiring material using the same, and method for producing the same
JP7157541B2 (en) Wiring material
JP7157540B2 (en) Wiring material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees