WO2015002015A1 - Operating method for membrane separation device, and membrane separation system - Google Patents

Operating method for membrane separation device, and membrane separation system Download PDF

Info

Publication number
WO2015002015A1
WO2015002015A1 PCT/JP2014/066630 JP2014066630W WO2015002015A1 WO 2015002015 A1 WO2015002015 A1 WO 2015002015A1 JP 2014066630 W JP2014066630 W JP 2014066630W WO 2015002015 A1 WO2015002015 A1 WO 2015002015A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
membrane separation
membrane element
separation device
Prior art date
Application number
PCT/JP2014/066630
Other languages
French (fr)
Japanese (ja)
Inventor
育野 望
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2015002015A1 publication Critical patent/WO2015002015A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to an operation method and a membrane separation system of a membrane separation device such as a reverse osmosis membrane separation device and a microfiltration device, and more particularly to an operation method and a membrane separation system of a spiral membrane separation device.
  • RO membrane reverse osmosis membrane
  • NF membrane nanofiltration membrane
  • Spiral membrane elements form a bag-like membrane by overlaying reverse osmosis membranes on both sides of the permeate spacer and bonding three sides, and attach the opening side of the bag-like membrane to the permeate water collecting pipe
  • the outer periphery of the permeate water collecting pipe is wound around in a spiral shape.
  • the raw water is supplied from one end face side of the spiral membrane element, flows along the raw water spacer, and is discharged as concentrated water from the other end face side of the spiral membrane element. In the process of flowing along the raw water spacer, the raw water permeates through the reverse osmosis membrane to become permeated water.
  • This permeated water flows along the permeated water spacer into the permeated water collecting pipe located in the center, It is discharged from the end of the water pipe.
  • a raw water path is formed by raw water spacers arranged between the wound bag-like membranes (Patent Documents 1 to 3).
  • the diameter (outer diameter) of the membrane element of the spiral membrane separator has been mainly 8 inches (about 20.32 cm), but in recent years, a large size of 16 inches (about 40.64 cm) has been used. (Paragraph 0007, paragraph 0007).
  • the amount of minimum brine in a reverse osmosis membrane separation device (hereinafter, also referred to as an 8-inch RO device) having a spiral membrane element having an outer diameter of 8 inches is generally 3.6 m 3 / h.
  • a reverse osmosis membrane separation device (hereinafter, sometimes referred to as a 16-inch RO device) having a spiral membrane element having an outer diameter of 16 inches has a membrane area four times that of an 8-inch RO device. 14.4 m 3 / h.
  • the desalination rate might be lower than that in the 8-inch RO device under the same membrane type and the same operating conditions. This is because the element diameter of the 16-inch RO device is about twice as large as that of the 8-inch RO device. Therefore, when operating with the minimum brine water amount 4 times the minimum brine water amount of the 8-inch RO device, This is considered to be because the flow velocity distribution becomes large, and a region with a small flow velocity is partially generated, concentration polarization occurs in this region, and the desalination rate decreases.
  • An object of the present invention is to provide an operation method and an operation system of a membrane separation device capable of obtaining permeated water having a good water quality from a large membrane separation device having a large-diameter membrane element having a diameter of 20 cm or more. .
  • the present invention relates to a method for operating a membrane separation apparatus in which n (n is 1 or more) membrane elements having a diameter of 20 cm or more are installed in a cylindrical vessel.
  • n is 1 or more membrane elements having a diameter of 20 cm or more are installed in a cylindrical vessel.
  • the permeated water amount of the membrane separation device is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h)
  • (a / n) / b is 0.1 to Water is passed through the membrane separation device so as to be 0.2.
  • the membrane separation system of the present invention comprises a membrane separation device in which n membrane elements (n is 1 or more) are installed in a cylindrical vessel, a flow rate adjusting means for raw water supplied to the membrane separation device, and the membrane
  • the raw water flow rate adjusting means and the control means for controlling the brine flow rate adjusting means so that (a / n) / b is 0.1 to 0.2 Have.
  • the membrane element preferably has a diameter of 20 to 50.8 cm.
  • the membrane element is preferably a reverse osmosis membrane element.
  • the membrane element is a spiral type membrane element having a water collecting pipe in the axial center, a plurality of membrane elements are coaxially arranged in the vessel, and the water collecting pipes of adjacent membrane elements are connected by a joint. Is preferred.
  • water is passed through the membrane separation apparatus so that the ratio (a / n) / b of the permeated water amount (a / n) per membrane element to the minimum brine water amount b is 0.1 to 0.2.
  • the removal rate of a membrane element becomes high.
  • concentration polarization occurs and the quality of the permeated water deteriorates.
  • the water sampling rate permeated water amount / raw water amount
  • the permeated water with good water quality can be obtained. It can be obtained at a high recovery rate (water sampling rate).
  • Polarization occurs and the permeated water quality is likely to deteriorate. This is because the distribution of the flow velocity along the membrane surface occurs because the diameter of the membrane element increases.
  • concentration polarization on the membrane surface is affected not only by the flow velocity along the membrane surface but also by the membrane permeation flux. Therefore, if operation is performed based only on the amount of minimum brine water, concentration polarization occurs and the quality of the permeate water deteriorates. There is also a fear.
  • the permeated water having a good water quality can be collected at a high recovery rate by passing water in consideration of both the permeated water amount and the minimum brine water amount.
  • FIG. 2 is a perspective view of a part of FIG. 1. It is a flowchart of the membrane separation system which concerns on embodiment. It is a flowchart of the membrane separation system in an Example.
  • a plurality of (three in this embodiment) membrane elements 2 are coaxially installed in a cylindrical vessel 1.
  • the membrane element 2 is a spiral membrane element having a water collecting pipe 3 made of a perforated pipe at the axial center, and a bag-like separation membrane wound around the outer circumference of the water collecting pipe 3 via a raw water flow path spacer.
  • the outer diameter of each membrane element 2 is 20 cm or more, preferably 20 to 50.8 cm.
  • the axial length of the membrane winding part of each membrane element 2 is preferably 15 to 50 times the outer diameter.
  • the membrane of the membrane element 2 may be either a reverse osmosis membrane or a microfiltration membrane, but a reverse osmosis membrane is preferred.
  • the water collecting pipes 3 of the adjacent membrane elements 2 are connected by a joint 4.
  • the number n of membrane elements is preferably 3 to 6, particularly about 4 to 6.
  • raw water is introduced from the pipe 8 to one end side of the vessel 1 through the pump 5 and the flow rate control valve 6 and flows along the membrane surface of each membrane element 2.
  • water permeates the membrane, flows into the water collecting pipe 3, and is taken out as permeated water through a pipe 10 having a flow meter 9.
  • the concentrated water (brine) that has not passed through the membrane flows out through the pipe 11 connected to the other end of the vessel 1.
  • the pipe 11 is provided with a flow meter 12 and a flow control valve 13.
  • a guide 15 is extended along the inner peripheral surface on the one end side of the vessel 1, and the raw water flowing in from the pipe 8 is circumferentially introduced into the vessel 1 by the guide 15. It is comprised so that it may flow in while circulating around. This is because the raw water is uniformly supplied to the upstream end face of the membrane element 2.
  • the detection signals of the flow meters 9 and 12 are input to the controller 17, and the control signal from the controller 17 is given to the pump 5 and the flow rate adjusting valves 6 and 13.
  • the controller 17 sets the permeated water amount detected by the flow meter 9 to a (m 3 / h), the minimum brine water amount of the membrane element to b (m 3 / h), and the number of membrane elements 2 to n (n is 1 or more). ),
  • the flow rate regulating valves 6 and 13 are controlled so that (a / n) / b is 0.1 to 0.2. In order to operate so that (a / n) / b is less than 0.1, it is necessary to increase the number of films, which is not practical. When (a / n) / b exceeds 0.2, the water quality such as the electric conductivity of the permeated water deteriorates, which is not preferable.
  • Industrial reverse water membrane filtered water is supplied from the raw water tank 20 to the reverse osmosis membrane separation device at 12.25 m 3 / h, and the opening of the flow rate control valve 13 is adjusted so that the brine flow rate becomes each value shown in Table 1. Adjusted. As described above, automatic control by the controller 17 was not performed, and the opening degree control of the flow rate control valve 13 was manually performed.
  • Table 1 shows the quality of the permeated water and the water recovery rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are an operating method and operating system for a membrane separation device which make it possible to obtain permeated water having favorable water quality from a large-scale membrane separation device having a large-diameter membrane element with a diameter of 20cm or larger. A method for operating a membrane separation device in which a membrane element (2) having a diameter of 20cm or larger is positioned inside a cylindrical vessel (1), the method and system for operating the membrane separation device being characterized in that (a/n)/b equals 0.1-0.2, given that a (m3/h) is the amount of permeated water from the membrane separation device, b (m3/h) is the minimum brine solution amount from the membrane element (2), and n (n is 1 or higher) is the number of membrane elements.

Description

膜分離装置の運転方法及び膜分離システムMethod of operating membrane separation apparatus and membrane separation system
 本発明は、逆浸透膜分離装置、精密濾過装置などの膜分離装置の運転方法及び膜分離システムに関するものであり、特にスパイラル型膜分離装置の運転方法及び膜分離システムに関する。 The present invention relates to an operation method and a membrane separation system of a membrane separation device such as a reverse osmosis membrane separation device and a microfiltration device, and more particularly to an operation method and a membrane separation system of a spiral membrane separation device.
 海水の淡水化や、超純水、各種製造プロセス用水を得る方法として、例えば逆浸透膜(以下、RO膜と略称することもある。)やナノフィルトレーション膜(以下、NF膜と略称することもある。)を分離膜とするスパイラル型膜エレメントを用い、原水中からイオン成分や低分子成分を分離する方法が知られている。スパイラル型膜エレメントは、例えば、透過水スペーサーの両面に逆浸透膜を重ね合わせて3辺を接着することにより袋状膜を形成し、該袋状膜の開口部側を透過水集水管に取り付け、網状の原水スペーサーと共に、透過水集水管の外周面周りにスパイラル状に巻回することにより構成されている。原水はスパイラル型膜エレメントの一方の端面側から供給され、原水スペーサーに沿って流れ、スパイラル型膜エレメントの他方の端面側から濃縮水として排出される。原水は、原水スペーサーに沿って流れる過程で、逆浸透膜を透過して透過水となり、この透過水は透過水スペーサーに沿って、中央に位置する透過水集水管の内部に流れ込み、透過水集水管の端部から排出される。巻回された袋状膜間に配設される原水スペーサーにより原水経路が形成される(特許文献1~3)。 As a method for obtaining seawater desalination, ultrapure water, and water for various production processes, for example, a reverse osmosis membrane (hereinafter sometimes abbreviated as RO membrane) or a nanofiltration membrane (hereinafter abbreviated as NF membrane). There are known methods for separating ionic and low molecular components from raw water using a spiral membrane element having a separation membrane. Spiral membrane elements, for example, form a bag-like membrane by overlaying reverse osmosis membranes on both sides of the permeate spacer and bonding three sides, and attach the opening side of the bag-like membrane to the permeate water collecting pipe Along with the net-like raw water spacer, the outer periphery of the permeate water collecting pipe is wound around in a spiral shape. The raw water is supplied from one end face side of the spiral membrane element, flows along the raw water spacer, and is discharged as concentrated water from the other end face side of the spiral membrane element. In the process of flowing along the raw water spacer, the raw water permeates through the reverse osmosis membrane to become permeated water. This permeated water flows along the permeated water spacer into the permeated water collecting pipe located in the center, It is discharged from the end of the water pipe. A raw water path is formed by raw water spacers arranged between the wound bag-like membranes (Patent Documents 1 to 3).
 逆浸透膜分離においては、膜表面における濃度分極によるスケールの発生や脱塩率の低下を抑制するために、濃縮液(ブライン)の流量が所定値以上となるように運転することが推奨されている(特許文献4の0033段落、特許文献5の0011段落、特許文献6の0003~0004段落)。この所定値はミニマムブライン水量(最小濃縮水量)と称される。ミニマムブライン水量は、膜分離装置のメーカーによって型番に応じて示されている。 In reverse osmosis membrane separation, it is recommended to operate so that the flow rate of the concentrated liquid (brine) becomes a predetermined value or more in order to suppress the generation of scale due to concentration polarization on the membrane surface and the decrease in the desalination rate. (Paragraph 0033 of Patent Document 4, paragraph 0011 of Patent Document 5, and paragraphs 0003 to 0004 of Patent Document 6). This predetermined value is referred to as a minimum brine water amount (minimum concentrated water amount). The amount of minimum brine water is indicated according to the model number by the manufacturer of the membrane separator.
 スパイラル型膜分離装置の膜エレメントの直径(外径)は、従来は8インチ(約20.32cm)が主流であったが、近年では16インチ(約40.64cm)の大型のものも使用されるようになってきている(特許文献2の0007段落)。外径8インチのスパイラル型膜エレメントを有する逆浸透膜分離装置(以下、8インチRO装置ということがある。)のミニマムブライン水量は大概3.6m/hである。外径16インチのスパイラル型膜エレメントを有する逆浸透膜分離装置(以下、16インチRO装置ということがある。)は、膜面積が8インチRO装置の4倍であるため、ミニマムブライン水量は通常14.4m/hとされている。 Conventionally, the diameter (outer diameter) of the membrane element of the spiral membrane separator has been mainly 8 inches (about 20.32 cm), but in recent years, a large size of 16 inches (about 40.64 cm) has been used. (Paragraph 0007, paragraph 0007). The amount of minimum brine in a reverse osmosis membrane separation device (hereinafter, also referred to as an 8-inch RO device) having a spiral membrane element having an outer diameter of 8 inches is generally 3.6 m 3 / h. A reverse osmosis membrane separation device (hereinafter, sometimes referred to as a 16-inch RO device) having a spiral membrane element having an outer diameter of 16 inches has a membrane area four times that of an 8-inch RO device. 14.4 m 3 / h.
特開2011-167667JP2011-167667A 特開2009-220104JP 2009-220104 A 特開2006-218341JP 2006-218341 A 特開2007-313445JP2007-31445A 特開平8-108048JP-A-8-108048 特開2011-136283JP2011-136283A
 16インチRO装置においてミニマムブライン水量を14.4m/hで運転すると、同膜種、同運転条件における8インチRO装置に比べ脱塩率が低くなることがあった。これは、16インチRO装置は8インチRO装置に比べてエレメント直径が約2倍と大きいために、8インチRO装置のミニマムブライン水量の4倍量のミニマムブライン水量にて運転したときにはエレメント内部における流速分布が大きくなり、部分的に流速の小さい領域が生じ、この領域で濃度分極が生じて脱塩率が低下するためであると考えられる。 When the minimum brine water volume was operated at 14.4 m 3 / h in the 16-inch RO device, the desalination rate might be lower than that in the 8-inch RO device under the same membrane type and the same operating conditions. This is because the element diameter of the 16-inch RO device is about twice as large as that of the 8-inch RO device. Therefore, when operating with the minimum brine water amount 4 times the minimum brine water amount of the 8-inch RO device, This is considered to be because the flow velocity distribution becomes large, and a region with a small flow velocity is partially generated, concentration polarization occurs in this region, and the desalination rate decreases.
 本発明は、直径が20cm以上の大径の膜エレメントを有する大型の膜分離装置から良好な水質の透過水を得ることができる膜分離装置の運転方法及び運転システムを提供することを目的とする。 An object of the present invention is to provide an operation method and an operation system of a membrane separation device capable of obtaining permeated water having a good water quality from a large membrane separation device having a large-diameter membrane element having a diameter of 20 cm or more. .
 本発明は、直径20cm以上の膜エレメントが円筒状のベッセル内にn個(nは1以上)設置されている膜分離装置を運転する方法に関する。本発明では、該膜分離装置の透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1~0.2となるように膜分離装置に通水が行われる。 The present invention relates to a method for operating a membrane separation apparatus in which n (n is 1 or more) membrane elements having a diameter of 20 cm or more are installed in a cylindrical vessel. In the present invention, when the permeated water amount of the membrane separation device is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h), (a / n) / b is 0.1 to Water is passed through the membrane separation device so as to be 0.2.
 本発明の膜分離システムは、円筒状のベッセル内に膜エレメントがn個(nは1以上)設置された膜分離装置と、該膜分離装置に供給される原水の流量調節手段と、該膜分離装置から流出するブラインの流量調節手段と、該膜分離装置から取り出される透過水の流量検出手段と、該流量検出手段によって検出される透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1~0.2となるように該原水流量調節手段及びブライン流量調節手段を制御する制御手段とを有する。 The membrane separation system of the present invention comprises a membrane separation device in which n membrane elements (n is 1 or more) are installed in a cylindrical vessel, a flow rate adjusting means for raw water supplied to the membrane separation device, and the membrane The flow rate adjusting means for the brine flowing out from the separator, the flow rate detecting means for the permeated water taken out from the membrane separator, and the amount of permeated water detected by the flow rate detecting means a (m 3 / h), the minimum of the membrane element When the amount of brine water is b (m 3 / h), the raw water flow rate adjusting means and the control means for controlling the brine flow rate adjusting means so that (a / n) / b is 0.1 to 0.2 Have.
 本発明において、膜エレメントの直径は20~50.8cmであることが好ましい。 In the present invention, the membrane element preferably has a diameter of 20 to 50.8 cm.
 膜エレメントとしては逆浸透膜エレメントが好ましい。 The membrane element is preferably a reverse osmosis membrane element.
 膜エレメントは、軸心部に集水管を有したスパイラル型膜エレメントであり、複数の膜エレメントが前記ベッセル内に同軸状に配置され、隣接する膜エレメントの集水管が継手で接続されていることが好ましい。 The membrane element is a spiral type membrane element having a water collecting pipe in the axial center, a plurality of membrane elements are coaxially arranged in the vessel, and the water collecting pipes of adjacent membrane elements are connected by a joint. Is preferred.
 本発明では、膜エレメント1個当りの透過水量(a/n)とミニマムブライン水量bとの比(a/n)/bを0.1~0.2とするように膜分離装置に通水することにより、膜エレメントの除去率が高くなる。一般に、膜エレメントの膜に沿って被処理水が流れる場合、この膜面に沿う流速が小さくなると、濃度分極が生じ、透過水の水質が悪化する。膜面に沿う流速を大きくすると、濃度分極は解消されるが、採水率(透過水量/原水量)が低くなる。従って、濃度分極が生じない範囲で膜面流速を小さくすれば、良好な水質の透過水を多く採水することができる。 In the present invention, water is passed through the membrane separation apparatus so that the ratio (a / n) / b of the permeated water amount (a / n) per membrane element to the minimum brine water amount b is 0.1 to 0.2. By doing so, the removal rate of a membrane element becomes high. In general, when the water to be treated flows along the membrane of the membrane element, if the flow velocity along the membrane surface decreases, concentration polarization occurs and the quality of the permeated water deteriorates. When the flow velocity along the membrane surface is increased, concentration polarization is eliminated, but the water sampling rate (permeated water amount / raw water amount) is lowered. Therefore, if the membrane surface flow velocity is reduced within a range where concentration polarization does not occur, a large amount of permeated water having good water quality can be collected.
 8インチRO装置の場合、ブライン水量がミニマムブライン水量(通常は3.6m/h程度)以上でかつミニマムブライン水量近傍の水量となるように通水することにより、良好な水質の透過水を高回収率(採水率)にて得ることができる。 In the case of an 8-inch RO device, by passing water so that the amount of brine water is equal to or greater than the minimum brine water amount (usually about 3.6 m 3 / h), the permeated water with good water quality can be obtained. It can be obtained at a high recovery rate (water sampling rate).
 16インチRO装置の場合、ブライン水量を8インチRO装置のミニマムブライン水量の約4倍量3.6×4=14.4m/h又はそれよりも若干多い量で通水しても、濃度分極が生じて透過水水質が悪化し易い。これは、膜エレメントの直径が大きくなるために、膜面に沿う流速に分布が生じるためである。また、膜表面における濃度分極は、膜面に沿う流速だけでなく、膜透過流束にも影響されるので、ミニマムブライン水量だけに基づいて運転すると、濃度分極が生じて透過水水質が悪化するおそれもある。 In the case of a 16-inch RO device, the concentration of the brine water is about 4 times the minimum brine water amount of the 8-inch RO device 3.6 × 4 = 14.4 m 3 / h or slightly higher than that. Polarization occurs and the permeated water quality is likely to deteriorate. This is because the distribution of the flow velocity along the membrane surface occurs because the diameter of the membrane element increases. In addition, concentration polarization on the membrane surface is affected not only by the flow velocity along the membrane surface but also by the membrane permeation flux. Therefore, if operation is performed based only on the amount of minimum brine water, concentration polarization occurs and the quality of the permeate water deteriorates. There is also a fear.
 本発明では、透過水量とミニマムブライン水量との双方を勘案して通水することにより、良好な水質の透過水を高回収率にて採水することができる。 In the present invention, the permeated water having a good water quality can be collected at a high recovery rate by passing water in consideration of both the permeated water amount and the minimum brine water amount.
膜分離装置の斜視図である。It is a perspective view of a membrane separator. 図1の一部の透視図である。FIG. 2 is a perspective view of a part of FIG. 1. 実施の形態に係る膜分離システムのフロー図である。It is a flowchart of the membrane separation system which concerns on embodiment. 実施例における膜分離システムのフロー図である。It is a flowchart of the membrane separation system in an Example.
 以下、図1~3を参照して実施の形態について説明する。 Hereinafter, embodiments will be described with reference to FIGS.
 図1の通り、円筒形ベッセル1内に複数個(この実施の形態では3個)の膜エレメント2が同軸状に設置されている。膜エレメント2は、軸心部に孔あき管よりなる集水管3を有し、この集水管3の外周に袋状分離膜が原水流路スペーサを介して巻回したスパイラル型膜エレメントである。この実施の形態では各膜エレメント2の外径は20cm以上、好ましくは20~50.8cmである。各膜エレメント2の膜巻回部の軸方向長さは外径の15~50倍であることが好ましい。膜エレメント2の膜は逆浸透膜、精密濾過膜などのいずれでもよいが、逆浸透膜が好適である。 As shown in FIG. 1, a plurality of (three in this embodiment) membrane elements 2 are coaxially installed in a cylindrical vessel 1. The membrane element 2 is a spiral membrane element having a water collecting pipe 3 made of a perforated pipe at the axial center, and a bag-like separation membrane wound around the outer circumference of the water collecting pipe 3 via a raw water flow path spacer. In this embodiment, the outer diameter of each membrane element 2 is 20 cm or more, preferably 20 to 50.8 cm. The axial length of the membrane winding part of each membrane element 2 is preferably 15 to 50 times the outer diameter. The membrane of the membrane element 2 may be either a reverse osmosis membrane or a microfiltration membrane, but a reverse osmosis membrane is preferred.
 隣接する膜エレメント2の集水管3同士は継手4によって接続されている。膜エレメントの数nは3~6特に4~6程度が好ましい。 The water collecting pipes 3 of the adjacent membrane elements 2 are connected by a joint 4. The number n of membrane elements is preferably 3 to 6, particularly about 4 to 6.
 図3の通り、原水はポンプ5、流量調節弁6を介して配管8からベッセル1の一端側に導入され、各膜エレメント2の膜面に沿って流れる。この途中で水が膜を透過し、集水管3に流入し、流量計9を有した配管10を介して透過水として取り出される。膜を透過しなかった濃縮水(ブライン)は、ベッセル1の他端側に接続された配管11を介して流出する。この配管11には流量計12と流量調節弁13とが設けられている。 As shown in FIG. 3, raw water is introduced from the pipe 8 to one end side of the vessel 1 through the pump 5 and the flow rate control valve 6 and flows along the membrane surface of each membrane element 2. In the middle of this, water permeates the membrane, flows into the water collecting pipe 3, and is taken out as permeated water through a pipe 10 having a flow meter 9. The concentrated water (brine) that has not passed through the membrane flows out through the pipe 11 connected to the other end of the vessel 1. The pipe 11 is provided with a flow meter 12 and a flow control valve 13.
 この実施の形態では、図2の通り、ベッセル1の前記一端側の内周面に沿ってガイド15が延設されており、配管8から流入する原水が該ガイド15によりベッセル1内に周方向に周回しながら流入するように構成されている。これは原水を膜エレメント2の上流側の端面に万遍なく供給するためである。 In this embodiment, as shown in FIG. 2, a guide 15 is extended along the inner peripheral surface on the one end side of the vessel 1, and the raw water flowing in from the pipe 8 is circumferentially introduced into the vessel 1 by the guide 15. It is comprised so that it may flow in while circulating around. This is because the raw water is uniformly supplied to the upstream end face of the membrane element 2.
 流量計9,12の検出信号が制御器17に入力され、制御器17からの制御信号がポンプ5、流量調節弁6,13に与えられる。 The detection signals of the flow meters 9 and 12 are input to the controller 17, and the control signal from the controller 17 is given to the pump 5 and the flow rate adjusting valves 6 and 13.
 制御器17は、流量計9で検出される透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)及び膜エレメント2の本数をn(nは1以上)とした場合、(a/n)/bが0.1~0.2となるように流量調節弁6,13を制御する。(a/n)/bが0.1未満となるように運転するには膜本数を多くする必要があり実用的ではない。(a/n)/bが0.2を超過すると透過水の電気伝導率などの水質が悪化するので好ましくない。 The controller 17 sets the permeated water amount detected by the flow meter 9 to a (m 3 / h), the minimum brine water amount of the membrane element to b (m 3 / h), and the number of membrane elements 2 to n (n is 1 or more). ), The flow rate regulating valves 6 and 13 are controlled so that (a / n) / b is 0.1 to 0.2. In order to operate so that (a / n) / b is less than 0.1, it is necessary to increase the number of films, which is not practical. When (a / n) / b exceeds 0.2, the water quality such as the electric conductivity of the permeated water deteriorates, which is not preferable.
 外径が16インチ(約40.64cm)で膜巻回部の軸方向長さが100cmの逆浸透膜エレメント2を3個(n=3)ベッセル1内に設置して図1に示す逆浸透膜分離装置を構成した。この逆浸透膜分離装置に対し図4の通り、原水タンク20を用いて通水した。図4のフローでは、原水として工業用水の膜濾過水を原水タンク20に導入し、該原水タンク20内の原水を図3と同様にポンプ5、流量調節弁6及び配管8を介して逆浸透膜分離装置に供給する。配管11から流出したブラインの一部を配管22、流量調節弁23を介して原水タンク20に戻す。配管11から流出したブラインの残部を配管21、流量調節弁13を介して系外に取り出す。制御器17による自動制御は行わず、流量調節弁13の開度制御を手動にて行った。図4のその他の構成は図3と同様であり、同一符号は同一部分を示している。 Three reverse osmosis membrane elements 2 (n = 3) having an outer diameter of 16 inches (about 40.64 cm) and a membrane winding portion having an axial length of 100 cm are installed in the vessel 1, and the reverse osmosis shown in FIG. A membrane separator was constructed. Water was passed through the reverse osmosis membrane separation apparatus using a raw water tank 20 as shown in FIG. In the flow of FIG. 4, industrial filtered membrane water is introduced into the raw water tank 20 as raw water, and the raw water in the raw water tank 20 is reverse osmosis through the pump 5, the flow control valve 6 and the pipe 8 as in FIG. 3. Supply to membrane separator. A part of the brine flowing out from the pipe 11 is returned to the raw water tank 20 through the pipe 22 and the flow rate control valve 23. The remaining portion of the brine that has flowed out of the pipe 11 is taken out of the system through the pipe 21 and the flow rate control valve 13. Automatic control by the controller 17 was not performed, and the opening degree control of the flow control valve 13 was performed manually. Other configurations in FIG. 4 are the same as those in FIG. 3, and the same reference numerals denote the same parts.
 この逆浸透膜分離装置に対し原水タンク20から工業用水膜濾過水を12.25m/hにて供給すると共に、ブライン流量が表1の各値となるように流量調節弁13の開度を調節した。上述の通り、制御器17による自動制御は行わず、流量調節弁13の開度制御を手動にて行った。 Industrial reverse water membrane filtered water is supplied from the raw water tank 20 to the reverse osmosis membrane separation device at 12.25 m 3 / h, and the opening of the flow rate control valve 13 is adjusted so that the brine flow rate becomes each value shown in Table 1. Adjusted. As described above, automatic control by the controller 17 was not performed, and the opening degree control of the flow rate control valve 13 was manually performed.
 このときの透過水の水質と水回収率を表1に示す。 Table 1 shows the quality of the permeated water and the water recovery rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の通り、(a/n)/bが0.1~0.2となるように通水したNo.4~No.7の場合、透過水の水質が良好となる。 As shown in Table 1, No. was passed through so that (a / n) / b was 0.1 to 0.2. 4 to No. In the case of 7, the quality of the permeated water is good.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年7月3日付で出願された日本特許出願2013-139846に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-139846 filed on July 3, 2013, which is incorporated by reference in its entirety.

Claims (8)

  1.  直径20cm以上の膜エレメントが円筒状のベッセル内にn個(nは1以上)設置されている膜分離装置を運転する方法であって、
     該膜分離装置の透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1~0.2となるように通水することを特徴とする膜分離装置の運転方法。
    A method of operating a membrane separation apparatus in which n (n is 1 or more) membrane elements having a diameter of 20 cm or more are installed in a cylindrical vessel,
    When the permeated water amount of the membrane separation device is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h), (a / n) / b is 0.1 to 0.2. A method for operating a membrane separation device, characterized in that the water is passed as described above.
  2.  請求項1において、膜エレメントの直径が20~50.8cmであることを特徴とする膜分離装置の運転方法。 The method for operating a membrane separation device according to claim 1, wherein the membrane element has a diameter of 20 to 50.8 cm.
  3.  請求項1において、膜エレメントが逆浸透膜エレメントであることを特徴とする膜分離装置の運転方法。 The method of operating a membrane separation device according to claim 1, wherein the membrane element is a reverse osmosis membrane element.
  4.  請求項1ないし3のいずれか1項において、前記膜エレメントは軸心部に集水管を有したスパイラル型膜エレメントであり、複数の膜エレメントが前記ベッセル内に同軸状に配置され、隣接する膜エレメントの集水管が継手で接続されていることを特徴とする膜分離装置の運転方法。 The membrane element according to any one of claims 1 to 3, wherein the membrane element is a spiral membrane element having a water collecting pipe at an axial center portion, and a plurality of membrane elements are coaxially arranged in the vessel. A method for operating a membrane separation device, wherein the water collecting pipes of the elements are connected by a joint.
  5.  円筒状のベッセル内に膜エレメントがn個(nは1以上)設置された膜分離装置と、
     該膜分離装置に供給される原水の流量調節手段と、
     該膜分離装置から流出するブラインの流量調節手段と、
     該膜分離装置から取り出される透過水の流量検出手段と、
     該流量検出手段によって検出される透過水量をa(m/h)、膜エレメントのミニマムブライン水量をb(m/h)とした場合、(a/n)/bが0.1~0.2となるように該原水流量調節手段及びブライン流量調節手段を制御する制御手段と
    を備えてなる膜分離システム。
    A membrane separator in which n membrane elements (n is 1 or more) are installed in a cylindrical vessel;
    A flow rate adjusting means for raw water supplied to the membrane separator;
    A flow rate adjusting means for brine flowing out of the membrane separator;
    A flow rate detecting means for permeated water taken out from the membrane separator;
    When the permeated water amount detected by the flow rate detection means is a (m 3 / h) and the minimum brine water amount of the membrane element is b (m 3 / h), (a / n) / b is 0.1-0. A membrane separation system comprising control means for controlling the raw water flow rate adjusting means and the brine flow rate adjusting means so as to be 2.
  6.  請求項5において、膜エレメントの直径が20~50.8cmであることを特徴とする膜分離システム。 6. The membrane separation system according to claim 5, wherein the membrane element has a diameter of 20 to 50.8 cm.
  7.  請求項5において、膜エレメントが逆浸透膜エレメントであることを特徴とする膜分離システム。 6. The membrane separation system according to claim 5, wherein the membrane element is a reverse osmosis membrane element.
  8.  請求項5ないし7のいずれか1項において、前記膜エレメントは軸心部に集水管を有したスパイラル型膜エレメントであり、複数の膜エレメントが前記ベッセル内に同軸状に配置され、隣接する膜エレメントの集水管が継手で接続されていることを特徴とする膜分離システム。 8. The membrane element according to claim 5, wherein the membrane element is a spiral membrane element having a water collecting pipe at an axial center, and a plurality of membrane elements are coaxially arranged in the vessel. A membrane separation system, wherein the water collecting pipes of the elements are connected by a joint.
PCT/JP2014/066630 2013-07-03 2014-06-24 Operating method for membrane separation device, and membrane separation system WO2015002015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-139846 2013-07-03
JP2013139846A JP2015013233A (en) 2013-07-03 2013-07-03 Film separation device operation method and film separation system

Publications (1)

Publication Number Publication Date
WO2015002015A1 true WO2015002015A1 (en) 2015-01-08

Family

ID=52143594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066630 WO2015002015A1 (en) 2013-07-03 2014-06-24 Operating method for membrane separation device, and membrane separation system

Country Status (3)

Country Link
JP (1) JP2015013233A (en)
TW (1) TW201524587A (en)
WO (1) WO2015002015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113101807A (en) * 2021-04-06 2021-07-13 九章膜(北京)科技有限公司 Membrane module, membrane equipment with membrane module and membrane system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303861B2 (en) * 2017-07-21 2023-07-05 オルガノ株式会社 Membrane filtration device
JP7045814B2 (en) * 2017-07-21 2022-04-01 オルガノ株式会社 Membrane filtration device
JP7017365B2 (en) * 2017-10-25 2022-02-08 オルガノ株式会社 Membrane filtration device
JP6994376B2 (en) * 2017-12-13 2022-01-14 オルガノ株式会社 Pure water production equipment and its operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108048A (en) * 1994-10-12 1996-04-30 Toray Ind Inc Reverse osmosis separator and reverse osmosis separating method
JP2005081254A (en) * 2003-09-09 2005-03-31 Nippon Rensui Co Ltd Reverse osmosis membrane apparatus
JP2006305498A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2011136283A (en) * 2009-12-28 2011-07-14 Uerushii:Kk Reverse osmosis membrane filter and reverse osmosis membrane filtration method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108048A (en) * 1994-10-12 1996-04-30 Toray Ind Inc Reverse osmosis separator and reverse osmosis separating method
JP2005081254A (en) * 2003-09-09 2005-03-31 Nippon Rensui Co Ltd Reverse osmosis membrane apparatus
JP2006305498A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP2011136283A (en) * 2009-12-28 2011-07-14 Uerushii:Kk Reverse osmosis membrane filter and reverse osmosis membrane filtration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113101807A (en) * 2021-04-06 2021-07-13 九章膜(北京)科技有限公司 Membrane module, membrane equipment with membrane module and membrane system

Also Published As

Publication number Publication date
JP2015013233A (en) 2015-01-22
TW201524587A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2015002015A1 (en) Operating method for membrane separation device, and membrane separation system
KR102009550B1 (en) Multi-stage reverse osmosis membrane device, and operation method therefor
JP5923294B2 (en) Reverse osmosis processing equipment
JP5597122B2 (en) Reverse osmosis processing equipment
TWI581858B (en) Reverse osmosis membrane device manipulation method and reverse osmosis membrane device
JP6057770B2 (en) Operation method of reverse osmosis membrane device
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
WO2012086478A1 (en) Reverse osmosis processing device
WO2012006362A3 (en) Vessel desalination system and method
JP2014184402A (en) Hollow fiber membrane module
JP5791767B2 (en) Reverse osmosis processing equipment
JP2009285522A (en) Reverse osmosis membrane device
JP2008237979A (en) Water treatment apparatus
JP6036808B2 (en) Fresh water generation method
JP6033118B2 (en) Reverse osmosis membrane device
KR101933063B1 (en) Forward Osmosis Membrane Process
US20140144840A1 (en) Sequencing batch type or batch type water-filtering apparatus and method of operating the same
JP2010253364A (en) Pure water generator
JP2010201335A (en) Water treatment system and water treatment method
JP2011020047A (en) Method and apparatus for detecting membrane defect, and membrane module
JP2011224543A (en) Water treatment method
JP2008132400A (en) Operation method of water treatment system
JP2016215205A (en) Reverse osmosis treatment device
JP5996057B2 (en) Reverse osmosis processing equipment
JP2005195499A (en) Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820670

Country of ref document: EP

Kind code of ref document: A1