JP7017365B2 - Membrane filtration device - Google Patents

Membrane filtration device Download PDF

Info

Publication number
JP7017365B2
JP7017365B2 JP2017206132A JP2017206132A JP7017365B2 JP 7017365 B2 JP7017365 B2 JP 7017365B2 JP 2017206132 A JP2017206132 A JP 2017206132A JP 2017206132 A JP2017206132 A JP 2017206132A JP 7017365 B2 JP7017365 B2 JP 7017365B2
Authority
JP
Japan
Prior art keywords
flow rate
water
concentrated
line
permeated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206132A
Other languages
Japanese (ja)
Other versions
JP2019076838A (en
Inventor
圭悟 佐藤
直幸 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2017206132A priority Critical patent/JP7017365B2/en
Publication of JP2019076838A publication Critical patent/JP2019076838A/en
Application granted granted Critical
Publication of JP7017365B2 publication Critical patent/JP7017365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜またはナノろ過膜を有する膜ろ過装置に関する。 The present invention relates to a membrane filtration apparatus having a reverse osmosis membrane or a nanofiltration membrane.

被処理水に含まれる不純物を除去する水処理装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有する膜ろ過装置が知られている。この装置では、所定の供給圧力でRO膜またはNF膜に供給された被処理水(原水)が、RO膜またはNF膜により、透過水と濃縮水とに分離される。これにより、不純物が除去された処理水(透過水)が得られている。 As a water treatment device for removing impurities contained in water to be treated, a membrane filtration device having a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) is known. In this device, the water to be treated (raw water) supplied to the RO membrane or the NF membrane at a predetermined supply pressure is separated into permeated water and concentrated water by the RO membrane or the NF membrane. As a result, treated water (permeated water) from which impurities have been removed is obtained.

RO膜またはNF膜を有する膜ろ過装置では、多くの場合、水の有効利用(節水)の観点から、不純物を含む濃縮水の一部を濃縮排水として外部に排出し、残りを濃縮還流水としてRO膜またはNF膜の上流側に還流させる構成が採用されている。これにより、すべての濃縮水を濃縮排水として排出する場合に比べて、回収率(透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合)を向上させることができ、節水を実現することができる。これと同時に、膜ろ過装置では、水温の変化(すなわち、水の粘性の変化)による透過水の流量変化に対応するために、加圧ポンプの回転数を制御することでRO膜またはNF膜への原水の供給圧力を調整して、透過水の流量を一定に維持する流量制御も行われている。 In membrane filtration devices with RO membranes or NF membranes, in many cases, from the viewpoint of effective use of water (water saving), part of the concentrated water containing impurities is discharged to the outside as concentrated wastewater, and the rest is used as concentrated reflux water. A configuration is adopted in which the water is refluxed to the upstream side of the RO membrane or the NF membrane. As a result, the recovery rate (the ratio of the permeated water flow rate to the sum of the permeated water flow rate and the concentrated drainage flow rate) can be improved as compared with the case where all the concentrated water is discharged as concentrated wastewater, and water saving can be achieved. It can be realized. At the same time, in the membrane filtration device, in order to respond to the change in the flow rate of the permeated water due to the change in the water temperature (that is, the change in the viscosity of the water), the rotation speed of the pressurizing pump is controlled to change to the RO membrane or the NF membrane. The flow rate is also controlled to keep the flow rate of the permeated water constant by adjusting the supply pressure of the raw water.

透過水の流量制御では、透過水の流量が一定になるように原水の供給圧力を調整すると、それに応じて、RO膜またはNF膜で分離される濃縮水の流量も変化する。このような濃縮水の流量変化は、ファウリングやスケーリングによる膜の詰まりの発生や、圧力損失の増大による膜の破損につながるため、透過水の流量制御と同様に、濃縮水に対しても同様の流量制御を行うことが求められている。 In the flow rate control of the permeated water, when the supply pressure of the raw water is adjusted so that the flow rate of the permeated water becomes constant, the flow rate of the concentrated water separated by the RO membrane or the NF membrane changes accordingly. Such a change in the flow rate of concentrated water leads to clogging of the membrane due to fouling and scaling, and damage to the membrane due to an increase in pressure loss. It is required to control the flow rate of.

特許文献1,2には、透過水の流量制御と並行して、外部に排出される濃縮水の流量を設定流量に調整する濃縮水の流量制御を行うことが記載されている。濃縮水の設定流量を決定する方法として、特許文献1には、濃縮水におけるシリカの許容濃縮倍率の演算値と、予め設定された透過水の目標流量値とを用いることが記載され、特許文献2には、濃縮水における炭酸カルシウムの許容濃縮倍率の演算値と、予め設定された透過水の目標流量値とを用いることが記載されている。すなわち、特許文献1,2に記載の濃縮水の流量制御では、予め設定された透過水の目標流量値に基づいて、外部に排出される濃縮水の設定流量が決定されている。 Patent Documents 1 and 2 describe that, in parallel with the flow rate control of the permeated water, the flow rate control of the concentrated water that adjusts the flow rate of the concentrated water discharged to the outside to the set flow rate is performed. As a method for determining the set flow rate of concentrated water, Patent Document 1 describes that a calculated value of an allowable concentration ratio of silica in concentrated water and a preset target flow rate value of permeated water are used. In 2, it is described that the calculated value of the permissible concentration ratio of calcium carbonate in the concentrated water and the preset target flow rate value of the permeated water are used. That is, in the flow rate control of the concentrated water described in Patent Documents 1 and 2, the set flow rate of the concentrated water discharged to the outside is determined based on the target flow rate value of the permeated water set in advance.

特許第5768615号公報Japanese Patent No. 5768615 特許第5904299号公報Japanese Patent No. 5904299

しかしながら、実際には、以下に示すように、透過水の流量制御において透過水の流量を目標流量に調整できない事態が発生することがある。その場合、外部に排出される濃縮水の流量が透過水の目標流量値に基づいた設定流量に調整されていたとしても、実際の回収率が目標の回収率からずれてしまい、スケール発生のリスクが高くなったり、無駄な排水が生じたりする可能性がある。 However, in reality, as shown below, a situation may occur in which the flow rate of the permeated water cannot be adjusted to the target flow rate in the flow rate control of the permeated water. In that case, even if the flow rate of the concentrated water discharged to the outside is adjusted to the set flow rate based on the target flow rate value of the permeated water, the actual recovery rate deviates from the target recovery rate, and there is a risk of scale generation. There is a possibility that the water will be high and wasteful drainage will occur.

例えば、水温が高くなると、水の粘性は低くなり、その結果、RO膜またはNF膜で分離される透過水の流量は増加する。この場合、透過水の流量を一定に維持するために必要な原水の供給圧力が低下するため、加圧ポンプの回転数を落とすことで原水の供給圧力を調整して透過水の流量を一定に維持しようとする。しかしながら、加圧ポンプには最低回転数が規定されているため、水温が著しく上昇した場合には、その最低回転数まで加圧ポンプの回転数を落としたとしても、原水の供給圧力を目標圧力まで低下させられないおそれがある。そのため、透過水の流量を目標流量まで下げることができず、結果的に、実際の回収率が目標の回収率を上回り、スケール発生のリスクが高まる可能性がある。一方、水温が低くなると、水の粘性は高くなり、その結果、RO膜またはNF膜で分離される透過水の流量は減少する。したがって、透過水の流量を一定に維持するために必要な原水の供給圧力は増加するが、水温が著しく低下した場合には、加圧ポンプの回転数を最大にしても、原水の供給圧力を目標圧力まで増加させられないおそれがある。そのため、透過水の流量を目標流量まで増加させることができず、結果的に、実際の回収率が目標の回収率を下回り、無駄な排水が生じる可能性がある。 For example, as the water temperature increases, the viscosity of the water decreases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane increases. In this case, the raw water supply pressure required to keep the permeated water flow rate constant decreases, so the raw water supply pressure is adjusted by reducing the rotation speed of the pressurizing pump to keep the permeated water flow rate constant. Try to maintain. However, since the minimum rotation speed is specified for the pressurizing pump, when the water temperature rises significantly, even if the rotation speed of the pressurizing pump is reduced to the minimum rotation speed, the supply pressure of raw water is set as the target pressure. It may not be lowered to. Therefore, the flow rate of the permeated water cannot be reduced to the target flow rate, and as a result, the actual recovery rate may exceed the target recovery rate, and the risk of scale generation may increase. On the other hand, as the water temperature decreases, the viscosity of the water increases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane decreases. Therefore, the supply pressure of raw water required to keep the flow rate of permeated water constant increases, but when the water temperature drops significantly, the supply pressure of raw water is increased even if the rotation speed of the pressurizing pump is maximized. It may not be possible to increase the target pressure. Therefore, the flow rate of the permeated water cannot be increased to the target flow rate, and as a result, the actual recovery rate may be lower than the target recovery rate, and wastewater may be discharged.

そこで、本発明の目的は、予め設定された目標の回収率に対して実際の回収率がずれることを抑制する膜ろ過装置を提供することである。 Therefore, an object of the present invention is to provide a membrane filtration device that suppresses deviation of the actual recovery rate from a preset target recovery rate.

上述した目的を達成するために、本発明の膜ろ過装置は、被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、ろ過手段に接続され、ろ過手段に被処理水を供給する供給ラインと、ろ過手段に接続され、ろ過手段からの透過水を流通させる透過水ラインと、ろ過手段に接続され、ろ過手段からの濃縮水を流通させる濃縮水ラインと、濃縮水ラインから分岐し、濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、透過水ラインを流れる透過水の流量を検出する第1の流量検出手段と、排水ラインを流れる濃縮水の流量を検出する第2の流量検出手段と、透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、排水ラインに設けられた流量調整弁と、第2の流量検出手段による検出値に基づいて、流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、を有し、第2の流量制御手段の制御部は、第2の流量検出手段による検出値が、透過水ラインを流れる透過水の流量と排水ラインを流れる濃縮水の流量との和に対する透過水ラインを流れる透過水の流量の割合である回収率の目標値と、第1の流量検出手段による検出値とから決定される、排水ラインを流れる濃縮水の設定流量になるように、前記流量調整弁の開度を調整するIn order to achieve the above-mentioned object, the membrane filtering apparatus of the present invention is connected to a filtering means having a back-penetrating membrane or a nano-filtering membrane that separates the water to be treated into permeated water and concentrated water, and filters. A supply line that supplies water to be treated to the means, a permeated water line that is connected to the filtering means and flows the permeated water from the filtering means, and a concentrated water line that is connected to the filtering means and flows the concentrated water from the filtering means. A drainage line that branches off from the concentrated water line and discharges a part of the concentrated water flowing through the concentrated water line to the outside, a first flow rate detecting means for detecting the flow rate of the permeated water flowing through the permeated water line, and a drainage line. A second flow rate detecting means for detecting the flow rate of the concentrated water flowing through the water, a first flow rate control means for adjusting the flow rate of the permeated water flowing through the permeated water line to a set flow rate, and a flow rate of the concentrated water flowing through the drainage line are set. A second flow control means for adjusting the flow rate, a flow control valve provided in the drain line, and a control unit for adjusting the opening degree of the flow control valve based on the value detected by the second flow detection means. The control unit of the second flow control means has a second flow control means having the Concentrated water flowing through the drainage line, which is determined from the target value of the recovery rate, which is the ratio of the flow rate of the permeated water flowing through the permeated water line to the sum of the flow rate of the flowing concentrated water, and the value detected by the first flow rate detecting means. The opening degree of the flow rate adjusting valve is adjusted so as to reach the set flow rate of.

このような膜ろ過装置によれば、排水ラインを流れる濃縮水の設定流量が、透過水ラインを実際に流れる透過水の流量(検出値)に基づいて決定される。そのため、透過水の流量制御が適切に実施されない事態が発生しても、排水ラインを流れる濃縮水の流量を実際の透過水の流量(検出値)に基づいて決定された設定流量に調整することにより、実際の回収率が目標の回収率からずれることを抑制することができる。 According to such a membrane filtration device, the set flow rate of the concentrated water flowing through the drainage line is determined based on the flow rate (detection value) of the permeated water actually flowing through the permeated water line. Therefore, even if a situation occurs in which the flow rate control of the permeated water is not properly implemented, the flow rate of the concentrated water flowing through the drainage line should be adjusted to the set flow rate determined based on the actual flow rate of the permeated water (detection value). Therefore, it is possible to prevent the actual recovery rate from deviating from the target recovery rate.

以上、本発明によれば、予め設定された目標の回収率に対して実際の回収率がずれることを抑制する膜ろ過装置を提供することができる。 As described above, according to the present invention, it is possible to provide a membrane filtration device that suppresses an actual recovery rate deviation from a preset target recovery rate.

本発明の一実施形態に係る膜ろ過装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the membrane filtration apparatus which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る膜ろ過装置の構成を示す概略図である。 FIG. 1 is a schematic view showing a configuration of a membrane filtration device according to an embodiment of the present invention.

本実施形態の膜ろ過装置10は、原水(被処理水)に含まれる不純物を除去して処理水を生成する装置であって、原水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離するろ過手段11を有している。ろ過手段11は、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。 The membrane filtration device 10 of the present embodiment is a device that removes impurities contained in raw water (water to be treated) to generate treated water, and the raw water is permeated with concentrated water containing impurities and permeation from which impurities have been removed. It has a filtration means 11 that separates from water. The filtration means 11 has a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane).

また、膜ろ過装置10は、ろ過手段11にそれぞれ接続された複数のライン、すなわち、ろ過手段11に原水を供給する供給ライン1と、ろ過手段11からの透過水を流通させる透過水ライン2と、ろ過手段11からの濃縮水を流通させる濃縮水ライン3とを有している。加えて、膜ろ過装置10は、濃縮水ライン3から分岐した2つのライン、すなわち、濃縮水ライン3を流れる濃縮水の一部を外部へ排出する排水ライン4と、濃縮水の残りを供給ライン1に還流させる還流水ライン5とを有している。還流水ライン5は、濃縮水ライン3から分岐した後、後述する加圧ポンプ21の上流側で供給ライン1に接続されている。なお、還流水ライン5は、供給ライン1に直接接続される代わりに、供給ライン1に設けられた原水タンク(図示せず)に接続されていてもよい。 Further, the membrane filtration device 10 includes a plurality of lines connected to the filtration means 11, that is, a supply line 1 for supplying raw water to the filtration means 11, and a permeation water line 2 for circulating the permeated water from the filtration means 11. It also has a concentrated water line 3 for circulating concentrated water from the filtration means 11. In addition, the membrane filtration device 10 has two lines branched from the concentrated water line 3, that is, a drainage line 4 for discharging a part of the concentrated water flowing through the concentrated water line 3 to the outside, and a supply line for supplying the rest of the concentrated water. It has a reflux water line 5 for refluxing to 1. The recirculated water line 5 is connected to the supply line 1 on the upstream side of the pressurizing pump 21, which will be described later, after branching from the concentrated water line 3. The reflux water line 5 may be connected to a raw water tank (not shown) provided in the supply line 1 instead of being directly connected to the supply line 1.

さらに、膜ろ過装置10は、透過水ライン2を流れる透過水の流量を検出する透過水流量計(第1の流量検出手段)12と、その流量を設定流量に調整する透過水流量制御機構(第1の流量制御手段)20を有している。 Further, the membrane filtration device 10 includes a permeated water flow meter (first flow rate detecting means) 12 that detects the flow rate of the permeated water flowing through the permeated water line 2, and a permeated water flow rate control mechanism that adjusts the flow rate to a set flow rate. It has a first flow rate control means) 20.

透過水流量制御機構20は、供給ライン1に設けられ、供給ライン1を流れる原水の圧力(ろ過手段11への原水の供給圧力)を調整する加圧ポンプ(圧力調整手段)21と、透過水流量計12による透過水の検出流量(検出値)に基づいて、加圧ポンプ21を制御する透過水流量制御部22とを有している。 The permeated water flow rate control mechanism 20 is provided in the supply line 1 and has a pressurizing pump (pressure adjusting means) 21 for adjusting the pressure of the raw water flowing through the supply line 1 (the pressure of supplying the raw water to the filtering means 11), and the permeated water. It has a permeated water flow rate control unit 22 that controls the pressurizing pump 21 based on the detected flow rate (detected value) of the permeated water by the flow meter 12.

透過水流量制御部22は、加圧ポンプ21の回転数を制御するインバータ(図示せず)を含み、透過水流量計12による透過水の検出流量が一定になるように、加圧ポンプ21の回転数を制御するものである。例えば、水温が変化すると、水の粘性が変化することで、RO膜またはNF膜で分離される透過水の流量も変化する。この変化に応じて、透過水流量制御部22は、加圧ポンプ21の回転数を制御するようになっている。すなわち、水温が低くなると、水の粘性は高くなり、その結果、RO膜またはNF膜で分離される透過水の流量は減少する。そのため、透過水流量制御部22は、この減少分を補うように、加圧ポンプ21の回転数を上げることで、原水の供給圧力を増加させる。また、水温が高くなると、水の粘性は低くなり、その結果、RO膜またはNF膜で分離される透過水の流量は増加する。そのため、透過水流量制御部22は、この増加分を打ち消すように、加圧ポンプ21の回転数を下げることで、原水の供給圧力を低下させる。なお、加圧ポンプ21の回転数は、予め設定された上限値を上回ったり、同じく予め設定された下限値を下回ったりしないように、透過水流量制御部22により制御される。そのため、加圧ポンプ21の回転数が下限値になるように制御された場合でも、透過水の流量が設定流量を上回ってしまう可能性があるが、このような場合を考慮して、加圧ポンプ21とろ過手段11との間に、原水の供給圧力を調整するための手動弁や比例制御弁が設けられていてもよい。 The permeated water flow rate control unit 22 includes an inverter (not shown) that controls the rotation speed of the pressurizing pump 21, so that the permeated water flow rate detected by the permeated water flow meter 12 becomes constant. It controls the number of rotations. For example, when the water temperature changes, the viscosity of the water changes, so that the flow rate of the permeated water separated by the RO membrane or the NF membrane also changes. In response to this change, the permeated water flow rate control unit 22 controls the rotation speed of the pressurizing pump 21. That is, as the water temperature decreases, the viscosity of the water increases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane decreases. Therefore, the permeated water flow rate control unit 22 increases the supply pressure of raw water by increasing the rotation speed of the pressurizing pump 21 so as to compensate for this decrease. Further, as the water temperature increases, the viscosity of the water decreases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane increases. Therefore, the permeated water flow rate control unit 22 lowers the supply pressure of the raw water by lowering the rotation speed of the pressurizing pump 21 so as to cancel this increase. The rotation speed of the pressurizing pump 21 is controlled by the permeated water flow rate control unit 22 so as not to exceed a preset upper limit value or a preset lower limit value. Therefore, even if the rotation speed of the pressurizing pump 21 is controlled to be the lower limit value, the flow rate of the permeated water may exceed the set flow rate. A manual valve or a proportional control valve for adjusting the supply pressure of raw water may be provided between the pump 21 and the filtration means 11.

このように、本実施形態では、加圧ポンプ21の回転数、すなわち原水の供給圧力を調整することで、透過水の流量は一定(予め設定された目標流量)に維持されるが、その原水の供給圧力の変化に応じて、RO膜またはNF膜で分離される濃縮水の流量も変化することになる。このような濃縮水の流量変化そのものを抑制するために、濃縮水ライン3には、濃縮水ライン3を流れる濃縮水の流量を一定に保持する定流量弁13が設けられている。これにより、透過水流量制御部22により加圧ポンプ21の回転数が変化して、ろ過手段11への原水の供給圧力が変化した場合にも、濃縮水の流量を一定に保持することができる。 As described above, in the present embodiment, the flow rate of the permeated water is maintained constant (preset target flow rate) by adjusting the rotation speed of the pressurizing pump 21, that is, the supply pressure of the raw water, but the raw water is maintained. The flow rate of the concentrated water separated by the RO membrane or the NF membrane also changes according to the change in the supply pressure of. In order to suppress such a change in the flow rate of the concentrated water itself, the concentrated water line 3 is provided with a constant flow rate valve 13 that keeps the flow rate of the concentrated water flowing through the concentrated water line 3 constant. As a result, even when the rotation speed of the pressurizing pump 21 is changed by the permeated water flow rate control unit 22 and the supply pressure of the raw water to the filtration means 11 is changed, the flow rate of the concentrated water can be kept constant. ..

ここで、定流量弁13の規定流量は、一方では、ファウリングやスケーリングによる膜の詰まりが発生しない程度であればよく、他方では、圧力損失の増大によって膜を破損させない程度であればよい。ただし、定流量弁13の規定流量を必要以上に大きくすることは、加圧ポンプ21に要求される流量が必要以上に大きくなり、結果的に加圧ポンプ21のサイズが大きくなるため、エネルギー消費の点で好ましくない。そのため、定流量弁13の規定流量は、ろ過手段11の透過流束とろ過手段11に要求される濃縮水の最低流量も考慮して設定され、例えば、ろ過手段11として直径が約20.32cm(8インチ)のRO膜を用いる場合、1~15m/hの範囲である。 Here, the specified flow rate of the constant flow rate valve 13 may be such that, on the one hand, the film is not clogged due to fouling or scaling, and on the other hand, the film is not damaged due to an increase in pressure loss. However, if the specified flow rate of the constant flow valve 13 is increased more than necessary, the flow rate required for the pressurizing pump 21 becomes larger than necessary, and as a result, the size of the pressurizing pump 21 becomes large, so that energy consumption is consumed. It is not preferable in terms of. Therefore, the specified flow rate of the constant flow rate valve 13 is set in consideration of the permeation flux of the filtration means 11 and the minimum flow rate of the concentrated water required for the filtration means 11, for example, the diameter of the filtration means 11 is about 20.32 cm. When using a (8 inch) RO membrane, the range is 1 to 15 m 3 / h.

ところで、定流量弁13には、定流量弁13を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されている。そのため、例えば、ろ過手段11として中高圧用のRO膜を使用する場合や、水温が極端に低下した場合など、条件によっては、原水の供給圧力が著しく上昇して濃縮水の圧力が上昇し、定流量弁13の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがある。その場合、濃縮水ライン3を流れる濃縮水の流量が一定に保持されないおそれがある。 By the way, the constant flow rate valve 13 defines an operating differential pressure range (allowable range of pressure difference between the primary side and the secondary side of the constant flow rate valve) for operating the constant flow rate valve 13 normally. Therefore, depending on the conditions, for example, when an RO membrane for medium and high pressure is used as the filtration means 11 or when the water temperature is extremely lowered, the supply pressure of the raw water rises remarkably and the pressure of the concentrated water rises. The pressure difference between the primary side and the secondary side of the constant flow rate valve 13 may exceed the operating differential pressure range. In that case, the flow rate of the concentrated water flowing through the concentrated water line 3 may not be kept constant.

そこで、定流量弁13の上流側の濃縮水ライン3に、濃縮水ライン3を流れる濃縮水の圧力を減圧する(すなわち、二次側の圧力を一次側の圧力よりも低くすることができる)減圧弁が設けられていてもよい。これにより、ろ過手段11への原水の供給圧力が著しく上昇する場合であっても、定流量弁13の一次側と二次側の圧力差を作動差圧範囲内に収めて定流量弁13を正常に作動させることができ、濃縮水ライン3を流れる濃縮水の流量を一定に保持することができる。また、減圧弁を設けることで、それよりも下流側の周辺部材(配管など)にそれほどの耐圧性能が要求されなくなる。そのため、減圧弁の設置は、安全面で有利であるだけでなく、耐圧性能がそれほど高くない安価な汎用品が利用可能になることで、コスト面でも有利である。なお、減圧弁の種類は、濃縮水の圧力を定流量弁13の作動差圧範囲内に減圧することができるものであれば特に限定されるものではないが、定流量弁13の規定流量以上の流量が流れるものや、二次側の圧力が排水ライン4や還流水ライン5の通水差圧よりも大きくなるものを選定する必要がある。 Therefore, the pressure of the concentrated water flowing through the concentrated water line 3 is reduced to the concentrated water line 3 on the upstream side of the constant flow valve 13 (that is, the pressure on the secondary side can be made lower than the pressure on the primary side). A pressure reducing valve may be provided. As a result, even when the supply pressure of raw water to the filtration means 11 rises remarkably, the pressure difference between the primary side and the secondary side of the constant flow rate valve 13 is kept within the operating differential pressure range, and the constant flow rate valve 13 is provided. It can be operated normally, and the flow rate of the concentrated water flowing through the concentrated water line 3 can be kept constant. Further, by providing the pressure reducing valve, the peripheral members (pipes, etc.) on the downstream side of the valve are not required to have such pressure resistance. Therefore, the installation of the pressure reducing valve is not only advantageous in terms of safety, but also advantageous in terms of cost because an inexpensive general-purpose product whose pressure resistance performance is not so high can be used. The type of the pressure reducing valve is not particularly limited as long as the pressure of the concentrated water can be reduced within the operating differential pressure range of the constant flow rate valve 13, but the flow rate is equal to or higher than the specified flow rate of the constant flow rate valve 13. It is necessary to select one in which the flow rate of the water flows and the pressure on the secondary side is larger than the water flow differential pressure of the drainage line 4 and the recirculation water line 5.

上述したように、定流量弁13の設置により、透過水の流量制御が濃縮水の流量に影響を及ぼすことがなくなり、その結果、排水ライン4または還流水ライン5を流れる濃縮水の流量制御が容易に実行可能になる。そこで、本実施形態の膜ろ過装置10は、排水ライン4を流れる濃縮水(以下、「濃縮排水」という)の流量を検出する排水流量計(第2の流量検出手段)14と、その流量を設定流量に調整する排水流量制御機構(第2の流量制御手段)30とを有している。この排水流量制御機構30による濃縮排水の流量制御は、透過水流量制御機構20による透過水の流量制御とは独立して行われる。 As described above, by installing the constant flow rate valve 13, the flow rate control of the permeated water does not affect the flow rate of the concentrated water, and as a result, the flow rate control of the concentrated water flowing through the drainage line 4 or the recirculation water line 5 is controlled. It becomes easy to execute. Therefore, the membrane filtration device 10 of the present embodiment has a drainage flow meter (second flow rate detecting means) 14 for detecting the flow rate of concentrated water (hereinafter referred to as "concentrated drainage") flowing through the drainage line 4, and the flow rate thereof. It has a drainage flow rate control mechanism (second flow rate control means) 30 that adjusts to a set flow rate. The flow rate control of the concentrated drainage by the drainage flow rate control mechanism 30 is performed independently of the flow rate control of the permeated water by the permeated water flow rate control mechanism 20.

排水流量制御機構30は、排水ライン4に設けられた流量調整弁31と、排水流量計14による濃縮排水の検出流量(検出値)に基づいて、流量調整弁31の開度を調整する排水流量制御部32とを有している。 The drainage flow rate control mechanism 30 adjusts the opening degree of the flow rate adjusting valve 31 based on the flow rate adjusting valve 31 provided in the drainage line 4 and the detected flow rate (detected value) of the concentrated drainage by the drainage flow meter 14. It has a control unit 32.

排水流量制御部32は、透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合である回収率を考慮して濃縮排水の設定流量を決定し、排水流量計14による検出値がその設定流量となるように、流量調整弁31の開度を調整するようになっている。このときの回収率は、水の有効利用(節水)の観点から、できるだけ高いことが好ましい。すなわち、濃縮排水の流量はできるだけ少ないことが好ましい。しかしながら、定流量弁13により濃縮水の流量が一定に保持されているため、濃縮排水の流量が少なくなると、当然のことながら、還流水ライン5から供給ライン1に還流する濃縮水の流量が増加する。それにより、原水の不純物濃度が高まると、ろ過手段11のRO膜またはNF膜の膜面に不純物(特に、シリカまたはカルシウム)が析出するスケーリングが起こりやすくなってしまう。したがって、濃縮排水の流量は、濃縮水の不純物濃度が溶解度以上の濃度にならない範囲で回収率が最大になるように、すなわち、不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように設定される。 The drainage flow rate control unit 32 determines the set flow rate of the concentrated drainage in consideration of the recovery rate, which is the ratio of the flow rate of the permeated water to the sum of the flow rate of the permeated water and the flow rate of the concentrated drainage, and the detection value by the drainage flow meter 14. Is adjusted so that the opening degree of the flow rate adjusting valve 31 becomes the set flow rate. The recovery rate at this time is preferably as high as possible from the viewpoint of effective use of water (water saving). That is, it is preferable that the flow rate of concentrated waste water is as small as possible. However, since the flow rate of the concentrated water is kept constant by the constant flow rate valve 13, when the flow rate of the concentrated drainage decreases, the flow rate of the concentrated water returning from the reflux water line 5 to the supply line 1 naturally increases. do. As a result, when the concentration of impurities in the raw water increases, scaling in which impurities (particularly silica or calcium) are deposited on the film surface of the RO film or NF film of the filtration means 11 tends to occur. Therefore, the flow rate of the concentrated waste water is such that the recovery rate is maximized in the range where the impurity concentration of the concentrated water does not exceed the solubility, that is, the recovery rate is maximized in the range where the impurities silica or calcium do not precipitate. Is set to.

ただし、不純物の溶解度は、水温に応じて変化する。例えば、シリカの場合、その溶解度は温度に比例して増加し、カルシウム(炭酸カルシウム)の場合、温度が上昇するにつれてその溶解度は減少する。そのため、水温が低い場合には、シリカの溶解度が相対的に低く、シリカが析出しやすい(シリカスケールが発生しやすい)が、水温が高くなると、カルシウムの溶解度が相対的に低くなるため、カルシウムが析出しやすく(カルシウムスケールが発生しやすく)なる。そこで、本実施形態では、図示していないが、原水と透過水と濃縮水とのいずれかの水温を検出する温度センサ(水温検出手段)が設けられており、この温度センサで検出された水温に基づいて、濃縮排水の最適な設定流量が算出される。 However, the solubility of impurities changes depending on the water temperature. For example, in the case of silica, its solubility increases in proportion to temperature, and in the case of calcium (calcium carbonate), its solubility decreases as the temperature rises. Therefore, when the water temperature is low, the solubility of silica is relatively low and silica is likely to precipitate (silica scale is likely to occur), but when the water temperature is high, the solubility of calcium is relatively low and therefore calcium. Is likely to precipitate (calcium scale is likely to occur). Therefore, although not shown in the present embodiment, a temperature sensor (water temperature detecting means) for detecting the water temperature of any of raw water, permeated water, and concentrated water is provided, and the water temperature detected by this temperature sensor is provided. Based on, the optimum set flow rate of concentrated wastewater is calculated.

具体的には、まず、検出された水温でシリカが析出する理論上の回収率(以下、「シリカの析出回収率」という)と、検出された水温でカルシウム(炭酸カルシウム)が析出する理論上の回収率(以下「カルシウムの析出回収率」という)が算出される。なお、シリカの析出回収率とカルシウムの析出回収率のそれぞれの算出方法については後述する。次に、シリカの析出回収率とカルシウムの析出回収率とが比較され、目標回収率として、より小さい方の析出回収率が設定される。そして、この目標回収率と、透過水流量計12による透過水の検出流量とに基づいて、以下の式(1)により、濃縮排水の目標流量が算出されて設定される。
(濃縮排水の目標流量)=
(透過水の検出流量/目標回収率)-(透過水の検出流量) (1)
Specifically, first, the theoretical recovery rate at which silica precipitates at the detected water temperature (hereinafter referred to as "silica precipitation recovery rate") and the theoretical recovery rate at which calcium (calcium carbonate) precipitates at the detected water temperature. Recovery rate (hereinafter referred to as "calcium precipitation recovery rate") is calculated. The methods for calculating the silica precipitation recovery rate and the calcium precipitation recovery rate will be described later. Next, the precipitation recovery rate of silica and the precipitation recovery rate of calcium are compared, and the smaller precipitation recovery rate is set as the target recovery rate. Then, based on this target recovery rate and the detected flow rate of the permeated water by the permeated water flow meter 12, the target flow rate of the concentrated wastewater is calculated and set by the following formula (1).
(Target flow rate of concentrated wastewater) =
(Detected flow rate of permeated water / target recovery rate)-(Detected flow rate of permeated water) (1)

スケーリングの発生を確実に抑制するという観点からは、上記式(1)で算出された目標流量を上回る流量を濃縮排水の設定流量として設定することもできるが、節水の観点からは、算出された目標流量を濃縮排水の設定流量として設定することが好ましい。なお、回収率(目標回収率)として、通常は、パーセントで表した値が用いられるが、上記式(1)では、小数で表した値が用いられることは言うまでもない。 From the viewpoint of surely suppressing the occurrence of scaling, a flow rate exceeding the target flow rate calculated by the above equation (1) can be set as the set flow rate of the concentrated wastewater, but it is calculated from the viewpoint of water saving. It is preferable to set the target flow rate as the set flow rate of the concentrated wastewater. As the recovery rate (target recovery rate), a value expressed as a percentage is usually used, but it goes without saying that a value expressed as a decimal number is used in the above formula (1).

ここで、シリカの析出回収率とカルシウムの析出回収率の算出方法についてそれぞれ説明する。 Here, methods for calculating the precipitation recovery rate of silica and the precipitation recovery rate of calcium will be described.

(シリカの析出回収率の算出方法)
シリカの析出回収率Yは、検出された水温でのシリカの溶解度(mg/L)をCとし、予め測定された原水のシリカ濃度(mg/L)をFとしたとき、以下の式(2)から算出される。
=(C-F)/C (2)
(Calculation method of silica precipitation recovery rate)
The silica precipitation recovery rate YS is as follows, where the solubility (mg / L ) of silica at the detected water temperature is CS and the silica concentration (mg / L ) of the raw water measured in advance is FS . Calculated from equation (2).
Y S = ( CS - FS ) / CS (2)

なお、シリカの溶解度の算出方法としては、ASTM(American Society for Testing and Materials)D4993-89などに規定された方法を用いることができる。 As a method for calculating the solubility of silica, a method specified in ASTM (American Society for Testing and Materials) D4993-89 or the like can be used.

(カルシウムの析出回収率の算出方法)
カルシウムの析出回収率は、濃縮水のランゲリア指数を算出する方法を利用して算出される。ここで、ランゲリア指数(飽和指数)とは、カルシウム(炭酸カルシウム)の析出の可能性を示す指標であり、水の実際のpHと、理論pH(pHs:水中の炭酸カルシウムが溶解も析出もしない平衡状態にあるときのpH)との差(pH-pHs)を意味する。すなわち、ランゲリア指数が正の値で絶対値が大きいほど炭酸カルシウムが析出しやすくなり、負の値では炭酸カルシウムは析出されない。そのため、カルシウムの析出回収率は、濃縮水のランゲリア指数がゼロになるときの回収率として算出される。なお、より安全側の値として設定するために、カルシウムの析出回収率は、濃縮水のランゲリア指数が負の値になるときの回収率であってもよい。
(Calcium precipitation recovery rate calculation method)
The calcium precipitation recovery rate is calculated using a method for calculating the Langeria index of concentrated water. Here, the Langeria index (saturation index) is an index showing the possibility of calcium (calcium carbonate) precipitation, and the actual pH of water and the theoretical pH (pHs: calcium carbonate in water do not dissolve or precipitate). It means the difference (pH-pHs) from pH) in an equilibrium state. That is, when the Langeria index is a positive value and the absolute value is large, calcium carbonate is more likely to be deposited, and when the value is negative, calcium carbonate is not deposited. Therefore, the calcium precipitation recovery rate is calculated as the recovery rate when the Langeria index of the concentrated water becomes zero. In order to set the value on the safer side, the calcium precipitation recovery rate may be the recovery rate when the Langeria index of the concentrated water becomes a negative value.

濃縮水のランゲリア指数は、濃縮水のpHと、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、検出された水温とから算出される。ランゲリア指数の算出方法としては、例えば、特開平11-267687号公報(段落[0025]~[0027])などに記載された方法を用いることができる。また、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)は、予め測定された原水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、回収率とから算出される。したがって、カルシウムの析出回収率Yは、濃縮水のランゲリア指数がゼロになるときの濃縮水の不純物濃度(mg/L)をCとし、予め測定された原水の不純物濃度(mg/L)をFとしたとき、以下の式(3)の関係で表されることになる。
=(C-F)/C (3)
The Langeria index of concentrated water is calculated from the pH of the concentrated water, the impurity concentration (calcium concentration, total alkalinity, and evaporation residue concentration) of the concentrated water, and the detected water temperature. As a method for calculating the Langeria index, for example, the method described in JP-A No. 11-267687 (paragraphs [0025] to [0027]) can be used. In addition, the impurity concentration (calcium concentration, total alkalinity, and evaporation residue concentration) of the concentrated water is the impurity concentration (calcium concentration, total alkalinity, and evaporation residue concentration) of the raw water measured in advance, and the recovery rate. It is calculated from. Therefore, for the calcium precipitation recovery rate YC, the impurity concentration (mg / L) of the concentrated water when the Langeria index of the concentrated water becomes zero is defined as CC, and the impurity concentration (mg / L ) of the raw water measured in advance is used. When is FC , it is expressed by the relation of the following equation (3).
Y C = ( CC - FC ) / CC (3)

なお、シリカおよびカルシウムの析出回収率の算出方法や濃縮排水の設定流量の算出方法は、例えば加圧ポンプの容量や原水の流量などの装置設計上の制約によって、予め回収率や流量に制約がある場合には、上述した限りではない。また、濃縮排水の設定流量の算出には、予め設定された透過水の目標流量を用いることもできるが、この方法は、透過水の目標流量と実際の流量が一致していない場合に、実際の回収率が目標回収率からずれる可能性があるため好ましくない。すなわち、透過水の実際の流量が目標流量よりも大きい場合には、実際の回収率が目標回収率を上回ることでスケーリングが発生したり、透過水の実際の流量が目標流量よりも小さい場合には、実際の回収率が目標回収率を下回ることで節水を図ることができなくなったりする。 The method of calculating the precipitation recovery rate of silica and calcium and the method of calculating the set flow rate of concentrated wastewater are limited in advance due to device design restrictions such as the capacity of the pressurizing pump and the flow rate of raw water. In some cases, this is not the case as described above. In addition, a preset target flow rate of permeated water can be used to calculate the set flow rate of concentrated wastewater, but this method actually performs when the target flow rate of permeated water and the actual flow rate do not match. It is not preferable because the recovery rate may deviate from the target recovery rate. That is, when the actual flow rate of the permeated water is larger than the target flow rate, scaling occurs because the actual recovery rate exceeds the target recovery rate, or when the actual flow rate of the permeated water is smaller than the target flow rate. If the actual recovery rate is lower than the target recovery rate, it may not be possible to save water.

したがって、濃縮排水の設定流量の算出には、上述したように、透過水流量計12による透過水の検出流量を用いることが好ましい。これにより、透過水の流量制御が適切に実施されない事態が発生しても、実際の回収率が目標の回収率からずれることを抑制することができる。なお、実際の算出には、透過水の検出流量のばらつきなどによる影響を最小限に抑えるために、所定検出時間や所定検出回数における平均流量を用いることが好ましい。 Therefore, as described above, it is preferable to use the permeated water detected flow rate by the permeated water flow meter 12 for calculating the set flow rate of the concentrated wastewater. As a result, even if a situation occurs in which the flow rate control of the permeated water is not properly performed, it is possible to prevent the actual recovery rate from deviating from the target recovery rate. In the actual calculation, it is preferable to use the average flow rate at the predetermined detection time and the predetermined number of detections in order to minimize the influence of the variation in the detected flow rate of the permeated water.

ただし、装置起動時や運転再開時など、透過水の流量が安定せず、検出流量のばらつきが非常に大きい場合には、透過水の流量が安定するまでの一定期間、予め設定された透過水の目標流量を用いて、濃縮排水の設定流量を算出するようになっていてもよい。また、透過水の目標流量と実際の流量との差に応じて、濃縮排水の設定流量の算出に用いる透過水の流量を切り替えるようになっていてもよい。すなわち、その差が所定範囲内にある場合には、目標流量を用いて算出し、その差が所定範囲を外れた場合には、実際の流量を用いて算出するようになっていてもよい。 However, if the flow rate of the permeated water is not stable and the variation in the detected flow rate is very large, such as when the device is started or when the operation is restarted, the permeated water set in advance is set for a certain period until the flow rate of the permeated water stabilizes. The set flow rate of concentrated wastewater may be calculated using the target flow rate of. Further, the flow rate of the permeated water used for calculating the set flow rate of the concentrated waste water may be switched according to the difference between the target flow rate of the permeated water and the actual flow rate. That is, if the difference is within a predetermined range, the target flow rate may be used for calculation, and if the difference is outside the predetermined range, the actual flow rate may be used for calculation.

上述のように回収率制御を行う場合、流量調整弁31としては、電動比例制御弁を用いることが好ましい。これにより、電動比例制御弁の分解能に応じて開度調整を細かく行うことができ、電磁弁の組み合わせなどによる段階式での開度調整に比べて、回収率を滑らかに調整することができる。例えば、50~70%の範囲の回収率を5段階(50%、55%、60%、65%、70%)にしか制御できない段階式では、目標回収率が64%に設定された場合、回収率を60%にしか調整することができず、無駄な濃縮排水が発生してしまう。したがって、流量調整弁31として電動比例制御弁を用いることは、このような濃縮排水の無駄も削減することができるため、節水の観点からも有利である。 When controlling the recovery rate as described above, it is preferable to use an electric proportional control valve as the flow rate adjusting valve 31. As a result, the opening degree can be finely adjusted according to the resolution of the electric proportional control valve, and the recovery rate can be smoothly adjusted as compared with the stepwise opening degree adjustment by a combination of solenoid valves or the like. For example, in a stepped system where the recovery rate in the range of 50 to 70% can be controlled only in 5 steps (50%, 55%, 60%, 65%, 70%), when the target recovery rate is set to 64%, The recovery rate can only be adjusted to 60%, resulting in wasteful concentrated wastewater. Therefore, using the electric proportional control valve as the flow rate adjusting valve 31 is advantageous from the viewpoint of water saving because it is possible to reduce the waste of such concentrated wastewater.

ただし、流量調整弁31として電動比例制御弁を用いる場合には、その開閉速度と、排水流量制御部32による濃縮排水の設定流量の算出速度(演算速度)との関係に注意が必要である。例えば、2つの速度が大きく異なっている場合、電動比例制御弁の開閉が完了して濃縮排水の流量が安定する前に濃縮排水の設定流量が変更されると、ハンチングが発生する可能性がある。また、透過水流量計12による透過水の検出流量に基づいて濃縮排水の設定流量が決定されるため、濃縮排水の流量制御は、加圧ポンプ21の回転数を制御するインバータの応答速度にも影響を受ける可能性がある。したがって、排水流量制御部32による濃縮排水の設定流量の演算速度を決定する際には、電動比例制御弁の開閉速度とインバータの応答速度とを考慮することが好ましい。なお、本実施形態では、上述したように、定流量弁13の設置により透過水の流量制御と濃縮水の流量制御とが独立して行われるため、互いの流量制御が干渉することを抑制することができる。その結果、上述のようなハンチングの発生を極力抑制することができ、実際の回収率が目標の回収率からずれることを抑制することができる。この点からも、濃縮水ライン3に定流量弁13が設けられていることが好ましい。 However, when an electric proportional control valve is used as the flow rate adjusting valve 31, it is necessary to pay attention to the relationship between the opening / closing speed and the calculation speed (calculation speed) of the set flow rate of the concentrated drainage by the drainage flow rate control unit 32. For example, if the two speeds are significantly different, hunting may occur if the set flow rate of the concentrated drainage is changed before the opening and closing of the electric proportional control valve is completed and the flow rate of the concentrated drainage is stabilized. .. Further, since the set flow rate of the concentrated drainage is determined based on the detected flow rate of the permeated water by the permeated water flow meter 12, the flow rate control of the concentrated drainage also affects the response speed of the inverter that controls the rotation speed of the pressurizing pump 21. May be affected. Therefore, when determining the calculation speed of the set flow rate of the concentrated drainage by the drainage flow rate control unit 32, it is preferable to consider the opening / closing speed of the electric proportional control valve and the response speed of the inverter. In the present embodiment, as described above, the flow rate control of the permeated water and the flow rate control of the concentrated water are independently performed by installing the constant flow rate valve 13, so that the mutual flow rate control is suppressed from interfering with each other. be able to. As a result, the occurrence of hunting as described above can be suppressed as much as possible, and the actual recovery rate can be suppressed from deviating from the target recovery rate. From this point as well, it is preferable that the concentrated water line 3 is provided with the constant flow rate valve 13.

さらなる節水を実現するためには、回収率の目標値をより高く設定する必要があるが、本実施形態では、上述の析出回収率をより高くすることを目的として、スケール防止剤を原水に添加するようになっていてもよい。この場合、定流量弁13の規定流量を小さくすることができ、結果として、より小さい容量の加圧ポンプ21を用いることで省エネルギー化を実現することもできる。スケール防止剤の添加は、薬注ポンプによって行うことができる。 In order to further save water, it is necessary to set a higher target value for the recovery rate, but in the present embodiment, an antiscale agent is added to the raw water for the purpose of increasing the above-mentioned precipitation recovery rate. You may be able to do it. In this case, the specified flow rate of the constant flow rate valve 13 can be reduced, and as a result, energy saving can be realized by using the pressurizing pump 21 having a smaller capacity. The addition of the anti-scale agent can be done by a medicated pump.

スケール防止剤は、シリカやカルシウムなどのスケール成分の析出を抑制可能な物質であれば、特定のものに限定されるものではない。その種類としては、例えば、1-ヒドロキシエチリデン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸などのホスホン酸とその塩類などのホスホン酸系化合物;正リン酸塩、重合リン酸塩などのリン酸系化合物;ポリマレイン酸、マレイン酸共重合物などのマレイン酸系化合物;アクリル酸系ポリマーなどが挙げられ、アクリル酸系ポリマーとしては、ポリ(メタ)アクリル酸、マレイン酸/(メタ)アクリル酸、(メタ)アクリル酸/スルホン酸、(メタ)アクリル酸/ノニオン基含有モノマーなどのコポリマーや、(メタ)アクリル酸/スルホン酸/ノニオン基含有モノマー、(メタ)アクリル酸/アクリルアミド-アルキルスルホン酸/置換(メタ)アクリルアミド、(メタ)アクリル酸/アクリルアミド-アリールスルホン酸/置換(メタ)アクリルアミドのターポリマーなどが挙げられる。ターポリマーを構成する(メタ)アクリル酸としては、例えば、メタアクリル酸およびアクリル酸と、それらのナトリウム塩などの(メタ)アクリル酸塩などが挙げられる。ターポリマーを構成するアクリルアミド-アルキルスルホン酸としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸とその塩などが挙げられる。また、ターポリマーを構成する置換(メタ)アクリルアミドとしては、例えば、t-ブチルアクリルアミド、t-オクチルアクリルアミド、ジメチルアクリルアミドなどが挙げられる。 The anti-scale agent is not limited to a specific substance as long as it is a substance capable of suppressing the precipitation of scale components such as silica and calcium. Examples thereof include phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid and nitrilotrimethylphosphonic acid and salts thereof. Phosphoric acid-based compounds; Phosphoric acid-based compounds such as orthophosphates and polymerized phosphates; Maleic acid-based compounds such as polymaleic acid and maleic acid copolymers; Is a copolymer of poly (meth) acrylic acid, maleic acid / (meth) acrylic acid, (meth) acrylic acid / sulfonic acid, (meth) acrylic acid / nonionic group-containing monomer, and (meth) acrylic acid / sulfonic acid. / Nonion group-containing monomer, (meth) acrylic acid / acrylamide-alkylsulfonic acid / substituted (meth) acrylamide, (meth) acrylic acid / acrylamide-arylsulfonic acid / substituted (meth) acrylamide tarpolymer and the like can be mentioned. Examples of the (meth) acrylic acid constituting the terpolymer include methacrylic acid and acrylic acid, and (meth) acrylic acid salts such as sodium salts thereof. Examples of the acrylamide-alkylsulfonic acid constituting the terpolymer include 2-acrylamide-2-methylpropanesulfonic acid and a salt thereof. Examples of the substituted (meth) acrylamide constituting the terpolymer include t-butyl acrylamide, t-octyl acrylamide, and dimethyl acrylamide.

これらの中でも、ホスホン酸系化合物とアクリル酸系ポリマーのうち少なくとも1種類を含むものを用いることが好ましい。また、カルシウムとシリカに由来するスケールを同時に抑制するためには、2-ホスホノブタン-1,2,4-トリカルボン酸と、アクリル酸と(メタ)アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸/置換(メタ)アクリルアミドのターポリマーとの混合物とからなるスケール防止剤を用いることが特に好ましい。 Among these, it is preferable to use one containing at least one of a phosphonic acid-based compound and an acrylic acid-based polymer. In addition, in order to suppress the scale derived from calcium and silica at the same time, 2-phosphonobutane-1,2,4-tricarboxylic acid, acrylic acid and (meth) acrylic acid / 2-acrylamide-2-methylpropanesulfonic acid It is particularly preferred to use anti-scale agents consisting of a mixture of / substituted (meth) acrylamide with a terpolymer.

なお、RO膜用の市販のスケール防止剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター(登録商標)」シリーズなどが挙げられる。 Commercially available scale inhibitors for RO membranes include the "Olpage" series manufactured by Organo Corporation, the "Flocon (registered trademark)" series manufactured by BWA Water Adaptives, and the "PermaTreat (registered trademark)" manufactured by Nalco. Series, "Hypersperse (registered trademark)" series manufactured by General Electric Co., Ltd., "Cliberter (registered trademark)" series manufactured by Kurita Water Industries, Ltd., and the like.

上述したように、本実施形態では、定流量弁13により濃縮水の流量が一定に維持されるため、排水ライン4および還流水ライン5の一方を流れる濃縮水の流量を規定するだけで、他方を流れる濃縮水の流量も規定することができる。そのため、図示した実施形態では、排水ライン4に排水流量計14と流量制御手段(流量調整弁31)が設けられ、還流水ライン5には、排水ライン4および還流水ライン5を流れる濃縮水の圧力バランスを調整するための手動弁(圧力調整弁)15が設けられているが、その逆であってもよい。すなわち、還流水ライン5に、流量計と流量制御手段としての流量調整弁(比例制御弁)とが設けられ、排水ライン4に、圧力バランス調整のための手動弁が設けられていてもよい。あるいは、排水ライン4および還流水ライン5の両方に、流量計と流量制御手段としての流量調整弁(比例制御弁)とを設けることもできる。また、上述した実施形態では、透過水流量制御部と排水流量制御部とが別個に設けられているが、1つの流量制御部により、透過水の流量調整と濃縮排水の流量調整とが行われるようになっていてもよい。 As described above, in the present embodiment, since the flow rate of the concentrated water is kept constant by the constant flow rate valve 13, only the flow rate of the concentrated water flowing through one of the drainage line 4 and the recirculation water line 5 is specified, and the other is specified. The flow rate of concentrated water flowing through the water can also be specified. Therefore, in the illustrated embodiment, the drainage line 4 is provided with the drainage flow meter 14 and the flow rate control means (flow rate adjusting valve 31), and the return water line 5 is the concentrated water flowing through the drainage line 4 and the return water line 5. A manual valve (pressure adjusting valve) 15 for adjusting the pressure balance is provided, but vice versa. That is, the recirculation water line 5 may be provided with a flow meter and a flow rate adjusting valve (proportional control valve) as a flow rate control means, and the drainage line 4 may be provided with a manual valve for pressure balance adjustment. Alternatively, both the drainage line 4 and the recirculation water line 5 may be provided with a flow meter and a flow rate adjusting valve (proportional control valve) as a flow rate control means. Further, in the above-described embodiment, the permeated water flow rate control unit and the drainage flow rate control unit are separately provided, but the flow rate adjustment of the permeated water and the flow rate adjustment of the concentrated drainage are performed by one flow rate control unit. It may be like this.

また、ろ過手段の数は1つに限定されるものではなく、2つ以上のろ過手段が直列に接続されて設けられていてもよい。その場合にも、定流量弁は、2つ以上のろ過手段のうち最も上流側のろ過手段に接続された濃縮水ラインに設けられ、最も下流側のろ過手段で分離された透過水が設定流量(予め設定された目標流量)に調整されることになる。ただし、最も上流側のろ過手段を除いたすべてのろ過手段において、任意の流量調整手段により透過水と濃縮水の流量分配が適切に設定・調整される必要があることは言うまでもない。さらに、最も上流側のろ過手段からの濃縮排水の設定流量の算出には、最も下流側のろ過手段で分離された透過水ではなく、最も上流側のろ過手段で分離された透過水の流量(検出流量)が用いられることに留意されたい。なお、ここでいう「直列に接続される」とは、被処理水が複数のろ過手段で順次処理されることを意味し、隣接する2つのろ過手段において、上流側のろ過手段で分離された透過水が下流側のろ過手段に被処理水として供給されることを意味する。また、各ろ過手段は、複数のRO膜またはNF膜から構成されていてもよい。この場合、複数のRO膜またはNF膜は、一次側(原水および濃縮水の流通側)が直列に接続されて最終的に濃縮水ラインに接続され、二次側(透過水の流通側)が並列に接続されて最終的に透過水ラインに接続されることになる。 Further, the number of filtration means is not limited to one, and two or more filtration means may be provided by being connected in series. Even in that case, the constant flow rate valve is provided in the concentrated water line connected to the most upstream filtration means among the two or more filtration means, and the permeated water separated by the most downstream filtration means is the set flow rate. It will be adjusted to (preset target flow rate). However, it goes without saying that in all the filtration means except the most upstream filtration means, it is necessary to appropriately set and adjust the flow rate distribution of the permeated water and the concentrated water by any flow rate adjusting means. Furthermore, in calculating the set flow rate of concentrated wastewater from the most upstream filtration means, the flow rate of the permeated water separated by the most upstream filtration means (not the permeated water separated by the most downstream filtration means). Note that the detected flow rate) is used. In addition, "connected in series" here means that the water to be treated is sequentially treated by a plurality of filtering means, and is separated by the filtering means on the upstream side in the two adjacent filtering means. It means that the permeated water is supplied to the filtration means on the downstream side as water to be treated. Further, each filtration means may be composed of a plurality of RO membranes or NF membranes. In this case, in the plurality of RO membranes or NF membranes, the primary side (raw water and concentrated water distribution side) is connected in series and finally connected to the concentrated water line, and the secondary side (permeated water distribution side) is connected. It will be connected in parallel and eventually connected to the permeated water line.

1 供給ライン
2 透過水ライン
3 濃縮水ライン
4 排水ライン
5 還流水ライン
10 膜ろ過装置
11 ろ過手段
12 透過水流量計
13 定流量弁
14 排水流量計
15 手動弁
20 透過水流量制御機構
21 加圧ポンプ
22 透過水流量制御部
30 排水流量制御機構
31 流量調整弁
32 排水流量制御部
1 Supply line 2 Permeated water line 3 Concentrated water line 4 Drainage line 5 Reflux water line 10 Film filtration device 11 Filtering means 12 Permeated water flow meter 13 Constant flow valve 14 Drainage flow meter 15 Manual valve 20 Permeated water flow control mechanism 21 Pressurization Pump 22 Permeated water flow control unit 30 Drainage flow control mechanism 31 Flow control valve 32 Drainage flow control unit

Claims (4)

被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、
前記ろ過手段に接続され、前記ろ過手段に被処理水を供給する供給ラインと、
前記ろ過手段に接続され、前記ろ過手段からの透過水を流通させる透過水ラインと、
前記ろ過手段に接続され、前記ろ過手段からの濃縮水を流通させる濃縮水ラインと、
前記濃縮水ラインから分岐し、前記濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
前記透過水ラインを流れる透過水の流量を検出する第1の流量検出手段と、
前記排水ラインを流れる濃縮水の流量を検出する第2の流量検出手段と、
前記透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、
前記排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、前記排水ラインに設けられた流量調整弁と、前記第2の流量検出手段による検出値に基づいて、前記流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、を有し、
前記第2の流量制御手段の前記制御部は、前記第2の流量検出手段による検出値が、前記透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記透過水ラインを流れる透過水の流量の割合である回収率の目標値と、前記第1の流量検出手段による検出値とから決定される、前記排水ラインを流れる濃縮水の前記設定流量になるように、前記流量調整弁の開度を調整する、膜ろ過装置。
A filtration means having a reverse osmosis membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water,
A supply line connected to the filtration means and supplying water to be treated to the filtration means,
A permeated water line connected to the filtering means and circulating the permeated water from the filtering means,
A concentrated water line connected to the filtering means and circulating concentrated water from the filtering means,
A drainage line that branches off from the concentrated water line and discharges a part of the concentrated water flowing through the concentrated water line to the outside.
A first flow rate detecting means for detecting the flow rate of the permeated water flowing through the permeated water line,
A second flow rate detecting means for detecting the flow rate of concentrated water flowing through the drainage line,
A first flow rate control means for adjusting the flow rate of the permeated water flowing through the permeated water line to a set flow rate,
A second flow rate control means for adjusting the flow rate of concentrated water flowing through the drainage line to a set flow rate, based on a flow rate adjusting valve provided in the drainage line and a value detected by the second flow rate detection means. A second flow rate control means having a control unit for adjusting the opening degree of the flow rate adjusting valve, and a second flow rate control means.
In the control unit of the second flow rate control means, the value detected by the second flow rate detecting means is the sum of the flow rate of the permeated water flowing through the permeated water line and the flow rate of the concentrated water flowing through the drainage line. The set flow rate of concentrated water flowing through the drainage line is determined from the target value of the recovery rate, which is the ratio of the flow rate of the permeated water flowing through the permeated water line, and the value detected by the first flow rate detecting means. In addition, a membrane filtration device that adjusts the opening degree of the flow rate adjusting valve .
前記第2の流量制御手段の前記制御部は、前記第1の流量検出手段による検出値を前記回収率の目標値で除した値から、前記第1の流量検出手段による検出値を減じた値を、前記排水ラインを流れる濃縮水の前記設定流量として決定する、請求項1に記載の膜ろ過装置。 The control unit of the second flow rate control means is a value obtained by subtracting the detection value by the first flow rate detection means from the value obtained by dividing the detection value by the first flow rate detection means by the target value of the recovery rate. The membrane filtration device according to claim 1, wherein is determined as the set flow rate of concentrated water flowing through the drainage line. 前記ろ過手段に供給される被処理水と前記ろ過手段からの透過水と前記ろ過手段からの濃縮水とのいずれかの水温を検出する水温検出手段を有し、
前記第2の流量制御手段の前記制御部は、前記水温検出手段で検出された前記水温において前記ろ過手段の前記逆浸透膜またはナノろ過膜の膜面にシリカおよびカルシウムが析出する理論上の回収率をそれぞれ算出し、該算出した値を比較して小さい方の値を前記回収率の目標値として設定する、請求項1または2に記載の膜ろ過装置。
It has a water temperature detecting means for detecting the water temperature of any one of the water to be treated supplied to the filtering means, the permeated water from the filtering means, and the concentrated water from the filtering means.
The control unit of the second flow control means theoretically deposits silica and calcium on the membrane surface of the reverse osmosis membrane or the nanofiltration membrane of the filtration means at the water temperature detected by the water temperature detecting means. The membrane filtration apparatus according to claim 1 or 2, wherein the recovery rates of the above are calculated, the calculated values are compared, and the smaller value is set as the target value of the recovery rate.
前記第1の流量制御手段が、前記供給ラインに設けられ、該供給ラインを流れる被処理水の圧力を調整する圧力調整手段と、前記第1の流量検出手段による検出値に基づいて、前記圧力調整手段を制御する制御部と、を有する、請求項1から3のいずれか1項に記載の膜ろ過装置。 The first flow rate control means is provided in the supply line, and the pressure is based on a pressure adjusting means for adjusting the pressure of water to be treated flowing through the supply line and a value detected by the first flow rate detecting means. The membrane filtration device according to any one of claims 1 to 3, further comprising a control unit for controlling the adjusting means.
JP2017206132A 2017-10-25 2017-10-25 Membrane filtration device Active JP7017365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206132A JP7017365B2 (en) 2017-10-25 2017-10-25 Membrane filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206132A JP7017365B2 (en) 2017-10-25 2017-10-25 Membrane filtration device

Publications (2)

Publication Number Publication Date
JP2019076838A JP2019076838A (en) 2019-05-23
JP7017365B2 true JP7017365B2 (en) 2022-02-08

Family

ID=66628555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206132A Active JP7017365B2 (en) 2017-10-25 2017-10-25 Membrane filtration device

Country Status (1)

Country Link
JP (1) JP7017365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106283B2 (en) * 2018-02-01 2022-07-26 オルガノ株式会社 Membrane filtration device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081254A (en) 2003-09-09 2005-03-31 Nippon Rensui Co Ltd Reverse osmosis membrane apparatus
JP2009106832A (en) 2007-10-29 2009-05-21 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
US20090134080A1 (en) 2005-10-20 2009-05-28 Marcus John Fabig Purified Water Production and Distribution System
JP2012200613A (en) 2011-03-23 2012-10-22 Miura Co Ltd Flushing method for water treatment system, controlling method for water treatment system, program, controller, and water treatment system
JP2013022544A (en) 2011-07-25 2013-02-04 Kubota Corp Membrane treatment device and method of operation
JP2015013233A (en) 2013-07-03 2015-01-22 栗田工業株式会社 Film separation device operation method and film separation system
JP2017119281A (en) 2017-04-10 2017-07-06 オルガノ株式会社 Membrane filtration equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310703A (en) * 1988-06-09 1989-12-14 Japan Organo Co Ltd Method for controlling concentration in membrane separator
JP3327371B2 (en) * 1996-03-05 2002-09-24 株式会社 日立インダストリイズ Membrane liquid concentrator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081254A (en) 2003-09-09 2005-03-31 Nippon Rensui Co Ltd Reverse osmosis membrane apparatus
US20090134080A1 (en) 2005-10-20 2009-05-28 Marcus John Fabig Purified Water Production and Distribution System
JP2009106832A (en) 2007-10-29 2009-05-21 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
JP2012200613A (en) 2011-03-23 2012-10-22 Miura Co Ltd Flushing method for water treatment system, controlling method for water treatment system, program, controller, and water treatment system
JP2013022544A (en) 2011-07-25 2013-02-04 Kubota Corp Membrane treatment device and method of operation
JP2015013233A (en) 2013-07-03 2015-01-22 栗田工業株式会社 Film separation device operation method and film separation system
JP2017119281A (en) 2017-04-10 2017-07-06 オルガノ株式会社 Membrane filtration equipment

Also Published As

Publication number Publication date
JP2019076838A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP7045814B2 (en) Membrane filtration device
JP6851877B2 (en) Membrane filtration device
JP4831480B2 (en) Membrane filtration system
JP6842976B2 (en) Pure water production equipment
JP2006305499A (en) Operating method of membrane filtration system
JP2010120015A (en) Method of membrane filtration
JP5067299B2 (en) Membrane filtration system and method of operating membrane filtration system
JP7017365B2 (en) Membrane filtration device
JP2009285522A (en) Reverse osmosis membrane device
JP7045870B2 (en) Membrane filtration device
JP7106283B2 (en) Membrane filtration device
JP7285748B2 (en) water treatment equipment
JP7181809B2 (en) Membrane filtration device
JP7289257B2 (en) MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF
JP7307665B2 (en) MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF
JP7106395B2 (en) Membrane filtration device
JP7303861B2 (en) Membrane filtration device
JP7364451B2 (en) Water treatment equipment and water treatment equipment operation management method
JP2022061173A (en) Membrane filtration device and operational method thereof
JP2023032684A (en) Membrane filtration apparatus
JP7449107B2 (en) Water treatment method and water treatment equipment
JP2019000804A (en) Membrane separator
JP2022154246A (en) Water treatment method and water treatment device
JP6939121B2 (en) Membrane separation device
WO2023032566A1 (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7017365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150