JP6851877B2 - Membrane filtration device - Google Patents

Membrane filtration device Download PDF

Info

Publication number
JP6851877B2
JP6851877B2 JP2017065073A JP2017065073A JP6851877B2 JP 6851877 B2 JP6851877 B2 JP 6851877B2 JP 2017065073 A JP2017065073 A JP 2017065073A JP 2017065073 A JP2017065073 A JP 2017065073A JP 6851877 B2 JP6851877 B2 JP 6851877B2
Authority
JP
Japan
Prior art keywords
flow rate
water
line
concentrated water
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017065073A
Other languages
Japanese (ja)
Other versions
JP2018167146A (en
Inventor
圭悟 佐藤
圭悟 佐藤
直幸 田島
直幸 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2017065073A priority Critical patent/JP6851877B2/en
Publication of JP2018167146A publication Critical patent/JP2018167146A/en
Application granted granted Critical
Publication of JP6851877B2 publication Critical patent/JP6851877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜またはナノろ過膜を有する膜ろ過装置に関する。 The present invention relates to a membrane filtration device having a reverse osmosis membrane or a nanofiltration membrane.

被処理水に含まれる不純物を除去する水処理装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有する膜ろ過装置が知られている。この装置では、所定の供給圧力でRO膜またはNF膜に供給された被処理水(原水)が、RO膜またはNF膜により、透過水と濃縮水とに分離される。これにより、不純物が除去された処理水(透過水)が得られている。 As a water treatment device for removing impurities contained in water to be treated, a membrane filtration device having a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) is known. In this device, the water to be treated (raw water) supplied to the RO membrane or the NF membrane at a predetermined supply pressure is separated into permeated water and concentrated water by the RO membrane or the NF membrane. As a result, treated water (permeated water) from which impurities have been removed is obtained.

RO膜またはNF膜を有する膜ろ過装置では、多くの場合、水の有効利用(節水)の観点から、不純物を含む濃縮水の一部を濃縮排水として外部に排出し、残りを濃縮還流水としてRO膜またはNF膜の上流側に還流させる構成が採用されている。これにより、すべての濃縮水を濃縮排水として排出する場合に比べて、回収率(透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合)を向上させることができ、節水を実現することができる。これと同時に、膜ろ過装置では、水温の変化(すなわち、水の粘性の変化)による透過水の流量変化に対応するために、加圧ポンプの回転数を制御することでRO膜またはNF膜への原水の供給圧力を調整して、透過水の流量を一定に維持する流量制御も行われている。 In membrane filtration devices having RO membranes or NF membranes, in many cases, from the viewpoint of effective use of water (water saving), a part of concentrated water containing impurities is discharged to the outside as concentrated wastewater, and the rest is used as concentrated reflux water. A configuration is adopted in which water is returned to the upstream side of the RO membrane or the NF membrane. As a result, the recovery rate (the ratio of the permeated water flow rate to the sum of the permeated water flow rate and the concentrated wastewater flow rate) can be improved as compared with the case where all the concentrated water is discharged as concentrated wastewater, and water saving can be achieved. It can be realized. At the same time, in the membrane filtration device, in order to respond to the change in the flow rate of the permeated water due to the change in the water temperature (that is, the change in the viscosity of the water), the rotation speed of the pressurizing pump is controlled to change to the RO membrane or the NF membrane. The flow rate is also controlled to keep the flow rate of permeated water constant by adjusting the supply pressure of the raw water.

透過水の流量制御では、透過水の流量が一定になるように原水の供給圧力を調整すると、それに応じて、RO膜またはNF膜で分離される濃縮水の流量も変化する。このような濃縮水の流量変化は、ファウリングやスケーリングによる膜の詰まりの発生や、圧力損失の増大による膜の破損につながるため、透過水の流量制御と同様に、濃縮水に対しても流量制御を行うことが求められている。しかしながら、上述した構成の膜ろ過装置では、透過水の流量制御に伴う濃縮水の流量変化に対し、濃縮還流水または濃縮排水の流量制御によって透過水の流量に対する濃縮水の割合を所定の割合に維持しようとすると、互いの流量制御が干渉してハンチングが発生する場合がある。 In the flow rate control of permeated water, when the supply pressure of raw water is adjusted so that the flow rate of permeated water becomes constant, the flow rate of concentrated water separated by the RO membrane or the NF membrane also changes accordingly. Such a change in the flow rate of concentrated water leads to clogging of the membrane due to fouling and scaling, and damage to the membrane due to an increase in pressure loss. Control is required. However, in the membrane filtration device having the above-described configuration, the ratio of the concentrated water to the flow rate of the permeated water is set to a predetermined ratio by controlling the flow rate of the concentrated recirculated water or the concentrated drainage with respect to the change in the flow rate of the concentrated water due to the flow rate control of the permeated water. If you try to maintain it, the flow control of each other may interfere and hunting may occur.

そこで、特許文献1には、ハンチングを回避する方法として、濃縮水を流通させる濃縮水ラインに定流量弁を設けることで、濃縮水の流量を常に一定に保持する方法が提案されている。この方法によれば、透過水の流量制御が濃縮水の流量に影響を及ぼすことがなくなるため、濃縮水側でどのような流量制御を行ったとしても、それが透過水の流量制御と干渉することがなくなり、ハンチングを回避することができる。 Therefore, Patent Document 1 proposes, as a method of avoiding hunting, a method of always keeping the flow rate of concentrated water constant by providing a constant flow valve in the concentrated water line through which concentrated water is circulated. According to this method, the flow rate control of the permeated water does not affect the flow rate of the concentrated water, so that whatever the flow rate control is performed on the concentrated water side, it interferes with the flow rate control of the permeated water. Hunting can be avoided.

特開2014−213260号公報Japanese Unexamined Patent Publication No. 2014-21260

ところで、定流量弁には、定流量弁を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されているが、場合によっては、原水の供給圧力が著しく上昇し、定流量弁の一次側と二次側の圧力差が定流量弁の作動差圧範囲を超えてしまうことがあることが、本発明者らにより確認されている。例えば、複数の膜を直列に接続した場合や中高圧用の膜を使用する場合、水温が極端に低下した場合などがこれに該当するが、上述の圧力差が定流量弁の作動差圧範囲を超えてしまうと、濃縮水の流量は一定に保持されなくなる。その結果、透過水の流量制御が濃縮水の流量に影響を及ぼしてしまい、濃縮還流水または濃縮排水の流量制御を行おうとすると、互いの流量制御が干渉してハンチングを引き起こすおそれがある。 By the way, the constant flow valve defines an operating differential pressure range (allowable range of pressure difference between the primary side and the secondary side of the constant flow valve) for operating the constant flow valve normally, but in some cases. It has been confirmed by the present inventors that the supply pressure of raw water may increase remarkably and the pressure difference between the primary side and the secondary side of the constant flow valve may exceed the operating differential pressure range of the constant flow valve. There is. For example, when multiple membranes are connected in series, when a membrane for medium and high pressure is used, or when the water temperature drops extremely, the above-mentioned pressure difference corresponds to the operating differential pressure range of the constant flow valve. If it exceeds, the flow rate of concentrated water will not be kept constant. As a result, the flow rate control of the permeated water affects the flow rate of the concentrated water, and when the flow rate control of the concentrated reflux water or the concentrated wastewater is attempted, the flow rate control of each other may interfere with each other and cause hunting.

また、濃縮水の流量が一定に保持されずに増加すると、回収率を維持するための濃縮還流水または濃縮排水の流量制御が行われている場合、濃縮水の増加分は濃縮還流水として原水に還流する。その結果、循環する濃縮水の流量が増加し、加圧ポンプの吐出流量が増加することになるが、それに応じて加圧ポンプの揚程が低くなるため、必要な透過水の流量が得られなくなるおそれがある。この場合、加圧ポンプの回転数(出力)を上げることで必要な透過水の流量を得ることはできるが、このことは省エネルギーの観点から好ましくない。 In addition, if the flow rate of concentrated water is not kept constant and increases, if the flow rate of concentrated reflux water or concentrated wastewater is controlled to maintain the recovery rate, the increased amount of concentrated water will be used as concentrated reflux water as raw water. Reflux to. As a result, the flow rate of the circulating concentrated water increases and the discharge flow rate of the pressurizing pump increases, but the lift of the pressurizing pump decreases accordingly, so that the required flow rate of permeated water cannot be obtained. There is a risk. In this case, the required flow rate of permeated water can be obtained by increasing the rotation speed (output) of the pressurizing pump, but this is not preferable from the viewpoint of energy saving.

そこで、本発明の目的は、安定した流量制御を実現するとともに、省エネルギー性に優れた膜ろ過装置を提供することである。 Therefore, an object of the present invention is to provide a membrane filtration device that realizes stable flow rate control and is excellent in energy saving.

上述した目的を達成するために、本発明の一態様による膜ろ過装置は、被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、ろ過手段に接続され、ろ過手段に被処理水を供給する供給ラインと、ろ過手段に接続され、ろ過手段からの透過水を流通させる透過水ラインと、ろ過手段に接続され、ろ過手段からの濃縮水を流通させる濃縮水ラインと、濃縮水ラインから分岐し、濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、濃縮水ラインから分岐して供給ラインに接続され、濃縮水ラインを流れる濃縮水の残りを供給ラインに還流させる還流水ラインと、透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、定流量弁の上流側の濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、を有している。 In order to achieve the above-mentioned object, the membrane filtering device according to one aspect of the present invention is connected to a filtering means having a back-penetrating membrane or a nano-filtering membrane that separates the water to be treated into permeated water and concentrated water, and the filtering means. A supply line that supplies the water to be treated to the filtering means, a permeated water line that is connected to the filtering means and distributes the permeated water from the filtering means, and a permeated water line that is connected to the filtering means and distributes the concentrated water from the filtering means. Concentrated water line, a drainage line that branches off from the concentrated water line and discharges a part of the concentrated water flowing through the concentrated water line to the outside, and a concentrated water line that branches off from the concentrated water line and is connected to the supply line and flows through the concentrated water line. A recirculation water line that returns the rest of the water to the supply line, a first flow control means that adjusts the flow rate of the permeated water flowing through the permeated water line to a set flow rate, and a concentration provided in the concentrated water line and flowing through the concentrated water line. It has a constant flow valve that keeps the flow rate of water constant, and a pressure reducing valve that is provided in the concentrated water line on the upstream side of the constant flow valve and reduces the pressure of the concentrated water flowing through the concentrated water line.

上述した目的を達成するために、本発明の一態様による膜ろ過装置は、被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、ろ過手段に接続され、ろ過手段に被処理水を供給する供給ラインと、ろ過手段に接続され、ろ過手段からの透過水を流通させる透過水ラインと、ろ過手段に接続され、ろ過手段からの濃縮水を流通させる濃縮水ラインと、濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、定流量弁の下流側で濃縮水ラインから分岐し、濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、定流量弁の下流側で濃縮水ラインから分岐して供給ラインに接続され、濃縮水ラインを流れる濃縮水の残りを供給ラインに還流させる還流水ラインと、透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、排水ラインに設けられた流量調整弁と、排水ラインを流れる濃縮水の流量を検出する流量検出手段と、流量検出手段により検出された濃縮水の流量に基づいて、流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、定流量弁の上流側の濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、を有している。 In order to achieve the above-mentioned object, the membrane filtering device according to one aspect of the present invention is connected to a filtering means having a back-penetrating membrane or a nano-filtering membrane that separates the water to be treated into permeated water and concentrated water, and the filtering means. A supply line that supplies the water to be treated to the filtering means, a permeated water line that is connected to the filtering means and distributes the permeated water from the filtering means, and a permeated water line that is connected to the filtering means and distributes the concentrated water from the filtering means. A concentrated water line , a constant flow valve provided in the concentrated water line that keeps the flow rate of concentrated water flowing through the concentrated water line constant, and a branch from the concentrated water line on the downstream side of the constant flow valve, and flow through the concentrated water line. A drainage line that discharges a part of the concentrated water to the outside, and a return that branches off from the concentrated water line on the downstream side of the constant flow valve and is connected to the supply line, and the rest of the concentrated water flowing through the concentrated water line is returned to the supply line. The first flow control means for adjusting the flow rate of the permeated water flowing through the flowing water line and the permeated water line to the set flow rate, and the second flow control means for adjusting the flow rate of the concentrated water flowing through the drainage line to the set flow rate. , The opening degree of the flow control valve is adjusted based on the flow rate adjusting valve provided in the drainage line, the flow rate detecting means for detecting the flow rate of the concentrated water flowing through the drainage line, and the flow rate of the concentrated water detected by the flow rate detecting means. It has a second flow control means having a control unit for adjusting, and a pressure reducing valve provided in the concentrated water line on the upstream side of the constant flow valve to reduce the pressure of the concentrated water flowing through the concentrated water line. There is.

また、本発明の他の態様による膜ろ過装置は、直列に接続された複数のろ過手段であって、それぞれが被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する複数のろ過手段と、複数のろ過手段のうち最も上流側のろ過手段に接続され、最も上流側のろ過手段に被処理水を供給する供給ラインと、複数のろ過手段のうち最も下流側のろ過手段に接続され、最も下流側のろ過手段からの透過水を流通させる透過水ラインと、最も上流側のろ過手段に接続され、最も上流側のろ過手段からの濃縮水を流通させる濃縮水ラインと、濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、定流量弁の下流側で濃縮水ラインから分岐し、濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、定流量弁の下流側で濃縮水ラインから分岐して供給ラインに接続され、濃縮水ラインを流れる濃縮水の残りを供給ラインに還流させる還流水ラインと、透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、排水ラインに設けられた流量調整弁と、排水ラインを流れる濃縮水の流量を検出する流量検出手段と、流量検出手段により検出された濃縮水の流量に基づいて、流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、定流量弁の上流側の濃縮水ラインに設けられ、濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、を有している。 Further, the membrane filtering device according to another aspect of the present invention is a plurality of filtering means connected in series, each of which has a back-penetrating membrane or a nano-filtering membrane that separates the water to be treated into permeated water and concentrated water. A supply line that is connected to the most upstream filtration means among the plurality of filtering means and supplies water to be treated to the most upstream filtering means, and the most downstream side of the plurality of filtering means. A permeated water line that is connected to the filtering means and circulates permeated water from the most downstream filtering means, and a concentrated water line that is connected to the most upstream filtering means and circulates concentrated water from the most upstream filtering means. A constant flow valve installed in the concentrated water line that keeps the flow rate of concentrated water flowing through the concentrated water line constant, and a concentrated water branching from the concentrated water line on the downstream side of the constant flow valve and flowing through the concentrated water line. A drainage line that discharges a part to the outside, and a recirculation water line that branches off from the concentrated water line on the downstream side of the constant flow valve and is connected to the supply line to return the rest of the concentrated water flowing through the concentrated water line to the supply line. The first flow control means for adjusting the flow rate of the permeated water flowing through the permeated water line to the set flow rate, and the second flow control means for adjusting the flow rate of the concentrated water flowing through the drain line to the set flow rate. Control to adjust the opening degree of the flow control valve based on the flow rate adjusting valve provided in, the flow rate detecting means for detecting the flow rate of the concentrated water flowing through the drainage line, and the flow rate of the concentrated water detected by the flow rate detecting means. It has a second flow control means having a portion, and a pressure reducing valve provided in the concentrated water line on the upstream side of the constant flow valve to reduce the pressure of the concentrated water flowing through the concentrated water line.

以上、本発明によれば、安定した流量制御を実現するとともに、省エネルギー性に優れた膜ろ過装置を提供することができる。 As described above, according to the present invention, it is possible to provide a membrane filtration device that can realize stable flow rate control and is excellent in energy saving.

本発明の第1の実施形態に係る膜ろ過装置の構成を示す概略図である。It is the schematic which shows the structure of the membrane filtration apparatus which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る膜ろ過装置の構成を示す概略図である。It is the schematic which shows the structure of the membrane filtration apparatus which concerns on 2nd Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る膜ろ過装置の構成を示す概略図である。
(First Embodiment)
FIG. 1 is a schematic view showing the configuration of a membrane filtration apparatus according to the first embodiment of the present invention.

本実施形態の膜ろ過装置10は、原水(被処理水)に含まれる不純物を除去して処理水を生成する装置であって、原水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離するろ過手段11を有している。ろ過手段11は、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。 The membrane filtration device 10 of the present embodiment is an apparatus for generating treated water by removing impurities contained in raw water (water to be treated), and permeates the raw water with concentrated water containing impurities and from which impurities have been removed. It has a filtration means 11 that separates from water. The filtration means 11 has a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane).

また、膜ろ過装置10は、ろ過手段11にそれぞれ接続された複数のライン、すなわち、ろ過手段11に原水を供給する供給ライン1と、ろ過手段11からの透過水を流通させる透過水ライン2と、ろ過手段11からの濃縮水を流通させる濃縮水ライン3とを有している。加えて、膜ろ過装置10は、濃縮水ライン3から分岐した2つのライン、すなわち、濃縮水ライン3を流れる濃縮水の一部を外部へ排出する排水ライン4と、濃縮水の残りを供給ライン1に還流させる還流水ライン5とを有している。還流水ライン5は、濃縮水ライン3から分岐した後、後述する加圧ポンプ21の上流側で供給ライン1に接続されている。なお、還流水ライン5は、供給ライン1に直接接続される代わりに、供給ライン1に設けられた原水タンク(図示せず)に接続されていてもよい。 Further, the membrane filtration device 10 includes a plurality of lines connected to the filtration means 11, that is, a supply line 1 for supplying raw water to the filtration means 11, and a permeation water line 2 for circulating the permeated water from the filtration means 11. It also has a concentrated water line 3 for circulating concentrated water from the filtration means 11. In addition, the membrane filtration device 10 has two lines branched from the concentrated water line 3, that is, a drainage line 4 for discharging a part of the concentrated water flowing through the concentrated water line 3 to the outside, and a supply line for supplying the rest of the concentrated water. It has a reflux water line 5 for refluxing to 1. The recirculated water line 5 is connected to the supply line 1 on the upstream side of the pressurizing pump 21, which will be described later, after branching from the concentrated water line 3. The recirculated water line 5 may be connected to a raw water tank (not shown) provided in the supply line 1 instead of being directly connected to the supply line 1.

さらに、膜ろ過装置10は、透過水ライン2を流れる透過水の流量を設定流量に調整する透過水流量制御機構(第1の流量制御手段)20を有している。 Further, the membrane filtration device 10 has a permeated water flow rate control mechanism (first flow rate control means) 20 that adjusts the flow rate of the permeated water flowing through the permeated water line 2 to a set flow rate.

透過水流量制御機構20は、供給ライン1に設けられ、供給ライン1を流れる原水の圧力(ろ過手段11への原水の供給圧力)を調整する加圧ポンプ(圧力調整手段)21と、透過水ライン2に設けられ、透過水ライン2を流れる透過水の流量を検出する透過水流量計(流量検出手段)22と、透過水流量計22により検出された透過水の流量に基づいて、加圧ポンプ21を制御する透過水流量制御部23とを有している。 The permeated water flow rate control mechanism 20 is provided in the supply line 1, and includes a pressurizing pump (pressure adjusting means) 21 for adjusting the pressure of the raw water flowing through the supply line 1 (the pressure of supplying the raw water to the filtering means 11) and the permeated water. Pressurized based on the permeated water flow meter (flow rate detecting means) 22 provided on the line 2 and detecting the flow rate of the permeated water flowing through the permeated water line 2 and the flow rate of the permeated water detected by the permeated water flow meter 22. It has a permeated water flow rate control unit 23 that controls the pump 21.

透過水流量制御部23は、加圧ポンプ21の回転数を制御するインバータ(図示せず)を含み、透過水流量計22で検出された透過水の流量が一定になるように、加圧ポンプ21の回転数を制御するものである。例えば、水温が変化すると、水の粘性が変化することで、RO膜またはNF膜で分離される透過水の流量も変化する。この変化に応じて、透過水流量制御部23は、加圧ポンプ21の回転数を制御するようになっている。すなわち、水温が低くなると、水の粘性は高くなり、その結果、RO膜またはNF膜で分離される透過水の流量は減少する。そのため、透過水流量制御部23は、この減少分を補うように、加圧ポンプ21の回転数を上げることで、原水の供給圧力を増加させる。また、水温が高くなると、水の粘性は低くなり、その結果、RO膜またはNF膜で分離される透過水の流量は増加する。そのため、透過水流量制御部23は、この増加分を打ち消すように、加圧ポンプ21の回転数を下げることで、原水の供給圧力を低下させる。 The permeated water flow rate control unit 23 includes an inverter (not shown) that controls the rotation speed of the pressurizing pump 21 so that the permeated water flow rate detected by the permeated water flow meter 22 becomes constant. It controls the number of rotations of 21. For example, when the water temperature changes, the viscosity of the water changes, so that the flow rate of the permeated water separated by the RO membrane or the NF membrane also changes. In response to this change, the permeated water flow rate control unit 23 controls the rotation speed of the pressurizing pump 21. That is, as the water temperature decreases, the viscosity of the water increases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane decreases. Therefore, the permeated water flow rate control unit 23 increases the supply pressure of raw water by increasing the rotation speed of the pressurizing pump 21 so as to compensate for this decrease. Further, as the water temperature increases, the viscosity of the water decreases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane increases. Therefore, the permeated water flow rate control unit 23 lowers the supply pressure of raw water by lowering the rotation speed of the pressurizing pump 21 so as to cancel this increase.

このように、本実施形態では、加圧ポンプ21の回転数、すなわち原水の供給圧力を調整することで、透過水の流量は一定(予め設定された目標流量)に維持されるが、その原水の供給圧力の変化に応じて、RO膜またはNF膜で分離される濃縮水の流量も変化することになる。このような濃縮水の流量変化そのものを抑制するために、濃縮水ライン3には、濃縮水ライン3を流れる濃縮水の流量を一定に保持する定流量弁12が設けられている。これにより、透過水流量制御部23により加圧ポンプ21の回転数が変化して、ろ過手段11への原水の供給圧力が変化した場合にも、濃縮水の流量を一定に保持することができる。 As described above, in the present embodiment, the flow rate of the permeated water is maintained constant (preset target flow rate) by adjusting the rotation speed of the pressurizing pump 21, that is, the supply pressure of the raw water, but the raw water is maintained. The flow rate of the concentrated water separated by the RO membrane or the NF membrane also changes according to the change in the supply pressure of. In order to suppress such a change in the flow rate of the concentrated water itself, the concentrated water line 3 is provided with a constant flow valve 12 that keeps the flow rate of the concentrated water flowing through the concentrated water line 3 constant. As a result, the flow rate of the concentrated water can be kept constant even when the rotation speed of the pressurizing pump 21 is changed by the permeated water flow rate control unit 23 and the supply pressure of the raw water to the filtration means 11 is changed. ..

ところで、定流量弁12には、定流量弁12を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されている。そのため、例えば、ろ過手段11として中高圧用のRO膜を使用する場合や、水温が極端に低下した場合など、条件によっては、原水の供給圧力が著しく上昇して濃縮水の圧力が上昇し、定流量弁12の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがある。その場合、濃縮水ライン3を流れる濃縮水の流量が一定に保持されないおそれがある。 By the way, the constant flow valve 12 defines an operating differential pressure range (allowable range of pressure difference between the primary side and the secondary side of the constant flow valve) for operating the constant flow valve 12 normally. Therefore, depending on the conditions, such as when an RO membrane for medium and high pressure is used as the filtration means 11 or when the water temperature drops extremely, the supply pressure of raw water rises remarkably and the pressure of concentrated water rises. The pressure difference between the primary side and the secondary side of the constant flow valve 12 may exceed the operating differential pressure range. In that case, the flow rate of the concentrated water flowing through the concentrated water line 3 may not be kept constant.

そこで、本実施形態では、定流量弁12の上流側の濃縮水ライン3に、濃縮水ライン3を流れる濃縮水の圧力を減圧する(すなわち、二次側の圧力を一次側の圧力よりも低くすることができる)減圧弁13が設けられている。これにより、ろ過手段11への原水の供給圧力が著しく上昇する場合であっても、定流量弁12の一次側と二次側の圧力差を作動差圧範囲内に収めて定流量弁12を正常に作動させることができ、濃縮水ライン3を流れる濃縮水の流量を一定に保持することができる。 Therefore, in the present embodiment, the pressure of the concentrated water flowing through the concentrated water line 3 is reduced to the concentrated water line 3 on the upstream side of the constant flow valve 12 (that is, the pressure on the secondary side is lower than the pressure on the primary side). A pressure reducing valve 13 is provided. As a result, even when the supply pressure of raw water to the filtration means 11 rises remarkably, the pressure difference between the primary side and the secondary side of the constant flow rate valve 12 is kept within the operating differential pressure range to keep the constant flow rate valve 12 in place. It can be operated normally, and the flow rate of the concentrated water flowing through the concentrated water line 3 can be kept constant.

こうして、濃縮水ライン3に減圧弁13と定流量弁12が設けられていることで、ろ過手段11で分離される濃縮水の流量が常に一定に保持され、透過水の流量制御が排水ライン4や還流水ライン5を流れる濃縮水の流量に影響を及ぼすことがなくなる。その結果、排水ライン4や還流水ライン5でどのような流量制御を行っても、それが透過水の流量制御と干渉することはなくなるため、ハンチングを回避することができる。また、定流量弁12が正常に作動して濃縮水の流量が一定に保持されるため、加圧ポンプ21の吐出流量が増加することがなく、そのことで加圧ポンプの回転数(出力)を上げる必要がない。さらに、減圧弁13を設けることは、それよりも下流側の周辺部材(配管など)にそれほどの耐圧性能が要求されなくなるため、安全面で有利であるだけでなく、耐圧性能がそれほど高くない安価な汎用品が利用可能になることで、コスト面でも有利である。 In this way, by providing the pressure reducing valve 13 and the constant flow rate valve 12 in the concentrated water line 3, the flow rate of the concentrated water separated by the filtering means 11 is always kept constant, and the flow rate control of the permeated water is controlled by the drainage line 4. And does not affect the flow rate of concentrated water flowing through the reflux water line 5. As a result, no matter what flow rate control is performed in the drainage line 4 or the recirculated water line 5, it does not interfere with the flow rate control of the permeated water, so that hunting can be avoided. Further, since the constant flow valve 12 operates normally and the flow rate of the concentrated water is kept constant, the discharge flow rate of the pressurizing pump 21 does not increase, which is the rotation speed (output) of the pressurizing pump. There is no need to raise it. Further, providing the pressure reducing valve 13 is not only advantageous in terms of safety because the peripheral members (piping, etc.) on the downstream side of the pressure reducing valve 13 are not required to have so much pressure resistance, but also the pressure resistance is not so high and inexpensive. The availability of general-purpose products is also advantageous in terms of cost.

なお、定流量弁12の規定流量は、一方では、ファウリングやスケーリングによる膜の詰まりが発生しない程度であればよく、他方では、圧力損失の増大によって膜を破損させない程度であればよい。ただし、定流量弁12の規定流量を必要以上に大きくすることは、加圧ポンプ21に要求される流量が必要以上に大きくなり、結果的に加圧ポンプ21のサイズが大きくなるため、エネルギー消費の点で好ましくない。そのため、定流量弁12の規定流量は、ろ過手段11の透過流束とろ過手段11に要求される濃縮水の最低流量も考慮して設定され、例えば、ろ過手段11として直径が約20.32cm(8インチ)のRO膜を用いる場合、1〜15m/hの範囲である。また、減圧弁13の種類は、濃縮水の圧力を定流量弁12の作動差圧範囲内に減圧することができるものであれば特に限定されるものではないが、定流量弁12の規定流量以上の流量が流れるものや、二次側の圧力が排水ライン4や還流水ライン5の通水差圧よりも大きくなるものを選定する必要がある。 The specified flow rate of the constant flow valve 12 may be such that, on the one hand, the film is not clogged due to fouling or scaling, and on the other hand, the film is not damaged due to an increase in pressure loss. However, if the specified flow rate of the constant flow valve 12 is increased more than necessary, the flow rate required for the pressurizing pump 21 becomes larger than necessary, and as a result, the size of the pressurizing pump 21 becomes larger, which consumes energy. It is not preferable in that respect. Therefore, the specified flow rate of the constant flow valve 12 is set in consideration of the permeated flux of the filtering means 11 and the minimum flow rate of the concentrated water required for the filtering means 11, for example, the diameter of the filtering means 11 is about 20.32 cm. When using a (8 inch) RO membrane, the range is 1 to 15 m 3 / h. The type of the pressure reducing valve 13 is not particularly limited as long as the pressure of the concentrated water can be reduced within the operating differential pressure range of the constant flow rate valve 12, but the specified flow rate of the constant flow rate valve 12 It is necessary to select one in which the above flow rate flows or one in which the pressure on the secondary side is larger than the water flow differential pressure of the drainage line 4 and the recirculation water line 5.

上述したように、定流量弁12および減圧弁13の設置により、透過水の流量制御が濃縮水の流量に影響を及ぼすことがなくなり、その結果、排水ライン4または還流水ライン5を流れる濃縮水の流量制御が容易に実行可能になる。本実施形態では、排水ライン4を流れる濃縮水(以下、「濃縮排水」という)の流量を設定流量に調整するための排水流量制御機構(第2の流量制御手段)30が設けられている。この排水流量制御機構30による濃縮排水の流量制御は、透過水流量制御機構20による透過水の流量制御とは独立して行われる。 As described above, by installing the constant flow rate valve 12 and the pressure reducing valve 13, the flow rate control of the permeated water does not affect the flow rate of the concentrated water, and as a result, the concentrated water flowing through the drainage line 4 or the recirculated water line 5. Flow rate control becomes easily feasible. In the present embodiment, a drainage flow rate control mechanism (second flow rate control means) 30 for adjusting the flow rate of the concentrated water flowing through the drainage line 4 (hereinafter referred to as “concentrated drainage”) to a set flow rate is provided. The flow rate control of the concentrated wastewater by the drainage flow rate control mechanism 30 is performed independently of the flow rate control of the permeated water by the permeated water flow rate control mechanism 20.

排水流量制御機構30は、排水ライン4に設けられた流量調整弁(流量調整手段)31と、濃縮排水の流量を検出する排水流量計(流量検出手段)32と、排水流量計32により検出された濃縮排水の流量に基づいて、流量調整弁31の開度を調整する排水流量制御部33とを有している。 The drainage flow rate control mechanism 30 is detected by a flow rate adjusting valve (flow rate adjusting means) 31 provided in the drainage line 4, a drainage flow meter (flow rate detecting means) 32 for detecting the flow rate of concentrated drainage, and a drainage flow meter 32. It has a drainage flow rate control unit 33 that adjusts the opening degree of the flow rate adjusting valve 31 based on the flow rate of the concentrated drainage.

排水流量制御部33は、透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合である回収率を考慮して濃縮排水の設定流量を決定し、排水流量計32による検出値がその設定流量となるように、流量調整弁31の開度を調整するようになっている。このときの回収率は、水の有効利用(節水)の観点から、できるだけ高いことが好ましい。すなわち、濃縮排水の流量はできるだけ少ないことが好ましい。しかしながら、定流量弁12により濃縮水の流量が一定に保持されているため、濃縮排水の流量が少なくなると、当然のことながら、還流水ライン5から供給ライン1に還流する濃縮水の流量が増加する。それにより、原水の不純物濃度が高まると、ろ過手段11のRO膜またはNF膜の膜面に不純物(特に、シリカまたはカルシウム)が析出するスケーリングが起こりやすくなってしまう。したがって、濃縮排水の流量は、濃縮水の不純物濃度が溶解度以上の濃度にならない範囲で回収率が最大になるように、すなわち、不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように設定される。 The drainage flow rate control unit 33 determines the set flow rate of the concentrated drainage in consideration of the recovery rate, which is the ratio of the flow rate of the permeated water to the sum of the flow rate of the permeated water and the flow rate of the concentrated drainage, and the value detected by the drainage flow meter 32. Is adjusted so that the opening degree of the flow rate adjusting valve 31 becomes the set flow rate. The recovery rate at this time is preferably as high as possible from the viewpoint of effective use of water (water saving). That is, it is preferable that the flow rate of concentrated waste water is as small as possible. However, since the flow rate of the concentrated water is kept constant by the constant flow valve 12, when the flow rate of the concentrated drainage decreases, the flow rate of the concentrated water returning from the reflux water line 5 to the supply line 1 naturally increases. To do. As a result, when the concentration of impurities in the raw water increases, scaling in which impurities (particularly silica or calcium) are precipitated on the film surface of the RO film or NF film of the filtration means 11 tends to occur. Therefore, the flow rate of the concentrated waste water maximizes the recovery rate in the range where the impurity concentration of the concentrated water does not exceed the solubility, that is, the recovery rate is maximized in the range where the impurities silica or calcium do not precipitate. Is set.

ただし、不純物の溶解度は、水温に応じて変化する。例えば、シリカの場合、その溶解度は温度に比例して増加し、カルシウム(炭酸カルシウム)の場合、温度が上昇するにつれてその溶解度は減少する。そのため、水温が低い場合には、シリカの溶解度が相対的に低く、シリカが析出しやすい(シリカスケールが発生しやすい)が、水温が高くなると、カルシウムの溶解度が相対的に低くなるため、カルシウムが析出しやすく(カルシウムスケールが発生しやすく)なる。そこで、本実施形態では、図示していないが、原水と透過水と濃縮水とのいずれかの水温を検出する温度センサ(水温検出手段)が設けられており、この温度センサで検出された水温に基づいて、濃縮排水の最適な設定流量が算出される。 However, the solubility of impurities changes depending on the water temperature. For example, in the case of silica, its solubility increases in proportion to temperature, and in the case of calcium (calcium carbonate), its solubility decreases as the temperature rises. Therefore, when the water temperature is low, the solubility of silica is relatively low and silica is likely to be precipitated (silica scale is likely to be generated), but when the water temperature is high, the solubility of calcium is relatively low and therefore calcium. Is likely to precipitate (calcium scale is likely to be generated). Therefore, in the present embodiment, although not shown, a temperature sensor (water temperature detecting means) for detecting the water temperature of any of raw water, permeated water, and concentrated water is provided, and the water temperature detected by this temperature sensor is provided. Based on, the optimum set flow rate of concentrated wastewater is calculated.

具体的には、まず、検出された水温でシリカが析出する理論上の回収率(以下、「シリカの析出回収率」という)と、検出された水温でカルシウム(炭酸カルシウム)が析出する理論上の回収率(以下「カルシウムの析出回収率」という)が算出される。なお、シリカの析出回収率とカルシウムの析出回収率のそれぞれの算出方法については後述する。次に、シリカの析出回収率とカルシウムの析出回収率とが比較され、目標回収率として、より小さい方の析出回収率が設定される。そして、この目標回収率と、透過水流量計22で検出された透過水の流量とに基づいて、以下の式(1)により、濃縮排水の目標流量が算出されて設定される。
(濃縮排水の流量)=(透過水の流量/目標回収率)−(透過水の流量) (1)
Specifically, first, the theoretical recovery rate at which silica precipitates at the detected water temperature (hereinafter referred to as "silica precipitation recovery rate") and the theoretical recovery rate at which calcium (calcium carbonate) precipitates at the detected water temperature. Recovery rate (hereinafter referred to as "calcium precipitation recovery rate") is calculated. The methods for calculating the silica precipitation recovery rate and the calcium precipitation recovery rate will be described later. Next, the precipitation recovery rate of silica and the precipitation recovery rate of calcium are compared, and the smaller precipitation recovery rate is set as the target recovery rate. Then, based on this target recovery rate and the flow rate of the permeated water detected by the permeated water flow meter 22, the target flow rate of the concentrated wastewater is calculated and set by the following formula (1).
(Flow rate of concentrated wastewater) = (Flow rate of permeated water / Target recovery rate)-(Flow rate of permeated water) (1)

なお、スケーリングの発生を確実に抑制するという観点からは、上記式(1)で算出された目標流量を上回る流量を濃縮排水の設定流量として設定することもできるが、節水の観点からは、算出された目標流量を濃縮排水の設定流量として設定することが好ましい。 From the viewpoint of surely suppressing the occurrence of scaling, a flow rate exceeding the target flow rate calculated by the above formula (1) can be set as the set flow rate of the concentrated wastewater, but from the viewpoint of water saving, it is calculated. It is preferable to set the target flow rate as the set flow rate of the concentrated wastewater.

ここで、シリカの析出回収率とカルシウムの析出回収率の算出方法についてそれぞれ説明する。 Here, a method for calculating the precipitation recovery rate of silica and the precipitation recovery rate of calcium will be described respectively.

(シリカの析出回収率の算出方法)
シリカの析出回収率Yは、検出された水温でのシリカの溶解度(mgSiO/L)をCとし、予め測定された原水のシリカ濃度(mgSiO/L)をFとしたとき、以下の式(2)から算出される。
=(C−F)/C (2)
(Calculation method of silica precipitation recovery rate)
Precipitation recovery rate Y S of the silica solubility of silica in the detected water temperature (mgSiO 2 / L) and C S, when the pre-measured silica concentration of the raw water (mgSiO 2 / L) was F S, It is calculated from the following formula (2).
Y S = (C S -F S ) / C S (2)

なお、シリカの溶解度の算出方法としては、ASTM(American Society for Testing and Materials)D4993−89などに規定された方法を用いることができる。 As a method for calculating the solubility of silica, a method specified in ASTM (American Society for Testing and Materials) D4993-89 or the like can be used.

(カルシウムの析出回収率の算出方法)
カルシウムの析出回収率は、濃縮水のランゲリア指数を算出する方法を利用して算出される。ここで、ランゲリア指数(飽和指数)とは、カルシウム(炭酸カルシウム)の析出の可能性を示す指標であり、水の実際のpHと、理論pH(pHs:水中の炭酸カルシウムが溶解も析出もしない平衡状態にあるときのpH)との差(pH−pHs)を意味する。すなわち、ランゲリア指数が正の値で絶対値が大きいほど炭酸カルシウムが析出しやすくなり、負の値では炭酸カルシウムは析出されない。そのため、カルシウムの析出回収率は、濃縮水のランゲリア指数がゼロになるときの回収率として算出される。なお、より安全側の値として設定するために、カルシウムの析出回収率は、濃縮水のランゲリア指数が負の値になるときの回収率であってもよい。
(Calcium precipitation recovery rate calculation method)
The precipitation recovery rate of calcium is calculated by using a method of calculating the Langeria index of concentrated water. Here, the Langeria index (saturation index) is an index showing the possibility of precipitation of calcium (calcium carbonate), and the actual pH of water and the theoretical pH (pHs: calcium carbonate in water do not dissolve or precipitate). It means the difference (pH-pHs) from pH) in an equilibrium state. That is, when the Langeria index is a positive value and the absolute value is large, calcium carbonate is more likely to be precipitated, and when the value is negative, calcium carbonate is not precipitated. Therefore, the calcium precipitation recovery rate is calculated as the recovery rate when the Langeria index of concentrated water becomes zero. In order to set the value on the safer side, the calcium precipitation recovery rate may be the recovery rate when the Langeria index of the concentrated water becomes a negative value.

濃縮水のランゲリア指数は、濃縮水のpHと、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、検出された水温とから算出される。ランゲリア指数の算出方法としては、例えば、特開平11−267687号公報(段落[0025]〜[0027])などに記載された方法を用いることができる。また、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)は、予め測定された原水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、回収率とから算出される。したがって、カルシウムの析出回収率Yは、濃縮水のランゲリア指数がゼロになるときの濃縮水の不純物濃度(mg/L)をCとし、予め測定された原水の不純物濃度(mg/L)をFとしたとき、以下の式(3)の関係で表されることになる。
=(C−F)/C (3)
The Langeria index of concentrated water is calculated from the pH of the concentrated water, the impurity concentration (calcium concentration, total alkalinity, and evaporation residue concentration) of the concentrated water, and the detected water temperature. As a method for calculating the Langeria index, for example, the method described in JP-A-11-267687 (paragraphs [0025] to [0027]) can be used. In addition, the impurity concentration (calcium concentration, total alkalinity, and evaporation residue concentration) of the concentrated water is the impurity concentration (calcium concentration, total alkalinity, and evaporation residue concentration) of the raw water measured in advance, and the recovery rate. It is calculated from. Accordingly, precipitation recovery rate Y C of calcium, the impurity concentration of the impurity concentration of the concentrated water when Langelier index of concentrated water becomes zero (mg / L) and C C, the raw water that is measured in advance (mg / L) the when the F C, will be represented by the relationship of equation (3) below.
Y C = (C C -F C ) / C C (3)

なお、シリカおよびカルシウムの析出回収率の算出方法や濃縮排水の設定流量の算出方法は、例えば加圧ポンプの容量や原水の流量などの装置設計上の制約によって、予め回収率や流量に制約がある場合には、上述した限りではない。また、濃縮排水の設定流量の算出には、予め設定された透過水の目標流量を用いることもできるが、この方法は、透過水の目標流量と実際の流量が一致していない場合にスケーリングが発生する可能性があるため好ましくない。したがって、濃縮排水の設定流量の算出には、上述したように、透過水流量計22で検出された透過水の流量を用いることが好ましい。 The method of calculating the precipitation recovery rate of silica and calcium and the method of calculating the set flow rate of concentrated wastewater are limited in advance due to device design restrictions such as the capacity of the pressurizing pump and the flow rate of raw water. In some cases, this is not the case as described above. In addition, a preset target flow rate of permeated water can be used to calculate the set flow rate of concentrated wastewater, but this method scales when the target flow rate of permeated water and the actual flow rate do not match. It is not preferable because it may occur. Therefore, as described above, it is preferable to use the flow rate of the permeated water detected by the permeated water flow meter 22 for calculating the set flow rate of the concentrated wastewater.

上述のように回収率制御を行う場合、流量調整弁31としては、電動比例制御弁を用いることが好ましい。これにより、電動比例制御弁の分解能の範囲内で開度調整を無段階に行うことができ、電磁弁の組み合わせなどによる多段階での開度調整に比べて、回収率を滑らかに調整することができる。例えば、50〜70%の範囲の回収率を5段階(50%、55%、60%、65%、70%)にしか制御できない多段階方式では、目標回収率が64%に設定された場合、回収率を60%にしか調整することができず、無駄な濃縮排水が発生してしまう。したがって、流量調整弁31として電動比例制御弁を用いることは、このような濃縮排水の無駄も削減することができるため、節水の観点からも有利である。 When controlling the recovery rate as described above, it is preferable to use an electric proportional control valve as the flow rate adjusting valve 31. As a result, the opening degree can be adjusted steplessly within the resolution range of the electric proportional control valve, and the recovery rate can be adjusted more smoothly than the opening degree adjustment in multiple stages by combining solenoid valves. Can be done. For example, in the multi-step method in which the recovery rate in the range of 50 to 70% can be controlled only in 5 steps (50%, 55%, 60%, 65%, 70%), when the target recovery rate is set to 64%. , The recovery rate can be adjusted only to 60%, and wasteful concentrated wastewater is generated. Therefore, using an electric proportional control valve as the flow rate adjusting valve 31 is advantageous from the viewpoint of water saving because it is possible to reduce such waste of concentrated wastewater.

さらなる節水を実現するためには、回収率の目標値をより高く設定する必要があるが、本実施形態では、上述の析出回収率をより高くすることを目的として、スケール防止剤を原水に添加するようになっていてもよい。この場合、定流量弁12の規定流量を小さくすることができ、結果として、より小さい容量の加圧ポンプ21を用いることで省エネルギー化を実現することもできる。スケール防止剤の添加は、薬注ポンプによって行うことができる。 In order to realize further water saving, it is necessary to set a higher target value of the recovery rate, but in the present embodiment, a scale inhibitor is added to the raw water for the purpose of increasing the above-mentioned precipitation recovery rate. You may be able to do it. In this case, the specified flow rate of the constant flow valve 12 can be reduced, and as a result, energy saving can be realized by using the pressurizing pump 21 having a smaller capacity. The addition of the anti-scale agent can be done by a chemical injection pump.

スケール防止剤は、シリカやカルシウムなどのスケール成分の析出を抑制可能な物質であれば、特定のものに限定されるものではない。その種類としては、例えば、1−ヒドロキシエチリデン−1,1−ジホスホン酸、2−ホスホノブタン−1,2,4−トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸などのホスホン酸とその塩類などのホスホン酸系化合物;正リン酸塩、重合リン酸塩などのリン酸系化合物;ポリマレイン酸、マレイン酸共重合物などのマレイン酸系化合物;アクリル酸系ポリマーなどが挙げられ、アクリル酸系ポリマーとしては、ポリ(メタ)アクリル酸、マレイン酸/(メタ)アクリル酸、(メタ)アクリル酸/スルホン酸、(メタ)アクリル酸/ノニオン基含有モノマーなどのコポリマーや、(メタ)アクリル酸/スルホン酸/ノニオン基含有モノマー、(メタ)アクリル酸/アクリルアミド−アルキルスルホン酸/置換(メタ)アクリルアミド、(メタ)アクリル酸/アクリルアミド−アリールスルホン酸/置換(メタ)アクリルアミドのターポリマーなどが挙げられる。ターポリマーを構成する(メタ)アクリル酸としては、例えば、メタアクリル酸およびアクリル酸と、それらのナトリウム塩などの(メタ)アクリル酸塩などが挙げられる。ターポリマーを構成するアクリルアミド−アルキルスルホン酸としては、例えば、2−アクリルアミド−2−メチルプロパンスルホン酸とその塩などが挙げられる。また、ターポリマーを構成する置換(メタ)アクリルアミドとしては、例えば、t−ブチルアクリルアミド、t−オクチルアクリルアミド、ジメチルアクリルアミドなどが挙げられる。 The scale inhibitor is not limited to a specific substance as long as it is a substance capable of suppressing the precipitation of scale components such as silica and calcium. Examples thereof include phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, and nitrilotrimethylphosphonic acid and salts thereof. Phosphonic acid-based compounds; Phosphate-based compounds such as orthophosphates and polymerized phosphates; Maleic acid-based compounds such as polymaleic acid and maleic acid copolymers; Is a copolymer of poly (meth) acrylic acid, maleic acid / (meth) acrylic acid, (meth) acrylic acid / sulfonic acid, (meth) acrylic acid / nonionic group-containing monomer, and (meth) acrylic acid / sulfonic acid. / Nonionic group-containing monomer, (meth) acrylic acid / acrylamide-alkylsulfonic acid / substituted (meth) acrylamide, (meth) acrylic acid / acrylamide-arylsulfonic acid / substituted (meth) acrylamide tarpolymer and the like can be mentioned. Examples of the (meth) acrylic acid constituting the terpolymer include methacrylic acid and acrylic acid, and (meth) acrylates such as sodium salts thereof. Examples of the acrylamide-alkyl sulfonic acid constituting the terpolymer include 2-acrylamide-2-methylpropane sulfonic acid and a salt thereof. Examples of the substituted (meth) acrylamide constituting the terpolymer include t-butyl acrylamide, t-octyl acrylamide, and dimethyl acrylamide.

これらの中でも、ホスホン酸系化合物とアクリル酸系ポリマーのうち少なくとも1種類を含むものを用いることが好ましい。また、カルシウムとシリカに由来するスケールを同時に抑制するためには、2−ホスホノブタン−1,2,4−トリカルボン酸と、アクリル酸と(メタ)アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸/置換(メタ)アクリルアミドのターポリマーとの混合物とからなるスケール防止剤を用いることが特に好ましい。 Among these, it is preferable to use one containing at least one of a phosphonic acid-based compound and an acrylic acid-based polymer. In addition, in order to suppress the scale derived from calcium and silica at the same time, 2-phosphonobutane-1,2,4-tricarboxylic acid, acrylic acid and (meth) acrylic acid / 2-acrylamide-2-methylpropanesulfonic acid It is particularly preferred to use an anti-scale agent consisting of a mixture of / substituted (meth) acrylamide with a terpolymer.

なお、RO膜用の市販のスケール防止剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター(登録商標)」シリーズなどが挙げられる。 Commercially available scale inhibitors for RO membranes include the "Olpage" series manufactured by Organo Corporation, the "Flocon (registered trademark)" series manufactured by BWA Water Industries, and the "PermaTreat (registered trademark)" manufactured by Nalco. Series, "Hyperspace (registered trademark)" series manufactured by General Electric Co., Ltd., "Cliberter (registered trademark)" series manufactured by Kurita Water Industries, Ltd., and the like.

上述したように、本実施形態では、定流量弁12および減圧弁13により濃縮水の流量が一定に維持されるため、排水ライン4および還流水ライン5の一方を流れる濃縮水の流量を規定するだけで、他方を流れる濃縮水の流量も規定することができる。そのため、図示した実施形態では、排水ライン4に流量制御手段(流量調整弁31と排水流量計32)が設けられ、還流水ライン5には、排水ライン4および還流水ライン5を流れる濃縮水の圧力バランスを調整するための手動弁(圧力調整弁)14が設けられているが、その逆であってもよい。すなわち、還流水ライン5に、流量制御手段としての流量調整弁(比例制御弁)と流量計が設けられ、排水ライン4に、圧力バランス調整のための手動弁が設けられていてもよい。あるいは、排水ライン4および還流水ライン5の両方に、流量制御手段としての流量調整弁(比例制御弁)と流量計を設けることもできる。また、上述した実施形態では、透過水流量制御部と排水流量制御部とが別個に設けられているが、1つの流量制御部により、透過水の流量調整と濃縮排水の流量調整とが行われるようになっていてもよい。 As described above, in the present embodiment, since the flow rate of the concentrated water is kept constant by the constant flow rate valve 12 and the pressure reducing valve 13, the flow rate of the concentrated water flowing through one of the drainage line 4 and the recirculating water line 5 is defined. Only by itself, the flow rate of concentrated water flowing through the other can be specified. Therefore, in the illustrated embodiment, the drainage line 4 is provided with the flow rate control means (flow rate adjusting valve 31 and the drainage flow meter 32), and the recirculation water line 5 is the concentrated water flowing through the drainage line 4 and the recirculation water line 5. A manual valve (pressure adjusting valve) 14 for adjusting the pressure balance is provided, but the reverse may be performed. That is, the recirculation water line 5 may be provided with a flow rate adjusting valve (proportional control valve) and a flow meter as the flow rate control means, and the drainage line 4 may be provided with a manual valve for adjusting the pressure balance. Alternatively, both the drainage line 4 and the recirculation water line 5 may be provided with a flow rate adjusting valve (proportional control valve) and a flow meter as flow rate control means. Further, in the above-described embodiment, the permeated water flow rate control unit and the drainage flow rate control unit are separately provided, but one flow rate control unit adjusts the flow rate of the permeated water and the flow rate of the concentrated wastewater. It may be like this.

(第2の実施形態)
図2は、本発明の第2の実施形態に係る膜ろ過装置の構成を示す概略図である。以下、第1の実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、第1の実施形態と異なる構成のみ説明する。
(Second embodiment)
FIG. 2 is a schematic view showing the configuration of the membrane filtration apparatus according to the second embodiment of the present invention. Hereinafter, the same configurations as those of the first embodiment will be described by adding the same reference numerals to the drawings and omitting the description thereof, and only the configurations different from those of the first embodiment will be described.

本実施形態では、第1の実施形態のろ過手段(第1のろ過手段)11に加えて、その下流側にさらに別のろ過手段(第2のろ過手段)15が設けられている。第2のろ過手段15は、第1のろ過手段11に直列に接続され、第1のろ過手段11で分離された透過水を被処理水として処理するようになっている。すなわち、第2のろ過手段15の上流側には、第1のろ過手段11からの透過水を流通させる第1の透過水ライン2aが接続され、下流側には、第2のろ過手段15からの透過水を流通させる第2の透過水ライン2bが接続されている。これにより、本実施形態の膜ろ過装置10は、第1の実施形態と比べて、より良好な水質の処理水を生成することができる。 In the present embodiment, in addition to the filtration means (first filtration means) 11 of the first embodiment, another filtration means (second filtration means) 15 is provided on the downstream side thereof. The second filtration means 15 is connected in series with the first filtration means 11, and the permeated water separated by the first filtration means 11 is treated as the water to be treated. That is, the first permeated water line 2a for flowing the permeated water from the first filtering means 11 is connected to the upstream side of the second filtering means 15, and the second filtering means 15 is connected to the downstream side. A second permeated water line 2b for circulating the permeated water is connected. As a result, the membrane filtration device 10 of the present embodiment can generate treated water having better water quality than that of the first embodiment.

第2のろ過手段15には、第2のろ過手段15からの濃縮水を流通させる第2の濃縮水ライン6が接続されている。第2のろ過手段15では、第1のろ過手段11からの透過水がさらに透過水と濃縮水に分離されるため、水質の観点からは、第2のろ過手段15からの濃縮水を必ずしも外部に排出する必要はない。そのため、第2の濃縮水ライン6は、節水の観点から、第2のろ過手段15で分離された濃縮水の全てを供給ライン1に還流させるために、加圧ポンプ21の上流側で供給ライン1に接続されている。あるいは、第2の濃縮水ライン6は、供給ライン1に直接接続される代わりに、供給ライン1に設けられた原水タンク(図示せず)に接続されていてもよい。なお、第2の濃縮水ライン6には、第2のろ過手段15のRO膜またはNF膜を洗浄する場合などに第2のろ過手段15からの濃縮水の一部または全部を外部に排出する排水ラインが接続されていてもよい。 A second concentrated water line 6 for circulating the concentrated water from the second filtering means 15 is connected to the second filtering means 15. In the second filtration means 15, the permeated water from the first filtration means 11 is further separated into permeated water and concentrated water. Therefore, from the viewpoint of water quality, the concentrated water from the second filtration means 15 is not necessarily external. There is no need to discharge to. Therefore, from the viewpoint of water saving, the second concentrated water line 6 is supplied on the upstream side of the pressurizing pump 21 in order to return all the concentrated water separated by the second filtering means 15 to the supply line 1. It is connected to 1. Alternatively, the second concentrated water line 6 may be connected to a raw water tank (not shown) provided in the supply line 1 instead of being directly connected to the supply line 1. In the second concentrated water line 6, part or all of the concentrated water from the second filtering means 15 is discharged to the outside when the RO membrane or the NF membrane of the second filtering means 15 is washed. A drainage line may be connected.

第2の濃縮水ライン6には、第2の濃縮水ライン6を流れる濃縮水の流量を調整するための手動弁16と濃縮水流量計17が設けられている。これにより、第2のろ過手段15の回収率(第2のろ過手段15からの透過水の流量と第2のろ過手段15からの濃縮水の流量との和に対する、第2のろ過手段15からの透過水の流量の割合)を任意に調整することができる。なお、回収率の手動調整の煩雑さを解消するために、手動弁16の代わりに、濃縮水流量計17で検出された濃縮水の流量に基づいて開度を調整可能な比例制御弁が設けられていてもよい。あるいは、回収率を一定範囲に保持するために、手動弁16と濃縮水流量計17の代わりに、定流量弁が設けられていてもよい。この場合、第1の実施形態と同様に、条件によっては、定流量弁の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがあるが、それを回避するために、定流量弁の上流側に減圧弁が設けられていてもよい。 The second concentrated water line 6 is provided with a manual valve 16 and a concentrated water flow meter 17 for adjusting the flow rate of the concentrated water flowing through the second concentrated water line 6. As a result, from the second filtration means 15 with respect to the recovery rate of the second filtration means 15 (the sum of the flow rate of the permeated water from the second filtration means 15 and the flow rate of the concentrated water from the second filtration means 15). Permeated water flow rate ratio) can be adjusted arbitrarily. In addition, in order to eliminate the complexity of manually adjusting the recovery rate, instead of the manual valve 16, a proportional control valve capable of adjusting the opening degree based on the flow rate of the concentrated water detected by the concentrated water flow meter 17 is provided. It may have been. Alternatively, in order to keep the recovery rate within a certain range, a constant flow rate valve may be provided instead of the manual valve 16 and the concentrated water flow meter 17. In this case, as in the first embodiment, the pressure difference between the primary side and the secondary side of the constant flow valve may exceed the operating differential pressure range depending on the conditions. A pressure reducing valve may be provided on the upstream side of the constant flow valve.

本実施形態では、膜ろ過装置10の下流側に接続された、例えば電気式脱イオン水製造装置に、一定流量の処理水を供給するために、透過水流量制御機構20の透過水流量計22は、第2の透過水ライン2bに設けられている。このため、排水流量制御部33は、回収率の目標値に基づいて濃縮排水の設定流量を算出するにあたり、第1の透過水ライン2aを流れる透過水の流量を別途知る必要があるが、本実施形態では、その流量を間接的に検出することができる。すなわち、排水流量制御部33は、透過水流量計22による測定値(第2のろ過手段15からの透過水の流量)と、濃縮水流量計17による測定値(第2のろ過手段15からの濃縮水の流量)との和から、第1の透過水ライン2aを流れる透過水の流量を算出することができる。また、上述したように、手動弁16と濃縮水流量計17の代わりに定流量弁が設けられている場合、濃縮水流量計17による測定値の代わりに、定流量弁の規定流量を用いて、第1の透過水ライン2aを流れる透過水の流量を算出することができる。あるいは、第1の透過水ライン2aに図示しない流量計が設けられ、第1のろ過手段11からの透過水の流量を直接検出するようになっていてもよい。 In the present embodiment, in order to supply a constant flow rate of treated water to, for example, an electric deionized water production device connected to the downstream side of the membrane filtration device 10, the permeated water flow meter 22 of the permeated water flow rate control mechanism 20 Is provided on the second permeated water line 2b. Therefore, in calculating the set flow rate of the concentrated wastewater based on the target value of the recovery rate, the wastewater flow rate control unit 33 needs to separately know the flow rate of the permeated water flowing through the first permeated water line 2a. In the embodiment, the flow rate can be indirectly detected. That is, the drainage flow rate control unit 33 has a measured value by the permeated water flow meter 22 (flow rate of permeated water from the second filtering means 15) and a measured value by the concentrated water flow meter 17 (from the second filtering means 15). The flow rate of the permeated water flowing through the first permeated water line 2a can be calculated from the sum with the flow rate of the concentrated water). Further, as described above, when a constant flow valve is provided instead of the manual valve 16 and the concentrated water flow meter 17, the specified flow rate of the constant flow valve is used instead of the value measured by the concentrated water flow meter 17. , The flow rate of the permeated water flowing through the first permeated water line 2a can be calculated. Alternatively, a flow meter (not shown) may be provided on the first permeated water line 2a to directly detect the flow rate of the permeated water from the first filtration means 11.

なお、本実施形態では、1つの加圧ポンプ21で2つのろ過手段11,15に原水を供給する必要があるため、加圧ポンプ21による第1のろ過手段11への原水の供給圧力は、第1の実施形態に比べて大きくなる。そのため、第1の定流量弁12の規定流量は、この点も考慮して設定する必要があり、減圧弁13の種類も、第1の定流量弁12の規定流量を考慮する必要がある。例えば、2つのろ過手段11,15としてそれぞれ直径が約20.32cm(8インチ)のRO膜を用いる場合、第1のろ過手段11の適用温度範囲が5〜35℃で、原水のシリカ濃度やカルシウム濃度から回収率の制御範囲が50〜85%と想定される場合、例えば、第1の定流量弁12としては、株式会社ケイヒン製(品番:NSPW−25、設定流量:55L/min)の定流量弁を用い、減圧弁13としては、株式会社ヨシタケ製(品番:GD−200H)の減圧弁を用いることができる。 In the present embodiment, since it is necessary to supply the raw water to the two filtration means 11 and 15 by one pressurizing pump 21, the supply pressure of the raw water to the first filtration means 11 by the pressurizing pump 21 is set. It is larger than that of the first embodiment. Therefore, the specified flow rate of the first constant flow valve 12 needs to be set in consideration of this point, and the type of the pressure reducing valve 13 also needs to consider the specified flow rate of the first constant flow valve 12. For example, when RO membranes having a diameter of about 20.32 cm (8 inches) are used as the two filtration means 11 and 15, the applicable temperature range of the first filtration means 11 is 5 to 35 ° C., and the silica concentration of the raw water and the like. When the control range of the recovery rate is assumed to be 50 to 85% from the calcium concentration, for example, the first constant flow valve 12 is manufactured by Keihin Co., Ltd. (product number: NSPW-25, set flow rate: 55 L / min). A constant flow valve can be used, and as the pressure reducing valve 13, a pressure reducing valve manufactured by Yoshitake Co., Ltd. (product number: GD-200H) can be used.

また、本実施形態では、上述したように第1のろ過手段11への原水の供給圧力が大きくなることで、減圧弁13の設置はより効果的である。この点について、本発明者らが図2に示す膜ろ過装置を用いて通水試験を行ったところ、減圧弁が設けられていない同様の装置に比べて、加圧ポンプ21の出力が2〜5%低くなることが確認されている。これは、減圧弁が設けられていない場合、定流量弁の一次側と二次側の圧力差が定流量弁の作動差圧範囲を超えて定流量弁がオリフィスとして機能してしまい、その結果、加圧ポンプの吐出流量が増加して揚程が低くなり、加圧ポンプの出力が上がってしまったためであると考えられる。 Further, in the present embodiment, the installation of the pressure reducing valve 13 is more effective because the supply pressure of the raw water to the first filtration means 11 increases as described above. Regarding this point, when the present inventors conducted a water flow test using the membrane filtration device shown in FIG. 2, the output of the pressurizing pump 21 was 2 to 2 as compared with a similar device not provided with a pressure reducing valve. It has been confirmed that it is 5% lower. This is because if the pressure reducing valve is not provided, the pressure difference between the primary side and the secondary side of the constant flow valve exceeds the operating differential pressure range of the constant flow valve, and the constant flow valve functions as an orifice. It is probable that this is because the discharge flow rate of the pressurizing pump increased, the lift became lower, and the output of the pressurizing pump increased.

上述した実施形態では、2つのろ過手段が直列に接続されているが、ろ過手段の数はこれに限定されるものではなく、3つ以上のろ過手段が直列に接続されて設けられていてもよい。その場合にも、定流量弁および減圧弁は、3つ以上のろ過手段のうち最も上流側のろ過手段に接続された濃縮水ラインに設けられ、最も下流側のろ過手段で分離された透過水が設定流量(予め設定された目標流量)に調整されることになる。なお、ここでいう「直列に接続される」とは、被処理水が複数のろ過手段で順次処理されることを意味し、隣接する2つのろ過手段において、上流側のろ過手段で分離された透過水が下流側のろ過手段に被処理水として供給されることを意味する。 In the above-described embodiment, the two filtration means are connected in series, but the number of the filtration means is not limited to this, and even if three or more filtration means are connected in series and provided. Good. Even in that case, the constant flow valve and the pressure reducing valve are provided in the concentrated water line connected to the most upstream filtration means among the three or more filtration means, and the permeated water separated by the most downstream filtration means. Will be adjusted to the set flow rate (preset target flow rate). The term "connected in series" here means that the water to be treated is sequentially treated by a plurality of filtration means, and is separated by the upstream filtration means in the two adjacent filtration means. This means that the permeated water is supplied to the filtration means on the downstream side as water to be treated.

1 供給ライン
2 透過水ライン
2a 第1の透過水ライン
2b 第2の透過水ライン
3 濃縮水ライン(第1の濃縮水ライン)
4 排水ライン
5 還流水ライン
6 第2の濃縮水ライン
10 膜ろ過装置
11 ろ過手段(第1のろ過手段)
12 定流量弁(第1の定流量弁)
13 減圧弁
14,16 手動弁
15 第2のろ過手段
17 濃縮水流量計
20 透過水流量制御機構
21 加圧ポンプ
22 透過水流量計
23 透過水流量制御部
30 排水流量制御機構
31 流量調整弁
32 排水流量計
33 排水流量制御部
1 Supply line 2 Permeated water line 2a First permeated water line 2b Second permeated water line 3 Concentrated water line (first concentrated water line)
4 Drainage line 5 Reflux water line 6 Second concentrated water line 10 Membrane filtration device 11 Filtration means (first filtration means)
12 Constant flow valve (first constant flow valve)
13 Pressure reducing valve 14, 16 Manual valve 15 Second filtration means 17 Concentrated water flow meter 20 Permeated water flow control mechanism 21 Pressurized pump 22 Permeated water flow meter 23 Permeated water flow control unit 30 Drainage flow control mechanism 31 Flow control valve 32 Drainage flow meter 33 Drainage flow control unit

Claims (8)

被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、
前記ろ過手段に接続され、前記ろ過手段に被処理水を供給する供給ラインと、
前記ろ過手段に接続され、前記ろ過手段からの透過水を流通させる透過水ラインと、
前記ろ過手段に接続され、前記ろ過手段からの濃縮水を流通させる濃縮水ラインと、
前記濃縮水ラインに設けられ、前記濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、
前記定流量弁の下流側で前記濃縮水ラインから分岐し、前記濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
前記定流量弁の下流側で前記濃縮水ラインから分岐して前記供給ラインに接続され、前記濃縮水ラインを流れる濃縮水の残りを前記供給ラインに還流させる還流水ラインと、
前記透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、
前記排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、前記排水ラインに設けられた流量調整弁と、前記排水ラインを流れる濃縮水の流量を検出する流量検出手段と、該流量検出手段により検出された前記濃縮水の流量に基づいて、前記流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、
前記定流量弁の上流側の前記濃縮水ラインに設けられ、前記濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、
を有する膜ろ過装置。
A filtration means having a reverse osmosis membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water,
A supply line connected to the filtration means and supplying water to be treated to the filtration means,
A permeated water line connected to the filtering means and flowing permeated water from the filtering means, and a permeated water line.
A concentrated water line connected to the filtering means and circulating concentrated water from the filtering means,
A constant flow valve provided in the concentrated water line to keep the flow rate of concentrated water flowing through the concentrated water line constant.
A drainage line that branches off from the concentrated water line on the downstream side of the constant flow valve and discharges a part of the concentrated water flowing through the concentrated water line to the outside.
A reflux water line that branches off from the concentrated water line on the downstream side of the constant flow valve, is connected to the supply line, and returns the rest of the concentrated water flowing through the concentrated water line to the supply line.
A first flow rate control means for adjusting the flow rate of permeated water flowing through the permeated water line to a set flow rate, and
A second flow rate control means for adjusting the flow rate of concentrated water flowing through the drainage line to a set flow rate, the flow rate adjusting valve provided in the drainage line and the flow rate for detecting the flow rate of concentrated water flowing through the drainage line. A second flow rate control means having a detection means and a control unit for adjusting the opening degree of the flow rate adjusting valve based on the flow rate of the concentrated water detected by the flow rate detection means.
A pressure reducing valve provided in the concentrated water line on the upstream side of the constant flow valve to reduce the pressure of the concentrated water flowing through the concentrated water line.
Membrane filtration device with.
直列に接続された複数のろ過手段であって、それぞれが被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する複数のろ過手段と、
前記複数のろ過手段のうち最も上流側のろ過手段に接続され、前記最も上流側のろ過手段に被処理水を供給する供給ラインと、
前記複数のろ過手段のうち最も下流側のろ過手段に接続され、前記最も下流側のろ過手段からの透過水を流通させる透過水ラインと、
前記最も上流側のろ過手段に接続され、前記最も上流側のろ過手段からの濃縮水を流通させる濃縮水ラインと、
前記濃縮水ラインに設けられ、前記濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁と、
前記定流量弁の下流側で前記濃縮水ラインから分岐し、前記濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
前記定流量弁の下流側で前記濃縮水ラインから分岐して前記供給ラインに接続され、前記濃縮水ラインを流れる濃縮水の残りを前記供給ラインに還流させる還流水ラインと、
前記透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、
前記排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、前記排水ラインに設けられた流量調整弁と、前記排水ラインを流れる濃縮水の流量を検出する流量検出手段と、該流量検出手段により検出された前記濃縮水の流量に基づいて、前記流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、
前記定流量弁の上流側の前記濃縮水ラインに設けられ、前記濃縮水ラインを流れる濃縮水の圧力を減圧する減圧弁と、
を有する膜ろ過装置。
A plurality of filtration means connected in series, each having a reverse osmosis membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water.
A supply line connected to the most upstream filtration means among the plurality of filtration means and supplying water to be treated to the most upstream filtration means.
A permeated water line that is connected to the most downstream filtration means among the plurality of filtration means and circulates permeated water from the most downstream filtration means.
A concentrated water line that is connected to the most upstream filtration means and circulates concentrated water from the most upstream filtration means.
A constant flow valve provided in the concentrated water line to keep the flow rate of concentrated water flowing through the concentrated water line constant.
A drainage line that branches off from the concentrated water line on the downstream side of the constant flow valve and discharges a part of the concentrated water flowing through the concentrated water line to the outside.
A reflux water line that branches off from the concentrated water line on the downstream side of the constant flow valve, is connected to the supply line, and returns the rest of the concentrated water flowing through the concentrated water line to the supply line.
A first flow rate control means for adjusting the flow rate of permeated water flowing through the permeated water line to a set flow rate, and
A second flow rate control means for adjusting the flow rate of concentrated water flowing through the drainage line to a set flow rate, the flow rate adjusting valve provided in the drainage line and the flow rate for detecting the flow rate of concentrated water flowing through the drainage line. A second flow rate control means having a detection means and a control unit for adjusting the opening degree of the flow rate adjusting valve based on the flow rate of the concentrated water detected by the flow rate detection means.
A pressure reducing valve provided in the concentrated water line on the upstream side of the constant flow valve to reduce the pressure of the concentrated water flowing through the concentrated water line.
Membrane filtration device with.
前記第2の流量制御手段の前記制御部は、前記透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記透過水ラインを流れる透過水の流量の割合である回収率が所定の値になるように、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項に記載の膜ろ過装置。 The control unit of the second flow rate control means is the ratio of the flow rate of the permeated water flowing through the permeated water line to the sum of the flow rate of the permeated water flowing through the permeated water line and the flow rate of the concentrated water flowing through the drainage line. The membrane filtration device according to claim 1 , wherein the set flow rate of concentrated water flowing through the drainage line is determined so that a certain recovery rate becomes a predetermined value. 前記ろ過手段に供給される被処理水と前記ろ過手段からの透過水と前記ろ過手段からの濃縮水とのいずれかの水温を検出する水温検出手段を有し、
前記第2の流量制御手段の前記制御部は、前記水温検出手段で検出された前記水温に基づいて、前記回収率が、前記ろ過手段の前記逆浸透膜またはナノろ過膜の膜面にシリカまたはカルシウムが析出しない最大の回収率となるように、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項に記載の膜ろ過装置。
It has a water temperature detecting means for detecting the water temperature of any one of the water to be treated supplied to the filtering means, the permeated water from the filtering means, and the concentrated water from the filtering means.
Based on the water temperature detected by the water temperature detecting means, the control unit of the second flow control means has a recovery rate of silica or silica on the membrane surface of the reverse osmosis membrane or the nanofiltration membrane of the filtration means. The membrane filtration apparatus according to claim 3 , wherein the set flow rate of the concentrated water flowing through the drainage line is determined so that the maximum recovery rate at which calcium does not precipitate is obtained.
前記最も上流側のろ過手段に接続され、前記最も上流側のろ過手段からの透過水を流通させる中間透過水ラインを有し、
前記第2の流量制御手段の前記制御部は、前記中間透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記中間透過水ラインを流れる透過水の流量の割合である回収率が所定の値になるように、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項に記載の膜ろ過装置。
It has an intermediate permeated water line that is connected to the most upstream filtration means and circulates permeated water from the most upstream filtration means.
The control unit of the second flow rate control means determines the flow rate of the permeated water flowing through the intermediate permeated water line with respect to the sum of the flow rate of the permeated water flowing through the intermediate permeated water line and the flow rate of the concentrated water flowing through the drainage line. The membrane filtration device according to claim 2 , wherein the set flow rate of concentrated water flowing through the drainage line is determined so that the recovery rate, which is a ratio, becomes a predetermined value.
前記最も上流側のろ過手段に供給される被処理水と前記最も上流側のろ過手段からの透過水と前記最も上流側のろ過手段からの濃縮水とのいずれかの水温を検出する水温検出手段を有し、
前記第2の流量制御手段の前記制御部は、前記水温検出手段で検出された前記水温に基づいて、前記回収率が、前記最も上流側のろ過手段の前記逆浸透膜またはナノろ過膜の膜面にシリカまたはカルシウムが析出しない最大の回収率となるように、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項に記載の膜ろ過装置。
A water temperature detecting means for detecting the temperature of either the water to be treated supplied to the most upstream filtration means, the permeated water from the most upstream filtration means, or the concentrated water from the most upstream filtration means. Have,
The control unit of the second flow control means has a recovery rate based on the water temperature detected by the water temperature detecting means, and the membrane of the reverse osmosis membrane or the nanofiltration membrane of the filtration means on the most upstream side. The membrane filtration apparatus according to claim 5 , wherein the set flow rate of the concentrated water flowing through the drainage line is determined so that the maximum recovery rate at which silica or calcium does not precipitate on the surface is obtained.
前記還流水ラインに設けられ、前記排水ラインを流れる濃縮水と前記還流水ラインを流れる濃縮水の圧力を調整する圧力調整弁を有する、請求項からのいずれか1項に記載の膜ろ過装置。 The membrane filtration according to any one of claims 1 to 6 , which is provided in the reflux water line and has a pressure adjusting valve for adjusting the pressure of the concentrated water flowing through the drainage line and the concentrated water flowing through the reflux water line. apparatus. 前記第1の流量制御手段が、前記供給ラインに設けられ、該供給ラインを流れる被処理水の圧力を調整する圧力調整手段と、前記透過水ラインを流れる透過水の流量を検出する流量検出手段と、該流量検出手段により検出された前記透過水の流量に基づいて、前記圧力調整手段を制御する制御部と、を有する、請求項1からのいずれか1項に記載の膜ろ過装置。 The first flow rate control means is provided in the supply line, and a pressure adjusting means for adjusting the pressure of the water to be treated flowing through the supply line and a flow rate detecting means for detecting the flow rate of the permeated water flowing through the permeated water line. The membrane filtration device according to any one of claims 1 to 7 , further comprising a control unit that controls the pressure adjusting means based on the flow rate of the permeated water detected by the flow rate detecting means.
JP2017065073A 2017-03-29 2017-03-29 Membrane filtration device Active JP6851877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065073A JP6851877B2 (en) 2017-03-29 2017-03-29 Membrane filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065073A JP6851877B2 (en) 2017-03-29 2017-03-29 Membrane filtration device

Publications (2)

Publication Number Publication Date
JP2018167146A JP2018167146A (en) 2018-11-01
JP6851877B2 true JP6851877B2 (en) 2021-03-31

Family

ID=64019724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065073A Active JP6851877B2 (en) 2017-03-29 2017-03-29 Membrane filtration device

Country Status (1)

Country Link
JP (1) JP6851877B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907745B2 (en) * 2017-06-15 2021-07-21 三浦工業株式会社 Membrane separation device
JP7077756B2 (en) * 2018-05-14 2022-05-31 三浦工業株式会社 Reverse osmosis membrane separator
JP2020131087A (en) * 2019-02-15 2020-08-31 栗田工業株式会社 Control method for reverse osmosis system
JP7289257B2 (en) * 2019-11-19 2023-06-09 オルガノ株式会社 MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF
JP7307665B2 (en) * 2019-11-29 2023-07-12 オルガノ株式会社 MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026105B2 (en) * 2011-12-22 2016-11-16 東洋紡エンジニアリング株式会社 Purified water production equipment
JP2014108381A (en) * 2012-11-30 2014-06-12 Miura Co Ltd Pure water producing apparatus and pure water producing method
JP6161384B2 (en) * 2013-04-25 2017-07-12 オルガノ株式会社 Membrane filtration device
JP2016203084A (en) * 2015-04-21 2016-12-08 三浦工業株式会社 Reverse osmosis membrane separation device

Also Published As

Publication number Publication date
JP2018167146A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6851877B2 (en) Membrane filtration device
JP7045814B2 (en) Membrane filtration device
JP6842976B2 (en) Pure water production equipment
CN106029580B (en) Method and apparatus for recovering cooling water
JP2006305499A (en) Operating method of membrane filtration system
JP2010120015A (en) Method of membrane filtration
KR20190043588A (en) Reverse osmosis membrane treatment system and operation method of reverse osmosis membrane treatment system
CN107735365B (en) Method and apparatus for recovering cooling drainage
JP2009285522A (en) Reverse osmosis membrane device
JP7045870B2 (en) Membrane filtration device
JP7017365B2 (en) Membrane filtration device
JP7106395B2 (en) Membrane filtration device
JP7106283B2 (en) Membrane filtration device
JP7449107B2 (en) Water treatment method and water treatment equipment
JP2021079330A (en) Membrane filtration device and its operation method
JP2021084085A (en) Membrane filtration device and operation method of the same
JP7534177B2 (en) Membrane filtration device and method for operating same
JP7364451B2 (en) Water treatment equipment and water treatment equipment operation management method
JP7181809B2 (en) Membrane filtration device
JP2022010263A (en) Membrane filtration device
JP7285748B2 (en) water treatment equipment
JP2023032684A (en) Membrane filtration apparatus
JP2022154246A (en) Water treatment method and water treatment device
WO2023032566A1 (en) Water treatment method and water treatment apparatus
JP2022054984A (en) Membrane filtration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6851877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250