JP7289257B2 - MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF - Google Patents

MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF Download PDF

Info

Publication number
JP7289257B2
JP7289257B2 JP2019208682A JP2019208682A JP7289257B2 JP 7289257 B2 JP7289257 B2 JP 7289257B2 JP 2019208682 A JP2019208682 A JP 2019208682A JP 2019208682 A JP2019208682 A JP 2019208682A JP 7289257 B2 JP7289257 B2 JP 7289257B2
Authority
JP
Japan
Prior art keywords
flow rate
water
line
concentrated water
permeate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208682A
Other languages
Japanese (ja)
Other versions
JP2021079330A (en
Inventor
圭悟 佐藤
直幸 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2019208682A priority Critical patent/JP7289257B2/en
Publication of JP2021079330A publication Critical patent/JP2021079330A/en
Application granted granted Critical
Publication of JP7289257B2 publication Critical patent/JP7289257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、膜ろ過装置およびその運転方法に関する。 The present invention relates to a membrane filtration device and its operating method.

被処理水に含まれる不純物を除去する水処理装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有する膜ろ過装置が知られている。この装置では、所定の供給圧力でRO膜またはNF膜に供給された被処理水(原水)が、RO膜またはNF膜により、透過水と濃縮水とに分離される。これにより、不純物が除去された処理水(透過水)を得ることができる。 Membrane filtration devices having reverse osmosis membranes (RO membranes) or nanofiltration membranes (NF membranes) are known as water treatment devices for removing impurities contained in water to be treated. In this apparatus, the water to be treated (raw water) supplied to the RO membrane or NF membrane at a predetermined supply pressure is separated into permeated water and concentrated water by the RO membrane or NF membrane. As a result, treated water (permeated water) from which impurities have been removed can be obtained.

RO膜またはNF膜を有する膜ろ過装置では、多くの場合、水の有効利用(節水)の観点から、不純物を含む濃縮水の一部を濃縮排水として外部に排出し、残りを濃縮還流水としてRO膜またはNF膜の上流側に還流させる構成が採用されている。これにより、すべての濃縮水を濃縮排水として排出する場合に比べて、回収率(透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合)を向上させることができ、節水を実現することができる。それと同時に、このような膜ろ過装置では、水温の変化(すなわち、水の粘性の変化)による透過水の流量変化に対応するために、加圧ポンプの回転数を制御することでRO膜またはNF膜への原水の供給圧力を調整して、透過水の流量を一定に維持する流量制御が行われている。透過水の流量制御では、透過水の流量が一定になるように原水の供給圧力を調整すると、それに応じて濃縮水の流量も変化する。このような濃縮水の流量変化は、ファウリングやスケーリングによる膜の詰まりの発生や、圧力損失の増大による膜の破損につながるため、透過水の流量制御を行う場合には、濃縮水(濃縮還流水または濃縮排水)の流量制御も行うことが望ましい。例えば、特許文献1には、濃縮排水の流量を設定流量に調整する流量制御を行うことが記載されており、回収率の目標値に基づいて濃縮排水の設定流量を算出することが記載されている。 In many cases, in a membrane filtration device having an RO membrane or an NF membrane, from the viewpoint of effective use of water (water saving), part of the concentrated water containing impurities is discharged to the outside as concentrated waste water, and the rest is discharged as concentrated reflux water. A configuration is adopted in which the gas is returned to the upstream side of the RO membrane or the NF membrane. As a result, the recovery rate (ratio of the permeate flow rate to the sum of the permeate flow rate and the concentrated waste water flow rate) can be improved compared to the case where all the concentrated water is discharged as concentrated waste water, resulting in water savings. can be realized. At the same time, in such a membrane filtration device, in order to respond to changes in the flow rate of permeated water due to changes in water temperature (that is, changes in water viscosity), by controlling the rotation speed of the pressure pump, the RO membrane or NF Flow rate control is performed to maintain a constant flow rate of permeate by adjusting the supply pressure of raw water to the membrane. In the flow rate control of permeated water, when the supply pressure of raw water is adjusted so that the flow rate of permeated water is constant, the flow rate of concentrated water also changes accordingly. Such changes in the flow rate of the concentrated water lead to clogging of the membrane due to fouling and scaling, and damage to the membrane due to increased pressure loss. It is also desirable to control the flow rate of running water or concentrated waste water). For example, Patent Document 1 describes that flow rate control is performed to adjust the flow rate of concentrated wastewater to a set flow rate, and that the set flow rate of concentrated wastewater is calculated based on the target value of the recovery rate. there is

一方で、RO膜またはNF膜を有する膜ろ過装置では、処理水質の向上を目的として、複数のRO膜またはNF膜で原水を順次処理することも行われている。特許文献1には、上述した流量制御が行われるRO膜またはNF膜の下流側に、さらに別のRO膜またはNF膜を設け、上流側のRO膜またはNF膜で分離された透過水を下流側のRO膜またはNF膜でさらに処理することが記載されている。 On the other hand, in membrane filtration devices having RO membranes or NF membranes, raw water is also sequentially treated with a plurality of RO membranes or NF membranes for the purpose of improving the quality of treated water. In Patent Document 1, another RO membrane or NF membrane is provided downstream of the RO membrane or NF membrane where the flow rate control described above is performed, and the permeated water separated by the upstream RO membrane or NF membrane is sent downstream. Further treatment with side RO or NF membranes is described.

特開2018-167146号公報JP 2018-167146 A

特許文献1に記載された回収率の目標値の設定方法によれば、水温と原水の不純物濃度とに基づいて、RO膜またはNF膜の膜面にシリカまたはカルシウムが析出しない最大の回収率が算出され、算出された値が回収率の目標値として設定される。これにより、濃縮排水の設定流量をできるだけ少なくして節水を図ることが可能になる。しかしながら、この方法は、ろ過手段(RO膜またはNF膜)が1つだけの構成を想定したものであり、上述したように、そのろ過手段の下流側にさらに別のろ過手段が設けられている構成に適用することは考慮されていない。特に、下流側のろ過手段で分離された濃縮水は原水よりも清澄であり、水質の観点から、そのような濃縮水は外部に排出せずに、上流側のろ過手段に供給される原水に合流されることが好ましいが、上述した設定方法では、この点が何も考慮されていない。 According to the method of setting the recovery rate target value described in Patent Document 1, based on the water temperature and the impurity concentration of the raw water, the maximum recovery rate at which silica or calcium does not precipitate on the membrane surface of the RO membrane or NF membrane is It is calculated and the calculated value is set as the target value of the recovery rate. This makes it possible to reduce the set flow rate of the concentrated waste water as much as possible to save water. However, this method assumes a configuration with only one filtration means (RO membrane or NF membrane), and as described above, another filtration means is provided downstream of that filtration means. It is not considered to apply to configurations. In particular, the concentrated water separated by the filtering means on the downstream side is clearer than the raw water. Merging is preferable, but this point is not taken into consideration in the setting method described above.

そこで、本発明の目的は、さらなる節水を実現する膜ろ過装置およびその運転方法を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a membrane filtration apparatus and an operating method thereof that achieve further water saving.

上述した目的を達成するために、本発明の膜ろ過装置は、直列に接続された複数のろ過手段であって、複数のろ過手段のうち最も上流側の第1のろ過手段と、第1のろ過手段よりも下流側の第2のろ過手段とを含み、それぞれが被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する複数のろ過手段と、第1のろ過手段に被処理水を供給する供給ラインと、第1のろ過手段から透過水を流通させる第1の透過水ラインと、第1のろ過手段からの濃縮水を流通させる第1の濃縮水ラインと、第1の濃縮水ラインから分岐し、第1の濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、第2のろ過手段からの濃縮水を流通させて供給ラインに返流する第2の濃縮水ラインと、供給ラインを流れる被処理水と第1の透過水ラインを流れる透過水と第1の濃縮水ラインまたは排水ラインを流れる濃縮水とのいずれかの水温を検出する水温検出手段と、水温検出手段による検出値と、予め測定された被処理水の不純物濃度である第1の不純物濃度と、第1のろ過手段に実際に供給される被処理水の不純物濃度であって第1の不純物濃度よりも低い第2の不純物濃度とに基づいて、第1の透過水ラインを流れる透過水の流量と排水ラインを流れる濃縮水の流量との和に対する第1の透過水ラインを流れる透過水の流量の割合である回収率の目標範囲を設定し、回収率が目標範囲の下限値を上回り、かつ目標範囲の上限値以下になるように、供給ラインを流れる被処理水の圧力と排水ラインを流れる濃縮水の流量とを調整する制御部と、を有している。 In order to achieve the above object, the membrane filtration device of the present invention comprises a plurality of filtration means connected in series, the first filtration means on the most upstream side among the plurality of filtration means, and the first A plurality of filtration means each having a reverse osmosis membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water, and a first filtration A supply line that supplies water to be treated to the means, a first permeated water line that circulates permeated water from the first filtering means, and a first concentrated water line that circulates concentrated water from the first filtering means. , a drain line branching from the first concentrated water line and discharging a part of the concentrated water flowing through the first concentrated water line to the outside, and a concentrated water from the second filtering means circulating and returning to the supply line Detecting the water temperature of any one of the flowing second concentrated water line, the water to be treated flowing through the supply line, the permeated water flowing through the first permeated water line, and the concentrated water flowing through the first concentrated water line or the drain line a water temperature detection means, a value detected by the water temperature detection means, a first impurity concentration that is the impurity concentration of the water to be treated measured in advance, and an impurity concentration of the water to be treated that is actually supplied to the first filtration means and a second impurity concentration lower than the first impurity concentration of Set a target recovery rate range, which is the rate of flow rate of permeate flowing through the water line, and ensure that the recovery rate is above the lower limit of the target range and below the upper limit of the target range. a control for regulating the pressure of the water and the flow rate of concentrated water through the drain line.

また、本発明の膜ろ過装置の運転方法は、直列に接続された複数のろ過手段であって、複数のろ過手段のうち最も上流側の第1のろ過手段と、第1のろ過手段よりも下流側の第2のろ過手段とを含み、それぞれが被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する複数のろ過手段と、第1のろ過手段に被処理水を供給する供給ラインと、第1のろ過手段から透過水を流通させる第1の透過水ラインと、第1のろ過手段からの濃縮水を流通させる第1の濃縮水ラインと、第1の濃縮水ラインから分岐し、第1の濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、第2のろ過手段からの濃縮水を流通させて供給ラインに返流する第2の濃縮水ラインと、を有する膜ろ過装置の運転方法であって、供給ラインを流れる被処理水と第1の透過水ラインを流れる透過水と第1の濃縮水ラインまたは排水ラインを流れる濃縮水とのいずれかの水温を検出する工程と、検出した水温と、予め測定された被処理水の不純物濃度である第1の不純物濃度と、第1のろ過手段に実際に供給される被処理水の不純物濃度であって第1の不純物濃度よりも低い第2の不純物濃度とに基づいて、第1の透過水ラインを流れる透過水の流量と排水ラインを流れる濃縮水の流量との和に対する第1の透過水ラインを流れる透過水の流量の割合である回収率の目標範囲を設定する工程と、回収率が目標範囲の下限値を上回り、かつ上限値以下になるように、供給ラインを流れる被処理水の圧力と排水ラインを流れる濃縮水の流量とを調整する工程と、を含んでいる。 Further, in the operating method of the membrane filtration device of the present invention, a plurality of filtration means are connected in series, and the first filtration means on the most upstream side among the plurality of filtration means and the first filtration means A plurality of filtration means each having a reverse osmosis membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water, and a second filtration means on the downstream side, and the first filtration means A supply line for supplying water, a first permeated water line for circulating permeated water from the first filtering means, a first concentrated water line for circulating concentrated water from the first filtering means, and a first A drain line that branches from the concentrated water line and discharges a part of the concentrated water flowing through the first concentrated water line to the outside, and a second second that circulates the concentrated water from the second filtering means and returns it to the supply line. and a concentrated water line, wherein the water to be treated flowing through the supply line, the permeated water flowing through the first permeated water line, and the concentrated water flowing through the first concentrated water line or the waste water line and the detected water temperature, the first impurity concentration that is the impurity concentration of the water to be treated measured in advance, and the water to be treated that is actually supplied to the first filtering means and a second impurity concentration that is lower than the first impurity concentration , the sum of the flow rate of the permeate flowing through the first permeate line and the flow rate of the concentrate flowing through the waste line. setting a recovery target range, which is the percentage of the permeate flow rate flowing through the permeate line of 1; and adjusting the pressure of the water to be treated and the flow rate of the concentrated water flowing through the drain line.

このような膜ろ過装置およびその運転方法によれば、第1のろ過手段の回収率の目標範囲を設定するにあたり、予め測定された原水(被処理水)の不純物濃度だけでなく、第1のろ過手段への供給水(第1のろ過手段に実際に供給される被処理水)の不純物濃度も考慮される。この不純物濃度は、供給ラインを流れる原水が第1のろ過手段に供給される前に第2のろ過手段からの濃縮水で希釈される影響で、予め測定された原水の不純物濃度よりも低くなる。そのため、予め測定された原水の不純物濃度のみを考慮した場合に比べて、設定可能な回収率の上限値を高くすることが可能になる。 According to such a membrane filtration device and its operation method, in setting the target range of the recovery rate of the first filtration means, not only the pre-measured impurity concentration of the raw water (water to be treated) but also the first The concentration of impurities in the water supplied to the filtering means (the water actually supplied to the first filtering means) is also taken into consideration. This impurity concentration is lower than the impurity concentration of the raw water measured in advance due to the effect that the raw water flowing through the supply line is diluted with the concentrated water from the second filtering means before being supplied to the first filtering means. . Therefore, it is possible to increase the upper limit of the recovery rate that can be set compared to the case where only the impurity concentration of the raw water measured in advance is taken into consideration.

以上、本発明によれば、さらなる節水を実現することができる。 As described above, according to the present invention, further water saving can be realized.

本発明の一実施形態に係る膜ろ過装置の構成を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the structure of the membrane filtration apparatus which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る膜ろ過装置の構成を示す概略図である。 FIG. 1 is a schematic diagram showing the configuration of a membrane filtration device according to one embodiment of the present invention.

膜ろ過装置10は、被処理水(原水)に含まれる不純物を除去して処理水を生成する装置であり、直列に接続された2つのろ過手段11,12を有している。各ろ過手段11,12は、被処理水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離する逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。なお、ここでいう「直列に接続される」とは、被処理水が複数のろ過手段で順次処理されることを意味し、したがって、本実施形態では、上流側の第1のろ過手段11で分離された透過水が下流側の第2のろ過手段12に被処理水として供給されるようになっていることを意味する。以下、第1のろ過手段11で分離された透過水および濃縮水をそれぞれ「一次透過水」および「一次濃縮水」ともいい、第2のろ過手段12で分離された透過水および濃縮水をそれぞれ「二次透過水」および「二次濃縮水」ともいう。 The membrane filtration device 10 is a device that removes impurities contained in water to be treated (raw water) to generate treated water, and has two filtration means 11 and 12 connected in series. Each of the filtration means 11 and 12 has a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) that separates the water to be treated into concentrated water containing impurities and permeated water from which impurities have been removed. there is Here, "connected in series" means that the water to be treated is sequentially treated by a plurality of filtration means, and therefore, in the present embodiment, the first filtration means 11 on the upstream side It means that the separated permeated water is supplied to the second filtering means 12 on the downstream side as the water to be treated. Hereinafter, the permeated water and concentrated water separated by the first filtering means 11 are also referred to as "primary permeated water" and "primary concentrated water", respectively, and the permeated water and concentrated water separated by the second filtering means 12 are respectively Also referred to as "secondary permeated water" and "secondary concentrated water".

膜ろ過装置10は、第1のろ過手段11にそれぞれ接続された複数のライン、すなわち、第1のろ過手段11に原水を供給する供給ラインL1と、第1のろ過手段11からの一次透過水を流通させて第2のろ過手段12に供給する一次透過水ライン(第1の透過水ライン)L2と、第1のろ過手段11からの一次濃縮水を流通させる一次濃縮水ライン(第1の濃縮水ライン)L3とを有している。加えて、膜ろ過装置10は、一次濃縮水ラインL3から分岐した2つのライン、すなわち、一次濃縮水ラインL3を流れる一次濃縮水の一部を外部へ排出する排水ラインL4と、その残りを供給ラインL1に還流させる還流水ラインL5とを有している。還流水ラインL5は、一次濃縮水ラインL3から分岐した後、後述する加圧ポンプ13の上流側で供給ラインL1に接続されている。なお、還流水ラインL5は、供給ラインL1に直接接続される代わりに、供給ラインL1に設けられた原水タンク(図示せず)に接続されていてもよい。 The membrane filtration device 10 includes a plurality of lines respectively connected to the first filtration means 11, that is, a supply line L1 for supplying raw water to the first filtration means 11, and the primary permeate from the first filtration means 11. A primary permeated water line (first permeated water line) L2 that circulates and supplies it to the second filtration means 12, and a primary concentrated water line that circulates the primary concentrated water from the first filtration means 11 (first concentrated water line) L3. In addition, the membrane filtration device 10 has two lines branched from the primary concentrated water line L3, that is, a drainage line L4 that discharges a part of the primary concentrated water flowing through the primary concentrated water line L3 to the outside, and the rest. and a reflux water line L5 for refluxing to the line L1. After being branched from the primary concentrated water line L3, the reflux water line L5 is connected to the supply line L1 on the upstream side of the pressure pump 13, which will be described later. Note that the return water line L5 may be connected to a raw water tank (not shown) provided on the supply line L1 instead of being directly connected to the supply line L1.

また、膜ろ過装置10は、第2のろ過手段12にそれぞれ接続された複数のライン、すなわち、第2のろ過手段12からの二次透過水を流通させる二次透過水ライン(第2の透過水ライン)L6と、第2のろ過手段12からの二次濃縮水を流通させる二次濃縮水ライン(第2の濃縮水ライン)L7とを有している。第2のろ過手段12では、第1のろ過手段11からの一次透過水がさらに二次透過水と二次濃縮水に分離されるため、水質の観点からは、二次濃縮水を必ずしも外部に排出する必要はない。したがって、節水の観点から、二次濃縮水ラインL7は、二次濃縮水の全てを供給ラインL1に返流するために供給ラインL1に接続されている。なお、二次濃縮水ラインL7は、還流水ラインL5と同様に、供給ラインL1に直接接続される代わりに、原水タンクに接続されていてもよい。 In addition, the membrane filtration device 10 includes a plurality of lines respectively connected to the second filtration means 12, that is, secondary permeate lines (second permeate water line) L6 and a secondary concentrated water line (second concentrated water line) L7 through which the secondary concentrated water from the second filtering means 12 is distributed. In the second filtering means 12, the primary permeated water from the first filtering means 11 is further separated into secondary permeated water and secondary concentrated water. No need to eject. Therefore, from the viewpoint of saving water, the secondary concentrated water line L7 is connected to the supply line L1 in order to return all of the secondary concentrated water to the supply line L1. The secondary concentrated water line L7 may be connected to the raw water tank instead of being directly connected to the supply line L1, similarly to the recirculated water line L5.

さらに、膜ろ過装置10は、供給ラインL1に設けられた加圧ポンプ13と、一次濃縮水ラインL3に設けられた定流量弁14と、排水ラインL4に設けられた流量調整弁CV1および排水流量計15と、還流水ラインL5に設けられた手動弁MV1と、二次透過水ラインL6に設けられた透過水流量計16と、二次濃縮水ラインL7に設けられた流量調整弁CV2および濃縮水流量計17とを有している。 Furthermore, the membrane filtration device 10 includes a pressure pump 13 provided in the supply line L1, a constant flow valve 14 provided in the primary concentrated water line L3, a flow rate adjustment valve CV1 provided in the drainage line L4, and a drainage flow rate A meter 15, a manual valve MV1 provided in the reflux water line L5, a permeate flow meter 16 provided in the secondary permeate line L6, a flow control valve CV2 provided in the secondary concentrated water line L7, and a concentration and a water flow meter 17 .

加圧ポンプ13は、インバータ(図示せず)によって回転数が制御されるようになっており、供給ラインL1を流れる原水の圧力(第1のろ過手段11への原水の供給圧力)を調整する圧力調整手段として機能する。定流量弁14は、一次濃縮水ラインL3を流れる一次濃縮水の流量を一定に保持し、後述する2つの流量制御の干渉を抑制してハンチングを回避する機能を有している。流量調整弁CV1は、排水ラインL4を流れる一次濃縮水(以下、「濃縮排水」ともいう)の流量を調整する流量調整手段として機能し、排水流量計15は、濃縮排水の流量を検出する流量検出手段として機能する。手動弁MV1は、排水ラインL4を流れる一次濃縮水と還流水ラインL5を流れる一次濃縮水の圧力バランスを調整する圧力調整弁として機能する。透過水流量計16は、二次透過水ラインL6を流れる二次透過水の流量を検出する流量検出手段として機能する。流量調整弁CV2は、二次濃縮水ラインL7を流れる二次濃縮水(以下、「濃縮返流水」ともいう)の流量を調整する流量調整手段として機能し、濃縮水流量計17は、濃縮返流水の流量を検出する流量検出手段として機能する。 The pressurizing pump 13 has its rotation speed controlled by an inverter (not shown), and adjusts the pressure of the raw water flowing through the supply line L1 (supply pressure of the raw water to the first filtering means 11). It functions as a pressure regulating means. The constant flow rate valve 14 has a function of keeping the flow rate of the primary concentrated water flowing through the primary concentrated water line L3 constant, suppressing interference between two flow rate controls described later, and avoiding hunting. The flow control valve CV1 functions as flow control means for adjusting the flow rate of the primary concentrated water (hereinafter also referred to as "concentrated waste water") flowing through the waste water line L4, and the waste water flow meter 15 detects the flow rate of the concentrated waste water. It functions as a detection means. The manual valve MV1 functions as a pressure control valve that adjusts the pressure balance between the primary concentrated water flowing through the drain line L4 and the primary concentrated water flowing through the reflux line L5. The permeated water flow meter 16 functions as flow rate detection means for detecting the flow rate of the secondary permeated water flowing through the secondary permeated water line L6. The flow control valve CV2 functions as flow control means for adjusting the flow rate of the secondary concentrated water (hereinafter also referred to as "concentrated return water") flowing through the secondary concentrated water line L7, and the concentrated water flow meter 17 controls the concentration return. It functions as flow rate detection means for detecting the flow rate of running water.

加えて、膜ろ過装置10は、膜ろ過装置10の運転を制御する制御部20を有している。制御部20は、膜ろ過装置10の通常運転(膜ろ過)時に、3つの流量制御、すなわち、二次透過水の流量制御である第1の流量制御と、濃縮排水の流量制御である第2の流量制御と、濃縮返流水の流量制御である第3の流量制御とを並行して実行する。具体的には、第1の流量制御では、二次透過水ラインL6を流れる二次透過水の流量が設定流量になるように加圧ポンプ13が制御される。第2の流量制御では、一次透過水ライン(第1の透過水ライン)L2を流れる一次透過水の流量から濃縮排水(排水ラインL4を流れる一次濃縮水)の目標流量が算出され、濃縮排水の流量がその目標流量になるように流量調整弁CV1の開度が制御される。第3の流量制御では、二次透過水ライン(第2の透過水ライン)L6を流れる二次透過水の流量から濃縮返流水(二次濃縮水ラインL7を流れる二次濃縮水)の目標流量が算出され、濃縮返流水の流量がその目標流量になるように流量調整弁CV2の開度が制御される。以下、これら3つの流量制御の詳細について説明する。 In addition, the membrane filtration device 10 has a control section 20 that controls the operation of the membrane filtration device 10 . During normal operation (membrane filtration) of the membrane filtration device 10, the control unit 20 performs three flow rate controls, that is, the first flow rate control for secondary permeate water flow control and the second flow rate control for concentrated waste water. and the third flow control, which is the flow control of the concentrated return water, are executed in parallel. Specifically, in the first flow rate control, the pressure pump 13 is controlled so that the flow rate of the secondary permeated water flowing through the secondary permeated water line L6 becomes the set flow rate. In the second flow rate control, the target flow rate of the concentrated wastewater (primary concentrated water flowing through the wastewater line L4) is calculated from the flow rate of the primary permeated water flowing through the primary permeated water line (first permeated water line) L2. The opening of the flow control valve CV1 is controlled so that the flow reaches the target flow. In the third flow rate control, the target flow rate of the concentrated return water (secondary concentrated water flowing through the secondary concentrated water line L7) from the flow rate of the secondary permeated water flowing through the secondary permeated water line (second permeated water line) L6 is calculated, and the opening degree of the flow control valve CV2 is controlled so that the flow rate of the concentrated return water becomes the target flow rate. The details of these three flow rate controls are described below.

第1の流量制御では、透過水流量計16による二次透過水の検出流量(検出値)が一定(予め設定された目標流量)になるように加圧ポンプ13が制御される。例えば、水温が変化すると、水の粘性の変化により、第1のろ過手段11で分離される透過水の流量が変化し、第2のろ過手段12で分離される透過水の流量も変化する。この変化に応じて、制御部20は、インバータを通じて加圧ポンプ13の回転数を制御する。すなわち、水温が低くなると、水の粘性は高くなり、その結果、第2のろ過手段12からの二次透過水の流量が減少する。そのため、制御部20は、この減少分を補うように、加圧ポンプ13の回転数を上げることで、原水の供給圧力を増加させる。また、水温が高くなると、水の粘性は低くなり、その結果、第2のろ過手段12からの二次透過水の流量が増加する。そのため、制御部20は、この増加分を打ち消すように、加圧ポンプ13の回転数を下げることで、原水の供給圧力を低下させる。こうして、加圧ポンプ13の回転数、すなわち原水の供給圧力が調整されることで、二次透過水ラインL6を流れる二次透過水の流量が一定に維持される。 In the first flow rate control, the pressurizing pump 13 is controlled so that the detected flow rate (detected value) of the secondary permeated water by the permeated water flow meter 16 is constant (a preset target flow rate). For example, when the water temperature changes, the flow rate of the permeate separated by the first filtration means 11 changes due to the change in the viscosity of the water, and the flow rate of the permeate separated by the second filtration means 12 also changes. According to this change, the controller 20 controls the rotation speed of the pressure pump 13 through the inverter. That is, when the water temperature decreases, the viscosity of the water increases, and as a result, the flow rate of the secondary permeate from the second filtering means 12 decreases. Therefore, the control unit 20 increases the supply pressure of the raw water by increasing the rotational speed of the pressure pump 13 so as to compensate for this decrease. Moreover, when the water temperature rises, the viscosity of the water becomes low, and as a result, the flow rate of the secondary permeated water from the second filtering means 12 increases. Therefore, the control unit 20 reduces the supply pressure of the raw water by reducing the rotational speed of the pressure pump 13 so as to cancel out this increase. By adjusting the rotation speed of the pressure pump 13, that is, the supply pressure of the raw water, the flow rate of the secondary permeate flowing through the secondary permeate line L6 is kept constant.

なお、第1のろ過手段11への原水の供給圧力の変化(加圧ポンプ13の回転数の変化)に応じて、第1のろ過手段11で分離される濃縮水の流量も変化するが、一次濃縮水ラインL3には、上述したように定流量弁14が設けられている。そのため、第1の流量制御により、加圧ポンプ13の回転数が変化して原水の供給圧力が変化した場合にも、一次濃縮水ラインL3を流れる一次濃縮水の流量を一定に保持することができる。その結果、第1の流量制御が排水ラインL4や還流水ラインL5を流れる一次濃縮水の流量に影響を及ぼすことがなくなり、後述する第2の流量制御は、第1の流量制御と干渉することなく独立して行われることになる。 Although the flow rate of the concentrated water separated by the first filtering means 11 also changes according to changes in the supply pressure of the raw water to the first filtering means 11 (changes in the rotation speed of the pressurizing pump 13), The primary concentrated water line L3 is provided with the constant flow valve 14 as described above. Therefore, by the first flow rate control, even when the rotation speed of the pressurizing pump 13 changes and the supply pressure of the raw water changes, the flow rate of the primary concentrated water flowing through the primary concentrated water line L3 can be kept constant. can. As a result, the first flow rate control does not affect the flow rate of the primary concentrated water flowing through the drainage line L4 and the reflux water line L5, and the second flow rate control, which will be described later, interferes with the first flow rate control. will be performed independently.

ここで、定流量弁14の規定流量は、一方では、ファウリングやスケーリングによる膜の詰まりが発生しない程度であればよく、他方では、圧力損失の増大によって膜を破損させない程度であればよい。ただし、定流量弁14の規定流量を必要以上に大きくすることは、加圧ポンプ13に要求される流量が必要以上に大きくなり、結果的に加圧ポンプ13のサイズが大きくなるため、エネルギー消費の点で好ましくない。そのため、定流量弁14の規定流量は、第1のろ過手段11の透過流束と第1のろ過手段11に要求される濃縮水の最低流量も考慮して設定され、例えば、第1のろ過手段11として直径が約20.32cm(8インチ)のRO膜を用いる場合、1~15m/hの範囲である。なお、第1のろ過手段11に要求される濃縮水の最低流量とは、ファウリングやスケーリングによる膜の詰まりが発生しないための一次濃縮水ラインL3に流すべき濃縮水の最低流量を意味する。一方で、本実施形態では、1つの加圧ポンプ13で2つのろ過手段11,12に原水を供給する必要があるため、加圧ポンプ13による第1のろ過手段11への原水の供給圧力は比較的大きくなる。そのため、定流量弁14の規定流量は、この点も考慮して設定する必要がある。例えば、2つのろ過手段11,12としてそれぞれ直径が約20.32cm(8インチ)のRO膜を用いる場合、第1のろ過手段11の適用温度範囲が5~35℃のとき、例えば、定流量弁14としては、株式会社ケイヒン製の定流量弁(品番:NSPW-25、設定流量:55L/min)を用いることができる。 Here, the specified flow rate of the constant flow valve 14 should be such that clogging of the membrane due to fouling or scaling does not occur on the one hand, and that the membrane is not damaged due to an increase in pressure loss. However, if the specified flow rate of the constant flow valve 14 is increased more than necessary, the flow rate required of the pressure pump 13 will be increased more than necessary, and as a result the size of the pressure pump 13 will increase, resulting in energy consumption. It is not preferable in terms of Therefore, the specified flow rate of the constant flow valve 14 is set in consideration of the permeation flux of the first filtration means 11 and the minimum flow rate of concentrated water required for the first filtration means 11. For example, the first filtration When using an RO membrane with a diameter of about 20.32 cm (8 inches) as means 11, it is in the range of 1-15 m 3 /h. The minimum flow rate of concentrated water required for the first filtration means 11 means the minimum flow rate of concentrated water that should flow through the primary concentrated water line L3 to prevent clogging of the membrane due to fouling or scaling. On the other hand, in the present embodiment, since it is necessary to supply raw water to the two filtration means 11 and 12 with one pressure pump 13, the supply pressure of the raw water to the first filtration means 11 by the pressure pump 13 is become relatively large. Therefore, the prescribed flow rate of the constant flow rate valve 14 must be set in consideration of this point as well. For example, when RO membranes having a diameter of about 20.32 cm (8 inches) are used as the two filtration means 11 and 12, respectively, when the application temperature range of the first filtration means 11 is 5 to 35 ° C., for example, a constant flow rate As the valve 14, a constant flow valve manufactured by Keihin Corporation (product number: NSPW-25, set flow rate: 55 L/min) can be used.

ところで、定流量弁14には、定流量弁14を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されている。そのため、例えば、第1のろ過手段11として中高圧用のRO膜を使用する場合や、水温が極端に低下した場合など、条件によっては、原水の供給圧力が著しく上昇して一次濃縮水の圧力が上昇し、定流量弁14の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがある。その場合、一次濃縮水ラインL3を流れる一次濃縮水の流量が一定に保持されないおそれがある。 By the way, the constant flow valve 14 has an operating differential pressure range (permissible range of pressure difference between the primary side and the secondary side of the constant flow valve) for operating the constant flow valve 14 normally. Therefore, depending on the conditions, for example, when a medium- and high-pressure RO membrane is used as the first filtration means 11, or when the water temperature drops extremely, the supply pressure of the raw water rises significantly and the pressure of the primary concentrated water increases. increases, and the pressure difference between the primary side and the secondary side of the constant flow valve 14 may exceed the operating differential pressure range. In that case, the flow rate of the primary concentrated water flowing through the primary concentrated water line L3 may not be kept constant.

そこで、定流量弁14の上流側の一次濃縮水ラインL3に、一次濃縮水ラインL3を流れる一次濃縮水の圧力を減圧する(すなわち、二次側の圧力を一次側の圧力よりも低くすることができる)減圧弁が設けられていてもよい。これにより、第1のろ過手段11への原水の供給圧力が著しく上昇する場合であっても、定流量弁14の一次側と二次側の圧力差を作動差圧範囲内に収めて定流量弁14を正常に作動させることができ、一次濃縮水ラインL3を流れる一次濃縮水の流量を一定に保持することができる。また、減圧弁が設けられていると、定流量弁14が正常に作動して一次濃縮水の流量が増加することがないため、後述する第2の流量制御によって濃縮排水の流量が目標流量に調整される際に還流水ラインL5を流れる一次濃縮水の流量が増加することがなく、加圧ポンプ13の吐出流量が増加することがない。そのため、加圧ポンプ13の揚程が低くなることで必要な透過水の流量が得られなくなるおそれもなくなる。さらに、減圧弁を設けることは、それよりも下流側の周辺部材(配管など)にそれほどの耐圧性能が要求されなくなるため、安全面で有利であるだけでなく、耐圧性能がそれほど高くない安価な汎用品が利用可能になることで、コスト面でも有利である。なお、減圧弁の種類は、一次濃縮水の圧力を定流量弁14の作動差圧範囲内に減圧することができるものであれば特に限定されるものではないが、定流量弁14の規定流量以上の流量が流れるものや、二次側の圧力が排水ラインL4や還流水ラインL5の通水差圧と排水側の背圧との合計よりも大きくなるものを選定する必要がある。 Therefore, the pressure of the primary concentrated water flowing through the primary concentrated water line L3 is reduced in the primary concentrated water line L3 on the upstream side of the constant flow valve 14 (that is, the pressure on the secondary side is made lower than the pressure on the primary side. A pressure reducing valve may be provided. As a result, even when the supply pressure of the raw water to the first filtering means 11 rises significantly, the pressure difference between the primary side and the secondary side of the constant flow valve 14 is kept within the operating differential pressure range and the constant flow rate is maintained. The valve 14 can be operated normally, and the flow rate of the primary concentrated water flowing through the primary concentrated water line L3 can be kept constant. Also, if a pressure reducing valve is provided, the constant flow valve 14 will not operate normally and the flow rate of the primary concentrated water will not increase. When adjusted, the flow rate of the primary concentrated water flowing through the recirculated water line L5 does not increase, and the discharge flow rate of the pressure pump 13 does not increase. Therefore, there is no possibility that the necessary flow rate of the permeated water cannot be obtained due to the lowering of the pump head of the pressurizing pump 13 . Furthermore, providing a pressure reducing valve does not require a high degree of pressure resistance performance for peripheral members (piping, etc.) downstream of it, so it is not only advantageous in terms of safety, but it is also a low-cost type that does not have high pressure resistance performance. Being able to use general-purpose products is also advantageous in terms of cost. The type of pressure reducing valve is not particularly limited as long as it can reduce the pressure of the primary concentrated water to within the operating differential pressure range of the constant flow valve 14, but the specified flow rate of the constant flow valve 14 It is necessary to select one that allows the above flow rate and one that has a secondary side pressure greater than the sum of the water flow differential pressure of the drainage line L4 or the recirculated water line L5 and the back pressure on the drainage side.

第2の流量制御では、第1のろ過手段11の回収率(一次透過水の流量と濃縮排水の流量との和に対する一次透過水の流量の割合)を考慮して濃縮排水の目標流量が算出され、排水流量計15による濃縮排水の検出流量(検出値)がその目標流量になるように、流量調整弁CV1の開度が調整される。このときの回収率は、水の有効利用(節水)の観点から、できるだけ高いことが好ましい。すなわち、濃縮排水の流量はできるだけ少ないことが好ましい。しかしながら、定流量弁14により一次濃縮水の流量が一定に保持されているため、濃縮排水の流量が少なくなると、当然のことながら、還流水ラインL5から供給ラインL1に還流する一次濃縮水の流量が増加する。それにより、原水の不純物濃度が高まると、第1のろ過手段11のRO膜またはNF膜の膜面に不純物(特に、シリカまたはカルシウム)が析出するスケーリングが起こりやすくなってしまう。したがって、濃縮排水の流量は、一次濃縮水の不純物濃度が溶解度以上の濃度にならない範囲で回収率が最大になるように、すなわち、不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように設定される。 In the second flow rate control, the target flow rate of the concentrated wastewater is calculated considering the recovery rate of the first filtration means 11 (the ratio of the flow rate of the primary permeated water to the sum of the flow rate of the primary permeated water and the flow rate of the concentrated wastewater). Then, the opening degree of the flow control valve CV1 is adjusted so that the flow rate (detection value) of the concentrated waste water detected by the waste water flow meter 15 becomes the target flow rate. The recovery rate at this time is preferably as high as possible from the viewpoint of effective use of water (water saving). That is, it is preferable that the flow rate of the concentrated waste water is as small as possible. However, since the flow rate of the primary concentrated water is kept constant by the constant flow valve 14, when the flow rate of the concentrated waste water decreases, naturally, the flow rate of the primary concentrated water that flows back from the reflux water line L5 to the supply line L1 increases. As a result, when the concentration of impurities in the raw water increases, scaling, in which impurities (especially silica or calcium) are deposited on the membrane surface of the RO membrane or NF membrane of the first filtration means 11, tends to occur. Therefore, the flow rate of the concentrated wastewater should be adjusted so that the recovery rate is maximized within a range in which the concentration of impurities in the primary concentrated water does not exceed the solubility level, that is, the recovery rate is maximized within a range in which impurities such as silica or calcium do not precipitate. is set to be

ただし、不純物の溶解度は、水温に応じて変化する。例えば、シリカの場合、その溶解度は温度に比例して増加し、カルシウム(炭酸カルシウム)の場合、温度が上昇するにつれてその溶解度は減少する。そのため、水温が低い場合には、シリカの溶解度が相対的に低く、シリカが析出しやすい(シリカスケールが発生しやすい)が、水温が高くなると、カルシウムの溶解度が相対的に低くなるため、カルシウムが析出しやすく(カルシウムスケールが発生しやすく)なる。そこで、膜ろ過装置10には、図示していないが、原水と一次透過水と一次濃縮水とのいずれかの水温を検出する温度センサ(水温検出手段)が設けられている。この温度センサにより検出された水温に基づいて、濃縮排水の最適な目標流量が算出される。 However, the solubility of impurities varies depending on the water temperature. For example, for silica, its solubility increases proportionally with temperature, and for calcium (calcium carbonate), its solubility decreases with increasing temperature. Therefore, when the water temperature is low, the solubility of silica is relatively low, and silica tends to precipitate (silica scale is likely to occur). is likely to precipitate (calcium scale is likely to occur). Therefore, although not shown, the membrane filtration device 10 is provided with a temperature sensor (water temperature detection means) for detecting the water temperature of any one of the raw water, the primary permeated water, and the primary concentrated water. Based on the water temperature detected by this temperature sensor, the optimum target flow rate of concentrated waste water is calculated.

具体的には、まず、検出された水温でシリカが析出する理論上の回収率(以下、「シリカの析出回収率」という)と、検出された水温でカルシウム(炭酸カルシウム)が析出する理論上の回収率(以下「カルシウムの析出回収率」という)が算出される。なお、シリカの析出回収率とカルシウムの析出回収率のそれぞれの算出方法については後述する。次に、シリカの析出回収率とカルシウムの析出回収率とが比較され、目標回収率として、より小さい方の析出回収率が設定される。そして、この目標回収率と、制御部20により間接的に検出された一次透過水の流量とに基づいて、以下の式(1)により、濃縮排水の目標流量が算出されて設定される。
(濃縮排水の目標流量)=
(一次透過水の検出流量/目標回収率)-(一次透過水の検出流量) (1)
Specifically, first, the theoretical recovery rate at which silica precipitates at the detected water temperature (hereinafter referred to as "silica precipitation recovery rate") and the theoretical recovery rate at which calcium (calcium carbonate) precipitates at the detected water temperature The recovery rate of (hereinafter referred to as "calcium deposition recovery rate") is calculated. Methods for calculating the silica precipitation recovery rate and the calcium precipitation recovery rate will be described later. Next, the silica deposition recovery rate and the calcium deposition recovery rate are compared, and the smaller deposition recovery rate is set as the target recovery rate. Then, based on this target recovery rate and the flow rate of the primary permeate indirectly detected by the control unit 20, the target flow rate of the concentrated waste water is calculated and set by the following equation (1).
(Target flow rate of concentrated wastewater) =
(Detected flow rate of primary permeated water/Target recovery rate) - (Detected flow rate of primary permeated water) (1)

なお、一次透過水の流量の間接的な検出は、透過水流量計16と濃縮水流量計17を用いて行うことができる。すなわち、一次透過水の検出流量は、透過水流量計16により検出された二次透過水の流量と、濃縮水流量計17により検出された二次濃縮水の流量との和として算出(取得)することができる。ただし、一次透過水ラインL2に図示しない流量計が設けられていてもよく、それにより、一次透過水の流量を直接検出するようになっていてもよい。 Indirect detection of the flow rate of the primary permeated water can be performed using the permeated water flow meter 16 and the concentrated water flow meter 17 . That is, the detected flow rate of the primary permeated water is calculated (acquired) as the sum of the flow rate of the secondary permeated water detected by the permeated water flow meter 16 and the flow rate of the secondary concentrated water detected by the concentrated water flow meter 17. can do. However, the primary permeate water line L2 may be provided with a flow meter (not shown) to directly detect the flow rate of the primary permeate water.

スケーリングの発生を確実に抑制するという観点からは、上記式(1)で算出された目標流量を上回る流量を濃縮排水の設定流量として設定することもできるが、節水の観点からは、算出された目標流量を濃縮排水の設定流量として設定することが好ましい。なお、回収率(目標回収率)として、通常は、パーセントで表した値が用いられるが、上記式(1)では、小数で表した値が用いられることは言うまでもない。 From the viewpoint of reliably suppressing the occurrence of scaling, a flow rate exceeding the target flow rate calculated by the above formula (1) can be set as the set flow rate of the concentrated wastewater. It is preferable to set the target flow rate as the set flow rate of the concentrated waste water. As the recovery rate (target recovery rate), a value expressed in percent is usually used, but in the above formula (1), it goes without saying that a value expressed in decimals is used.

ここで、シリカの析出回収率とカルシウムの析出回収率の算出方法についてそれぞれ説明する。 Here, the methods for calculating the silica deposition recovery rate and the calcium deposition recovery rate will be described respectively.

(シリカの析出回収率の算出方法)
シリカの析出回収率Yは、検出された水温でのシリカの溶解度(mg/L)をCとし、予め測定された原水のシリカ濃度(mg/L)をFとしたとき、以下の式(2)から算出される。
=(C-F)/C (2)
(Method for calculating precipitation recovery rate of silica)
The silica precipitation recovery rate Y S is expressed as follows, where CS is the solubility of silica (mg/L) at the detected water temperature and FS is the silica concentration (mg/L) of the raw water measured in advance. It is calculated from the formula (2).
Y S =(C S −F S )/C S (2)

なお、シリカの溶解度の算出方法としては、ASTM(American Society for Testing and Materials)D4993-89などに規定された方法を用いることができる。 As a method for calculating the solubility of silica, a method specified in ASTM (American Society for Testing and Materials) D4993-89 or the like can be used.

(カルシウムの析出回収率の算出方法)
カルシウムの析出回収率は、濃縮水のランゲリア指数を算出する方法を利用して算出される。ここで、ランゲリア指数(飽和指数)とは、カルシウム(炭酸カルシウム)の析出の可能性を示す指標であり、水の実際のpHと、理論pH(pHs:水中の炭酸カルシウムが溶解も析出もしない平衡状態にあるときのpH)との差(pH-pHs)を意味する。すなわち、ランゲリア指数が正の値で絶対値が大きいほど炭酸カルシウムが析出しやすくなり、負の値では炭酸カルシウムは析出されない。そのため、カルシウムの析出回収率は、濃縮水のランゲリア指数がゼロになるときの回収率として算出される。なお、より安全側の値として設定するために、カルシウムの析出回収率は、濃縮水のランゲリア指数が負の値になるときの回収率であってもよい。
(Method for calculating precipitation recovery rate of calcium)
The precipitation recovery rate of calcium is calculated using a method for calculating the Langerier index of concentrated water. Here, the Langerier index (saturation index) is an index indicating the possibility of precipitation of calcium (calcium carbonate), and the actual pH of water and the theoretical pH (pHs: calcium carbonate in water neither dissolves nor precipitates It means the difference (pH - pHs) from the pH at equilibrium. That is, the larger the absolute value of the positive value of the Langerier index, the easier it is for calcium carbonate to precipitate, while the negative value does not precipitate calcium carbonate. Therefore, the precipitation recovery rate of calcium is calculated as the recovery rate when the Langelier index of the concentrated water becomes zero. In order to set a safer value, the recovery rate of calcium precipitation may be the recovery rate when the Langelier index of the concentrated water becomes a negative value.

濃縮水のランゲリア指数は、濃縮水のpHと、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、検出された水温とから算出される。ランゲリア指数の算出方法としては、例えば、特開平11-267687号公報(段落[0025]~[0027])などに記載された方法を用いることができる。また、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)は、予め測定された原水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、回収率とから算出される。したがって、カルシウムの析出回収率Yは、濃縮水のランゲリア指数がゼロになるときの濃縮水の不純物濃度(mg/L)をCとし、予め測定された原水の不純物濃度(mg/L)をFとしたとき、以下の式(3)の関係で表されることになる。
=(C-F)/C (3)
The Langerier index of the concentrate is calculated from the pH of the concentrate, the concentration of impurities in the concentrate (calcium concentration, total alkalinity, and evaporation residue concentration), and the detected water temperature. As a method for calculating the Langelier index, for example, the method described in Japanese Patent Application Laid-Open No. 11-267687 (paragraphs [0025] to [0027]) can be used. In addition, the concentration of impurities in the concentrated water (calcium concentration, total alkalinity, and concentration of evaporation residue) is calculated from the previously measured impurity concentration of raw water (calcium concentration, total alkalinity, and concentration of evaporation residue) and the recovery rate. calculated from Therefore, the calcium deposition recovery rate Y C is the impurity concentration (mg / L) of the concentrated water when the Langerier index of the concentrated water becomes zero, and the impurity concentration (mg / L) of the raw water measured in advance. is represented by the relationship of the following formula (3).
Y C =(C C −F C )/C C (3)

なお、本実施形態では、供給ラインL1を流れる原水は、原水よりも十分に清澄な二次濃縮水で希釈された後で第1のろ過手段11に供給される。したがって、第1のろ過手段11への供給水(第1のろ過手段11に実際に供給される被処理水)の不純物濃度は、予め測定された原水の不純物濃度よりも低くなる。一方で、後述するように、二次濃縮水ラインL7を流れる二次濃縮水の流量はできるだけ少ないことが好ましく、その場合、膜ろ過装置10に供給される原水の流量に対する二次濃縮水の流量の割合はかなり小さくなる。このため、上述したシリカおよびカルシウムの析出回収率の算出方法では、このような二次濃縮水による原水希釈の影響は無視できるものとして考慮されていない。しかしながら、厳密には、二次濃縮水による原水希釈の影響を考慮すると、それを考慮しない場合に比べて、シリカおよびカルシウムの析出回収率はそれぞれ高くなり、それに応じて、目標回収率も高くなる。したがって、節水を優先すれば、二次濃縮水による原水希釈の影響を考慮してシリカおよびカルシウムの析出回収率を算出することが好ましく、算出された析出回収率に基づいて目標回収率を設定することが好ましい。ただし、節水を優先して目標回収率を可能な限り高くすると、スケールを確実に抑制できなくなるおそれもある。そのため、二次濃縮水による原水希釈を考慮する場合にも、実際の回収率制御は以下のように行われることが好ましい。 In this embodiment, the raw water flowing through the supply line L1 is supplied to the first filtering means 11 after being diluted with the secondary concentrated water that is sufficiently clearer than the raw water. Therefore, the impurity concentration of the water supplied to the first filtering means 11 (the water to be treated actually supplied to the first filtering means 11) is lower than the impurity concentration of the raw water measured in advance. On the other hand, as will be described later, it is preferable that the flow rate of the secondary concentrated water flowing through the secondary concentrated water line L7 is as small as possible. ratio is considerably smaller. For this reason, the method for calculating the precipitation recovery rate of silica and calcium described above does not consider the influence of dilution of the raw water by such secondary concentrated water as being negligible. However, strictly speaking, when the influence of raw water dilution by secondary concentrated water is taken into account, the precipitation recovery rates of silica and calcium are respectively higher than when it is not taken into account, and the target recovery rate is accordingly higher. . Therefore, if priority is given to water saving, it is preferable to calculate the precipitation recovery rate of silica and calcium in consideration of the influence of raw water dilution by secondary concentrated water, and the target recovery rate is set based on the calculated precipitation recovery rate. is preferred. However, if water saving is prioritized and the target recovery rate is set as high as possible, it may not be possible to reliably control scale. Therefore, even when considering the dilution of the raw water with the secondary concentrated water, it is preferable that the actual recovery rate control is performed as follows.

すなわち、まず、上述した算出方法により、二次濃縮水による原水希釈の影響を考慮しない場合のシリカおよびカルシウムの析出回収率が算出され、算出された析出回収率のうち小さい析出回収率が、回収率の目標範囲の下限値(目標下限回収率)として設定される。一方、以下に示す算出方法により、二次濃縮水による原水希釈の影響を考慮した場合のシリカおよびカルシウムの析出回収率が算出され、算出された析出回収率のうち小さい析出回収率が、回収率の目標範囲の上限値(目標上限回収率)として設定される。そして、第1のろ過手段11の回収率が目標下限回収率を上回り、かつ目標上限回収率以下になるように、流量調整弁CV1の開度が調整されて濃縮排水の流量が調整される。具体的には、目標下限回収率および目標上限回収率から、上記式(1)を用いて、濃縮排水の目標流量の上限値(目標上限流量)および下限値(目標下限流量)がそれぞれ算出されて設定される。そして、排水流量計15による検出値が目標上限流量を下回り、かつ目標下限流量以上になるように、流量調整弁CV1の開度が調整される。なお、実際に濃縮排水の流量が調整される際には、濃縮排水の目標流量として、目標上限流量を下回り、かつ目標下限流量以上の値が設定され、したがって、目標回収率として、目標下限回収率を上回り、かつ目標上限回収率以下の値が設定される。 That is, first, by the above-described calculation method, the precipitation recovery rate of silica and calcium when the influence of dilution of raw water by secondary concentrated water is not considered is calculated, and the smaller precipitation recovery rate among the calculated precipitation recovery rates is recovered. is set as the lower limit of the target range of rates (target lower recovery rate). On the other hand, by the calculation method shown below, the precipitation recovery rate of silica and calcium when considering the influence of raw water dilution by secondary concentrated water is calculated, and the smaller precipitation recovery rate among the calculated precipitation recovery rates is the recovery rate. is set as the upper limit of the target range (target upper limit recovery rate). Then, the opening degree of the flow control valve CV1 is adjusted so that the recovery rate of the first filtering means 11 exceeds the target lower limit recovery rate and is equal to or lower than the target upper limit recovery rate, thereby adjusting the flow rate of the concentrated waste water. Specifically, from the target lower limit recovery rate and the target upper limit recovery rate, the upper limit (target upper limit flow rate) and lower limit (target lower limit flow rate) of the target flow rate of concentrated wastewater are calculated using the above formula (1). is set. Then, the opening degree of the flow control valve CV1 is adjusted so that the value detected by the drainage flow meter 15 is below the target upper limit flow rate and equal to or above the target lower limit flow rate. In addition, when the flow rate of concentrated wastewater is actually adjusted, the target flow rate of concentrated wastewater is set to a value that is lower than the target upper limit flow rate and is equal to or higher than the target lower limit flow rate. Therefore, as the target recovery rate, the target lower limit recovery A value that exceeds the rate and is equal to or less than the target upper limit recovery rate is set.

二次濃縮水による原水希釈の影響を考慮した場合のシリカの析出回収率Y’およびカルシウムの析出回収率Y’は、以下の式(4)、(5)からそれぞれ算出される。
’=(C-F’)/C (4)
’=(C-F’)/C (5)
ここで、F’およびF’は、それぞれ第1のろ過手段11への供給水のシリカ濃度および不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)であり、以下の式(6)、(7)でそれぞれ表される。
’=F×(Q/(Q+Q 2nd)) (6)
’=F×(Q/(Q+Q 2nd)) (7)
ここで、Qは、排水流量計15による濃縮排水の検出流量(検出値)と透過水流量計16による二次透過水の検出流量(検出値)との和であり、膜ろ過装置10に供給される原水の流量に相当する。また、Q 2ndは、濃縮水流量計17による二次濃縮水の検出流量(検出値)である。
The silica precipitation recovery rate Y S ' and the calcium precipitation recovery rate Y C ' in consideration of the influence of raw water dilution by the secondary concentrated water are calculated from the following equations (4) and (5), respectively.
Y S '=(C S -F S ')/C S (4)
Y C '=(C C -F C ')/C C (5)
Here, F S ' and F C ' are the silica concentration and impurity concentration (calcium concentration, total alkalinity, and evaporation residue concentration) of the feed water to the first filtration means 11, respectively, and are represented by the following equation ( 6) and (7) respectively.
FS ′= FS ×( Qf /( Qf + Qc2nd )) (6 )
FC ′= FC ×( Qf /( Qf + Qc2nd )) (7 )
Here, Q f is the sum of the detected flow rate (detected value) of the concentrated waste water by the waste water flow meter 15 and the detected flow rate (detected value) of the secondary permeate by the permeated water flow meter 16, and the membrane filtration device 10 It corresponds to the flow rate of raw water supplied. Q c 2nd is the detected flow rate (detected value) of the secondary concentrated water by the concentrated water flow meter 17 .

なお、上記式(6)、(7)では、二次濃縮水の水質が純水の水質と同程度であると仮定し、膜ろ過装置10に供給される原水の流量と二次濃縮水の流量から、二次濃縮水の添加によって原水のシリカ濃度および不純物濃度がどの程度薄まるかの割合(Q/(Q+Q 2nd))が算出されているが、この割合の算出方法は、これに限定されるものではない。例えば、膜ろ過装置10に供給される原水の流量と二次濃縮水の流量に加えて、膜ろ過装置10に供給される原水の導電率と二次濃縮水の導電率から、上記割合を算出してもよい。また、このような算出方法では、二次濃縮水の導電率が運転時間と共に変化する可能性があるため、上記割合が一定値になるまで繰り返し算出を行ってもよい。 In addition, in the above formulas (6) and (7), it is assumed that the quality of the secondary concentrated water is about the same as the quality of the pure water, and the flow rate of the raw water supplied to the membrane filtration device 10 and the secondary concentrated water From the flow rate, the ratio (Q f /(Q f +Q c 2nd )) of how much the silica concentration and impurity concentration of the raw water are diluted by the addition of the secondary concentrated water is calculated. It is not limited to this. For example, in addition to the flow rate of the raw water and the secondary concentrated water supplied to the membrane filtration device 10, the above ratio is calculated from the conductivity of the raw water and the secondary concentrated water supplied to the membrane filtration device 10. You may Moreover, in such a calculation method, since the conductivity of the secondary concentrated water may change with operation time, the calculation may be repeatedly performed until the above ratio reaches a constant value.

二次濃縮水による原水希釈を考慮するしないにかかわらず、シリカおよびカルシウムの析出回収率の算出方法や濃縮排水の設定流量の算出方法は、例えば加圧ポンプの容量や原水の流量などの装置設計上の制約によって、予め回収率や流量に制約がある場合には、上述した限りではない。また、第1の流量制御によって二次透過水ラインL6を流れる二次透過水の流量が一定に調整され、後述する第3の流量制御によって二次濃縮水ラインL7を流れる二次濃縮水の流量が一定に調整されるため、一次透過水ラインL2を流れる一次透過水も実質的に一定に調整される。そのため、濃縮排水の設定流量の算出には、そのような一次透過水の実質的な目標流量を用いることもできる。ただし、この方法は、一次透過水の実質的な目標流量と実際の流量が一致していない場合に、実際の回収率が目標回収率からずれる可能性があるため好ましくない。すなわち、一次透過水の実際の流量が目標流量よりも大きい場合には、実際の回収率が目標回収率を上回ることでスケーリングが発生したり、一次透過水の実際の流量が目標流量よりも小さい場合には、実際の回収率が目標回収率を下回ることで節水を図ることができなくなったりする。 Regardless of whether or not dilution of raw water with secondary concentrated water is taken into consideration, the method of calculating the precipitation recovery rate of silica and calcium and the method of calculating the set flow rate of concentrated wastewater should be considered in device design, such as the capacity of the pressurizing pump and the flow rate of raw water. If there are restrictions on the recovery rate or the flow rate in advance due to the above restrictions, the above restrictions do not apply. Further, the flow rate of the secondary permeate flowing through the secondary permeated water line L6 is adjusted to be constant by the first flow control, and the flow rate of the secondary concentrated water flowing through the secondary concentrated water line L7 is controlled by the third flow control described later. is adjusted to be constant, the primary permeate flowing through the primary permeate water line L2 is also adjusted to be substantially constant. Therefore, such a substantial target flow rate of the primary permeate can also be used for calculating the set flow rate of the concentrated waste water. However, this method is not preferable because the actual recovery rate may deviate from the target recovery rate when the actual target flow rate of the primary permeate does not match the actual flow rate. That is, if the actual flow rate of the primary permeate is greater than the target flow rate, scaling occurs due to the actual recovery exceeding the target recovery rate, or the actual flow rate of the primary permeate is less than the target flow rate. In some cases, the actual recovery rate falls below the target recovery rate, making it impossible to save water.

したがって、濃縮排水の設定流量の算出には、上述したように、透過水流量計16による検出値と濃縮水流量計17による検出値とから間接的に検出される一次透過水の流量を用いることが好ましい。これにより、第1の流量制御において二次透過水の流量制御が適切に実施されない事態が発生しても、実際の回収率が目標の回収率からずれることを抑制することができる。なお、実際の算出には、二次透過水や二次濃縮水の検出流量のばらつきなどによる影響を最小限に抑えるために、所定検出時間や所定検出回数における平均流量を用いることが好ましい。 Therefore, for the calculation of the set flow rate of the concentrated waste water, as described above, the flow rate of the primary permeated water indirectly detected from the detected value by the permeated water flow meter 16 and the detected value by the concentrated water flow meter 17 is used. is preferred. As a result, even if the flow rate control of the secondary permeate is not appropriately performed in the first flow rate control, it is possible to prevent the actual recovery rate from deviating from the target recovery rate. In actual calculation, it is preferable to use an average flow rate for a predetermined detection time or a predetermined number of times of detection in order to minimize the influence of variations in the detected flow rate of the secondary permeated water and the secondary concentrated water.

ただし、装置起動時や運転再開時など、二次透過水や二次濃縮水の流量が安定せず、検出流量のばらつきが非常に大きい場合には、二次透過水や二次濃縮水の流量が安定するまでの一定期間、上述した一次透過水の実質的な目標流量を用いて、濃縮排水の設定流量を算出するようになっていてもよい。また、一次透過水の実質的な目標流量と実際の流量との差に応じて、濃縮排水の設定流量の算出に用いる一次透過水の流量を切り替えるようになっていてもよい。すなわち、その差が所定範囲内にある場合には、目標流量を用いて算出し、その差が所定範囲を外れた場合には、実際の流量を用いて算出するようになっていてもよい。 However, if the flow rate of the secondary permeate or secondary concentrated water is not stable, such as when starting up the device or restarting operation, and the variation in the detected flow rate is very large, the flow rate of the secondary permeated water or secondary concentrated water The set flow rate of the concentrated waste water may be calculated using the substantial target flow rate of the primary permeate described above for a certain period of time until is stabilized. Further, the flow rate of the primary permeated water used for calculating the set flow rate of the concentrated waste water may be switched according to the difference between the substantial target flow rate and the actual flow rate of the primary permeated water. That is, if the difference is within a predetermined range, the target flow rate may be used for calculation, and if the difference is outside the predetermined range, the actual flow rate may be used for calculation.

上述のように回収率制御を行う場合、流量調整弁CV1としては、電動比例制御弁を用いることが好ましい。これにより、電動比例制御弁の分解能に応じて開度調整を細かく行うことができ、電磁弁の組み合わせなどによる段階式での開度調整に比べて、回収率を滑らかに調整することができる。例えば、50~70%の範囲の回収率を5段階(50%、55%、60%、65%、70%)にしか制御できない段階式では、目標回収率が64%に設定された場合、回収率を60%にしか調整することができず、無駄な濃縮排水が発生してしまう。したがって、流量調整弁CV1として電動比例制御弁を用いることは、このような濃縮排水の無駄も削減することができるため、節水の観点からも有利である。 When performing recovery rate control as described above, it is preferable to use an electric proportional control valve as the flow control valve CV1. As a result, the degree of opening can be finely adjusted according to the resolution of the electric proportional control valve, and the recovery rate can be adjusted more smoothly than when adjusting the degree of opening in a stepwise manner using a combination of solenoid valves. For example, in a staged formula that can only control the recovery rate in the range of 50 to 70% in 5 stages (50%, 55%, 60%, 65%, 70%), when the target recovery rate is set to 64%, The recovery rate can only be adjusted to 60%, resulting in useless concentrated wastewater. Therefore, the use of an electric proportional control valve as the flow rate control valve CV1 is advantageous from the viewpoint of water saving because it is possible to reduce waste of such concentrated waste water.

ただし、流量調整弁CV1として電動比例制御弁を用いる場合には、その開閉速度と、濃縮排水の設定流量の算出速度(演算速度)との関係に注意が必要である。例えば、2つの速度が大きく異なっている場合、電動比例制御弁の開閉が完了して濃縮排水の流量が安定する前にその設定流量が変更されると、ハンチングが発生する可能性がある。また、濃縮排水の設定流量が一次透過水の検出流量(透過水流量計16による二次透過水の検出流量と濃縮水流量計17による二次濃縮水の検出流量との和)に基づいて決定されるため、濃縮排水の流量制御は、加圧ポンプ13の回転数を制御するインバータの応答速度にも影響を受ける可能性がある。したがって、濃縮排水の設定流量の演算速度を決定する際には、電動比例制御弁の開閉速度とインバータの応答速度とを考慮することが好ましい。すなわち、電動比例制御弁の開閉速度が遅い場合は、インバータの応答速度を遅くし、電動比例制御弁の開閉速度が速い場合は、インバータの応答速度を速くすることが好ましい。なお、上述したように、第2の流量制御(一次濃縮水の流量制御)は、定流量弁14の設置により第1の流量制御(二次透過水の流量制御)と独立して行われるため、互いの流量制御が干渉することが抑制される。その結果、上述のようなハンチングの発生を極力抑制することができ、実際の回収率が目標の回収率からずれることを抑制することができる。この点からも、一次濃縮水ラインL3に定流量弁14が設けられていることが好ましい。 However, when an electric proportional control valve is used as the flow control valve CV1, it is necessary to pay attention to the relationship between the opening/closing speed and the calculation speed (calculation speed) of the set flow rate of the concentrated waste water. For example, if the two speeds are significantly different, hunting may occur if the set flow rate is changed before the electric proportional control valve is completely opened and closed and the concentrated waste water flow rate is stabilized. In addition, the set flow rate of the concentrated waste water is determined based on the detected flow rate of the primary permeated water (the sum of the detected flow rate of the secondary permeated water by the permeated water flow meter 16 and the detected flow rate of the secondary concentrated water by the concentrated water flow meter 17). Therefore, the control of the flow rate of the concentrated waste water may be affected by the response speed of the inverter that controls the rotation speed of the pressure pump 13 . Therefore, when determining the calculation speed of the set flow rate of the concentrated waste water, it is preferable to consider the opening/closing speed of the electric proportional control valve and the response speed of the inverter. That is, when the opening/closing speed of the electric proportional control valve is slow, it is preferable to slow down the response speed of the inverter, and when the opening/closing speed of the electric proportional control valve is fast, it is preferable to speed up the response speed of the inverter. In addition, as described above, the second flow control (flow control of the primary concentrated water) is performed independently of the first flow control (flow control of the secondary permeate) by installing the constant flow valve 14. , the mutual interference of the flow control is suppressed. As a result, the occurrence of hunting as described above can be suppressed as much as possible, and deviation of the actual recovery rate from the target recovery rate can be suppressed. Also from this point, it is preferable that the constant flow valve 14 is provided in the primary concentrated water line L3.

なお、本実施形態では、回収率の目標値をより高く設定して、さらなる節水を実現するために、上述の析出回収率をより高くすることを目的として、スケール防止剤を原水に添加するようになっていてもよい。この場合、定流量弁14の規定流量を小さくすることができ、結果として、より小さい容量の加圧ポンプ13を用いることで省エネルギー化を実現することもできる。スケール防止剤の添加は、薬注ポンプによって行うことができる。 In this embodiment, the target value of the recovery rate is set higher, and in order to further save water, a scale inhibitor is added to the raw water for the purpose of increasing the precipitation recovery rate described above. can be In this case, the specified flow rate of the constant flow rate valve 14 can be reduced, and as a result, energy saving can be realized by using the pressure pump 13 with a smaller capacity. The addition of scale inhibitor can be done by a dosing pump.

スケール防止剤は、シリカやカルシウムなどのスケール成分の析出を抑制可能な物質であれば、特定のものに限定されるものではない。その種類としては、例えば、1-ヒドロキシエチリデン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸などのホスホン酸とその塩類などのホスホン酸系化合物;正リン酸塩、重合リン酸塩などのリン酸系化合物;ポリマレイン酸、マレイン酸共重合物などのマレイン酸系化合物;アクリル酸系ポリマーなどが挙げられ、アクリル酸系ポリマーとしては、ポリ(メタ)アクリル酸、マレイン酸/(メタ)アクリル酸、(メタ)アクリル酸/スルホン酸、(メタ)アクリル酸/ノニオン基含有モノマーなどのコポリマーや、(メタ)アクリル酸/スルホン酸/ノニオン基含有モノマー、(メタ)アクリル酸/アクリルアミド-アルキルスルホン酸/置換(メタ)アクリルアミド、(メタ)アクリル酸/アクリルアミド-アリールスルホン酸/置換(メタ)アクリルアミドのターポリマーなどが挙げられる。ターポリマーを構成する(メタ)アクリル酸としては、例えば、メタアクリル酸およびアクリル酸と、それらのナトリウム塩などの(メタ)アクリル酸塩などが挙げられる。ターポリマーを構成するアクリルアミド-アルキルスルホン酸としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸とその塩などが挙げられる。また、ターポリマーを構成する置換(メタ)アクリルアミドとしては、例えば、t-ブチルアクリルアミド、t-オクチルアクリルアミド、ジメチルアクリルアミドなどが挙げられる。 The scale inhibitor is not particularly limited as long as it is a substance capable of suppressing precipitation of scale components such as silica and calcium. Examples thereof include phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, nitrilotrimethylphosphonic acid, and salts thereof. Phosphonic acid-based compounds; phosphoric acid-based compounds such as orthophosphates and polymerized phosphates; maleic acid-based compounds such as polymaleic acid and maleic acid copolymers; are copolymers such as poly(meth)acrylic acid, maleic acid/(meth)acrylic acid, (meth)acrylic acid/sulfonic acid, (meth)acrylic acid/nonionic group-containing monomers, and (meth)acrylic acid/sulfonic acid /nonionic group-containing monomer, (meth)acrylic acid/acrylamide-alkylsulfonic acid/substituted (meth)acrylamide, and (meth)acrylic acid/acrylamide-arylsulfonic acid/substituted (meth)acrylamide terpolymer. Examples of the (meth)acrylic acid constituting the terpolymer include methacrylic acid, acrylic acid, and (meth)acrylic acid salts such as sodium salts thereof. Examples of acrylamide-alkylsulfonic acids constituting the terpolymer include 2-acrylamido-2-methylpropanesulfonic acid and salts thereof. Examples of substituted (meth)acrylamides constituting the terpolymer include t-butylacrylamide, t-octylacrylamide and dimethylacrylamide.

これらの中でも、ホスホン酸系化合物とアクリル酸系ポリマーのうち少なくとも1種類を含むものを用いることが好ましい。また、カルシウムとシリカに由来するスケールを同時に抑制するためには、2-ホスホノブタン-1,2,4-トリカルボン酸と、アクリル酸と(メタ)アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸/置換(メタ)アクリルアミドのターポリマーとの混合物とからなるスケール防止剤を用いることが特に好ましい。 Among these, it is preferable to use one containing at least one of a phosphonic acid-based compound and an acrylic acid-based polymer. In order to simultaneously suppress scale derived from calcium and silica, 2-phosphonobutane-1,2,4-tricarboxylic acid, acrylic acid and (meth)acrylic acid/2-acrylamido-2-methylpropanesulfonic acid It is particularly preferred to use a scale inhibitor consisting of a mixture of /substituted (meth)acrylamide with a terpolymer.

なお、RO膜用の市販のスケール防止剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター(登録商標)」シリーズなどが挙げられる。 In addition, commercially available scale inhibitors for RO membranes include the "Orpersion" series manufactured by Organo Corporation, the "Flocon (registered trademark)" series manufactured by BWA Water Additives, and the "PermaTreat (registered trademark)" manufactured by Nalco. series, General Electric Company's "Hypersperse (registered trademark)" series, and Kurita Water Industries Ltd.'s "Kuriverter (registered trademark)" series.

上述したように、本実施形態では、定流量弁14により一次濃縮水の流量が一定に維持されるため、排水ラインL4および還流水ラインL5の一方を流れる一次濃縮水の流量を規定するだけで、他方を流れる一次濃縮水の流量も規定することができる。そのため、図示した実施形態では、排水ラインL4に流量制御手段としての流量調整弁CV1と排水流量計15が設けられ、還流水ラインL5に圧力バランス調整のための手動弁MV1が設けられているが、その逆であってもよい。すなわち、還流水ラインL5に、流量調整弁(比例制御弁)と流量計が設けられ、排水ラインL4に、圧力バランス調整のための手動弁が設けられていてもよい。あるいは、排水ラインL4および還流水ラインL5の両方に、流量調整弁(比例制御弁)と流量計を設けることもできる。 As described above, in the present embodiment, since the flow rate of the primary concentrated water is kept constant by the constant flow valve 14, the flow rate of the primary concentrated water flowing through one of the drainage line L4 and the recirculated water line L5 can be simply defined. , the flow rate of the primary retentate flowing through the other can also be defined. Therefore, in the illustrated embodiment, the drainage line L4 is provided with a flow rate control valve CV1 and a drainage flow meter 15 as flow rate control means, and the recirculated water line L5 is provided with a manual valve MV1 for pressure balance adjustment. , and vice versa. That is, the return water line L5 may be provided with a flow rate control valve (proportional control valve) and a flow meter, and the drainage line L4 may be provided with a manual valve for pressure balance adjustment. Alternatively, both the drain line L4 and the return water line L5 may be provided with a flow control valve (proportional control valve) and a flow meter.

第3の流量制御では、第2のろ過手段12の返流率(二次透過水の流量と濃縮返流水の流量との和に対する濃縮返流水の流量の割合)を考慮して濃縮返流水(二次濃縮水ラインL7を流れる二次濃縮水)の目標流量が算出され、濃縮水流量計17による濃縮返流水の検出流量(検出値)がその目標流量になるように、流量調整弁CV2の開度が調整される。第2のろ過手段12には、不純物濃度が低い第1のろ過手段11からの一次透過水が供給されるため、節水の観点から、第2のろ過手段12の返流率は低く設定されることが好ましい。すなわち、濃縮返流水の流量はできるだけ少ないことが好ましく、具体的には、第2のろ過手段12からの二次透過水の流量に対して1/20~1/5倍の範囲に設定されることが好ましい。 In the third flow rate control, the return flow rate of the second filtration means 12 (ratio of the flow rate of the concentrated return water to the sum of the flow rate of the secondary permeate and the flow rate of the concentrated return water) is considered. The target flow rate of the secondary concentrated water flowing through the secondary concentrated water line L7 is calculated, and the flow rate adjustment valve CV2 is adjusted so that the detected flow rate (detection value) of the concentrated return water by the concentrated water flow meter 17 becomes the target flow rate. opening is adjusted. Since the primary permeated water from the first filtration means 11 having a low impurity concentration is supplied to the second filtration means 12, the return flow rate of the second filtration means 12 is set low from the viewpoint of water saving. is preferred. That is, the flow rate of the concentrated return water is preferably as small as possible, and specifically, it is set in the range of 1/20 to 1/5 times the flow rate of the secondary permeate from the second filtration means 12. is preferred.

濃縮返流水の目標流量(設定流量)は、返流率の目標値と、透過水流量計16による二次透過水の検出流量とに基づいて算出することが好ましい。これにより、第1の流量制御において二次透過水の流量制御が適切に実施されない事態が発生しても、実際の返流率が目標の返流率からずれることを抑制することができる。なお、実際の算出には、二次透過水の検出流量のばらつきなどによる影響を最小限に抑えるために、所定検出時間や所定検出回数における平均流量を用いることが好ましい。 The target flow rate (set flow rate) of the concentrated return water is preferably calculated based on the target value of the return flow rate and the detected flow rate of the secondary permeate by the permeate flow meter 16 . As a result, even if the flow rate control of the secondary permeate is not properly performed in the first flow rate control, it is possible to prevent the actual return rate from deviating from the target return rate. In actual calculation, it is preferable to use an average flow rate over a predetermined detection time or a predetermined number of times of detection in order to minimize the influence of variation in the detected flow rate of the secondary permeated water.

ただし、装置起動時や運転再開時など、二次透過水の流量が安定せず、検出流量のばらつきが非常に大きい場合には、二次透過水の流量が安定するまでの一定期間、予め設定された二次透過水の目標流量を用いて、濃縮返流水の設定流量を算出するようになっていてもよい。また、二次透過水の目標流量と実際の流量との差に応じて、濃縮返流水の設定流量の算出に用いる二次透過水の流量を切り替えるようになっていてもよい。すなわち、その差が所定範囲内にある場合には、目標流量を用いて算出し、その差が所定範囲を外れた場合には、実際の流量を用いて算出するようになっていてもよい。 However, if the flow rate of the secondary permeate is not stable and the variation in the detected flow rate is very large, such as when starting up the device or restarting operation, a certain period of time until the flow rate of the secondary permeate stabilizes is set in advance. The set flow rate of the concentrated return water may be calculated using the target flow rate of the secondary permeate. Further, the flow rate of the secondary permeate used for calculating the set flow rate of the concentrated return water may be switched according to the difference between the target flow rate and the actual flow rate of the secondary permeate. That is, if the difference is within a predetermined range, the target flow rate may be used for calculation, and if the difference is outside the predetermined range, the actual flow rate may be used for calculation.

上述のように返流率制御を行う場合、流量調整弁CV2として電動比例制御弁を用いることが好ましく、これにより、電動比例制御弁の分解能に応じて開度調整を細かく行うことができる。ただし、流量調整弁CV2として電動比例制御弁を用いる場合には、その開閉速度と、濃縮返流水の設定流量の算出速度(演算速度)との関係に注意が必要である。例えば、2つの速度が大きく異なっている場合、電動比例制御弁の開閉が完了して濃縮返流水の流量が安定する前にその設定流量が変更されると、ハンチングが発生する可能性がある。また、濃縮返流水の設定流量が透過水流量計16による二次透過水の検出流量に基づいて決定される場合、濃縮返流水の流量制御は、加圧ポンプ13の回転数を制御するインバータの応答速度にも影響を受ける可能性がある。したがって、濃縮返流水の設定流量の演算速度を決定する際には、電動比例制御弁の開閉速度とインバータの応答速度とを考慮することが好ましい。すなわち、電動比例制御弁の開閉速度が遅い場合は、インバータの応答速度を遅くし、電動比例制御弁の開閉速度が速い場合は、インバータの応答速度を速くすることが好ましい。ただし、本実施形態では、二次濃縮水ラインL7には定流量弁が設置されないため、第3の流量制御(濃縮返流水の流量制御)は、第1の流量制御(二次透過水の流量制御)と独立に行われない。そのため、互いの流量制御が干渉することを抑制するためにも、電動比例制御弁の開閉速度は遅く設定されることが好ましい。これにより、上述のようなハンチングの発生を極力抑制することができ、実際の返流率が目標の返流率からずれることを抑制することができる。 When the return flow rate control is performed as described above, it is preferable to use an electric proportional control valve as the flow regulating valve CV2, so that the opening degree can be finely adjusted according to the resolution of the electric proportional control valve. However, when an electric proportional control valve is used as the flow control valve CV2, it is necessary to pay attention to the relationship between its opening/closing speed and the calculation speed (calculation speed) of the set flow rate of the concentrated return water. For example, if the two speeds are significantly different, hunting may occur if the set flow rate is changed before the electric proportional control valve is completely opened and closed and the concentrated return water flow rate is stabilized. Further, when the set flow rate of the concentrated returned water is determined based on the flow rate of the secondary permeated water detected by the permeated water flow meter 16, the flow rate control of the concentrated returned water is performed by the inverter that controls the rotation speed of the pressure pump 13. Response speed may also be affected. Therefore, when determining the calculation speed of the set flow rate of the concentrated return water, it is preferable to consider the opening/closing speed of the electric proportional control valve and the response speed of the inverter. That is, when the opening/closing speed of the electric proportional control valve is slow, it is preferable to slow down the response speed of the inverter, and when the opening/closing speed of the electric proportional control valve is fast, it is preferable to speed up the response speed of the inverter. However, in this embodiment, since a constant flow valve is not installed in the secondary concentrated water line L7, the third flow control (flow control of concentrated return water) is the first flow control (flow rate of secondary permeate control). Therefore, it is preferable that the opening/closing speed of the electric proportional control valve is set to be slow in order to suppress mutual interference between the flow rate controls. As a result, the occurrence of hunting as described above can be suppressed as much as possible, and deviation of the actual return flow rate from the target return flow rate can be suppressed.

上述した実施形態では、1つの制御部により3つの流量制御が実行されるが、それぞれの流量制御が別個に設けられた制御部によって実行されてもよい。また、本実施形態では、2つのろ過手段が直列に接続されているが、ろ過手段の数はこれに限定されるものではなく、3つ以上のろ過手段が直列に接続されて設けられていてもよい。その場合、3つ以上のろ過手段のうち最も上流側のろ過手段が、本発明の第1のろ過手段に相当し、残りのろ過手段の少なくとも1つが、本発明の第2のろ過手段に相当する。また、3つ以上のろ過手段のうち最も下流側のろ過手段に接続された透過水ラインが、本発明の最終透過水ラインに相当する。なお、2つのろ過手段11,12が設けられた本実施形態では、第2のろ過手段12に接続された二次透過水ラインL6が、本発明の第2の透過水ラインに相当するだけでなく最終透過水ラインにも相当し、したがって、二次透過水ラインL6に設けられた透過水流量計16が、本発明の第1の流量検出手段に相当するだけでなく第4の流量検出手段にも相当する。 In the above-described embodiment, one control section executes three flow rate controls, but each flow rate control may be executed by a separately provided control section. Further, in the present embodiment, two filtering means are connected in series, but the number of filtering means is not limited to this, and three or more filtering means are connected in series. good too. In that case, the most upstream filtering means among the three or more filtering means corresponds to the first filtering means of the present invention, and at least one of the remaining filtering means corresponds to the second filtering means of the present invention. do. Further, the permeate line connected to the most downstream filtering means among the three or more filtering means corresponds to the final permeating water line of the present invention. In addition, in this embodiment in which two filtration means 11 and 12 are provided, the secondary permeate line L6 connected to the second filtration means 12 only corresponds to the second permeate line of the present invention. and the final permeate line, and therefore the permeate flowmeter 16 provided in the secondary permeate line L6 not only corresponds to the first flow rate detection means of the present invention, but also the fourth flow rate detection means. Also equivalent to

10 膜ろ過装置
11 第1のろ過手段
12 第2のろ過手段
13 加圧ポンプ
14 定流量弁
15 排水流量計
16 透過水流量計
17 濃縮水流量計
20 制御部
L1 供給ライン
L2 一次透過水ライン(第1の透過水ライン)
L3 一次濃縮水ライン(第1の濃縮水ライン)
L4 排水ライン
L5 還流水ライン
L6 二次透過水ライン(第2の透過水ライン、最終透過水ライン)
L7 二次濃縮水ライン(第2の濃縮水ライン)
CV1,CV2 流量調整弁
MV1 手動弁
10 Membrane Filtration Device 11 First Filtration Means 12 Second Filtration Means 13 Pressure Pump 14 Constant Flow Valve 15 Waste Water Flow Meter 16 Permeated Water Flow Meter 17 Concentrated Water Flow Meter 20 Control Unit L1 Supply Line L2 Primary Permeate Line ( first permeate line)
L3 primary concentrated water line (first concentrated water line)
L4 drain line L5 reflux line L6 secondary permeate line (second permeate line, final permeate line)
L7 secondary concentrated water line (second concentrated water line)
CV1, CV2 Flow control valve MV1 Manual valve

Claims (10)

直列に接続された複数のろ過手段であって、前記複数のろ過手段のうち最も上流側の第1のろ過手段と、前記第1のろ過手段よりも下流側の第2のろ過手段とを含み、それぞれが被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する複数のろ過手段と、
前記第1のろ過手段に被処理水を供給する供給ラインと、
前記第1のろ過手段から透過水を流通させる第1の透過水ラインと、
前記第1のろ過手段からの濃縮水を流通させる第1の濃縮水ラインと、
前記第1の濃縮水ラインから分岐し、前記第1の濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
前記第2のろ過手段からの濃縮水を流通させて前記供給ラインに返流する第2の濃縮水ラインと、
前記供給ラインを流れる被処理水と前記第1の透過水ラインを流れる透過水と前記第1の濃縮水ラインまたは前記排水ラインを流れる濃縮水とのいずれかの水温を検出する水温検出手段と、
前記水温検出手段による検出値と、予め測定された被処理水の不純物濃度である第1の不純物濃度と、前記第1のろ過手段に実際に供給される被処理水の不純物濃度であって前記第1の不純物濃度よりも低い第2の不純物濃度とに基づいて、前記第1の透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記第1の透過水ラインを流れる透過水の流量の割合である回収率の目標範囲を設定し、前記回収率が前記目標範囲の下限値を上回り、かつ前記目標範囲の上限値以下になるように、前記供給ラインを流れる被処理水の圧力と前記排水ラインを流れる濃縮水の流量とを調整する制御部と、を有する膜ろ過装置。
A plurality of filtering means connected in series, including a first filtering means on the most upstream side among the plurality of filtering means and a second filtering means on a downstream side of the first filtering means. , a plurality of filtering means each having a reverse osmosis membrane or a nanofiltration membrane for separating the water to be treated into permeate and concentrated water;
a supply line for supplying water to be treated to the first filtering means;
a first permeated water line for circulating permeated water from the first filtering means;
a first concentrated water line for circulating the concentrated water from the first filtering means;
A drain line branching from the first concentrated water line and discharging a part of the concentrated water flowing through the first concentrated water line to the outside;
a second concentrated water line that circulates the concentrated water from the second filtering means and returns it to the supply line;
water temperature detection means for detecting the water temperature of any one of the water to be treated flowing through the supply line, the permeated water flowing through the first permeated water line, and the concentrated water flowing through the first concentrated water line or the drain line;
A value detected by the water temperature detection means, a first impurity concentration that is the impurity concentration of the water to be treated that has been measured in advance, and an impurity concentration of the water to be treated that is actually supplied to the first filtration means, which is the the first permeate relative to the sum of the flow rate of permeate flowing through the first permeate line and the flow rate of concentrate flowing through the drain line, based on a second impurity concentration lower than the first impurity concentration; A target range of the recovery rate, which is the rate of the flow rate of the permeated water flowing through the water line, is set, and the supply line is adjusted so that the recovery rate exceeds the lower limit of the target range and is equal to or lower than the upper limit of the target range. and a control unit that adjusts the pressure of the water to be treated flowing through the drainage line and the flow rate of the concentrated water flowing through the drainage line.
前記複数のろ過手段のうち最も下流側のろ過手段からの透過水を流通させる最終透過水ラインと、
前記最終透過水ラインを流れる透過水の流量を検出する第1の流量検出手段と、
前記排水ラインを流れる濃縮水の流量を検出する第2の流量検出手段と、
前記第2の濃縮水ラインを流れる濃縮水の流量を検出する第3の流量検出手段と、を有し、
前記制御部は、前記第1から第3の流量検出手段による検出値と、前記第1の不純物濃度とに基づいて、前記第2の不純物濃度を算出し、該算出した第2の不純物濃度と、前記水温検出手段による検出値とに基づいて、前記第1のろ過手段の前記逆浸透膜またはナノろ過膜の膜面にシリカまたはカルシウムが析出しない最大の回収率を算出し、該算出した値を前記上限値として設定する、請求項1に記載の膜ろ過装置。
a final permeate line for circulating permeate from the most downstream filtering means among the plurality of filtering means;
a first flow rate detection means for detecting the flow rate of permeate flowing through the final permeate line;
a second flow rate detection means for detecting a flow rate of concentrated water flowing through the drainage line;
a third flow rate detection means for detecting the flow rate of the concentrated water flowing through the second concentrated water line;
The control unit calculates the second impurity concentration based on the values detected by the first to third flow rate detection means and the first impurity concentration, and calculates the second impurity concentration and , Based on the value detected by the water temperature detection means, calculate the maximum recovery rate at which silica or calcium does not precipitate on the membrane surface of the reverse osmosis membrane or nanofiltration membrane of the first filtration means, and the calculated value is set as the upper limit value, the membrane filtration device according to claim 1.
前記制御部は、前記水温検出手段による検出値と、前記第1の不純物濃度とに基づいて、前記最大の回収率を算出し、該算出した値を前記下限値として設定する、請求項2に記載の膜ろ過装置。 3. The control unit according to claim 2, wherein the control unit calculates the maximum recovery rate based on the value detected by the water temperature detection means and the first impurity concentration, and sets the calculated value as the lower limit. The membrane filtration device described. 前記第1の濃縮水ラインから分岐し、前記第1の濃縮水ラインを流れる濃縮水の残りを前記供給ラインに還流させる還流水ラインと、
前記供給ラインを流れる被処理水の圧力を調整する圧力調整手段と、
前記排水ラインを流れる濃縮水の流量を調整する第1の流量調整手段と、を有し、
前記制御部は、前記最終透過水ラインを流れる透過水の流量が設定流量になるように前記圧力調整手段を制御する第1の流量制御と、前記第1の透過水ラインを流れる透過水の流量から前記排水ラインを流れる濃縮水の目標流量を算出し、前記排水ラインを流れる濃縮水の流量が前記目標流量になるように前記第1の流量調整手段を制御する第2の流量制御とを並行して実行しながら、前記回収率の目標値を、前記下限値を上回り、かつ前記上限値以下の値に設定する、請求項2または3に記載の膜ろ過装置。
a reflux water line that branches from the first concentrated water line and returns the rest of the concentrated water flowing through the first concentrated water line to the supply line;
pressure adjusting means for adjusting the pressure of the water to be treated flowing through the supply line;
a first flow rate adjusting means for adjusting the flow rate of concentrated water flowing through the drainage line;
The control unit includes a first flow rate control for controlling the pressure adjusting means so that the flow rate of the permeate flowing through the final permeate line becomes a set flow rate, and a flow rate of the permeate flowing through the first permeate line. a target flow rate of the concentrated water flowing through the drainage line is calculated from the second flow rate control, and the first flow rate adjusting means is controlled so that the flow rate of the concentrated water flowing through the drainage line becomes the target flow rate. 4. The membrane filtration device according to claim 2, wherein the target value of the recovery rate is set to a value that exceeds the lower limit value and is equal to or lower than the upper limit value.
前記制御部は、前記第2の流量制御において、前記第1の透過水ラインを流れる透過水の流量を取得し、前記回収率の目標値と、前記取得した透過水の流量とに基づいて、前記排水ラインを流れる濃縮水の前記目標流量を算出する、請求項4に記載の膜ろ過装置。 In the second flow rate control, the control unit acquires the flow rate of permeate flowing through the first permeate water line, and based on the target value of the recovery rate and the acquired flow rate of the permeate, The membrane filtration device according to claim 4, wherein said target flow rate of concentrated water flowing through said drainage line is calculated. 前記制御部は、前記取得した透過水の流量を前記回収率の目標値で除した値から、前記取得した透過水の流量を減じた値を、前記排水ラインを流れる濃縮水の前記目標流量として算出する、請求項5に記載の膜ろ過装置。 The control unit calculates a value obtained by subtracting the obtained flow rate of the permeated water from a value obtained by dividing the obtained flow rate of the permeated water by the target value of the recovery rate, and divides the target value of the concentrated water flowing through the drainage line. The membrane filtration device according to claim 5, which is calculated as a flow rate. 前記第2のろ過手段が、前記最も下流側のろ過手段であり、かつ前記第1の透過水ラインを介して前記第1のろ過手段に接続され、
前記制御部は、前記第1の流量検出手段による検出値と、前記第3の流量検出手段による検出値との和を、前記第1の透過水ラインを流れる透過水の流量として取得する、請求項5または6に記載の膜ろ過装置。
the second filtering means is the most downstream filtering means and is connected to the first filtering means via the first permeate line;
wherein the control unit acquires the sum of the value detected by the first flow rate detection means and the value detected by the third flow rate detection means as the flow rate of the permeate flowing through the first permeate water line. Item 7. The membrane filtration device according to Item 5 or 6.
前記第2のろ過手段から透過水を流通させる第2の透過水ラインと、
前記第2の濃縮水ラインを流れる濃縮水の流量を調整する第2の流量調整手段と、
前記第2の濃縮水ラインを流れる濃縮水の流量を検出する第3の流量検出手段と、を有し、
前記制御部は、前記第1および第2の流量制御に並行して、前記第2の透過水ラインを流れる透過水の流量から前記第2の濃縮水ラインを流れる濃縮水の目標流量を算出し、前記第3の流量検出手段による検出値が前記目標流量になるように前記第2の流量調整手段を制御する第3の流量制御を実行する、請求項5または6に記載の膜ろ過装置。
a second permeate line for circulating permeate from the second filtering means;
a second flow rate adjusting means for adjusting the flow rate of the concentrated water flowing through the second concentrated water line;
a third flow rate detection means for detecting the flow rate of the concentrated water flowing through the second concentrated water line;
In parallel with the first and second flow rate controls, the control unit calculates a target flow rate of concentrated water flowing through the second concentrated water line from the flow rate of permeated water flowing through the second permeated water line. 7. The membrane filtration device according to claim 5 or 6, wherein third flow rate control is performed to control said second flow rate adjustment means such that the value detected by said third flow rate detection means becomes said target flow rate.
前記第2の透過水ラインを流れる透過水の流量を検出する第4の流量検出手段を有し、
前記第2のろ過手段が、前記第1の透過水ラインを介して前記第1のろ過手段に接続され、
前記制御部は、前記第3の流量検出手段による検出値と、前記第4の流量検出手段による検出値との和を、前記第1の透過水ラインを流れる透過水の流量として取得する、請求項8に記載の膜ろ過装置。
Having a fourth flow rate detection means for detecting the flow rate of the permeate flowing through the second permeate line,
said second filtering means is connected to said first filtering means via said first permeate line;
wherein the control unit acquires the sum of the value detected by the third flow rate detection means and the value detected by the fourth flow rate detection means as the flow rate of the permeate flowing through the first permeate water line. Item 9. The membrane filtration device according to Item 8.
直列に接続された複数のろ過手段であって、前記複数のろ過手段のうち最も上流側の第1のろ過手段と、前記第1のろ過手段よりも下流側の第2のろ過手段とを含み、それぞれが被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する複数のろ過手段と、前記第1のろ過手段に被処理水を供給する供給ラインと、前記第1のろ過手段から透過水を流通させる第1の透過水ラインと、前記第1のろ過手段からの濃縮水を流通させる第1の濃縮水ラインと、前記第1の濃縮水ラインから分岐し、前記第1の濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、前記第2のろ過手段からの濃縮水を流通させて前記供給ラインに返流する第2の濃縮水ラインと、を有する膜ろ過装置の運転方法であって、
前記供給ラインを流れる被処理水と前記第1の透過水ラインを流れる透過水と前記第1の濃縮水ラインまたは前記排水ラインを流れる濃縮水とのいずれかの水温を検出する工程と、
前記検出した水温と、予め測定された被処理水の不純物濃度である第1の不純物濃度と、前記第1のろ過手段に実際に供給される被処理水の不純物濃度であって前記第1の不純物濃度よりも低い第2の不純物濃度とに基づいて、前記第1の透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記第1の透過水ラインを流れる透過水の流量の割合である回収率の目標範囲を設定する工程と、
前記回収率が目標範囲の下限値を上回り、かつ上限値以下になるように、前記供給ラインを流れる被処理水の圧力と前記排水ラインを流れる濃縮水の流量とを調整する工程と、を含む、膜ろ過装置の運転方法。
A plurality of filtering means connected in series, including a first filtering means on the most upstream side among the plurality of filtering means and a second filtering means on a downstream side of the first filtering means. , a plurality of filtration means each having a reverse osmosis membrane or a nanofiltration membrane for separating the water to be treated into permeated water and concentrated water; a supply line for supplying the water to be treated to the first filtration means; A first permeated water line for circulating permeated water from one filtering means, a first concentrated water line for circulating concentrated water from the first filtering means, and a first concentrated water line branching from the first concentrated water line, A drain line for discharging part of the concentrated water flowing through the first concentrated water line to the outside, and a second concentrated water line for returning the concentrated water from the second filtering means to the supply line. and a method for operating a membrane filtration device,
a step of detecting the water temperature of any one of the water to be treated flowing through the supply line, the permeated water flowing through the first permeate line, and the concentrated water flowing through the first concentrated water line or the drain line;
The detected water temperature, the first impurity concentration that is the impurity concentration of the water to be treated that has been measured in advance, and the impurity concentration of the water to be treated that is actually supplied to the first filtering means and is the first the first permeate line for the sum of the flow rate of the permeate flowing through the first permeate line and the flow rate of the concentrate flowing through the drain line based on a second impurity concentration lower than the impurity concentration; setting a recovery target range that is a percentage of the permeate flow rate flowing;
adjusting the pressure of the water to be treated flowing through the supply line and the flow rate of concentrated water flowing through the drain line so that the recovery rate is above the lower limit of the target range and below the upper limit. , a method of operating a membrane filtration device.
JP2019208682A 2019-11-19 2019-11-19 MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF Active JP7289257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208682A JP7289257B2 (en) 2019-11-19 2019-11-19 MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208682A JP7289257B2 (en) 2019-11-19 2019-11-19 MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF

Publications (2)

Publication Number Publication Date
JP2021079330A JP2021079330A (en) 2021-05-27
JP7289257B2 true JP7289257B2 (en) 2023-06-09

Family

ID=75966103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208682A Active JP7289257B2 (en) 2019-11-19 2019-11-19 MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF

Country Status (1)

Country Link
JP (1) JP7289257B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146684A (en) 2012-01-19 2013-08-01 Miura Co Ltd Reverse osmosis membrane separator
JP2018167146A (en) 2017-03-29 2018-11-01 オルガノ株式会社 Membrane filtration device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146684A (en) 2012-01-19 2013-08-01 Miura Co Ltd Reverse osmosis membrane separator
JP2018167146A (en) 2017-03-29 2018-11-01 オルガノ株式会社 Membrane filtration device

Also Published As

Publication number Publication date
JP2021079330A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP7045814B2 (en) Membrane filtration device
TW200803966A (en) Membrane filtration system
JP6851877B2 (en) Membrane filtration device
JP6161384B2 (en) Membrane filtration device
JP5067299B2 (en) Membrane filtration system and method of operating membrane filtration system
JP2010131579A (en) System for improving water quality
JP5811866B2 (en) Reverse osmosis membrane separator
CN108380051B (en) Stable energy-saving reverse osmosis system and control method thereof
JP6381007B2 (en) Membrane filtration device
JP2009285522A (en) Reverse osmosis membrane device
JP7289257B2 (en) MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF
JP7106283B2 (en) Membrane filtration device
JP7307665B2 (en) MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF
JP7045870B2 (en) Membrane filtration device
JP7017365B2 (en) Membrane filtration device
JP7285748B2 (en) water treatment equipment
JP7106395B2 (en) Membrane filtration device
JP7303861B2 (en) Membrane filtration device
JP2023032684A (en) Membrane filtration apparatus
JP7181809B2 (en) Membrane filtration device
JP6907745B2 (en) Membrane separation device
JP7364451B2 (en) Water treatment equipment and water treatment equipment operation management method
JP2022061173A (en) Membrane filtration device and operational method thereof
JP7449107B2 (en) Water treatment method and water treatment equipment
JP6939121B2 (en) Membrane separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230530

R150 Certificate of patent or registration of utility model

Ref document number: 7289257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150