WO2012086478A1 - Reverse osmosis processing device - Google Patents

Reverse osmosis processing device Download PDF

Info

Publication number
WO2012086478A1
WO2012086478A1 PCT/JP2011/078859 JP2011078859W WO2012086478A1 WO 2012086478 A1 WO2012086478 A1 WO 2012086478A1 JP 2011078859 W JP2011078859 W JP 2011078859W WO 2012086478 A1 WO2012086478 A1 WO 2012086478A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reverse osmosis
pipe
resistance
resistor
Prior art date
Application number
PCT/JP2011/078859
Other languages
French (fr)
Japanese (ja)
Inventor
光太郎 北村
真人 大西
一隆 鈴木
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to CN2011800610473A priority Critical patent/CN103328077A/en
Publication of WO2012086478A1 publication Critical patent/WO2012086478A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/19Specific flow restrictors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration

Definitions

  • the present invention relates to a reverse osmosis treatment apparatus, and more particularly to a reverse osmosis treatment apparatus that eliminates unevenness in the amount of permeated water between an element on the supply water side and an element on the concentrate side.
  • RO reverse osmosis membrane
  • a reverse osmosis pressure is utilized in a desalination treatment apparatus using a reverse osmosis membrane (hereinafter referred to as RO (Reverse Osmosis) membrane. Therefore, as shown in FIG.
  • the RO membrane elements 222 are arranged in series, and each RO membrane element 222 is connected by a water collecting pipe 234 at the center of the RO membrane element 222.
  • Supply water is supplied from one of the desalination treatment devices by a high-pressure pump, and the inside of the pressurized container 224 is pressurized by the opening degree of a valve installed on the concentrated water side.
  • the pressurized pressure exceeds the osmotic pressure of the supplied water, it passes through the RO membrane, and desalinated water (permeated water) flows into the central water collecting pipe 234.
  • the supply water supplied into the pressurized container 224 has a salt concentration that increases from the supply water side to the concentrated water side, so that the pressure in the pressurized container 224 finally becomes the final stage salt concentration and the amount of permeated water.
  • the pressure to be pressurized is determined by the supply water flow velocity on the membrane surface. Accordingly, since the pressure on the supply water side in the pressurized container 224 is more than necessary, the amount of permeated water increases.
  • FIG. 14 shows the relationship between the position of the RO membrane element and the relative flux (relative flux) when seven RO membrane elements 222 are arranged in series. The element position in FIG. 14 is the number from the supply water side. As shown in FIG.
  • Patent Document 1 a plurality of separation membrane elements are connected in series, and the collection membrane elements provided in the separation membrane elements from the raw water side toward the permeate water side.
  • a membrane separation system is described in which the inner diameter of the water tube is increased.
  • the present invention has been made in view of such circumstances, and by adjusting the inner diameter of the water collecting pipe in the pressure vessel at an arbitrary position, the non-uniformity in the amount of permeated water of each reverse osmosis membrane element is eliminated.
  • An object of the present invention is to provide a reverse osmosis treatment apparatus capable of obtaining a desired amount of permeated water with less power.
  • the first aspect of the present invention is a reverse osmosis treatment apparatus, comprising a pressure vessel, an introduction pipe for supplying water to be treated to one end of the pressure vessel, and the pressure A concentrated water discharge pipe for discharging concentrated water to the other end of the container; and a plurality of reverse osmosis membrane elements provided in the pressure vessel and including a reverse osmosis membrane, wherein the reverse osmosis membrane element further includes A drainage pipe through which the permeated water that has passed through the reverse osmosis membrane flows, the drainage pipe connecting the plurality of reverse osmosis membrane elements in series within the pressure vessel, and discharging the concentrated water from the pressure vessel
  • a reverse osmosis treatment device comprising: a first discharge pipe for discharging the permeated water on a pipe side; and a resistance pipe on the introduction pipe side in the water collection pipe.
  • the reverse osmosis treatment apparatus includes a resistance pipe on the introduction pipe side for supplying the treated water in the water collection pipe of the reverse osmosis membrane element including the reverse osmosis membrane.
  • a resistance pipe on the introduction pipe side for supplying the treated water in the water collection pipe of the reverse osmosis membrane element including the reverse osmosis membrane.
  • the non-uniformity of the permeated water amount of the reverse osmosis membrane element can be suppressed compared to the conventional case, and the permeated water amount can be increased as a whole. Therefore, even if the pressure is lowered, the amount of permeated water can be increased, power saving can be achieved, the generation of extremely osmotic reverse osmosis membrane elements can be prevented, and long-term use can be achieved.
  • the opening ratio of the opening provided in the resistance pipe is made smaller than the opening ratio of the through hole provided in the water collecting pipe, the flow rate of the permeated water is suppressed. And non-uniformity in the amount of permeated water can be eliminated.
  • the resistance pipe opens from the inlet pipe side of the water collection pipe to the first discharge pipe side, and the opening of the opening portion opens. The rate increases.
  • the opening ratio of the opening of the resistance pipe is increased as the water to be treated is moved from the introduction pipe side to the first discharge pipe side. . Therefore, even in the portion where the resistance pipe is provided, the amount of permeate on the introduction pipe side in the water collection pipe can be reduced and the amount of permeate on the first discharge pipe side can be increased. Can be eliminated.
  • the resistance pipe goes from the introduction pipe side of the water collection pipe to the first discharge pipe side. As the thickness of the resistance pipe decreases.
  • the thickness of the resistance pipe is reduced, that is, the inner diameter of the water collection pipe is increased from the treated water introduction pipe side to the first discharge pipe side. ing. Therefore, even in the portion where the resistance pipe is provided, the amount of permeated water on the inlet pipe side in the water collecting pipe can be reduced and the amount of permeated water on the first discharge pipe side can be increased. Unevenness can be eliminated.
  • the resistance pipe is formed by connecting a plurality of pipes.
  • the resistance pipe is formed by connecting a plurality of pipes, it is possible to easily form a desired resistance pipe such as the opening ratio of the opening and the thickness of the pipe. it can.
  • the reverse osmosis treatment device includes a front stage that is a supply side of the treated water and a discharge side of the concentrated water in the water collection pipe.
  • a resistor for separating the permeated water
  • a second discharge pipe for discharging the previous stage permeated water on the introduction pipe side.
  • a resistor is provided in the water collecting pipe, and the permeate in the subsequent stage is discharged from both sides of the resistor through the first discharge pipe, and the front stage is discharged through the second discharge pipe.
  • the permeated water is discharged. Therefore, since the permeated water can be generated at different flow rates between the front and rear stages of the resistor, the amount of permeated water can be reduced by suppressing the flow rate on the supply side of the water to be treated. Therefore, since the salt concentration on the concentrated water side can be lowered, the amount of permeated water can be increased, and unevenness in the amount of permeated water of the reverse osmosis membrane element can be suppressed.
  • the resistor is provided at an end of the resistance pipe on the first discharge pipe side.
  • the resistance pipe can effectively exhibit the effect of reducing the flow rate of the permeated water. it can.
  • the resistor is impermeable to water.
  • the water collecting pipe can be divided by the resistor, so that the pressure in the water collecting pipe can be controlled with the resistor as a boundary. Therefore, the amount of permeated water can be easily adjusted.
  • the resistor is water permeable.
  • the resistor is made of a porous material.
  • the resistor is formed with a slit through which permeated water passes.
  • the resistor by allowing the resistor to be water permeable, or providing a slit in the resistor, the permeated water can pass through the resistor, Since resistance can be given in the water collecting pipe, the amount of permeated water can be made equal.
  • a plurality of the resistors are provided in the water collecting pipe.
  • the pressure in the water collection pipe can be adjusted more finely, so the non-uniformity in the amount of permeate is eliminated. be able to.
  • the resistance pipe is used to reduce the inner diameter of the water collection pipe of the reverse osmosis membrane element or to close some of the through holes provided in the side surface of the water collection pipe, thereby Water resistance can be increased.
  • the flow volume of the permeated water on the supply water side can be reduced, the salt concentration on the concentrated water side can be lowered, and the overall pressure of the reverse osmosis membrane element can be lowered. Therefore, since pressure can be effectively applied to the reverse osmosis membrane element to generate permeated water, labor can be saved and cost can be reduced.
  • FIG. 3 is a front view of the element shown in FIG. 2.
  • sectional drawing which shows schematic structure of the reverse osmosis processing apparatus of embodiment. It is the graph which showed the relationship between the position of RO membrane element of the reverse osmosis processing apparatus of embodiment, and the relative flux of permeated water. It is sectional drawing (longitudinal direction sectional drawing) which shows resistance piping in water collection piping.
  • sectional drawing (radial direction sectional drawing) which shows resistance piping in water collection piping. It is sectional drawing which shows the example of the other resistance piping in water collection piping. It is sectional drawing which shows the example of other resistance piping in water collection piping. It is sectional drawing which shows schematic structure of the reverse osmosis processing apparatus of other embodiment. It is sectional drawing (the 1) which shows the resistor in water collection piping. It is sectional drawing (the 2) which shows the resistor in water collection piping. It is a front view which shows the resistor in water collection piping (the 1). It is a front view (the 2) which shows a resistor in water collection piping. It is a front view (the 3) showing a resistor in water collection piping.
  • FIG. 1 is a block diagram of a desalination treatment system 20 in which the reverse osmosis treatment apparatus 10 of the embodiment is incorporated.
  • the desalination processing system in this invention can be used for the system which carries out reverse osmosis processing of to-be-processed water, such as drainage reuse, pure water manufacture, brine water desalination, seawater desalination, etc., for example.
  • the desalination treatment system 20 shown in the figure is composed of a tank 12 in which treated water is stored, a high-pressure pump 14, and a reverse osmosis treatment device 10.
  • the water to be treated in the tank 12 is supplied to the reverse osmosis treatment device 10 by the high pressure pump 14 at a high pressure, and is subjected to reverse osmosis treatment (desalting treatment) by each RO membrane (treatment membrane) of the reverse osmosis treatment device 10.
  • the water is separated into desalted permeated water (separated water) 16 and concentrated water (treated water) 18 in which the salt content is concentrated.
  • the permeated water 16 thus obtained is discharged to the outside of the reverse osmosis treatment device 10 through a discharge pipe, and the concentrated water 18 is similarly discharged through a discharge pipe different from the discharge pipe for discharging the permeated water. It is discharged outside the reverse osmosis treatment apparatus 10.
  • the desalination processing system 20 of embodiment supplies the to-be-processed water to the reverse osmosis processing apparatus 10 with the high voltage
  • a valve is provided in the concentrated water outlet side of the reverse osmosis processing apparatus 10, The pressure in the reverse osmosis treatment apparatus 10 is set according to the opening of the valve.
  • raw water may be used as it is, but it is preferable to use water to be treated from which turbid components and the like contained in the raw water are removed by pretreatment.
  • Pretreatment includes use of a filter and treatment such as introducing raw water into a sedimentation basin and adding a sterilizing agent such as chlorine to precipitate and remove particles in the raw water and sterilize microorganisms.
  • water to be treated may be used by adding a flocculant such as iron chloride to raw water to agglomerate turbid components and filtering them off.
  • a plurality of elements 22 shown in FIG. 2 are connected in series, filled in the cylindrical vessel 24 shown in FIG. 5 to form a module 26, and this module 26 is connected singly or in parallel, thereby reverse osmosis.
  • the processing device 10 is configured.
  • the element 22 is configured by arranging a membrane unit 32 including an RO membrane 28 and a discharge pipe 30 around a water collection pipe 34.
  • the membrane unit 32 has four bag-like RO membranes 28, 28... Radially connected to the outer periphery of the water collecting pipe 34. These RO membranes 28, 28. It is configured by winding in a spiral around the water collection pipe 34.
  • One end of the bag-like RO membrane 28 is opened, and the RO membrane 28 is bonded to the water collection pipe 34 so that the opening communicates with the through hole 36 of the water collection pipe 34 shown in FIG.
  • the water to be treated flows on the outer surface of the RO membrane 28 and passes through the RO membrane 28 to be desalted.
  • the desalted water that has passed through the RO membrane 28 is collected from the inside of the RO membrane 28 into the water collection pipe 34 through the opening of the RO membrane 28 and the through holes 36 of the water collection pipe 34.
  • the water is discharged from the element 22 from the water collecting pipe 34 through the discharge pipe 30.
  • 3 is a mesh spacer disposed inside the RO membrane 28.
  • the spacer 38 holds the RO membrane 28 so that the inner space of the RO membrane 28 is not crushed even when the RO membrane 28 is wound in a spiral shape.
  • Reference numeral 40 denotes a mesh spacer disposed between the adjacent RO membranes 28 and 28.
  • the spacers 40 are also radially bonded to the outer periphery of the water collecting pipe 34 in the same manner as the RO membrane 28.
  • FIG. 5 is a cross-sectional view of the reverse osmosis treatment apparatus 10 of the embodiment. Both ends of the vessel 24 are opened so that water to be treated is introduced and discharged. A predetermined operating pressure is applied by the high-pressure pump 14 at the opening on the introduction side. 5 shows a module 26 in which five elements 22, 22... Are connected in series, the number of elements 22 is not limited to five. Further, the vessel 24 can be constituted by FRP (Fiber Reinforced Plastic) or the like so as to withstand high pressure (5 MPa or more).
  • FRP Fiber Reinforced Plastic
  • the vessel 24 includes an introduction pipe 56 that introduces the water to be treated into the vessel 24, and a concentrated water discharge pipe that discharges the concentrated water that has not been permeated to the water collection pipe 34. 62.
  • a concentrated water discharge valve 64 that adjusts the pressure in the vessel 24 is provided at the outlet of the concentrated water discharge pipe 62.
  • the permeated water collected in the water collection pipe 34 through the RO membrane 28 is discharged from the element 22 through the first discharge pipe 58 provided on the concentrated water discharge pipe 62 side.
  • a meter 66 is provided at the outlet of the first discharge pipe 58.
  • the water to be treated supplied from the tank 12 of FIG. 1 via the introduction pipe 56 is guided to the element 22 through the flow path 57, and the water to be treated passes through the RO membrane 28 of the element 22.
  • water is collected in the water collection pipe 34.
  • the resistance pipe 90 in the water collecting pipe 34, the through hole 36 provided in the water collecting pipe 34 through which the permeated water from the RO membrane 28 passes can be closed.
  • the resistance pipe 90 can narrow the inner diameter of the water collection pipe 34. Thereby, the amount of permeated water collected in the water collection pipe 34 can be reduced. As shown in FIG.
  • the amount of treated water that permeates the RO membrane 28 on the supply water side can be reduced.
  • the amount of treated water on the concentrated water side can be increased, and the salt concentration can be lowered, so the flow rate of permeated water from the final stage of the element 22 can be increased,
  • the amount of permeated water can be increased as a whole apparatus. Therefore, by making the amount of permeated water of each element 22 more uniform, the flow rate of permeated water can be increased at a low pressure as a whole, and the cost can be reduced.
  • FIG. 6 is a diagram showing the relationship between the position of the RO membrane element and the relative flux of the permeated water in the reverse osmosis treatment apparatus of the embodiment.
  • the opening ratio of the opening 92a is 50% and the outer diameter is slightly smaller than the inner diameter of the water collecting pipe 34 (the size that can be inserted) in the first and second elements from the supply side.
  • the resistance pipe 90a is installed, and the number of elements is seven. As shown in FIG. 6, conventionally, a large amount of permeated water is generated from the supply water side, and the amount of permeate decreases as it goes to the concentrated water side.
  • the resistance pipe 90 is provided to reduce the flow rate of the permeated water on the supply water side, so that the salt concentration on the concentrated water side can be reduced as compared with the prior art, and the flow rate of the permeated water. Can be increased. Therefore, the nonuniformity of the permeated water amount of each RO membrane element can be eliminated.
  • the pressure in the water collection pipe 34 can be adjusted by adjusting the opening of the concentrated water discharge valve 64 based on the numerical value measured by the measuring instrument 66. Moreover, by making the amount of permeated water uniform, contamination of the RO membrane on the supply water side can be suppressed, and long-term use can be enabled.
  • FIG. 7A and 7B are cross-sectional views showing a resistance pipe 90a in the water collection pipe 34
  • FIG. 7A is a cross-sectional view of a side surface (when the water collection pipe is cut in the longitudinal direction)
  • FIG. It is sectional drawing of the case where a water collection piping is cut
  • the resistance pipe 90a is a pipe having an opening 92a on the wall surface.
  • the opening ratio of the opening 92 a of the resistance pipe 90 a is set to be smaller than the opening ratio of the through hole 36 provided in the water collecting pipe 34.
  • the through hole 36 can be closed by the resistance pipe 90a, so that the amount of permeated water passing through the RO membrane 28 can be reduced.
  • the opening ratio can be reduced by reducing the number of openings 92a, and the opening ratio can be reduced by making the openings 92a smaller than the through holes 36 of the water collecting pipe 34.
  • FIG. 8 is a side sectional view showing a resistance pipe according to another embodiment.
  • the resistance pipe 90b shown in FIG. 8 is different from the embodiment shown in FIGS. 7A and 7B in that the number of openings 92b increases from the supply water side indicated by the arrow in the figure to the concentrated water side. Yes.
  • the amount of permeated water flowing into the water collecting pipe 34 on the supply water side can be reduced, and the amount of permeated water can be increased toward the concentrated water side, so that the amount of permeated water can be made uniform. Can do.
  • FIG. 9 is a side sectional view showing a resistance pipe of still another embodiment.
  • the resistance pipe 90c shown in FIG. 9 is formed in a tapered shape in which the thickness of the resistance pipe 90c decreases as it goes from the supply water side to the concentrated water side indicated by an arrow in the drawing.
  • the internal diameter of the resistance piping 90c by the side of water supply can be made small, and the internal diameter of the resistance piping 90c can be enlarged as it goes to the concentrated water side.
  • the amount of permeate can be increased and the amount of permeate can be made uniform.
  • FIG. 9 is a side sectional view showing a resistance pipe of still another embodiment.
  • the resistance pipe 90c shown in FIG. 9 is formed in a tapered shape in which the thickness of the resistance pipe 90c decreases as it goes from the supply water side to the concentrated water side indicated by an arrow in the drawing.
  • the inner diameter is increased as the taper shape increases from the supply water side toward the concentrated water side.
  • the present invention is not limited to this, and the stepped shape increases from the supply water side toward the concentrated water side. It is also possible to adopt a configuration in which the inner diameter increases.
  • the resistance pipe 90 can be installed by inserting a single pipe into the water collection pipe 34, or can be a resistance pipe 90 by inserting a plurality of pipes.
  • a plurality of pipes it is possible to use a pipe having a different opening ratio and provide a resistance pipe 90b that increases the opening ratio as it goes from the supply water side to the concentrated water side as shown in FIG.
  • a plurality of resistance pipes having different thicknesses may be used, and the inner diameter of the water collection pipe 34 may be increased stepwise as it goes from the supply water side to the concentrated water side.
  • the length of the resistance pipe installed in the water collecting pipe 34 can be easily set depending on the number of the resistance pipes to be used.
  • resistance pipes can be installed by installing them in the water collection pipes using a plurality of resistance pipes.
  • the location where the resistance pipe 90 is provided is not an element 22 unit, but each element in the vessel 24 is considered as one long element, and can be determined at an arbitrary position in the water collecting pipe.
  • the position of the resistance pipe 90 can be adjusted by inserting the resistance pipe 90 from the end of the element 22 and adjusting the length using a plurality of pipes.
  • the length of the resistance pipe 90 needs to be set as appropriate depending on the temperature and the salt concentration of the supply water, but is within a range of 10% to 90% from the end on the supply water side with respect to the total length of the water collection pipe 34. It is preferable to provide it.
  • Non-uniformity in the amount of permeated water at the element position was (1) water temperature, (2) feed salt concentration, (3) water permeability and salt rejection of the RO membrane itself, (4) averaged over all membranes in the vessel. It is determined by the amount of permeated water around the membrane area, (5) recovery rate, and (6) pressure. Among these, (3), (4), and (5) are determined at the time of design. (1) and (2) change due to environmental changes, and (6) changes when the film is contaminated by operation. By adjusting the opening degree of the concentrated water discharge valve 64 and the position of the resistance pipe 90 in accordance with the changes in (1), (2) and (6), it is possible to ensure a stable permeated water amount as a whole. Can do. In particular, (1) since the water temperature varies depending on the season, it is necessary to appropriately adjust the water temperature.
  • FIG. 10 is a cross-sectional view of the reverse osmosis treatment apparatus 110 according to another embodiment.
  • the reverse osmosis treatment apparatus 110 includes a resistor 80 in the water collecting pipe 34 and a second discharge pipe 68, a measuring instrument 72, and a second valve 70 on the supply water side of the vessel 24. 5 is different from the reverse osmosis treatment apparatus 10 shown in FIG.
  • the reverse osmosis treatment device 110 the water to be treated supplied through the introduction pipe 56 is guided to the element 22 through the flow path 57, and the water to be treated passes through the RO membrane 28 of the element 22 in sequence, Water is collected in the water collection pipe 34.
  • the reverse osmosis treatment device 110 includes a resistor 80 in the water collection pipe 34, and the permeate collected on the concentrated water side with the resistor 80 as a boundary is the first discharge pipe 58. To the outside of the vessel 24. Further, the permeated water collected on the supply water side is discharged from the second discharge pipe 68 to the outside of the vessel 24. The concentrated water that has not passed through the RO membrane 28 is discharged to the outside of the vessel 24 through the concentrated water discharge pipe 62.
  • the permeated water can be separated into the supply water side and the concentrated water side.
  • the pressure in the water collection pipe 34 on the supply water side can be adjusted.
  • the resistance pipe 90 is provided in the water collection pipe 34 from the supply water side of the water collection pipe 34 to the resistor 80, the pressure can be further suppressed, so that the water collection pipe 34 on the supply water side is collected. The amount of permeated water to be watered can be adjusted.
  • the salt concentration on the concentrated water side can be lowered, so that the permeated water can be collected at a low pressure. Therefore, since the same permeated water as in the past can be collected at a low pressure, the cost can be reduced.
  • the permeated water amount, (5) recovery rate, and (6) non-uniform permeated water amount are determined by pressure. Therefore, by adjusting the opening of the concentrated water discharge valve 64 and the second valve 70, and the positions of the resistor 80 and the resistance pipe 90, it is possible to ensure a stable permeated water amount as a whole.
  • the position of the resistor 80 is not provided at the element unit, that is, at the connection portion of the element, but each element in the vessel is considered as one long element, and the position of the resistor 80 of the water collecting pipe is arbitrarily determined. can do.
  • the position of the resistor 80 can be adjusted by pushing it out from either one of the elements 22 with something like a long bar.
  • the amount of permeated water can be adjusted by determining the opening degree of the concentrated water discharge valve 64 and the second valve 70 by the measuring devices 66 and 72 provided in the first discharge pipe 58 and the second discharge pipe 68. It can also be done.
  • the measuring instruments 66 and 72 a flow meter and a pressure gauge can be used.
  • the resistor 80 As the resistor 80, as shown in FIG. 11A, the entire resistor 80 is an elastic body 82, or as shown in FIG. 11B, an inelastic body 84 is provided with an O-ring shaped elastic body 82. Is preferred.
  • the resistor 80 is installed by bringing the elastic body 82 into close contact with the inner wall of the water collecting pipe 34. As described above, since the position adjustment of the resistor 80 is adjusted by pushing out from the end of the water collecting pipe 34, the contact portion with the inner wall is preferably formed of an elastic body 82. However, it is preferable to have a resistance with the inner wall of the water collection pipe 34 so that the position does not change due to the flow of permeated water.
  • an elastic body for example, EPDM (ethylene propylene diene rubber), silicon or the like can be used.
  • the resistor 80 can be made non-permeable as shown in FIG. 12A and can be completely closed by the resistor 80a so that the permeate cannot move through the water collection pipe 34.
  • FIG. 12B it is also possible to make it water-permeable using a porous material as the resistor 80b.
  • a slit can be provided between the resistors 80c and 80d and the inner wall of the water collection piping 34, and movement of permeated water can also be enabled.
  • the number of the resistors 80 is not limited, and a plurality of resistors 80 may be installed. By installing a plurality, the pressure in the water collecting pipe 34 can be adjusted more finely, so that the non-uniformity of the permeated water amount of each RO membrane can be eliminated.
  • a resistor 80 that does not have water permeability can be used as the main resistor 80, and a resistor having water permeability can also be installed in order to adjust the amount of permeated water.

Abstract

This reverse osmosis processing device (10) is provided with: a pressurized vessel (24); an inlet tube (56) that supplies water to be processed to one end of the pressurized vessel (24); a concentrated water discharging tube (62) that discharges concentrated water to the other end of the pressurized vessel (24); a plurality of reverse osmosis membrane elements (22) disposed within the pressurized vessel (24) and provided with a reverse osmosis membrane; a water collecting piping (34) that connects the plurality of reverse osmosis membrane elements (22) in series within the pressurized vessel (24) and through which permeated water that has passed through the reverse osmosis membrane flows; a first discharge tube (58) that discharges the permeated water on the concentrated water discharging tube (62) side of the pressurized vessel (24); and a resistance piping (90) on the inlet tube (56) side within the water collection piping (34).

Description

逆浸透処理装置Reverse osmosis processing equipment
 本発明は、逆浸透処理装置に係り、特に、供給水側のエレメントと濃縮水側のエレメントの透過水量の不均一さを解消する逆浸透処理装置に関する。 The present invention relates to a reverse osmosis treatment apparatus, and more particularly to a reverse osmosis treatment apparatus that eliminates unevenness in the amount of permeated water between an element on the supply water side and an element on the concentrate side.
 逆浸透膜(以下、RO(Reverse Osmosis)膜)を使用した脱塩処理装置では、逆浸透圧を利用するため、図13に示すように、円筒状に構成された加圧容器224内に複数のRO膜エレメント222を直列で配置し、RO膜エレメント222の中央にある集水配管234で各RO膜エレメント222が接続されている。供給水は、脱塩処理装置の一方から高圧ポンプにより供給され、濃縮水側に設置されたバルブの開度によって、加圧容器224内を加圧にする。加圧された圧力が、供給水の浸透圧を越えた場合に、RO膜を透過し、中央の集水配管234に脱塩水(透過水)が流れ込む。 In a desalination treatment apparatus using a reverse osmosis membrane (hereinafter referred to as RO (Reverse Osmosis) membrane), a reverse osmosis pressure is utilized. Therefore, as shown in FIG. The RO membrane elements 222 are arranged in series, and each RO membrane element 222 is connected by a water collecting pipe 234 at the center of the RO membrane element 222. Supply water is supplied from one of the desalination treatment devices by a high-pressure pump, and the inside of the pressurized container 224 is pressurized by the opening degree of a valve installed on the concentrated water side. When the pressurized pressure exceeds the osmotic pressure of the supplied water, it passes through the RO membrane, and desalinated water (permeated water) flows into the central water collecting pipe 234.
 加圧容器224内に供給した供給水は、供給水側から濃縮水側に向って、塩濃度が高くなるため、加圧容器224内の圧力は最終的には最終段の塩濃度と透過水量、膜面の供給水流速によって加圧される圧力が決定される。したがって、加圧容器224内の供給水側は、必要以上に圧力がかかるため、透過水量が増加する。例えばRO膜エレメント222を7本直列で配置した場合のRO膜エレメントの位置とRelative Flux(相対的流束)の関係を図14に示す。図14中のエレメント位置は、供給水側からの本数である。図14に示すように、供給水側の透過水量が多く、濃縮水側にいくにつれ、透過水量が下がることがわかる。これは、被処理水は濃縮水側にいくにつれ塩濃度が高くなるため、濃縮水側では、高い圧力が必要になるが、供給水側においても同じ圧力がかかっているため、供給水側でより多くの透過水が生成されるからである。このように、図14に示すように、加圧容器224内における透過水量が不均一であることにより、必要動力の増加、供給水側のRO膜エレメントの汚染が進行する。 The supply water supplied into the pressurized container 224 has a salt concentration that increases from the supply water side to the concentrated water side, so that the pressure in the pressurized container 224 finally becomes the final stage salt concentration and the amount of permeated water. The pressure to be pressurized is determined by the supply water flow velocity on the membrane surface. Accordingly, since the pressure on the supply water side in the pressurized container 224 is more than necessary, the amount of permeated water increases. For example, FIG. 14 shows the relationship between the position of the RO membrane element and the relative flux (relative flux) when seven RO membrane elements 222 are arranged in series. The element position in FIG. 14 is the number from the supply water side. As shown in FIG. 14, it can be seen that the amount of permeated water on the supply water side is large, and the amount of permeated water decreases as it goes to the concentrated water side. This is because the salt concentration of the treated water increases as it goes to the concentrated water side, so a high pressure is required on the concentrated water side, but the same pressure is also applied on the supply water side. This is because more permeated water is generated. In this way, as shown in FIG. 14, the amount of permeated water in the pressurized container 224 is non-uniform, so that necessary power increases and contamination of the RO membrane element on the supply water side proceeds.
 このような問題を解決するため、例えば、下記の特許文献1には、複数の分離膜エレメントが直列に接続されており、原水側から透過水側に向って、分離膜エレメントに設けられた集水管の内径が大きくなっている膜分離システムが記載されている。集水配管の内径を大きくすることで、分離膜エレメントにおける透過流束が等しくなるように集水管における圧力損失を容易に設定することができる。これにより、分離膜エレメントの位置に関係なく全ての分離膜エレメントの運転条件の均一化を図ることができる。 In order to solve such a problem, for example, in Patent Document 1 below, a plurality of separation membrane elements are connected in series, and the collection membrane elements provided in the separation membrane elements from the raw water side toward the permeate water side. A membrane separation system is described in which the inner diameter of the water tube is increased. By increasing the inner diameter of the water collecting pipe, the pressure loss in the water collecting pipe can be easily set so that the permeation flux in the separation membrane element becomes equal. Thereby, the operating conditions of all the separation membrane elements can be made uniform regardless of the positions of the separation membrane elements.
特開2000-167358号公報JP 2000-167358 A
 しかしながら、特許文献1に記載されている膜分離システムは、分離膜エレメントごとに集水配管の内径を設定しており、さらに細かい調節をすることができていなかった。 However, in the membrane separation system described in Patent Document 1, the inner diameter of the water collection pipe is set for each separation membrane element, and further fine adjustment has not been possible.
 本発明はこのような事情に鑑みてなされたものであり、圧力容器内の集水配管の内径を任意の位置で調節することで、各逆浸透膜エレメントの透過水量の不均一さを解消し、所望の透過水量を少ない動力で得ることができる逆浸透処理装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and by adjusting the inner diameter of the water collecting pipe in the pressure vessel at an arbitrary position, the non-uniformity in the amount of permeated water of each reverse osmosis membrane element is eliminated. An object of the present invention is to provide a reverse osmosis treatment apparatus capable of obtaining a desired amount of permeated water with less power.
 本発明の第1の態様は、前記目的を達成するために、逆浸透処理装置であって、圧力容器と、前記圧力容器の一方の端部に被処理水を供給する導入管と、前記圧力容器の他方の端部に濃縮水を排出する濃縮水排出管と、前記圧力容器内に設けられ、且つ、逆浸透膜を備える複数の逆浸透膜エレメントとを備え、前記逆浸透膜エレメントは更に、前記逆浸透膜を通過した透過水が流れる集水配管であって、前記複数の逆浸透膜エレメントを前記圧力容器内で直列に接続する集水配管を備え、前記圧力容器の前記濃縮水排出管側に前記透過水を排出する第1の排出管と、前記集水配管内の前記導入管側に抵抗配管と、を備える、逆浸透処理装置を提供する。 In order to achieve the above object, the first aspect of the present invention is a reverse osmosis treatment apparatus, comprising a pressure vessel, an introduction pipe for supplying water to be treated to one end of the pressure vessel, and the pressure A concentrated water discharge pipe for discharging concentrated water to the other end of the container; and a plurality of reverse osmosis membrane elements provided in the pressure vessel and including a reverse osmosis membrane, wherein the reverse osmosis membrane element further includes A drainage pipe through which the permeated water that has passed through the reverse osmosis membrane flows, the drainage pipe connecting the plurality of reverse osmosis membrane elements in series within the pressure vessel, and discharging the concentrated water from the pressure vessel Provided is a reverse osmosis treatment device comprising: a first discharge pipe for discharging the permeated water on a pipe side; and a resistance pipe on the introduction pipe side in the water collection pipe.
 第1の態様に係る逆浸透処理装置は、逆浸透膜を備える逆浸透膜エレメントの集水配管内の被処理水を供給する導入管側に抵抗配管を備えている。抵抗配管を設けることにより、集水配管の内径を小さくすることができるので、抵抗配管を設けた導入管側の透過水量を減らすことができる。これにより、濃縮水側の被処理水は、流量が増加し、塩濃度を低くすることができるので、濃縮水側での透過水量を増やすことができる。これにより、逆浸透膜エレメントの透過水量の不均一さを従来と比較し、抑制することができるとともに、全体として透過水量を増やすことができる。したがって、圧力を低くしても透過水量を増やすことができ、省動力化を図るとともに、極端に汚れ易い逆浸透膜エレメントの発生を防ぐことができ、長期の使用を可能とすることができる。 The reverse osmosis treatment apparatus according to the first aspect includes a resistance pipe on the introduction pipe side for supplying the treated water in the water collection pipe of the reverse osmosis membrane element including the reverse osmosis membrane. By providing the resistance pipe, it is possible to reduce the inner diameter of the water collection pipe, so that the amount of permeated water on the introduction pipe side where the resistance pipe is provided can be reduced. Thereby, since the to-be-processed water by the side of concentrated water can increase a flow volume and can make salt concentration low, the amount of permeated water by the side of concentrated water can be increased. Thereby, the non-uniformity of the permeated water amount of the reverse osmosis membrane element can be suppressed compared to the conventional case, and the permeated water amount can be increased as a whole. Therefore, even if the pressure is lowered, the amount of permeated water can be increased, power saving can be achieved, the generation of extremely osmotic reverse osmosis membrane elements can be prevented, and long-term use can be achieved.
 第2の態様によれば、第1の態様に係る逆浸透処理装置において、前記抵抗配管の側面に設けられた開口部の開口率が、前記集水配管の側面に設けられた前記逆浸透膜を透過した透過水が流れる透孔の開口率より小さい。 According to the second aspect, in the reverse osmosis treatment device according to the first aspect, the reverse osmosis membrane in which the opening ratio of the opening provided on the side surface of the resistance pipe is provided on the side surface of the water collection pipe. It is smaller than the aperture ratio of the through-hole through which the permeated water that has passed through.
 第2の態様に係る逆浸透処理装置では、集水配管に設けられた透孔の開口率より、抵抗配管に設けられた開口部の開口率を小さくしているので、透過水の流量を抑えることができ、透過水量の不均一さを解消することができる。 In the reverse osmosis treatment apparatus according to the second aspect, since the opening ratio of the opening provided in the resistance pipe is made smaller than the opening ratio of the through hole provided in the water collecting pipe, the flow rate of the permeated water is suppressed. And non-uniformity in the amount of permeated water can be eliminated.
 第3の態様によれば、第2の態様に係る逆浸透処理装置において、前記抵抗配管は、前記集水配管の前記導入管側から前記第1の排出管側にいくにつれ、開口部の開口率が大きくなる。 According to the third aspect, in the reverse osmosis treatment device according to the second aspect, the resistance pipe opens from the inlet pipe side of the water collection pipe to the first discharge pipe side, and the opening of the opening portion opens. The rate increases.
 第3の態様に係る逆浸透処理装置では、請求項3によれば、被処理水の導入管側から第1の排出管側にいくにつれ、抵抗配管の開口部の開口率を大きくしている。したがって、抵抗配管が設けられる部分においても、集水配管内の導入管側の透過水の量を減らし、第1の排出管側の透過水の量を増やすことができるので、透過水量の不均一さを解消することができる。 In the reverse osmosis treatment apparatus according to the third aspect, according to the third aspect, the opening ratio of the opening of the resistance pipe is increased as the water to be treated is moved from the introduction pipe side to the first discharge pipe side. . Therefore, even in the portion where the resistance pipe is provided, the amount of permeate on the introduction pipe side in the water collection pipe can be reduced and the amount of permeate on the first discharge pipe side can be increased. Can be eliminated.
 第4の態様によれば、第1から第3の態様のいずれかに係る逆浸透処理装置において、前記抵抗配管は、前記集水配管の前記導入管側から前記第1の排出管側にいくにつれ、前記抵抗配管の厚みが薄くなる。 According to the fourth aspect, in the reverse osmosis treatment device according to any one of the first to third aspects, the resistance pipe goes from the introduction pipe side of the water collection pipe to the first discharge pipe side. As the thickness of the resistance pipe decreases.
 第4の態様に係る逆浸透処理装置では、被処理水の導入管側から第1の排出管側にいくにつれ、抵抗配管の厚みを薄くしている、つまり、集水配管の内径が大きくなっている。したがって、抵抗配管が設けられている部分においても、集水配管内の導入管側の透過水の量を減らし、第1の排出管側の透過水の量を増やすことができるので、透過水量の不均一さを解消することができる。 In the reverse osmosis treatment apparatus according to the fourth aspect, the thickness of the resistance pipe is reduced, that is, the inner diameter of the water collection pipe is increased from the treated water introduction pipe side to the first discharge pipe side. ing. Therefore, even in the portion where the resistance pipe is provided, the amount of permeated water on the inlet pipe side in the water collecting pipe can be reduced and the amount of permeated water on the first discharge pipe side can be increased. Unevenness can be eliminated.
 第5の態様によれば、第1から第4の態様のいずれかに係る逆浸透処理装置において、前記抵抗配管は、複数の配管が接続されて形成されている。 According to the fifth aspect, in the reverse osmosis treatment device according to any one of the first to fourth aspects, the resistance pipe is formed by connecting a plurality of pipes.
 第5の態様に係る逆浸透処理装置では、抵抗配管を複数の配管を接続することにより形成しているので、開口部の開口率、配管の厚みなど所望の抵抗配管を容易に形成することができる。 In the reverse osmosis treatment apparatus according to the fifth aspect, since the resistance pipe is formed by connecting a plurality of pipes, it is possible to easily form a desired resistance pipe such as the opening ratio of the opening and the thickness of the pipe. it can.
 第6の態様によれば、第1から第5の態様のいずれかに係る逆浸透処理装置は、前記集水配管中に、前記被処理水の供給側である前段と前記濃縮水の排出側である後段とに、前記透過水を分離する抵抗体と、前記導入管側に前段の前記透過水を排出する第2の排出管とを、さらに備える。 According to the sixth aspect, the reverse osmosis treatment device according to any of the first to fifth aspects includes a front stage that is a supply side of the treated water and a discharge side of the concentrated water in the water collection pipe. In the latter stage, there are further provided a resistor for separating the permeated water, and a second discharge pipe for discharging the previous stage permeated water on the introduction pipe side.
 第6の態様に係る逆浸透処理装置では、集水配管中に抵抗体を設け、その抵抗体の両側から、第1の排出管により後段の透過水を排出し、第2の排出管により前段の透過水を排出している。したがって、抵抗体の前段と後段とで異なる流量で透過水を生成することができるので、被処理水の供給側の流量を抑えることで、透過水の量を減らすことができる。したがって、濃縮水側の塩濃度を低くすることができるので、透過水量を増やすことができ、逆浸透膜エレメントの透過水量の不均一さを抑制することができる。 In the reverse osmosis treatment device according to the sixth aspect, a resistor is provided in the water collecting pipe, and the permeate in the subsequent stage is discharged from both sides of the resistor through the first discharge pipe, and the front stage is discharged through the second discharge pipe. The permeated water is discharged. Therefore, since the permeated water can be generated at different flow rates between the front and rear stages of the resistor, the amount of permeated water can be reduced by suppressing the flow rate on the supply side of the water to be treated. Therefore, since the salt concentration on the concentrated water side can be lowered, the amount of permeated water can be increased, and unevenness in the amount of permeated water of the reverse osmosis membrane element can be suppressed.
 第7の態様によれば、第6の態様に係る逆浸透処理装置において、前記抵抗体は、前記抵抗配管の前記第1の排出管側の端部に設けられている。 According to a seventh aspect, in the reverse osmosis treatment device according to the sixth aspect, the resistor is provided at an end of the resistance pipe on the first discharge pipe side.
 第7の態様に係る逆浸透処理装置では、抵抗体を抵抗配管の第1の排出管側の端部に設けることで、抵抗配管により透過水の流量を減らす効果を効果的に発揮することができる。 In the reverse osmosis treatment device according to the seventh aspect, by providing the resistor at the end of the resistance pipe on the first discharge pipe side, the resistance pipe can effectively exhibit the effect of reducing the flow rate of the permeated water. it can.
 第8の態様によれば、第6又は第7の態様に係る逆浸透処理装置において、前記抵抗体は、非透水性である。 According to the eighth aspect, in the reverse osmosis treatment device according to the sixth or seventh aspect, the resistor is impermeable to water.
 第8の態様に係る逆浸透処理装置では、抵抗体により集水配管を分断させることができるので、抵抗体を境にして集水配管内の圧力を制御することができる。したがって、透過水量の調節を容易に行なうことができる。 In the reverse osmosis treatment apparatus according to the eighth aspect, the water collecting pipe can be divided by the resistor, so that the pressure in the water collecting pipe can be controlled with the resistor as a boundary. Therefore, the amount of permeated water can be easily adjusted.
 第9の態様によれば、第6又は第7の態様に係る逆浸透処理装置において、前記抵抗体は、透水性である。 According to the ninth aspect, in the reverse osmosis treatment device according to the sixth or seventh aspect, the resistor is water permeable.
 第10の態様によれば、第9の態様に係る逆浸透処理装置において、前記抵抗体は、多孔性材料で形成されている。 According to the tenth aspect, in the reverse osmosis treatment device according to the ninth aspect, the resistor is made of a porous material.
 第11の態様によれば、第6から第10の態様のいずれかに係る逆浸透処理装置において、前記抵抗体に、透過水が通過するスリットが形成されている。 According to the eleventh aspect, in the reverse osmosis treatment device according to any of the sixth to tenth aspects, the resistor is formed with a slit through which permeated water passes.
 第9から第11の態様のいずれかに係る逆浸透処理装置では、抵抗体を透水性にする、あるいは、抵抗体にスリットを設けることにより、透過水が抵抗体を通過可能とすることで、集水配管内に抵抗を持たせることができるので、透過水量を等しくすることができる。 In the reverse osmosis treatment device according to any of the ninth to eleventh aspects, by allowing the resistor to be water permeable, or providing a slit in the resistor, the permeated water can pass through the resistor, Since resistance can be given in the water collecting pipe, the amount of permeated water can be made equal.
 第12の態様によれば、第9から第11の態様のいずれかに係る逆浸透処理装置において、前記抵抗体が、前記集水配管中に複数設けられている。 According to the twelfth aspect, in the reverse osmosis treatment device according to any of the ninth to eleventh aspects, a plurality of the resistors are provided in the water collecting pipe.
 第12の態様に係る逆浸透処理装置では、抵抗体を集水配管中に複数設けることで、より細かく集水配管中の圧力を調節することができるので、透過水量の不均一さを解消することができる。 In the reverse osmosis treatment device according to the twelfth aspect, by providing a plurality of resistors in the water collection pipe, the pressure in the water collection pipe can be adjusted more finely, so the non-uniformity in the amount of permeate is eliminated. be able to.
 本発明によれば、抵抗配管により、逆浸透膜エレメントの集水配管の内径を小さくする、あるいは集水配管の側面に設けられた透孔のいくつかを塞ぐことにより、集水配管内の透過水の抵抗を大きくすることができる。これにより、供給水側の透過水の流量を減らすことができるので、濃縮水側の塩濃度を低くすることができ、逆浸透膜エレメントの全体の圧力を下げることができる。したがって、逆浸透膜エレメントに効果的に圧力を付与して透過水を生成することができるので、省力化を図ることができ、コストを下げることができる。 According to the present invention, the resistance pipe is used to reduce the inner diameter of the water collection pipe of the reverse osmosis membrane element or to close some of the through holes provided in the side surface of the water collection pipe, thereby Water resistance can be increased. Thereby, since the flow volume of the permeated water on the supply water side can be reduced, the salt concentration on the concentrated water side can be lowered, and the overall pressure of the reverse osmosis membrane element can be lowered. Therefore, since pressure can be effectively applied to the reverse osmosis membrane element to generate permeated water, labor can be saved and cost can be reduced.
実施の形態の逆浸透処理装置が設置された脱塩処理システムのブロック図である。It is a block diagram of the desalination processing system in which the reverse osmosis processing apparatus of embodiment was installed. 実施の形態の逆浸透処理装置のエレメントの構成を示した斜視図である。It is the perspective view which showed the structure of the element of the reverse osmosis processing apparatus of embodiment. 図2に示したエレメントのRO膜が巻回される前の状態を示したエレメントの正面図である。It is the front view of the element which showed the state before RO membrane of the element shown in FIG. 2 was wound. 図2に示したエレメントの正面図である。FIG. 3 is a front view of the element shown in FIG. 2. 実施の形態の逆浸透処理装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the reverse osmosis processing apparatus of embodiment. 実施の形態の逆浸透処理装置のRO膜エレメントの位置と透過水の相対的流束の関係を示したグラフ図である。It is the graph which showed the relationship between the position of RO membrane element of the reverse osmosis processing apparatus of embodiment, and the relative flux of permeated water. 集水配管中の抵抗配管を示す断面図(長手方向断面図)である。It is sectional drawing (longitudinal direction sectional drawing) which shows resistance piping in water collection piping. 集水配管中の抵抗配管を示す断面図(径方向断面図)である。It is sectional drawing (radial direction sectional drawing) which shows resistance piping in water collection piping. 集水配管中の他の抵抗配管の例を示す断面図である。It is sectional drawing which shows the example of the other resistance piping in water collection piping. 集水配管中のさらに他の抵抗配管の例を示す断面図である。It is sectional drawing which shows the example of other resistance piping in water collection piping. 他の実施の形態の逆浸透処理装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the reverse osmosis processing apparatus of other embodiment. 集水配管中の抵抗体を示す断面図(その1)である。It is sectional drawing (the 1) which shows the resistor in water collection piping. 集水配管中の抵抗体を示す断面図(その2)である。It is sectional drawing (the 2) which shows the resistor in water collection piping. 集水配管中の抵抗体を示す正面図(その1)である。It is a front view which shows the resistor in water collection piping (the 1). 集水配管中の抵抗体を示す正面図(その2)である。It is a front view (the 2) which shows a resistor in water collection piping. 集水配管中の抵抗体を示す正面図(その3)である。It is a front view (the 3) showing a resistor in water collection piping. 集水配管中の抵抗体を示す正面図(その4)である。It is a front view (the 4) showing a resistor in water collection piping. 従来の逆浸透処理装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the conventional reverse osmosis processing apparatus. 従来の逆浸透処理装置のRO膜エレメントの位置と透過水の相対的流束の関係を示したグラフ図である。It is the graph which showed the relationship between the position of RO membrane element of the conventional reverse osmosis processing apparatus, and the relative flux of permeate.
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱すること無く、多くの手法により変更を行なうことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention will be described with reference to the following preferred embodiments, but can be modified in many ways without departing from the scope of the present invention, and other embodiments than the present embodiment can be utilized. be able to. Accordingly, all modifications within the scope of the present invention are included in the claims.
 図1は、実施の形態の逆浸透処理装置10が組み込まれた脱塩処理システム20のブロック図である。なお、本発明における脱塩処理システムは、例えば、排水再利用、純水製造、かん水淡水化、海水淡水化など、被処理水を逆浸透処理するシステムに用いることができる。 FIG. 1 is a block diagram of a desalination treatment system 20 in which the reverse osmosis treatment apparatus 10 of the embodiment is incorporated. In addition, the desalination processing system in this invention can be used for the system which carries out reverse osmosis processing of to-be-processed water, such as drainage reuse, pure water manufacture, brine water desalination, seawater desalination, etc., for example.
 同図に示す脱塩処理システム20は、被処理水が貯留されたタンク12、高圧ポンプ14、および逆浸透処理装置10から構成される。タンク12の被処理水は、高圧ポンプ14によって逆浸透処理装置10に高圧で供給され、逆浸透処理装置10の各RO膜(処理膜)によって逆浸透処理(脱塩処理)されることにより、脱塩された透過水(分離水)16と、塩分が濃縮された濃縮水(被処理水)18とに分離される。このようにして得られた透過水16は、排出管を介して逆浸透処理装置10の外部に排出され、濃縮水18も同様に、透過水を排出する排出管とは異なる排出管を介して逆浸透処理装置10の外部に排出される。なお、実施の形態の脱塩処理システム20は、高圧ポンプ14によって被処理水を逆浸透処理装置10に高圧で供給しているが、逆浸透処理装置10の濃縮水出口側にバルブを設け、バルブの開度により逆浸透処理装置10内の圧力を設定している。 The desalination treatment system 20 shown in the figure is composed of a tank 12 in which treated water is stored, a high-pressure pump 14, and a reverse osmosis treatment device 10. The water to be treated in the tank 12 is supplied to the reverse osmosis treatment device 10 by the high pressure pump 14 at a high pressure, and is subjected to reverse osmosis treatment (desalting treatment) by each RO membrane (treatment membrane) of the reverse osmosis treatment device 10. The water is separated into desalted permeated water (separated water) 16 and concentrated water (treated water) 18 in which the salt content is concentrated. The permeated water 16 thus obtained is discharged to the outside of the reverse osmosis treatment device 10 through a discharge pipe, and the concentrated water 18 is similarly discharged through a discharge pipe different from the discharge pipe for discharging the permeated water. It is discharged outside the reverse osmosis treatment apparatus 10. In addition, although the desalination processing system 20 of embodiment supplies the to-be-processed water to the reverse osmosis processing apparatus 10 with the high voltage | pressure pump 14 at high pressure, a valve is provided in the concentrated water outlet side of the reverse osmosis processing apparatus 10, The pressure in the reverse osmosis treatment apparatus 10 is set according to the opening of the valve.
 タンク12内の被処理水としては、原水をそのまま使用してもよいが、前処理を施して原水に含まれる濁質成分等を除去した被処理水を使用することが好ましい。前処理としては、フィルタ利用、および沈殿池に原水を導入して塩素等の殺菌剤を添加し、原水中の粒子を沈殿除去するとともに微生物を殺菌する等の処理がある。また、原水に塩化鉄等の凝集剤を添加して濁質成分を凝集させ、これを濾過して除去した被処理水を使用してもよい。 As the water to be treated in the tank 12, raw water may be used as it is, but it is preferable to use water to be treated from which turbid components and the like contained in the raw water are removed by pretreatment. Pretreatment includes use of a filter and treatment such as introducing raw water into a sedimentation basin and adding a sterilizing agent such as chlorine to precipitate and remove particles in the raw water and sterilize microorganisms. In addition, water to be treated may be used by adding a flocculant such as iron chloride to raw water to agglomerate turbid components and filtering them off.
 図2に示すエレメント22を複数個直列に接続し、これを図5に示す円筒状のベッセル24に充填してモジュール26とし、このモジュール26を単独で、又は並列に接続することにより、逆浸透処理装置10は構成される。 A plurality of elements 22 shown in FIG. 2 are connected in series, filled in the cylindrical vessel 24 shown in FIG. 5 to form a module 26, and this module 26 is connected singly or in parallel, thereby reverse osmosis. The processing device 10 is configured.
 図2に示すようにエレメント22は、RO膜28と排出管30とを含む膜ユニット32が集水配管34の周囲に配置されて構成されている。膜ユニット32は図3の如く、4枚の袋体状のRO膜28、28…が集水配管34の外周部に放射状に接続され、これらのRO膜28、28…を、図4の如く集水配管34の周囲にスパイラル状に巻回することにより構成される。袋体状のRO膜28の一端は開口され、この開口部が図3に示す集水配管34の透孔36と連通するようにRO膜28が集水配管34に接着されている。被処理水は、RO膜28の外表面を流れ、RO膜28を透過することにより脱塩される。そして、RO膜28を透過した脱塩後の透過水は、RO膜28の内側からRO膜28の開口、および集水配管34の透孔36を介して集水配管34内に集水され、集水配管34から排出管30を介してエレメント22から排出される。なお、図3の符号38は、RO膜28の内部に配置されるメッシュ状のスペーサーである。このスペーサー38によって、RO膜28がスパイラル状に巻かれてもRO膜28の内部空間が潰れないように保持される。また、符号40は、隣接するRO膜28、28の間に配置されたメッシュ状のスペーサーである。このスペーサー40もRO膜28と同様に集水配管34の外周部に放射状に接着されている。 As shown in FIG. 2, the element 22 is configured by arranging a membrane unit 32 including an RO membrane 28 and a discharge pipe 30 around a water collection pipe 34. As shown in FIG. 3, the membrane unit 32 has four bag- like RO membranes 28, 28... Radially connected to the outer periphery of the water collecting pipe 34. These RO membranes 28, 28. It is configured by winding in a spiral around the water collection pipe 34. One end of the bag-like RO membrane 28 is opened, and the RO membrane 28 is bonded to the water collection pipe 34 so that the opening communicates with the through hole 36 of the water collection pipe 34 shown in FIG. The water to be treated flows on the outer surface of the RO membrane 28 and passes through the RO membrane 28 to be desalted. Then, the desalted water that has passed through the RO membrane 28 is collected from the inside of the RO membrane 28 into the water collection pipe 34 through the opening of the RO membrane 28 and the through holes 36 of the water collection pipe 34. The water is discharged from the element 22 from the water collecting pipe 34 through the discharge pipe 30. 3 is a mesh spacer disposed inside the RO membrane 28. The spacer 38 holds the RO membrane 28 so that the inner space of the RO membrane 28 is not crushed even when the RO membrane 28 is wound in a spiral shape. Reference numeral 40 denotes a mesh spacer disposed between the adjacent RO membranes 28 and 28. The spacers 40 are also radially bonded to the outer periphery of the water collecting pipe 34 in the same manner as the RO membrane 28.
 図5は、実施の形態の逆浸透処理装置10の断面図である。ベッセル24の両端は、被処理水が導入、排出されるように開口されている。導入側の開口部では、高圧ポンプ14によって所定の操作圧力が負荷されるようになっている。なお、図5には、5個のエレメント22、22…を直列に接続したモジュール26が示されているが、エレメント22の個数は5個に限定されるものではない。また、ベッセル24は、高圧(5MPa以上)に耐え得るようにFRP(Fiber Reinforced Plastic)等によって構成することもできる。 FIG. 5 is a cross-sectional view of the reverse osmosis treatment apparatus 10 of the embodiment. Both ends of the vessel 24 are opened so that water to be treated is introduced and discharged. A predetermined operating pressure is applied by the high-pressure pump 14 at the opening on the introduction side. 5 shows a module 26 in which five elements 22, 22... Are connected in series, the number of elements 22 is not limited to five. Further, the vessel 24 can be constituted by FRP (Fiber Reinforced Plastic) or the like so as to withstand high pressure (5 MPa or more).
 図5に示すように、ベッセル24には、ベッセル24内に被処理水を導入する導入管56と、被処理水が集水配管34へ透過せず残った濃縮水を排出する濃縮水排出管62を備えている。濃縮水排出管62の出口には、ベッセル24内の圧力を調節する濃縮水排出バルブ64を備えている。RO膜28を通り、集水配管34内に集水された透過水は、濃縮水排出管62側に設けられた第1の排出管58を介してエレメント22から排出される。第1の排出管58の出口には、計測器66を備えている。 As shown in FIG. 5, the vessel 24 includes an introduction pipe 56 that introduces the water to be treated into the vessel 24, and a concentrated water discharge pipe that discharges the concentrated water that has not been permeated to the water collection pipe 34. 62. A concentrated water discharge valve 64 that adjusts the pressure in the vessel 24 is provided at the outlet of the concentrated water discharge pipe 62. The permeated water collected in the water collection pipe 34 through the RO membrane 28 is discharged from the element 22 through the first discharge pipe 58 provided on the concentrated water discharge pipe 62 side. A meter 66 is provided at the outlet of the first discharge pipe 58.
 このベッセル24によれば、図1のタンク12から導入管56を介して供給された被処理水は、流路57を介してエレメント22に導かれ、被処理水はエレメント22のRO膜28を順次通過したのち、集水配管34に集水される。本実施形態においては、集水配管34内に、抵抗配管90を設けることにより、集水配管34に設けられた、RO膜28からの透過水が通過する透孔36を塞ぐことができる。あるいは、抵抗配管90が集水配管34の内径を狭くすることができる。これにより、集水配管34に集水される透過水の量を下げることができる。図5に示すように導入管56側に抵抗配管90を設けることにより、被処理水が供給水側のRO膜28を透過する量を減らすことができる。供給水側の透過水の量を減らすことで、濃縮水側の被処理水量の増加、塩濃度を低くすることができるので、エレメント22の最終段からの透過水の流量を増やすことができ、装置全体として透過水の量を増やすことができる。したがって、各エレメント22の透過水量をより均一にすることで、全体として低い圧力で透過水の流量を増やすことができるので、コストを下げることができる。 According to the vessel 24, the water to be treated supplied from the tank 12 of FIG. 1 via the introduction pipe 56 is guided to the element 22 through the flow path 57, and the water to be treated passes through the RO membrane 28 of the element 22. After passing sequentially, water is collected in the water collection pipe 34. In the present embodiment, by providing the resistance pipe 90 in the water collecting pipe 34, the through hole 36 provided in the water collecting pipe 34 through which the permeated water from the RO membrane 28 passes can be closed. Alternatively, the resistance pipe 90 can narrow the inner diameter of the water collection pipe 34. Thereby, the amount of permeated water collected in the water collection pipe 34 can be reduced. As shown in FIG. 5, by providing the resistance pipe 90 on the introduction pipe 56 side, the amount of treated water that permeates the RO membrane 28 on the supply water side can be reduced. By reducing the amount of permeated water on the supply water side, the amount of treated water on the concentrated water side can be increased, and the salt concentration can be lowered, so the flow rate of permeated water from the final stage of the element 22 can be increased, The amount of permeated water can be increased as a whole apparatus. Therefore, by making the amount of permeated water of each element 22 more uniform, the flow rate of permeated water can be increased at a low pressure as a whole, and the cost can be reduced.
 図6は、実施の形態の逆浸透処理装置のRO膜エレメントの位置と透過水の相対的流束の関係を示した図である。なお、本発明のデータは、供給側から1本目と2本目のエレメントに、開口部92aの開口率が50%、外径が集水配管34の内径よりわずかに小さい(挿入可能な大きさ)の抵抗配管90aを設置し、エレメントの数を7個で実験を行なったデータである。図6に示すように、従来では、供給水側から多くの透過水が生成され、濃縮水側にいくにつれ、透過水の量が下がっていた。これに対し、本発明では、抵抗配管90を設けて、供給水側の透過水の流量を減らしているので、濃縮水側の塩濃度を従来に比べて低くすることができ、透過水の流量を増やすことができる。したがって、各RO膜エレメントの透過水量の不均一さを解消することができる。集水配管34内の圧力の調整は、計測器66により測定した数値により濃縮水排出バルブ64の開度を調節することで行なうことができる。また、透過水量を均一にすることで、供給水側のRO膜の汚れを抑制することができ、長期の使用を可能とすることができる。 FIG. 6 is a diagram showing the relationship between the position of the RO membrane element and the relative flux of the permeated water in the reverse osmosis treatment apparatus of the embodiment. In the data of the present invention, the opening ratio of the opening 92a is 50% and the outer diameter is slightly smaller than the inner diameter of the water collecting pipe 34 (the size that can be inserted) in the first and second elements from the supply side. The resistance pipe 90a is installed, and the number of elements is seven. As shown in FIG. 6, conventionally, a large amount of permeated water is generated from the supply water side, and the amount of permeate decreases as it goes to the concentrated water side. In contrast, in the present invention, the resistance pipe 90 is provided to reduce the flow rate of the permeated water on the supply water side, so that the salt concentration on the concentrated water side can be reduced as compared with the prior art, and the flow rate of the permeated water. Can be increased. Therefore, the nonuniformity of the permeated water amount of each RO membrane element can be eliminated. The pressure in the water collection pipe 34 can be adjusted by adjusting the opening of the concentrated water discharge valve 64 based on the numerical value measured by the measuring instrument 66. Moreover, by making the amount of permeated water uniform, contamination of the RO membrane on the supply water side can be suppressed, and long-term use can be enabled.
 次に抵抗配管90の作用について説明する。図7A及び7Bは、集水配管34中の抵抗配管90aを示す断面図であり、図7Aは、側面(集水配管を長手方向に切断した場合)の断面図であり、図7Bは正面(集水配管を径方向に切断した場合)の断面図である。抵抗配管90aは、壁面に開口部92aを有する配管である。抵抗配管90aの開口部92aの開口率は、集水配管34に設けられている透孔36の開口率より小さくなるように設定する。抵抗配管90aの開口率を小さくすることで、透孔36を抵抗配管90aにより塞ぐことができるので、RO膜28から通過する透過水の量を減らすことができる。開口率は、開口部92aの数を減らすことで小さくすることもできるし、開口部92aを集水配管34の透孔36より小さくすることで、開口率を小さくすることもできる。 Next, the operation of the resistance pipe 90 will be described. 7A and 7B are cross-sectional views showing a resistance pipe 90a in the water collection pipe 34, FIG. 7A is a cross-sectional view of a side surface (when the water collection pipe is cut in the longitudinal direction), and FIG. It is sectional drawing of the case where a water collection piping is cut | disconnected in radial direction. The resistance pipe 90a is a pipe having an opening 92a on the wall surface. The opening ratio of the opening 92 a of the resistance pipe 90 a is set to be smaller than the opening ratio of the through hole 36 provided in the water collecting pipe 34. By reducing the opening ratio of the resistance pipe 90a, the through hole 36 can be closed by the resistance pipe 90a, so that the amount of permeated water passing through the RO membrane 28 can be reduced. The opening ratio can be reduced by reducing the number of openings 92a, and the opening ratio can be reduced by making the openings 92a smaller than the through holes 36 of the water collecting pipe 34.
 図8は、他の実施の形態の抵抗配管を示す側面の断面図である。図8に示す抵抗配管90bは、図中の矢印で示す供給水側から濃縮水側にいくにつれ、開口部92bの数が増えている点が、図7A及び7Bに示す実施の形態と異なっている。このような構成とすることで、供給水側の集水配管34に流入する透過水の量を減らし、濃縮水側にいくにつれ、透過水量を増やすことができ、透過水量の均一化を行なうことができる。 FIG. 8 is a side sectional view showing a resistance pipe according to another embodiment. The resistance pipe 90b shown in FIG. 8 is different from the embodiment shown in FIGS. 7A and 7B in that the number of openings 92b increases from the supply water side indicated by the arrow in the figure to the concentrated water side. Yes. By adopting such a configuration, the amount of permeated water flowing into the water collecting pipe 34 on the supply water side can be reduced, and the amount of permeated water can be increased toward the concentrated water side, so that the amount of permeated water can be made uniform. Can do.
 図9は、さらに他の実施の形態の抵抗配管を示す側面の断面図である。図9に示す抵抗配管90cは、図中の矢印で示す供給水側から濃縮水側にいくにつれ、抵抗配管90cの厚さが薄くなるテーパー状に形成されている。このような構成とすることにより、供給水側の抵抗配管90cの内径を小さくし、濃縮水側にいくにつれ、抵抗配管90cの内径を大きくすることができる。このような構成とすることにより、供給水側から濃縮水側にいくにつれ、透過水量を増やすことができ、透過水量の均一化を行なうことができる。なお、図9においては、供給水側からテーパー形状で濃縮水側にいくにつれ、内径が広がる構成となっているが、これに限定されず、供給水側から濃縮水側にいくにつれ、階段状に内径が広がる構成とすることも可能である。 FIG. 9 is a side sectional view showing a resistance pipe of still another embodiment. The resistance pipe 90c shown in FIG. 9 is formed in a tapered shape in which the thickness of the resistance pipe 90c decreases as it goes from the supply water side to the concentrated water side indicated by an arrow in the drawing. By setting it as such a structure, the internal diameter of the resistance piping 90c by the side of water supply can be made small, and the internal diameter of the resistance piping 90c can be enlarged as it goes to the concentrated water side. By setting it as such a structure, as it goes to the concentrated water side from the supply water side, the amount of permeate can be increased and the amount of permeate can be made uniform. In FIG. 9, the inner diameter is increased as the taper shape increases from the supply water side toward the concentrated water side. However, the present invention is not limited to this, and the stepped shape increases from the supply water side toward the concentrated water side. It is also possible to adopt a configuration in which the inner diameter increases.
 抵抗配管90は、一本の配管を集水配管34内に挿入することで設置することもできるし、複数の配管を挿入することで、抵抗配管90とすることも可能である。複数の配管を用いることで、開口率の異なる配管を用い、図8に示すような供給水側から濃縮水側にいくにつれ、開口率を大きくする抵抗配管90bを設けることもできる。また、厚みの異なる抵抗配管を複数使用し、供給水側から濃縮水側にいくにつれ、段階的に集水配管34の内径が大きくなるように設けることもできる。また、用いる抵抗配管の数により、集水配管34中に設置する抵抗配管の長さも容易に設定することが可能である。複数の抵抗配管を用いて集水配管中に設置することで、様々な種類の抵抗配管を設置することが可能である。抵抗配管90を設ける箇所は、エレメント22単位ではなく、ベッセル24内の各エレメントを一本の長いエレメントと考え、その集水配管内の任意の位置に決定することができる。抵抗配管90の位置の調整は、エレメント22の端部から、抵抗配管90を挿入し、複数の配管を用いて長さを調節することができる。 The resistance pipe 90 can be installed by inserting a single pipe into the water collection pipe 34, or can be a resistance pipe 90 by inserting a plurality of pipes. By using a plurality of pipes, it is possible to use a pipe having a different opening ratio and provide a resistance pipe 90b that increases the opening ratio as it goes from the supply water side to the concentrated water side as shown in FIG. Alternatively, a plurality of resistance pipes having different thicknesses may be used, and the inner diameter of the water collection pipe 34 may be increased stepwise as it goes from the supply water side to the concentrated water side. In addition, the length of the resistance pipe installed in the water collecting pipe 34 can be easily set depending on the number of the resistance pipes to be used. Various types of resistance pipes can be installed by installing them in the water collection pipes using a plurality of resistance pipes. The location where the resistance pipe 90 is provided is not an element 22 unit, but each element in the vessel 24 is considered as one long element, and can be determined at an arbitrary position in the water collecting pipe. The position of the resistance pipe 90 can be adjusted by inserting the resistance pipe 90 from the end of the element 22 and adjusting the length using a plurality of pipes.
 抵抗配管90の長さは、温度、供給水の塩濃度により、適宜設定する必要があるが、集水配管34の全長に対して、供給水側の端部から10%~90%の範囲で設けることが好ましい。 The length of the resistance pipe 90 needs to be set as appropriate depending on the temperature and the salt concentration of the supply water, but is within a range of 10% to 90% from the end on the supply water side with respect to the total length of the water collection pipe 34. It is preferable to provide it.
 エレメント位置における透過水量の不均一さは、(1)水温、(2)供給水塩濃度、(3)RO膜自体の透水性および塩阻止率、(4)ベッセル内の全膜に平均化した膜面積辺りの透過水量、(5)回収率、(6)圧力、により決定される。この中で、(3)および(4)、(5)は設計時に決定するものである。(1)、(2)は環境の変化により、(6)は運転により膜が汚染した場合に変化する。(1)、(2)および(6)の変化に応じて、濃縮水排出バルブ64の開度、および、抵抗配管90の位置を調節することで、全体的に安定した透過水量を確保することができる。特に、(1)水温は、季節によって異なるため、水温の変化により適宜調整を行なう必要がある。 Non-uniformity in the amount of permeated water at the element position was (1) water temperature, (2) feed salt concentration, (3) water permeability and salt rejection of the RO membrane itself, (4) averaged over all membranes in the vessel. It is determined by the amount of permeated water around the membrane area, (5) recovery rate, and (6) pressure. Among these, (3), (4), and (5) are determined at the time of design. (1) and (2) change due to environmental changes, and (6) changes when the film is contaminated by operation. By adjusting the opening degree of the concentrated water discharge valve 64 and the position of the resistance pipe 90 in accordance with the changes in (1), (2) and (6), it is possible to ensure a stable permeated water amount as a whole. Can do. In particular, (1) since the water temperature varies depending on the season, it is necessary to appropriately adjust the water temperature.
 図10は、他の実施の形態の逆浸透処理装置110の断面図である。逆浸透処理装置110は、集水配管34中に抵抗体80を備え、ベッセル24の供給水側に第2の排出管68、計測器72、第2のバルブ70を備えている点が、図5に示す逆浸透処理装置10と異なっている。 FIG. 10 is a cross-sectional view of the reverse osmosis treatment apparatus 110 according to another embodiment. The reverse osmosis treatment apparatus 110 includes a resistor 80 in the water collecting pipe 34 and a second discharge pipe 68, a measuring instrument 72, and a second valve 70 on the supply water side of the vessel 24. 5 is different from the reverse osmosis treatment apparatus 10 shown in FIG.
 逆浸透処理装置110によれば、導入管56を介して供給された被処理水は流路57を介してエレメント22に導かれ、被処理水はエレメント22のRO膜28を順次通過したのち、集水配管34に集水される。本実施形態においては、逆浸透処理装置110は集水配管34中に抵抗体80を備え、抵抗体80を境にして、濃縮水側に集水された透過水は、第1の排出管58からベッセル24の外部に排出される。また、供給水側に集水された透過水は第2の排出管68からベッセル24の外部に排出される。RO膜28を通過しなかった濃縮水は、濃縮水排出管62を介してベッセル24の外部に排出される。 According to the reverse osmosis treatment device 110, the water to be treated supplied through the introduction pipe 56 is guided to the element 22 through the flow path 57, and the water to be treated passes through the RO membrane 28 of the element 22 in sequence, Water is collected in the water collection pipe 34. In the present embodiment, the reverse osmosis treatment device 110 includes a resistor 80 in the water collection pipe 34, and the permeate collected on the concentrated water side with the resistor 80 as a boundary is the first discharge pipe 58. To the outside of the vessel 24. Further, the permeated water collected on the supply water side is discharged from the second discharge pipe 68 to the outside of the vessel 24. The concentrated water that has not passed through the RO membrane 28 is discharged to the outside of the vessel 24 through the concentrated water discharge pipe 62.
 本実施形態のように、抵抗体80を集水配管34中に設けることで、透過水を供給水側と濃縮水側に分離することができる。供給水側の透過水量を第2のバルブ70の開度で調整することにより、供給水側の集水配管34内の圧力を調節することができる。さらに、集水配管34の供給水側から抵抗体80までの集水配管34中に抵抗配管90を設けることで、さらに、圧力を抑えることができるので、供給水側の集水配管34に集水される透過水量を調節することができる。供給水側の集水配管34に集水される透過水量を調節することで、濃縮水側の塩濃度を低くすることができるので、低い圧力で透過水を集水することができる。したがって、低い圧力で従来と同じ透過水を集水することができるのでコストを下げることができる。 As in this embodiment, by providing the resistor 80 in the water collecting pipe 34, the permeated water can be separated into the supply water side and the concentrated water side. By adjusting the amount of permeated water on the supply water side with the opening of the second valve 70, the pressure in the water collection pipe 34 on the supply water side can be adjusted. Furthermore, since the resistance pipe 90 is provided in the water collection pipe 34 from the supply water side of the water collection pipe 34 to the resistor 80, the pressure can be further suppressed, so that the water collection pipe 34 on the supply water side is collected. The amount of permeated water to be watered can be adjusted. By adjusting the amount of permeated water collected in the water collecting pipe 34 on the supply water side, the salt concentration on the concentrated water side can be lowered, so that the permeated water can be collected at a low pressure. Therefore, since the same permeated water as in the past can be collected at a low pressure, the cost can be reduced.
 本実施形態においても、上述した(1)水温、(2)供給水塩濃度、(3)RO膜自体の透水性および塩阻止率、(4)ベッセル内の全膜に平均化した膜面積辺りの透過水量、(5)回収率、(6)圧力により、透過水量の不均一さが決定される。したがって、濃縮水排出バルブ64、第2のバルブ70の開度、および、抵抗体80、抵抗配管90の位置を調節することで、全体的に安定した透過水量を確保することができる。 Also in this embodiment, (1) water temperature, (2) supply salt concentration, (3) water permeability and salt rejection of the RO membrane itself, (4) around the membrane area averaged over all membranes in the vessel The permeated water amount, (5) recovery rate, and (6) non-uniform permeated water amount are determined by pressure. Therefore, by adjusting the opening of the concentrated water discharge valve 64 and the second valve 70, and the positions of the resistor 80 and the resistance pipe 90, it is possible to ensure a stable permeated water amount as a whole.
 抵抗体80の位置は、エレメント単位、すなわち、エレメントの接続部に設けるのではなく、ベッセル内の各エレメントを一本の長いエレメントと考え、その集水配管の抵抗体80の位置を任意に決定することができる。抵抗体80の位置の調整には、エレメント22のいずれか一方から、長い棒のようなもので押し出すことで調整することができる。 The position of the resistor 80 is not provided at the element unit, that is, at the connection portion of the element, but each element in the vessel is considered as one long element, and the position of the resistor 80 of the water collecting pipe is arbitrarily determined. can do. The position of the resistor 80 can be adjusted by pushing it out from either one of the elements 22 with something like a long bar.
 また、第1の排出管58および第2の排出管68に設けられた計測器66、72により濃縮水排出バルブ64、第2のバルブ70の開度を決定することで、透過水量の調整を行なうこともできる。計測器66、72としては、流量計、圧力計を用いることができる。 Further, the amount of permeated water can be adjusted by determining the opening degree of the concentrated water discharge valve 64 and the second valve 70 by the measuring devices 66 and 72 provided in the first discharge pipe 58 and the second discharge pipe 68. It can also be done. As the measuring instruments 66 and 72, a flow meter and a pressure gauge can be used.
 次に抵抗体80について説明する。抵抗体80としては、図11Aに示すように、抵抗体80全体が弾性体82であるもの、あるいは、図11Bに示すように、非弾性体84にOリング状の弾性体82を設置したものが好適である。集水配管34の内壁に弾性体82を密着させることにより抵抗体80を設置する。抵抗体80の位置調整は上述したように、集水配管34の端部から押し出すことにより調整するため、内壁との接触部分は弾性体82で構成されていることが好ましい。しかしながら、透過水の水流により位置が変わらないような、集水配管34の内壁と抵抗を有するものが好ましい。このような弾性体としては、例えば、EPDM(エチレンプロピレンジエンゴム)、シリコンなどを使用することができる。 Next, the resistor 80 will be described. As the resistor 80, as shown in FIG. 11A, the entire resistor 80 is an elastic body 82, or as shown in FIG. 11B, an inelastic body 84 is provided with an O-ring shaped elastic body 82. Is preferred. The resistor 80 is installed by bringing the elastic body 82 into close contact with the inner wall of the water collecting pipe 34. As described above, since the position adjustment of the resistor 80 is adjusted by pushing out from the end of the water collecting pipe 34, the contact portion with the inner wall is preferably formed of an elastic body 82. However, it is preferable to have a resistance with the inner wall of the water collection pipe 34 so that the position does not change due to the flow of permeated water. As such an elastic body, for example, EPDM (ethylene propylene diene rubber), silicon or the like can be used.
 抵抗体80は図12Aに示すように非透水性とし、抵抗体80aで集水配管34中を透過水が移動できないように完全に閉止することもできる。また、図12Bに示すように、抵抗体80bとして多孔性材料を用いて透水性とすることも可能である。また、図12C、12Dに示すように、抵抗体80c、80dと集水配管34の内壁との間にスリットを設けて、透過水の移動を可能にすることもできる。透過水を抵抗体80間で移動可能とすることで、抵抗体80を挟んだ集水配管34内の両側で抵抗を持たせることができるので、透過水量を等しくすることができる。また、抵抗体80に透水性を持たせる場合は、抵抗体80の数は限定されず、複数設置することも可能である。複数設置することで、集水配管34内の圧力をより細かく調節することができるので、各RO膜の透過水量の不均一さを解消させることができる。同様に、主となる抵抗体80として透水性を有さない抵抗体80を用い、さらに、透過水量の調整を行なうために、透水性を有する抵抗体を併せて設置することも可能である。 The resistor 80 can be made non-permeable as shown in FIG. 12A and can be completely closed by the resistor 80a so that the permeate cannot move through the water collection pipe 34. Moreover, as shown to FIG. 12B, it is also possible to make it water-permeable using a porous material as the resistor 80b. Moreover, as shown to FIG. 12C and 12D, a slit can be provided between the resistors 80c and 80d and the inner wall of the water collection piping 34, and movement of permeated water can also be enabled. By allowing the permeated water to move between the resistors 80, resistance can be provided on both sides of the water collecting pipe 34 sandwiching the resistor 80, so that the amount of permeated water can be made equal. Further, when the resistor 80 has water permeability, the number of the resistors 80 is not limited, and a plurality of resistors 80 may be installed. By installing a plurality, the pressure in the water collecting pipe 34 can be adjusted more finely, so that the non-uniformity of the permeated water amount of each RO membrane can be eliminated. Similarly, a resistor 80 that does not have water permeability can be used as the main resistor 80, and a resistor having water permeability can also be installed in order to adjust the amount of permeated water.
 10、110…逆浸透処理装置、12…タンク、14…高圧ポンプ、16…透過水、18…濃縮水、20…脱塩処理システム、22…エレメント、24…ベッセル、26…モジュール、28…RO膜、30…排出管、32…膜ユニット、34…集水配管、36…透孔、38、40…スペーサー、56…導入管、57…流路、58…第1の排出管、62…濃縮水排出管、64…第1のバルブ、66、72…計測器、68…第2の排出管、70…第2のバルブ、80…抵抗体、82…弾性体、84…非弾性体、90…抵抗配管、92…開口部 DESCRIPTION OF SYMBOLS 10,110 ... Reverse osmosis processing apparatus, 12 ... Tank, 14 ... High pressure pump, 16 ... Permeate, 18 ... Concentrated water, 20 ... Desalination system, 22 ... Element, 24 ... Vessel, 26 ... Module, 28 ... RO Membrane, 30 ... discharge pipe, 32 ... membrane unit, 34 ... water collection pipe, 36 ... through hole, 38, 40 ... spacer, 56 ... introduction pipe, 57 ... flow path, 58 ... first discharge pipe, 62 ... concentration Water discharge pipe, 64 ... first valve, 66, 72 ... measuring instrument, 68 ... second discharge pipe, 70 ... second valve, 80 ... resistor, 82 ... elastic body, 84 ... inelastic body, 90 ... resistance piping, 92 ... opening

Claims (12)

  1.  逆浸透処理装置であって、
     圧力容器と、
     前記圧力容器の一方の端部に被処理水を供給する導入管と、
     前記圧力容器の他方の端部に濃縮水を排出する濃縮水排出管と、
     前記圧力容器内に設けられ、且つ、逆浸透膜を備える複数の逆浸透膜エレメントとを備え、前記逆浸透膜エレメントは更に、前記逆浸透膜を通過した透過水が流れる集水配管であって、前記複数の逆浸透膜エレメントを前記圧力容器内で直列に接続する集水配管を備え、
     前記圧力容器の前記濃縮水排出管側に前記透過水を排出する第1の排出管と、
     前記集水配管内の前記導入管側に抵抗配管と、
     を備える、逆浸透処理装置。
    A reverse osmosis treatment device,
    A pressure vessel;
    An introduction pipe for supplying water to be treated to one end of the pressure vessel;
    A concentrated water discharge pipe for discharging concentrated water to the other end of the pressure vessel;
    A plurality of reverse osmosis membrane elements provided in the pressure vessel and provided with a reverse osmosis membrane, wherein the reverse osmosis membrane element is a water collecting pipe through which the permeated water that has passed through the reverse osmosis membrane flows. A water collecting pipe for connecting the plurality of reverse osmosis membrane elements in series in the pressure vessel,
    A first discharge pipe for discharging the permeate to the concentrated water discharge pipe side of the pressure vessel;
    A resistance pipe on the inlet pipe side in the water collection pipe;
    A reverse osmosis treatment apparatus.
  2.  前記抵抗配管の側面に設けられた開口部の開口率が、前記集水配管の側面に設けられた前記逆浸透膜を透過した透過水が流れる透孔の開口率より小さい、請求項1に記載の逆浸透処理装置。 The opening rate of the opening part provided in the side surface of the said resistance piping is smaller than the opening rate of the through-hole through which the permeate which permeate | transmitted the said reverse osmosis membrane provided in the side surface of the said water collection piping flows. Reverse osmosis treatment equipment.
  3.  前記抵抗配管は、前記集水配管の前記導入管側から前記第1の排出管側にいくにつれ、開口部の開口率が大きくなる、請求項2に記載の逆浸透処理装置。 The reverse osmosis treatment device according to claim 2, wherein the opening ratio of the opening increases as the resistance pipe moves from the inlet pipe side to the first discharge pipe side of the water collecting pipe.
  4.  前記抵抗配管は、前記集水配管の前記導入管側から前記第1の排出管側にいくにつれ、前記抵抗配管の厚みが薄くなる、請求項1から3のいずれか1項に記載の逆浸透処理装置。 The reverse osmosis according to any one of claims 1 to 3, wherein a thickness of the resistance pipe decreases as the resistance pipe moves from the inlet pipe side to the first discharge pipe side of the water collection pipe. Processing equipment.
  5.  前記抵抗配管は、複数の配管が接続されて形成されている、請求項1から4のいずれか1項に記載の逆浸透処理装置。 The reverse osmosis treatment apparatus according to any one of claims 1 to 4, wherein the resistance pipe is formed by connecting a plurality of pipes.
  6.  前記集水配管中に、前記被処理水の供給側である前段と前記濃縮水の排出側である後段とに前記透過水を分離する抵抗体と、
     前記導入管側に前段の前記透過水を排出する第2の排出管と、をさらに備える、
     請求項1から5のいずれか1項に記載の逆浸透処理装置。
    A resistor that separates the permeated water into a front stage that is a supply side of the treated water and a rear stage that is a discharge side of the concentrated water in the water collecting pipe;
    A second discharge pipe for discharging the permeated water of the previous stage on the introduction pipe side;
    The reverse osmosis processing apparatus of any one of Claim 1 to 5.
  7.  前記抵抗体は、前記抵抗配管の前記第1の排出管側の端部に設けられている、請求項6に記載の逆浸透処理装置。 The reverse osmosis treatment apparatus according to claim 6, wherein the resistor is provided at an end of the resistance pipe on the first discharge pipe side.
  8.  前記抵抗体は、非透水性である、請求項6又は7に記載の逆浸透処理装置。 The reverse osmosis treatment apparatus according to claim 6 or 7, wherein the resistor is impermeable to water.
  9.  前記抵抗体は、透水性である、請求項6又は7に記載の逆浸透処理装置。 The reverse osmosis treatment device according to claim 6 or 7, wherein the resistor is water permeable.
  10.  前記抵抗体は、多孔性材料で形成されている、請求項9に記載の逆浸透処理装置。 The reverse osmosis treatment device according to claim 9, wherein the resistor is made of a porous material.
  11.  前記抵抗体に、透過水が通過するスリットが形成されている、請求項6から10のいずれか1項に記載の逆浸透処理装置。 The reverse osmosis treatment apparatus according to any one of claims 6 to 10, wherein a slit through which permeated water passes is formed in the resistor.
  12.  前記抵抗体が、前記集水配管中に複数設けられている、請求項9から11のいずれか1項に記載の逆浸透処理装置。 The reverse osmosis treatment device according to any one of claims 9 to 11, wherein a plurality of the resistors are provided in the water collecting pipe.
PCT/JP2011/078859 2010-12-20 2011-12-14 Reverse osmosis processing device WO2012086478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800610473A CN103328077A (en) 2010-12-20 2011-12-14 Reverse osmosis processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010283592A JP2012130839A (en) 2010-12-20 2010-12-20 Reverse osmosis treatment apparatus
JP2010-283592 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086478A1 true WO2012086478A1 (en) 2012-06-28

Family

ID=46313754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078859 WO2012086478A1 (en) 2010-12-20 2011-12-14 Reverse osmosis processing device

Country Status (3)

Country Link
JP (1) JP2012130839A (en)
CN (1) CN103328077A (en)
WO (1) WO2012086478A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176067A1 (en) 2013-04-26 2014-10-30 Dow Global Technologies Llc Assembly including serially connected spiral wound modules with permeate flow controller
CN104418448A (en) * 2013-08-26 2015-03-18 株式会社日立制作所 Desalination system
EP3067110A4 (en) * 2013-12-20 2017-01-04 Mitsubishi Heavy Industries, Ltd. Reverse osmosis membrane filter device
US20170173533A1 (en) * 2014-03-13 2017-06-22 General Electric Company Reverse osmosis system for use with a wellbore and methods of assembling the same
US9795922B2 (en) 2013-09-26 2017-10-24 Dow Global Technologies Llc Hyperfiltration system suitable for household use
WO2019140354A1 (en) 2018-01-15 2019-07-18 Dow Global Technologies Llc Spiral wound assembly with integrated flow restrictor and sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105251362A (en) * 2014-07-14 2016-01-20 韩佳(上海)环保设备有限公司 Water saving type household reverse osmosis RO membrane assembly
WO2016036125A1 (en) * 2014-09-02 2016-03-10 현대건설주식회사 Hybrid cnt-ro membrane pressure vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167358A (en) * 1998-12-08 2000-06-20 Nitto Denko Corp Membrane separation system and membrane separation method
JP2001137672A (en) * 1999-11-18 2001-05-22 Toray Ind Inc Reverse osmosis treatment device and water making method
JP2007523744A (en) * 2004-02-25 2007-08-23 ダウ グローバル テクノロジーズ インコーポレーテッド Equipment for processing highly osmotic solutions
JP2010264421A (en) * 2009-05-18 2010-11-25 Nitto Denko Corp Separation membrane element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228324B2 (en) * 1998-03-23 2009-02-25 東レ株式会社 Fluid separation element
US6190556B1 (en) * 1998-10-12 2001-02-20 Robert A. Uhlinger Desalination method and apparatus utilizing nanofiltration and reverse osmosis membranes
US7338601B2 (en) * 2004-12-10 2008-03-04 Uop Llc Membrane separation assemblies
US20110114561A1 (en) * 2007-12-17 2011-05-19 Nitto Denko Corporation Spiral type membrane filtering device and mounting member, and membrane filtering device managing system and membrane filtering device managing method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167358A (en) * 1998-12-08 2000-06-20 Nitto Denko Corp Membrane separation system and membrane separation method
JP2001137672A (en) * 1999-11-18 2001-05-22 Toray Ind Inc Reverse osmosis treatment device and water making method
JP2007523744A (en) * 2004-02-25 2007-08-23 ダウ グローバル テクノロジーズ インコーポレーテッド Equipment for processing highly osmotic solutions
JP2010264421A (en) * 2009-05-18 2010-11-25 Nitto Denko Corp Separation membrane element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176067A1 (en) 2013-04-26 2014-10-30 Dow Global Technologies Llc Assembly including serially connected spiral wound modules with permeate flow controller
CN104418448A (en) * 2013-08-26 2015-03-18 株式会社日立制作所 Desalination system
US9795922B2 (en) 2013-09-26 2017-10-24 Dow Global Technologies Llc Hyperfiltration system suitable for household use
EP3067110A4 (en) * 2013-12-20 2017-01-04 Mitsubishi Heavy Industries, Ltd. Reverse osmosis membrane filter device
US20170173533A1 (en) * 2014-03-13 2017-06-22 General Electric Company Reverse osmosis system for use with a wellbore and methods of assembling the same
US10828605B2 (en) * 2014-03-13 2020-11-10 Bl Technologies, Inc. Reverse osmosis system for use with a wellbore and methods of assembling the same
WO2019140354A1 (en) 2018-01-15 2019-07-18 Dow Global Technologies Llc Spiral wound assembly with integrated flow restrictor and sensor
US11214500B2 (en) 2018-01-15 2022-01-04 Ddp Specialty Electronic Materials Us, Llc Spiral wound assembly with integrated flow restrictor and sensor

Also Published As

Publication number Publication date
CN103328077A (en) 2013-09-25
JP2012130839A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
WO2012086478A1 (en) Reverse osmosis processing device
JP5597122B2 (en) Reverse osmosis processing equipment
JP5549589B2 (en) Fresh water system
JP5923294B2 (en) Reverse osmosis processing equipment
JP5451574B2 (en) Water purification system and method, and module for said system
JP5691522B2 (en) Fresh water generation system and operation method thereof
WO1999065594A1 (en) Spiral reverse osmosis membrane element, reverse osmosis membrane module using it, device and method for reverse osmosis separation incorporating the module
KR102009550B1 (en) Multi-stage reverse osmosis membrane device, and operation method therefor
JP5488466B2 (en) Fresh water generator
KR102009068B1 (en) Method of operating reverse osmosis membrane device, and reverse osmosis membrane device
WO2012086477A1 (en) Reverse osmosis processing device
JP2001239134A (en) Method for operating reverse osmosis treatment device, control device therefor and method for making water
JP5962513B2 (en) Fresh water production apparatus and fresh water production method
JP5791767B2 (en) Reverse osmosis processing equipment
JP2014159006A (en) Operation method of reverse osmotic membrane device
JP6036808B2 (en) Fresh water generation method
JP6216847B2 (en) Reverse osmosis processing equipment
CN101870533A (en) Pure water generating device
JPWO2018182033A1 (en) Fresh water producing method and fresh water producing device
JP5996057B2 (en) Reverse osmosis processing equipment
CN212504126U (en) Concentration system
Thoreau 4 Reverse Osmosis
JP2005118708A (en) Water cleaning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851609

Country of ref document: EP

Kind code of ref document: A1