JP2005118708A - Water cleaning system - Google Patents

Water cleaning system Download PDF

Info

Publication number
JP2005118708A
JP2005118708A JP2003357831A JP2003357831A JP2005118708A JP 2005118708 A JP2005118708 A JP 2005118708A JP 2003357831 A JP2003357831 A JP 2003357831A JP 2003357831 A JP2003357831 A JP 2003357831A JP 2005118708 A JP2005118708 A JP 2005118708A
Authority
JP
Japan
Prior art keywords
water
treated water
reverse osmosis
treated
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003357831A
Other languages
Japanese (ja)
Other versions
JP3878934B2 (en
Inventor
Kenji Hattori
賢二 服部
Mitsuru Kato
満 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Authentec KK
Original Assignee
Authentec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Authentec KK filed Critical Authentec KK
Priority to JP2003357831A priority Critical patent/JP3878934B2/en
Publication of JP2005118708A publication Critical patent/JP2005118708A/en
Application granted granted Critical
Publication of JP3878934B2 publication Critical patent/JP3878934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water cleaning system capable of stably and efficiently providing a cleaned water of high quality. <P>SOLUTION: The water cleaning system 1 is provided with a treatment object water supply means 3 for supplying treatment object water, a pump 5 for controlling supply water pressure of the treatment object water, a treatment object water storage 7 wherein the treatment object water pressured by the pump 5 is introduced, a plurality of treatment object water distribution ports 9 for distributing and draining the treatment object water from the storage 7, a plurality of reverse osmosis membrane modules 11 wherein the treatment object water distributed from the treatment object water distribution ports 9 is introduced and has reverse osmosis membranes for treating the treatment object water, a cleaned water supply means 13 for supplying cleaned water obtained by passing through the reverse osmosis membranes, and a drainage means 15 for draining uncleaned water not passing through the reverse osmosis membranes. The treatment object water is made predetermined uniform water pressure in the treatment object water storage 7 and supplied to the plurality of reverse osmosis membrane modules from the treatment object water distribution ports with stable water pressure and quantity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水浄化装置に関する。特に、逆浸透膜を透過させて水を浄化する水浄化装置に関する。   The present invention relates to a water purification apparatus. In particular, the present invention relates to a water purification device that purifies water by passing through a reverse osmosis membrane.

逆浸透膜を使用した種々の水浄化装置が使用されている。一般に、逆浸透膜は、超微細孔、即ち孔径が約0.1nmの孔を有する。この膜に水を透過(逆浸透)させることにより、水分子とダイオキシン、亜硝酸性窒素、カドミウム、ヒ素や細菌、ウィルス等の有害物質とを分離し、純水を得ることができる。逆浸透膜を使用した水浄化装置は、大型海水淡化装置から自動販売機用の飲料水製造、家庭用の浄水器、或いは高純度を必要とする各種工業用水、例えば、電子工業用純水、ボイラー用水、ジュースやワインの製造等に広く普及している。
この水浄化装置の中でも浄化水製造能力(効率)の高いものに、逆浸透膜への供給水圧が比較的中高圧(即ち0.69MPa以上)に設定されたものがある。このタイプの水浄化装置は、中高圧にて水を透過させるために水の透過速度が速く、浄化処理能力が高い。しかしながら、水道水のように、処理される水(以下「被処理水」という。)に塩素、次亜塩素酸等が含有されている場合、被処理水が逆浸透膜を通過する際に比較的高い圧に加圧される結果、被処理水からガス化した塩素成分が逆浸透膜を通過して浄化された水(以下「浄化水」という。)に再び溶存してしまう虞があった。この場合、浄化水が塩素臭を有する場合があり好ましくない。
一方、逆浸透膜への供給水圧が低圧、典型的には0.5MPa以下(例えば0.36MPa程度)である場合には、塩素成分のガス化が起こらず、上記のような不具合は生じない。しかし、供給水圧が低圧であると、逆浸透膜への透過速度もそれだけ遅くなり、浄化水製造量(効率)が低いという問題がある。このため、従来、逆浸透膜(具体的には膜が装備された逆浸透膜モジュール)を複数同時に用いて、結果的に単位時間当りの浄化処理水量を稼いでいた。この場合、被処理水は、所定の供給水源から適宜分岐させた分岐管を介して各逆浸透膜モジュールに供給されていた。
Various water purification apparatuses using reverse osmosis membranes are used. Generally, a reverse osmosis membrane has ultrafine pores, that is, pores having a pore diameter of about 0.1 nm. By allowing water to permeate through this membrane (reverse osmosis), water molecules and dioxins, nitrite nitrogen, cadmium, arsenic, bacteria, viruses and other harmful substances can be separated to obtain pure water. Water purification devices using reverse osmosis membranes can be used for the production of drinking water for vending machines from large seawater desalination devices, household water purifiers, or various industrial waters that require high purity, such as pure water for electronic industries, Widely used in boiler water, juice and wine production.
Among these water purification apparatuses, one having a high purified water production capacity (efficiency) is one in which the supply water pressure to the reverse osmosis membrane is set to a relatively medium high pressure (that is, 0.69 MPa or more). This type of water purification device has a high water permeation rate and a high purification capacity in order to permeate water at medium and high pressures. However, when tap water, chlorine, hypochlorous acid, etc. are contained in the water to be treated (hereinafter referred to as “treated water”), it is compared when the treated water passes through the reverse osmosis membrane. As a result, the chlorine component gasified from the water to be treated may be dissolved again in the water purified through the reverse osmosis membrane (hereinafter referred to as “purified water”). . In this case, the purified water may have a chlorine odor, which is not preferable.
On the other hand, when the supply water pressure to the reverse osmosis membrane is low, typically 0.5 MPa or less (for example, about 0.36 MPa), gasification of the chlorine component does not occur and the above problems do not occur. . However, if the supply water pressure is low, the permeation rate to the reverse osmosis membrane is also slowed, and there is a problem that the amount of purified water produced (efficiency) is low. For this reason, conventionally, a plurality of reverse osmosis membranes (specifically, reverse osmosis membrane modules equipped with membranes) are simultaneously used, and as a result, the amount of purified water to be treated per unit time has been earned. In this case, the water to be treated was supplied to each reverse osmosis membrane module through a branch pipe appropriately branched from a predetermined supply water source.

しかしながら、従来の分岐管によって二以上の逆浸透膜モジュールに被処理水を供給する形態では、供給される被処理水の圧力及び流量を二以上の逆浸透膜モジュール間でほぼ一定かつ均一に保つことは困難であった。すなわち、逆浸透膜モジュール毎の浄化処理効率にムラがあり浄化処理水量がばらつくために、所望する高い浄化処理効率が実現できない場合があった。
本発明はかかる従来の課題を解決すべく開発されたものであり、高品質の浄化水を安定的に効率よく製造し得る水浄化装置及び該装置によって製造された浄化水を提供することを目的とする。
However, in the form in which treated water is supplied to two or more reverse osmosis membrane modules by a conventional branch pipe, the pressure and flow rate of the supplied treated water are kept substantially constant and uniform between the two or more reverse osmosis membrane modules. It was difficult. That is, there is a case where the desired high purification efficiency cannot be realized because the purification efficiency of each reverse osmosis membrane module is uneven and the amount of purification water varies.
The present invention has been developed to solve such conventional problems, and an object thereof is to provide a water purification device capable of stably and efficiently producing high-quality purified water and purified water produced by the device. And

本発明に係る水浄化装置は、被処理水を供給する被処理水供給手段と、該被処理水の供給水圧を調整するポンプと、このポンプで加圧された被処理水が導入される被処理水貯留器と、該貯留器から被処理水を分配排水する複数の被処理水分配口と、各被処理水分配口から分配された被処理水がそれぞれ導入されるとともに該被処理水を処理する逆浸透膜を備える複数の逆浸透膜モジュールと、該逆浸透膜を透過して得られた浄化水を給水する浄化水供給手段と、上記逆浸透膜を透過しない非浄化水を排出する排水手段とを備える。
かかる構成の水浄化装置では、被処理水は、ポンプによりその供給圧力を加圧されて被処理水供給手段から一旦被処理水貯留器に導入される。ここで被処理水は、被処理水貯留器内において所定の均一な圧力にされる。そして、この貯留器の各被処理水分配口から各逆浸透膜モジュールに被浄化水が分配・給水される。このとき、被処理水は、被処理水分配口から所定の均一な圧力で、また安定した流量で複数の逆浸透圧モジュールに供給され得る。このため、複数の逆浸透膜モジュールを用いて浄化処理水量を増加させつつも、常に一定でかつモジュール毎に均一な水量を安定して浄化することが可能となる。この後、被処理水の一部は、逆浸透膜モジュールの逆浸透膜を透過して浄化水となり、浄化水供給手段により所定の給水先に供給される。一方、逆浸透膜を透過しない部分(非浄化水)は排水手段により装置外部に排水される。
A water purification apparatus according to the present invention includes a treated water supply means for supplying treated water, a pump for adjusting a supply water pressure of the treated water, and a treated water into which treated water pressurized by the pump is introduced. A treated water reservoir, a plurality of treated water distribution ports for distributing and discharging treated water from the reservoir, and treated water distributed from each treated water distribution port are respectively introduced and treated water A plurality of reverse osmosis membrane modules having a reverse osmosis membrane to be treated; purified water supply means for supplying purified water obtained by permeating the reverse osmosis membrane; and discharging non-purified water that does not pass through the reverse osmosis membrane. A drainage means.
In the water purification apparatus having such a configuration, the water to be treated is pressurized by a pump and is temporarily introduced from the water to be treated supply means into the water to be treated. Here, the treated water is brought to a predetermined uniform pressure in the treated water reservoir. And the to-be-purified water is distributed and supplied to each reverse osmosis membrane module from each to-be-treated water distribution port of this reservoir. At this time, the treated water can be supplied to the plurality of reverse osmotic pressure modules from the treated water distribution port at a predetermined uniform pressure and at a stable flow rate. For this reason, it is possible to stably purify a water amount that is always constant and uniform for each module, while increasing the amount of water to be purified using a plurality of reverse osmosis membrane modules. Thereafter, a part of the water to be treated passes through the reverse osmosis membrane of the reverse osmosis membrane module to become purified water, and is supplied to a predetermined water supply destination by the purified water supply means. On the other hand, the portion that does not pass through the reverse osmosis membrane (non-purified water) is drained outside the apparatus by the drainage means.

特に、上記被処理水分配口から分配される被処理水の水圧は0.5Pa以下であることが好ましい。水圧がこのような低圧であることにより、塩素成分のガス化が防止されるため、浄化水中における塩素成分の残留が低減する。従って、浄化性能に優れる。   In particular, the water pressure of the treated water distributed from the treated water distribution port is preferably 0.5 Pa or less. Since the water pressure is such a low pressure, gasification of the chlorine component is prevented, so that the residual chlorine component in the purified water is reduced. Accordingly, the purification performance is excellent.

好ましくは、上記被処理水貯留器は略円筒状であって、かつ上記被処理水分配口は略円形である。被処理水貯留器が略円筒状であると、貯留器内の水圧がより安定して均一となり、被処理水分配口に分配される水圧及び流量をより安定して一定に保つことができる。また、被処理水分配口が略円形であると、排水圧がより安定して均一となり、逆浸透膜モジュールに分配される水圧及び流量をより安定して一定に保つことができる。   Preferably, the treated water reservoir is substantially cylindrical, and the treated water distribution port is substantially circular. When the treated water reservoir is substantially cylindrical, the water pressure in the reservoir becomes more stable and uniform, and the water pressure and flow rate distributed to the treated water distribution port can be kept more stable and constant. Moreover, when the treated water distribution port is substantially circular, the drainage pressure becomes more stable and uniform, and the water pressure and flow rate distributed to the reverse osmosis membrane module can be more stably maintained constant.

また、好ましくは、上記被処理水分配口は、上記円筒状被処理水貯留器の筒面に非一軸(即ち円筒状被処理水貯留器の長手方向に一列に並列していないよう)に設けられている。被処理水分配口が非一軸に設けられていることにより、被処理水分配口相互の間隔をより広く確保し得、被処理水分配口を複数設けることによる被処理水貯留器の強度低下を抑制し得る。   Preferably, the treated water distribution port is provided non-uniaxially on the cylindrical surface of the cylindrical treated water reservoir (that is, not arranged in a line in the longitudinal direction of the cylindrical treated water reservoir). It has been. Since the treated water distribution ports are provided non-uniaxially, it is possible to secure a wider space between the treated water distribution ports, and to reduce the strength of the treated water reservoir by providing a plurality of treated water distribution ports. Can be suppressed.

このうち好ましいものは、上記円筒状被処理水貯留器における長手方向に略垂直の断面開口面積は、上記複数の被処理水分配口の開口面積の合計よりも大きい。この構成により、一旦被処理水を貯留器に貯留して、貯留器内の水圧をさらに安定して均一に保つことができる。このため、より安定した水圧及び流量で被処理水を被処理水分配口に供給することができる。   Of these, the cross-sectional opening area substantially perpendicular to the longitudinal direction in the cylindrical treated water reservoir is preferably larger than the total opening area of the plurality of treated water distribution ports. With this configuration, the water to be treated can be temporarily stored in the reservoir, and the water pressure in the reservoir can be more stably and uniformly maintained. For this reason, to-be-processed water can be supplied to a to-be-processed water distribution port by the more stable water pressure and flow volume.

さらにこのうち好ましいものは、上記被処理水貯留器の直径は、上記複数の被処理水分配口の直径の合計よりも大きい。この構成により、貯留器内の水圧をよりいっそう安定して均一に保つことができ、よりいっそう安定した水圧及び流量で被処理水を被処理水分配口に供給することができる。   Further, among these, the diameter of the treated water reservoir is preferably larger than the sum of the diameters of the plurality of treated water distribution ports. With this configuration, the water pressure in the reservoir can be maintained more stably and uniformly, and the treated water can be supplied to the treated water distribution port at a more stable water pressure and flow rate.

また、好ましくは、上記排水手段は、上記複数の逆浸透膜モジュールからそれぞれ排出された非浄化水を装置外に排出する前に一旦集合させる排水貯留器を有する。この構成によれば、各逆浸透膜モジュールからの排水を排水貯留器に一旦導入し、ここから所定の均一な水圧及び流量で排水させることができる。また、一つのバルブにより各逆浸透膜モジュールからの排水圧を均一に制御することができる。   Preferably, the drainage means has a drainage reservoir that temporarily collects the non-purified water discharged from the plurality of reverse osmosis membrane modules before discharging out of the apparatus. According to this configuration, the drainage from each reverse osmosis membrane module can be once introduced into the drainage reservoir and drained at a predetermined uniform water pressure and flow rate. Moreover, the drain pressure from each reverse osmosis membrane module can be uniformly controlled by one valve.

また、好ましくは、上記被処理水供給手段には、被処理水を予め濾過する前処理濾過手段が設けられる。この構成により、逆浸透膜に被処理水を透過させる前に、予め前処理濾過手段で比較的大きな不純物を除去することができる。このため、逆浸透膜には大きな不純物を浄化する必要がなく、その浄化性能の低下が抑制される。   Preferably, the treated water supply means is provided with pretreatment filtering means for preliminarily filtering the treated water. With this configuration, it is possible to remove relatively large impurities in advance by the pretreatment filtering means before allowing the water to be treated to permeate the reverse osmosis membrane. For this reason, it is not necessary to purify large impurities in the reverse osmosis membrane, and the degradation of the purification performance is suppressed.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、被処理水貯留器や被処理水分配口等)以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
本発明の装置では、逆浸透膜を用いて被処理水を浄化することができればよく、種々の材料及び構成をその目的のために適用することができる。逆浸透膜の構造や組成に特に制限はない。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters necessary for the implementation of the present invention other than the matters specifically mentioned in the present specification (for example, the treated water reservoir and the treated water distribution port) are the prior art in this field. It can be grasped as a design matter of a person skilled in the art based on this. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
In the apparatus of this invention, what is necessary is just to be able to purify to-be-processed water using a reverse osmosis membrane, and various materials and structure can be applied for the objective. There is no particular limitation on the structure and composition of the reverse osmosis membrane.

次に、本発明の具体的な実施形態に係る水浄化装置1について図面を参照して説明する。図1は小売り用の飲料水製造に使用される(例えば浄化水の自動販売機として使用され得る)水浄化装置1の構成の概略を模式的に示すブロック図である。
本装置1は、大まかにいって、被処理水供給手段3と、加圧ポンプ5と、被処理水貯留器7と、複数(ここでは計7つ)の被処理水分配口9と、複数(ここでは計7つ)の逆浸透膜モジュール11と、浄化水供給手段13と、排水手段15とから構成されている。
Next, the water purification apparatus 1 which concerns on specific embodiment of this invention is demonstrated with reference to drawings. FIG. 1 is a block diagram schematically showing the outline of the configuration of a water purification apparatus 1 used for manufacturing retail drinking water (for example, it can be used as a vending machine for purified water).
Roughly speaking, the apparatus 1 includes a treated water supply means 3, a pressure pump 5, a treated water reservoir 7, a plurality (in this case, seven) of treated water distribution ports 9, and a plurality of treated water distribution ports 9. The reverse osmosis membrane module 11, the purified water supply means 13, and the drainage means 15 are configured (here, a total of seven).

被処理水供給手段3としての給水管3Aは、図示しない供給水源(ここでは上水道管)に連通しており、図1において矢印にて示すように、被処理水が装置内に導入される。給水管3Aには、被処理水の逆流防止のために逆止弁17が設けられている。また、給水管3Aには、被処理水の供給を制御する止水電磁弁23が設けられている。さらに給水管3Aの一部には、前処理濾過手段として、一般的なフィルターやイオン交換樹脂等を含む精密濾過フィルター19と、活性炭等の吸着材を含む吸着濾過フィルター21が設けられている。   A water supply pipe 3A serving as the water to be treated 3 is in communication with a supply water source (not shown) (water supply pipe here), and the water to be treated is introduced into the apparatus as indicated by an arrow in FIG. A check valve 17 is provided in the water supply pipe 3A to prevent backflow of the water to be treated. Further, the water supply pipe 3A is provided with a water stop solenoid valve 23 for controlling the supply of water to be treated. Further, a part of the water supply pipe 3A is provided with a microfiltration filter 19 including a general filter, an ion exchange resin and the like, and an adsorption filtration filter 21 including an adsorbent such as activated carbon as pretreatment filtering means.

逆止弁17及び止水電磁弁23は、被処理水の供給を制御する機能を有すれば、これに限定されず、その機構は適宜変更することができる。また、前処理濾過手段としては、被処理水に含まれる比較的大きな不純物や溶存したイオン化物質等を除去可能な手段であれば、特に限定されず、適宜必要な濾過手段を選択することができる。具体的には、精密濾過フィルター19としては、被処理水中の大きな汚れ成分、例えば、泥、赤錆や水あか等を除去可能なものが適用可能であり、微細孔、例えば、1〜10μm、好ましくは3〜7μm、特に5μmの細孔を有するもの、例えば、中空糸、セラミック、網状発砲体(好ましくは、ポリプロピレン樹脂)等の従来公知のフィルターやイオン交換樹脂等を用いることができる。その大きさは、長さが10〜60cm、特に20〜30cmであり、直径が1〜30cm、特に3〜10cmのものが低圧でも適度な流速で被処理水を透過可能なために好適である。   The check valve 17 and the water stop electromagnetic valve 23 are not limited to this as long as they have a function of controlling the supply of water to be treated, and their mechanisms can be changed as appropriate. The pretreatment filtering means is not particularly limited as long as it is a means capable of removing relatively large impurities or dissolved ionized substances contained in the water to be treated, and a necessary filtering means can be appropriately selected. . Specifically, as the microfiltration filter 19, those capable of removing large dirt components in the water to be treated, such as mud, red rust and water stain, are applicable, and fine pores, for example, 1 to 10 μm, preferably Conventionally known filters such as those having pores of 3 to 7 μm, particularly 5 μm, for example, hollow fibers, ceramics, and reticulated foams (preferably polypropylene resin), ion exchange resins and the like can be used. The size is 10 to 60 cm, particularly 20 to 30 cm in length, and those having a diameter of 1 to 30 cm and particularly 3 to 10 cm are suitable because they can permeate the water to be treated at an appropriate flow rate even at a low pressure. .

また、吸着濾過フィルター21としては、消毒用の塩素臭、有機物質の臭い等を吸着可能な活性炭、珪藻土、セラミック等を用いることができる。この細孔径は、例えば、0.1〜10μm、好ましくは0.5〜7μm、特に1〜5μmの細孔を有することが好ましい。また、その大きさは、長さが10〜60cm、特に20〜30cmであり、直径が1〜30cm、特に3〜10cmのものが低圧でも適度な流速で被処理水を透過可能なために好適である。尚、前処理濾過手段は、必ずしも必要ではなく、被処理水の汚れの程度や逆浸透膜の処理水量等に応じて適宜設けることができる。また、必要に応じて、所望の1個又は2個或いは3個以上の濾過フィルターを設けることができる。   Further, as the adsorption filter 21, activated carbon, diatomaceous earth, ceramic, or the like that can adsorb chlorine odor for disinfection, odor of organic substances, and the like can be used. The pore diameter is, for example, preferably 0.1 to 10 μm, preferably 0.5 to 7 μm, particularly 1 to 5 μm. Further, the size is 10 to 60 cm, particularly 20 to 30 cm in length, and those having a diameter of 1 to 30 cm and particularly 3 to 10 cm are suitable because they can permeate the water to be treated at an appropriate flow rate even at a low pressure. It is. The pretreatment filtration means is not always necessary, and can be appropriately provided according to the degree of contamination of the water to be treated, the amount of treated water in the reverse osmosis membrane, and the like. Moreover, the desired 1 or 2 or 3 or more filtration filter can be provided as needed.

加圧ポンプ5は、被処理水の供給圧を調整する。供給圧は、被処理水を逆浸透膜に透過させるに必要な水圧であって、例えば、0.5MPa以下(例えば、0.5〜0.1MPa)、好ましくは0.4MPa以下(例えば、0.4〜0.2MPa)、例えば約0.36MPaに制御される。この範囲の供給圧であると、被処理水中の塩素成分のガス化を防止するとともに、逆浸透膜への透過速度を所定範囲に保持し、浄化水を所望する供給量に確保することができる。加圧ポンプ5としては、従来公知の水圧を制御可能なポンプであればよく、入手可能な何れかのポンプを適宜選択して用いることができる。   The pressurizing pump 5 adjusts the supply pressure of the water to be treated. The supply pressure is a water pressure required to allow the water to be treated to permeate the reverse osmosis membrane, and is, for example, 0.5 MPa or less (for example, 0.5 to 0.1 MPa), preferably 0.4 MPa or less (for example, 0 .4 to 0.2 MPa), for example, about 0.36 MPa. When the supply pressure is within this range, gasification of the chlorine component in the water to be treated can be prevented, the permeation rate to the reverse osmosis membrane can be maintained within a predetermined range, and purified water can be secured at a desired supply amount. . The pressurizing pump 5 may be any conventionally known pump capable of controlling the water pressure, and any available pump can be appropriately selected and used.

被処理水貯留器7は、略円筒形であって、その長手方向の一端には給水管3Aが接続している被処理水導入口24が設けられ、その長手方向側面(筒面)には被処理水分配口9が複数設けられている。尚、図1において、被処理水分配口9は、7個設けられているが、用いる逆浸透膜モジュールの個数により適宜変更可能であり、その個数は限定されない。例えば、5〜25本の逆浸透膜モジュールを設ける場合には、それと同じ個数の被処理水分配口9を設けることができる。被処理水貯留器7を設けることにより、加圧ポンプ5は被処理水貯留器7に対して1つ設ければよい。このため、逆浸透膜モジュール毎に複数の加圧ポンプを設ける必要がなく、コストが低減される。また、複数の逆浸透膜モジュール全てに供給される被処理水の水圧及び流量を容易に調整することができる。   The treated water reservoir 7 has a substantially cylindrical shape, and a treated water introduction port 24 to which a water supply pipe 3A is connected is provided at one end in the longitudinal direction, and on the longitudinal side surface (tubular surface). A plurality of treated water distribution ports 9 are provided. In FIG. 1, seven treated water distribution ports 9 are provided, but can be appropriately changed depending on the number of reverse osmosis membrane modules used, and the number is not limited. For example, when 5 to 25 reverse osmosis membrane modules are provided, the same number of treated water distribution ports 9 can be provided. By providing the to-be-treated water reservoir 7, one pressurizing pump 5 may be provided for the to-be-treated water reservoir 7. For this reason, it is not necessary to provide a plurality of pressure pumps for each reverse osmosis membrane module, and the cost is reduced. In addition, the water pressure and flow rate of the water to be treated supplied to all the plurality of reverse osmosis membrane modules can be easily adjusted.

図2に示すように、被処理水貯留器7の長手方向に略垂直のII−II断面開口直径Rは、上記用途の場合、典型的には1〜10cm、好ましくは2〜5cm、例えば2〜4cmである。また、その開口面積Scmは、典型的には1.5 〜78cm、好ましくは3〜20cm、特に3〜12cmである。この範囲の開口直径及び/又は面積であることにより、下記所定の大きさの被処理水分配口9に均一な水圧及び流量で被処理水を分配供給することができる。さらに、その長さは、設ける逆浸透膜モジュール11の数により適宜選択されるが、典型的には5 〜60cm、好ましくは15〜50cm、例えば30〜40cmである。尚、被処理水貯留器7の形状は円筒形に限定されず、被処理水を導入可能ないずれの形状であってもよく、例えば、略直方体、略球状、楕円球状等にしてもよい。被処理水貯留器7の材質としては、例えば、ポリプロピレン、ポリエチレン、塩化ビニル、ステンレス、真鋳、アルミニウム、銅、鉄等が挙げられる。 As shown in FIG. 2, the II-II cross-sectional opening diameter R substantially perpendicular to the longitudinal direction of the treated water reservoir 7 is typically 1 to 10 cm, preferably 2 to 5 cm, for example 2 ~ 4 cm. Moreover, the opening area of Scm 2 is typically 1.5 ~78cm 2, preferably 3~20Cm 2, in particular 3~12cm 2. By setting the opening diameter and / or area within this range, the treated water can be distributed and supplied to the treated water distribution port 9 of the following predetermined size with a uniform water pressure and flow rate. Furthermore, although the length is suitably selected according to the number of the reverse osmosis membrane modules 11 to be provided, it is typically 5 to 60 cm, preferably 15 to 50 cm, for example 30 to 40 cm. In addition, the shape of the to-be-treated water reservoir 7 is not limited to a cylindrical shape, and may be any shape into which the to-be-treated water can be introduced. Examples of the material of the treated water reservoir 7 include polypropylene, polyethylene, vinyl chloride, stainless steel, brass, aluminum, copper, and iron.

被処理水分配口9は、図3に被処理水貯留器7の長手方向側面(筒面)を示すIII−III断面を示すように、被処理水貯留器7の長手方向において非一軸(ここではジグザグ)に複数設けられている。尚、被処理水貯留器7における被処理水分配口9の配置は、これに限定されず、適宜所望の位置に配置することができる。例えば、図4に示すように、被処理水貯留器7においてランダムに設けても良い。また、図5に示すように、螺旋状に設けても良い。さらに、図6に示すように、一軸に設けても良い。特に、被処理水貯留器7の強度低下を防止するために、各被処理水分配口9の間隔が広いことが好ましい。   The treated water distribution port 9 is non-uniaxial (here) in the longitudinal direction of the treated water reservoir 7, as shown in FIG. 3 along the III-III section showing the longitudinal side surface (tubular surface) of the treated water reservoir 7. In the zigzag), a plurality are provided. In addition, arrangement | positioning of the to-be-processed water distribution port 9 in the to-be-processed water storage device 7 is not limited to this, It can arrange | position to a desired position suitably. For example, as shown in FIG. 4, you may provide in the to-be-processed water reservoir 7 at random. Moreover, as shown in FIG. 5, you may provide in a spiral shape. Furthermore, as shown in FIG. 6, you may provide on one axis | shaft. In particular, in order to prevent a decrease in strength of the treated water reservoir 7, it is preferable that the intervals between the treated water distribution ports 9 are wide.

図3に示すように、被処理水分配口9の直径rは、例えば、3〜15mm、好ましくは5〜9mm、特に6〜7mmである。また、その開口面積smmは、例えば、7〜180mm、好ましくは19〜64mm、特に28〜38mmである。この範囲の開口面積及び/又は直径により、上記被処理水の供給水圧で、被処理水の流量は、通常0.1〜7リットル/分、好ましくは0.1〜5リットル/分、例えば約4リットル/分に保持される。この結果、本実施形態の水浄化装置1は、好ましくは0.1〜10トン/日、より好ましくは1〜8トン/日、例えば2〜7トン/日の効率で被処理水を浄化することが可能となる。 As shown in FIG. 3, the diameter r of the to-be-treated water distribution port 9 is, for example, 3 to 15 mm, preferably 5 to 9 mm, particularly 6 to 7 mm. The opening area smm 2 is, for example, 7 to 180 mm 2 , preferably 19 to 64 mm 2 , and particularly 28 to 38 mm 2 . Due to the opening area and / or diameter in this range, the flow rate of the water to be treated is usually 0.1 to 7 liters / minute, preferably 0.1 to 5 liters / minute, for example about Maintained at 4 liters / minute. As a result, the water purification apparatus 1 of the present embodiment preferably purifies treated water with an efficiency of 0.1 to 10 tons / day, more preferably 1 to 8 tons / day, for example, 2 to 7 tons / day. It becomes possible.

被処理水分配口9の形状は、特に限定されないが、略円形又は略楕円形であることが好ましい。特に、各被処理水分配口9から排水される水量を均一に保持するために、全ての被処理水分配口9の形状、面積及び直径等は、互いに近似していることが好適であり、特にほぼ同一形状・サイズであることが最適である。
また、被処理水貯留器7の断面開口面積Scmが、各被処理水分配口9の開口面積smmの合計よりも大きいことが好ましい。より好ましくは、被処理水貯留器7の断面開口直径Rcmが、各被処理水分配口9の直径rmmの合計よりも大きいことが好ましい。
Although the shape of the to-be-processed water distribution port 9 is not specifically limited, It is preferable that it is a substantially circular shape or a substantially elliptical shape. In particular, in order to uniformly maintain the amount of water drained from each treated water distribution port 9, the shape, area, diameter, etc. of all treated water distribution ports 9 are preferably close to each other, In particular, it is optimal that they have almost the same shape and size.
The cross-sectional opening area Scm 2 treated water reservoir 7 is preferably greater than the sum of the opening areas smm 2 of the treated water distribution orifice 9. More preferably, the cross-sectional opening diameter Rcm of the treated water reservoir 7 is preferably larger than the sum of the diameters rmm of the treated water distribution ports 9.

逆浸透膜モジュール11は、略円筒形のベッセル(ハウジング)内部に図示しない逆浸透膜が内蔵されている。このモジュール11と内部の逆浸透膜自体は従来品と同様でよく、その内部構造は本発明を特徴付けるものではないため詳細な説明は省略する。
逆浸透膜としては、特に限定されず、従来公知のいずれの逆浸透膜を用いることができる。特に、超微細孔、通常0.0001μm又はそれ以下の細孔径を有するものから適宜選択することができる。逆浸透膜は、ダイオキシン、亜硝酸性窒素、カドミウム、水銀、鉄、鉛等の有機物質を分離することができる。ベッセルの形状としては、略円筒形に限定されず、逆浸透膜を内蔵し、逆浸透膜に被処理水を透過可能な形状であればよい。例えば、略直方体、略球状、楕円球状等にしてもよい。ベッセルの材質としては、例えば、ポリプロピレン、ポリエチレン、塩化ビニル、又は金属材料、例えば、ステンレス、アルミ等が挙げられる。なお、逆浸透圧モジュール11の構成としては、これに限定されず、従来公知のいずれの構成から適宜選択することができる。
The reverse osmosis membrane module 11 has a reverse osmosis membrane (not shown) built in a substantially cylindrical vessel (housing). The module 11 and the internal reverse osmosis membrane itself may be the same as those of the conventional product, and the internal structure thereof does not characterize the present invention, and thus detailed description thereof is omitted.
The reverse osmosis membrane is not particularly limited, and any conventionally known reverse osmosis membrane can be used. In particular, it can be appropriately selected from ultrafine pores, usually those having a pore diameter of 0.0001 μm or less. The reverse osmosis membrane can separate organic substances such as dioxin, nitrite nitrogen, cadmium, mercury, iron and lead. The shape of the vessel is not limited to a substantially cylindrical shape, and any shape that incorporates a reverse osmosis membrane and can pass water to be treated through the reverse osmosis membrane may be used. For example, it may be a substantially rectangular parallelepiped, a substantially spherical shape, an elliptical spherical shape, or the like. Examples of the material of the vessel include polypropylene, polyethylene, vinyl chloride, or a metal material such as stainless steel and aluminum. In addition, as a structure of the reverse osmotic pressure module 11, it is not limited to this, It can select from any conventionally well-known structure suitably.

モジュール11の長手方向一端には、被処理水分配口9とチューブ25を介して連結される被処理水導入口27が設けられており、各逆浸透膜モジュール11に被処理水が分配・供給される。また、その他端には、逆浸透膜を透過した浄化水が給水される給水口29及び逆浸透膜を透過しなかった非浄化水を排水する排水口31が設けられている。
本装置1には浄化水供給手段13としての給水貯留器33が設けられている。給水貯留器33は、略円筒形であって、その長手方向側面(筒面)に逆浸透膜モジュール11と同じ個数(ここでは7つ)の給入口35が設けられており、各逆浸透膜モジュール11の給水口29とチューブ37を介して連結されている。このため、逆浸透膜を透過した浄化水は、各モジュール11の給水口29から一旦給水貯留器33に導入される。なお、給水貯留器33における給入口35の配置は、上記被処理水貯留器7における被処理水分配口9の配置と同様に、適宜所望の位置に配置することができる。また、ここでは、各逆浸透膜モジュール11と給水貯留器33の給入口35とを1:1でそれぞれ1本のチューブ37により繋いでいるが、例えば、図7に示すように、給入口35からみて分岐部材38aで二股又は二股以上に分かれたチューブ38により各逆浸透膜モジュール11に繋いでもよい。この場合には、給水貯留器33の容積を小型化及び構造を簡易化することができ、装置1を小型化し、又は製造コストを低減することができる。
A treated water introduction port 27 connected to the treated water distribution port 9 via a tube 25 is provided at one end in the longitudinal direction of the module 11, and treated water is distributed and supplied to each reverse osmosis membrane module 11. Is done. At the other end, a water supply port 29 for supplying purified water that has passed through the reverse osmosis membrane and a drain port 31 for discharging non-purified water that has not passed through the reverse osmosis membrane are provided.
The apparatus 1 is provided with a water supply reservoir 33 as purified water supply means 13. The water supply reservoir 33 has a substantially cylindrical shape, and is provided with the same number (seven in this case) of inlets 35 as the reverse osmosis membrane modules 11 on the longitudinal side surface (tubular surface). The module 11 is connected to the water supply port 29 via the tube 37. For this reason, the purified water that has passed through the reverse osmosis membrane is once introduced into the water supply reservoir 33 from the water supply port 29 of each module 11. In addition, arrangement | positioning of the inlet 35 in the water supply reservoir 33 can be suitably arrange | positioned in a desired position similarly to arrangement | positioning of the to-be-treated water distribution port 9 in the said to-be-treated water reservoir 7. FIG. In addition, here, each reverse osmosis membrane module 11 and the inlet 35 of the water supply reservoir 33 are connected by a single tube 37 at a ratio of 1: 1. For example, as shown in FIG. In view of this, the reverse osmosis membrane module 11 may be connected by a tube 38 that is divided into two or more branches by a branch member 38a. In this case, the volume of the water supply reservoir 33 can be reduced in size and the structure can be simplified, the device 1 can be reduced in size, or the manufacturing cost can be reduced.

給水貯留器33には、さらにその長手方向の一端に給出口39が設けられており、一旦導入された浄化水は、ここから給水される。さらに、浄化水給水手段13には、最終吸着濾過フィルター41と、電磁弁43が設けられている。その電磁弁43により給水貯留器33からの給水開始及び停止並びに給水量を制御することができる。電磁弁43としては特に限定されず、従来公知の水流を制御可能ないずれの構成から選択することができる。また、浄化水を長期に亘って給水貯留器33内に貯留したような場合でも、かかる最終吸着濾過フィルター41によって給水貯留器33から給水された浄化水の品質を維持することができる。最終濾過フィルターとしては、いずれの公知の不純物を吸着除去可能なフィルターを適宜選択して用いることができるが、上記前処理濾過手段の吸着濾過フィルター21と同様な構成を選択することが好適である。   The water supply reservoir 33 is further provided with a supply outlet 39 at one end in the longitudinal direction, and the purified water once introduced is supplied from here. Further, the purified water supply means 13 is provided with a final adsorption filtration filter 41 and an electromagnetic valve 43. The electromagnetic valve 43 can control the start and stop of water supply from the water supply reservoir 33 and the amount of water supply. The electromagnetic valve 43 is not particularly limited, and can be selected from any configuration that can control a conventionally known water flow. Moreover, even when purified water is stored in the water supply reservoir 33 for a long period of time, the quality of the purified water supplied from the water supply reservoir 33 by the final adsorption filtration filter 41 can be maintained. As the final filtration filter, a filter capable of adsorbing and removing any known impurities can be appropriately selected and used, but it is preferable to select the same configuration as the adsorption filtration filter 21 of the pretreatment filtration means. .

一方、排水手段15として、排水貯留器45と、排水管47及び洗浄用排水管57が設けられている。本実施形態に係る排水貯留器45は、略円筒形であって、その長手方向側面(筒面)に逆浸透膜モジュール11と同じ個数(ここでは7つ)の給入口49が設けられており、各逆浸透膜モジュール11の排水口31とチューブ51を介して連結されている。このため、逆浸透膜を透過しなかった非浄化水は、各逆浸透膜モジュール11の排水口31から一旦排水貯留器45に導入される。なお、排水貯留器45における給入口49の配置は、上記被処理水貯留器7における被処理水分配口9の配置と同様に、適宜所望の位置に配置することができる。排水貯留器45には、さらにその長手方向の一端に排出口53が設けられており、一旦導入された非浄化水はここから排水される。排出口53にはコネクターチューブ55が接続され、その先端は二股に分岐している。その一方には排水管47及び排水圧制御バルブ47Aが設けられており、排水管47の排水圧を制御可能に構成されている。排水圧制御バルブ47Aとしては、特に限定されず、従来公知の水圧を制御可能な何れかの構成から選択することができる。一方、分岐したチューブ55の他方には、排水管47に並列して、洗浄用排水管57及び洗浄用開放バルブ57Aが設けられている。所定量又は所定期間浄水した後には洗浄用開放バルブ57Aを開放することにより、装置1内の高圧となった非浄化水の排水流量を著しく増大させ、逆浸透膜に付着した不純物粒子やイオン化した溶存物質等を洗い流すことができる。本装置1のように、排水手段15において排水貯留器45を設けることにより、各逆浸透膜モジュール11からの非浄化水を排水貯留器45に一旦導入し、所定の均一な水圧及び流量で排水させることができる。また、一つの排水圧制御バルブ47Aにより各逆浸透膜モジュール11からの排水圧を均一に制御することができる。
なお、本実施形態においては、コネクターチューブ55を介して排水管47と洗浄用排水管57とを並列に設けているが、コネクターチューブ55を使用せずに、排水管47と洗浄用排水管57とを相互に独立させて排水貯留器45に直結してもよい(この場合には上記排出口53の他、洗浄用排水管57に連通する洗浄用排出口を設ければよい。)。
On the other hand, as the drainage means 15, a drainage reservoir 45, a drainage pipe 47 and a cleaning drainage pipe 57 are provided. The drainage reservoir 45 according to the present embodiment has a substantially cylindrical shape, and is provided with the same number (seven in this case) of inlet ports 49 as the reverse osmosis membrane module 11 on the side surface (tubular surface) in the longitudinal direction. The drain port 31 of each reverse osmosis membrane module 11 and the tube 51 are connected. For this reason, the non-purified water that has not permeated the reverse osmosis membrane is temporarily introduced into the drainage reservoir 45 from the drainage port 31 of each reverse osmosis membrane module 11. In addition, arrangement | positioning of the inlet 49 in the waste water reservoir 45 can be suitably arrange | positioned in a desired position similarly to arrangement | positioning of the to-be-treated water distribution port 9 in the said to-be-treated water reservoir 7. The drainage reservoir 45 is further provided with a discharge port 53 at one end in the longitudinal direction, and the non-purified water once introduced is drained therefrom. A connector tube 55 is connected to the discharge port 53, and the tip of the connector tube 55 is bifurcated. One of them is provided with a drain pipe 47 and a drain pressure control valve 47A so that the drain pressure of the drain pipe 47 can be controlled. The drain pressure control valve 47A is not particularly limited, and can be selected from any configuration that can control a conventionally known water pressure. On the other hand, on the other side of the branched tube 55, a cleaning drain pipe 57 and a cleaning opening valve 57 </ b> A are provided in parallel with the drain pipe 47. After cleaning water for a predetermined amount or for a predetermined period, the drainage flow rate of non-purified water that has become high pressure in the apparatus 1 is remarkably increased by opening the cleaning opening valve 57A, and impurity particles adhering to the reverse osmosis membrane or ionized Dissolved substances can be washed away. By providing a drainage reservoir 45 in the drainage means 15 as in the present apparatus 1, non-purified water from each reverse osmosis membrane module 11 is once introduced into the drainage reservoir 45 and drained at a predetermined uniform water pressure and flow rate. Can be made. Further, the drain pressure from each reverse osmosis membrane module 11 can be uniformly controlled by one drain pressure control valve 47A.
In the present embodiment, the drain pipe 47 and the cleaning drain pipe 57 are provided in parallel via the connector tube 55, but the drain pipe 47 and the cleaning drain pipe 57 are not used without using the connector tube 55. May be directly connected to the drainage reservoir 45 (in this case, a cleaning discharge port communicating with the cleaning drainpipe 57 may be provided in addition to the discharge port 53).

次に、本実施形態に係る水浄化装置1により被処理水を好適に浄化する方法の一態様を具体的に説明する。
まず、止水電磁弁23を開放して、被処理水を図示しない供給口から図1において矢印で示したように導入する。被処理水は、精密濾過フィルター19及び吸着濾過フィルター21を通過する。次いで、加圧ポンプ5により所望の供給圧(例えば0.36MPa)に加圧されて、被処理水貯留器7に導入される。被処理水貯留器7において被処理水は一定の圧力(ここでは0.36MPa)に貯留される。そして、被処理水は、被処理水貯留器7から一定の圧力(ここでは0.36MPa)で均一に各被処理水分配口9から所定の流速(ここでは0.4リットル/分)で流出し、各逆浸透膜モジュール11に導入される。
Next, one aspect of a method for suitably purifying water to be treated by the water purification apparatus 1 according to the present embodiment will be specifically described.
First, the water stop electromagnetic valve 23 is opened, and water to be treated is introduced from a supply port (not shown) as indicated by an arrow in FIG. The water to be treated passes through the microfiltration filter 19 and the adsorption filtration filter 21. Next, the pressure is increased to a desired supply pressure (for example, 0.36 MPa) by the pressure pump 5 and is introduced into the treated water reservoir 7. In the treated water reservoir 7, the treated water is stored at a constant pressure (here, 0.36 MPa). And the to-be-processed water flows out from each to-be-processed water distribution port 9 with a fixed flow velocity (here 0.4 liter / min) uniformly with a fixed pressure (here 0.36 MPa) from the to-be-treated water reservoir 7. And introduced into each reverse osmosis membrane module 11.

それぞれの逆浸透膜モジュール11に導入された被処理水のうち、逆浸透膜を透過した浄化水は、給水口29からチューブ37を通過して給水貯留器33に導入される。そして、電磁弁43により浄化水の供給量を制御しつつ、給水貯留器33から最終濾過フィルター41を通過して、例えば、図1のようにボトル63に浄化水が供給される。本実施形態に係る装置1では6.8トン/日程度の浄化水を容易に得ることができる。
一方、逆浸透膜を透過しなかった非浄化水は、逆浸透膜モジュール11の排水口31からチューブ51を通過して排水貯留器45に導入される。そして、排水圧制御バルブ47Aにより排水圧を制御されて、排水貯留器45の排出口53から非浄化水が排水される。
Of the water to be treated introduced into each reverse osmosis membrane module 11, purified water that has permeated through the reverse osmosis membrane passes through the tube 37 from the water supply port 29 and is introduced into the water supply reservoir 33. Then, while controlling the supply amount of the purified water by the electromagnetic valve 43, the purified water is supplied to the bottle 63, for example, as shown in FIG. In the apparatus 1 according to this embodiment, purified water of about 6.8 tons / day can be easily obtained.
On the other hand, the non-purified water that has not passed through the reverse osmosis membrane passes through the tube 51 from the drain port 31 of the reverse osmosis membrane module 11 and is introduced into the drainage reservoir 45. Then, the drain pressure is controlled by the drain pressure control valve 47A, and the non-purified water is drained from the discharge port 53 of the drain reservoir 45.

所定量又所定期間被処理水を浄化した後(ここでは、120〜1000トン又は2〜6ヶ月のいずれか早い方)には、洗浄用開放バルブ57Aを開放して洗浄用排水管57から非浄化水を排水させる。ここで、非浄化水は、装置1内において高圧となっており、洗浄用開放バルブ57Aの開放により、勢い良く流出する。この高い水流量によって、逆浸透膜表面に付着した不純物粒子やイオン化した溶存物質等が洗い流される。   After purifying the water to be treated for a predetermined amount or for a predetermined period (here, 120 to 1000 tons or 2 to 6 months, whichever is earlier), the cleaning open valve 57A is opened and the cleaning drain pipe 57 is not used. Drain the purified water. Here, the non-purified water has a high pressure in the apparatus 1 and flows out vigorously by opening the cleaning opening valve 57A. Due to this high water flow rate, impurity particles adhering to the reverse osmosis membrane surface, ionized dissolved substances, and the like are washed away.

以上、本発明の好適な実施態様を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した態様を様々に変形、変更したものが含まれる。例えば、被処理水貯留器の被処理水分配口と各逆浸透膜モジュールとは、1:1で1つのチューブにより繋がれているが、均一に水圧及び流量を保持可能に分岐できればこれに限られず、例えば、二以上のチューブにより被処理水貯留器と各逆浸透膜モジュールを繋いでもよい。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The preferred embodiments of the present invention have been described in detail above, but these are only examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the above-described embodiments. For example, the treated water distribution port of the treated water reservoir and each reverse osmosis membrane module are connected by a single tube at a ratio of 1: 1, but this is not limited as long as the water pressure and the flow rate can be evenly branched. For example, the treated water reservoir and each reverse osmosis membrane module may be connected by two or more tubes. In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

本発明に係る水浄化装置は、大型海水淡化装置、自動販売機用の飲料水製造、家庭用の浄水器、調理用又は食品工業用水、或いは高純度を必要とする各種工業用水、例えば、電子工業用純水、半導体工業用純水、ボイラー用水、医療注射液用の無菌純水、清涼飲料水やワインの製造等、水を浄化するため又は浄化水を製造する用途に特に制限なく適用することができる。特に、飲料水又は食品用水、例えば、自動販売機用の飲料水、調理用又は食品工業用純水の製造に好適である。
尚、本発明に係る水浄化装置は、逆浸透膜への供給水圧が低圧のものに限らず、複数の逆浸透膜モジュールを用いて浄化処理効率を向上させた中高圧のものにも適用することが可能である。
The water purification apparatus according to the present invention is a large-scale seawater desalination apparatus, drinking water production for vending machines, household water purifiers, cooking or food industry water, or various industrial waters that require high purity, such as electronic Applicable to applications for purifying water or producing purified water, such as industrial pure water, semiconductor industrial pure water, boiler water, sterile pure water for medical injections, soft drinks and wine be able to. In particular, it is suitable for the production of drinking water or food water, for example, drinking water for vending machines, pure water for cooking or food industry.
The water purification apparatus according to the present invention is not limited to a low water pressure supplied to the reverse osmosis membrane, but is also applicable to a medium-high pressure water whose purification treatment efficiency is improved by using a plurality of reverse osmosis membrane modules. It is possible.

一実施形態に係る水浄化装置の構成を模式的に説明するブロック図。The block diagram explaining the composition of the water purification device concerning one embodiment typically. 一実施形態に係る被処理水貯留器の断面開口部を示す説明図。Explanatory drawing which shows the cross-sectional opening part of the to-be-processed water reservoir which concerns on one Embodiment. 被処理水貯留器における被処理水分配口の配置についての一例を示す説明図。Explanatory drawing which shows an example about arrangement | positioning of the to-be-treated water distribution port in a to-be-treated water reservoir. 被処理水貯留器における被処理水分配口の配置についての他の例を示す説明図。Explanatory drawing which shows the other example about arrangement | positioning of the to-be-treated water distribution port in a to-be-treated water reservoir. 被処理水貯留器における被処理水分配口の配置についての他の例を示す説明図。Explanatory drawing which shows the other example about arrangement | positioning of the to-be-treated water distribution port in a to-be-treated water reservoir. 被処理水貯留器における被処理水分配口の配置についての他の例を示す説明図。Explanatory drawing which shows the other example about arrangement | positioning of the to-be-treated water distribution port in a to-be-treated water reservoir. 各逆浸透膜モジュールと給水貯留器との接続の一例を示す説明図。Explanatory drawing which shows an example of the connection of each reverse osmosis membrane module and a water supply reservoir.

符号の説明Explanation of symbols

1……水浄化装置
3……被処理水供給手段
5……加圧ポンプ
7……被処理水貯留器
9……被処理水分配口
11…逆浸透膜モジュール
13…浄化水供給手段
15…排水手段
19…精密濾過フィルター
21…吸着濾過フィルター
33…給水貯留器
41…最終吸着濾過フィルター
45…排水貯留器
DESCRIPTION OF SYMBOLS 1 ... Water purification apparatus 3 ... To-be-processed water supply means 5 ... Pressure pump 7 ... To-be-processed water reservoir 9 ... To-be-processed water distribution port 11 ... Reverse osmosis membrane module 13 ... Purified water supply means 15 ... Drainage means 19 ... microfiltration filter 21 ... adsorption filtration filter 33 ... water supply reservoir 41 ... final adsorption filtration filter 45 ... drainage reservoir

Claims (7)

被処理水を供給する被処理水供給手段と、
該被処理水の供給水圧を調整するポンプと、
このポンプで加圧された被処理水が導入される被処理水貯留器と、
該貯留器から被処理水を分配排水する複数の被処理水分配口と、
各被処理水分配口から分配された被処理水がそれぞれ導入され、該被処理水を処理する逆浸透膜を備える複数の逆浸透膜モジュールと、
該逆浸透膜を透過して得られた浄化水を給水する浄化水供給手段と、
前記逆浸透膜を透過しない非浄化水を排出する排水手段と、
を備える、水浄化装置。
Treated water supply means for supplying treated water;
A pump for adjusting the supply water pressure of the treated water;
A treated water reservoir into which treated water pressurized by this pump is introduced,
A plurality of treated water distribution ports for distributing treated water from the reservoir;
A plurality of reverse osmosis membrane modules each having a reverse osmosis membrane for introducing the treated water distributed from each treated water distribution port and treating the treated water;
Purified water supply means for supplying purified water obtained through the reverse osmosis membrane;
Drainage means for discharging unpurified water that does not pass through the reverse osmosis membrane;
A water purification apparatus comprising:
前記被処理水分配口から分配される被処理水の水圧が0.5Pa以下である、請求項1記載の水浄化装置。   The water purification apparatus of Claim 1 whose water pressure of the to-be-processed water distributed from the said to-be-processed water distribution port is 0.5 Pa or less. 前記被処理水貯留器が略円筒状であって、かつ前記被処理水分配口が略円形である、請求項1又は2記載の水浄化装置。   The water purification apparatus according to claim 1 or 2, wherein the treated water reservoir is substantially cylindrical and the treated water distribution port is substantially circular. 前記被処理水分配口は、前記被処理水貯留器の筒面に非一軸に設けられている、請求項3記載の水浄化装置。   The water purification apparatus according to claim 3, wherein the treated water distribution port is provided non-uniaxially on a cylindrical surface of the treated water reservoir. 前記被処理水貯留器における長手方向に略垂直の断面開口面積は、前記複数の被処理水分配口の開口面積の合計よりも大きい、請求項3又は4記載の水浄化装置。   The water purification apparatus according to claim 3 or 4, wherein a cross-sectional opening area substantially perpendicular to a longitudinal direction in the treated water reservoir is larger than a total opening area of the plurality of treated water distribution ports. 前記被処理水貯留器の直径は、前記複数の被処理水分配口の直径の合計よりも大きい、請求項5記載の水浄化装置。   The water purification apparatus according to claim 5, wherein a diameter of the treated water reservoir is larger than a sum of diameters of the plurality of treated water distribution ports. 前記排水手段には、前記複数の逆浸透膜モジュールからそれぞれ排出された非浄化水を装置外に排出する前に一旦集合させる排水貯留器を有する、請求項1〜6のうちのいずれかに記載の水浄化装置。   The drainage means includes a drainage reservoir that temporarily collects the non-purified water discharged from the plurality of reverse osmosis membrane modules before discharging out of the apparatus. Water purification equipment.
JP2003357831A 2003-10-17 2003-10-17 Water purification equipment Expired - Fee Related JP3878934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357831A JP3878934B2 (en) 2003-10-17 2003-10-17 Water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357831A JP3878934B2 (en) 2003-10-17 2003-10-17 Water purification equipment

Publications (2)

Publication Number Publication Date
JP2005118708A true JP2005118708A (en) 2005-05-12
JP3878934B2 JP3878934B2 (en) 2007-02-07

Family

ID=34614608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357831A Expired - Fee Related JP3878934B2 (en) 2003-10-17 2003-10-17 Water purification equipment

Country Status (1)

Country Link
JP (1) JP3878934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136384A (en) * 2005-11-21 2007-06-07 Family Service Eiko Co Ltd Permeated water manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136384A (en) * 2005-11-21 2007-06-07 Family Service Eiko Co Ltd Permeated water manufacturing apparatus

Also Published As

Publication number Publication date
JP3878934B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US6001244A (en) Performance water purification system
EP3375759B1 (en) Method for purifying water as well as plant suitable for said method
KR100876347B1 (en) Membrane Modules and Water Treatment Systems
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
JP5687561B2 (en) Water treatment equipment
JP2009119345A (en) Water treatment system and its operating method
JP6194887B2 (en) Fresh water production method
WO2011100320A2 (en) Advanced filtration device for water and wastewater treatment
CN111867700A (en) Integrated composite filter module for water purifier
US11648496B2 (en) Treatment module and operating method therefor
JP3878934B2 (en) Water purification equipment
KR200383096Y1 (en) Advanced water treatment using membrane Filtration
JP2008183513A (en) Water purifying apparatus
KR20130123879A (en) High efficiency water treatment system using hollow fiber membrane and method of the same
JP3838689B2 (en) Water treatment system
JP2005254192A (en) Membrane separator and membrane separation method
KR100372806B1 (en) Purifier With A Built In Antibacterial Silver Ceramic Filter
EP3894050B1 (en) Arrangement in cross-flow membrane separation unit
KR20020076197A (en) Reverse Osmosis Water Purification Apparatus for Coercive Circulation of Waste Water
KR200242686Y1 (en) A drinking water purifier
US11261102B2 (en) Reverse osmosis prefilter system
CN202688135U (en) Drinking fountain
RU90351U1 (en) MEMBRANE FILTER FOR CLEANING WATER
US20200377832A1 (en) System and method for purification of drinking water, ethanol and alcohol beverages of impurities
JPH08229553A (en) Purifying device for drinking water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees