JP2011136283A - Reverse osmosis membrane filter and reverse osmosis membrane filtration method - Google Patents

Reverse osmosis membrane filter and reverse osmosis membrane filtration method Download PDF

Info

Publication number
JP2011136283A
JP2011136283A JP2009297631A JP2009297631A JP2011136283A JP 2011136283 A JP2011136283 A JP 2011136283A JP 2009297631 A JP2009297631 A JP 2009297631A JP 2009297631 A JP2009297631 A JP 2009297631A JP 2011136283 A JP2011136283 A JP 2011136283A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
bank
membrane filtration
concentrated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297631A
Other languages
Japanese (ja)
Other versions
JP5327474B2 (en
Inventor
Kazushi Kondo
和史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2009297631A priority Critical patent/JP5327474B2/en
Publication of JP2011136283A publication Critical patent/JP2011136283A/en
Application granted granted Critical
Publication of JP5327474B2 publication Critical patent/JP5327474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve water treatment at a low cost and a high recovery rate. <P>SOLUTION: As a reverse osmosis membrane filter 10 has a structure of a single-stage concentrate system as a whole where concentrate is returned to the upstream side of a bank located on the most upstream side without being mixed into raw water, the treated water has good water quality equal to that of a conventional single-pass reverse osmosis membrane filter. In a pressurized circulating passage 22 including only a bank 18 whose inlet flow rate does not reach a minimum amount of concentrate, pressure of the concentrate is not released, which suppresses power consumption of a booster pump 24 for repressurizing the concentrate to a low level and does not cause increase of the power consumption of a pressurizing pump 12. As a result, the power consumption is suppressed to a level equal to that of a conventional pressurized circulating reverse osmosis membrane filter. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、逆浸透膜ろ過装置及び逆浸透膜ろ過方法に関するものである。   The present invention relates to a reverse osmosis membrane filtration apparatus and a reverse osmosis membrane filtration method.

従来から、逆浸透膜(RO膜)を使用したろ過装置が実用化されているが、この逆浸透膜ろ過装置の構成には、一例として、一過式、通常循環式及び加圧循環式と称されるものがある。
ここで、一過式の逆浸透膜ろ過装置100は、図3(a)に示されるように、加圧ポンプ102の下流に逆浸透膜モジュールユニット104、106、108、110(本説明では「バンク」ともいう。)を直列に配した濃縮水系流路112が構成されている。各バンクは、ベッセルに必要本数の逆浸透膜が装填されたものである(以下同様)。
Conventionally, a filtration device using a reverse osmosis membrane (RO membrane) has been put into practical use. For example, the configuration of this reverse osmosis membrane filtration device includes a transient type, a normal circulation type, and a pressurized circulation type. There is something called.
Here, the transient reverse osmosis membrane filtration device 100 has reverse osmosis membrane module units 104, 106, 108, 110 (in this description, “ A concentrated water channel 112 having a series of “banks” arranged in series is formed. In each bank, a necessary number of reverse osmosis membranes are loaded in a vessel (the same applies hereinafter).

又、逆浸透膜は、一般に、流路口径が16インチ(16”)、8インチ(8”)、4インチ(4”)、2インチ(2”)に形成されたものの中から、適宜選択されるものである。これらの逆浸透膜は、サイズに比例した最適の濃縮水量が規定されており、16インチは最大供給水量800L/minで、最少濃縮水量が160L/minである。8インチは最大供給水量200L/minで、最少濃縮水量が40L/minである。4インチは最大供給水量50L/minで、最少濃縮水量が10L/min、2インチは最大供給水量12.5L/minで、最少濃縮水量が2.5L/minである。   In general, reverse osmosis membranes are appropriately selected from those having channel diameters of 16 inches (16 "), 8 inches (8"), 4 inches (4 ") and 2 inches (2"). It is what is done. In these reverse osmosis membranes, an optimum concentrated water amount proportional to the size is specified, and the maximum supply water amount is 800 L / min for 16 inches and the minimum concentrated water amount is 160 L / min. 8 inches has a maximum supply water volume of 200 L / min and a minimum concentrated water volume of 40 L / min. 4 inches has a maximum supply water amount of 50 L / min, a minimum concentrated water amount of 10 L / min, 2 inches has a maximum supply water amount of 12.5 L / min, and a minimum concentrated water amount of 2.5 L / min.

図示の例では、バンク104、106は8インチの逆浸透膜が直列に4本用いられている。又、バンク108、110は、4インチの逆浸透膜が直列に6本用いられている。しかも、バンク108に関しては並列に2つのバンク108a、108bが並配置されている。これらのバンクの構成は各バンクの流入圧力と流出圧力とを考慮して、全てのバンクの入り口流量が、図中に例示されるように、最少濃縮水量を満たすように、選択されるものである(以下同様)。なお、図中符号114は、各バンクにて分離されたろ過水を回収するろ過水系流路である。   In the illustrated example, the banks 104 and 106 include four 8-inch reverse osmosis membranes in series. Banks 108 and 110 use six 4-inch reverse osmosis membranes in series. Moreover, with respect to the bank 108, two banks 108a and 108b are arranged in parallel. The configuration of these banks is selected in consideration of the inflow pressure and outflow pressure of each bank so that the inlet flow rate of all banks satisfies the minimum concentrated water amount as illustrated in the figure. Yes (the same applies below). In addition, the code | symbol 114 in a figure is the filtered water system flow path which collect | recovers the filtered water isolate | separated in each bank.

又、通常循環式の逆浸透膜ろ過装置120は、図3(b)に示されるように、加圧ポンプ122の下流にバンク124、126を直列に配した濃縮水系流路128を備え、かつ、濃縮水系流路128から、加圧ポンプ122の上流へと濃縮水の一部を還流させるための、循環路130が設けられている。図示の例では、バンク124、126の何れも、8インチの逆浸透膜が直列に4本用いられ、バンク124に関しては並列に2つのバンク124a、124bが並配置されている。なお、図中符号132は、各バンクにて分離されたろ過水を回収するろ過水系流路である。   Further, as shown in FIG. 3B, the normal circulation type reverse osmosis membrane filtration device 120 includes a concentrated water system flow path 128 in which banks 124 and 126 are arranged in series downstream of the pressurizing pump 122, and A circulation path 130 is provided for returning a part of the concentrated water from the concentrated water system flow path 128 to the upstream side of the pressurizing pump 122. In the illustrated example, each of the banks 124 and 126 includes four 8-inch reverse osmosis membranes in series, and two banks 124 a and 124 b are arranged in parallel with respect to the bank 124. In addition, the code | symbol 132 in a figure is the filtered water system flow path which collect | recovers the filtered water isolate | separated in each bank.

更に、加圧循環式の逆浸透膜ろ過装置140は、図3(c)に示されるように、加圧ポンプ142の下流に、ブースターポンプ144、バンク146、148を直列に配した濃縮水系流路150を備え、かつ、濃縮水系流路150から、加圧ポンプ142の下流かつブースターポンプ144の上流へと濃縮水の一部を還流させるための、循環路152が設けられている。図示の例では、バンク146、148の何れも、8インチの逆浸透膜が直列に4本用いられ、バンク146に関しては並列に2つのバンク146a、146bが並配置されている。なお、図中符号154は、各バンクにて分離されたろ過水を回収するろ過水系流路である。   Further, as shown in FIG. 3 (c), the pressurized circulation type reverse osmosis membrane filtration device 140 is a concentrated water system flow in which a booster pump 144 and banks 146 and 148 are arranged in series downstream of the pressure pump 142. A circulation path 152 is provided for supplying a part of the concentrated water from the concentrated water system flow path 150 to the downstream of the pressurizing pump 142 and the upstream of the booster pump 144. In the illustrated example, in each of the banks 146 and 148, four 8-inch reverse osmosis membranes are used in series, and two banks 146a and 146b are arranged in parallel with respect to the bank 146. In addition, the code | symbol 154 in a figure is the filtered water system flow path which collect | recovers the filtered water isolate | separated in each bank.

又、逆浸透膜ろ過装置の省エネルギー化と回収率の向上とを目的として、一定条件下で、濃縮水系流路を流れる濃縮水の圧力を、加圧ポンプの運転エネルギーに利用する手法も発案されている(例えば、特許文献1)。   In order to save energy and improve the recovery rate of the reverse osmosis membrane filtration device, a method of using the pressure of the concentrated water flowing through the concentrated water system flow path as the operating energy of the pressurizing pump under a certain condition has been proposed. (For example, Patent Document 1).

特許第3963304号公報Japanese Patent No. 3963304

しかしながら、上記従来技術は、以下のような問題が指摘されている。
まず、一過式の逆浸透膜ろ過装置100は、処理水水質が良く、加圧ポンプ122の消費電力も低く抑えることができるという利点があるが、一方では、使用可能な逆浸透膜の大きさが、事実上、上記の4種類に限られていることから、回収率の向上若しくは供給水量の増減に対し、最適な装置構成とすることが困難な場合がある。又、各バンクの流入圧力と流出圧力とを考慮して、全てのバンクの入り口流量が最少濃縮水量を満たすようにバンクを構成するためには、各バンクに使用される逆浸透膜の大きさを変え、バンクの数を増やす等、装置構成を複雑化することになり、設備の設置コスト、メンテナンスコストの増大を来たすものである。
However, the following problems have been pointed out in the above prior art.
First, the transient reverse osmosis membrane filtration apparatus 100 has the advantages that the quality of treated water is good and the power consumption of the pressure pump 122 can be kept low, but on the other hand, the size of the usable reverse osmosis membrane is large. However, since it is practically limited to the above four types, it may be difficult to obtain an optimum apparatus configuration for improving the recovery rate or increasing / decreasing the amount of supplied water. In addition, considering the inflow pressure and outflow pressure of each bank, the size of the reverse osmosis membrane used in each bank is required to configure the bank so that the inlet flow rate of all banks satisfies the minimum concentrated water amount. Therefore, the equipment configuration becomes complicated by changing the number of banks and increasing the number of banks, resulting in an increase in equipment installation cost and maintenance cost.

一方、通常循環式の逆浸透膜ろ過装置120は、循環路130によって、濃縮水系流路128から、加圧ポンプ122の上流へと濃縮水の一部を還流させることで、バンクの入り口流量は最少濃縮水量を満たすことになり、バンクの構成は一過式の逆浸透膜ろ過装置100よりも単純化される。しかしながら、循環水は加圧ポンプ122の上流に返送されることによって圧力開放され、再度加圧されることから、加圧ポンプ122の消費電力が増大してしまう。又、濃縮水が最も上流に位置するバンクの更に上流側へと還流されて原水に混入されることから、原水以上の濃度の水処理を行うこととなり、水質向上も困難である。   On the other hand, the normal circulatory reverse osmosis membrane filtration device 120 circulates a part of the concentrated water from the concentrated water system flow path 128 to the upstream of the pressurizing pump 122 by the circulation path 130, so that the inlet flow rate of the bank The minimum amount of concentrated water is satisfied, and the bank configuration is simplified as compared with the transient reverse osmosis membrane filtration device 100. However, the circulating water is returned to the upstream side of the pressurizing pump 122 to release the pressure and is pressurized again, so that the power consumption of the pressurizing pump 122 increases. Further, since the concentrated water is returned to the upstream side of the bank located at the most upstream and mixed with the raw water, water treatment with a concentration higher than that of the raw water is performed, and it is difficult to improve the water quality.

これに対し、加圧循環式の逆浸透膜ろ過装置140は、循環路152によって、濃縮水系流路150から、加圧ポンプ142の下流かつブースターポンプ144の上流へと濃縮水の一部が返送されるので、濃縮水は圧力開放されず、加圧ポンプ142及びブースターポンプ144の消費電力の増加は回避される。よって、通常循環式の逆浸透膜ろ過装置120よりも、装置全体の消費電力を抑えることができる。しかしながら、通常循環式の逆浸透膜ろ過装置120と同様に、濃縮水が最も上流に位置するバンクの更に上流側へと還流されて原水に混入されることから、原水以上の濃度の水処理を行うこととなり、処理水の水質向上は困難である。   In contrast, the pressurized circulation type reverse osmosis membrane filtration device 140 returns a part of the concentrated water from the concentrated water system flow path 150 to the downstream of the pressure pump 142 and the upstream of the booster pump 144 by the circulation path 152. Therefore, the pressure of the concentrated water is not released, and an increase in power consumption of the pressurizing pump 142 and the booster pump 144 is avoided. Therefore, the power consumption of the entire apparatus can be suppressed as compared with the normal circulation type reverse osmosis membrane filtration apparatus 120. However, as with the normal circulation type reverse osmosis membrane filtration device 120, the concentrated water is returned to the upstream side of the most upstream bank and mixed into the raw water. Therefore, it is difficult to improve the quality of the treated water.

なお、濃縮水系流路を流れる濃縮水の圧力を加圧ポンプの運転エネルギーに利用する手法によっても、浸透圧が低い水を70〜90%といった高い回収率とするためには、最少濃縮水膜面流速が確保できず、高効率の処理は不可能である。
本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、低コストかつ高い回収率での水処理を実現することにある。
In order to obtain a high recovery rate of 70 to 90% for water having a low osmotic pressure, the minimum concentrated water film can be used even by a technique of using the pressure of the concentrated water flowing through the concentrated water system flow path as the operating energy of the pressure pump. The surface flow velocity cannot be ensured, and highly efficient processing is impossible.
This invention is made | formed in view of the said subject, The place made into the objective is to implement | achieve water treatment with low cost and a high recovery rate.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)濃縮水系一段構成の逆浸透膜ろ過装置であって、加圧ポンプの下流に逆浸透膜を備える複数のバンクが配置され、入り口流量が最少濃縮水量を満たさないバンクのみを含む加圧循環流路が設けられている逆浸透膜ろ過装置(請求項1)。
本項に記載の逆浸透膜ろ過装置は、濃縮水が、最も上流に位置するバンクの更に上流側へと還流されて原水に混入されることはなく、全体として濃縮水系一段の構成を有している。又、入り口流量が最少濃縮水量を満たさないバンクのみを含む加圧循環流路では、濃縮水は圧力開放されないことから、加圧ポンプの消費電力の増加を来たすことも無い。又、加圧循環流路に含まれないバンクの負荷を軽く設定して逆浸透膜の閉塞を回避し、その一方で、逆浸透膜に加わる負荷を下流に位置するバンクに集中させ、加圧循環に係るバンクの流量調整をブースターポンプにより任意に行い、加圧循環に係るバンクの逆浸透膜の閉塞を、流量調整によって積極的に制御するものである。
(1) A reverse osmosis membrane filtration device having a single-stage configuration of a concentrated water system, wherein a plurality of banks including a reverse osmosis membrane are arranged downstream of a pressurizing pump, and the pressurization includes only a bank whose inlet flow rate does not satisfy the minimum concentrated water amount. A reverse osmosis membrane filtration device provided with a circulation channel (Claim 1).
The reverse osmosis membrane filtration device described in this section has a one-stage configuration of the concentrated water system as a whole, so that the concentrated water is not returned to the upstream side of the most upstream bank and mixed into the raw water. ing. Further, in the pressurized circulation flow path including only the bank where the inlet flow rate does not satisfy the minimum concentrated water amount, the pressure of the concentrated pump is not released, so the power consumption of the pressure pump does not increase. In addition, the bank load not included in the pressure circulation flow path is set lightly to avoid clogging of the reverse osmosis membrane, while the load applied to the reverse osmosis membrane is concentrated on the bank located downstream and pressurized. The flow rate adjustment of the bank related to the circulation is arbitrarily performed by a booster pump, and the blockage of the reverse osmosis membrane of the bank related to the pressure circulation is positively controlled by the flow rate adjustment.

(2)上記(1)項において、前記加圧循環流路のブースターポンプは、還流ライン又は該当するバンクの直前に設けられている逆浸透膜ろ過装置(請求項2)。
本項に記載の逆浸透膜ろ過装置は、上記(1)項記載の作用を奏するものであるかぎり、入り口流量が最少濃縮水量を満たさないバンクを含む加圧循環流路の昇圧制御を行うブースターポンプが、還流ラインに配置されていても、該当するバンクの直前に配置されていても良く、加圧循環流路のレイアウトは自由である。
(2) In the above item (1), the booster pump of the pressurized circulation channel is a reverse osmosis membrane filtration device provided immediately before the reflux line or the corresponding bank (Claim 2).
The reverse osmosis membrane filtration device described in this section is a booster that performs pressure increase control of a pressure circulation channel including a bank in which the inlet flow rate does not satisfy the minimum concentrated water amount as long as the operation described in the above item (1) is exhibited. The pump may be arranged in the reflux line or may be arranged immediately before the corresponding bank, and the layout of the pressurized circulation channel is arbitrary.

(3)上記(1)、(2)項において、回収率50%〜90%で、かつ、供給水量が500L/min以下である逆浸透膜ろ過装置(請求項3)。
本項に記載の逆浸透膜ろ過装置は、上記(1)項記載の作用を、回収率50%〜90%で、かつ、供給水量が500L/min以下の水処理条件にて奏するものである。
(3) A reverse osmosis membrane filtration device according to the above items (1) and (2), wherein the recovery rate is 50% to 90% and the amount of supplied water is 500 L / min or less (claim 3).
The reverse osmosis membrane filtration device described in this section achieves the action described in the above item (1) under water treatment conditions with a recovery rate of 50% to 90% and a supply water amount of 500 L / min or less. .

(4)加圧ポンプの下流に、逆浸透膜を備えるバンクを濃縮水系一段構成に配置し、入り口流量が最少濃縮水量を満たさないバンクのみに、加圧循環を行う逆浸透膜ろ過方法(請求項4)。
本項に記載の逆浸透膜ろ過方法は、濃縮水が、最も上流に位置するバンクの更に上流側へと還流されて、原水に混入されることはなく、全体として濃縮水系一段の構成で水処理を行うものである。又、入り口流量が最少濃縮水量を満たさないバンクのみ加圧循環を行うに当り、加圧循環中の濃縮水は圧力開放されないことから、加圧ポンプの消費電力の増加を来たすことも無い。又、逆浸透膜に加わる負荷を、下流に位置するバンクに集中させ、加圧循環に係るバンクの流量調整をブースターポンプにより任意に行うことが可能であることから、加圧循環流路に含まれないバンクの負荷を軽く設定して逆浸透膜の閉塞を回避し、加圧循環に係るバンクの逆浸透膜に集中する閉塞を、流量調整によって積極的に制御するものである。
(4) A reverse osmosis membrane filtration method in which a bank having a reverse osmosis membrane is arranged downstream of the pressurization pump in a concentrated water system, and pressure circulation is performed only in the bank where the inlet flow rate does not satisfy the minimum amount of concentrated water (claim) Item 4).
In the reverse osmosis membrane filtration method described in this section, the concentrated water is not returned to the upstream side of the bank located at the most upstream and mixed into the raw water. The processing is performed. Further, when the pressure circulation is performed only in the bank where the inlet flow rate does not satisfy the minimum amount of concentrated water, the pressure of the concentrated water during the pressure circulation is not released, so that the power consumption of the pressure pump is not increased. In addition, the load applied to the reverse osmosis membrane can be concentrated in the bank located downstream, and the flow rate of the bank related to the pressurization circulation can be adjusted arbitrarily by the booster pump. The load of the bank that is not set is lightly set to avoid the blockage of the reverse osmosis membrane, and the blockage concentrated on the reverse osmosis membrane of the bank related to the pressure circulation is positively controlled by adjusting the flow rate.

(5)上記(4)項において、前記加圧循環流路において、還流ライン又は濃縮水系管路の該当するバンクの直前にて昇圧を行う逆浸透膜ろ過方法(請求項5)。
本項に記載の逆浸透膜ろ過方法は、上記(4)項記載の作用を奏するものであるかぎり、入り口流量が最少濃縮水量を満たさないバンクを含む加圧循環流路の昇圧制御を行うブースターポンプを、還流ラインに配置しても、該当するバンクの直前に配置してもよく、加圧循環流路のレイアウトは自由である。
(5) The reverse osmosis membrane filtration method according to (4) above, wherein the pressure is increased immediately before the corresponding bank of the reflux line or the concentrated water system pipeline in the pressurized circulation channel (Claim 5).
The reverse osmosis membrane filtration method described in this section is a booster that performs pressure increase control of a pressurized circulation path including a bank whose inlet flow rate does not satisfy the minimum concentrated water amount as long as the operation described in the above item (4) is exhibited. The pump may be arranged in the reflux line or just before the corresponding bank, and the layout of the pressurized circulation flow path is arbitrary.

(6)上記(4)、(5)項において、回収率50%〜90%で、かつ、供給水量が500L/min以下で処理を行う逆浸透膜ろ過方法(請求項6)。
本項に記載の逆浸透膜ろ過方法は、上記(4)項記載の作用を、回収率50%〜90%で、かつ、供給水量が500L/min以下の水処理条件にて奏するものである。
(6) A reverse osmosis membrane filtration method in which the treatment is performed at a recovery rate of 50% to 90% and a supply water amount of 500 L / min or less in the above items (4) and (5) (Claim 6).
The reverse osmosis membrane filtration method described in this section performs the function described in the above (4) under water treatment conditions with a recovery rate of 50% to 90% and a supply water amount of 500 L / min or less. .

本発明はこのように構成したので、低コストかつ高い回収率での水処理を実現することが可能となる。   Since this invention was comprised in this way, it becomes possible to implement | achieve water treatment with a low cost and a high recovery rate.

本発明の実施の形態に係る、逆浸透膜ろ過装置の構成を模式的示すものであり、(a)は加圧循環流路のブースターポンプを還流ラインに設けた場合を、(b)は同ブースターポンプをバンクの直前に設けた場合を示している。BRIEF DESCRIPTION OF THE DRAWINGS The structure of the reverse osmosis membrane filtration apparatus based on embodiment of this invention is shown typically, (a) is a case where the booster pump of a pressurized circulation flow path is provided in the reflux line, (b) is the same. The case where the booster pump is provided immediately before the bank is shown. 本発明の実施の形態に係る、濃縮水系一段構成の逆浸透膜ろ過装置により得られた浄化水の成分を、原水、通常循環式の逆浸透膜ろ過装置により得られた浄化水、及び、加圧循環式逆浸透膜ろ過装置により得られた浄化水の、各成分と比較した図表である。Components of purified water obtained by a reverse osmosis membrane filtration device having a one-stage configuration of a concentrated water system according to an embodiment of the present invention are converted into raw water, purified water obtained by a normal circulation type reverse osmosis membrane filtration device, and added water. It is the chart compared with each component of the purified water obtained by the pressure circulation type reverse osmosis membrane filtration apparatus. 従来の、逆浸透膜ろ過装置の構成を模式的示すものであり、(a)は一過式の逆浸透膜ろ過装置、(b)は通常循環式の逆浸透膜ろ過装置、(c)は加圧循環式の逆浸透膜ろ過装置である。FIG. 1 schematically shows the configuration of a conventional reverse osmosis membrane filtration device, (a) is a transient reverse osmosis membrane filtration device, (b) is a normal circulation type reverse osmosis membrane filtration device, and (c) is This is a pressure circulation type reverse osmosis membrane filtration device.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。なお、従来技術と同一部分若しくは相当する部分については同一符号で示し、詳しい説明を省略する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. Note that the same or corresponding parts as those of the prior art are denoted by the same reference numerals, and detailed description thereof is omitted.

本発明の実施の形態に係る逆浸透膜ろ過装置10は、図1に示されるように、濃縮水系一段構成の逆浸透膜ろ過装置であって、加圧ポンプ12の下流に逆浸透膜を備える複数のバンク14、16、18が直列に配置されている。そして、入り口流量が最少濃縮水量を満たさないバンク18にのみ、濃縮水系流路20からバンク18へと濃縮水の一部を還流させるための、加圧循環流路22が設けられ、加圧循環経路22にはブースターポンプ24が配置されている。ブースターポンプ24は、図1(a)に示されるように、還流ライン26に設けられていても良く、又、図1(b)に示されるように、加圧循環流路22に係るバンク18の直前に設けられていても良い。図中符号28は、各バンクにて分離されたろ過水を回収するろ過水系流路である。
なお、図示の例では、バンク14、16、18の何れも、8インチの逆浸透膜が4本用いられ、加圧ポンプ12には、比較的低価格の多段渦巻きポンプが用いられている。一方、ブースターポンプ24には、締切り押し込み許容圧が高いキャンドポンプが用いられている。
A reverse osmosis membrane filtration device 10 according to an embodiment of the present invention is a reverse osmosis membrane filtration device having a one-stage configuration of a concentrated water system, as shown in FIG. A plurality of banks 14, 16 and 18 are arranged in series. A pressurized circulation channel 22 is provided only for the bank 18 where the inlet flow rate does not satisfy the minimum concentrated water amount, and a part of the concentrated water is recirculated from the concentrated water system channel 20 to the bank 18. A booster pump 24 is disposed in the path 22. The booster pump 24 may be provided in the reflux line 26 as shown in FIG. 1 (a), and the bank 18 associated with the pressurized circulation channel 22 as shown in FIG. 1 (b). It may be provided immediately before. The code | symbol 28 in a figure is the filtered water system flow path which collect | recovers the filtered water isolate | separated in each bank.
In the illustrated example, each of the banks 14, 16, and 18 uses four 8-inch reverse osmosis membranes, and the pressurizing pump 12 uses a relatively low-cost multistage centrifugal pump. On the other hand, for the booster pump 24, a canned pump having a high cut-off allowable pressure is used.

又、図示の例では、加圧ポンプ12の供給水量は130L/min、バンク14から流出する濃縮水量は91.2L/min、バンク16から流出する濃縮水量は52.4L/minである。前述の如く、8インチの逆浸透膜は最少濃縮水量が40L/minであり、バンク16からバンク18に流入する濃縮水量はこの最少濃縮水量を上回っているが、バンク18でろ過水が分離された後に排出される濃縮水量は、当然に40L/minを下回ることになる。   In the illustrated example, the amount of water supplied from the pressure pump 12 is 130 L / min, the amount of concentrated water flowing out from the bank 14 is 91.2 L / min, and the amount of concentrated water flowing out from the bank 16 is 52.4 L / min. As described above, the 8-inch reverse osmosis membrane has a minimum concentrated water amount of 40 L / min, and the concentrated water amount flowing into the bank 18 from the bank 16 exceeds the minimum concentrated water amount, but the filtered water is separated in the bank 18. Naturally, the amount of concentrated water discharged after this will be less than 40 L / min.

そこで、本発明の実施の形態では、バンク16から流出する濃縮水量に、循環ライン26により還流される濃縮水量38L/minが加わることで、バンク16への供給水量90L/minが確保され、バンク18でろ過水が分離された後に排出される濃縮水量も、51L/minが確保される。
そして、濃縮水系流路から、最終的に排出される濃縮水は13L/minである。このように、本発明の実施の形態に係る逆浸透膜ろ過装置10は、供給水量が500L/min以下で、かつ、回収率90%の逆浸透膜ろ過装置として構成されている。なお、上記各数値はあくまでも一例である。
Therefore, in the embodiment of the present invention, the amount of concentrated water flowing out from the bank 16 is added with the amount of concentrated water 38 L / min returned by the circulation line 26, so that the amount of supplied water 90L / min to the bank 16 is secured. The amount of concentrated water discharged after the filtered water is separated at 18 is also secured to 51 L / min.
And the concentrated water finally discharged | emitted from a concentrated water system flow path is 13 L / min. As described above, the reverse osmosis membrane filtration device 10 according to the embodiment of the present invention is configured as a reverse osmosis membrane filtration device having a supply water amount of 500 L / min or less and a recovery rate of 90%. In addition, each said numerical value is an example to the last.

又、各バンク14、16、18に用いられる逆浸透膜のサイズは、適宜選択するものであり、図示の例では、現状で最も流通量が多く低コストの8インチのみを使用したものである。なお、いずれのサイズの逆浸透膜を選択する場合であっても、各バンク14、16、18逆浸透膜の膜ろ過流速は、0.1m/dから1.0m/dの条件で使用されることが望ましい。又、逆浸透膜は、中空糸膜、スパイラル膜、チューブラー膜等が適宜用いられ、その材質も、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン等が適宜選択される。又、適宜、RO膜に換えていわゆるルーズROあるいはNF膜(ナノフィルター)を用いることも可能である。更に、各バンク14、16、18を構成するベッセルの、逆浸透膜の装填本数も、1本から6本までのものを適宜採用する。   The size of the reverse osmosis membrane used for each bank 14, 16, 18 is appropriately selected. In the example shown in the figure, only 8 inches, which has the highest distribution amount and low cost, are used at present. . Note that, regardless of the size of the reverse osmosis membrane selected, the membrane filtration flow rate of each bank 14, 16, 18 is used under the condition of 0.1 m / d to 1.0 m / d. It is desirable. As the reverse osmosis membrane, a hollow fiber membrane, a spiral membrane, a tubular membrane or the like is appropriately used, and cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone or the like is appropriately selected as the material. In addition, a so-called loose RO or NF film (nanofilter) can be used instead of the RO film as appropriate. Further, the number of the reverse osmosis membranes loaded in the vessels constituting the banks 14, 16, and 18 is appropriately selected from 1 to 6.

更に、ブースターポンプ24の流量は、加圧循環経路22に流量計を設置して実流量を計測し、流量をフィードバック制御することが望ましい。このフィードバック制御は、図示しない制御装置(パーソナルコンピュータ等の演算装置により構成される。)により実行されるものであり、流量の制御手法も、適宜、比例増加、比例減少、若しくは、複数段階の流量制御を行うこととする。   Furthermore, the flow rate of the booster pump 24 is preferably measured by installing a flow meter in the pressurization circulation path 22 to measure the actual flow rate and feedback-controlling the flow rate. This feedback control is executed by a control device (not shown) (configured by a computing device such as a personal computer), and the flow rate control method is also proportionally increased, proportionally decreased, or a plurality of stages of flow rates as appropriate. Control shall be performed.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。
まず、本発明の実施の形態に係る逆浸透膜ろ過装置10は、濃縮水が、最も上流に位置するバンクの更に上流側へと還流されて原水に混入されることはなく、全体として濃縮水系一段の構成を有しているので、処理水の水質は、従来の一過式の逆浸透膜ろ過装置100と同等の良好なものとなる。又、入り口流量が最少濃縮水量を満たさないバンク18のみを含む加圧循環流路22では、濃縮水は圧力開放されないことから、濃縮水の再加圧のためのブースターポンプ24の消費電力は低く抑えられ、加圧ポンプ12の消費電力の増加を来たすことも無い。よって、従来の加圧循環式の逆浸透膜ろ過装置140と同等の消費電力レベルに抑えることができる。
Now, according to the embodiment of the present invention configured as described above, the following operational effects can be obtained.
First, in the reverse osmosis membrane filtration device 10 according to the embodiment of the present invention, the concentrated water is not returned to the upstream side of the bank located at the most upstream and mixed into the raw water, but the concentrated water system as a whole. Since it has a one-stage configuration, the quality of treated water is as good as that of the conventional single-pass reverse osmosis membrane filtration device 100. Further, in the pressurized circulation flow path 22 including only the bank 18 whose inlet flow rate does not satisfy the minimum concentrated water amount, the pressure of the booster pump 24 for repressurizing the concentrated water is low because the pressure of the concentrated water is not released. Therefore, the power consumption of the pressurizing pump 12 is not increased. Therefore, it can be suppressed to the same power consumption level as that of the conventional pressurized circulation type reverse osmosis membrane filtration device 140.

又、加圧循環流路22に含まれないバンク14、16の負荷を軽く設定して逆浸透膜の閉塞を回避し、その一方で、逆浸透膜に加わる負荷を下流に位置するバンク18に集中させ、加圧循環に係るバンク18の流量調整をブースターポンプ24により任意に行い、バンク18の逆浸透膜の閉塞を、流量調整によって積極的に制御することができる。よって、逆浸透膜ろ過装置10全体としてのメンテナンスに要する手間やコストを低減させることができる。   Further, the load of the banks 14 and 16 not included in the pressurized circulation flow path 22 is set lightly to prevent the reverse osmosis membrane from being blocked, while the load applied to the reverse osmosis membrane is applied to the bank 18 located downstream. The booster pump 24 can arbitrarily adjust the flow rate of the bank 18 related to the pressurized circulation, and the blockage of the reverse osmosis membrane of the bank 18 can be positively controlled by adjusting the flow rate. Therefore, the labor and cost required for maintenance of the reverse osmosis membrane filtration device 10 as a whole can be reduced.

図2の図表には、本発明の実施の形態に係る、濃縮水系一段構成の逆浸透膜ろ過装置により得られた浄化水の成分が、原水、通常循環式の逆浸透膜ろ過装置により得られた浄化水、及び、加圧循環式逆浸透膜ろ過装置により得られた浄化水の、各成分の各々と比較されている。具体的条件は、以下の通りである。   The chart of FIG. 2 shows the components of purified water obtained by the reverse osmosis membrane filtration device having a single-stage configuration of the concentrated water system according to the embodiment of the present invention, obtained by the raw water, the normal circulation type reverse osmosis membrane filtration device. The purified water and the purified water obtained by the pressurized circulation reverse osmosis membrane filtration device are compared with each of the components. Specific conditions are as follows.

(原水)
アンモニア性窒素(MH4−N)濃度が13mg/L、全有機炭素(TOC)濃度が3.0mg/L、全溶解性物質(TDS)濃度が420mg/L、シリカ(SiO)濃度が5mg/Lであった。
(Raw water)
The ammonia nitrogen (MH4-N) concentration is 13 mg / L, the total organic carbon (TOC) concentration is 3.0 mg / L, the total soluble substance (TDS) concentration is 420 mg / L, and the silica (SiO 2 ) concentration is 5 mg / L. L.

(本発明)
加圧ポンプ12には、グルンドフォルス株式会社製「CRN5−20 AJG−E−HQQE」、ブースターポンプ24には帝国電気製作所製「F−42−119F2AL−0204R1−AV」を用いた。又、逆浸透膜にはGE製「AK8040F(400)」を、ベッセルにはコードライン社製「80A30 4エレメント」を用いた。
そして、加圧ポンプ12により130L/minで一時間の通水の後、ろ過水系流路28のろ過水を採水して、水質分析に供した。また、その際、クランプメータにマルチ計測器(株)製「AC/DCミニクランプメータ M290RWS」を用いて電圧・電流測定を行った。
結果、ろ過水のアンモニア性窒素濃度が0.5mg/L、全有機炭素濃度が0.1mg/L、全溶解性物質濃度が10.4mg/L、シリカ濃度が0.2mg/Lであった。
なお、加圧ポンプ12及びブースターポンプ24の消費電力は、合計2.26kWであった。
(Invention)
The pressure pump 12 was “CRN5-20 AJG-E-HQQE” manufactured by Grundfos Co., Ltd., and the booster pump 24 was “F-42-119F2AL-0204R1-AV” manufactured by Teikoku Seisakusho. In addition, “AK8040F (400)” manufactured by GE was used for the reverse osmosis membrane, and “80A304 4 element” manufactured by Cordline was used for the vessel.
And after passing water at 130 L / min for 1 hour with the pressurization pump 12, the filtered water of the filtration water system flow path 28 was sampled, and it used for the water quality analysis. At that time, voltage / current measurement was performed using “AC / DC Mini Clamp Meter M290RWS” manufactured by Multi Instrument Co., Ltd. as a clamp meter.
As a result, the ammonia nitrogen concentration of filtered water was 0.5 mg / L, the total organic carbon concentration was 0.1 mg / L, the total soluble substance concentration was 10.4 mg / L, and the silica concentration was 0.2 mg / L. .
In addition, the power consumption of the pressurization pump 12 and the booster pump 24 was a total of 2.26 kW.

(通常循環式)
加圧ポンプ122(図3(b))には、グルンドフォルス株式会社製「CRN10−10 AJG−E−HQQE」を用いた。又、逆浸透膜にはGE製「AK8040F(400)」を、ベッセルにはコードライン社製「80A30 4エレメント」を用いた。
そして、加圧ポンプ122により130L/minで一時間の通水の後、ろ過水系流路132(図3(b))のろ過水を採水して、水質分析に供した。また、その際、クランプメータにマルチ計測器(株)製「AC/DCミニクランプメータ M290RWS」を用いて電圧・電流測定を行った。
結果、ろ過水のアンモニア性窒素濃度が1.05mg/L、全有機炭素濃度が0.24mg/L、全溶解性物質濃度が33.75mg/L、シリカ濃度が0.4mg/Lであった。
なお、加圧ポンプ122の消費電力は、合計2.97kWであった。
(Normal circulation type)
“CRN10-10 AJG-E-HQQE” manufactured by Grundfos Co., Ltd. was used for the pressure pump 122 (FIG. 3B). In addition, “AK8040F (400)” manufactured by GE was used for the reverse osmosis membrane, and “80A304 4 element” manufactured by Cordline was used for the vessel.
And after passing water for 1 hour by 130 L / min with the pressurization pump 122, the filtrate of filtrate water system flow path 132 (FIG.3 (b)) was sampled, and it used for the water quality analysis. At that time, voltage / current measurement was performed using “AC / DC Mini Clamp Meter M290RWS” manufactured by Multi Instrument Co., Ltd. as a clamp meter.
As a result, the ammonia nitrogen concentration of filtered water was 1.05 mg / L, the total organic carbon concentration was 0.24 mg / L, the total soluble substance concentration was 33.75 mg / L, and the silica concentration was 0.4 mg / L. .
The power consumption of the pressurizing pump 122 was 2.97 kW in total.

(加圧循環式)
加圧ポンプ142(図3(c))には、グルンドフォルス株式会社製「CRN5−20 AJG−E−HQQE」、ブースターポンプ144(図3(c))には帝国電気製作所製「F−42−119F2AL−0204R1−AV」を用いた。又、逆浸透膜にはGE製「AK8040F(400)」を、ベッセルにはコードライン社製「80A30 4エレメント」を用いた。
そして、加圧ポンプ142により130L/minで一時間の通水の後、ろ過水系流路154(図3(c))のろ過水を採水して、水質分析に供した。また、その際、クランプメータにマルチ計測器(株)製「AC/DCミニクランプメータ M290RWS」を用いて電圧・電流測定を行った。
結果、ろ過水のアンモニア性窒素濃度が1.05mg/L、全有機炭素濃度が0.24mg/L、全溶解性物質濃度が33.75mg/L、シリカ濃度が0.4mg/Lであった。
なお、加圧ポンプ12及びブースターポンプ24の消費電力は、合計2.35kWであった。
(Pressurized circulation type)
“CRN5-20 AJG-E-HQQE” manufactured by Grundfos Co., Ltd. is used for the pressure pump 142 (FIG. 3C), and “F-42” manufactured by Teikoku Electric Co., Ltd. is used for the booster pump 144 (FIG. 3C). -119F2AL-0204R1-AV "was used. In addition, “AK8040F (400)” manufactured by GE was used for the reverse osmosis membrane, and “80A304 4 element” manufactured by Cordline was used for the vessel.
And after passing water at 130 L / min for 1 hour with the pressurization pump 142, the filtrate of filtrate water system flow path 154 (FIG.3 (c)) was sampled, and it used for water quality analysis. At that time, voltage / current measurement was performed using “AC / DC Mini Clamp Meter M290RWS” manufactured by Multi Instrument Co., Ltd. as a clamp meter.
As a result, the ammonia nitrogen concentration of filtered water was 1.05 mg / L, the total organic carbon concentration was 0.24 mg / L, the total soluble substance concentration was 33.75 mg / L, and the silica concentration was 0.4 mg / L. .
In addition, the power consumption of the pressurization pump 12 and the booster pump 24 was 2.35 kW in total.

以上のように、本発明の実施の形態に係る逆浸透膜ろ過装置10によれば、回収率50%〜90%で、かつ、供給水量が500L/min以下という条件下において、従来の逆浸透ろ過装置と比較して、最も低コストかつ高い回収率での水処理が実現された。   As described above, according to the reverse osmosis membrane filtration device 10 according to the embodiment of the present invention, the conventional reverse osmosis is performed under the conditions of a recovery rate of 50% to 90% and a supply water amount of 500 L / min or less. Compared with the filtration device, water treatment with the lowest cost and high recovery rate was realized.

10:逆浸透膜ろ過装置、12:加圧ポンプ、 14、16、18:バンク、20:濃縮水系流路、22:加圧循環流路、24:ブースターポンプ、26:還流ライン、28:ろ過水系流路   10: Reverse osmosis membrane filtration device, 12: Pressurization pump, 14, 16, 18: Bank, 20: Concentrated water system channel, 22: Pressurization circulation channel, 24: Booster pump, 26: Reflux line, 28: Filtration Water channel

Claims (6)

濃縮水系一段構成の逆浸透膜ろ過装置であって、加圧ポンプの下流に逆浸透膜を備える複数のバンクが配置され、入り口流量が最少濃縮水量を満たさないバンクのみを含む加圧循環流路が設けられていることを特徴とする逆浸透膜ろ過装置。 A concentrated osmosis system single-stage reverse osmosis membrane filtration device, wherein a plurality of banks including a reverse osmosis membrane are arranged downstream of a pressure pump, and a pressure circulation channel including only a bank whose inlet flow rate does not satisfy the minimum amount of concentrated water The reverse osmosis membrane filtration apparatus characterized by the above-mentioned. 前記加圧循環流路のブースターポンプは、還流ライン又は該当するバンクの直前に設けられていることを特徴とする請求項1記載の逆浸透膜ろ過装置。 The reverse osmosis membrane filtration device according to claim 1, wherein the booster pump of the pressurized circulation flow path is provided immediately before the reflux line or the corresponding bank. 回収率50%〜90%で、かつ、供給水量が500L/min以下であることを特徴とする請求項1又は2記載の逆浸透膜ろ過装置。 The reverse osmosis membrane filtration device according to claim 1 or 2, wherein the recovery rate is 50% to 90%, and the amount of supplied water is 500 L / min or less. 加圧ポンプの下流に、逆浸透膜を備えるバンクを濃縮水系一段構成に配置し、入り口流量が最少濃縮水量を満たさないバンクのみに、加圧循環を行うことを特徴とする逆浸透膜ろ過方法。 A reverse osmosis membrane filtration method characterized by disposing a bank having a reverse osmosis membrane downstream of a pressurization pump in a concentrated water system, and performing pressure circulation only in a bank whose inlet flow rate does not satisfy the minimum concentrated water amount. . 前記加圧循環流路において、還流ライン又は濃縮水系管路の該当するバンクの直前にて昇圧を行うことを特徴とする請求項4記載の逆浸透膜ろ過方法。 5. The reverse osmosis membrane filtration method according to claim 4, wherein the pressure is increased immediately before the corresponding bank of the reflux line or the concentrated water system conduit in the pressurized circulation channel. 回収率50%〜90%で、かつ、供給水量が500L/min以下で処理を行うことを特徴とする請求項4又は5記載の逆浸透膜ろ過方法。 The reverse osmosis membrane filtration method according to claim 4 or 5, wherein the treatment is performed at a recovery rate of 50% to 90% and a supply water amount of 500 L / min or less.
JP2009297631A 2009-12-28 2009-12-28 Reverse osmosis membrane filtration apparatus and reverse osmosis membrane filtration method Active JP5327474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297631A JP5327474B2 (en) 2009-12-28 2009-12-28 Reverse osmosis membrane filtration apparatus and reverse osmosis membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297631A JP5327474B2 (en) 2009-12-28 2009-12-28 Reverse osmosis membrane filtration apparatus and reverse osmosis membrane filtration method

Publications (2)

Publication Number Publication Date
JP2011136283A true JP2011136283A (en) 2011-07-14
JP5327474B2 JP5327474B2 (en) 2013-10-30

Family

ID=44348251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297631A Active JP5327474B2 (en) 2009-12-28 2009-12-28 Reverse osmosis membrane filtration apparatus and reverse osmosis membrane filtration method

Country Status (1)

Country Link
JP (1) JP5327474B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002015A1 (en) * 2013-07-03 2015-01-08 栗田工業株式会社 Operating method for membrane separation device, and membrane separation system
KR101519566B1 (en) * 2013-12-27 2015-05-13 부경대학교 산학협력단 Low energy and low fouling reverse osmosis apparatus and method for operating the same
JP2015139750A (en) * 2014-01-29 2015-08-03 株式会社ウェルシィ Reverse osmosis membrane apparatus and operation method of the same
WO2016151669A1 (en) * 2015-03-20 2016-09-29 三菱重工業株式会社 Water treatment device
JP2016221466A (en) * 2015-06-01 2016-12-28 株式会社ウェルシィ Water treatment system and cleaning method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181504A (en) * 1985-02-08 1986-08-14 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai Method and apparatus for concentrating solution
JPH03275127A (en) * 1990-03-27 1991-12-05 Japan Organo Co Ltd Method for concentrating organic valuable material by reverse-osmosis membrane
JPH11333267A (en) * 1998-05-27 1999-12-07 Osaka Gas Co Ltd Liquid filtration device and fuel cell generator using the device
JP2001252657A (en) * 2000-03-10 2001-09-18 Toray Ind Inc Fresh water generating method
JP2003300072A (en) * 2002-04-09 2003-10-21 Ngk Insulators Ltd Method for treating waste water of polishing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181504A (en) * 1985-02-08 1986-08-14 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai Method and apparatus for concentrating solution
JPH03275127A (en) * 1990-03-27 1991-12-05 Japan Organo Co Ltd Method for concentrating organic valuable material by reverse-osmosis membrane
JPH11333267A (en) * 1998-05-27 1999-12-07 Osaka Gas Co Ltd Liquid filtration device and fuel cell generator using the device
JP2001252657A (en) * 2000-03-10 2001-09-18 Toray Ind Inc Fresh water generating method
JP2003300072A (en) * 2002-04-09 2003-10-21 Ngk Insulators Ltd Method for treating waste water of polishing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002015A1 (en) * 2013-07-03 2015-01-08 栗田工業株式会社 Operating method for membrane separation device, and membrane separation system
JP2015013233A (en) * 2013-07-03 2015-01-22 栗田工業株式会社 Film separation device operation method and film separation system
KR101519566B1 (en) * 2013-12-27 2015-05-13 부경대학교 산학협력단 Low energy and low fouling reverse osmosis apparatus and method for operating the same
JP2015139750A (en) * 2014-01-29 2015-08-03 株式会社ウェルシィ Reverse osmosis membrane apparatus and operation method of the same
WO2016151669A1 (en) * 2015-03-20 2016-09-29 三菱重工業株式会社 Water treatment device
JP2016221466A (en) * 2015-06-01 2016-12-28 株式会社ウェルシィ Water treatment system and cleaning method thereof

Also Published As

Publication number Publication date
JP5327474B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5327474B2 (en) Reverse osmosis membrane filtration apparatus and reverse osmosis membrane filtration method
JP4996067B2 (en) Water treatment apparatus using reverse osmosis membrane and method of using the same
JPH0631273A (en) Method and device for purifying water
JP2008307522A (en) Desalting method, desalting apparatus, and bubble generator
JP7032381B2 (en) Methods and systems for treating ultrapure water
JP2008237971A (en) Method for operating membrane filtration system
US20190016618A1 (en) Wastewater treatment with modular membrane bioreactor cartridges
JP2009279472A (en) Reverse osmosis membrane device
JP2015104710A (en) Seawater desalination system
JP2011062632A (en) Method and apparatus for treating water using fine air bubbles
BRPI1004491A2 (en) water filtration method and system
WO2015002015A1 (en) Operating method for membrane separation device, and membrane separation system
KR20120049870A (en) Closed circuit desalination retrofit for improved performance of common reverse osmosis systems
JP2017221875A (en) Reverse osmosis membrane separation apparatus
JP2016064342A (en) Ultrapure water system
JP2018519158A (en) Method for controlling a desalination plant powered by a renewable energy source and associated plant
CN108928965A (en) Water treatment system and water purifier
ES2673945B2 (en) System and method for water treatment
JP2010207805A (en) Fresh water generator and fresh water generating method
JP6033118B2 (en) Reverse osmosis membrane device
JP2008237972A (en) Membrane filtration system
KR101933063B1 (en) Forward Osmosis Membrane Process
CN207276338U (en) A kind of low pressure is without electric water purification machine
JP2013052349A (en) Water making method
JP3375070B2 (en) Membrane processing device and fresh water method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5327474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250