WO2015001881A1 - 質量分析装置及び質量分析装置の制御方法 - Google Patents

質量分析装置及び質量分析装置の制御方法 Download PDF

Info

Publication number
WO2015001881A1
WO2015001881A1 PCT/JP2014/064359 JP2014064359W WO2015001881A1 WO 2015001881 A1 WO2015001881 A1 WO 2015001881A1 JP 2014064359 W JP2014064359 W JP 2014064359W WO 2015001881 A1 WO2015001881 A1 WO 2015001881A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
current
sample
detector
mass spectrometer
Prior art date
Application number
PCT/JP2014/064359
Other languages
English (en)
French (fr)
Inventor
山本 昭夫
渡辺 敏光
繁夫 大月
一樹 加島
利明 矢ノ倉
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US14/898,158 priority Critical patent/US9721773B2/en
Priority to DE112014002850.9T priority patent/DE112014002850B4/de
Priority to CN201480037476.0A priority patent/CN105359251B/zh
Publication of WO2015001881A1 publication Critical patent/WO2015001881A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0495Vacuum locks; Valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/102Ion sources; Ion guns using reflex discharge, e.g. Penning ion sources

Definitions

  • the present invention relates to a mass spectrometer and a method for controlling the mass spectrometer.
  • a mass spectrometer ionizes molecules in a sample to be analyzed, detects the separated ions by mass separation using an electric field and a magnetic field, and detects them with a detector.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-104247
  • Patent Document 2 Patent Document 2
  • Patent Document 3 Patent Document 3
  • Patent Document 1 provides a mass spectrometer that is small and light and capable of high-accuracy mass analysis.
  • An ion source that ionizes a gas flowing from the outside in order to ionize the measurement sample, and an ionized measurement sample And an ion source using a barrier discharge.
  • Patent Document 1 has suppression means for suppressing the flow rate of gas taken in by the ion source and opening / closing means for opening and closing the flow of gas taken in by the ion source, and the gas introduced from the outside intermittently flows into the ionization section.
  • the barrier discharge unit is also intermittently operated under a pressure lower than the atmospheric pressure of 100 Pa to 10000 Pa, thereby achieving high efficiency and downsizing.
  • Patent Document 2 describes a method of obtaining high efficiency by ionizing a sample in a mass spectrometer under atmospheric pressure by barrier discharge and discontinuously introducing the ionized sample into a mass analysis unit.
  • Patent Document 3 describes a method for improving the ionization efficiency of a sample by devising the electrode structure of the barrier discharge part.
  • Patent Document 4 Japanese Patent Laid-Open No. 2011-232071
  • Patent Document 5 Japanese Patent Laid-Open No. 2008-53020 relate to an apparatus for detecting a discharge current as a method for stabilizing a discharge portion. There are disclosed devices.
  • Patent Document 4 performs detection of an ionization current having a high S / N by detecting the discharge current of the discharge unit and integrating the ionization current in the apparatus only during a period in which the discharge current is flowing.
  • Patent Document 5 in a mass spectrometer, in order to stabilize ionization by APCI (atmospheric pressure chemical ionization method) and reduce a noise level, a current flowing through a discharge electrode is detected, and an applied voltage is set so as to become a predetermined current. It describes a method for reducing noise by controlling the.
  • APCI atmospheric pressure chemical ionization method
  • JP 2012-104247 A PCT / US2008 / 065245 PCT / JP2009 / 060653 JP 2011-232071 A JP 2008-53020 A
  • barrier discharge causes variations in applied high voltage at the start of discharge and variations in time from the start of high voltage application to the start of discharge depending on the surrounding environment.
  • the ionization efficiency is improved by reducing the pressure of the ionization unit, intermittent operation of the ion source, optimizing the electrode structure of the ion source, etc.
  • the atmosphere is ionized by intermittently applying a high voltage to the low-pressure atmosphere several times to cause barrier discharge, and the object to be measured is ionized by this ionization body.
  • an object of the present invention is to provide a mass spectrometer and a control method for the mass spectrometer that suppress fluctuations in the amount of an object to be ionized and a decrease in accuracy of a mass analysis result.
  • the present application includes a plurality of means for solving the above problems.
  • a sample container for containing a measurement sample a detector for analyzing a mass of the sample and detecting a drug or the like contained in the sample
  • a dielectric container that is connected to the sample container and is ionized by causing a discharge current to flow into the atmosphere, a valve for intermittently sending the atmosphere to the sample container, the dielectric container, and the detector, and the dielectric container.
  • the barrier discharge high-voltage power source Connected to the barrier discharge high-voltage power source for discharging, the barrier discharge high-voltage power source, detects a discharge current, connects to the current detection unit, and starts discharge based on the current detection result of the current detection unit
  • a mass spectrometer having a discharge start timing detector that detects timing and transmits a discharge start timing signal, and a controller that controls each component, wherein the current detector converts the detected current into a voltage. Then, the converted voltage is compared with a threshold set by the discharge start timing detection unit, and when the threshold is exceeded, a discharge start signal is transmitted to the control unit, and the control unit receives the discharge start signal. Control is performed so as to discharge for a certain period.
  • the present invention it is possible to provide a mass spectrometer and a method for controlling the mass spectrometer that suppress fluctuations in the amount of an object to be ionized and a reduction in accuracy of the mass analysis result.
  • FIG. 1 shows a block diagram of the mass spectrometer of the present invention.
  • the mass spectrometer includes a capillary 1 that introduces air, a valve 2 that is an opening and closing means for intermittently sending the air to a discharge unit, and a dielectric that ionizes (generates reactive ions) by flowing a discharge current 28 through the introduced air.
  • a discharge start timing detection unit 7 that detects and supplies a discharge start timing signal 17 to the control circuit 11 of the control unit, a sample container 8 that holds a measurement sample, and a detection that analyzes a mass of the sample to detect a drug or the like contained in the sample 9, a pressure detector 10 that detects the pressure of the dielectric container 3 and the detector 9, a vacuum pump 14 that lowers the pressure of the dielectric container 3 and the detector 9, and a control circuit 11 that controls each block. .
  • FIG. 2 shows a mass analysis flow of the mass spectrometer of the present invention, and the mass analysis operation will be described using this flow.
  • sequence 1 Start mass analysis in sequence 1 (S1).
  • sequence 2 S2
  • the valve 2 is closed.
  • sequence 3 S3
  • the gas in the dielectric container 3 and the detector 9 is exhausted by the vacuum pump 14 to make the pressure low (for example, 100 Pa in the dielectric container 3 and 0.1 Pa in the detector 9).
  • the air is introduced into the dielectric container 3 through the capillary 1 by opening the valve 2 in the sequence 4 (S4).
  • the dielectric container 3 After the introduction of the atmosphere, the dielectric container 3 is filled with a low-pressure atmosphere (for example, 1000 Pa) after a lapse of a certain period of time. Then, it is applied to the electrode 4 ′ and barrier discharge is performed in the dielectric container, whereby the introduced low-pressure atmosphere is ionized (reactive ion generation).
  • a low-pressure atmosphere for example, 1000 Pa
  • valve 2 After completion of the barrier discharge, the valve 2 is closed in sequence 6 (S6).
  • the atmosphere containing the reaction ions is introduced into the sample container 8 and ionizes the sample 12 inside.
  • the sample 12 ionized in the sequence 7 (S7) is introduced into the detector 9, where it is trapped and accumulated.
  • evacuation is started by the vacuum pump 14, unnecessary air is discharged, and the dielectric container 3 and the detector 9 become low pressure again.
  • the ionized sample 12 trapped and accumulated in the detector 9 in sequence 8 (S8) is processed in the detector 9 to detect a drug or the like contained in the sample 12.
  • the mass analysis is performed in the sequence 9 (S9). finish.
  • the mass analysis result may be the average of the results repeated n times, or the detection result may be the most sensitive result, or only some of the n measurement results are detected. As a result.
  • sequence 5 a pulsed high voltage is applied from the high voltage power supply 6 for barrier discharge to the electrodes 4 and 4 ', and barrier discharge is performed in sequence 51 (S51) during a period in which barrier discharge is performed in the dielectric container.
  • control circuit 11 controls the control circuit 11 to output a high voltage from the barrier discharge high voltage power source 6 for a certain period from the discharge start timing and applies it to the electrode 4 in sequence 53 (S53).
  • the discharge period is controlled to be constant.
  • the barrier discharge period in sequence 5 (S5) is controlled to be a constant period, so that the n repeated operations can be performed.
  • the amount of the object to be ionized is constant, and the accuracy of the mass analysis result is improved.
  • FIG. 3 shows a configuration example of the control circuit 11 for making the discharge period in the sequence 53 (S53) constant.
  • a discharge start timing signal 17 is input to the counter 15 from the discharge start timing detector 7.
  • the reference clock 18 is counted for a certain period after the discharge start timing signal 17 is input, and the high voltage power supply 6 for barrier discharge is supplied from the high voltage power supply controller 16 until the count number reaches a certain number.
  • a discharge period pulse 25 is applied.
  • FIG. 4 shows an embodiment of the current detection unit 5.
  • a voltage is applied to the electrodes 4, 4 ′ from the barrier discharge high-voltage power supply 6 through the high-voltage cable 19.
  • the high-voltage cable 19 is passed through the toroidal core 20 around which the current-inducing coil 22 is wound.
  • the coil 22 terminates with an integrating resistor 21, and a discharge current 28 flows through the high-voltage cable 19.
  • the detection current 24 is converted into a voltage, and the voltage is input to the discharge start timing detector 7 to detect the discharge start timing.
  • a discharge current 28 flows through the high-voltage cable 19, so an induced current is induced in the coil 22, and this induced current is converted into an induced voltage by an integral resistor, and the voltage is determined in advance.
  • the discharge start timing detector 7 determines that the discharge has started, and outputs a timing pulse to the counter 15 of the control circuit 11. According to this configuration, since the discharge current is detected using the induced current induced in the coil, it is possible to detect the discharge current that is resistant to noise and stable.
  • FIG. 5 shows an example of a discharge timing chart.
  • the discharge timing chart (a) is a timing chart in a conventional configuration in which the discharge start timing is not detected.
  • the sequence of S4 to S8 is performed four times, and the valve 2 is opened.
  • the high voltage 23 is applied at the timing, and the discharge current 28 flows at different timings T1, T2, T3, and T4 in each sequence after the application of the high voltage 23 is started.
  • the discharge period is different from ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the discharge timing chart (b) is a timing chart in the configuration of the present invention for detecting the discharge start timing.
  • the sequence of S4 to S8 is performed three times, the high voltage 23 is applied at the timing when the valve 2 is opened, and after the application of the high voltage 23 is started, T1 and T2 in each sequence
  • the discharge current 28 starts to flow at different timings of T3.
  • the discharge start timing 17 is detected from the discharge detection current 24 and controlled so that the discharge period pulse 25 becomes a constant value of ⁇ 1, and the opening time of the bulb 2 and the application time of the high voltage 23 are optimized accordingly. Therefore, the period of the discharge current 28 is also constant.
  • the time during which the discharge current 28 flows is constant in any sequence, stable ionization characteristics of the sample can be obtained, and as a result, a stable mass analysis result can be obtained.
  • FIG. 6 shows a block diagram of the mass spectrometer of the present invention.
  • the mass spectrometer includes a capillary 1 for introducing the atmosphere, a valve 2 as an opening / closing means for intermittently sending the atmosphere to the discharge unit, and a dielectric container that ionizes (generates reactive ions) by flowing a discharge current through the introduced atmosphere. 3.
  • High-voltage power source 6 for discharging the barrier to the dielectric container 3, electrode 4 to which the high-voltage power source is applied, electrode 4 ', current detection unit 5 for detecting the discharge current 28, discharge start timing is detected from the current detection result Discharge start timing detection unit 7, sample container 8 into which a measurement sample is placed, detector 9 that analyzes the mass of the sample to detect a drug or the like contained in the sample, and detects the pressure in the dielectric container 3 or detector 9
  • the pressure detection unit 10 supplies the pressure detection signal 27 to the control circuit 11 of the control unit, the vacuum pump 14 lowers the dielectric container and detector, and the control circuit 11 that controls each block.
  • FIG. 7 shows a mass analysis flow of the mass spectrometer of the present invention, and the mass analysis operation will be described using this flow.
  • the overall flow from sequence S1 to S9 is the same as that in the first embodiment, and a description thereof will be omitted.
  • a detailed sequence according to the present embodiment will be described.
  • sequence 5 a pulsed high voltage is applied to electrode 4 and electrode 4 'from barrier high-voltage power supply 6 to perform barrier discharge in the dielectric container, and pressure is detected in sequence 501 (S501).
  • the pressure of the detector 9 and the dielectric container 3 is detected by the device 10, and it is estimated in sequence 502 (S 502) at which timing of the period during which the high voltage is applied from the pressure detection result of the pressure detector 10.
  • S 502 As a method for estimating the discharge timing, it is determined that the discharge has started when the pressure detection value of the pressure detector 10 exceeds the pressure reference value set in the control circuit 11 in advance, and that time is set as the discharge start timing.
  • control circuit 11 outputs a high voltage from the barrier discharge high voltage power source 6 and applies it to the electrode 4 for a certain period from the estimated discharge start timing based on this estimation result. Is controlled to be constant.
  • the barrier discharge period in sequence 5 (S5) is controlled to be a constant period, so that the n repeated operations can be performed.
  • the amount of the object to be ionized is constant, and the accuracy of the mass analysis result is improved.
  • FIG. 8 shows a block diagram of a mass spectrometer according to the present embodiment, which is the same as that described in FIG.
  • FIG. 9 shows a mass analysis flow of the mass spectrometer according to the present embodiment, and the mass analysis operation will be described using this flow.
  • the overall flow from sequence S1 to S9 is the same as that in the first embodiment, and a description thereof will be omitted.
  • a detailed sequence according to the present embodiment will be described.
  • sequence 5 a pulsed high voltage is applied to electrode 4 and electrode 4 'from barrier high voltage power supply 6 in the barrier discharge, and barrier discharge is performed in sequence 100 (S100) during the period in which barrier discharge is performed in dielectric container 3.
  • the discharge current 28 that flows along with the high voltage applied to the electrode from the high voltage power supply 6 for the electric current is detected by the current detection unit 5, and at what timing during the period when the high voltage is applied by the discharge start timing detection unit 7 from the detection result Is detected.
  • the discharge voltage detection signal 28 is fed back to the control circuit 11 so as to increase the discharge voltage in sequence 101 (S101). If discharge is detected by the discharge start timing detector 7, the discharge voltage detection signal 28 is fed back to the control circuit 11 so as not to change the discharge voltage.
  • FIG. 10 shows an example timing chart.
  • the discharge timing chart (a) is a timing chart in a conventional configuration in which the discharge start timing is not detected.
  • the sequence of S4 to S8 is performed four times, and the valve 2 is opened.
  • the high voltage 23 is applied at the timing, and the discharge is not started in each sequence after the application of the high voltage 23 is started.
  • the discharge timing chart (b) is a timing chart in the configuration of the present invention according to the present embodiment for detecting the discharge start timing.
  • the high voltage 23 is applied when the valve 2 is opened, and the discharge start timing is not detected after the high voltage 23 is applied Increases the voltage of the high voltage 23 in the next flow.
  • the discharge start timing is detected, the same voltage value is applied to the high voltage 23 in the next flow.
  • the high voltage is controlled so as to discharge, stable ionization characteristics of the sample can be obtained, and as a result, a stable mass analysis result can be obtained.
  • Valve 5 Current detector 6 High-voltage power supply for barrier discharge 7 Discharge start timing detector 9 Detector 10 Pressure detector 11 Control circuit 14 Vacuum pump 17 Discharge start timing signal 24 Discharge detection current 27 Pressure detection signal 28 Discharge current

Abstract

 本発明の質量分析装置は、測定試料(12)を入れる試料容器(8)と、試料の質量を分析して試料に含まれる薬物等を検出する検出器(9)と、前記試料容器と連結し、大気に放電電流を流して電離させる誘電体容器(3)と、前記試料容器、前記誘電体容器、前記検出器に間欠的に大気を送るためのバルブ(2)と、前記誘電体容器に放電させるためのバリア放電用高圧電源(6)と、前記バリア放電用高圧電源と接続し、放電電流(28)を検出する電流検出部(5)と、前記電流検出部と接続し、電流検出部の電流検出結果に基づき放電開始タイミングを検出して放電開始タイミング信号(17)を送信する放電開始タイミング検出部(7)と、各構成を制御する制御部(11)と、を備え、前記電流検出部は検出した電流を電圧に変換し、変換された電圧を前記放電開始タイミング検出部で設定された閾値と比較し、該閾値より超えた場合に放電開始信号を前記制御部に送信し、前記制御部は放電開始信号を受信後、一定期間放電を行うよう制御することを特徴とする。 これにより、質量分析装置及び質量分析装置の制御方法において、イオン化される被測定物の量の変動や、質量分析結果の精度低下を抑制することが可能となる。

Description

質量分析装置及び質量分析装置の制御方法
 本発明は、質量分析装置及び質量分析装置の制御方法に関する。
 試料中に含まれる微量物質の成分を迅速に判定する装置として小型軽量の質量分析装置 (MSと表記されることも多い)が必要となってきている。特に違法薬物や爆発物の探知装置としての市場が拡大している。質量分析装置は、分析対象である試料中の分子をイオン化し、電場、磁場を利用して質量分離して分離されたイオンを検出器で検出するものである。
 試料中の分子をイオン化する方式としては、APCI(AtmoSpheric PreSSure Chemical Ionization Source:大気圧化学イオン化法)、電子衝撃イオン化法、グロー放電などが実用化されているが、イオン化効率が低い、フラグメンテーションが発生するなど、不十分な点も多く、これらに対応するため高精度の調整が必要で装置が大型化し易い。これに対してイオン化効率やフラグメンテーションの面で優位な比較的新しい方法として、大気圧誘電体バリア放電方式が近年検討され始めている。このバリア放電は、試料を導入した大気圧に近い気圧の放電部に誘電体バリアを介してパルス状あるいは正弦波状の高電圧を印加して放電電流を流し、試料中の分子をイオン化するものである。
 イオン化部にバリア放電を用いた質量分析装置として、特許文献1(特開2012-104247号公報)、特許文献2(PCT/US2008/065245)、特許文献3(PCT/JP2009/060653)に記載の技術がある。
 特許文献1は、小型軽量で、高精度な質量分析が可能な質量分析装置を提供するものであり、測定試料をイオン化するために外部から流入するガスをイオン化するイオン源と、イオン化した測定試料を分離する質量分析部とを有し、イオン源にはバリア放電を用いている。特許文献1は、イオン源が取り込むガスの流量を抑制する抑制手段と、イオン源が取り込むガスの流れを開閉する開閉手段とを有して、外部から導入するガスをイオン化部に間欠的に流入させ、100Pa~10000Paの大気圧より低い圧力下で、バリア放電部も間欠的に動作させることで高効率化と小型化を図っている。
 特許文献2は、質量分析装置において試料をバリア放電により大気圧下でイオン化し、イオン化した試料を不連続的に質量分析部に導入することで高効率化を得る方式について記載している。
 特許文献3は、バリア放電部の電極構造に工夫することで、試料のイオン化効率を向上する方式について記載している。
 バリア放電に関する例ではないが、放電部の安定化手法として、放電電流を検出する装置に関して、特許文献4(特開2011-232071号公報)、特許文献5(特開2008-53020号公報)に開示される装置がある。
 特許文献4は、放電部の放電電流を検出して、放電電流が流れている期間だけ装置内のイオン化電流を積分することで、S/Nの高いイオン化電流検出を行うものである。
 特許文献5は、質量分析装置において、APCI(大気圧化学イオン化法)によるイオン化を安定させ、ノイズレベルを低減するために、放電電極に流れる電流を検出し、所定の電流になるように印加電圧を制御することで、低雑音化を図る方式について記載している。
特開2012-104247号公報 PCT/US2008/065245 PCT/JP2009/060653 特開2011-232071号公報 特開2008-53020号公報
 バリア放電は、周囲環境によって、放電開始時の印加高圧電圧のばらつきや、高圧電圧印加開始から放電スタートするまでの時間にばらつきが発生することが実験によって明らかになってきている。
 先行技術文献では、イオン化部の圧力低下、イオン源の間欠動作、イオン源の電極構造最適化などによりイオン化効率を向上させたり、放電電流を検出して、所定の放電電流になるように印加電圧を制御したり、放電電流が流れている期間だけイオン化電流を計測して計測値のS/Nを向上する等を実施しているが、放電開始電圧のばらつきや放電開始時間のばらつきには着目していない。
 また、イオン源を間欠動作させる質量分析装置では、間欠的に複数回、低圧の大気に高電圧を印加してバリア放電を起こすことで大気を電離し、この電離体により被測定物をイオン化しで質量分析を行う。複数回印加する高電圧のそれぞれの印加期間は一定としているため、上記で説明したように、高圧電圧印加開始から放電スタートするまでの時間にばらつきが発生すると、各期間によってバリア放電が行われている期間にばらつきが発生し、イオン化される被測定物の量に変動が生じ、質量分析結果の精度が低下するなどの課題がある。
 そこで、本発明は、イオン化される被測定物の量の変動や、質量分析結果の精度低下を抑制する質量分析装置及び質量分析装置の制御方法を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、測定試料を入れる試料容器と、試料の質量を分析して試料に含まれる薬物等を検出する検出器と、前記試料容器と連結し、大気に放電電流を流して電離させる誘電体容器と、前記試料容器、前記誘電体容器、前記検出器に間欠的に大気を送るためのバルブと、前記誘電体容器に放電させるためのバリア放電用高圧電源と、前記バリア放電用高圧電源と接続し、放電電流を検出する電流検出部と、前記電流検出部と接続し、電流検出部の電流検出結果に基づき放電開始タイミングを検出して放電開始タイミング信号を送信する放電開始タイミング検出部と、各構成を制御する制御部と、を有する質量分析装置であって、前記電流検出部は検出した電流を電圧に変換し、変換された電圧を前記放電開始タイミング検出部で設定された閾値と比較し、該閾値より超えた場合に放電開始信号を前記制御部に送信し、前記制御部は放電開始信号を受信後一定期間放電を行うよう制御することを特徴とする。
 本発明では、イオン化される被測定物の量の変動や、質量分析結果の精度低下を抑制する質量分析装置及び質量分析装置の制御方法を提供することができる。
第1の実施例にかかる質量分析装置の構成図の例である。 第1の実施例にかかる質量分析装置の分析処理フローの例である。 第1の実施例で用いる制御回路の例である。 第1の実施例で用いる電流検出部の例である。 第1の実施例のタイミングチャートの例である。 第2の実施例にかかる質量分析装置の構成図の例である。 第2の実施例にかかる質量分析装置の分析処理フローの例である。 第3の実施例にかかる質量分析装置の構成図の例である。 第3の実施例にかかる質量分析装置の分析処理フローの例である。 第3の実施例のタイミングチャートの例である。
 以下、実施例を図面を用いて説明する。
 本実施例では、放電電流検出を用いて放電開始タイミングを検出し、このタイミングを利用して高圧電圧出力を制御する構成と制御方法について示す。
 図1に本発明質量分析装置のブロック図を示す。質量分析装置は、大気を導入するキャピラリ1、間欠的に大気を放電部に送るための開閉手段であるバルブ2、導入された大気に放電電流28を流して電離(反応イオン生成)する誘電体容器3、誘電体容器3に放電させるためのバリア放電用高圧電源6、高圧電源を印加する電極4、電極4’、放電電流28を検出する電流検出部5、電流検出結果から放電開始タイミングを検出して放電開始タイミング信号17を制御部の制御回路11に供給する放電開始タイミング検出部7、測定試料を入れる試料容器8、試料の質量を分析して試料に含まれる薬物等を検出する検出器9、誘電体容器3や検出器9の圧力を検出する圧力検出部10、誘電体容器3や検出器9を低圧にする真空ポンプ14、各ブロックを制御する制御回路11より構成される。
 図2に本発明の質量分析装置の質量分析フローを示し、本フローを用いて質量分析動作を説明する。
 シーケンス1(S1)で質量分析を開始する。シーケンス2(S2)で、バルブ2を閉じた状態とする。シーケンス3(S3)で真空ポンプ14により誘電体容器3と検出器9内の気体を排気して低圧とする(例えば誘電体容器3内は100Pa、検出器9内は0.1Paなど)。シーケンス4(S4)でバルブ2が開くことによりキャピラリ1を介して大気が誘電体容器3に導入される。
 大気導入後、一定時間経過して誘電体容器3内が低圧の大気(例えば1000Paなど)に満たされた後、シーケンス5(S5)でバリア放電用高圧電源6からパルス状の高圧電圧を電極4、電極4’に印加し、誘電体容器内でバリア放電を行うことで、導入された低圧の大気を電離(反応イオン生成)する。
 バリア放電の終了後、シーケンス6(S6)でバルブ2は閉じられる。反応イオンを含む大気は、試料容器8に導入され、内部の試料12をイオン化する。シーケンス7(S7)でイオン化された試料12は検出器9に導入され、検出器9内にトラップ、蓄積される。同時に真空ポンプ14で排気が開始され、不要な大気は排出されて誘電体容器3と検出器9は再び低圧となる。
 次にシーケンス8(S8)で検出器9内にトラップ、蓄積されたイオン化状態の試料12は、検出器9内で処理され、試料12に含まれる薬物等を検出する。質量検出動作を継続する場合は、シーケンス4(S4)に戻って、上記したシーケンスを繰り返し、制御回路11で定められた繰り返し回数であるn回を終了したら、シーケンス9(S9)で質量分析を終了する。
 なお、質量分析結果はn回繰り返した結果を平均して検出結果としても良いし、最も感度の高い結果を検出結果としても良いし、n回の内のいくつかの測定結果だけを用いて検出結果としても良い。
 上記が質量分析の全体的なフローであるが、ここで、本実施例にかかる詳細なシーケンスについて説明する。シーケンス5(S5)でバリア放電用高圧電源6からパルス状の高圧電圧を電極4、電極4’に印加し、誘電体容器内でバリア放電を行う期間に、シーケンス51(S51)でバリア放電用高圧電源6から電極に印加される高圧電圧に伴い流れる放電電流28を電流検出部5で検出し、シーケンス52(S52)での検出結果から、放電開始タイミング検出部7で高圧電圧を印加した期間のどのタイミングで放電したかを検出し、シーケンス53(S53)で制御回路11において、放電開始タイミングから一定期間、バリア放電用高圧電源6から高圧電圧を出力するよう制御して電極4に印加することで、放電期間が一定となるように制御する。
 以上のように、シーケンス4(S4)からシーケンス8(S8)の繰り返し質量検出動作において、シーケンス5(S5)のバリア放電期間を一定期間とするように制御することで、n回の繰り返し動作のいずれの動作時においてもイオン化される被測定物の量が一定となり、質量分析結果の精度が向上する効果がある。
 図3にシーケンス53(S53)での放電期間を一定とするための制御回路11の構成例を示す。放電開始タイミング検出部7から、放電開始タイミング信号17をカウンタ15に入力する。カウンタ15では、放電開始タイミング信号17が入力されてから一定期間基準クロック18のカウントを行い、カウント数が一定数になるまで、高圧電源制御部16から、バリア放電用高圧電源6が高圧電圧23を出力するよう制御信号として放電期間パルス25を印加するものである。本実施例では、カウンタを用いる簡単な回路構成で放電期間を一定にする制御が可能となる。
 図4に電流検出部5の実施例を示す。バリア放電用高圧電源6から高圧ケーブル19を介して電極4、4’に電圧を印加する構成である。電流誘起用のコイル22を巻いたトロイダルコア20の中に高圧ケーブル19を通し、コイル22は積分抵抗21で終端して、高圧ケーブル19に放電電流28が流れることによりコイル22に誘起された放電検出電流24を電圧に変換し、電圧を放電開始タイミング検出部7に入力して放電開始タイミングを検出する。
 本構成において、放電が行われた場合、高圧ケーブル19に放電電流28が流れることから、コイル22に誘導電流が誘起され、この誘導電流を積分抵抗で誘導電圧に変換して、電圧があらかじめ定めた閾値を超えた場合、放電開始タイミング検出部7において放電が開始したと判断してタイミングパルスを制御回路11のカウンタ15へ出力する。本構成によれば、コイルに誘起される誘導電流を用いて放電電流を検出するため、雑音に強く安定な放電電流検出が可能である。
 図5に、放電タイミングチャート例を示す。放電タイミングチャート(a)は、放電開始タイミングを検出しない従来の構成でのタイミングチャートであり、図2の質量分析フローで、S4~S8のシーケンスを4回実施しており、バルブ2が開のタイミングで高圧電圧23を印加し、高圧電圧23を印加開始後、それぞれのシーケンスにおいてT1、T2、T3、T4の異なったタイミングで放電電流28が流れている例である。
 高圧電圧23を印加する期間は各シーケンスで同一期間であるため、結果的に放電期間がτ1、τ2、τ3、τ4と異なった期間となっている。
 これに対し、放電タイミングチャート(b)は、放電開始タイミングを検出する本発明の構成でのタイミングチャートである。図2の質量分析フローで、S4~S8のシーケンスを3回実施しており、バルブ2が開のタイミングで高圧電圧23を印加し、高圧電圧23を印加開始後、それぞれのシーケンスにおいてT1、T2、T3の異なったタイミングで放電電流28が流れ始めている例である。放電検出電流24から放電開始タイミング17を検出して放電期間パルス25がτ1の一定値となるように制御し、これにあわせてバルブ2の開時間と高圧電圧23の印加時間を最適化しているため、放電電流28の期間も一定となる。放電タイミングチャート(b)の例では、放電電流28が流れる時間がどのシーケンスでも一定となるため、安定な試料のイオン化特性が得られ、この結果、安定な質量分析結果が得られる。
 本実施例では、誘電体容器3内や検出器9の圧力検出結果を用いて放電開始タイミングを推定し、このタイミングを利用して高圧電圧出力を制御する構成と制御方法について示す。
 図6に本発明質量分析装置のブロック図を示す。質量分析装置は、大気を導入するキャピラリ1、間欠的に大気を放電部に送るための開閉手段であるバルブ2、導入された大気に放電電流を流して電離(反応イオン生成)する誘電体容器3、誘電体容器3に放電させるためのバリア放電用高圧電源6、高圧電源を印加する電極4、電極4’、放電電流28を検出する電流検出部5、電流検出結果から放電開始タイミングを検出する放電開始タイミング検出部7、測定試料を入れる試料容器8、試料の質量を分析して試料に含まれる薬物等を検出する検出器9、誘電体容器3や検出器9の圧力を検出して圧力検出信号27を制御部の制御回路11に供給する圧力検出部10、誘電体容器や検出器を低圧にする真空ポンプ14、各ブロックを制御する制御回路11より構成される。
 図7に本発明質量分析装置の質量分析フローを示し、本フローを用いて質量分析動作を説明する。なお、シーケンスS1からS9までの全体的なフローは実施例1と同様であるため、説明を省略する。ここでは、本実施例にかかる詳細なシーケンスについて説明する。
 シーケンス5(S5)でバリア放電用高圧電源6からパルス状の高圧電圧を電極4、電極4’に印加し、誘電体容器内でバリア放電を行う期間に、シーケンス501(S501)で、圧力検出器10で検出器9と誘電体容器3の圧力を検出し、シーケンス502(S502)で、圧力検出器10の圧力検出結果から高圧電圧を印加した期間のどのタイミングで放電したかを推定する。放電タイミングの推定方法としては、圧力検出器10の圧力検出値が、あらかじめ制御回路11に設定してある圧力基準値を超えた時に放電開始したと判断し、その時点を放電開始タイミングとする。
 シーケンス503(S503)では、この推定結果をもとに制御回路11において、推定放電開始タイミングから一定期間、バリア放電用高圧電源6から高圧電圧を出力して電極4に印加することで、放電期間が一定となるように制御する。
 以上のように、シーケンス4(S4)からシーケンス8(S8)の繰り返し質量検出動作において、シーケンス5(S5)のバリア放電期間を一定期間とするように制御することで、n回の繰り返し動作のいずれの動作時においてもイオン化される被測定物の量が一定となり、質量分析結果の精度が向上する効果がある。
 本実施例では、放電電流検出を用いて放電電流が流れたか否かを検出し、流れなかった場合に高圧電圧出力を制御する構成と制御方法について示す。
 まず、図8に本実施例における質量分析装置のブロック図を示すが、実施例1の図1で説明したものと同様であるため、説明を省略する。
 図9に本実施例にかかる質量分析装置の質量分析フローを示し、本フローを用いて質量分析動作を説明する。なお、シーケンスS1からS9までの全体的なフローは実施例1と同様であるため、説明を省略する。ここでは、本実施例にかかる詳細なシーケンスについて説明する。
 シーケンス5(S5)でバリア放電用高圧電源6からパルス状の高圧電圧を電極4、電極4’に印加し、誘電体容器3内でバリア放電を行う期間に、シーケンス100(S100)でバリア放電用高圧電源6から電極に印加される高圧電圧に伴い流れる放電電流28を電流検出部5で検出し、検出結果から放電開始タイミング検出部7で高圧電圧を印加した期間のどのタイミングで放電したかを検出する。
 このとき、放電開始タイミング検出部7で放電が検出されなければ、シーケンス101 (S101)で放電電圧を増加するように制御回路11に放電電圧検出信号28をフィードバックする。放電開始タイミング検出部7で放電が検出されれば、放電電圧を変えないように制御回路11に放電電圧検出信号28をフィードバックする。
 以上のように、シーケンス4(S4)からシーケンス8(S8)の繰り返し質量検出動作において、放電電流が流れたか否かを検出し、流れない場合は、次のフローにおいて印加高圧電圧を増加するように制御することで、n回の繰り返し動作のいくつかの動作時においてイオン化される被測定物の量が安定化され、質量分析結果の精度が向上する効果がある。
 図10に、タイミングチャート例を示す。放電タイミングチャート(a)は、放電開始タイミングを検出しない従来の構成でのタイミングチャートであり、図9の質量分析フローで、S4~S8のシーケンスを4回実施しており、バルブ2が開のタイミングで高圧電圧23を印加し、高圧電圧23を印加開始後、それぞれのシーケンスにおいて放電が開始されない例である。
 これに対し、放電タイミングチャート(b)は、放電開始タイミングを検出する本実施例にかかる本発明の構成でのタイミングチャートである。図9の質量分析フローで、S4~S8のシーケンスを4回実施しており、バルブ2が開のタイミングで高圧電圧23を印加し、高圧電圧23を印加開始後、放電開始タイミングが検出されない場合は次のフローにおいて高圧電圧23の電圧を上げる。一方、放電開始タイミングが検出された場合は、次のフローでの高圧電圧23は同じ電圧値を印加する。放電タイミングチャート(b)の例では、放電するように高圧電圧を制御するため、安定な試料のイオン化特性が得られ、この結果、安定な質量分析結果が得られる。
2 バルブ
5 電流検出部
6 バリア放電用高圧電源
7 放電開始タイミング検出部
9 検出器
10 圧力検出器
11 制御回路
14 真空ポンプ
17 放電開始タイミング信号
24 放電検出電流
27 圧力検出信号
28 放電電流

Claims (6)

  1.  測定試料を入れる試料容器と、
     試料の質量を分析して試料に含まれる薬物等を検出する検出器と、
     前記試料容器と連結し、大気に放電電流を流して電離させる誘電体容器と、
     前記試料容器、前記誘電体容器、前記検出器に間欠的に大気を送るためのバルブと、
     前記誘電体容器に放電させるためのバリア放電用高圧電源と、
     前記バリア放電用高圧電源と接続し、放電電流を検出する電流検出部と、
     前記電流検出部と接続し、電流検出部の電流検出結果に基づき放電開始タイミングを検出して放電開始タイミング信号を送信する放電開始タイミング検出部と、
     各構成を制御する制御部と、を有する質量分析装置であって、
     前記電流検出部は検出した電流を電圧に変換し、変換された電圧を前記放電開始タイミング検出部で設定された閾値と比較し、該閾値より超えた場合に放電開始信号を前記制御部に送信し、前記制御部は放電開始信号を受信後一定期間放電を行うよう制御することを特徴とする質量分析装置。
  2.  請求項1に記載の質量分析装置であって、
     前記電流検出部で電流が検出されない場合は、前記バリア放電用高圧電源の出力電圧を増加するよう制御部で制御することを特徴とする質量分析装置。
  3.  測定試料を入れる試料容器と、
     試料の質量を分析して試料に含まれる薬物等を検出する検出器と、
     前記試料容器と連結し、大気に放電電流を流して電離させる誘電体容器と、
     前記試料容器、前記誘電体容器、前記検出器に間欠的に大気を送るためのバルブと、
     前記誘電体容器に放電させるためのバリア放電用高圧電源と、
     誘電体容器や検出器の圧力を検出して圧力検出信号を出力する圧力検出部、
     各構成を制御する制御部と、を有する質量分析装置であって、
     前記圧力検出部で検出した圧力値に基づき、あらかじめ前記制御部に設定された圧力基準値を超えた場合に、前記制御部で前記バリア放電用高圧電源を制御して一定期間放電を行うよう制御することを特徴とする質量分析装置。
  4.  バリア放電を用いた質量分析装置の制御方法であって、
     高圧電源で行うバリア放電の放電電流を検出し、
     検出した放電電流値を電圧値に変換し、
     変換した電圧値を閾値と比較し、
     電圧値が該閾値を超える場合に一定期間放電を行うことを特徴とする質量分析装置の制御方法。
  5.  請求項4に記載の質量分析装置の制御方法であって、
     バリア放電電流が検出されない場合は、前記高圧電源の出力電圧を増加することを特徴とする質量分析装置の制御方法。
  6.  バリア放電を用いた質量分析装置の制御方法であって、
     内部で高圧電源によるバリア放電を行う誘電体容器や、試料の質量を分析して試料に含まれる薬物等を検出する検出器内の圧力を検出し、検出した圧力値があらかじめ設定された圧力基準値を超えた場合に、高圧電源を制御して一定期間放電を行うことを特徴とする質量分析装置の制御方法。
PCT/JP2014/064359 2013-07-05 2014-05-30 質量分析装置及び質量分析装置の制御方法 WO2015001881A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/898,158 US9721773B2 (en) 2013-07-05 2014-05-30 Mass spectrometric device and mass spectrometric device control method
DE112014002850.9T DE112014002850B4 (de) 2013-07-05 2014-05-30 Massenspektrometer und Steuerverfahren für Massenspektrometer
CN201480037476.0A CN105359251B (zh) 2013-07-05 2014-05-30 质量分析装置和质量分析装置的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013141300A JP6180828B2 (ja) 2013-07-05 2013-07-05 質量分析装置及び質量分析装置の制御方法
JP2013-141300 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015001881A1 true WO2015001881A1 (ja) 2015-01-08

Family

ID=52143471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064359 WO2015001881A1 (ja) 2013-07-05 2014-05-30 質量分析装置及び質量分析装置の制御方法

Country Status (5)

Country Link
US (1) US9721773B2 (ja)
JP (1) JP6180828B2 (ja)
CN (1) CN105359251B (ja)
DE (1) DE112014002850B4 (ja)
WO (1) WO2015001881A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117515A1 (en) 2020-12-01 2022-06-09 Bayer Aktiengesellschaft Compositions comprising iodosulfuron-methyl and tehp
WO2022117516A1 (en) 2020-12-01 2022-06-09 Bayer Aktiengesellschaft Compositions comprising mesosulfuron-methyl and tehp

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170004116A (ko) * 2015-07-01 2017-01-11 주식회사 엘지화학 분석 장치
GB2606024A (en) * 2021-04-23 2022-10-26 Fasmatech Science & Tech Sa Apparatus and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150875A (ja) * 1992-11-11 1994-05-31 Ulvac Japan Ltd 熱陰極型イオン源の保護回路装置
JP2008053020A (ja) * 2006-08-24 2008-03-06 Shimadzu Corp 質量分析装置
WO2009102766A1 (en) * 2008-02-12 2009-08-20 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
WO2011089912A1 (ja) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ 質量分析装置
JP2011232071A (ja) * 2010-04-26 2011-11-17 Shimadzu Corp 放電イオン化電流検出器
JP2012104247A (ja) * 2010-11-08 2012-05-31 Hitachi High-Technologies Corp 質量分析装置
JP2013037815A (ja) * 2011-08-04 2013-02-21 Hitachi High-Technologies Corp 質量分析装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239298A (ja) * 1997-02-26 1998-09-11 Shimadzu Corp 液体クロマトグラフ質量分析装置
CN1694381B (zh) 2004-05-07 2011-08-24 日本电气株式会社 移动通信系统和mbms服务相关信息传送方法
CN101820979B (zh) 2007-06-01 2014-05-14 普度研究基金会 不连续的大气压接口
US8253098B2 (en) 2008-06-27 2012-08-28 University Of Yamanashi Ionization analysis method and apparatus
JP5596402B2 (ja) * 2010-04-19 2014-09-24 株式会社日立ハイテクノロジーズ 分析装置、イオン化装置及び分析方法
JP5304749B2 (ja) * 2010-08-05 2013-10-02 株式会社島津製作所 真空分析装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150875A (ja) * 1992-11-11 1994-05-31 Ulvac Japan Ltd 熱陰極型イオン源の保護回路装置
JP2008053020A (ja) * 2006-08-24 2008-03-06 Shimadzu Corp 質量分析装置
WO2009102766A1 (en) * 2008-02-12 2009-08-20 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
WO2011089912A1 (ja) * 2010-01-25 2011-07-28 株式会社日立ハイテクノロジーズ 質量分析装置
JP2011232071A (ja) * 2010-04-26 2011-11-17 Shimadzu Corp 放電イオン化電流検出器
JP2012104247A (ja) * 2010-11-08 2012-05-31 Hitachi High-Technologies Corp 質量分析装置
JP2013037815A (ja) * 2011-08-04 2013-02-21 Hitachi High-Technologies Corp 質量分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117515A1 (en) 2020-12-01 2022-06-09 Bayer Aktiengesellschaft Compositions comprising iodosulfuron-methyl and tehp
WO2022117516A1 (en) 2020-12-01 2022-06-09 Bayer Aktiengesellschaft Compositions comprising mesosulfuron-methyl and tehp

Also Published As

Publication number Publication date
DE112014002850T5 (de) 2016-03-03
US20160141163A1 (en) 2016-05-19
JP2015015160A (ja) 2015-01-22
JP6180828B2 (ja) 2017-08-16
DE112014002850B4 (de) 2018-03-08
CN105359251A (zh) 2016-02-24
CN105359251B (zh) 2016-12-14
US9721773B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6323362B2 (ja) イオン化装置
US20170103880A1 (en) Systems for separating ions and neutrals and methods of operating the same
JP6180828B2 (ja) 質量分析装置及び質量分析装置の制御方法
US9076638B2 (en) Mass spectrometer method and mass spectrometer
US9482642B2 (en) Fast method for measuring collision cross section of ions utilizing ion mobility spectrometry
JP6305543B2 (ja) 標的化した質量分析
US20130032711A1 (en) Mass Spectrometer
JP2012104247A (ja) 質量分析装置
US8368010B2 (en) Quadrupole mass spectrometer
US7232991B2 (en) Mass spectrometer
JP6365661B2 (ja) 質量分析方法及び質量分析装置
JPWO2015151160A6 (ja) 質量分析方法及び質量分析装置
JP2021521582A (ja) Tof質量分析器の抽出領域内でイオンパケットを動的に濃縮する
WO2020031703A1 (ja) 質量分析装置および質量分析方法
US20180130651A1 (en) Pulsed plasma analyzer and method for analyzing the same
US20190157064A1 (en) Mass spectrometer
US20170053789A1 (en) Corona ionization apparatus and method
US10720318B2 (en) Mass analysis apparatus and mass analysis method
WO2019229803A1 (ja) 分析装置
JP5055157B2 (ja) 質量分析装置
JP5759036B2 (ja) 質量分析装置
WO2016002502A1 (ja) 質量分析装置および質量分析方法
US11195707B2 (en) Time-of-flight mass spectrometry device
JP4450717B2 (ja) 質量分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037476.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898158

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002850

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820429

Country of ref document: EP

Kind code of ref document: A1