WO2015001868A1 - オキシラン誘導体の製造方法およびアゾール誘導体の製造方法 - Google Patents

オキシラン誘導体の製造方法およびアゾール誘導体の製造方法 Download PDF

Info

Publication number
WO2015001868A1
WO2015001868A1 PCT/JP2014/063860 JP2014063860W WO2015001868A1 WO 2015001868 A1 WO2015001868 A1 WO 2015001868A1 JP 2014063860 W JP2014063860 W JP 2014063860W WO 2015001868 A1 WO2015001868 A1 WO 2015001868A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
general formula
derivative
oxirane
Prior art date
Application number
PCT/JP2014/063860
Other languages
English (en)
French (fr)
Inventor
大河 正野
須藤 敬一
秀樹 岡島
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to CN201480033596.3A priority Critical patent/CN105308051A/zh
Publication of WO2015001868A1 publication Critical patent/WO2015001868A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems

Definitions

  • the present invention relates to a method for producing an oxirane derivative and a method for producing an azole derivative.
  • Patent Document 1 discloses 2- (halogenated hydrocarbon substitution) -5-benzyl-1-, which has low toxicity to human livestock and exhibits a high control effect on a wide range of plant diseases and a high growth effect on various agricultural and horticultural plants.
  • Azolylmethylcyclopentanol derivatives are described.
  • Patent Document 1 discloses an intermediate 2-substituted-5-benzyl as a part of the production process of 2- (halogenated hydrocarbon substituted) -5-benzyl-1-azolylmethylcyclopentanol derivative. It is described to oxiranize a cyclopentanone derivative and to azolate a product (oxirane derivative) obtained by oxiranation.
  • Patent Document 2 the product (azole derivative) obtained by the azolation described above is a mixture of geometric isomers regarding the configuration of the substituent at the 1-position and the substituent at the 5-position of the cyclopentane ring. Are listed.
  • the configuration of the above-mentioned azole derivative is considered to be caused by oxirane formation, which is the previous step. That is, the above-mentioned oxirane derivative is a mixture of geometric isomers, and the steric configuration is considered to be maintained in the azole derivative. Since the configuration in the azole derivative is maintained in the subsequent reaction step, the final product is a mixture of geometric isomers unless the geometric isomers are separated. From various viewpoints, it may be desired to obtain only one geometric isomer as a final product or an intermediate thereof. In such a case, it is desirable to increase the selectivity of one of the geometric isomers in the oxiranization step in which the geometric isomer is generated from the viewpoint of eliminating waste of raw materials.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a production method in which the selectivity of one geometrical isomer is improved in the oxirane conversion of a 2-substituted-5-benzylcyclopentanone derivative. It is to provide.
  • the method for producing an oxirane derivative according to the present invention is a method for producing an oxirane derivative represented by the following general formula (II):
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or —C n H 2n —OG, and G represents a protecting group.
  • N represents an integer of 1 to 4
  • R 1 and R 2 may be bonded to each other to form a ring
  • X is a halogen atom, an alkyl group having 1 to 4 carbon atoms, 1 carbon atom
  • m represents an integer of 0 to 5;
  • a plurality of Xs may be different from each other.
  • a ketone derivative represented by the following general formula (I) and sulfur ylide are reacted in a hydrocarbon solvent.
  • R 1 , R 2 , X and m are the same as R 1 , R 2 , X and m in formula (II), respectively.
  • the selectivity of one of the geometric isomers in the obtained product can be improved by using a hydrocarbon as a solvent in the oxirane formation of the 2-substituted-5-benzylcyclopentanone derivative.
  • ketone derivative (I) a ketone derivative represented by the following general formula (I) (hereinafter referred to as “ketone derivative (I)”) is reacted with sulfur ylide in a hydrocarbon solvent. And oxirane to produce an oxirane derivative represented by the following general formula (II) (hereinafter referred to as “oxirane derivative (II)”).
  • X is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a haloalkoxy group having 1 to 4 carbon atoms, It represents a phenyl group, a cyano group or a nitro group.
  • halogen atom examples include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, a 1-methylethyl group, a 2-methylpropyl group, an n-butyl group, and a 1,1-dimethylethyl group. Can be mentioned.
  • haloalkyl group having 1 to 4 carbon atoms examples include trifluoromethyl group, 1,1,2,2,2-pentafluoroethyl group, chloromethyl group, trichloromethyl group, and bromomethyl group. .
  • alkoxy group having 1 to 4 carbon atoms examples include a methoxy group, an ethoxy group, and an n-propoxy group.
  • haloalkoxy group having 1 to 4 carbon atoms examples include a trifluoromethoxy group, a difluoromethoxy group, a 1,1,2,2,2-pentafluoroethoxy group, and a 2,2,2-trifluoroethoxy group. Can be mentioned.
  • X is preferably a halogen atom, a haloalkyl group having 1 to 3 carbon atoms, a haloalkoxy group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms, and more preferably Are a halogen atom, a haloalkyl group having 1 to 2 carbon atoms, and a haloalkoxy group having 1 to 2 carbon atoms, more preferably a halogen atom, and particularly preferably a fluorine atom and a chlorine atom.
  • M represents an integer from 0 to 5.
  • m is 2 or more, a plurality of Xs may be the same or different from each other.
  • m is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and further preferably 0 or 1.
  • the bonding position of X is not particularly limited, but when m is 1, a position where 4-substituted benzyl is formed is preferable.
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or —C n H 2n —OG. R 1 and R 2 may be bonded to each other to form a ring.
  • alkyl group having 1 to 4 carbon atoms examples include methyl group, ethyl group, n-propyl group, 1-methylethyl group, 1-methylpropyl group, 2-methylpropyl group, n-butyl group, and 1, Examples thereof include a 1-dimethylethyl group.
  • G represents a protecting group.
  • the protecting group is not particularly limited, and examples thereof include alkoxymethyl groups such as methoxymethyl group and ethoxymethyl group, lower alkyl groups such as t-butyl group and methyl group, substituted or unsubstituted benzyl group, substituted or unsubstituted tetrahydropyranyl group. Group, substituted or unsubstituted tetrahydrofuranyl group, and allyl group.
  • n represents an integer of 1 to 4. Among these, n is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • —C n H 2n — may be linear or branched. When both R 1 and R 2 are —C n H 2n —OG, the two Gs may be bonded to each other to form a ring.
  • Examples of the protecting group in the case where two G's are bonded to each other to form a ring include methylene acetal, ethylidene acetal, t-butyl methylidene ketal, 1-t-butyl ethylidene ketal, 1-phenyl ethylidene ketal, Acrolein acetal, isopropylidene ketal (acetonide), cyclopentylidene ketal, cyclohexylidene ketal, cycloheptylidene ketal, benzylidene acetal, p-methoxybenzylidene acetal, 2,4-dimethoxybenzylidene ketal, 3,4-dimethoxybenzylidene ketal 2-nitrobenzylidene acetal, 4-nitrobenzylidene acetal, mesitylene acetal, 1-naphthaldehyde acetal, benzophen
  • R 1 and R 2 are each preferably —C n H 2n —OG.
  • the ketone derivative (I) can be represented by the following general formula (Ic).
  • G 1 and G 2 each represent a protecting group.
  • G 1 and G 2 may be the same as or different from each other.
  • G 1 and G 2 may be bonded to each other to form a ring.
  • Specific examples of G 1 and G 2 are the same as G in the case where R 1 and R 2 in formula (I) are —C n H 2n —OG.
  • n 1 and n 2 each independently represents an integer of 1 to 4 (ie 1, 2, 3 or 4).
  • X and m are the same as X and m in the formula (I), respectively.
  • the ketone derivative (I) is a ketone derivative represented by the following general formula (Ia) (hereinafter referred to as “ketone derivative (Ia)”).
  • p and q are each independently 1 or 2. Both p and q are preferably 1.
  • X and m are the same as X and m in each formula (I)
  • G 1 and G 2 are the same as G 1 and G 2 in each formula (Ic).
  • the ketone derivative (I) is more preferably a ketone derivative represented by the following general formula (Ib) (hereinafter referred to as “ketone derivative (Ib)”).
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a benzyl group.
  • alkyl group having 1 to 4 carbon atoms examples include methyl group, ethyl group, n-propyl group, 1-methylethyl group, 1-methylpropyl group, 2-methylpropyl group, n-butyl group, and 1, Examples thereof include a 1-dimethylethyl group.
  • One or more hydrogen atoms of the phenyl group in R 3 or R 4 and one or more hydrogen atoms in the phenyl portion of the benzyl group in R 3 or R 4 are an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 4 carbon atoms; It may be substituted with an alkoxy group or a halogen atom.
  • Examples of the alkyl group having 1 to 4 carbon atoms as a substituent include, for example, a methyl group, an ethyl group, an n-propyl group, a 1-methylethyl group, a 1-methylpropyl group, a 2-methylpropyl group, and an n-butyl group.
  • alkoxy group having 1 to 4 carbon atoms as a substituent examples include a methoxy group, an ethoxy group, and an n-propoxy group.
  • a halogen atom as a substituent a fluorine atom, a chlorine atom, a bromine atom, etc. can be mentioned, for example.
  • R 3 and R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, More preferably, it is an alkyl group of ⁇ 2, and it is particularly preferable that both R 3 and R 4 are methyl groups.
  • ketone derivative (I) examples include, but are not limited to, a ketone derivative represented by the following general formula (Id).
  • X 1 represents a hydrogen atom, a fluorine atom or a chlorine atom.
  • the ketone derivative (I) may be synthesized based on the description in Patent Document 2, for example.
  • R 1, R 2, X and m are the same as R 1, R 2, X and m in each formula (I).
  • a compound represented by the following general formula (IIa) (hereinafter referred to as “oxirane derivative (IIa)”) is used as the oxirane derivative (II).
  • G 1, G 2, p, q, X and m are the same as G 1, G 2, p, q, X and m in each formula (Ia).
  • a compound represented by the following general formula (IIb) (hereinafter referred to as “oxirane derivative (IIb)”) is used as the oxirane derivative (II).
  • oxirane derivative (IIb) a compound represented by the following general formula (IIb) (hereinafter referred to as “oxirane derivative (IIb)”) is used as the oxirane derivative (II).
  • R 3, R 4, p, q, X and m are the same as R 3, R 4, p, q, X and m in each formula (Ib).
  • oxirane derivative (II) As geometric isomers of the oxirane derivative (II), an oxirane derivative represented by the following general formula (II- ⁇ ) (hereinafter referred to as “oxirane derivative (II- ⁇ )”) and a general formula (II- ⁇ ) shown below. Oxirane derivatives (hereinafter referred to as “oxirane derivatives (II- ⁇ )”).
  • R 1 , R 2 , X and m are the same as R 1 , R 2 , X and m in formula (I), respectively.
  • the oxirane derivative (II) is referred to as a “cis isomer” and the oxirane derivative (II- ⁇ ) is referred to as a “trans isomer”. Further, when simply referred to as “oxirane derivative (II)”, both oxirane derivative (II- ⁇ ) and oxirane derivative (II- ⁇ ) are included.
  • the reaction scheme of the method for producing the oxirane derivative (II) according to this embodiment is shown in the following reaction scheme 1.
  • the oxirane derivative (II) is produced by reacting the ketone derivative (I) with sulfur ylide in a hydrocarbon solvent to oxirane.
  • the selectivity for the cis oxirane derivative (II- ⁇ ) is improved (see also Examples described later).
  • hydrocarbon solvent examples include aromatic hydrocarbons such as toluene, benzene, and xylene; chain hydrocarbons such as pentane, hexane, and heptane; cyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane. These may be mixed and used as necessary. Among them, it is preferable to use an aromatic hydrocarbon, and it is more preferable to use toluene or benzene.
  • sulfur ylide examples include sulfonium methylides such as dimethylsulfonium methylide and sulfoxonium methylides such as dimethylsulfoxonium methylide.
  • Sulfur ylide can be produced, for example, by reacting a sulfonium compound or a sulfoxonium compound with a base in a hydrocarbon solvent.
  • Examples of the sulfonium compound include trimethylsulfonium bromide, trimethylsulfonium chloride, and trimethylsulfonium iodide.
  • Examples of the sulfoxonium compound include trimethylsulfoxonium bromide (TMSOB), trimethylsulfoxonium chloride, and trimethylsulfoxonium iodide.
  • TMSOB trimethylsulfoxonium bromide
  • a sulfoxonium compound is preferably used from the viewpoint of yield, and trimethylsulfoxonium bromide is more preferably used.
  • Examples of the base include metal hydrides such as sodium hydride; alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium t-butoxide and potassium t-butoxide; alkalis such as potassium hydroxide and sodium hydroxide.
  • metal alkoxides and metal hydroxides are preferred, metal alkoxides are more preferred, alkali metal t-butoxides are more preferred, and sodium t-butoxide is particularly preferred.
  • the solvent for dissolving the metal alkoxide include methanol, ethanol and t-butanol.
  • the sulfonium compound or the sulfoxonium compound may be added separately.
  • the base may be added in divided portions. Further, both the sulfonium compound or the sulfoxonium compound and the base may be added in divided portions.
  • the number of times the sulfonium compound or sulfoxonium compound is added is not particularly limited as long as the predetermined purpose can be achieved. The number of times is preferably 1 to 20 times, and more preferably 1 to 10 times. The same applies when the base is added in portions.
  • a catalytic amount of diethylene glycol may be added as appropriate.
  • the reaction temperature and reaction time can be appropriately set depending on the type of hydrocarbon solvent, ketone derivative (I), sulfonium compound or sulfoxonium compound and base used.
  • the reaction temperature is, for example, preferably 0 to 150 ° C., more preferably 25 to 80 ° C.
  • the reaction time is preferably 0.1 hour to 5 days, more preferably 0.2 hour to 1 day.
  • the total amount of the sulfonium compound or the sulfoxonium compound used is preferably 0.5 to 5 times mol, more preferably 0.8 to 2 times mol with respect to the ketone derivative (I).
  • the amount of the base used is preferably 0.5 to 5 moles, more preferably 0.8 to 2 moles, relative to the ketone derivative (I).
  • the selectivity to the oxirane derivative (II- ⁇ ) is improved as described above. Further, the production of by-products other than the oxirane derivative (II- ⁇ ) and the oxirane derivative (II- ⁇ ) can be suppressed, and the purity and yield of the oxirane derivative (II- ⁇ ) can be improved. reference). Furthermore, the residual amount of the raw material ketone derivative (I) can be reduced, and the purity and yield of the oxirane derivative (II- ⁇ ) can be improved (see also Examples described later).
  • the solvent is easily dissolved in either water or a low polar organic solvent, so that a high yield is obtained.
  • aprotic polar solvent such as N, N-dimethylacetamide (DMAc)
  • DMAc N, N-dimethylacetamide
  • the method for producing an oxirane derivative according to this embodiment since the solvent used is difficult to dissolve in water, the time and effort for extraction can be reduced. Therefore, the method for producing an oxirane derivative according to this embodiment can be suitably used even on an industrial scale.
  • a method for producing an azole derivative according to an embodiment of the present invention is a method for producing an azole derivative represented by the following general formula (III) (hereinafter referred to as “azole derivative (III)”), which includes the oxirane derivative described above. This method comprises a step of producing an oxirane derivative (II) by the production method.
  • R 1, R 2, X and m are the same as R 1, R 2, X and m in each formula (II).
  • A represents a nitrogen atom or a methine group. A is preferably a nitrogen atom.
  • the oxirane derivative (II) is further converted into a compound represented by the following general formula (IV) (hereinafter referred to as the following general formula (IV)) using hydrocarbon, water, or a mixture of hydrocarbon and water as a solvent.
  • a step of producing an azole derivative (III) by reacting with a compound (referred to as “compound (IV)”) to form an azole may be included.
  • M represents a hydrogen atom or an alkali metal.
  • Alkali metals can include potassium, sodium, and lithium.
  • A is the same as A in formula (III).
  • reaction scheme 2 An example of the reaction scheme of the method for producing the azole derivative (III) according to this embodiment is shown in the following reaction scheme 2.
  • hydrocarbon used as the solvent examples include aromatic hydrocarbons such as toluene, benzene, and xylene; chain hydrocarbons such as pentane, hexane, and heptane; cyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane. These may be mixed and used as necessary.
  • aromatic hydrocarbons such as toluene, benzene, and xylene
  • chain hydrocarbons such as pentane, hexane, and heptane
  • cyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane. These may be mixed and used as necessary.
  • the hydrocarbon used as the solvent it is preferable to use an aromatic hydrocarbon, and it is more preferable to use toluene or benzene.
  • the amount of the compound (IV) used relative to the oxirane derivative (II) is preferably 0.5 to 10 times mol, and more preferably 0.8 to 5 times mol.
  • the reaction temperature and reaction time can be appropriately set depending on the type of the solvent used and the compound (IV).
  • the reaction temperature is, for example, preferably 0 to 200 ° C., more preferably 20 to 150 ° C.
  • the reaction time is preferably, for example, 0.1 hour to several days, and more preferably 0.2 hour to 5 days.
  • azolation is performed in the presence of a base.
  • the base in the azolation include those enumerated as bases used in the oxirane formation, and alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are particularly preferable.
  • the amount of the base used for the oxirane derivative (II) in the azolation is preferably 0.02 to 5 times mol, more preferably 0.05 to 1.5 times mol.
  • a step of producing azole derivative (III) by reacting oxirane derivative (II) with compound (IV) using as a solvent may be included.
  • the method for producing an azole derivative according to still another embodiment of the present invention may include a step of producing an azole derivative (III) by reacting an oxirane derivative (II) and a compound (IV) without solvent. Good.
  • the conditions such as reaction temperature and reaction time are the same as in the case of using hydrocarbon, water, or a mixture of hydrocarbon and water.
  • phase transfer catalyst may be appropriately added.
  • the phase transfer catalyst include tetra (n-butyl) ammonium bromide, tetra (n-hexyl) ammonium bromide, and benzyltriethylammonium chloride.
  • an embodiment using a hydrocarbon, water, or a mixture of hydrocarbon and water as a solvent is compared with an embodiment using an aprotic polar solvent such as N, N-dimethylacetamide.
  • the azole derivative (III) can be extracted with a high yield, which is preferable. This is because aprotic polar solvents are easily soluble in both water and low-polar organic solvents, whereas hydrocarbons and water are easily soluble only in one of water and low-polar organic solvents. . Therefore, in particular, embodiments using hydrocarbons, water, or a mixture of hydrocarbons and water as the solvent can be more suitably utilized even on an industrial scale.
  • reaction system refers to a single reaction occurring in the reaction vessel and a plurality of reactions occurring simultaneously in the reaction vessel. That is, in the method for producing an azole derivative of the present embodiment, the reaction from the raw material to the intermediate and the reaction from the intermediate to the product are performed in the reaction vessel even if the product is obtained from the raw material via the intermediate. If both occur simultaneously, they are said to be the same reaction system.
  • the reaction systems for oxiraneization and azoleization are different.
  • the container for oxirane formation and the container for azolation may be the same or different.
  • the reaction system is the same because oxirane formation and azoleization occur simultaneously and continuously.
  • the entire amount of the oxirane and azolation raw materials may be charged in advance into the reaction vessel, or may be appropriately added during the reaction.
  • azole derivative (III- ⁇ ) As geometric isomers of the azole derivative (III), an azole derivative represented by the following general formula (III- ⁇ ) (hereinafter referred to as “azole derivative (III- ⁇ )”) and a general formula (III- ⁇ ) shown below.
  • Azole derivatives hereinafter referred to as “azole derivatives (III- ⁇ )”.
  • the azole derivative (III- ⁇ ) is generated from the oxirane derivative (II- ⁇ ), and the azole derivative (III- ⁇ ) is generated from the oxirane derivative (II- ⁇ ).
  • the method for producing an azole derivative (III) according to each of the above embodiments includes one of the geometric isomers of the azole derivative (III) by including the production step of the oxirane derivative (II) by the above-described method for producing an oxirane derivative. Body selectivity is improved.
  • R 1 , R 2 , X and m are the same as R 1 , R 2 , X and m in formula (I), respectively, and A is The same as A in formula (III).
  • the azole derivative (III) is referred to as a “cis isomer” and the azole derivative (III- ⁇ ) is referred to as a “trans isomer”. Further, when simply referred to as “azole derivative (III)”, both azole derivative (III- ⁇ ) and azole derivative (III- ⁇ ) are included.
  • one geometric isomer of the oxirane derivative (II) (specifically, the oxirane derivative ( A step of separating II- ⁇ )) may be included. Separation of one geometric isomer of the oxirane derivative (II) can be performed by a known method. The configuration in the oxirane derivative (II) is maintained in the subsequent reaction step. Therefore, by separating only one geometric isomer (oxirane derivative (II- ⁇ )) particularly at the stage where the oxirane derivative (II) is produced, waste of raw materials can be saved in each subsequent step.
  • azole derivative (V) is suitably used for the production of an azole derivative represented by the following general formula (V) (hereinafter referred to as “azole derivative (V)”).
  • X, m and A are the same as X, m and A in formula (III), respectively.
  • L represents a halogen atom, and the halogen atom is preferably a chlorine atom or a bromine atom.
  • the azole derivative (V) has an excellent bactericidal action against many bacteria that cause plant diseases.
  • the azole derivative (III) itself also has an excellent bactericidal action against bacteria that cause disease on plants.
  • the azole derivative (V) and the azole derivative (III) can be suitably used as an industrial material protective agent or a plant growth regulator.
  • the method for producing an oxirane derivative according to the present invention is a method for producing an oxirane derivative represented by the following general formula (II):
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or —C n H 2n —OG, and G represents a protecting group.
  • N represents an integer of 1 to 4
  • R 1 and R 2 may be bonded to each other to form a ring
  • X is a halogen atom, an alkyl group having 1 to 4 carbon atoms, 1 carbon atom
  • m represents an integer of 0 to 5;
  • a plurality of Xs may be different from each other.
  • a ketone derivative represented by the following general formula (I) and sulfur ylide are reacted in a hydrocarbon solvent.
  • R 1 , R 2 , X and m are the same as R 1 , R 2 , X and m in formula (II), respectively.
  • the hydrocarbon solvent is preferably an aromatic hydrocarbon.
  • the hydrocarbon solvent is more preferably toluene or benzene.
  • the ketone derivative represented by the general formula (I) is a ketone derivative represented by the following general formula (Ia), (In Formula (Ia), G 1 and G 2 each represent a protecting group, G 1 and G 2 may be bonded to each other to form a ring, and p and q are each independently 1 or 2 X and m are the same as X and m in formula (II), respectively.
  • the oxirane derivative represented by the general formula (II) is preferably an oxirane derivative represented by the following general formula (IIa). (In the formula (IIa), G 1, G 2, p, q, X and m are the same as G 1, G 2, p, q, X and m in each formula (Ia).)
  • the ketone derivative represented by the general formula (Ia) is a ketone derivative represented by the following general formula (Ib), (In the formula (Ib), R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group or a benzyl group, and one or more hydrogen atoms of the phenyl group and One or more hydrogen atoms in the phenyl part of the benzyl group may be substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a halogen atom, and p, q, X and m are Are the same as p, q, X and m in formula (Ia), respectively.
  • the oxirane derivative represented by the general formula (IIa) is more preferably an oxirane derivative represented by the following general formula (IIb).
  • R 3, R 4, p, q, X and m are the same as R 3, R 4, p, q, X and m in each formula (Ib).
  • R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X is preferably a fluorine atom or a chlorine atom, and m is preferably 0 or 1.
  • the method for producing an azole derivative according to the present invention is a method for producing an azole derivative represented by the following general formula (III), wherein the oxirane derivative represented by the above general formula (II) is produced by the above method for producing an oxirane derivative. Including the step of: (In the formula (III), R 1, R 2, X and m are the same as R 1, R 2, X and m in each formula (II), A is represents a nitrogen atom or a methine group .)
  • an oxirane derivative represented by the above general formula (II) and a compound represented by the following general formula (IV) using hydrocarbon, water, or a mixture of hydrocarbon and water as a solvent It is preferable to include a step of producing an azole derivative represented by the above general formula (III) by reacting (In formula (IV), M represents a hydrogen atom or an alkali metal, and A is the same as A in formula (III).)
  • the purity (%) of the oxirane derivative (2c) was determined by a calibration curve method using the high purity oxirane derivative (2c) as a standard and 4-methylbenzophenone as an internal standard substance. Moreover, the purity conversion yield (%) of the oxirane derivative (2c) is [ ⁇ purity (%) of the obtained oxirane derivative (2c) ⁇ ⁇ ⁇ weight of the obtained oxirane derivative (2c) ⁇ / theoretical yield]. It was calculated by the following formula.
  • Example 2 Synthesis 2 of 12- (4-chlorobenzyl) -7,7-dimethyl-1,6,8-trioxadispiro [2.0.5.3] dodecane (oxirane derivative (2)) )
  • the ketone derivative (1) (0.393 mol), TMSOB (0.560 mol) and toluene (250 ml) were mixed and heated to 50 ° C.
  • Sodium t-butoxide (0.480 mol) was added thereto, and the mixture was heated with stirring at 50 ° C. for 6 hours. After the reaction, the reaction solution was cooled to room temperature, and water and ethyl acetate were added. The organic layer was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the oxirane derivative (2c) had a purity of 65.0% and a yield in terms of purity of 80.9%.
  • Example 4 Synthesis of 12- (4-chlorobenzyl) -7,7-dimethyl-1,6,8-trioxadispiro [2.0.5.3] dodecane (oxirane derivative (2)) 4 )
  • the ketone derivative (1) (9.95 mmol), TMSOB (14.0 mmol) and toluene (12.4 ml) were mixed and heated to 75 ° C.
  • Sodium methoxide (12.1 mmol) was added here, and it heated and stirred at 75 degreeC for 8 hours. After the reaction, the reaction solution was cooled to room temperature, and water and ethyl acetate were added. The organic layer was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the oxirane derivative (2c) had a purity of 65.2% and a yield in terms of purity of 69.1%.
  • the oxirane derivative (2c) had a purity of 64.1% and a yield in terms of purity of 71.2%.
  • Example 1 has less residual amount of the ketone derivative (1) as a raw material and less amount of by-products than Comparative Example 1. As described above, in Example 1, not only the selectivity of the geometric isomer in the oxirane derivative (2) was improved, but also the remaining raw materials and the generation of by-products were reduced, so that the oxirane derivative (2c ) Yield is improved.
  • the crude product obtained according to the procedure of Example 2 was recrystallized in a mixed solvent of methanol and water to purify the oxirane derivative (2c).
  • the purified oxirane derivative (2c) (9.88 mmol), triazole (12.0 mmol), and tetra (n-butyl) ammonium bromide (0.499 mmol) were weighed, toluene (9.3 ml) was added, and 90 ° C. Heated to a degree.
  • a solution obtained by mixing potassium hydroxide (12.0 mmol) and water (3.1 ml) was added thereto, followed by stirring at a reflux temperature of 88 ° C. for 20 hours.
  • the reaction solution was cooled to room temperature and ethyl acetate was added.
  • the organic layer was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the solvent was distilled off and concentrated to obtain a colorless transparent oil (4.513 g).
  • the azole derivative (3c) had a purity of 66.5% and a purity conversion yield of 77.5%.
  • an azole derivative (5c) (1,3,4-triazole form) which is a structural isomer of the azole derivative (3c) (1,2,4-triazole form), is also produced, and the triazole isomer ratio is (3c):
  • Azole derivative (5c) 83: 17.
  • the purity (%) of the azole derivative (3c) was determined by a calibration curve method using the high-purity azole derivative (3c) as a sample and 4-methylbenzophenone as an internal standard substance.
  • the purity conversion yield (%) of the azole derivative (3c) is [ ⁇ purity (%) of the obtained azole derivative (3c) ⁇ ⁇ ⁇ weight of the obtained azole derivative (3c) ⁇ / theoretical yield]. It was calculated by the following formula.
  • Example 7 (1SR, 2RS) -2- (4-Chlorobenzyl) -8,8-dimethyl-[(1H-1,2,4-triazol-1-yl) methyl] -7,9-dioxaspiro [4.5] Synthesis of decan-1-ol (azole derivative (3c)) 2) The oxirane derivative (2c) (9.94 mmol), triazole (12.0 mmol), and tetra (n-butyl) ammonium bromide (0.506 mmol) obtained in the same manner as in Example 6 were weighed and toluene (9. 3 ml) was added and heated to about 90 ° C.
  • Example 8 (1SR, 2RS) -2- (4-Chlorobenzyl) -8,8-dimethyl-[(1H-1,2,4-triazol-1-yl) methyl] -7,9-dioxaspiro [4.5] Synthesis of decan-1-ol (azole derivative (3c)) 3) The oxirane derivative (2c) (29.8 mmol), triazole (36.1 mmol), and tetra (n-butyl) ammonium bromide (1.50 mmol) obtained in the same manner as in Example 6 were weighed and potassium hydroxide ( 36.0 mmol) and water (7.2 ml) were added, and the mixture was stirred at 88 ° C. for 10 hours.
  • the reaction solution was cooled to room temperature and ethyl acetate was added.
  • the organic layer was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the solvent was distilled off and concentrated to obtain a yellow clear oil (12.06 g).
  • the azole derivative (3c) had a purity of 50.6% and a yield in terms of purity of 52.2%.
  • Example 9 (1SR, 2RS) -2- (4-Chlorobenzyl) -8,8-dimethyl-[(1H-1,2,4-triazol-1-yl) methyl] -7,9-dioxaspiro [4.5] Synthesis of decan-1-ol (azole derivative (3c)) 4) The oxirane derivative (2c) (9.95 mmol), triazole (12.0 mmol), and tetra (n-butyl) ammonium bromide (0.506 mmol) obtained in the same manner as in Example 6 were weighed, and potassium hydroxide ( 12.0 mmol) and N, N-dimethylacetamide (12.4 ml) were added, and the mixture was stirred at 88 ° C.
  • the reaction mixture was cooled to room temperature and ethyl acetate was added. The organic layer was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off and concentrated to obtain a colorless transparent oily substance (4.292 g).
  • the azole derivative (3c) had a purity of 77.8% and a yield in terms of purity of 85.6%.
  • the present invention can be suitably used for the production of compounds that can be used as active ingredients of agricultural and horticultural fungicides.

Abstract

 本発明では、ケトン誘導体(I)と硫黄イリドとを、炭化水素溶媒中で反応させて、オキシラン誘導体(II)を得るため、一方の幾何異性体の選択性が向上する。

Description

オキシラン誘導体の製造方法およびアゾール誘導体の製造方法
 本発明は、オキシラン誘導体の製造方法およびアゾール誘導体の製造方法に関する。
 農園芸用病害防除剤および工業用材料保護剤の有効成分として優れた活性を示すアゾリルメチルシクロペンタノール誘導体が知られている。例えば、特許文献1には、人畜に対する毒性が低く、広範な植物病害に対する高い防除効果および種々の農園芸植物に対する高い生長効果を示す2-(ハロゲン化炭化水素置換)-5-ベンジル-1-アゾリルメチルシクロペンタノール誘導体が記載されている。
 また、特許文献1には、2-(ハロゲン化炭化水素置換)-5-ベンジル-1-アゾリルメチルシクロペンタノール誘導体の製造工程の一部として、中間体である2-置換-5-ベンジルシクロペンタノン誘導体をオキシラン化すること、およびオキシラン化によって得られる生成物(オキシラン誘導体)をアゾール化することが記載されている。
 特許文献2には、上述のアゾール化によって得られる生成物(アゾール誘導体)が、シクロペンタン環の1位における置換基と5位における置換基との立体配置に関する幾何異性体の混合物であることが記載されている。
国際公開第2011/070771号(2011年6月16日公開) 国際公開第2012/169559号(2012年12月13日公開)
 上述のアゾール誘導体の立体配置は、その前の工程であるオキシラン化によって生じると考えられる。すなわち、上述のオキシラン誘導体は幾何異性体の混合物であり、その立体配置がアゾール誘導体においても維持されると考えられる。アゾール誘導体における立体配置はその後の反応工程でも維持されるため、幾何異性体の分離を行わない限り、最終生成物は幾何異性体の混合物となる。種々の観点から、最終生成物として、あるいはその中間体として、一方の幾何異性体のみを得たい場合がある。そのような場合、原料の無駄を省くなどの観点から、幾何異性体が生成するオキシラン化の工程において、一方の幾何異性体の選択性を高めることが望ましい。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、2-置換-5-ベンジルシクロペンタノン誘導体のオキシラン化おいて、一方の幾何異性体の選択性が向上する製造方法を提供することにある。
 本発明に係るオキシラン誘導体の製造方法は、下記一般式(II)で示されるオキシラン誘導体の製造方法であって、
Figure JPOXMLDOC01-appb-C000009
(式(II)中、RおよびRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基または-C2n-O-Gを表しており、Gは保護基を表し、nは1~4の整数を表しており、RおよびRは互いに結合して環を形成していてもよく、Xは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロアルコキシ基、フェニル基、シアノ基またはニトロ基を表しており、mは0~5の整数を表しており、mが2以上である場合には、複数あるXは互いに異なっていてもよい。)
 下記一般式(I)で示されるケトン誘導体と硫黄イリドとを、炭化水素溶媒中で反応させることを特徴とする。
Figure JPOXMLDOC01-appb-C000010
(式(I)中、R、R、Xおよびmは、それぞれ式(II)におけるR、R、Xおよびmと同一である。)
 本発明によれば、2-置換-5-ベンジルシクロペンタノン誘導体のオキシラン化における溶媒として炭化水素を用いることにより、得られる生成物における一方の幾何異性体の選択性を向上させることができる。
 〔1.オキシラン誘導体の製造方法〕
 本発明の一実施形態に係るオキシラン誘導体の製造方法は、下記一般式(I)で示されるケトン誘導体(以下、「ケトン誘導体(I)」と称する)を、炭化水素溶媒中で硫黄イリドと反応させてオキシラン化することにより、下記一般式(II)で示されるオキシラン誘導体(以下、「オキシラン誘導体(II)」と称する)を製造する方法である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 一般式(I)中、Xは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロアルコキシ基、フェニル基、シアノ基またはニトロ基を表している。
 ハロゲン原子としては、例えば、塩素原子、フッ素原子、臭素原子、およびヨウ素原子を挙げることができる。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、1-メチルエチル基、2-メチルプロピル基、n-ブチル基、および1,1-ジメチルエチル基等を挙げることができる。
 炭素数1~4のハロアルキル基としては、例えば、トリフルオロメチル基、1,1,2,2,2-ペンタフルオロエチル基、クロロメチル基、トリクロロメチル基、およびブロモメチル基等を挙げることができる。
 炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、およびn-プロポキシ基等を挙げることができる。
 炭素数1~4のハロアルコキシ基としては、例えば、トリフルオロメトキシ基、ジフルオロメトキシ基、1,1,2,2,2-ペンタフルオロエトキシ基、および2,2,2-トリフルオロエトキシ基等を挙げることができる。
 Xは、好ましくはハロゲン原子、炭素数1~3のハロアルキル基、炭素数1~3のハロアルコキシ基、炭素数1~3のアルキル基、および炭素数1~3のアルコキシ基であり、より好ましくはハロゲン原子、炭素数1~2のハロアルキル基、および炭素数1~2のハロアルコキシ基であり、さらに好ましくはハロゲン原子であり、特に好ましくはフッ素原子および塩素原子である。
 mは、0~5の整数を表している。mが2以上である場合には、複数あるXは同じであってもよいし、互いに異なっていてもよい。なかでも、mは、0~3の整数であることが好ましく、0~2の整数であることがより好ましく、0または1であることがさらに好ましい。
 Xの結合位置は特に限定されないが、mが1である場合には、4-置換ベンジルとなる位置が好ましい。
 RおよびRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基または-C2n-O-Gを表している。RおよびRは、互いに結合して環を形成していてもよい。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、n-ブチル基、および1,1-ジメチルエチル基等を挙げることができる。
 -C2n-O-Gにおいて、Gは保護基を表す。保護基は特に限定されないが、例えば、メトキシメチル基およびエトキシメチル基等のアルコキシメチル基、t-ブチル基およびメチル基等の低級アルキル基、置換または無置換のベンジル基、置換または無置換テトラヒドロピラニル基、置換または無置換テトラヒドロフラニル基、ならびにアリル基等を挙げることができる。nは1~4の整数を表している。なかでも、nは1~3の整数であることが好ましく、1または2であることがより好ましく、1であることがさらに好ましい。-C2n-は、直鎖状であってもよいし、分岐鎖状であってもよい。RおよびRの何れもが-C2n-O-Gである場合、2つのGは互いに結合して環を形成していてもよい。
 2つのGが互いに結合して環を形成している場合の保護基としては、例えば、メチレンアセタール、エチリデンアセタール、t-ブチルメチリデンケタール、1-t-ブチルエチリデンケタール、1-フェニルエチリデンケタール、アクロレインアセタール、イソプロピリデンケタール(アセトナイド)、シクロペンチリデンケタール、シクロヘキシリデンケタール、シクロヘプチリデンケタール、ベンジリデンアセタール、p-メトキシベンジリデンアセタール、2,4-ジメトキシベンジリデンケタール、3,4-ジメトキシベンジリデンケタール、2-ニトロベンジリデンアセタール、4-ニトロベンジリデンアセタール、メシチレンアセタール、1-ナフトアルデヒドアセタール、ベンゾフェノンケタール、カンファーケタール、メントン、メトキシメチレンアセタール、エトキシメチレンアセタール、ジメトキシメチレンオルトエステル、1-メトキシエチリデンオルトエステル、1-エトキシエチリデンオルトエステル、メチリデンオルトエステル、フタリドオルトエステル、1,2-ジメトキシエチリデンオルトエステル、α-メトキシベンジリデンオルトエステル、2-オキサシクロペンチリデンオルトエステル、ブタン-2,3-ビスアセタール、シクロヘキサン-1,2-ジアセタール、ビスジヒドロピランケタール、ジ-t-ブチルシリレン、1,3-(1,1,3,3-テトライソプロピル)ジシリオキサニリデン、および1,1,3,3-テトラ-t-ブトキシジシロキサニリデン等を挙げることができるが、これらに限定されるものではない。
 RおよびRは、それぞれ、-C2n-O-Gであることが好ましい。
 なお、RおよびRが何れも-C2n-O-Gである場合、ケトン誘導体(I)は、下記一般式(Ic)で表すことができる。
Figure JPOXMLDOC01-appb-C000013
 一般式(Ic)中、GおよびGは、それぞれ保護基を表している。GおよびGは互いに同一でも異なっていてもよい。また、GおよびGが互いに結合して環を形成してもよい。GおよびGの具体例は、式(I)のRおよびRが-C2n-O-Gである場合におけるGと同じである。nおよびnは、それぞれ独立に、1~4の整数(すなわち、1、2、3または4)を表している。Xおよびmは、それぞれ式(I)におけるXおよびmと同一である。
 ケトン誘導体(I)は、下記一般式(Ia)で示されるケトン誘導体(以下、「ケトン誘導体(Ia)」と称する)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(Ia)中、pおよびqは、それぞれ独立に、1または2である。pおよびqは、何れも、1であることが好ましい。Xおよびmは、それぞれ式(I)におけるXおよびmと同一であり、GおよびGは、それぞれ式(Ic)におけるGおよびGと同一である。
 ケトン誘導体(I)は、下記一般式(Ib)で示されるケトン誘導体(以下、「ケトン誘導体(Ib)」と称する)であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(Ib)中、RおよびRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、フェニル基またはベンジル基を表している。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、n-ブチル基、および1,1-ジメチルエチル基等を挙げることができる。
 RまたはRにおけるフェニル基の1以上の水素原子、およびRまたはRにおけるベンジル基のフェニル部における1以上の水素原子は、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはハロゲン原子で置換されていてもよい。置換基としての炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、n-ブチル基、および1,1-ジメチルエチル基等を挙げることができる。置換基としての炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、およびn-プロポキシ基等を挙げることができる。置換基としてのハロゲン原子としては、例えば、フッ素原子、塩素原子、および臭素原子等を挙げることができる。
 これらの中でも、RおよびRは、それぞれ独立に、水素原子または炭素数1~4のアルキル基であることが好ましく、炭素数1~4のアルキル基であることがより好ましく、炭素数1~2のアルキル基であることがさらに好ましく、RおよびRがともにメチル基であることが特に好ましい。
 一般式(Ib)中、p、q、Xおよびmは、それぞれ式(Ia)におけるp、q、Xおよびmと同一である。
 ケトン誘導体(I)の好適な例として、例えば下記一般式(Id)で示されるケトン誘導体を挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
 一般式(Id)中、Xは、水素原子、フッ素原子または塩素原子を表している。
 ケトン誘導体(I)は、例えば、特許文献2の記載に基づいて合成すればよい。
 一般式(II)中、R、R、Xおよびmは、それぞれ式(I)におけるR、R、Xおよびmと同一である。
 ケトン誘導体(I)としてより好ましいケトン誘導体(Ia)を用いる場合には、オキシラン誘導体(II)として、下記一般式(IIa)で示される化合物(以下、「オキシラン誘導体(IIa)」と称する)が生成する。
Figure JPOXMLDOC01-appb-C000017
 一般式(IIa)中、G、G、p、q、Xおよびmは、それぞれ式(Ia)におけるG、G、p、q、Xおよびmと同一である。
 ケトン誘導体(I)としてさらに好ましいケトン誘導体(Ib)を用いる場合には、オキシラン誘導体(II)として、下記一般式(IIb)で示される化合物(以下、「オキシラン誘導体(IIb)」と称する)が生成する。
Figure JPOXMLDOC01-appb-C000018
 一般式(IIb)中、R、R、p、q、Xおよびmは、それぞれ式(Ib)におけるR、R、p、q、Xおよびmと同一である。
 オキシラン誘導体(II)の幾何異性体として、下記一般式(II-α)で示されるオキシラン誘導体(以下、「オキシラン誘導体(II-α)」と称する)および下記一般式(II-β)で示されるオキシラン誘導体(以下、「オキシラン誘導体(II-β)」と称する)がある。
Figure JPOXMLDOC01-appb-C000019
 一般式(II-α)および一般式(II-β)中、R、R、Xおよびmは、それぞれ式(I)におけるR、R、Xおよびmと同一である。
 なお、本明細書において、オキシラン誘導体(II)に関して、オキシラン誘導体(II-α)を「シス体」とし、オキシラン誘導体(II-β)を「トランス体」とする。また、単に「オキシラン誘導体(II)」という場合、オキシラン誘導体(II-α)およびオキシラン誘導体(II-β)の何れもが包含される。
 本実施形態に係るオキシラン誘導体(II)の製造方法の反応スキームを、下記反応スキーム1に示す。ケトン誘導体(I)と硫黄イリドとを、炭化水素溶媒中で反応させてオキシラン化することにより、オキシラン誘導体(II)を製造する。本実施形態に係るオキシラン誘導体の製造方法によれば、シス体であるオキシラン誘導体(II-α)に対する選択性が向上する(後述の実施例も参照)。
Figure JPOXMLDOC01-appb-C000020
 炭化水素溶媒としては、例えば、トルエン、ベンゼン、およびキシレン等の芳香族炭化水素;ペンタン、ヘキサン、およびヘプタン等の鎖状炭化水素;シクロヘキサン、メチルシクロヘキサン、およびエチルシクロヘキサン等の環状炭化水素等を挙げることができ、これらは必要に応じて混合して使用してもよい。なかでも、芳香族炭化水素を用いることが好ましく、なかでもトルエンまたはベンゼンを用いることがより好ましい。
 硫黄イリドとしては、例えば、ジメチルスルホニウムメチリド等のスルホニウムメチリド類およびジメチルスルホキソニウムメチリド等のスルホキソニウムメチリド類を挙げることができる。硫黄イリドは、例えば、炭化水素溶媒中、スルホニウム化合物またはスルホキソニウム化合物と塩基とを反応させることによって生成させることができる。
 スルホニウム化合物としては、例えば、トリメチルスルホニウムブロマイド、トリメチルスルホニウムクロライドおよびトリメチルスルホニウムヨード等を挙げることができる。スルホキソニウム化合物としては、例えば、トリメチルスルホキソニウムブロマイド(TMSOB)、トリメチルスルホキソニウムクロライドおよびトリメチルスルホキソニウムヨード等を挙げることができる。硫黄イリドの生成には収率の観点からスルホキソニウム化合物を用いることが好ましく、なかでもトリメチルスルホキソニウムブロマイドを用いることがより好ましい。
 また、塩基としては、例えば、水素化ナトリウム等の金属水素化合物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシドおよびカリウムt-ブトキシド等のアルカリ金属アルコキシド;水酸化カリウムおよび水酸化ナトリウム等のアルカリ金属の水酸化物;水酸化マグネシウムおよび水酸化カルシウム等のアルカリ土類金属水酸化物;ナトリウムおよびカリウム等のアルカリ金属;メチルリチウムおよびn-ブチルリチウム等のアルカリ金属の有機金属化合物;炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、および炭酸水素カリウム等のアルカリ金属炭酸塩;炭酸カルシウムおよび炭酸バリウム等のアルカリ土類金属炭酸塩を挙げることができる。なかでも、金属アルコキシドおよび金属水酸化物が好ましく、金属アルコキシドがより好ましく、アルカリ金属t-ブトキシドがさらに好ましく、ナトリウムt-ブトキシドが特に好ましい。また、製造上の取扱いの容易性の観点から、金属アルコキシドを溶解する溶媒としては、メタノール、エタノールおよびt-ブタノール等を挙げることができる。
 スルホニウム化合物またはスルホキソニウム化合物は、分割して添加してもよい。また、塩基は分割して添加してもよい。さらに、スルホニウム化合物またはスルホキソニウム化合物および塩基の双方を、分割して添加してもよい。スルホニウム化合物またはスルホキソニウム化合物を加える回数については、所定の目的を達成することができる回数であれば、特に限定されるものではない。回数としては、1~20回であることが好ましく、1~10回であることがより好ましい。塩基を分割して添加する場合も同様である。
 また、触媒量のジエチレングリコールを適宜添加してもよい。
 反応温度および反応時間は、用いられる炭化水素溶媒、ケトン誘導体(I)、スルホニウム化合物またはスルホキソニウム化合物および塩基の種類等によって適宜設定することができる。反応温度は、例えば、0~150℃であることが好ましく、25~80℃であることがより好ましい。反応時間は、例えば、0.1時間~5日であることが好ましく、0.2時間~1日であることがより好ましい。
 スルホニウム化合物またはスルホキソニウム化合物の合計の使用量は、ケトン誘導体(I)に対して0.5~5倍モルであることが好ましく、0.8~2倍モルであることがより好ましい。
 塩基の使用量は、ケトン誘導体(I)に対して0.5~5倍モルであることが好ましく、0.8~2倍モルであることがより好ましい。
 本実施形態に係るオキシラン誘導体の製造方法では、上述のように、オキシラン誘導体(II-α)に対する選択性が向上する。また、オキシラン誘導体(II-α)およびオキシラン誘導体(II-β)以外の副生成物の生成が抑制され、オキシラン誘導体(II-α)の純度および収率が向上し得る(後述の実施例も参照)。さらに、原料であるケトン誘導体(I)の残存量が低減され、オキシラン誘導体(II-α)の純度および収率が向上し得る(後述の実施例も参照)。また、溶媒としてN,N-ジメチルアセトアミド(DMAc)等の非プロトン性の極性溶媒を用いる従来の製造方法では、当該溶媒が水および低極性有機溶媒の何れにも溶解しやすいため、高収率でのオキシラン誘導体(II)の抽出に手間が掛かるが、本実施形態に係るオキシラン誘導体の製造方法では、用いる溶媒は水に溶解しにくいため、抽出の手間を低減し得る。そのため、本実施形態に係るオキシラン誘導体の製造方法は、工業的規模でも好適に利用され得る。
 〔2.アゾール誘導体の製造方法〕
 本発明の一実施形態に係るアゾール誘導体の製造方法は、下記一般式(III)で示されるアゾール誘導体(以下、「アゾール誘導体(III)」と称する)の製造方法であって、上述したオキシラン誘導体の製造方法によりオキシラン誘導体(II)を製造する工程を含む方法である。
Figure JPOXMLDOC01-appb-C000021
 一般式(III)中、R、R、Xおよびmは、それぞれ式(II)におけるR、R、Xおよびmと同一である。Aは、窒素原子またはメチン基を表している。Aは、好ましくは窒素原子である。
 本実施形態におけるアゾール誘導体の製造方法は、さらに、炭化水素、水、または炭化水素と水との混合物を溶媒として、オキシラン誘導体(II)を、下記一般式(IV)で示される化合物(以下、「化合物(IV)」と称する)とを反応させてアゾール化することにより、アゾール誘導体(III)を製造する工程を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000022
 一般式(IV)中、Mは、水素原子またはアルカリ金属を表している。アルカリ金属としては、カリウム、ナトリウム、およびリチウムを挙げることができる。Aは、式(III)におけるAと同一である。
 本実施形態に係るアゾール誘導体(III)の製造方法の反応スキームの一例を、下記反応スキーム2に示す。
Figure JPOXMLDOC01-appb-C000023
 溶媒として用いる炭化水素としては、例えば、トルエン、ベンゼン、およびキシレン等の芳香族炭化水素;ペンタン、ヘキサン、およびヘプタン等の鎖状炭化水素;シクロヘキサン、メチルシクロヘキサン、およびエチルシクロヘキサン等の環状炭化水素等を挙げることができ、これらは必要に応じて混合して使用してもよい。溶媒として用いる炭化水素としては、なかでも、芳香族炭化水素を用いることが好ましく、なかでもトルエンまたはベンゼンを用いることがより好ましい。オキシラン誘導体(II)の製造工程で溶媒として用いる炭化水素とアゾール誘導体(III)の製造工程で溶媒として用いる炭化水素とは、同じ種類であってもよいし、異なる種類であってもよい。
 オキシラン誘導体(II)に対する化合物(IV)の使用量は、0.5~10倍モルであることが好ましく、0.8~5倍モルであることがより好ましい。
 反応温度および反応時間は、用いられる溶媒および化合物(IV)の種類等によって適宜設定することができる。反応温度は、例えば、0~200℃であることが好ましく、20~150℃であることがより好ましい。また、反応時間は、例えば、0.1時間~数日であることが好ましく、0.2時間~5日であることがより好ましい。
 化合物(IV)として、式(IV)におけるMが水素原子であるものを用いる場合、アゾール化は塩基存在下で行う。アゾール化における塩基としては、オキシラン化で用いる塩基として列挙したものを挙げることができ、なかでも、水酸化カリウムおよび水酸化ナトリウム等のアルカリ金属の水酸化物が好ましい。アゾール化におけるオキシラン誘導体(II)に対する塩基の使用量は、0.02~5倍モルであることが好ましく、0.05~1.5倍モルであることがより好ましい。
 本発明の他の実施形態に係るアゾール誘導体の製造方法において、炭化水素、水、または炭化水素と水との混合物の代わりに、DMAc、N-メチルピロリドン(NMP)、またはジメチルスルホキシド(DMSO)等を溶媒として、オキシラン誘導体(II)と化合物(IV)とを反応させて、アゾール誘導体(III)を製造する工程を含んでいてもよい。本発明のさらに他の実施形態におけるアゾール誘導体の製造方法において、無溶媒で、オキシラン誘導体(II)と化合物(IV)とを反応させて、アゾール誘導体(III)を製造する工程を含んでいてもよい。なお、反応温度および反応時間等の条件は、炭化水素、水、または炭化水素と水との混合物を用いる場合と同様である。
 また、何れの実施形態においても、適宜、相関移動触媒を添加してもよい。相関移動触媒としては、例えば、テトラ(n-ブチル)アンモニウムブロミド、テトラ(n-ヘキシル)アンモニウムブロミド、およびベンジルトリエチルアンモニウムクロリド等を挙げることができる。
 アゾール誘導体の製造方法において、溶媒として炭化水素、水、または炭化水素と水との混合物を用いる実施形態は、N,N-ジメチルアセトアミド等の非プロトン性の極性溶媒を用いる実施形態と比較して、高収率でのアゾール誘導体(III)の抽出の手間を少なくし得るため、好ましい。これは、非プロトン性の極性溶媒が水および低極性有機溶媒の何れにも溶解しやすいのに対し、炭化水素および水は、水および低極性有機溶媒の一方のみに溶解しやすいことに起因する。それゆえ、特に、溶媒として炭化水素、水、または炭化水素と水との混合物を用いる実施形態は、工業的規模でもより好適に利用され得る。
 上述のオキシラン化とアゾール化とは、同一の反応系内で行ってもよいし、また、異なる反応系で行ってもよい。ここで、「反応系」とは、反応容器内で起こる単一の反応、および反応容器内で同時に起こる複数の反応を指す。すなわち、本実施形態のアゾール誘導体の製造方法では、原料から中間体を経由して得られる生成物であっても、反応容器内で原料から中間体への反応と中間体から生成物への反応とが同時に起きていれば、同一の反応系という。
 より具体的に説明すると、オキシラン化を完了させた後で、アゾール化を起こす場合は、オキシラン化およびアゾール化の反応系は異なる。このとき、オキシラン化を行う容器とアゾール化を行う容器は、同一であってもよいし、異なっていてもよい。一方、オキシラン化を起こしつつ、アゾール化も起こす場合は、オキシラン化とアゾール化とが同時にかつ連続的に起きているため、反応系は同一である。このとき、オキシラン化およびアゾール化の原料は、予め全量が反応容器内に仕込まれていてもよいし、反応途中で適宜投入するようにしてもよい。
 アゾール誘導体(III)の幾何異性体として、下記一般式(III-α)で示されるアゾール誘導体(以下、「アゾール誘導体(III-α)」と称する)および下記一般式(III-β)で示されるアゾール誘導体(以下、「アゾール誘導体(III-β)」と称する)がある。アゾール誘導体(III-α)はオキシラン誘導体(II-α)から生成し、アゾール誘導体(III-β)はオキシラン誘導体(II-β)から生成する。そのため、上記の各実施形態に係るアゾール誘導体(III)の製造方法は、上述したオキシラン誘導体の製造方法によるオキシラン誘導体(II)の製造工程を含むことにより、アゾール誘導体(III)の一方の幾何異性体の選択性が向上する。
Figure JPOXMLDOC01-appb-C000024
 一般式(III-α)および一般式(III-β)中、R、R、Xおよびmは、それぞれ式(I)におけるR、R、Xおよびmと同一であり、Aは、式(III)におけるAと同一である。
 なお、本明細書において、アゾール誘導体(III)に関して、アゾール誘導体(III-α)を「シス体」とし、アゾール誘導体(III-β)を「トランス体」とする。また、単に「アゾール誘導体(III)」という場合、アゾール誘導体(III-α)およびアゾール誘導体(III-β)の何れもが包含される。
 オキシラン誘導体(II)の一方の幾何異性体のみを用いた場合(例えば、アゾール化の前に精製・分離した場合等)には、対応するアゾール誘導体(III)の幾何異性体のみが生成する。
 何れの実施形態においても、オキシラン誘導体(II)を製造する工程後、アゾール誘導体(III)を製造する工程前に、オキシラン誘導体(II)の一方の幾何異性体(具体的には、オキシラン誘導体(II-α))を分離する工程を含んでいてもよい。オキシラン誘導体(II)の一方の幾何異性体の分離は公知の方法で行うことができる。オキシラン誘導体(II)における立体配置はその後の反応工程でも維持される。そのため、特にオキシラン誘導体(II)が生成した段階で一方の幾何異性体(オキシラン誘導体(II-α))のみを分離することにより、その後の各工程において原料の無駄を省くことができる。
 アゾール誘導体(III)は、下記一般式(V)で示されるアゾール誘導体(以下、「アゾール誘導体(V)」と称する)の製造に好適に使用される。
Figure JPOXMLDOC01-appb-C000025
 一般式(V)中、X、mおよびAは、それぞれ式(III)におけるX、mおよびAと同一である。Lは、ハロゲン原子を表し、ハロゲン原子としては、塩素原子および臭素原子が好ましい。
 シクロペンタン環に結合したヒドロキシ基と(置換)ベンジル基との立体配置に関して、アゾール誘導体(III-α)からは、アゾール誘導体(III-α)と同じ立体配置のアゾール誘導体(V)のみが得られ、アゾール誘導体(III-β)からは、アゾール誘導体(III-β)と同じ立体配置のアゾール誘導体(V)のみが得られる。
 アゾール誘導体(V)は、植物に病害を引き起こす多くの菌に対して優れた殺菌作用を有する。なお、アゾール誘導体(III)自体も、植物に病害を引き起こす菌に対して優れた殺菌作用を有している。また、アゾール誘導体(V)およびアゾール誘導体(III)は、工業用材料保護剤または植物成長調整剤としても好適に利用することができる。
 〔3.まとめ〕
 このように、本発明に係るオキシラン誘導体の製造方法は、下記一般式(II)で示されるオキシラン誘導体の製造方法であって、
Figure JPOXMLDOC01-appb-C000026
(式(II)中、RおよびRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基または-C2n-O-Gを表しており、Gは保護基を表し、nは1~4の整数を表しており、RおよびRは互いに結合して環を形成していてもよく、Xは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロアルコキシ基、フェニル基、シアノ基またはニトロ基を表しており、mは0~5の整数を表しており、mが2以上である場合には、複数あるXは互いに異なっていてもよい。)
 下記一般式(I)で示されるケトン誘導体と硫黄イリドとを、炭化水素溶媒中で反応させることを特徴とする。
Figure JPOXMLDOC01-appb-C000027
(式(I)中、R、R、Xおよびmは、それぞれ式(II)におけるR、R、Xおよびmと同一である。)
 上記炭化水素溶媒は、芳香族炭化水素であることが好ましい。
 上記炭化水素溶媒は、トルエンまたはベンゼンであることがより好ましい。
 上記一般式(I)で示されるケトン誘導体は、下記一般式(Ia)で示されるケトン誘導体であり、
Figure JPOXMLDOC01-appb-C000028
(式(Ia)中、GおよびGはそれぞれ保護基を表し、GおよびGが互いに結合して環を形成していてもよく、pおよびqは、それぞれ独立に、1または2であり、Xおよびmは、それぞれ式(II)におけるXおよびmと同一である。)
 上記一般式(II)で示されるオキシラン誘導体は、下記一般式(IIa)で示されるオキシラン誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
(式(IIa)中、G、G、p、q、Xおよびmは、それぞれ式(Ia)におけるG、G、p、q、Xおよびmと同一である。)
 上記一般式(Ia)で示されるケトン誘導体は、下記一般式(Ib)で示されるケトン誘導体であり、
Figure JPOXMLDOC01-appb-C000030
(式(Ib)中、RおよびRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、フェニル基またはベンジル基を表しており、当該フェニル基の1以上の水素原子および当該ベンジル基のフェニル部における1以上の水素原子は、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはハロゲン原子で置換されていてもよく、p、q、Xおよびmは、それぞれ式(Ia)におけるp、q、Xおよびmと同一である。)
 上記一般式(IIa)で示されるオキシラン誘導体は、下記一般式(IIb)で示されるオキシラン誘導体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000031
(式(IIb)中、R、R、p、q、Xおよびmは、それぞれ式(Ib)におけるR、R、p、q、Xおよびmと同一である。)
 RおよびRは、それぞれ独立に、水素原子または炭素数1~4のアルキル基であることがさらに好ましい。
 Xは、フッ素原子または塩素原子であり、mは、0または1であることが好ましい。
 本発明に係るアゾール誘導体の製造方法は、下記一般式(III)で示されるアゾール誘導体の製造方法であって、上述のオキシラン誘導体の製造方法により上記一般式(II)で示されるオキシラン誘導体を製造する工程を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000032
(式(III)中、R、R、Xおよびmは、それぞれ式(II)におけるR、R、Xおよびmと同一であり、Aは、窒素原子またはメチン基を表している。)
 本発明に係るアゾール誘導体の製造方法において、炭化水素、水、または炭化水素と水との混合物を溶媒として、上記一般式(II)で示されるオキシラン誘導体と下記一般式(IV)で示される化合物とを反応させて、上記一般式(III)で示されるアゾール誘導体を製造する工程を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000033
(式(IV)中、Mは、水素原子またはアルカリ金属を表しており、Aは、式(III)におけるAと同一である。)
 本発明に係るアゾール誘導体の製造方法において、上記一般式(II)で示されるオキシラン誘導体を製造する工程後、上記一般式(III)で示されるアゾール誘導体を製造する工程前に、上記一般式(II)で示されるオキシラン誘導体の一方の幾何異性体を分離する工程を含んでもよい。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 (実施例1:12-(4-クロロベンジル)-7,7-ジメチル-1,6,8-トリオキサジスピロ[2.0.5.3]ドデカン(オキシラン誘導体(2))の合成1)
Figure JPOXMLDOC01-appb-C000034
 2-(4-クロロベンジル)-8,8-ジメチル-7,9-ジオキサスピロ[4,5]デカン-1-オン(ケトン誘導体(1))(9.99mmol)、TMSOB(14.0mmol)およびトルエン(12.4ml)を混合し、75℃に加熱した。ここにナトリウムt-ブトキシド(12.0mmol)を加え、75℃で6時間加熱撹拌した。反応後、反応液を室温まで冷却し、水および酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(3.276g)を得た。定量分析の結果、シス体(3SR,12RS)のオキシラン誘導体(2c)は、純度78.3%、純度換算収率79.6%であった。また、異性体比は、シス体:トランス体(オキシラン誘導体(2t))=97:3であった。
Figure JPOXMLDOC01-appb-C000035
 なお、オキシラン誘導体(2c)の純度(%)は、高純度のオキシラン誘導体(2c)を標品として用い、4-メチルベンゾフェノンを内部標準物質として用いた検量線法により求めた。また、オキシラン誘導体(2c)の純度換算収率(%)は、[{得られたオキシラン誘導体(2c)の純度(%)}×{得られたオキシラン誘導体(2c)の重量}/理論収量]の計算式で求めた。
 (実施例2:12-(4-クロロベンジル)-7,7-ジメチル-1,6,8-トリオキサジスピロ[2.0.5.3]ドデカン(オキシラン誘導体(2))の合成2)
 ケトン誘導体(1)(0.393mol)、TMSOB(0.560mol)およびトルエン(250ml)を混合し、50℃に加熱した。ここにナトリウムt-ブトキシド(0.480mol)を加え、50℃で6時間加熱撹拌した。反応後、反応液を室温まで冷却し、水および酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、黄色澄明油状物(172.8g)を得た。定量分析の結果、オキシラン誘導体(2c)は、純度64.5%、純度換算収率87.8%であった。また、異性体比は、シス体:トランス体=98:2であった。
 (実施例3:12-(4-クロロベンジル)-7,7-ジメチル-1,6,8-トリオキサジスピロ[2.0.5.3]ドデカン(オキシラン誘導体(2))の合成3)
 ケトン誘導体(1)(9.97mmol)、TMSOB(14.0mmol)およびトルエン(12.4ml)を混合し、75℃に加熱した。ここに28%ナトリウムメトキシドメタノール溶液(12.0mmol)を加え、70℃で6時間加熱還流した。反応後、反応液を室温まで冷却し、水および酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(4.007g)を得た。定量分析の結果、オキシラン誘導体(2c)は、純度65.0%、純度換算収率80.9%であった。また、異性体比は、シス体:トランス体=96:4であった。
 (実施例4:12-(4-クロロベンジル)-7,7-ジメチル-1,6,8-トリオキサジスピロ[2.0.5.3]ドデカン(オキシラン誘導体(2))の合成4)
 ケトン誘導体(1)(9.95mmol)、TMSOB(14.0mmol)およびトルエン(12.4ml)を混合し、75℃に加熱した。ここにナトリウムメトキシド(12.1mmol)を加え、75℃で8時間加熱攪拌した。反応後、反応液を室温まで冷却し、水および酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(3.743g)を得た。定量分析の結果、オキシラン誘導体(2c)は、純度30.0%、純度換算収率35.0%であった。また、異性体比は、シス体:トランス体=97:3であった。
 (実施例5:12-(4-クロロベンジル)-7,7-ジメチル-1,6,8-トリオキサジスピロ[2.0.5.3]ドデカン(オキシラン誘導体(2))の合成5)
 ケトン誘導体(1)(9.99mmol)、TMSOB(14.0mmol)、ジエチレングリコール(0.70mmol)およびトルエン(12.4ml)を混合し、75℃に加熱した。ここに水酸化カリウム(12.0mmol)を加え、75℃で6時間加熱攪拌した。反応後、反応液を室温まで冷却し、水および酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(3.684g)を得た。定量分析の結果、オキシラン誘導体(2c)は、純度65.4%、純度換算収率74.8%であった。また、異性体比は、シス体:トランス体=97:3であった。
 (比較例1:12-(4-クロロベンジル)-7,7-ジメチル-1,6,8-トリオキサジスピロ[2.0.5.3]ドデカン(オキシラン誘導体(2))の合成6)
 ケトン誘導体(1)(9.98mmol)、TMSOB(14.0mmol)およびN,N-ジメチルアセトアミド(12.4ml)を混合し、75℃に加熱した。ここにナトリウムt-ブトキシド(12.0mmol)を加え、75℃で3時間加熱攪拌した。反応後、反応液を室温まで冷却し、水および酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(3.410g)を得た。定量分析の結果、オキシラン誘導体(2c)は、純度65.2%、純度換算収率69.1%であった。また、異性体比は、シス体:トランス体=93:7であった。
 (比較例2:12-(4-クロロベンジル)-7,7-ジメチル-1,6,8-トリオキサジスピロ[2.0.5.3]ドデカン(オキシラン誘導体(2))の合成7)
 ケトン誘導体(1)(9.97mmol)、TMSOB(14.0mmol)、N,N-ジメチルアセトアミド(6.2ml)およびトルエン(6.2ml)を混合し、75℃に加熱した。ここにナトリウムt-ブトキシド(12.0mmol)を加え、75℃で5時間加熱攪拌した。反応後、反応液を室温まで冷却し、水および酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(3.572g)を得た。定量分析の結果、オキシラン誘導体(2c)は、純度64.1%、純度換算収率71.2%であった。また、異性体比は、シス体:トランス体=94:6であった。
 (実施例1と比較例1との比較)
 実施例1における生成物の割合と比較例1における生成物の割合とを比較した。生成物の割合(%)は、HPLCにおける面積比から算出した。結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000036
 表1に示すように、実施例1は比較例1と比較して、原料であるケトン誘導体(1)の残存量が少なく、また、副生成物の生成量が少ない。このように、実施例1では、オキシラン誘導体(2)における幾何異性体の選択性が向上しているだけでなく、原料の残存および副生成物の生成が低減されているため、オキシラン誘導体(2c)の収率がより向上している。
 (実施例6:(1SR,2RS)-2-(4-クロロベンジル)-8,8-ジメチル-[(1H-1,2,4-トリアゾール-1-イル)メチル]-7,9-ジオキサスピロ[4.5]デカン-1-オール(アゾール誘導体(3c))の合成1)
Figure JPOXMLDOC01-appb-C000037
 実施例2の手順に準じて得られた粗精製物を、メタノールと水との混合溶媒中で再結晶化してオキシラン誘導体(2c)を精製した。この精製したオキシラン誘導体(2c)(9.88mmol)、トリアゾール(12.0mmol)、およびテトラ(n-ブチル)アンモニウムブロミド(0.499mmol)を量り取り、トルエン(9.3ml)を加え、90℃程度に加熱した。ここに水酸化カリウム(12.0mmol)と水(3.1ml)とを混合した溶液を加え、88℃の還流温度で20時間撹拌した。反応後、反応液を室温まで冷却し、酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(4.513g)を得た。定量分析の結果、アゾール誘導体(3c)は、純度66.5%、純度換算収率77.5%であった。また、アゾール誘導体(3c)(1,2,4-トリアゾール体)の構造異性体であるアゾール誘導体(5c)(1,3,4-トリアゾール体)も生成され、トリアゾール異性体比は、アゾール誘導体(3c):アゾール誘導体(5c)=83:17であった。
 なお、アゾール誘導体(3c)の純度(%)は、高純度のアゾール誘導体(3c)を標品として用い、4-メチルベンゾフェノンを内部標準物質として用いた検量線法により求めた。また、アゾール誘導体(3c)の純度換算収率(%)は、[{得られたアゾール誘導体(3c)の純度(%)}×{得られたアゾール誘導体(3c)の重量}/理論収量]の計算式で求めた。
 (実施例7:(1SR,2RS)-2-(4-クロロベンジル)-8,8-ジメチル-[(1H-1,2,4-トリアゾール-1-イル)メチル]-7,9-ジオキサスピロ[4.5]デカン-1-オール(アゾール誘導体(3c))の合成2)
 実施例6と同様にして得られたオキシラン誘導体(2c)(9.94mmol)、トリアゾール(12.0mmol)、およびテトラ(n-ブチル)アンモニウムブロミド(0.506mmol)を量り取り、トルエン(9.3ml)を加え、90℃程度に加熱した。ここに水酸化ナトリウム(12.0mmol)と水(3.1ml)とを混合した溶液を加え、88℃の還流温度で26時間撹拌した。反応後、反応液を室温まで冷却し、酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(4.483g)を得た。定量分析の結果、アゾール誘導体(3c)は、純度68.0%、純度換算収率78.2%であった。また、トリアゾール異性体比は、アゾール誘導体(3c):アゾール誘導体(5c)=83:17であった。
 (実施例8:(1SR,2RS)-2-(4-クロロベンジル)-8,8-ジメチル-[(1H-1,2,4-トリアゾール-1-イル)メチル]-7,9-ジオキサスピロ[4.5]デカン-1-オール(アゾール誘導体(3c))の合成3)
 実施例6と同様にして得られたオキシラン誘導体(2c)(29.8mmol)、トリアゾール(36.1mmol)、およびテトラ(n-ブチル)アンモニウムブロミド(1.50mmol)を量り取り、水酸化カリウム(36.0mmol)と水(7.2ml)とを混合した溶液を加え、88℃で10時間撹拌した。反応後、反応液を室温まで冷却し、酢酸エチルを加えた。有機層を分離し、水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、黄色澄明油状物(12.06g)を得た。定量分析の結果、アゾール誘導体(3c)は、純度50.6%、純度換算収率52.2%であった。また、トリアゾール異性体比は、アゾール誘導体(3c):アゾール誘導体(5c)=84:16であった。
 (実施例9:(1SR,2RS)-2-(4-クロロベンジル)-8,8-ジメチル-[(1H-1,2,4-トリアゾール-1-イル)メチル]-7,9-ジオキサスピロ[4.5]デカン-1-オール(アゾール誘導体(3c))の合成4)
 実施例6と同様にして得られたオキシラン誘導体(2c)(9.95mmol)、トリアゾール(12.0mmol)、およびテトラ(n-ブチル)アンモニウムブロミド(0.506mmol)を量り取り、水酸化カリウム(12.0mmol)とN,N-ジメチルアセトアミド(12.4ml)とを混合した溶液を加え、88℃で4時間撹拌した。反応後、室温まで冷却し、酢酸エチルを加えた。有機層を分離し、水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して濃縮することにより、無色透明油状物(4.292g)を得た。定量分析の結果、アゾール誘導体(3c)は、純度77.8%、純度換算収率85.6%であった。また、トリアゾール異性体比は、アゾール誘導体(3c):アゾール誘導体(5c)=91:9であった。
 本発明は、農園芸用の殺菌剤の有効成分として利用することができる化合物の製造に好適に利用することができる。

Claims (10)

  1.  下記一般式(II)で示されるオキシラン誘導体の製造方法であって、
    Figure JPOXMLDOC01-appb-C000001
    (式(II)中、RおよびRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基または-C2n-O-Gを表しており、Gは保護基を表し、nは1~4の整数を表しており、RおよびRは互いに結合して環を形成していてもよく、Xは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロアルコキシ基、フェニル基、シアノ基またはニトロ基を表しており、mは0~5の整数を表しており、mが2以上である場合には、複数あるXは互いに異なっていてもよい。)
     下記一般式(I)で示されるケトン誘導体と硫黄イリドとを、炭化水素溶媒中で反応させることを特徴とするオキシラン誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、R、R、Xおよびmは、それぞれ式(II)におけるR、R、Xおよびmと同一である。)
  2.  上記炭化水素溶媒は、芳香族炭化水素であることを特徴とする請求項1に記載のオキシラン誘導体の製造方法。
  3.  上記炭化水素溶媒は、トルエンまたはベンゼンであることを特徴とする請求項1または2に記載のオキシラン誘導体の製造方法。
  4.  上記一般式(I)で示されるケトン誘導体は、下記一般式(Ia)で示されるケトン誘導体であり、
    Figure JPOXMLDOC01-appb-C000003
    (式(Ia)中、GおよびGはそれぞれ保護基を表し、GおよびGが互いに結合して環を形成していてもよく、pおよびqは、それぞれ独立に、1または2であり、Xおよびmは、それぞれ式(II)におけるXおよびmと同一である。)
     上記一般式(II)で示されるオキシラン誘導体は、下記一般式(IIa)で示されるオキシラン誘導体であることを特徴とする請求項1~3の何れか1項に記載のオキシラン誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(IIa)中、G、G、p、q、Xおよびmは、それぞれ式(Ia)におけるG、G、p、q、Xおよびmと同一である。)
  5.  上記一般式(Ia)で示されるケトン誘導体は、下記一般式(Ib)で示されるケトン誘導体であり、
    Figure JPOXMLDOC01-appb-C000005
    (式(Ib)中、RおよびRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、フェニル基またはベンジル基を表しており、当該フェニル基の1以上の水素原子および当該ベンジル基のフェニル部における1以上の水素原子は、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはハロゲン原子で置換されていてもよく、p、q、Xおよびmは、それぞれ式(Ia)におけるp、q、Xおよびmと同一である。)
     上記一般式(IIa)で示されるオキシラン誘導体は、下記一般式(IIb)で示されるオキシラン誘導体であることを特徴とする請求項4に記載のオキシラン誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式(IIb)中、R、R、p、q、Xおよびmは、それぞれ式(Ib)におけるR、R、p、q、Xおよびmと同一である。)
  6.  RおよびRは、それぞれ独立に、水素原子または炭素数1~4のアルキル基であることを特徴とする請求項5に記載のオキシラン誘導体の製造方法。
  7.  Xは、フッ素原子または塩素原子であり、mは、0または1であることを特徴とする請求項1~6の何れか1項に記載のオキシラン誘導体の製造方法。
  8.  請求項1~3の何れか1項に記載のオキシラン誘導体の製造方法により上記一般式(II)で示されるオキシラン誘導体を製造する工程を含むことを特徴とする、下記一般式(III)で示されるアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式(III)中、R、R、Xおよびmは、それぞれ式(II)におけるR、R、Xおよびmと同一であり、Aは、窒素原子またはメチン基を表している。)
  9.  炭化水素、水、または炭化水素と水との混合物を溶媒として、上記一般式(II)で示されるオキシラン誘導体と下記一般式(IV)で示される化合物とを反応させて、上記一般式(III)で示されるアゾール誘導体を製造する工程を含むことを特徴とする請求項8に記載のアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式(IV)中、Mは、水素原子またはアルカリ金属を表しており、Aは、式(III)におけるAと同一である。)
  10.  上記一般式(II)で示されるオキシラン誘導体を製造する工程後、上記一般式(III)で示されるアゾール誘導体を製造する工程前に、上記一般式(II)で示されるオキシラン誘導体の一方の幾何異性体を分離する工程を含むことを特徴とする請求項8または9に記載のアゾール誘導体の製造方法。
PCT/JP2014/063860 2013-07-03 2014-05-26 オキシラン誘導体の製造方法およびアゾール誘導体の製造方法 WO2015001868A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480033596.3A CN105308051A (zh) 2013-07-03 2014-05-26 环氧乙烷衍生物的制备方法及唑衍生物的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013140062 2013-07-03
JP2013-140062 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015001868A1 true WO2015001868A1 (ja) 2015-01-08

Family

ID=52143461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063860 WO2015001868A1 (ja) 2013-07-03 2014-05-26 オキシラン誘導体の製造方法およびアゾール誘導体の製造方法

Country Status (2)

Country Link
CN (1) CN105308051A (ja)
WO (1) WO2015001868A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501210A (zh) * 2017-08-04 2017-12-22 浙江工业大学 一种环氧乙烷衍生物的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193574A (ja) * 1986-11-10 1989-04-12 Kureha Chem Ind Co Ltd 新規アゾール誘導体、その製造方法及び該誘導体の農園芸用薬剤
WO2012169559A1 (ja) * 2011-06-07 2012-12-13 株式会社クレハ アゾール誘導体、アゾール誘導体の製造方法、および中間体化合物
JP2013512858A (ja) * 2009-12-08 2013-04-18 株式会社クレハ アゾール誘導体およびその製造方法、該誘導体の中間体化合物、ならびに農園芸用薬剤
WO2014057844A1 (ja) * 2012-10-11 2014-04-17 株式会社クレハ シクロアルカノール誘導体の製造方法およびアゾール誘導体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193574A (ja) * 1986-11-10 1989-04-12 Kureha Chem Ind Co Ltd 新規アゾール誘導体、その製造方法及び該誘導体の農園芸用薬剤
JP2013512858A (ja) * 2009-12-08 2013-04-18 株式会社クレハ アゾール誘導体およびその製造方法、該誘導体の中間体化合物、ならびに農園芸用薬剤
WO2012169559A1 (ja) * 2011-06-07 2012-12-13 株式会社クレハ アゾール誘導体、アゾール誘導体の製造方法、および中間体化合物
WO2014057844A1 (ja) * 2012-10-11 2014-04-17 株式会社クレハ シクロアルカノール誘導体の製造方法およびアゾール誘導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATO,A. ET AL.: "Aromatase inhibitors: synthesis, biological activity, and structure of 1,2- imidazolylmethylcyclopentanol derivatives", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 43, no. 12, 1995, pages 2152 - 8 *

Also Published As

Publication number Publication date
CN105308051A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
US9096551B2 (en) Method for producing 2-(triazinylcarbonyl) sulfonanilides
WO2015001868A1 (ja) オキシラン誘導体の製造方法およびアゾール誘導体の製造方法
WO2013108514A1 (ja) シクロペンタノン誘導体の製造方法、中間体化合物および中間体化合物の製造方法
JP2005325116A (ja) 5−ブロモ−2,2−ジフルオロベンゾ−[1,3]−ジオキソールの製造方法
WO2015194247A1 (ja) シクロペンタノール誘導体の製造方法
US8729320B2 (en) Method for producing difluorocyclopropane compound
WO2014208243A1 (ja) アゾール誘導体の製造方法
EP0761649B1 (en) Process for producing isothiocyanate derivatives
DK3250556T3 (en) PROCEDURES FOR THE PREPARATION OF COMPOUNDS, SUCH AS 3-ARYL BUTANALS THAT CAN BE USED FOR THE SYNTHESIS OF MEDETOMIDINE
TWI660939B (zh) 製備苯基二氫茚化合物的製程
WO2014057844A1 (ja) シクロアルカノール誘導体の製造方法およびアゾール誘導体の製造方法
EP2141151B1 (en) Method for producing 2-haloimidazole compound
JPS58172336A (ja) メチルケトン類の製造方法
JPWO2013157311A1 (ja) トリアゾリルメチルシクロアルカノール誘導体の製造方法、およびトリアゾリルメチルシクロアルカノール誘導体含有組成物
US10294196B2 (en) Process for the synthesis of intermediates useful for preparing 1,3,4-triazine derivatives
KR100713029B1 (ko) 하이드로퀴논 유도체 제조방법
JP7117968B2 (ja) ヒドロキシ酸の製造方法。
KR100570279B1 (ko) 코엔자임 Qn의 중간체 및 그 중간체의 제조방법
JPWO2014083911A1 (ja) シクロペンタノン誘導体の製造方法、中間体化合物および中間体化合物の製造方法
JP2013121923A (ja) 4,4−ジフルオロ−3,4−ジヒドロイソキノリン類の製造法
JP2014500850A (ja) 5−[1−(4−クロロフェニル)−メチレン]−1−ヒドロキシメチル−2,2−ジメチル−シクロペンタノールを調製するための方法
WO2017171095A1 (ja) アゾール誘導体の製造方法およびその中間体化合物
WO2019106198A1 (en) Process for the preparation of dihalobenzophenones, new chemicals useful for its implementation and methods for preparing said chemicals
CN104098538A (zh) 一种2-甲基-5,7-二甲氧基色酮的合成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033596.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP