WO2015001708A1 - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
WO2015001708A1
WO2015001708A1 PCT/JP2014/002949 JP2014002949W WO2015001708A1 WO 2015001708 A1 WO2015001708 A1 WO 2015001708A1 JP 2014002949 W JP2014002949 W JP 2014002949W WO 2015001708 A1 WO2015001708 A1 WO 2015001708A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
nitrification
filtration
filter
Prior art date
Application number
PCT/JP2014/002949
Other languages
English (en)
French (fr)
Inventor
宮田 篤
武田 茂樹
吉野 正章
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to JP2015525013A priority Critical patent/JP6383725B2/ja
Publication of WO2015001708A1 publication Critical patent/WO2015001708A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment apparatus.
  • the first invention of the present invention relates to a water treatment apparatus suitably used when treating water to be treated containing a reducing sulfur component and ammonia nitrogen
  • the second invention of the present invention is an organic matter.
  • the present invention relates to a water treatment apparatus that is preferably used when treating water to be treated containing ammoniacal nitrogen.
  • a watering filter method is used as a method for treating treated water containing organic matter (for example, sewage, livestock wastewater, factory wastewater, etc.) (see, for example, Patent Document 1).
  • a trickling filter having a filter medium layer made of a filter medium to which aerobic bacteria such as BOD oxidizing bacteria adhere is used, and the filter medium layer of the trickling filter bed is covered.
  • aerobic bacteria are used to treat organic matter in the treated water.
  • a solid-liquid separation device has been installed on the front side of the trickling filter that is an aerobic treatment tank. It has been proposed to previously remove solid organic substances from the water to be treated flowing into the water. Specifically, as a sewage treatment system using a solid-liquid separator and a sprinkling filter bed, it has a filter medium packed bed filled with a predetermined filter medium, and the sewage is passed through the filter medium packed bed in an upward flow.
  • a sewage treatment system has been proposed that includes a solid-liquid separation device that separates water into a solid component and filtered water, and a sprinkling filter bed installed at a subsequent stage of the solid-liquid separation device (see, for example, Patent Document 2).
  • a solid-liquid separation device that separates water into a solid component and filtered water
  • a sprinkling filter bed installed at a subsequent stage of the solid-liquid separation device
  • the redox potential in the filtration tank is determined by the present inventors. Therefore, it has been found that the reducing sulfur component contained in the water to be treated containing the reducing sulfur component such as sewage is reduced and hydrogen sulfide is generated from the filtration tank. And with respect to such a problem of hydrogen sulfide generation, the present inventors have conceived to oxidize the reducing sulfur component in the filtration tank and suppress the generation of hydrogen sulfide.
  • the first invention of the present invention aims to suppress the generation of hydrogen sulfide in the filtration tank in the water treatment apparatus in which the filtration tank is arranged in front of the aerobic treatment tank.
  • the water treatment apparatus using the conventional trickling filter method has room for improvement in terms of further downsizing the trickling filter bed. Furthermore, in the water treatment apparatus using the conventional trickling filter method, attention is paid only to the treatment of organic substances contained in the treated water, and nitrogen components such as ammonia nitrogen contained in the treated water. No attention was paid to the process.
  • the second invention of the present invention is a water treatment apparatus using the trickling filter method, and efficiently treating both organic matter and ammonia nitrogen contained in the water to be treated while downsizing the trickling filter bed. It aims to make possible.
  • An object of the present invention is to advantageously solve the above problems, and the water treatment device of the first invention is a water treatment device for treating water to be treated containing a reducing sulfur component and ammonia nitrogen.
  • a filtration tank that has a first filter medium layer filled with a filter medium, and filters the inflow water through the first filter medium layer, and is disposed on the rear side of the filtration tank, and uses the nitrifying bacteria to remove the inflow water.
  • a nitrification tank for nitrification treatment and a return means for returning at least a portion of the nitrification water that has flowed out of the nitrification tank to the filtration tank, and in the filtration tank, the reducing sulfur component is oxidized and nitric acid It is characterized by denitrifying nitrogen and / or nitrite nitrogen.
  • the filtration tank is arranged in the preceding stage of the nitrification tank, at least a part of the nitrification water that has flowed out of the nitrification tank is returned to the filtration tank, and the reducing sulfur component is oxidized in the filtration tank.
  • the amount of nitrogen in the nitrification water discharged from the nitrification tank is reduced by denitrifying nitrate nitrogen and / or nitrite nitrogen in the filtration tank, and thus obtained by the water treatment apparatus.
  • the properties of treated water can be further improved.
  • the water to be treated further contains an organic substance
  • the water treatment apparatus uses the denitrifying bacteria between the filtration tank and the nitrification tank to flow in the influent water. It is preferable to further include an oxygen-free tank for denitrification treatment. This is because if the anaerobic tank is disposed between the filtration tank and the nitrification tank, organic substances remaining in the filtered water can be reduced in the anoxic tank prior to nitrification in the nitrification tank.
  • the nitrification tank preferably has a carrier on which the nitrifying bacteria are attached. This is because when the nitrifying bacteria in the nitrification tank are carried on the carrier, the clogging of the filtration tank can be reduced when the nitrification water is returned by the return line and processed in the filtration tank.
  • the water treatment apparatus further includes a solid-liquid separation tank on the rear stage side of the nitrification tank, and the solid-liquid separation tank includes a precipitation unit for precipitating a part of solid content in the inflow water, and the solid It is preferable to have a filtration unit that filters the influent water in which a part of the water is precipitated with a second filter medium layer filled with a plurality of cylindrical filter media. This is because if a solid-liquid separation tank is provided on the rear side of the nitrification tank, the solid matter contained in the nitrification water that has flowed out of the nitrification tank can be removed to obtain cleaner treated water.
  • the water treatment device further includes a mixing tank on the front side of the filtration tank, and the return means returns the nitrification water to the filtration tank via the mixing tank, and the mixing tank
  • the water to be treated and the nitrification water are mixed. This is because the nitrification water is mixed with the water to be treated in advance and then introduced into the filtration tank, so that the generation of hydrogen sulfide in the filtration tank can be more reliably suppressed.
  • this structure when oxidizing a reducing sulfur component using sulfur oxidative denitrifying bacteria, nitrate nitrogen and / or nitrite nitrogen is surely present in the inflow water flowing into the filtration tank. In this way, the sulfur oxidative denitrification reaction in the filtration tank can be made efficient.
  • the water treatment apparatus further includes a control unit, and a reducing sulfur component amount measuring unit that measures the amount of reducing sulfur component derived from filtered water that has passed through the first filter medium layer, and the control It is preferable that the unit controls to increase a return amount of the nitrification water when the reducing sulfur component amount measuring unit detects a reducing sulfur component of a predetermined amount or more. This is because the generation of hydrogen sulfide in the filtration tank can be effectively prevented by adjusting the return amount of the nitrification water in accordance with the amount of reducing sulfur component in the filtration tank.
  • the water treatment apparatus of 2nd invention is a water treatment apparatus which processes the to-be-processed water containing organic substance and ammonia nitrogen.
  • a filtration tank that has a first filter medium layer filled with a filter medium, and filters inflow water through the first filter medium layer, a second filter medium layer that is filled with a filter medium to which nitrifying bacteria adhere, and inflow water
  • the sprinkling filter bed is arranged on the rear side of the filtration tank and the oxygen-free tank, it flows into the sprinkling filter bed due to the removal of solid organic substances in the filtration tank and the consumption of organic substances during the denitrification treatment in the oxygen-free tank.
  • the amount of organic matter to be reduced can be reduced. Therefore, the sprinkling filter bed can be reduced in size while efficiently treating the organic matter.
  • the ammonia nitrogen in the water to be treated is nitrified in a sprinkling filter and the generated nitrate nitrogen and / or nitrite Nitrogen can be denitrified in an oxygen-free tank. Therefore, ammonia nitrogen in the for-treatment water can be efficiently treated while achieving downsizing of the sprinkling filter bed and efficient treatment of the organic matter in the for-treatment water.
  • the anoxic tank has a carrier to which the denitrifying bacteria are attached, and the filtration tank is arranged on the upstream side of the anoxic tank.
  • the anaerobic tank has a carrier
  • the denitrification bacteria can be kept in the oxygen-free tank at a high concentration and the denitrification treatment can be efficiently advanced. Therefore, the oxygen-free tank can be reduced in size.
  • the filtration tank is arranged on the front side of the oxygen-free tank, the solid substance is prevented from flowing into the oxygen-free tank, and the solid substance is caught on the carrier itself or a screen for preventing the carrier from flowing out. Can be prevented. Therefore, it is possible to prevent problems such as blockage of the water channel due to the catch of the solid matter.
  • the sprinkling filter bed includes a cleaning unit that cleans the second filter material layer, and the cleaning unit stores cleaning water in the sprinkling filter bed and stores the cleaning water.
  • a washing water storage mechanism for submerging the two filter medium layers, a stirring washing mechanism for stirring and washing the filter medium to which the nitrifying bacteria adhere to the second filter medium layer that has been submerged, and drainage for discharging the washing water after the stirring washing It is preferable to have a mechanism.
  • the sprinkling filter bed has cleaning means, the sprinkling filter bed is cleaned by using the cleaning means to trap between the filter bed flies eggs and larvae, the biofilm excessively attached to the surface of the filter medium, and the filter medium. The resulting solid can be removed from the sprinkling filter bed. Therefore, the water to be treated can be efficiently treated while suppressing the generation of filter floor flies and offensive odors.
  • the water treatment apparatus has a plurality of sprinkling filter beds, the plurality of sprinkling filter beds are arranged in parallel, and each sprinkling filter bed receives inflow water sprayed using the spraying mechanism.
  • the cleaning means is further provided with a flow rate adjusting mechanism that controls the flow rate of the inflow water sprayed using the spraying mechanism.
  • the water trickling filter uses inflow water sprayed using the spray mechanism as the wash water
  • the drainage mechanism uses the wash water after the stirring and washing as the wash water. It is preferable that water is fed to a filtration tank, and the washing water after stirring and washing is filtered by the first filter medium layer of the filtration tank.
  • the inflow water sprayed using the spray mechanism is used as washing water for the sprinkling filter bed, if the drainage mechanism sends the washed water after stirring and washing to the filtration tank, the washing water after stirring and washing is efficiently processed. can do.
  • the water treatment apparatus of 2nd invention is further equipped with the solid-liquid separation tank in the back
  • the said solid-liquid separation tank is a precipitation part which precipitates a part of solid content in inflow water, It is preferable to have a filtration unit that filters inflow water in which a part of the solid content is precipitated with a third filter medium layer filled with a plurality of cylindrical filter media. If a solid-liquid separation tank is provided on the latter stage side of the trickling filter bed, it is possible to remove the solid matter contained in the nitrification treated water that has flowed out of the trickling filter bed and obtain cleaner treated water.
  • the water treatment device of the first invention generation of hydrogen sulfide in the filtration tank can be suppressed.
  • the water treatment apparatus of the second invention it is possible to efficiently treat both organic matter and ammonia nitrogen contained in the water to be treated, while reducing the size of the sprinkling filter bed.
  • FIG. 1 schematic structure of an example of the water treatment apparatus of 1st invention is shown.
  • the water treatment apparatus 1000 shown in FIG. 1 is used for treatment of water to be treated containing a reducing sulfur component and ammonia nitrogen.
  • the water treatment apparatus 1000 includes a water tank 110 to be treated, a filtration tank 120, an oxygen-free tank 130, two nitrification tanks 140A and 140B arranged in parallel with each other, a nitrification water tank 150, and a solid-liquid separation tank. 160 and a control unit 180.
  • the side on which the water to be treated flows into the water treatment apparatus 1000 is referred to as a “front stage side”
  • the side on which the treated water flows out from the water treatment apparatus 1000 is referred to as a “rear stage side”.
  • the treated water containing a reducing sulfur component and ammonia nitrogen is not particularly limited, and examples thereof include sewage, livestock wastewater, and factory wastewater. Furthermore, it is preferable that to-be-processed water contains organic substance. Examples of organic substances contained in the water to be treated include solid organic substances and soluble organic substances.
  • the water to be treated is stored in the water tank 110 to be treated.
  • the to-be-treated water tank 110 functions as a mixing tank in which the to-be-treated water and nitrification treated water returned by the return line 170, which will be described in detail later, are mixed.
  • the nitrification water is mixed with the water to be treated in advance and then introduced into the filtration tanks 120A and 120B, so that generation of hydrogen sulfide in the filtration tank can be more reliably suppressed.
  • the to-be-treated water tank 110 is connected to the filtration tanks 120A and 120B through the to-be-treated water line 112.
  • the water pump 111 to be treated installed in the water tank 110 to be treated and the filtration tanks 120 ⁇ / b> A and 120 ⁇ / b> B are connected by the water line 112 to be treated.
  • the to-be-treated water stored in the to-be-treated water tank 110 is sent to the filtration tanks 120A and 120B via the to-be-treated water pump 111 and the to-be-treated water line 112.
  • the return line 170 is directly connected to the treated water line 112, and the treated water and the nitrification treated water returned by the return line 170 are treated in the treated water line 112.
  • it can be configured to be mixed.
  • the to-be-treated water line 112 is bifurcated between the to-be-treated water pump 111 and the filtration tanks 120A and 120B, and one of the two branches branches to the first filtration tank 120A.
  • the other line is connected to the second filtration tank 120B.
  • a first treated water valve 113A is provided on one line connected to the first filtration tank 120A, and a second treated water valve 113B is provided on the other line connected to the second filtration tank 120B. Is provided.
  • the water treatment apparatus of 1st invention does not need to have a to-be-processed water tank,
  • to-be-processed water may be sent to a filtration tank from to-be-treated water flow paths, such as a first sinking inflow water channel.
  • the return line 170 is directly connected to the treated water line 112 or to the lower part of the filtration tanks 120A and 120B.
  • the filtration tank 120 includes a first filtration tank 120 ⁇ / b> A and a second filtration tank 120 ⁇ / b> B that are disposed on the rear stage side of the water tank 110 to be treated and are disposed in parallel with each other. Further, the filtration tank 120 preferably includes a reducing sulfur component amount measuring means 127 that measures the amount of reducing sulfur component derived from filtered water. And in the 1st filtration tank 120A and the 2nd filtration tank 120B, the to-be-processed water (inflow water) which flowed in from the to-be-processed water tank 110 is filtered.
  • the first filtration tank 120A and the second filtration tank 120B are not particularly limited, and are upward flow filtration tanks, and a plurality of screens 122A and 122B and screens 122A and 122B supported in each tank.
  • the first filter medium layers 121A and 121B made of the floating filter medium, the water inlet to be treated installed below the first filter medium layers 121A and 121B, and the first filter medium layers 121A and 121B. And a backwash drainage outlet.
  • the to-be-processed water line 112 is connected to the to-be-processed water inlet of 120 A of 1st filtration tanks, and the 2nd filtration tank 120B.
  • backwash drainage lines 125A and 125B are connected to the backwash drainage outlets of the first filtration tank 120A and the second filtration tank 120B, and backwash drainage valves are connected to the backwash drainage lines 125A and 125B, respectively.
  • 126A and 126B are provided.
  • a common filtrate storage part 123 is provided above the screens 122A and 122B of the filtration tanks 120A and 120B. And the filtered water obtained by filtering the influent which flowed in from the lower side in the 1st filtration tank 120A and the 2nd filtration tank 120B with the 1st filter material layers 121A and 121B is stored in the common filtrate storage part 123. .
  • the filtrate outlet of the common filtrate storage unit 123 is connected to the anoxic tank 130 via the filtrate line 124.
  • the filtrate outlet of the common filtrate storage unit 123 and the inlet 131 of the anoxic tank 130 are connected by a filtrate line 124.
  • the filtrate obtained by filtering the treated water in the first filter medium layers 121A and 121B of the first filtration tank 120A and the second filtration tank 120B flows out from the filtrate outlet of the common filtrate storage part 123, It flows into the anoxic tank 130 through the filtered water line 124 by natural flow, for example.
  • the floating filter medium used in the filtration tanks 120A and 120B carries, for example, sulfur-reducing bacteria and sulfur oxidative denitrifying bacteria.
  • a known method for supporting the sulfur-reducing bacteria and sulfur oxidative denitrifying bacteria on the floating filter medium a known method such as a habituation operation can be used.
  • the floating filter media of the filtration tanks 120A and 120B may carry heterotrophic denitrifying bacteria or sulfur oxidizing bacteria other than sulfur oxidizing denitrifying bacteria in addition to sulfur reducing bacteria and sulfur oxidizing denitrifying bacteria. Good.
  • the nitrification water returned by the return line 170 is mixed with the inflow water flowing into the filtration tanks 120 ⁇ / b> A and 120 ⁇ / b> B through the to-be-treated water line 112. Accordingly, in the filtration tanks 120A and 120B, the lower part (treated water inlet side) can be in an aerobic condition due to dissolved oxygen in the nitrification water, but the anaerobic condition is in the upper part. Further, in the filtration tanks 120A and 120B, in addition to the reducing sulfur component in the water to be treated, nitrate nitrogen and / or nitrite nitrogen derived from nitrification water is abundant.
  • nitrate nitrogen and / or nitrite nitrogen “derived” from the nitrification water is the nitrate nitrogen contained in the nitrification water mixed with the treatment water in the treatment water tank (mixing tank) 110 and Means nitrite nitrogen.
  • the floating filter medium used in the filtration tanks 120A and 120B is a filter medium having a specific gravity smaller than that of the inflowing water (that is, floating with the inflowing water).
  • well-known floating filter media such as a particulate floating filter material made from foamed resin, can be used as a floating filter material.
  • a filter medium having an apparent specific gravity of 0.1 to 0.8, a 50% compression hardness of 0.1 MPa or more, and a size of 4 to 10 mm can be used as the floating filter medium.
  • the material of the floating filter medium is, for example, foamed polyethylene, foamed polystyrene, and foamed polypropylene.
  • a screen that can prevent the floating filter medium from flowing out such as punching metal, can be used as the screens 122A and 122B arranged above the first filter medium layers 121A and 121B.
  • the first treated water valve 113A and the second treated water valve 113B are opened, and the treated water is filtered with the backwash drain valves 126A and 126B closed.
  • the inflowing water can be filtered by the first filter medium layers 121A and 121B.
  • coarse solids for example, organic solids and inorganic solids having a diameter of 100 ⁇ m or more
  • the first filter medium layers 121A and 121B Removed from the inflow water.
  • the inventors of the present invention have a low ORP (oxidation /) reduction) potential, oxidation-reduction potential) in the filtration tanks 120A and 120B, particularly in the upper part of the filter medium layers 121A and 121B.
  • ORP oxidation /
  • oxidation-reduction potential oxidation-reduction potential
  • One factor that lowers the ORP is a reduction reaction of sulfate ions by sulfate-reducing bacteria in the filtration tanks 120A and 120B.
  • the reducible sulfur component means a sulfur component having a valence of 0 or less, for example, a sulfur component contained in hydrogen sulfide, thiosulfuric acid or the like.
  • the present inventors generate in the first filtration tank 120A and the second filtration tank 120B by oxidizing the reducing sulfur component in the influent water in the filtration tanks 120A and 120B, for example, by sulfur oxidative denitrification bacteria.
  • hydrogen sulfide ions HS -
  • the treated water such as sewage is filtered as it is, nitrate nitrogen and / or nitrite nitrogen contained in the inflow water is insufficient, and sulfur oxidizing denitrifying bacteria are used. Processing was not possible.
  • the sulfur oxidative denitrification reaction by Thiobacillus denitrificans which is a typical sulfur oxidative denitrifying bacterium, is as follows.
  • sulfur oxidative denitrification bacteria cannot perform a sulfur oxidative denitrification reaction in an environment lacking a nitrogen source.
  • the inflow water of the filtration tank 120A and 120B A sufficient amount of nitrate nitrogen and / or nitrite nitrogen. Therefore, the process using the sulfur oxidative denitrifying bacteria in the filtration tanks 120A and 120B becomes easy. In this way, in the first invention, the amount of hydrogen sulfide released from the filtration tanks 120A and 120B is obtained by oxidizing the hydrogen sulfide ions generated in the filtration tanks 120A and 120B by the sulfur oxidizing denitrifying bacteria into sulfuric acid. Can be reduced.
  • the sulfur oxidizing denitrifying bacteria denitrifies nitrate nitrogen and / or nitrite nitrogen derived from nitrification water returned by the return line 170.
  • the amount of nitrogen in the nitrification water discharged from the nitrification tanks 140A and 140B can be reduced, and the properties of the treatment water obtained by the water treatment apparatus 1000 can be further improved.
  • the treated water tank 110 functions as a mixing tank of the treated water and the nitrification treated water, so that nitrate nitrogen and / or in the inflowing water flowing into the filtration tank 120 can be obtained.
  • the sulfur oxidative denitrification reaction in the filtration tank 120 can be made efficient by ensuring the presence of nitrite nitrogen. In this case, it is possible to avoid the ORP of the inflowing water flowing into the filtration tanks 120A and 120B from becoming excessively low. Thereby, generation
  • the reaction that occurs in the filtration tank 120 is not limited to the reaction by the above-mentioned sulfur oxidative denitrifying bacteria.
  • the oxidation reaction of the reducing sulfur component by the sulfur-oxidizing bacteria using the dissolved oxygen contained in the nitrification water occurs.
  • denitrification of nitrate nitrogen and / or nitrite nitrogen by denitrifying bacteria or the like is also occurring in the filtration tank 120, particularly in the upper part of the filter medium layers 121A and 121B.
  • the amount of hydrogen sulfide and the amount of nitrogen can be reduced also by these reactions.
  • the reducing sulfur component amount measuring means 127 has a function of measuring the amount of reducing sulfur component derived from filtered water.
  • the “reduced sulfur component derived from filtered water” means the reduced sulfur component in filtered water, the gas phase portion in the filtration tank 120 or the subsequent stage of the filtration tank 120 that has passed through the first filter material layers 121A and 121B.
  • the control unit 180 of the water treatment apparatus 1000 controls the return amount of the nitrification water by the return line 170 based on the measurement result of the reducing sulfur component amount measuring unit 127. This point will be described later in detail as “control operation of the return amount of nitrification water”.
  • the first filter media layers 121A, 121B can be backwashed (backwashed).
  • the floating filter media constituting the first filter media layers 121A and 121B are opened by opening the backwash drain valves 126A and 126B and causing the filtrate stored in the common filtrate storage section 123 to flow downward.
  • the first filter medium layers 121A and 121B can be washed by expanding the lower part of the filter medium.
  • drain drain (drainage containing the solid substance captured by 1st filter material layer 121A, 121B) produced at the time of backwashing the 1st filter material layer 121A, 121B is not specifically limited
  • drain Water can be sent to an appropriate wastewater treatment facility via the lines 125A and 125B for treatment.
  • an air supply pipe (not shown) is optionally provided below the first filter medium layers 121A and 121B, and the first filter medium layers 121A and 121B are backwashed. Air may be supplied from the air supply pipe to stir the floating filter medium to increase the backwash efficiency.
  • the backwashing of the filtration tanks 120A and 120B may be performed simultaneously or alternately, but the backwashing of the filtration tanks 120A and 120B is performed alternately (that is, backwashing is performed). If it is carried out at different timings, the water to be treated can be continuously treated.
  • the first filter medium layer of the other filtration tank can be back-washed while continuing to filter the water to be treated in one filtration tank.
  • the filtration tank used in the water treatment device of the first invention is not limited to the above configuration.
  • a known filtration tank having a filter medium layer can be used without particular limitation.
  • the number of filtration tanks can be made into arbitrary numbers.
  • the first filter medium layer may be back-washed using water other than filtered water.
  • the water treatment apparatus 1000 includes an oxygen-free tank 130 disposed on the rear side of the first filtration tank 120A and the second filtration tank 120B arranged in parallel with each other and on the front stage side of the nitrification tanks 140A and 140B.
  • the oxygen-free tank 130 has an inflow part 131 and a denitrification processing part 132 located on the rear stage side of the inflow part 131.
  • the denitrification processing unit 132 is preferably provided with a plurality of fixed bed carriers 133.
  • the filtered water obtained in the first filter tank 120A and the second filter tank 120B is denitrified using denitrifying bacteria.
  • filtered water flows into the inflow portion 131, then flows into the denitrification processing portion 132, and is denitrified by denitrifying bacteria attached to the fixed bed carrier 133.
  • the denitrifying bacteria that are heterotrophic bacteria consume the organic matter (particularly soluble organic matter) contained in the filtered water, and nitrate nitrogen in the filtered water. And / or nitrite nitrogen is reduced to nitrogen gas.
  • the fixed bed carrier 133 a known fixed bed carrier such as an oscillating fixed bed carrier, for example, a fixed bed carrier obtained by fixing a part of a plurality of fibers to a core material can be used.
  • a known method for attaching denitrifying bacteria to the fixed bed carrier 133 a known method such as a habituation operation can be used.
  • the filtration tanks 120A and 120B are provided in front of the oxygen-free tank 130. Therefore, in the oxygen-free tank 130, a carrier (for example, a fibrous material) in which elongated solids such as hair are easily entangled. Carrier) can also be used. This is because solids such as hair are sufficiently removed by the filtration tanks 120A and 120B.
  • the anoxic tank 130 is connected to the nitrification tanks 140A and 140B via the denitrification water line 134.
  • the denitrification treatment unit 132 of the anoxic tank 130 and the nitrification tanks 140A and 140B are connected by a denitrification treatment water line 134 having a denitrification treatment water pump 135.
  • the denitrification water obtained by denitrifying the filtered water in the denitrification processing unit 132 of the anoxic tank 130 is supplied to the nitrification tanks 140A and 140B via the denitrification water pump 135 and the denitrification water line 134. Water is sent to.
  • the denitrification water line 134 is bifurcated between the denitrification water pump 135 and the nitrification tanks 140A and 140B, and one of the two branches is the first nitrification tank. 140A, and the other line is connected to the second nitrification tank 140B.
  • the water treatment apparatus 1000 includes the anoxic tank 130 disposed between the filtration tank 120 and the nitrification tanks 140A and 140B, so that the oxygenation is performed in the nitrification tanks 140A and 140B.
  • the oxygen-free tank used in the water treatment apparatus of the first invention is not limited to the above configuration. That is, in the water treatment apparatus of the first invention, an anoxic tank using a floating method, an anoxic tank using a fluidized bed carrier, or a detour structure using floating denitrifying bacteria not supported on the carrier.
  • a known oxygen-free tank such as an oxygen-free tank can be used.
  • an oxygen-free tank using a carrier such as a fluidized bed carrier or a fixed bed carrier in the water treatment apparatus of the first invention.
  • a carrier such as a fluidized bed carrier or a fixed bed carrier in the water treatment apparatus of the first invention.
  • a fluidized bed carrier a known sponge carrier or the like can be used.
  • a stirring device and a screen for preventing the fluidized bed carrier from flowing out are disposed in the oxygen-free tank. do it.
  • the position of the anaerobic tank 130 is considered to be no problem even before the filtration tank 120.
  • the reducing sulfur component is oxidized in the filtration tank 120 using, for example, sulfur oxidative denitrifying bacteria.
  • nitrate nitrogen and / or nitrite nitrogen are contained in the inflow water flowing into the filtration tank 120. Therefore, in the water treatment apparatus 1000, the position of the oxygen-free tank 130 is preferably between the filtration tank 120 and the nitrification tanks 140A and 140B.
  • the first nitrification tank 140A and the second nitrification tank 140B are arranged in parallel to each other on the rear stage side of the anoxic tank 130.
  • the nitrification tanks 140A and 140B are, for example, a watering filter bed, a fluidized bed, a fixed bed, a nitrification tank by a floating method, an aeration tank, and the like.
  • the nitrification tanks 140A and 140B are illustrated as watering filter beds.
  • the denitrification water (nitrification tank inflow water) flowing out from the anoxic tank 130 is nitrified.
  • Each nitrification tank 140A, 140B illustrated as a sprinkling filter bed has a nitrification tank filter medium consisting of a plurality of filter media that are supported by screens 143A, 143B, and supported by the screens 143A, 143B, to which nitrifying bacteria adhere.
  • the nitrification tank filter media layers 142A, 142B Under the spraying mechanisms 141A, 141B installed on the upper sides of the layers 142A, 142B, the nitrification tank filter media layers 142A, 142B and spraying the denitrification treated water on the nitrification tank filter media layers 142A, 142B, and the nitrification tank filter media layers 142A, 142B A nitrification water outlet provided on the side, and a cleaning drainage outlet provided below the nitrification tank filter medium layers 142A and 142B.
  • each nitrification tank 140A, 140B nitrifying bacteria adhere to the filter medium constituting the nitrification tank filter medium layers 142A, 142B, and the denitrification treated water sprayed by the spray mechanisms 141A, 141B is the nitrification tank filter medium layer 142A, Nitrification is performed at 142B. That is, in the nitrification tank filter media layers 142A and 142B of the nitrification tanks 140A and 140B, the nitrifying bacteria oxidize ammonia nitrogen contained in the denitrification treated water (nitrification tank inflow water) to nitrate nitrate and / or Nitrite nitrogen.
  • BOD oxidizing bacteria may be attached to the filter medium constituting the nitrification tank filter medium layers 142A and 142B as long as at least nitrifying bacteria are attached. If the BOD-oxidizing bacteria are attached to the filter medium in addition to the nitrifying bacteria, the organic substances remaining in the denitrification water (organic substances not removed in the filtration tanks 120A and 120B and the anoxic tank 130) are also removed from the nitrifying tank filter medium layer. 142A and 142B can be decomposed.
  • a denitrification water line 134 is connected to the spraying mechanisms 141A and 141B of the nitrification tanks 140A and 140B.
  • nitrification water lines 148A and 148B (148) are connected to the nitrification water outlets of the nitrification tanks 140A and 140B, respectively.
  • the nitrification water lines 148A and 148B (148) connect the nitrification water outlets of the nitrification tanks 140A and 140B and the nitrification water tank 150, and two nitrification treatments extending from the nitrification tanks 140A and 140B.
  • the water lines 148A and 148B join together between the nitrification tanks 140A and 140B and the nitrification water tank 150 to form one nitrification water line 148.
  • spraying mechanism 141A, 141B it is not specifically limited, It is using the known water sprayer which can spray denitrification process water on nitrification tank filter medium layer 142A, 142B, for example, a rotary water sprayer etc. it can.
  • the filter medium used in the nitrification tank filter medium layers 142A and 142B is not particularly limited, and a resin filter medium such as polyurethane or polypropylene can be used.
  • a resin filter medium formed in a cylindrical shape can be used as the filter medium.
  • the nitrification tank filter medium layers 142A and 142B can be formed by filling the filter medium on the screens 143A and 143B.
  • a method of attaching nitrifying bacteria or BOD oxidizing bacteria to the filter medium a known method such as a habituation operation can be used.
  • a screen capable of preventing the filter medium from flowing out such as punching metal, can be used.
  • nitrification water storage portions 144A and 144B are provided below the screens 143A and 143B of the nitrification tanks 140A and 140B, respectively. And the nitrification water obtained by nitrifying the denitrification water which flowed in each nitrification tank 140A, 140B is stored in the nitrification water storage part 144A, 144B.
  • the denitrification water can be nitrified by the nitrification tank filter medium layers 142A and 142B by flowing the denitrification water into the nitrification tanks 140A and 140B. it can.
  • ammonia nitrogen in the denitrification treated water sprayed on the nitrification tank filter medium layers 142A and 142B using the spray mechanisms 141A and 141B is used as the filter medium of the nitrification tank filter medium layers 142A and 142B. It is nitrified by nitrifying bacteria attached to it.
  • the obtained nitrification water flows out of the nitrification tanks 140A and 140B via the nitrification water storage portions 144A and 144B and the nitrification water outlet, and passes through the nitrification water line 148, for example, by natural flow, for example, by nitrification water tank. Flows into 150.
  • the nitrification tanks 140A and 140B can be configured as a nitrification tank that nitrifies the nitrification tank inflow water using nitrifying bacteria. It is preferable to employ a nitrification tank having a carrier with nitrifying bacteria attached thereto, such as a fixed bed. This is because when the nitrification water is returned to the filtration tank 120 by the return line 170 and processed in the filtration tank 120, the solid content in the nitrification water can be reduced, and the clogging of the filtration tank 120 can be reduced. Moreover, in the water treatment apparatus of 1st invention, the number of nitrification tanks can be made into arbitrary numbers.
  • the nitrification tanks 140A and 140B are arrange
  • the amount of organic matter flowing into the nitrification tanks 140 ⁇ / b> A and 140 ⁇ / b> B can be reduced by consumption of organic matter during the denitrification treatment in FIG.
  • nitrifying bacteria can preferentially adhere to and grow on the nitrifying tank filter medium layers 142A and 142B of the nitrifying tanks 140A and 140B, and the nitrification treatment of the denitrification water can be performed more efficiently. .
  • the nitrification water tank 150 is arranged on the rear side of the nitrification tanks 140A and 140B arranged in parallel with each other. And the nitrification water tank 150 stores the nitrification water which flowed in through the nitrification water line 148 from the nitrification tanks 140A and 140B.
  • the nitrification water tank 150 is connected to the solid-liquid separation tank 160 via a transfer line 151.
  • the nitrification water tank 150 is connected to the water tank 110 to be treated through a return line 170.
  • the transfer line 151 is provided with a transfer pump 152, and the return line 170 is provided with a return pump 171 and a return line valve 172.
  • nitrification water that has flowed out of the nitrification tanks 140A and 140B and stored in the nitrification water tank 150 is sent to the solid-liquid separation tank 160 via the transfer line 151 and the transfer pump 152. Further, the remaining portion of the nitrification water that has flowed out of the nitrification tanks 140 ⁇ / b> A and 140 ⁇ / b> B and stored in the nitrification water tank 150 is sent to the water tank 110 to be treated via the return line 170 and the return pump 171. Thenitrate nitrogen and / or nitrite nitrogen contained in the nitrification water sent to the water tank 110 to be treated is denitrified in the filtration tanks 121A and 121B and the anoxic tank 130.
  • the water treatment apparatus of the first invention may not have a nitrification water tank, and for example, nitrification water may be sent from a nitrification water storage part of the nitrification tank to a solid-liquid separation tank or a filtration tank. .
  • the solid-liquid separation tank 160 is disposed on the rear stage side of the nitrification water tank 150.
  • the solid-liquid separation tank 160 has a precipitation part 161 and a filtration part 162 located on the rear stage side of the precipitation part 161, and the filtration part 162 is filled with a plurality of cylindrical filter media. Two filter media layers 163 are provided.
  • the solid-liquid separation tank 160 may be provided with a reciprocating scraper (not shown) that scrapes the solid content precipitated at the bottom of the tank to the settling part 161 at the bottom of the tank.
  • the nitrification water (solid-liquid separation tank inflow water) that has flowed from the nitrification water tank 150 is subjected to precipitation treatment to precipitate a part of the solid content in the nitrification water.
  • the solid content precipitated in the precipitation unit 161 is extracted and processed through a solid content discharge line 165 provided at the lower part of the precipitation unit 161.
  • the solid content precipitated in the precipitation unit 161 is discharged from the solid-liquid separation tank 160 and processed by opening the solid content discharge valve 166 provided in the solid content discharge line 165, for example, every predetermined time.
  • the nitrification water in which a part of the solid content is precipitated is filtered by the second filter medium layer 163 to further remove the solid content from the nitrification water.
  • the filtration unit 162 includes a second filter medium layer 163 filled with a plurality of cylindrical filter media, a screen 164 that is disposed on the upper side of the second filter media layer 163 and prevents the cylindrical filter media from flowing out, and filtration.
  • a treated water line 167 disposed above the screen 164 of the section 162 and a treated water pump 168 provided in the treated water line 167 are provided.
  • the nitrified water is filtered through the second filter medium layer 163 by passing the nitrified water through the second filter medium layer 163 in an upward flow using the treated water pump 168.
  • cylindrical filter medium used in the filtration unit 162 for example, a known cylindrical filter medium such as a resin cylindrical filter medium having a specific gravity of less than 1 can be used. Specifically, a cylindrical filter medium made of polypropylene can be used as the cylindrical filter medium.
  • a screen 164 a screen that can prevent the cylindrical filter medium from flowing out, for example, a punching metal or the like can be used.
  • the solid-liquid separation tank 160 is provided on the rear stage side of the nitrification tanks 140A and 140B, fine solids flowing out from the nitrification tanks 140A and 140B (for example, organisms peeled from the filter medium) Membrane etc.) can also be removed to obtain cleaner treated water.
  • the water treatment apparatus of the first invention may not have a solid-liquid separation tank.
  • the filtration part of the solid-liquid separation tank used for the water treatment apparatus of 1st invention may be equipped with the known backwashing mechanism for backwashing the 2nd filter medium layer 163 using a downward flow.
  • the control unit 180 controls the return amount of the nitrification water so that the amount of reducing sulfur component detected by the reducing sulfur component amount measuring unit 127 is less than a predetermined amount. Specifically, the control unit 180 increases the return amount of the nitrification water through the return line 170 when the reducing sulfur component amount measuring unit 127 detects a predetermined amount or more of the reducing sulfur component. To control.
  • generation of hydrogen sulfide in the filtration tank 120 can be effectively prevented by adjusting the return amount of the nitrification treated water according to the amount of reducing sulfur component derived from filtered water. it can.
  • the water treatment apparatus of 1st invention was demonstrated using an example, the water treatment apparatus of 1st invention is not limited to the said example, A change is suitably made to the water treatment apparatus of 1st invention. Can be added.
  • FIG. 2 schematic structure of an example of the water treatment apparatus of 2nd invention is shown.
  • the water treatment apparatus 100 shown in FIG. 2 is used for treatment of water to be treated containing organic matter and ammoniacal nitrogen.
  • the water treatment apparatus 100 is the to-be-processed water tank 10, two filtration tanks 20A and 20B arrange
  • the nitrification water tank 50 and the solid-liquid separation tank 60 are provided.
  • the side where the water to be treated flows into the water treatment apparatus 100 is referred to as a “front stage side”
  • the side where the treated water flows out from the water treatment apparatus 100 is referred to as a “rear stage side”.
  • the water to be treated containing organic matter and ammoniacal nitrogen is not particularly limited, and examples thereof include sewage, livestock wastewater, and factory wastewater.
  • examples thereof include sewage, livestock wastewater, and factory wastewater.
  • an organic substance contained in to-be-processed water a solid organic substance and a soluble organic substance are mentioned.
  • the water to be treated is stored in the water tank 10 to be treated. Further, the water tank 10 to be treated is connected to the filtration tanks 20A and 20B via the water line 12 to be treated. Specifically, in the water treatment apparatus 100, a water treatment pump 11 installed in the water treatment tank 10 and the filtration tanks 20 ⁇ / b> A and 20 ⁇ / b> B are connected by a water treatment line 12. And the to-be-processed water stored in the to-be-processed water tank 10 is sent to filtration tank 20A, 20B via the to-be-processed water pump 11 and the to-be-processed water line 12.
  • the to-be-treated water line 12 is bifurcated between the to-be-treated water pump 11 and the filtration tanks 20A and 20B, and one of the two branches branches to the first filtration tank 20A.
  • the other line is connected to the second filtration tank 20B.
  • the first treated water valve 13A is provided in one line connected to the first filtration tank 20A
  • the second treated water valve 13B is provided in the other line connected to the second filtration tank 20B. Is provided.
  • the water treatment apparatus of 2nd invention does not need to have a to-be-processed water tank,
  • to-be-processed water may be sent to a filtration tank from to-be-treated water flow paths, such as a first sinking inflow water channel.
  • the first filtration tank 20 ⁇ / b> A and the second filtration tank 20 ⁇ / b> B are arranged in parallel to each other on the rear stage side of the treated water tank 10. And in the 1st filtration tank 20A and the 2nd filtration tank 20B, the to-be-processed water (filtration tank inflow water) which flowed in from the to-be-processed water tank 10 is filtered.
  • Each filtration tank 20A, 20B is not particularly limited, and is an upward flow type filtration tank, and is composed of screens 22A, 22B and a plurality of floating filter media supported by the screens 22A, 22B in each tank.
  • the to-be-processed water line 12 is connected to the to-be-processed water inlet of each filtration tank 20A, 20B.
  • backwash drainage lines 25A and 25B are connected to the backwash drainage outlets of the filtration tanks 20A and 20B, and backwash drainage valves 26A and 26B are provided in the backwash drainage lines 25A and 25B. It has been.
  • the common filtrate storage part 23 is provided above the screens 22A and 22B of the filtration tanks 20A and 20B. And the filtered water obtained by filtering the to-be-processed water which flowed in from the lower side in each filtration tank 20A, 20B with the 1st filter material layer 21A, 21B is stored in the common filtered water storage part 23.
  • the filtrate outlet of the common filtrate storage part 23 is connected to the anoxic tank 30 via the filtrate line 24.
  • the filtrate outlet of the common filtrate storage part 23 and the inlet 31 of the oxygen-free tank 30 are connected by a filtrate line 24.
  • the filtrate obtained by filtering the water to be treated in the first filter medium layers 21A, 21B of the filtration tanks 20A, 20B flows out from the filtrate outlet of the common filtrate storage part 23, and passes through the filtrate water line 24. For example, it flows into the anoxic tank 30 by natural flow.
  • the floating filter medium used in the filtration tanks 20A and 20B is a filter medium having a specific gravity smaller than the water to be treated (that is, floats in the water to be treated).
  • known floating filter media such as a particulate floating filter material made from foamed resin, can be used as a floating filter material.
  • a filter medium having an apparent specific gravity of 0.1 to 0.8, a 50% compression hardness of 0.1 MPa or more, and a size of 4 to 10 mm can be used.
  • screens that can prevent the floating filter medium from flowing out, such as punching metal can be used as the screens 22A and 22B disposed above the first filter medium layers 21A and 21B.
  • the first treated water valve 13A and the second treated water valve 13B are opened, and the treated water is filtered with the backwash drain valves 26A and 26B closed.
  • the water to be treated can be filtered by the first filter medium layers 21A and 21B.
  • coarse solids for example, organic solids and inorganic solids having a diameter of 100 ⁇ m or more
  • the first filter medium layers 21A and 21B Trapped and removed from the treated water.
  • the first filter medium layers 21A and 21B when the first filter medium layers 21A and 21B are closed due to continuation of filtration and the differential pressure is increased, or when a predetermined filtration time has elapsed.
  • the first filter medium layers 21A, 21B can be backwashed (backflow washed).
  • the floating filter media constituting the first filter media layers 21A and 21B are opened by opening the backwash drain valves 26A and 26B and causing the filtrate stored in the common filtrate storage section 23 to flow downward. Can be developed downward to wash the first filter medium layers 21A and 21B.
  • the backwash drainage (drainage containing the solid matter captured by the first filter media layers 21A and 21B) generated when backwashing the first filter media layers 21A and 21B is not particularly limited, and backwashing is performed. Water can be sent to an appropriate wastewater treatment facility via the drainage lines 25A and 25B and processed.
  • an air supply pipe (not shown) is optionally provided below the first filter medium layers 21A and 21B, and the first filter medium layers 21A and 21B are backwashed. Air may be supplied from the air supply pipe to stir the floating filter medium to increase the backwash efficiency.
  • the backwashing of the filtration tanks 20A and 20B may be performed simultaneously or alternately, but the backwashing of the filtration tanks 20A and 20B is performed alternately (that is, backwashing is performed). If it is carried out at different timings, the water to be treated can be continuously treated.
  • the filtration tank used in the water treatment apparatus of the second invention is not limited to the above configuration, and the water treatment apparatus of the second invention is not particularly limited, and a known filtration tank having a filter medium layer is used. Can be used. Moreover, in the water treatment apparatus of 2nd invention, the number of filtration tanks can be made into arbitrary numbers. Furthermore, in the water treatment apparatus of the second invention, the first filter medium layer may be backwashed using water other than filtered water.
  • the anoxic tank 30 is disposed on the rear stage side of the first filtration tank 20A and the second filtration tank 20B that are disposed in parallel with each other.
  • the anaerobic tank 30 includes an inflow portion 31 and a denitrification processing portion 32 located on the rear stage side of the inflow portion 31, and the denitrification processing portion 32 includes a plurality of fixed bed carriers 33. is set up.
  • the mixed water of the filtered water obtained in the 1st filtration tank 20A and the 2nd filtration tank 20B, and a part of the nitrification water which flowed out from the sprinkling filter beds 40A and 40B explained in detail later is denitrified using denitrifying bacteria.
  • the filtered water and the nitrification water flow into the inflow portion 31 and are mixed, and the obtained mixed water flows into the denitrification processing portion 32 to be fixed to the fixed bed carrier 33. It is denitrified by denitrifying bacteria attached to it.
  • organic substances particularly, the denitrifying bacteria that are heterotrophic bacteria are contained in the mixed water of the filtered water and the nitrification water (anoxic tank inflow water)).
  • the nitrate nitrogen and / or nitrite nitrogen in the mixed water is reduced to nitrogen gas while consuming the soluble organic matter).
  • a known fixed bed carrier such as an oscillating fixed bed carrier, for example, a fixed bed carrier formed by fixing a part of a plurality of fibers to a core material can be used.
  • a known method such as a habituation operation can be used.
  • a carrier for example, a fibrous material that is liable to be entangled with elongated solids such as hair. Carrier
  • solids such as hair are sufficiently removed by the filtration tanks 20A and 20B.
  • the anoxic tank 30 is connected to the sprinkling filter beds 40A and 40B via the denitrification water line 34.
  • the denitrification treatment unit 32 of the anoxic tank 30 and the sprinkling filter beds 40 ⁇ / b> A and 40 ⁇ / b> B are connected by a denitrification treatment water line 34 having a denitrification treatment water pump 35.
  • the denitrification treated water obtained by denitrifying the mixed water in the denitrification treatment part 32 of the anaerobic tank 30 is supplied through the denitrification treated water pump 35 and the denitrification treated water line 34 with the sprinkling filter bed 40A, Water is sent to 40B.
  • the denitrification treated water line 34 is bifurcated between the denitrification treated water pump 35 and the sprinkling filter beds 40A and 40B, and one of the two branches is the first sprinkler. Connected to the filter bed 40A, the other line is connected to the second sprinkling filter bed 40B.
  • the first denitrification water valve 36A is provided on one line connected to the first trickling filter bed 40A, and the second denitrification line is provided on the other line connected to the second trickling filter bed 40B.
  • a treated water valve 36B is provided.
  • the oxygen-free tank used in the water treatment apparatus of the second invention is not limited to the above configuration, and the water treatment apparatus of the second invention is not particularly limited, and is an oxygen-free tank using a fluidized bed carrier.
  • a known oxygen-free tank such as a tank or an oxygen-free tank having a bypass structure can be used.
  • an oxygen-free tank using a carrier such as a fluidized bed carrier or a fixed bed carrier in the water treatment apparatus of the second invention.
  • a carrier such as a fluidized bed carrier or a fixed bed carrier in the water treatment apparatus of the second invention.
  • a fluidized bed carrier a known sponge carrier or the like can be used.
  • a stirring device and a screen for preventing the fluidized bed carrier from flowing out are disposed in the oxygen-free tank. do it.
  • the first trickling filter bed 40A and the second trickling filter bed 40B are arranged in parallel to each other on the rear stage side of the anoxic tank 30. And in the 1st sprinkling filter bed 40A and the 2nd sprinkling filter bed 40B, the denitrification process water (sprinkling filter bed inflow water) which flowed out from the anoxic tank 30 is nitrified.
  • Each sprinkling filter bed 40A, 40B is installed above the screens 43A, 43B, the second filter media layers 42A, 42B made of a plurality of filter media supported by the screens 43A, 43B, and the second filter media layers 42A, 42B.
  • a cleaning drainage outlet installed below the layers 42A and 42B.
  • nitrifying bacteria are attached to the filter medium constituting the second filter medium layers 42A and 42B, and the denitrification treated water sprayed by the spray mechanisms 41A and 41B is the second filter medium. Nitrification is performed on the layers 42A and 42B. That is, in the second filter medium layers 42A and 42B of the trickling filter beds 40A and 40B, nitrifying bacteria oxidize ammonia nitrogen contained in the denitrification treated water (sprinkling filter bed inflow water) to nitrate nitrogen. And / or nitrite nitrogen.
  • BOD-oxidizing bacteria may be attached to the filter medium constituting the second filter medium layers 42A and 42B as long as at least nitrifying bacteria are attached. If the BOD-oxidizing bacteria are attached to the filter medium in addition to the nitrifying bacteria, the organic substances remaining in the denitrification treated water (organic substances not removed in the filtration tanks 20A and 20B and the anoxic tank 30) are also the second filter medium. The layers 42A and 42B can be decomposed.
  • a denitrification water line 34 is connected to the spraying mechanisms 41A and 41B of the sprinkling filter beds 40A and 40B.
  • nitrification water lines 48A and 48B (48) are connected to the nitrification water outlets of the sprinkling filter beds 40A and 40B, and the nitrification water valves 49A and 48B are connected to the nitrification water lines 48A and 48B, respectively. 49B is provided.
  • cleaning drainage lines 80A and 80B (80) are connected to the cleaning drainage outlets of the sprinkling filter beds 40A and 40B, and cleaning drainage valves 81A and 81B are provided in the cleaning drainage lines 80A and 80B, respectively. It has been.
  • the nitrification water lines 48A and 48B (48) connect the nitrification water outlet of the sprinkling filter beds 40A and 40B and the nitrification water tank 50, and the two nitrification water lines 40A and 40B extend from the sprinkling filter beds 40A and 40B.
  • the nitrification water lines 48 ⁇ / b> A and 48 ⁇ / b> B join together between the sprinkling filter beds 40 ⁇ / b> A and 40 ⁇ / b> B and the nitrification water tank 50 to form one nitrification water line 48.
  • washing drainage lines 80A and 80B connect the washing drainage outlets of the trickling filter beds 40A and 40B and the water tank 10 to be treated, and two washings extending from the trickling filter beds 40A and 40B.
  • the drainage lines 80 ⁇ / b> A and 80 ⁇ / b> B are merged between the sprinkling filter beds 40 ⁇ / b> A and 40 ⁇ / b> B and the water tank 10 to be treated to form one washing drainage line 80.
  • the spraying mechanisms 41A and 41B are not particularly limited, and a known water sprayer that can spray the denitrification treated water on the second filter medium layers 42A and 42B, for example, a rotary water sprayer or the like is used. Can do.
  • the filter medium used in the second filter medium layers 42A and 42B is not particularly limited, and a filter medium made of resin such as polyurethane or polypropylene can be used. Specifically, as the filter medium, a resin filter medium formed in a cylindrical shape can be used. The second filter medium layers 42A and 42B can be formed by filling the filter media on the screens 43A and 43B.
  • a method of attaching nitrifying bacteria or BOD oxidizing bacteria to the filter medium a known method such as a habituation operation can be used.
  • a screen capable of preventing the filter medium from flowing out such as punching metal, can be used as the screens 43A and 43B disposed below the second filter medium layers 42A and 42B.
  • nitrification water storage portions 44A and 44B are provided below the screens 43A and 43B of the water trickling filters 40A and 40B. And the nitrification water obtained by nitrifying the denitrification process water which flowed in each sprinkling filter bed 40A, 40B is stored by the nitrification water storage part 44A, 44B.
  • each of the trickling filter beds 40A, 40B has a common blower 45 and an air supply line 46 that connects the common blower 45 and each of the trickling filter beds 40A, 40B.
  • the air supply line 46 is bifurcated between the common blower 45 and the sprinkling filter beds 40A and 40B and extends to the lower side of the screens 43A and 43B of the sprinkling filter beds 40A and 40B.
  • the first air supply valve 47A is provided in one line extending into the first trickling filter bed 40A, and the second line is provided in the other line extending into the second trickling filter bed 40B.
  • An air supply valve 47B is provided.
  • the first denitrification water valve 36A, the second denitrification water valve 36B, and the nitrification water valves 49A, 49B are opened, and the first air
  • the denitrification treated water is allowed to flow into the sprinkling filter beds 40A and 40B with the supply valve 47A and the second air supply valve 47B and the washing and drainage valves 81A and 81B closed, whereby the second filter medium layers 42A and 42B.
  • the denitrification water can be nitrified.
  • ammonia nitrogen in the denitrified water sprayed on the second filter media layers 42A and 42B using the spray mechanisms 41A and 41B is converted into the second filter media layers 42A and 42B. It is nitrified by nitrifying bacteria attached to the 42B filter medium.
  • the obtained nitrification water flows out of the sprinkling filter beds 40A and 40B through the nitrification water storage sections 44A and 44B and the nitrification water outlet, and nitrifies by natural flow through the nitrification water line 48, for example. It flows into the water tank 50.
  • first trickling filter bed 40A and the second trickling filter bed 40B when the second filter medium layers 42A and 42B are blocked due to nitrification, or when a predetermined treatment time has elapsed, denitrification is performed.
  • the valves 49A and 49B and the cleaning / drainage valves 81A and 81B function as cleaning means, and the second filter medium layers 42A and 42B can be cleaned as follows, for example.
  • the denitrification water pump 35 the first denitrification water valve 36A, the second denitrification water valve 36B, the spray mechanisms 41A and 41B, the nitrification water valves 49A and 49B, and the washing drain valves 81A and 81B.
  • denitrification water as washing water is stored in the sprinkling filter beds 40A and 40B, and the second filter medium layers 42A and 42B are submerged.
  • the nitrification water valves 49A and 49B and the washing drain valve 81A are operated with the denitrification water pump 35 operated and the first denitrification water valve 36A and the second denitrification water valve 36B opened.
  • 81B are closed, denitrification water is stored in the sprinkling filter beds 40A, 40B, and the second filter media layers 42A, 42B are submerged.
  • the common blower 45, the first air supply valve 47A, and the second air supply valve 47B function as an agitation washing mechanism, and the submerged filter medium layers 42A and 42B are agitated and washed.
  • the common blower 45 is operated, the first air supply valve 47A and the second air supply valve 47B are opened, and the air supply line 46 is opened.
  • the air is supplied into the sprinkling filter beds 40A and 40B to generate a swirling flow in the sprinkling filter beds 40A and 40B, and the filter medium 42a of the second filter medium layers 42A and 42B is stirred and washed.
  • the filter medium 42a of the second filter medium layers 42A and 42B is stirred and cleaned, at least the nitrification water valves 49A and 49B and the cleaning drain valves 81A and 81B may be closed. Therefore, the supply of denitrification treated water into the sprinkling filter beds 40A and 40B using the denitrification treated water pump 35, the first denitrification treated water valve 36A, the second denitrification treated water valve 36B, and the spraying mechanisms 41A and 41B. May be continued or stopped.
  • the washing drain valves 81A and 81B function as a drainage mechanism, and the washing water used for stirring and washing the second filter material layers 42A and 42B is discharged from the sprinkling filter beds 40A and 40B. Specifically, with the nitrification water valves 49A and 49B closed, the washing drain valves 81A and 81B are opened, and the washing water (washing drainage) after stirring and washing the second filter material layers 42A and 42B is sprinkled through the filter bed. Discharge from within 40A, 40B.
  • drain flows into the to-be-processed water tank 10 by the natural flow, for example via the washing
  • the denitrification water pump 35, the first denitrification water valve 36A, the second denitrification water valve 36B, and the spray mechanisms 41A and 41B are provided.
  • the supply of the denitrification treated water into the used trickling filter beds 40A and 40B may be continued or stopped.
  • the supply of air into the trickling filters 40A and 40B using the common blower 45, the air supply line 46, the first air supply valve 47A and the second air supply valve 47B may be continued or stopped. May be. Furthermore, the washing wastewater discharged from the sprinkling filter beds 40A and 40B may be sent to a separately provided wastewater treatment facility for processing without being sent to the water tank 10 to be treated.
  • the filter bed By washing the second filter media layer 42A, 42B as described above, the filter bed flies eggs and larvae, the biofilm excessively attached to the filter media surface, and the solid matter trapped between the filter media are removed. Can be removed from the sprinkling filter bed. Therefore, blockage of the second filter medium layers 42A and 42B can be prevented, and the generation of malodor and filter fly can be suppressed.
  • the cleaning of the second filter medium layers 42A and 42B of the sprinkling filter beds 40A and 40B may be performed simultaneously or alternately, but the sprinkling filter beds 40A and 40B may be performed alternately. If the cleaning of the second filter medium layers 42A and 42B is performed alternately (that is, with different timings of cleaning), the water to be treated using the water treatment device 100 can be continuously treated. . In addition, in the case of having a plurality of trickling filter beds as in the water treatment apparatus 100 and using denitrification treated water (water trickling filter inflow water) as washing water, the second filter medium layer of the trickling filter bed is washed.
  • a flow rate adjusting mechanism for controlling the flow rate of the denitrified water sprayed using the spraying mechanism. If a flow control mechanism is provided, the flow rate of denitrification treated water supplied to the sprinkling filter bed being cleaned is greater than the flow rate of denitrification treated water supplied to the other sprinkling filter beds (where nitrification treatment is performed). This is because the cleaning of the sprinkling filter bed can be completed in a short time.
  • the discharge amount of the denitrification treated water pump 35 and the opening degrees of the first denitrification treated water valve 36A and the second denitrification treated water valve 36B are used.
  • a control device (not shown) for controlling can be used. While increasing the discharge amount of the denitrification treated water pump 35 by the control device and increasing the opening degree of the denitrification treated water valves 36A and 36B connected to the sprinkling filter beds 40A and 40B on the side to be washed, By increasing the flow rate of denitrification water supplied to the sprinkling filter bed, the time required to flood the second filter material layers 42A and 42B can be shortened.
  • the watering filter used in the water treatment device of the second invention is not limited to the above configuration.
  • a known trickling filter bed capable of nitrification using nitrifying bacteria can be used.
  • the number of sprinkling filter beds can be made into arbitrary numbers.
  • the second filter medium layer may be washed using water other than denitrification treated water.
  • the watering filter bed used in the water treatment apparatus of the second invention may have a structure as shown in FIG. 4, for example.
  • a plurality of (six in the illustrated example) sprinkling filter beds 90A to 90F are formed by arranging partition walls in a cylindrical water tank.
  • a rotary watering device 91 having three watering nozzles 92 is installed at the upper part of the cylindrical water tank, and the denitrification water supplied through the denitrification water line 34 is rotated.
  • the water spray nozzles 92 of the water spraying device 91 are sprayed into the water spray filter beds 90A to 90F.
  • each sprinkling filter bed has the same configuration as the sprinkling filter beds 40A and 40B described above, except that the rotary sprinkler 91 is used as the denitrification water spraying mechanism.
  • the rotary sprinkler 91 includes a rotational position detector and a rotational speed adjuster as a flow rate adjusting mechanism for controlling the flow rate of the denitrification water sprayed on each sprinkling filter bed.
  • the rotary sprinkler 91 is supplied to the sprinkling filter bed being washed by reducing the rotation speed. It is possible to make the flow rate of the denitrification treated water larger than the flow rate of the denitrification treated water supplied to the other sprinkling filter beds (where the nitrification treatment is performed).
  • the nitrification water tank 50 is disposed on the rear stage side of the sprinkling filter beds 40A and 40B disposed in parallel with each other. And the nitrification water tank 50 stores the nitrification water which flowed in via the nitrification water line 48 from the sprinkling filter beds 40A and 40B.
  • the nitrification water tank 50 is connected to the solid-liquid separation tank 60 via the transfer line 51.
  • the nitrification water tank 50 is connected to the anoxic tank 30 via a return line 70.
  • the transfer line 51 is provided with a transfer pump 52, and the return line 70 is provided with a return pump 71.
  • nitrification water that flows out from the sprinkling filter beds 40A and 40B and is stored in the nitrification water tank 50 is sent to the solid-liquid separation tank 60 via the transfer line 51 and the transfer pump 52. Further, the remaining portion of the nitrification water that has flowed out of the sprinkling filter beds 40 ⁇ / b> A and 40 ⁇ / b> B and stored in the nitrification water tank 50 is sent to the anoxic tank 30 via the return line 70 and the return pump 71.
  • the nitrate nitrogen and / or nitrite nitrogen contained in the nitrification water sent to the oxygen-free tank 30 is denitrified in the oxygen-free tank 30.
  • the water treatment apparatus of the second invention may not have a nitrification water tank, for example, by sending nitrification water from a nitrification water storage part of a sprinkling filter to a solid-liquid separation tank or an oxygen-free tank. Also good.
  • the solid-liquid separation tank 60 is disposed on the rear side of the nitrification water tank 50.
  • the solid-liquid separation tank 60 has a precipitation part 61 and a filtration part 62 located on the rear stage side of the precipitation part 61, and the filtration part 62 is filled with a plurality of cylindrical filter media. Three filter media layers 63 are installed.
  • the solid-liquid separation tank 60 may be provided with a reciprocating scraper (not shown) that scrapes the solid content precipitated at the bottom of the tank to the settling section 61 at the bottom of the tank.
  • the nitrification water (solid-liquid separation tank inflow water) flowing from the nitrification water tank 50 is precipitated to precipitate a part of the solid content in the nitrification water.
  • the solid content precipitated in the precipitation unit 61 is extracted and processed through a solid content discharge line 65 provided in the lower part of the precipitation unit 61.
  • the solid content precipitated in the precipitation unit 61 is discharged from the solid-liquid separation tank 60 and processed by opening the solid content discharge valve 66 provided in the solid content discharge line 65 at predetermined time intervals, for example.
  • the nitrification water in which part of the solid content is precipitated is filtered by the third filter medium layer 63 to further remove the solid content from the nitrification water.
  • the filtration unit 62 includes a third filter medium layer 63 filled with a plurality of cylindrical filter media, a screen 64 disposed on the upper side of the third filter media layer 63 to prevent the cylindrical filter media from flowing out, and a filtration A treated water line 67 disposed above the screen 64 of the section 62 and a treated water pump 68 provided in the treated water line 67 are provided.
  • the nitrification treated water is filtered through the third filter medium layer 63 by passing the nitrification treated water through the third filter medium layer 63 in an upward flow using the treated water pump 68.
  • cylindrical filter media used in the filtration part 62
  • known cylindrical filter media such as a resin cylindrical filter medium with a specific gravity of less than 1
  • a cylindrical filter medium made of polypropylene can be used as the cylindrical filter medium.
  • the screen 64 may be a screen that can prevent the cylindrical filter medium from flowing out, such as punching metal.
  • the water treatment apparatus of the second invention may not have a solid-liquid separation tank.
  • the filtration part of the solid-liquid separation tank used for the water treatment apparatus of 2nd invention may be equipped with the known backwashing mechanism for backwashing the 3rd filter medium layer 63 using a downward flow.
  • the sprinkling filter beds 40A and 40B are arrange
  • the amount of the organic matter flowing into the sprinkling filter beds 40A and 40B can be reduced. Therefore, the sprinkling filter bed can be reduced in size while efficiently treating the organic matter using the filtration tanks 20A and 20B and the oxygen-free tank 30.
  • the second filter material layers 42A and 42B of the trickling filter beds 40A and 40B are nitrified rather than BOD oxidizing bacteria. Bacteria are attached and propagated preferentially, and nitrification of denitrified water can be performed more efficiently.
  • the ammonia nitrogen in the water to be treated is nitrified in the sprinkling filter beds 40A and 40B and generated.
  • Nitrate nitrogen and / or nitrite nitrogen can be denitrified in the oxygen-free tank 30. Therefore, ammonia nitrogen in the for-treatment water can be efficiently treated while achieving downsizing of the sprinkling filter beds 40A and 40B and efficient treatment of organic matter in the for-treatment water.
  • the denitrifying bacteria are held at a high concentration in the anoxic tank 30 using the fixed bed carrier 33, the denitrifying process is efficiently advanced and the anoxic tank 30 is downsized. can do.
  • the amount of solids in the denitrification treated water flowing out from the anoxic tank 30 can be reduced as compared with the case where no carrier is used, the sprinkling filter beds 40A and 40B located in the subsequent stage are provided with solids in the denitrification treated water. It is possible to suppress clogging at an early stage due to the minute, and it is possible to reduce the amount of organic matter (particularly, the amount of solid organic matter) flowing into the sprinkling filter beds 40A and 40B. Moreover, it can also suppress that the spreading
  • the oxygen-free tank 30 is arranged in the subsequent stage of the filtration tanks 20A and 20B, filtered water from which coarse solids have been removed flows into the oxygen-free tank 30. Therefore, even when the carrier is used in the oxygen-free tank 30, it is possible to prevent the solid content contained in the water to be treated from being caught on the carrier itself or the screen for preventing the carrier from flowing out. As a result, it is possible to prevent a problem such as blockage of a water channel due to a solid matter being caught.
  • the first filter medium layer of the other filtration tank is reversed while continuing the filtration of the treated water in one filtration tank. Can be washed.
  • the two sprinkling filter beds 40A and 40B are arranged in parallel, the nitrification treatment of the denitrification treated water is continued in one sprinkling filter bed, while the second sprinkling filter bed 2nd.
  • the filter medium layer can be washed.
  • the washing of the water trickling filter can be completed in a short time, and two water trickling filters can be obtained. Nitrification of denitrified water using the floor can be restarted at an early stage.
  • cleaning the 2nd filter medium layers 42A and 42B of the sprinkling filter beds 40A and 40B is sent to the to-be-treated tank 10, denitrification treatment Even when water is used as the washing water, the solid content contained in the washing waste water and the ammonia nitrogen contained in the denitrification water used as the washing water are filtered tanks 20A, 20B, It can process efficiently with the sprinkling filter beds 40A and 40B.
  • the solid-liquid separation tank 60 is provided on the rear stage side of the trickling filter beds 40A and 40B, fine solids flowing out from the second filter medium layers 42A and 42B of the trickling filter beds 40A and 40B.
  • Objects for example, biofilms peeled off from the filter medium
  • cleaner treated water can also be removed to obtain cleaner treated water.
  • the water treatment apparatus of 2nd invention was demonstrated using an example, the water treatment apparatus of 2nd invention is not limited to the said example, The water treatment apparatus of 2nd invention is changed suitably. Can be added.
  • the water treatment apparatus of the second invention may be an apparatus having a configuration as shown in FIG.
  • the denitrification treatment section 32 of the anoxic tank 30 is a denitrification treatment section having a bypass structure having a plurality of bypass walls 37, and a nitrification treatment tank 50.
  • the nitrification treated water that flows out from the sprinkling filter beds 40A and 40B is all returned to the inflow portion 31 of the anoxic tank 30, and the filtered water that flows out from the filtration tanks 20A and 20B is denitrified.
  • the anoxic tank may be arranged on the front side of the filtration tank.
  • both the organic substance and ammonia nitrogen which are contained in to-be-processed water can be processed efficiently, reducing a watering filter bed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

 第一発明の水処理装置は、流入水を第1のろ材層でろ過するろ過槽と、ろ過槽の後段側に配置され、硝化細菌を用いて流入水を硝化処理する硝化槽と、硝化槽から流出した硝化処理水の少なくとも一部をろ過槽に返送する返送手段とを備える。第二発明の水処理装置は、流入水を第1のろ材層でろ過するろ過槽と、硝化細菌が付着したろ材が充填された第2のろ材層を有する散水ろ床と、脱窒細菌を用いて流入水を脱窒処理する無酸素槽と、散水ろ床から流出した硝化処理水の少なくとも一部を無酸素槽へ送水する返送ラインとを備え、散水ろ床がろ過槽および無酸素槽よりも後段側に配置されている。

Description

水処理装置
 本発明は、水処理装置に関するものである。具体的には、本発明の第一発明は、還元性硫黄成分およびアンモニア性窒素を含有する被処理水を処理する際に好適に用いられる水処理装置に関し、本発明の第二発明は、有機物およびアンモニア性窒素を含有する被処理水を処理する際に好適に用いられる水処理装置に関する。
 従来、有機物を含有する被処理水(例えば、下水、畜産排水、工場排水など)を処理する方法として、散水ろ床法が用いられている(例えば、特許文献1参照)。具体的には、散水ろ床法を用いた水処理装置では、BOD酸化細菌などの好気性細菌が付着したろ材よりなるろ材層を有する散水ろ床を使用し、散水ろ床のろ材層に被処理水を散布することにより、好気性細菌を用いて被処理水中の有機物を処理している。
 また、近年、散水ろ床に流入する有機物量を低減して散水ろ床を小型化する技術として、好気的処理槽である散水ろ床の前段側に固液分離装置を設け、散水ろ床に流入する被処理水から固形有機物を予め除去することが提案されている。具体的には、固液分離装置および散水ろ床を用いた下水処理システムとして、所定のろ材が充填されたろ材充填層を有し、上向流でろ材充填層内に下水を通過させて下水を固形成分とろ過水とに分離する固液分離装置と、固液分離装置の後段に設置された散水ろ床とを備える下水処理システムが提案されている(例えば、特許文献2参照)。この下水処理システムによれば、下水中に含まれている固形有機物を固液分離装置で除去し、散水ろ床に流入する有機物量を低減する(即ち、散水ろ床にかかる有機物負荷を低減する)ことができるので、散水ろ床における処理負荷を低減し、散水ろ床を小型化することができる。
特開平1-281196号公報 国際公開第2012/161339号
 しかし、本発明者らは、上述のような、好気的処理槽の前段に、ろ材が充填されたろ過槽からなる固液分離装置を配置した水処理装置では、ろ過槽内の酸化還元電位が低下するため、下水等の還元性硫黄成分を含む被処理水中に含まれる還元性硫黄成分が還元されて、ろ過槽から硫化水素が生じてしまうことを見いだした。そして、このような硫化水素発生の問題に対し、本発明者らは、ろ過槽内で還元性硫黄成分を酸化し、硫化水素の発生を抑制することに着想した。
 そこで、本発明の第一発明は、好気的処理槽の前段にろ過槽を配置した水処理装置において、ろ過槽における硫化水素の発生を抑制することを目的とする。
 また、上記従来の散水ろ床法を用いた水処理装置には、散水ろ床を更に小型化するという点において改善の余地があった。更に、上記従来の散水ろ床法を用いた水処理装置では、被処理水中に含まれている有機物の処理のみに着目しており、被処理水中に含まれているアンモニア性窒素などの窒素成分の処理については何ら着目されていなかった。
 そこで、本発明の第二発明は、散水ろ床法を用いた水処理装置において、散水ろ床を小型化しつつ、被処理水中に含まれている有機物およびアンモニア性窒素の双方の効率的な処理を可能にすることを目的とする。
 この発明は、上記課題を有利に解決することを目的とするものであり、第一発明の水処理装置は、還元性硫黄成分およびアンモニア性窒素を含む被処理水を処理する水処理装置であって、ろ材が充填された第1のろ材層を有し、流入水を前記第1のろ材層でろ過するろ過槽と、前記ろ過槽の後段側に配置され、硝化細菌を用いて流入水を硝化処理する硝化槽と、前記硝化槽から流出した硝化処理水の少なくとも一部を前記ろ過槽に返送する返送手段と、を備え、前記ろ過槽において、前記還元性硫黄成分を酸化すると共に、硝酸性窒素および/または亜硝酸性窒素を脱窒することを特徴とする。このように、硝化槽の前段にろ過槽を配置した水処理装置において、硝化槽から流出した硝化処理水の少なくとも一部をろ過槽に返送し、ろ過槽において、還元性硫黄成分を酸化することにより、ろ過槽における硫化水素の発生を抑制することができる。また、この水処理装置では、ろ過槽において硝酸性窒素および/または亜硝酸性窒素を脱窒することにより、硝化槽から排出される硝化処理水中の窒素量を低減し、水処理装置により得られる処理水の性状を一層向上させることができる。なお、上記第一発明では、ろ過槽における還元性硫黄成分の酸化に、硫黄酸化脱窒細菌を用いることが好ましい。硫黄酸化脱窒細菌を用いれば、還元性硫黄成分の酸化と、硝酸性窒素および/または亜硝酸性窒素の脱窒とを同時に行い、被処理水を効率的に処理することができるからである。
 ここで、第一発明の水処理装置において、前記被処理水は、有機物を更に含み、前記水処理装置は、前記ろ過槽と前記硝化槽との間に、脱窒細菌を用いて流入水を脱窒処理する無酸素槽を更に備えることが好ましい。無酸素槽がろ過槽と硝化槽との間に配置されていると、硝化槽における硝化に先立って、無酸素槽において、ろ過水中に残存した有機物を低減させることができるからである。
 また、第一発明の水処理装置において、前記硝化槽は、前記硝化細菌が付着した担体を内部に有することが好ましい。硝化槽内の硝化細菌が担体に担持されていることにより、硝化処理水を返送ラインにより返送し、ろ過槽において処理させるにあたり、ろ過槽の閉塞を低減することができるからである。
 更に、第一発明の水処理装置は、前記硝化槽の後段側に固液分離槽を更に備え、前記固液分離槽は、流入水中の固形分の一部を沈殿させる沈殿部と、前記固形分の一部を沈殿させた流入水を複数の円筒形ろ材が充填された第2のろ材層でろ過するろ過部とを有することが好ましい。硝化槽の後段側に固液分離槽を設ければ、硝化槽から流出した硝化処理水中に含まれている固形物を除去してより清浄な処理水を得ることができるからである。
 また、第一発明の水処理装置は、前記ろ過槽の前段側に混合槽をさらに備え、前記返送手段は、前記混合槽を介して前記硝化処理水を前記ろ過槽に返送し、前記混合槽において、前記被処理水と前記硝化処理水とが混合されることが好ましい。硝化処理水を予め被処理水と混合させてからろ過槽に流入させるので、ろ過槽における硫化水素の発生をより確実に抑制することができるからである。また、かかる構成によれば、硫黄酸化脱窒細菌を用いて還元性硫黄成分を酸化する場合に、ろ過槽内に流入する流入水中に硝酸性窒素および/または亜硝酸性窒素を確実に存在させるようにして、ろ過槽内における硫黄酸化脱窒反応を効率化することができる。
 そして、第一発明の水処理装置は、制御部と、前記第1のろ材層を経たろ過水由来の還元性硫黄成分の量を測定する還元性硫黄成分量測定手段とを更に備え、前記制御部は、前記還元性硫黄成分量測定手段により所定量以上の還元性硫黄成分が検出された場合に、前記硝化処理水の返送量を所定量増加させるように制御することが好ましい。ろ過槽中の還元性硫黄成分量に応じて硝化処理水の返送量を調節することにより、ろ過槽における硫化水素の発生を効果的に防止することができるからである。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、第二発明の水処理装置は、有機物およびアンモニア性窒素を含む被処理水を処理する水処理装置であって、ろ材が充填された第1のろ材層を有し、流入水を前記第1のろ材層でろ過するろ過槽と、硝化細菌が付着したろ材が充填された第2のろ材層と、流入水を前記第2のろ材層に散布する散布機構とを有し、前記散布機構で散布した流入水を前記第2のろ材層で硝化処理する散水ろ床と、脱窒細菌を用いて流入水を脱窒処理する無酸素槽と、前記散水ろ床から流出した硝化処理水の少なくとも一部を前記無酸素槽へ送水する返送ラインとを備え、前記散水ろ床が、前記ろ過槽および前記無酸素槽よりも後段側に配置されていることを特徴とする。このように、ろ過槽および無酸素槽よりも後段側に散水ろ床を配置すれば、ろ過槽における固形有機物の除去および無酸素槽における脱窒処理時の有機物の消費により、散水ろ床に流入する有機物量を低減することができる。従って、有機物を効率的に処理しつつ、散水ろ床を小型化することができる。また、返送ラインを設けて硝化処理水の少なくとも一部を無酸素槽に送水すれば、被処理水中のアンモニア性窒素を散水ろ床で硝化すると共に、生成した硝酸性窒素および/または亜硝酸性窒素を無酸素槽で脱窒処理することができる。従って、散水ろ床の小型化および被処理水中の有機物の効率的な処理を達成しつつ、被処理水中のアンモニア性窒素を効率的に処理することができる。
 ここで、第二発明の水処理装置は、前記無酸素槽が、前記脱窒細菌が付着した担体を有し、前記ろ過槽が、前記無酸素槽の前段側に配置されていることが好ましい。無酸素槽が担体を有する場合、脱窒細菌を無酸素槽内に高濃度で保持して脱窒処理を効率的に進めることができる。従って、無酸素槽を小型化することができる。更に、ろ過槽を無酸素槽の前段側に配置すれば、固形物が無酸素槽に流入するのを防止して、担体自体や、担体の流出を防止するためのスクリーンなどに固形物が引っ掛かるのを防止することができる。従って、固形物の引っ掛かりによる水路の閉塞などの問題が生じるのを防止することができる。
 また、第二発明の水処理装置は、前記散水ろ床は、前記第2のろ材層を洗浄する洗浄手段を備え、前記洗浄手段は、前記散水ろ床内に洗浄水を貯留して前記第2のろ材層を冠水させる洗浄水貯留機構と、冠水した前記第2のろ材層の前記硝化細菌が付着したろ材を撹拌して洗浄する撹拌洗浄機構と、撹拌洗浄後の洗浄水を排出する排水機構とを有することが好ましい。散水ろ床が洗浄手段を有する場合、洗浄手段を用いて散水ろ床を洗浄することにより、ろ床ハエの卵および幼虫、ろ材の表面に過度に付着した生物膜、並びに、ろ材間に補捉された固形物を散水ろ床から除去することができる。従って、ろ床ハエや悪臭の発生を抑制しつつ、被処理水を効率的に処理することができる。
 更に、第二発明の水処理装置は、前記散水ろ床を複数有し、複数の前記散水ろ床は並列に配置され、各散水ろ床は、前記散布機構を用いて散布される流入水を前記洗浄水として使用し、前記洗浄手段は、前記散布機構を用いて散布される流入水の流量を制御する流量調節機構を更に備えることが好ましい。散布機構を用いて散布される流入水を散水ろ床の洗浄水として使用する場合、洗浄手段が流量調節機構を備えていれば、洗浄対象の散水ろ床への流入水(洗浄水)の流入量を一時的に増加させて第2のろ材層を冠水させるまでに要する時間を短縮し、短時間で散水ろ床を洗浄することができる。
 また、第二発明の水処理装置は、前記散水ろ床は、前記散布機構を用いて散布される流入水を前記洗浄水として使用し、前記排水機構が、前記撹拌洗浄後の洗浄水を前記ろ過槽に送水し、前記撹拌洗浄後の洗浄水が、前記ろ過槽の前記第1のろ材層でろ過されることが好ましい。散布機構を用いて散布される流入水を散水ろ床の洗浄水として使用する場合、排水機構が撹拌洗浄後の洗浄水をろ過槽に送水すれば、撹拌洗浄後の洗浄水を効率的に処理することができる。
 そして、第二発明の水処理装置は、前記散水ろ床の後段側に固液分離槽を更に備え、前記固液分離槽は、流入水中の固形分の一部を沈殿させる沈殿部と、前記固形分の一部を沈殿させた流入水を複数の円筒形ろ材が充填された第3のろ材層でろ過するろ過部とを有することが好ましい。散水ろ床の後段側に固液分離槽を設ければ、散水ろ床から流出した硝化処理水中に含まれている固形物を除去してより清浄な処理水を得ることができる。
 第一発明の水処理装置によれば、ろ過槽における硫化水素の発生を抑制することができる。
 第二発明の水処理装置によれば、散水ろ床を小型化しつつ、被処理水中に含まれている有機物およびアンモニア性窒素の双方を効率的に処理することができる。
第一発明に従う代表的な水処理装置の概略構成を示す説明図である。 第二発明に従う代表的な水処理装置の概略構成を示す説明図である。 図2に示す水処理装置の散水ろ床について、第2のろ材層を洗浄している状態を示す説明図である。 図2に示す水処理装置の散水ろ床の変形例を示す斜視図である。 図2に示す水処理装置の変形例の概略構成を示す説明図である。
[第一発明の水処理装置]
 以下、第一発明の実施の形態を、図面に基づき詳細に説明する。
(水処理装置)
 図1に、第一発明の水処理装置の一例の概略構成を示す。ここで、図1に示す水処理装置1000は、還元性硫黄成分およびアンモニア性窒素を含む被処理水の処理に用いられる。そして、水処理装置1000は、被処理水槽110と、ろ過槽120と、無酸素槽130と、互いに並列に配置された2つの硝化槽140A,140Bと、硝化処理水槽150と、固液分離槽160と、制御部180とを備えている。
 なお、以下では、水処理装置1000に被処理水が流入する側を「前段側」と称し、水処理装置1000から処理水が流出する側を「後段側」と称する。
<被処理水>
 還元性硫黄成分およびアンモニア性窒素を含む被処理水としては、特に限定されることなく、例えば、下水、畜産排水、工場排水などが挙げられる。さらに、被処理水は、有機物を含むことが好ましい。被処理水中に含まれる有機物としては、固形有機物と、溶解性有機物とが挙げられる。
<被処理水槽>
 被処理水槽110には、被処理水が貯留されている。好ましくは、被処理水槽110は、被処理水と、後に詳細に説明する、返送ライン170により返送された硝化処理水とが混合される混合槽として機能する。このように、硝化処理水を予め被処理水と混合させてからろ過槽120A,120Bに流入させることで、ろ過槽における硫化水素の発生をより確実に抑制することができる。そして、被処理水槽110は、被処理水ライン112を介してろ過槽120A,120Bと接続されている。具体的には、水処理装置1000では、被処理水槽110内に設置された被処理水ポンプ111と、ろ過槽120A,120Bとが被処理水ライン112により接続されている。そして、被処理水槽110に貯留された被処理水は、被処理水ポンプ111および被処理水ライン112を介してろ過槽120A,120Bへと送水される。
 なお、第一発明の水処理装置では、返送ライン170を、被処理水ライン112に直接接続し、被処理水ライン112内において、被処理水と返送ライン170により返送された硝化処理水とが混合されるように構成することももちろん可能である。
 ここで、被処理水ライン112は、被処理水ポンプ111と、ろ過槽120A,120Bとの間で二股に分岐しており、2本に分岐したうちの一方のラインが第1ろ過槽120Aに接続し、他方のラインが第2ろ過槽120Bに接続している。そして、第1ろ過槽120Aに接続する一方のラインには、第1被処理水弁113Aが設けられており、第2ろ過槽120Bに接続する他方のラインには、第2被処理水弁113Bが設けられている。
 なお、第一発明の水処理装置は、被処理水槽を有していなくてもよく、例えば初沈流入水路などの被処理水流路から被処理水をろ過槽に送水してもよい。この場合、返送ライン170は、被処理水ライン112に対して、または、ろ過槽120A,120Bの下部に対して、直接接続される。
<ろ過槽>
 ろ過槽120は、被処理水槽110の後段側に配置され、内部に互いに並列に配置された第1ろ過槽120Aおよび第2ろ過槽120Bを含む。さらに、ろ過槽120は、ろ過水由来の還元性硫黄成分の量を測定する還元性硫黄成分量測定手段127を含むことが好ましい。そして、第1ろ過槽120Aおよび第2ろ過槽120Bでは、被処理水槽110から流入した被処理水(流入水)がろ過される。
 第1ろ過槽120Aおよび第2ろ過槽120Bは、特に限定されることなく、上向流式のろ過槽であり、各槽内に、スクリーン122A,122Bと、スクリーン122A,122Bで支持された複数の浮上ろ材からなる第1のろ材層121A,121Bと、第1のろ材層121A,121Bの下側に設置された被処理水流入口と、第1のろ材層121A,121Bの下側に設置された逆洗排水排出口とを備えている。そして、第1ろ過槽120Aおよび第2ろ過槽120Bの被処理水流入口には、被処理水ライン112が接続されている。また、第1ろ過槽120Aおよび第2ろ過槽120Bの逆洗排水排出口には、逆洗排水ライン125A,125Bが接続されており、各逆洗排水ライン125A,125Bには、逆洗排水弁126A,126Bが設けられている。
 更に、ろ過槽120A,120Bのスクリーン122A,122Bの上側には、共通ろ過水貯留部123が設けられている。そして、第1ろ過槽120Aおよび第2ろ過槽120Bにおいて下側から流入した流入水を第1のろ材層121A,121Bでろ過して得たろ過水は、共通ろ過水貯留部123に貯留される。
 また、共通ろ過水貯留部123のろ過水流出口は、ろ過水ライン124を介して無酸素槽130と接続されている。具体的には、共通ろ過水貯留部123のろ過水流出口と、無酸素槽130の流入部131とは、ろ過水ライン124により接続されている。そして、第1ろ過槽120Aおよび第2ろ過槽120Bの第1のろ材層121A,121Bで被処理水をろ過して得たろ過水は、共通ろ過水貯留部123のろ過水流出口から流出し、ろ過水ライン124を介して例えば自然流下により無酸素槽130へと流入する。
 ろ過槽120A,120Bで使用する浮上ろ材は、例えば、硫黄還元菌及び硫黄酸化脱窒細菌を担持する。浮上ろ材に硫黄還元菌及び硫黄酸化脱窒細菌を担持させる方法としては、馴養運転などの既知の手法を用いることができる。なお、ろ過槽120A,120Bの浮上ろ材は、硫黄還元菌及び硫黄酸化脱窒細菌に加え、従属栄養性の脱窒細菌や、硫黄酸化脱窒細菌以外の硫黄酸化細菌などを担持していてもよい。
 上述したように、被処理水ライン112を介してろ過槽120A,120Bに流入する流入水には、返送ライン170により返送された硝化処理水が混合されている。したがって、ろ過槽120A,120B内は、硝化処理水中の溶存酸素に起因して下部(被処理水流入口側)は好気条件となり得るが、上部に向かうに従って嫌気条件となる。また、ろ過槽120A,120B内には、被処理水中の還元性硫黄成分に加えて、硝化処理水由来の硝酸性窒素および/または亜硝酸性窒素が豊富に存在する。このため、特にろ過槽120A,120B内の上部は、硫黄還元菌だけでなく、硫黄酸化脱窒細菌の生育にも適した条件となっている。なお、硝化処理水「由来の」硝酸性窒素および/または亜硝酸性窒素とは、被処理水槽(混合槽)110において被処理水と混合された硝化処理水に含有されていた硝酸性窒素および/または亜硝酸性窒素を意味する。
 また、ろ過槽120A,120Bで使用する浮上ろ材は、流入水よりも比重の小さい(即ち、流入水で浮く)ろ材である。そして、ろ過槽120A,120Bでは、浮上ろ材として、発泡樹脂製の粒子状の浮上ろ材などの既知の浮上ろ材を用いることができる。具体的には、浮上ろ材としては、見掛け比重が0.1~0.8であり、50%圧縮硬さが0.1MPa以上であり、サイズが4~10mmであるろ材を用いることができる。浮上ろ材の素材は、例えば、発泡ポリエチレン、発泡ポリスチレン、及び発泡ポリプロピレンである。
 また、ろ過槽120A,120Bでは、第1のろ材層121A,121Bの上側に配置するスクリーン122A,122Bとして、浮上ろ材の流出を防止し得るスクリーン、例えばパンチングメタル等を用いることができる。
 そして、第1ろ過槽120Aおよび第2ろ過槽120Bでは、第1被処理水弁113Aおよび第2被処理水弁113Bを開き、逆洗排水弁126A,126Bを閉じた状態で被処理水をろ過槽120A,120B内に流入させることにより、第1のろ材層121A,121Bで流入水をろ過することができる。具体的には、ろ過槽120A,120Bでは、流入水中に含まれている粗大な固形物(例えば、直径100μm以上の有機固形物および無機固形物)が第1のろ材層121A,121Bに捕捉され、流入水中から除去される。
 本発明者らは、ろ過槽120A,120B内、特にろ材層121A,121Bの上部におけるORP(oxidation / reduction potential、酸化還元電位)は、ろ過槽120A,120B内に流入する流入水のORPが低いことや、ろ過槽120A,120B内に存在する微生物の作用に起因して、例えば、-300mV以下のように過剰に低くなることを見いだした。ORPが低下する一つの要因としては、ろ過槽120A,120B内おける硫酸還元菌による硫酸イオンの還元反応が考えられる。そして、ろ過槽内のORPが過剰に低くなると、硫黄還元菌により、流入水中の還元性硫黄成分が還元されて、硫化水素が発生する。ここで、還元性硫黄成分とは、価数が0以下の硫黄成分を意味し、例えば、硫化水素、チオ硫酸などに含まれる硫黄成分を指す。
 そこで、本発明者らは、ろ過槽120A,120B内において、例えば硫黄酸化脱窒細菌により、流入水中の還元性硫黄成分を酸化することで、第1ろ過槽120Aおよび第2ろ過槽120Bにおいて発生した硫化水素イオン(HS-)を酸化させて硫酸とすることに着想した。
 ここで、従来のろ過槽では、下水などの被処理水をそのままろ過しているため、流入水中に含まれる硝酸性窒素および/または亜硝酸性窒素が不足し、硫黄酸化脱窒細菌を利用した処理はできなかった。例えば、代表的な硫黄酸化脱窒細菌である、Thiobacillus denitrificansによる硫黄酸化脱窒反応は以下の式の通りである。
[Thiobacillus denitrificansによる硫黄酸化脱窒反応式]
  0.421H2S+0.421HS-+NO3 -+0.346CO2+0.0865HCO3 -+0.0865NH4 + → 0.0865C5H7O2N+0.5N2+0.842SO4 2-+0.413H2O+0.262H+
 上記反応式からも明らかな通り、硫黄酸化脱窒細菌では、窒素源に乏しい環境では、硫黄酸化脱窒反応を行うことができない。
 しかし、第一発明では、被処理水ライン112を介してろ過槽120A,120B内に流入する流入水に、返送ライン170により返送された硝化処理水が混合されているため、ろ過槽の流入水中に十分な量の硝酸性窒素および/または亜硝酸性窒素が含まれるようになる。従って、ろ過槽120A,120B内における硫黄酸化脱窒細菌を利用した処理が容易となる。このようにして、第一発明ではろ過槽120A,120B内で発生した硫化水素イオンを、硫黄酸化脱窒細菌によって酸化して硫酸とすることで、ろ過槽120A,120Bから放出される硫化水素量を低減することができる。さらに、硫黄酸化脱窒細菌は、返送ライン170により返送された硝化処理水由来の硝酸性窒素および/または亜硝酸性窒素を脱窒する。これにより、硝化槽140A,140Bから排出される硝化処理水中の窒素量を低減し、水処理装置1000により得られる処理水の性状を一層向上させることができる。
 さらに、水処理装置1000において、上述のように、被処理水槽110を被処理水と硝化処理水との混合槽として機能させることで、ろ過槽120内に流入する流入水中に硝酸性窒素および/または亜硝酸性窒素を確実に存在させるようにして、ろ過槽120内における硫黄酸化脱窒反応を効率化することができる。この場合、ろ過槽120A,120B内に流入する流入水のORPが過剰に低くなることを回避することもできる。これにより、ろ過槽120における硫化水素の発生をより確実に抑制することができるようになる。
 また、混合槽(或いはろ過槽120A,120B内)にて被処理水に対して硝化処理水を混合させることで、被処理水中に元々含有されていた硫化水素や、ろ過槽120において発生してしまった硫化水素についても、硫黄酸化脱窒細菌により酸化することができる。
 なお、ろ過槽120内で起こる反応は、上記硫黄酸化脱窒細菌による反応に限定されるものではない。例えば、ろ過槽120内、特にろ材層121A,121Bの下部では、硝化処理水中に含まれていた溶存酸素を利用した、硫黄酸化細菌などによる還元性硫黄成分の酸化反応も起こっていると推察される。また、ろ過槽120内、特にろ材層121A,121Bの上部では、脱窒細菌などによる硝酸性窒素および/または亜硝酸性窒素の脱窒反応も起こっていると推察される。そして、ろ過槽120では、これらの反応によっても、硫化水素量および窒素量を低減することができると推察される。
 還元性硫黄成分量測定手段127は、ろ過水由来の還元性硫黄成分の量を測定する機能を持つ。ここで、「ろ過水由来」の還元性硫黄成分とは、第1のろ材層121A,121Bを経た、ろ過水中の還元性硫黄成分あるいは、ろ過槽120内の気相部分あるいはろ過槽120の後段においてろ過水から放出される還元性硫黄成分を意味する。水処理装置1000の制御部180は、還元性硫黄成分量測定手段127の測定結果に基づいて、返送ライン170による硝化処理水の返送量を制御する。この点については、「硝化処理水の返送量の制御動作」として後に詳述する。
 また、第1ろ過槽120Aおよび第2ろ過槽120Bでは、ろ過の継続により第1のろ材層121A,121Bが閉塞して差圧が上昇した場合、或いは、所定のろ過時間が経過した場合には、第1被処理水弁113Aおよび第2被処理水弁113Bを閉じ、逆洗排水弁126A,126Bを開くことで、第1のろ材層121A,121Bを逆洗(逆流洗浄)することができる。具体的には、逆洗排水弁126A,126Bを開き、共通ろ過水貯留部123に貯留されているろ過水を下向流で流すことにより、第1のろ材層121A,121Bを構成する浮上ろ材を下方に展開させ、第1のろ材層121A,121Bを洗浄することができる。なお、第1のろ材層121A,121Bの逆洗時に生じる逆洗排水(第1のろ材層121A,121Bに捕捉されていた固形物を含む排水)は、特に限定されることなく、逆洗排水ライン125A,125Bを介して適当な排水処理設備へと送水し、処理することができる。
 ここで、ろ過槽120A,120Bでは、任意に、第1のろ材層121A,121Bの下側に空気供給管(図示せず)を設け、第1のろ材層121A,121Bを逆洗する際に空気供給管から空気を供給して浮上ろ材を撹拌し、逆洗効率を高めてもよい。また、水処理装置1000では、ろ過槽120A,120Bの逆洗は、同時に行ってもよいし、交互に行ってもよいが、ろ過槽120A,120Bの逆洗を交互に(即ち、逆洗を実施するタイミングを異ならせて)実施すれば、被処理水の処理を連続的に行うことができる。また、2つのろ過槽120A,120Bを並列配置しているので、1つのろ過槽で被処理水のろ過を継続しつつ、他のろ過槽の第1のろ材層を逆洗することができる。
 なお、第一発明の水処理装置で用いるろ過槽は、上記構成に限定されることはない。第一発明の水処理装置では、特に限定されることなく、ろ材層を有する既知のろ過槽を用いることができる。また、第一発明の水処理装置では、ろ過槽の数は、任意の数とすることができる。更に、第一発明の水処理装置では、ろ過水以外の水を用いて第1のろ材層を逆洗してもよい。
<無酸素槽>
 水処理装置1000は、互いに並列に配置された第1ろ過槽120Aおよび第2ろ過槽120Bの後段側であって、硝化槽140A,140Bの前段側に配置された、無酸素槽130を備えることが好ましい。ここで、無酸素槽130は、流入部131と、流入部131の後段側に位置する脱窒処理部132とを有している。脱窒処理部132には、複数の固定床担体133が設置されることが好ましい。
 そして、無酸素槽130では、第1ろ過槽120Aおよび第2ろ過槽120Bで得たろ過水が、脱窒細菌を用いて脱窒処理される。具体的には、無酸素槽130では、ろ過水が流入部131に流入し、次いで、脱窒処理部132へと流入して、固定床担体133に付着した脱窒細菌により脱窒処理される。即ち、無酸素槽130の脱窒処理部132では、従属栄養細菌である脱窒細菌が、ろ過水中に含まれている有機物(特に、溶解性有機物)を消費しつつ、ろ過水中の硝酸性窒素および/または亜硝酸性窒素を還元して窒素ガスとする。
 なお、固定床担体133としては、揺動型固定床担体などの既知の固定床担体、例えば、複数本の繊維の一部を芯材に固定してなる固定床担体などを用いることができる。また、固定床担体133に脱窒細菌を付着させる方法としては、馴養運転などの既知の手法を用いることができる。
 ここで、水処理装置1000では、無酸素槽130の前段にろ過槽120A,120Bが設けられているので、無酸素槽130では、毛髪などの細長い固形物が絡みやすい担体(例えば、繊維状の担体)も用いることができる。毛髪等の固形物はろ過槽120A,120Bで十分に除去されるからである。
 また、無酸素槽130は、脱窒処理水ライン134を介して硝化槽140A,140Bと接続されている。具体的には、水処理装置1000では、無酸素槽130の脱窒処理部132と、硝化槽140A,140Bとが、脱窒処理水ポンプ135を有する脱窒処理水ライン134により接続されている。そして、無酸素槽130の脱窒処理部132でろ過水を脱窒処理して得た脱窒処理水は、脱窒処理水ポンプ135および脱窒処理水ライン134を介して硝化槽140A,140Bへと送水される。
 ここで、脱窒処理水ライン134は、脱窒処理水ポンプ135と、硝化槽140A,140Bとの間で二股に分岐しており、2本に分岐したうちの一方のラインが第1硝化槽140Aに接続し、他方のラインが第2硝化槽140Bに接続している。
 このように、水処理装置1000が、ろ過槽120と各硝化槽140A,140Bとの間に配置された無酸素槽130を備えることで、各硝化槽140A,140Bにおける硝化に先立って、無酸素槽130において、ろ過水中に残存した有機物を低減させることができる。
 なお、第一発明の水処理装置で用いる無酸素槽は、上記構成に限定されることはない。すなわち、第一発明の水処理装置では、担体に担持されていない浮遊状態の脱窒細菌を利用した、浮遊法による無酸素槽や、流動床担体を用いた無酸素槽や、迂流式構造の無酸素槽などの既知の無酸素槽を用いることができる。
 ここで、無酸素槽内に脱窒細菌を高濃度で保持して脱窒処理を効率的に進めることを可能にし、無酸素槽を小型化する観点、および、汚泥の流出を抑制して後段側に位置する硝化槽などの閉塞を抑制する観点からは、第一発明の水処理装置では、流動床担体または固定床担体などの担体を用いた無酸素槽を使用することが好ましい。なお、流動床担体としては、既知のスポンジ担体などを用いることができ、流動床担体を用いる場合には、無酸素槽内に、撹拌装置と、流動床担体の流出を防止するスクリーンとを配置すればよい。
 ここで、脱窒処理という無酸素槽130の機能的側面に鑑みれば、無酸素槽130の位置は、ろ過槽120の前段でも問題ないように考えられる。しかしながら、水処理装置1000では、ろ過槽120において、例えば硫黄酸化脱窒細菌を利用して、還元性硫黄成分を酸化する。このため、ろ過槽120内に流入させる流入水中に、硝酸性窒素および/または亜硝酸性窒素が含有されることが好ましい。したがって、水処理装置1000において、無酸素槽130の位置は、ろ過槽120と各硝化槽140A,140Bとの間であることが好ましい。
<硝化槽>
 第1硝化槽140Aおよび第2硝化槽140Bは、無酸素槽130の後段側に、互いに並列に配置されている。硝化槽140A,140Bは、例えば、散水ろ床、流動床、固定床、浮遊法による硝化槽、及び、エアレーションタンク等である。
 本実施形態では、硝化槽140A,140Bが散水ろ床であるものとして図示する。そして、硝化槽140A,140Bでは、無酸素槽130から流出した脱窒処理水(硝化槽流入水)が硝化処理される。
 散水ろ床として例示する、各硝化槽140A,140Bは、その内部に、スクリーン143A,143Bと、スクリーン143A,143Bで支持された、硝化細菌が付着した担体である複数のろ材からなる硝化槽ろ材層142A,142Bと、硝化槽ろ材層142A,142Bの上側に設置されて脱窒処理水を硝化槽ろ材層142A,142Bに散布する散布機構141A,141Bと、硝化槽ろ材層142A,142Bの下側に設置された硝化処理水流出口と、硝化槽ろ材層142A,142Bの下側に設置された洗浄排水排出口とを備えている。そして、各硝化槽140A,140Bでは、硝化槽ろ材層142A,142Bを構成するろ材に硝化細菌が付着しており、散布機構141A,141Bで散布した脱窒処理水は、硝化槽ろ材層142A,142Bで硝化処理される。即ち、硝化槽140A,140Bの硝化槽ろ材層142A,142Bでは、硝化細菌が、脱窒処理水(硝化槽流入水)中に含まれているアンモニア性窒素を酸化して硝酸性窒素および/または亜硝酸性窒素とする。
 なお、硝化槽ろ材層142A,142Bを構成するろ材には、少なくとも硝化細菌が付着していれば、他の細菌、例えばBOD酸化細菌などが付着していてもよい。硝化細菌に加えてBOD酸化細菌もろ材に付着していれば、脱窒処理水中に残存している有機物(ろ過槽120A,120Bおよび無酸素槽130で除去されなかった有機物)も硝化槽ろ材層142A,142Bで分解処理することができる。
 また、各硝化槽140A,140Bの散布機構141A,141Bには、脱窒処理水ライン134が接続されている。また、各硝化槽140A,140Bの硝化処理水流出口には、硝化処理水ライン148A,148B(148)が接続されている。なお、硝化処理水ライン148A,148B(148)は、硝化槽140A,140Bの硝化処理水流出口と、硝化処理水槽150とを接続しており、各硝化槽140A,140Bから延びる2本の硝化処理水ライン148A,148Bは、硝化槽140A,140Bと硝化処理水槽150との間で合流して1本の硝化処理水ライン148となっている。
 ここで、散布機構141A,141Bとしては、特に限定されることなく、脱窒処理水を硝化槽ろ材層142A,142Bに散布可能な既知の散水機、例えば、回転式散水機などを用いることができる。
 また、硝化槽ろ材層142A,142Bで使用するろ材としては、特に限定されることなく、ポリウレタンまたはポリプロピレン等の樹脂製のろ材を用いることができる。具体的には、ろ材としては、円筒形状に形成された樹脂製のろ材を用いることができる。そして、硝化槽ろ材層142A,142Bは、スクリーン143A,143B上にろ材を充填して形成することができる。なお、ろ材に硝化細菌やBOD酸化細菌を付着させる方法としては、馴養運転などの既知の手法を用いることができる。
 更に、硝化槽ろ材層142A,142Bの下側に配置するスクリーン143A,143Bとしては、ろ材の流出を防止し得るスクリーン、例えばパンチングメタル等を用いることができる。
 また、各硝化槽140A,140Bのスクリーン143A,143Bの下側には、硝化処理水貯留部144A,144Bが設けられている。そして、各硝化槽140A,140Bにおいて流入した脱窒処理水を硝化処理して得た硝化処理水は、硝化処理水貯留部144A,144Bに貯留される。
 そして、第1硝化槽140Aおよび第2硝化槽140Bでは、脱窒処理水を硝化槽140A,140B内に流入させることにより、硝化槽ろ材層142A,142Bで脱窒処理水を硝化処理することができる。具体的には、硝化槽140A,140Bでは、散布機構141A,141Bを用いて硝化槽ろ材層142A,142Bに散布された脱窒処理水中のアンモニア性窒素が、硝化槽ろ材層142A,142Bのろ材に付着した硝化細菌により硝化される。そして、得られた硝化処理水は、硝化処理水貯留部144A,144Bおよび硝化処理水流出口を介して硝化槽140A,140Bから流出し、硝化処理水ライン148を通って例えば自然流下により硝化処理水槽150へと流入する。
 なお、上述したとおり、硝化槽140A,140Bは、硝化細菌を用いて硝化槽流入水を硝化処理する硝化槽として構成されうるが、なかでも、硝化槽140A,140Bとして、散水ろ床、流動床、固定床のように、硝化細菌が付着した担体を内部に有する硝化槽を採用することが好ましい。硝化処理水を返送ライン170によりろ過槽120に返送し、ろ過槽120において処理させるにあたり、硝化処理水中の固形分を減らして、ろ過槽120の閉塞を低減することができるからである。また、第一発明の水処理装置では、硝化槽の数は、任意の数とすることができる。
 そして、水処理装置1000では、ろ過槽120A,120Bおよび無酸素槽130よりも後段側に硝化槽140A,140Bを配置しているので、ろ過槽120A,120Bにおける固形有機物の除去および無酸素槽130における脱窒処理時の有機物の消費により、硝化槽140A,140Bに流入する有機物量を低減することができる。これにより、硝化槽140A,140Bの硝化槽ろ材層142A,142Bに、BOD酸化細菌よりも硝化細菌を優先的に付着・増殖させ、脱窒処理水の硝化処理をより効率的に行うことができる。
<硝化処理水槽>
 硝化処理水槽150は、互いに並列に配置された硝化槽140A,140Bの後段側に配置されている。そして、硝化処理水槽150は、硝化槽140A,140Bから硝化処理水ライン148を介して流入した硝化処理水を貯留する。ここで、硝化処理水槽150は、移送ライン151を介して固液分離槽160と接続されている。また、硝化処理水槽150は、返送ライン170を介して被処理水槽110と接続されている。
 なお、移送ライン151には、移送ポンプ152が設けられており、返送ライン170には返送ポンプ171及び返送ライン弁172が設けられている。
 ここで、硝化槽140A,140Bから流出して硝化処理水槽150に貯留された硝化処理水の一部は、移送ライン151および移送ポンプ152を介して固液分離槽160へと送水される。また、硝化槽140A,140Bから流出して硝化処理水槽150に貯留された硝化処理水の残部は、返送ライン170および返送ポンプ171を介して被処理水槽110へと送水される。そして、被処理水槽110へと送水された硝化処理水中に含まれている硝酸性窒素および/または亜硝酸性窒素は、ろ過槽121A,121B、および無酸素槽130で脱窒処理される。
 なお、第一発明の水処理装置は、硝化処理水槽を有していなくてもよく、例えば硝化槽の硝化処理水貯留部から硝化処理水を固液分離槽やろ過槽に送水してもよい。
<固液分離槽>
 固液分離槽160は、硝化処理水槽150の後段側に配置されている。ここで、固液分離槽160は、沈殿部161と、沈殿部161の後段側に位置するろ過部162とを有しており、ろ過部162には、複数の円筒形ろ材が充填された第2のろ材層163が設置されている。なお、固液分離槽160は、槽の底部に沈殿した固形分を沈殿部161に掻き寄せる往復式掻寄機(図示せず)を槽の下部に備えていてもよい。
 沈殿部161では、硝化処理水槽150から流入した硝化処理水(固液分離槽流入水)を沈殿処理して硝化処理水中の固形分の一部を沈殿させる。そして、沈殿部161で沈殿した固形分は、沈殿部161の下部に設けられた固形分排出ライン165を介して抜き出されて処理される。具体的には、沈殿部161で沈殿した固形分は、固形分排出ライン165に設けられた固形分排出弁166を例えば所定時間毎に開くことにより、固液分離槽160から排出されて処理される。
 ろ過部162では、固形分の一部を沈殿させた硝化処理水を第2のろ材層163でろ過して硝化処理水から固形分を更に除去する。
 ここで、ろ過部162は、複数の円筒形ろ材が充填された第2のろ材層163と、第2のろ材層163の上側に配置されて円筒形ろ材の流出を防止するスクリーン164と、ろ過部162のスクリーン164の上側に配置された処理水ライン167と、処理水ライン167に設けられた処理水ポンプ168とを備えている。そして、ろ過部162では、処理水ポンプ168を用いて硝化処理水を第2のろ材層163に上向流で通水させることにより、硝化処理水を第2のろ材層163でろ過する。
 なお、ろ過部162で使用する円筒形ろ材としては、例えば、比重が1未満の樹脂製円筒形ろ材などの既知の円筒形ろ材を用いることができる。具体的には、円筒形ろ材としては、ポリプロピレン製の円筒形ろ材を用いることができる。
 また、スクリーン164としては、円筒形ろ材の流出を防止し得るスクリーン、例えばパンチングメタル等を用いることができる。
 このように、水処理装置1000では、硝化槽140A,140Bの後段側に固液分離槽160を設けているので、硝化槽140A,140Bから流出した微細な固形物(例えば、ろ材から剥離した生物膜等)も除去して、より清浄な処理水を得ることができる。
 ここで、第一発明の水処理装置は、固液分離槽を有していなくてもよい。また、第一発明の水処理装置に用いる固液分離槽のろ過部は、下向流を用いて第2のろ材層163を逆洗するための既知の逆洗機構を備えていてもよい。
<硝化処理水の返送量の制御動作>
 制御部180は、還元性硫黄成分量測定手段127により検出される還元性硫黄成分の量が所定量未満となるように、硝化処理水の返送量を制御する。具体的には、制御部180は、還元性硫黄成分量測定手段127により所定量以上の還元性硫黄成分が検出された場合に、返送ライン170を介した硝化処理水の返送量を所定量増加させるように制御する。このように、水処理装置1000では、ろ過水由来の還元性硫黄成分量に応じて硝化処理水の返送量を調節することで、ろ過槽120における硫化水素の発生を効果的に防止することができる。
 以上、一例を用いて第一発明の水処理装置について説明したが、第一発明の水処理装置は、上記一例に限定されることはなく、第一発明の水処理装置には、適宜変更を加えることができる。
[第二発明の水処理装置]
 次に、以下に、第二発明の実施の形態を、図面に基づき詳細に説明する。なお、各図において同一の符号を付したものは、同一の構成要素を示すものとする。
(水処理装置)
 図2に、第二発明の水処理装置の一例の概略構成を示す。ここで、図2に示す水処理装置100は、有機物およびアンモニア性窒素を含む被処理水の処理に用いられる。そして、水処理装置100は、被処理水槽10と、互いに並列に配置された2つのろ過槽20A,20Bと、無酸素槽30と、互いに並列に配置された2つの散水ろ床40A,40Bと、硝化処理水槽50と、固液分離槽60とを備えている。
 なお、以下では、水処理装置100に被処理水が流入する側を「前段側」と称し、水処理装置100から処理水が流出する側を「後段側」と称する。
<被処理水>
 有機物およびアンモニア性窒素を含む被処理水としては、特に限定されることなく、例えば、下水、畜産排水、工場排水などが挙げられる。なお、被処理水中に含まれる有機物としては、固形有機物と、溶解性有機物とが挙げられる。
<被処理水槽>
 被処理水槽10には、被処理水が貯留されている。また、被処理水槽10は、被処理水ライン12を介してろ過槽20A,20Bと接続されている。具体的には、水処理装置100では、被処理水槽10内に設置された被処理水ポンプ11と、ろ過槽20A,20Bとが被処理水ライン12により接続されている。そして、被処理水槽10に貯留された被処理水は、被処理水ポンプ11および被処理水ライン12を介してろ過槽20A,20Bへと送水される。
 ここで、被処理水ライン12は、被処理水ポンプ11と、ろ過槽20A,20Bとの間で二股に分岐しており、2本に分岐したうちの一方のラインが第1ろ過槽20Aに接続し、他方のラインが第2ろ過槽20Bに接続している。そして、第1ろ過槽20Aに接続する一方のラインには、第1被処理水弁13Aが設けられており、第2ろ過槽20Bに接続する他方のラインには、第2被処理水弁13Bが設けられている。
 なお、第二発明の水処理装置は、被処理水槽を有していなくてもよく、例えば初沈流入水路などの被処理水流路から被処理水をろ過槽に送水してもよい。
<ろ過槽>
 第1ろ過槽20Aおよび第2ろ過槽20Bは、被処理水槽10の後段側に、互いに並列に配置されている。そして、第1ろ過槽20Aおよび第2ろ過槽20Bでは、被処理水槽10から流入した被処理水(ろ過槽流入水)がろ過される。
 各ろ過槽20A,20Bは、特に限定されることなく、上向流式のろ過槽であり、各槽内に、スクリーン22A,22Bと、スクリーン22A,22Bで支持された複数の浮上ろ材からなる第1のろ材層21A,21Bと、第1のろ材層21A,21Bの下側に設置された被処理水流入口と、第1のろ材層21A,21Bの下側に設置された逆洗排水排出口とを備えている。そして、各ろ過槽20A,20Bの被処理水流入口には、被処理水ライン12が接続されている。また、各ろ過槽20A,20Bの逆洗排水排出口には、逆洗排水ライン25A,25Bが接続されており、各逆洗排水ライン25A,25Bには、逆洗排水弁26A,26Bが設けられている。
 更に、ろ過槽20A,20Bのスクリーン22A,22Bの上側には、共通ろ過水貯留部23が設けられている。そして、各ろ過槽20A,20Bにおいて下側から流入した被処理水を第1のろ材層21A,21Bでろ過して得たろ過水は、共通ろ過水貯留部23に貯留される。
 また、共通ろ過水貯留部23のろ過水流出口は、ろ過水ライン24を介して無酸素槽30と接続されている。具体的には、共通ろ過水貯留部23のろ過水流出口と、無酸素槽30の流入部31とは、ろ過水ライン24により接続されている。そして、各ろ過槽20A,20Bの第1のろ材層21A,21Bで被処理水をろ過して得たろ過水は、共通ろ過水貯留部23のろ過水流出口から流出し、ろ過水ライン24を介して例えば自然流下により無酸素槽30へと流入する。
 ここで、ろ過槽20A,20Bで使用する浮上ろ材とは、被処理水よりも比重の小さい(即ち、被処理水中で浮く)ろ材である。そして、ろ過槽20A,20Bでは、浮上ろ材として、発泡樹脂製の粒子状の浮上ろ材などの既知の浮上ろ材を用いることができる。具体的には、浮上ろ材としては、見掛け比重が0.1~0.8であり、50%圧縮硬さが0.1MPa以上であり、サイズが4~10mmであるろ材を用いることができる。
 また、ろ過槽20A,20Bでは、第1のろ材層21A,21Bの上側に配置するスクリーン22A,22Bとして、浮上ろ材の流出を防止し得るスクリーン、例えばパンチングメタル等を用いることができる。
 そして、第1ろ過槽20Aおよび第2ろ過槽20Bでは、第1被処理水弁13Aおよび第2被処理水弁13Bを開き、逆洗排水弁26A,26Bを閉じた状態で被処理水をろ過槽20A,20B内に流入させることにより、第1のろ材層21A,21Bで被処理水をろ過することができる。具体的には、ろ過槽20A,20Bでは、被処理水中に含まれている粗大な固形物(例えば、直径100μm以上の有機固形物および無機固形物)が第1のろ材層21A,21Bに補捉され、被処理水中から除去される。
 また、第1ろ過槽20Aおよび第2ろ過槽20Bでは、ろ過の継続により第1のろ材層21A,21Bが閉塞して差圧が上昇した場合、或いは、所定のろ過時間が経過した場合には、第1被処理水弁13Aおよび第2被処理水弁13Bを閉じ、逆洗排水弁26A,26Bを開くことで、第1のろ材層21A,21Bを逆洗(逆流洗浄)することができる。具体的には、逆洗排水弁26A,26Bを開き、共通ろ過水貯留部23に貯留されているろ過水を下向流で流すことにより、第1のろ材層21A,21Bを構成する浮上ろ材を下方に展開させ、第1のろ材層21A,21Bを洗浄することができる。なお、第1のろ材層21A,21Bの逆洗時に生じる逆洗排水(第1のろ材層21A,21Bに補捉されていた固形物を含む排水)は、特に限定されることなく、逆洗排水ライン25A,25Bを介して適当な排水処理設備へと送水し、処理することができる。
 ここで、ろ過槽20A,20Bでは、任意に、第1のろ材層21A,21Bの下側に空気供給管(図示せず)を設け、第1のろ材層21A,21Bを逆洗する際に空気供給管から空気を供給して浮上ろ材を撹拌し、逆洗効率を高めてもよい。また、水処理装置100では、ろ過槽20A,20Bの逆洗は、同時に行ってもよいし、交互に行ってもよいが、ろ過槽20A,20Bの逆洗を交互に(即ち、逆洗を実施するタイミングを異ならせて)実施すれば、被処理水の処理を連続的に行うことができる。
 なお、第二発明の水処理装置で用いるろ過槽は、上記構成に限定されることはなく、第二発明の水処理装置では、特に限定されることなく、ろ材層を有する既知のろ過槽を用いることができる。また、第二発明の水処理装置では、ろ過槽の数は、任意の数とすることができる。更に、第二発明の水処理装置では、ろ過水以外の水を用いて第1のろ材層を逆洗してもよい。
<無酸素槽>
 無酸素槽30は、互いに並列に配置された第1ろ過槽20Aおよび第2ろ過槽20Bの後段側に配置されている。ここで、無酸素槽30は、流入部31と、流入部31の後段側に位置する脱窒処理部32とを有しており、脱窒処理部32には、複数の固定床担体33が設置されている。
 そして、無酸素槽30では、第1ろ過槽20Aおよび第2ろ過槽20Bで得たろ過水と、後に詳細に説明する散水ろ床40A,40Bから流出した硝化処理水の一部との混合水(無酸素槽流入水)が、脱窒細菌を用いて脱窒処理される。具体的には、無酸素槽30では、ろ過水と硝化処理水とが流入部31に流入して混合され、得られた混合水が脱窒処理部32へと流入して、固定床担体33に付着した脱窒細菌により脱窒処理される。即ち、無酸素槽30の脱窒処理部32では、従属栄養細菌である脱窒細菌が、ろ過水と硝化処理水との混合水(無酸素槽流入水)中に含まれている有機物(特に、溶解性有機物)を消費しつつ、混合水中の硝酸性窒素および/または亜硝酸性窒素を還元して窒素ガスとする。
 なお、固定床担体33としては、揺動型固定床担体などの既知の固定床担体、例えば、複数本の繊維の一部を芯材に固定してなる固定床担体などを用いることができる。また、固定床担体33に脱窒細菌を付着させる方法としては、馴養運転などの既知の手法を用いることができる。
 ここで、水処理装置100では、無酸素槽30の前段にろ過槽20A,20Bが設けられているので、無酸素槽30では、毛髪などの細長い固形物が絡みやすい担体(例えば、繊維状の担体)も用いることができる。毛髪等の固形物はろ過槽20A,20Bで十分に除去されるからである。
 また、無酸素槽30は、脱窒処理水ライン34を介して散水ろ床40A,40Bと接続されている。具体的には、水処理装置100では、無酸素槽30の脱窒処理部32と、散水ろ床40A,40Bとが、脱窒処理水ポンプ35を有する脱窒処理水ライン34により接続されている。そして、無酸素槽30の脱窒処理部32で混合水を脱窒処理して得た脱窒処理水は、脱窒処理水ポンプ35および脱窒処理水ライン34を介して散水ろ床40A,40Bへと送水される。
 ここで、脱窒処理水ライン34は、脱窒処理水ポンプ35と、散水ろ床40A,40Bとの間で二股に分岐しており、2本に分岐したうちの一方のラインが第1散水ろ床40Aに接続し、他方のラインが第2散水ろ床40Bに接続している。そして、第1散水ろ床40Aに接続する一方のラインには、第1脱窒処理水弁36Aが設けられており、第2散水ろ床40Bに接続する他方のラインには、第2脱窒処理水弁36Bが設けられている。
 なお、第二発明の水処理装置で用いる無酸素槽は、上記構成に限定されることはなく、第二発明の水処理装置では、特に限定されることなく、流動床担体を用いた無酸素槽や、迂流式構造の無酸素槽などの既知の無酸素槽を用いることができる。
 ここで、無酸素槽内に脱窒細菌を高濃度で保持して脱窒処理を効率的に進めることを可能にし、無酸素槽を小型化する観点、および、汚泥の流出を抑制して後段側に位置する散水ろ床などの閉塞を抑制する観点からは、第二発明の水処理装置では、流動床担体または固定床担体などの担体を用いた無酸素槽を使用することが好ましい。なお、流動床担体としては、既知のスポンジ担体などを用いることができ、流動床担体を用いる場合には、無酸素槽内に、撹拌装置と、流動床担体の流出を防止するスクリーンとを配置すればよい。
<散水ろ床>
 第1散水ろ床40Aおよび第2散水ろ床40Bは、無酸素槽30の後段側に、互いに並列に配置されている。そして、第1散水ろ床40Aおよび第2散水ろ床40Bでは、無酸素槽30から流出した脱窒処理水(散水ろ床流入水)が硝化処理される。
 各散水ろ床40A,40Bは、スクリーン43A,43Bと、スクリーン43A,43Bで支持された複数のろ材からなる第2のろ材層42A,42Bと、第2のろ材層42A,42Bの上側に設置されて脱窒処理水を第2のろ材層42A,42Bに散布する散布機構41A,41Bと、第2のろ材層42A,42Bの下側に設置された硝化処理水流出口と、第2のろ材層42A,42Bの下側に設置された洗浄排水排出口とを備えている。そして、各散水ろ床40A,40Bでは、第2のろ材層42A,42Bを構成するろ材に硝化細菌が付着しており、散布機構41A,41Bで散布した脱窒処理水は、第2のろ材層42A,42Bで硝化処理される。即ち、散水ろ床40A,40Bの第2のろ材層42A,42Bでは、硝化細菌が、脱窒処理水(散水ろ床流入水)中に含まれているアンモニア性窒素を酸化して硝酸性窒素および/または亜硝酸性窒素とする。
 なお、第2のろ材層42A,42Bを構成するろ材には、少なくとも硝化細菌が付着していれば、他の細菌、例えばBOD酸化細菌などが付着していてもよい。硝化細菌に加えてBOD酸化細菌もろ材に付着していれば、脱窒処理水中に残存している有機物(ろ過槽20A,20Bおよび無酸素槽30で除去されなかった有機物)も第2のろ材層42A,42Bで分解処理することができる。
 また、各散水ろ床40A,40Bの散布機構41A,41Bには、脱窒処理水ライン34が接続されている。また、各散水ろ床40A,40Bの硝化処理水流出口には、硝化処理水ライン48A,48B(48)が接続されており、各硝化処理水ライン48A,48Bには、硝化処理水弁49A,49Bが設けられている。更に、各散水ろ床40A,40Bの洗浄排水排出口には、洗浄排水ライン80A,80B(80)が接続されており、各洗浄排水ライン80A,80Bには、洗浄排水弁81A,81Bが設けられている。
 なお、硝化処理水ライン48A,48B(48)は、散水ろ床40A,40Bの硝化処理水流出口と、硝化処理水槽50とを接続しており、各散水ろ床40A,40Bから延びる2本の硝化処理水ライン48A,48Bは、散水ろ床40A,40Bと硝化処理水槽50との間で合流して1本の硝化処理水ライン48となっている。また、洗浄排水ライン80A,80B(80)は、散水ろ床40A,40Bの洗浄排水排出口と、被処理水槽10とを接続しており、各散水ろ床40A,40Bから延びる2本の洗浄排水ライン80A,80Bは、散水ろ床40A,40Bと被処理水槽10との間で合流して1本の洗浄排水ライン80となっている。
 ここで、散布機構41A,41Bとしては、特に限定されることなく、脱窒処理水を第2のろ材層42A,42Bに散布可能な既知の散水機、例えば、回転式散水機などを用いることができる。
 また、第2のろ材層42A,42Bで使用するろ材としては、特に限定されることなく、ポリウレタンまたはポリプロピレン等の樹脂製のろ材を用いることができる。具体的には、ろ材としては、円筒形状に形成された樹脂製のろ材を用いることができる。そして、第2のろ材層42A,42Bは、スクリーン43A,43B上にろ材を充填して形成することができる。なお、ろ材に硝化細菌やBOD酸化細菌を付着させる方法としては、馴養運転などの既知の手法を用いることができる。
 更に、第2のろ材層42A,42Bの下側に配置するスクリーン43A,43Bとしては、ろ材の流出を防止し得るスクリーン、例えばパンチングメタル等を用いることができる。
 また、各散水ろ床40A,40Bのスクリーン43A,43Bの下側には、硝化処理水貯留部44A,44Bが設けられている。そして、各散水ろ床40A,40Bにおいて流入した脱窒処理水を硝化処理して得た硝化処理水は、硝化処理水貯留部44A,44Bに貯留される。
 更に、各散水ろ床40A,40Bは、共通ブロア45、および、共通ブロア45と各散水ろ床40A,40B内とを接続する空気供給ライン46を有している。ここで、空気供給ライン46は、共通ブロア45と散水ろ床40A,40Bとの間で二股に分岐して各散水ろ床40A,40Bのスクリーン43A,43Bの下側まで延在している。そして、第1散水ろ床40A内まで延在する一方のラインには、第1空気供給弁47Aが設けられており、第2散水ろ床40B内まで延在する他方のラインには、第2空気供給弁47Bが設けられている。
 そして、第1散水ろ床40Aおよび第2散水ろ床40Bでは、第1脱窒処理水弁36Aおよび第2脱窒処理水弁36B、並びに、硝化処理水弁49A,49Bを開き、第1空気供給弁47Aおよび第2空気供給弁47B、並びに、洗浄排水弁81A,81Bを閉じた状態で脱窒処理水を散水ろ床40A,40B内に流入させることにより、第2のろ材層42A,42Bで脱窒処理水を硝化処理することができる。具体的には、散水ろ床40A,40Bでは、散布機構41A,41Bを用いて第2のろ材層42A,42Bに散布された脱窒処理水中のアンモニア性窒素が、第2のろ材層42A,42Bのろ材に付着した硝化細菌により硝化される。そして、得られた硝化処理水は、硝化処理水貯留部44A,44Bおよび硝化処理水流出口を介して散水ろ床40A,40Bから流出し、硝化処理水ライン48を通って例えば自然流下により硝化処理水槽50へと流入する。
 また、第1散水ろ床40Aおよび第2散水ろ床40Bでは、硝化処理の継続により第2のろ材層42A,42Bが閉塞した場合、或いは、所定の処理時間が経過した場合には、脱窒処理水ポンプ35、第1脱窒処理水弁36A、第2脱窒処理水弁36B、散布機構41A,41B、共通ブロア45、第1空気供給弁47A、第2空気供給弁47B、硝化処理水弁49A,49Bおよび洗浄排水弁81A,81Bを洗浄手段として機能させ、例えば以下のようにして、第2のろ材層42A,42Bを洗浄することができる。
 即ち、最初に、脱窒処理水ポンプ35、第1脱窒処理水弁36A、第2脱窒処理水弁36B、散布機構41A,41B、硝化処理水弁49A,49Bおよび洗浄排水弁81A,81Bを洗浄水貯留機構として機能させ、散水ろ床40A,40B内に洗浄水としての脱窒処理水を貯留して第2のろ材層42A,42Bを冠水させる。具体的には、脱窒処理水ポンプ35を運転し、第1脱窒処理水弁36A、第2脱窒処理水弁36Bを開いた状態で、硝化処理水弁49A,49Bおよび洗浄排水弁81A,81Bを閉じ、散水ろ床40A,40B内に脱窒処理水を貯留して第2のろ材層42A,42Bを冠水させる。
 次に、共通ブロア45、第1空気供給弁47Aおよび第2空気供給弁47Bを撹拌洗浄機構として機能させ、冠水した第2のろ材層42A,42Bのろ材を撹拌して洗浄する。具体的には、第1散水ろ床40Aを洗浄する場合について図3に示すように、共通ブロア45を運転し、第1空気供給弁47Aおよび第2空気供給弁47Bを開いて空気供給ライン46から空気を散水ろ床40A,40B内に供給することにより、散水ろ床40A,40B内に旋回流を発生させ、第2のろ材層42A,42Bのろ材42aを撹拌して洗浄する。
 なお、第2のろ材層42A,42Bのろ材42aを撹拌して洗浄する際には、少なくとも硝化処理水弁49A,49Bおよび洗浄排水弁81A,81Bを閉じていればよい。従って、脱窒処理水ポンプ35、第1脱窒処理水弁36A、第2脱窒処理水弁36Bおよび散布機構41A,41Bを用いた散水ろ床40A,40B内への脱窒処理水の供給は、継続してもよいし、停止してもよい。
 最後に、洗浄排水弁81A,81Bを排水機構として機能させ、第2のろ材層42A,42Bの撹拌洗浄に用いた洗浄水を散水ろ床40A,40B内から排出する。具体的には、硝化処理水弁49A,49Bを閉じた状態で、洗浄排水弁81A,81Bを開き、第2のろ材層42A,42Bの撹拌洗浄後の洗浄水(洗浄排水)を散水ろ床40A,40B内から排出する。そして、排出された洗浄排水は、洗浄排水ライン80を介して例えば自然流下により被処理水槽10へと流入し、被処理水と共にろ過槽20A,20Bへと送水されて処理される。
 なお、洗浄排水を散水ろ床40A,40B内から排出する際には、脱窒処理水ポンプ35、第1脱窒処理水弁36A、第2脱窒処理水弁36Bおよび散布機構41A,41Bを用いた散水ろ床40A,40B内への脱窒処理水の供給は、継続してもよいし、停止してもよい。また、共通ブロア45、空気供給ライン46、第1空気供給弁47Aおよび第2空気供給弁47Bを用いた散水ろ床40A,40B内への空気の供給は、継続してもよいし、停止してもよい。更に、散水ろ床40A,40B内から排出された洗浄排水は、被処理水槽10へ送水することなく、別途設けられた排水処理設備に送水して処理してもよい。
 上述のようにして第2のろ材層42A,42Bを洗浄することで、ろ床ハエの卵および幼虫、ろ材の表面に過度に付着した生物膜、並びに、ろ材間に補捉された固形物を散水ろ床から除去することができる。従って、第2のろ材層42A,42Bの閉塞を防止することができると共に、悪臭やろ床ハエの発生を抑制することができる。
 ここで、水処理装置100では、散水ろ床40A,40Bの第2のろ材層42A,42Bの洗浄は、同時に行ってもよいし、交互に行ってもよいが、散水ろ床40A,40Bの第2のろ材層42A,42Bの洗浄を交互に(即ち、洗浄を実施するタイミングを異ならせて)実施すれば、水処理装置100を用いた被処理水の処理を連続的に行うことができる。
 なお、水処理装置100のように複数の散水ろ床を有し、脱窒処理水(散水ろ床流入水)を洗浄水として使用する場合において、散水ろ床の第2のろ材層の洗浄のタイミングを異ならせて被処理水の処理を連続的に行う場合には、散布機構を用いて散布される脱窒処理水の流量を制御する流量調節機構を設けることが好ましい。流量調節機構を設ければ、洗浄中の散水ろ床に供給する脱窒処理水の流量を、他の(硝化処理を実施している)散水ろ床に供給する脱窒処理水の流量よりも大きくして、散水ろ床の洗浄を短時間で終わらせることができるからである。ここで、水処理装置100では、流量調節機構としては、例えば、脱窒処理水ポンプ35の吐出量、並びに、第1脱窒処理水弁36Aおよび第2脱窒処理水弁36Bの開度を制御する制御装置(図示せず)を用いることができる。制御装置により脱窒処理水ポンプ35の吐出量を増加させつつ、洗浄される側の散水ろ床40A,40Bに接続された脱窒処理水弁36A,36Bの開度を大きくすれば、洗浄中の散水ろ床に供給する脱窒処理水の流量を大きくし、第2のろ材層42A,42Bを冠水させるまでに要する時間を短縮することができる。
 なお、第二発明の水処理装置で用いる散水ろ床は、上記構成に限定されることはない。第二発明の水処理装置では、特に限定されることなく、硝化細菌を用いた硝化処理が可能な既知の散水ろ床を用いることができる。また、第二発明の水処理装置では、散水ろ床の数は、任意の数とすることができる。更に、第二発明の水処理装置では、脱窒処理水以外の水を用いて第2のろ材層を洗浄してもよい。
 具体的には、第二発明の水処理装置で用いる散水ろ床は、例えば図4に示すような構成のものであってもよい。ここで、図4では、円筒状の水槽内に隔壁を配置して複数(図示例では6つ)の散水ろ床90A~90Fを形成している。また、円筒状の水槽の上部には、3本の散水ノズル部92を有する回転式散水装置91が設置されており、脱窒処理水ライン34を介して供給された脱窒処理水は、回転式散水装置91の散水ノズル部92から散水ろ床90A~90F内に散布される。なお、各散水ろ床は、脱窒処理水の散布機構として回転式散水装置91を用いている以外は、上述した散水ろ床40A,40Bと同様の構成を有している。また、回転式散水装置91は、各散水ろ床に散布される脱窒処理水の流量を制御する流量調節機構としての回転位置検出器と回転速度調整器とを備えている。そして、回転式散水装置91は、第2のろ材層を洗浄中の散水ろ床の上を散水ノズル部92が通過する際には、回転速度を落とすことにより、洗浄中の散水ろ床に供給する脱窒処理水の流量を、他の(硝化処理を実施している)散水ろ床に供給する脱窒処理水の流量よりも大きくすることが可能とされている。
<硝化処理水槽>
 硝化処理水槽50は、互いに並列に配置された散水ろ床40A,40Bの後段側に配置されている。そして、硝化処理水槽50は、散水ろ床40A,40Bから硝化処理水ライン48を介して流入した硝化処理水を貯留する。ここで、硝化処理水槽50は、移送ライン51を介して固液分離槽60と接続されている。また、硝化処理水槽50は、返送ライン70を介して無酸素槽30と接続されている。
 なお、移送ライン51には、移送ポンプ52が設けられており、返送ライン70には返送ポンプ71が設けられている。
 ここで、散水ろ床40A,40Bから流出して硝化処理水槽50に貯留された硝化処理水の一部は、移送ライン51および移送ポンプ52を介して固液分離槽60へと送水される。また、散水ろ床40A,40Bから流出して硝化処理水槽50に貯留された硝化処理水の残部は、返送ライン70および返送ポンプ71を介して無酸素槽30へと送水される。そして、無酸素槽30へと送水された硝化処理水中に含まれている硝酸性窒素および/または亜硝酸性窒素は、無酸素槽30で脱窒処理される。
 なお、第二発明の水処理装置は、硝化処理水槽を有していなくてもよく、例えば散水ろ床の硝化処理水貯留部から硝化処理水を固液分離槽や無酸素槽に送水してもよい。
<固液分離槽>
 固液分離槽60は、硝化処理水槽50の後段側に配置されている。ここで、固液分離槽60は、沈殿部61と、沈殿部61の後段側に位置するろ過部62とを有しており、ろ過部62には、複数の円筒形ろ材が充填された第3のろ材層63が設置されている。なお、固液分離槽60は、槽の底部に沈殿した固形分を沈殿部61に掻き寄せる往復式掻寄機(図示せず)を槽の下部に備えていてもよい。
 沈殿部61では、硝化処理水槽50から流入した硝化処理水(固液分離槽流入水)を沈殿処理して硝化処理水中の固形分の一部を沈殿させる。そして、沈殿部61で沈殿した固形分は、沈殿部61の下部に設けられた固形分排出ライン65を介して抜き出されて処理される。具体的には、沈殿部61で沈殿した固形分は、固形分排出ライン65に設けられた固形分排出弁66を例えば所定時間毎に開くことにより、固液分離槽60から排出されて処理される。
 ろ過部62では、固形分の一部を沈殿させた硝化処理水を第3のろ材層63でろ過して硝化処理水から固形分を更に除去する。
 ここで、ろ過部62は、複数の円筒形ろ材が充填された第3のろ材層63と、第3のろ材層63の上側に配置されて円筒形ろ材の流出を防止するスクリーン64と、ろ過部62のスクリーン64の上側に配置された処理水ライン67と、処理水ライン67に設けられた処理水ポンプ68とを備えている。そして、ろ過部62では、処理水ポンプ68を用いて硝化処理水を第3のろ材層63に上向流で通水させることにより、硝化処理水を第3のろ材層63でろ過する。
 なお、ろ過部62で使用する円筒形ろ材としては、例えば、比重が1未満の樹脂製円筒形ろ材などの既知の円筒形ろ材を用いることができる。具体的には、円筒形ろ材としては、ポリプロピレン製の円筒形ろ材を用いることができる。
 また、スクリーン64としては、円筒形ろ材の流出を防止し得るスクリーン、例えばパンチングメタル等を用いることができる。
 ここで、第二発明の水処理装置は、固液分離槽を有していなくてもよい。また、第二発明の水処理装置に用いる固液分離槽のろ過部は、下向流を用いて第3のろ材層63を逆洗するための既知の逆洗機構を備えていてもよい。
 そして、上述した構成を有する水処理装置100によれば、ろ過槽20A,20Bおよび無酸素槽30よりも後段側に散水ろ床40A,40Bを配置しているので、ろ過槽20A,20Bにおける固形有機物の除去および無酸素槽30における脱窒処理時の有機物の消費により、散水ろ床40A,40Bに流入する有機物量を低減することができる。従って、ろ過槽20A,20Bおよび無酸素槽30を利用して有機物を効率的に処理しつつ、散水ろ床を小型化することができる。特に、水処理装置100によれば、散水ろ床40A,40Bに流入する有機物量を低減することで、散水ろ床40A,40Bの第2のろ材層42A,42Bに、BOD酸化細菌よりも硝化細菌を優先的に付着・増殖させ、脱窒処理水の硝化処理をより効率的に行うことができる。
 また、水処理装置100では、返送ライン70を設けて硝化処理水を無酸素槽30に返送しているので、被処理水中のアンモニア性窒素を散水ろ床40A,40Bで硝化すると共に、生成した硝酸性窒素および/または亜硝酸性窒素を無酸素槽30で脱窒処理することができる。従って、散水ろ床40A,40Bの小型化および被処理水中の有機物の効率的な処理を達成しつつ、被処理水中のアンモニア性窒素を効率的に処理することができる。
 更に、水処理装置100では、固定床担体33を用いて脱窒細菌を無酸素槽30内に高濃度で保持しているので、脱窒処理を効率的に進め、無酸素槽30を小型化することができる。また、担体を用いない場合と比較して無酸素槽30から流出する脱窒処理水中の固形分量を低減することができるので、後段に位置する散水ろ床40A,40Bが脱窒処理水中の固形分により早期に目詰まりするのを抑制することができると共に、散水ろ床40A,40Bに流入する有機物量(特に、固形有機物量)を低減することができる。また、散水ろ床40A,40Bの散布機構41A,41Bが固形物により閉塞するのも抑制することができる。
 また、水処理装置100では、無酸素槽30をろ過槽20A,20Bの後段に配置しているので、無酸素槽30には粗大な固形物が除去されたろ過水が流入する。従って、無酸素槽30において担体を使用した場合であっても、被処理水中に含まれている固形分が担体自体や担体の流出を防止するためのスクリーンに引っ掛かるのを防止することができる。その結果、固形物の引っ掛かりによる水路の閉塞などの問題が生じるのを防止することができる。
 更に、水処理装置100では、2つのろ過槽20A,20Bを並列配置しているので、1つのろ過槽で被処理水のろ過を継続しつつ、他のろ過槽の第1のろ材層を逆洗することができる。
 また、水処理装置100では、2つの散水ろ床40A,40Bを並列配置しているので、1つの散水ろ床で脱窒処理水の硝化処理を継続しつつ、他の散水ろ床の第2のろ材層を洗浄することができる。なお、水処理装置100では、第2のろ材層に散布される脱窒処理水の流量を制御する流量調節機構を設ければ、散水ろ床の洗浄を短時間で終わらせ、2つの散水ろ床を用いた脱窒処理水の硝化処理を早期に再開することができる。
 また、水処理装置100では、散水ろ床40A,40Bの第2のろ材層42A,42Bの洗浄に使用した洗浄水(洗浄排水)を被処理水槽10へと送水しているので、脱窒処理水を洗浄水として用いた場合であっても、洗浄排水中に含まれている固形分や、洗浄水として用いた脱窒処理水中に含まれていたアンモニア性窒素を、ろ過槽20A,20Bや散水ろ床40A,40Bで効率的に処理することができる。
 更に、水処理装置100では、散水ろ床40A,40Bの後段側に固液分離槽60を設けているので、散水ろ床40A,40Bの第2のろ材層42A,42Bから流出した微細な固形物(例えば、ろ材から剥離した生物膜等)も除去して、より清浄な処理水を得ることができる。
 以上、一例を用いて第二発明の水処理装置について説明したが、第二発明の水処理装置は、上記一例に限定されることはなく、第二発明の水処理装置には、適宜変更を加えることができる。
 具体的には、第二発明の水処理装置は、例えば図5に示すような構成の装置であってもよい。ここで、図5に示す水処理装置200は、無酸素槽30の脱窒処理部32が、複数の迂流壁37を有する迂流式構造の脱窒処理部である点、硝化処理水槽50を有しておらず、散水ろ床40A,40Bから流出した硝化処理水が全て無酸素槽30の流入部31へと返送される点、ろ過槽20A,20Bから流出したろ過水が脱窒処理部32に流入する点、および、移送ライン51が無酸素槽30の流入部31と固液分離槽60とを接続している点以外は、先の一例の水処理装置100と同様の構成を有している。
 また、第二発明の水処理装置では、無酸素槽をろ過槽の前段側に配置してもよい。
 第一発明の水処理装置によれば、ろ過槽における硫化水素の発生を抑制することができる。
 また、第二発明の水処理装置によれば、散水ろ床を小型化しつつ、被処理水中に含まれている有機物およびアンモニア性窒素の双方を効率的に処理することができる。
10 被処理水槽
11 被処理水ポンプ
12 被処理水ライン
13A,13B 被処理水弁
20A,20B ろ過槽
21A,21B 第1のろ材層
22A,22B スクリーン
23 共通ろ過水貯留部
24 ろ過水ライン
25A,25B 逆洗排水ライン
26A,26B 逆洗排水弁
30 無酸素槽
31 流入部
32 脱窒処理部
33 固定床担体
34 脱窒処理水ライン
35 脱窒処理水ポンプ
36A,36B 脱窒処理水弁
37 迂流壁
40A,40B 散水ろ床
41A,41B 散布機構
42A,42B 第2のろ材層
42a ろ材
43A,43B スクリーン
44A,44B 硝化処理水貯留部
45 共通ブロア
46 空気供給ライン
47A,47B 空気供給弁
48,48A,48B 硝化処理水ライン
49A,49B 硝化処理水弁
50 硝化処理水槽
51 移送ライン
52 移送ポンプ
60 固液分離槽
61 沈殿部
62 ろ過部
63 第3のろ材層
64 スクリーン
65 固形分排出ライン
66 固形分排出弁
67 処理水ライン
68 処理水ポンプ
70 返送ライン
71 返送ポンプ
80,80A,80B 洗浄排水ライン
81A,81B 洗浄排水弁
90A~90F 散水ろ床
91 回転式散水装置
92 散水ノズル部
100,200 水処理装置
110 被処理水槽(混合槽)
111 被処理水ポンプ
112 被処理水ライン
113A,113B 被処理水弁
120A,120B ろ過槽
121A,121B 第1のろ材層
122A,122B スクリーン
123 共通ろ過水貯留部
124 ろ過水ライン
125A,125B 逆洗排水ライン
126A,126B 逆洗排水弁
130 無酸素槽
131 流入部
132 脱窒処理部
133 固定床担体
134 脱窒処理水ライン
135 脱窒処理水ポンプ
140A,140B 硝化槽
141A,141B 散布機構
142A,142B 硝化槽ろ材層
143A,143B スクリーン
144A,144B 硝化処理水貯留部
148,148A,148B 硝化処理水ライン
150 硝化処理水槽
151 移送ライン
152 移送ポンプ
160 固液分離槽
161 沈殿部
162 ろ過部
163 第2のろ材層
164 スクリーン
165 固形分排出ライン
166 固形分排出弁
167 処理水ライン
168 処理水ポンプ
170 返送ライン
171 返送ポンプ
172 返送ライン弁
180 制御装置
1000 水処理装置

Claims (13)

  1.  還元性硫黄成分およびアンモニア性窒素を含む被処理水を処理する水処理装置であって、
     ろ材が充填された第1のろ材層を有し、流入水を前記第1のろ材層でろ過するろ過槽と、
     前記ろ過槽の後段側に配置され、硝化細菌を用いて流入水を硝化処理する硝化槽と、
     前記硝化槽から流出した硝化処理水の少なくとも一部を前記ろ過槽に返送する返送手段と、
    を備え、
     前記ろ過槽において、前記還元性硫黄成分を酸化すると共に、硝酸性窒素および/または亜硝酸性窒素を脱窒することを特徴とする、水処理装置。
  2.  前記ろ過槽において、硫黄酸化脱窒細菌を用いて前記還元性硫黄成分を酸化することを特徴とする、請求項1に記載の水処理装置。
  3.  前記被処理水は、有機物を更に含み、
     前記水処理装置は、前記ろ過槽と前記硝化槽との間に、脱窒細菌を用いて流入水を脱窒処理する無酸素槽を更に備える、請求項1または2に記載の水処理装置。
  4.  前記硝化槽は、前記硝化細菌が付着した担体を内部に有する、請求項1~3の何れかに記載の水処理装置。
  5.  前記水処理装置は、前記硝化槽の後段側に固液分離槽を更に備え、
     前記固液分離槽は、流入水中の固形分の一部を沈殿させる沈殿部と、前記固形分の一部を沈殿させた流入水を複数の円筒形ろ材が充填された第2のろ材層でろ過するろ過部とを有する、請求項1~4の何れかに記載の水処理装置。
  6.  前記水処理装置は、前記ろ過槽の前段側に混合槽をさらに備え、
     前記返送手段は、前記混合槽を介して前記硝化処理水を前記ろ過槽に返送し、
     前記混合槽において、前記被処理水と前記硝化処理水とが混合される、請求項1~5の何れかに記載の水処理装置。
  7.  前記水処理装置は、制御部と、前記第1のろ材層を経たろ過水由来の還元性硫黄成分の量を測定する還元性硫黄成分量測定手段とを更に備え、
     前記制御部は、前記還元性硫黄成分量測定手段により所定量以上の還元性硫黄成分が検出された場合に、前記硝化処理水の返送量を所定量増加させるように制御する、請求項1~6の何れかに記載の水処理装置。
  8.  有機物およびアンモニア性窒素を含む被処理水を処理する水処理装置であって、
     ろ材が充填された第1のろ材層を有し、流入水を前記第1のろ材層でろ過するろ過槽と、
     硝化細菌が付着したろ材が充填された第2のろ材層と、流入水を前記第2のろ材層に散布する散布機構とを有し、前記散布機構で散布した流入水を前記第2のろ材層で硝化処理する散水ろ床と、
     脱窒細菌を用いて流入水を脱窒処理する無酸素槽と、
     前記散水ろ床から流出した硝化処理水の少なくとも一部を前記無酸素槽へ送水する返送ラインと、
    を備え、
     前記散水ろ床が、前記ろ過槽および前記無酸素槽よりも後段側に配置されている、水処理装置。
  9.  前記無酸素槽が、前記脱窒細菌が付着した担体を有し、
     前記ろ過槽が、前記無酸素槽の前段側に配置されている、請求項8に記載の水処理装置。
  10.  前記散水ろ床は、前記第2のろ材層を洗浄する洗浄手段を備え、
     前記洗浄手段は、
     前記散水ろ床内に洗浄水を貯留して前記第2のろ材層を冠水させる洗浄水貯留機構と、
     冠水した前記第2のろ材層の前記硝化細菌が付着したろ材を撹拌して洗浄する撹拌洗浄機構と、
     撹拌洗浄後の洗浄水を排出する排水機構と、
    を有する、請求項8または9に記載の水処理装置。
  11.  前記水処理装置は、前記散水ろ床を複数有し、
     複数の前記散水ろ床は並列に配置され、
     各散水ろ床は、前記散布機構を用いて散布される流入水を前記洗浄水として使用し、
     前記洗浄手段は、前記散布機構を用いて散布される流入水の流量を制御する流量調節機構を更に備える、請求項10に記載の水処理装置。
  12.  前記散水ろ床は、前記散布機構を用いて散布される流入水を前記洗浄水として使用し、
     前記排水機構が、前記撹拌洗浄後の洗浄水を前記ろ過槽に送水し、
     前記撹拌洗浄後の洗浄水が、前記ろ過槽の前記第1のろ材層でろ過される、請求項10または11に記載の水処理装置。
  13.  前記水処理装置は、前記散水ろ床の後段側に固液分離槽を更に備え、
     前記固液分離槽は、流入水中の固形分の一部を沈殿させる沈殿部と、前記固形分の一部を沈殿させた流入水を複数の円筒形ろ材が充填された第3のろ材層でろ過するろ過部とを有する、請求項8~12の何れかに記載の水処理装置。
PCT/JP2014/002949 2013-07-03 2014-06-03 水処理装置 WO2015001708A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015525013A JP6383725B2 (ja) 2013-07-03 2014-06-03 水処理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-139654 2013-07-03
JP2013139654 2013-07-03
JP2013-139892 2013-07-03
JP2013139892 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015001708A1 true WO2015001708A1 (ja) 2015-01-08

Family

ID=52143315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002949 WO2015001708A1 (ja) 2013-07-03 2014-06-03 水処理装置

Country Status (2)

Country Link
JP (1) JP6383725B2 (ja)
WO (1) WO2015001708A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018015740A (ja) * 2016-07-29 2018-02-01 学校法人 龍谷大学 散水ろ床装置及び散水ろ床装置洗浄方法
JP2018202296A (ja) * 2017-05-31 2018-12-27 メタウォーター株式会社 下水処理システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794397A (en) * 1980-12-03 1982-06-11 Ebara Infilco Co Ltd Method and device for biological nitrification and denitrification of waste water
JPH07290085A (ja) * 1994-04-21 1995-11-07 Hitachi Plant Eng & Constr Co Ltd 排水処理方法及びその装置
JP2001246390A (ja) * 1999-12-27 2001-09-11 Hitachi Chem Co Ltd 二床並置型好気濾床槽及び汚水浄化槽、並びにこれらの運転方法
JP2011189286A (ja) * 2010-03-15 2011-09-29 Toshiba Corp 有機性排水の水処理システム
WO2012161339A1 (ja) * 2011-05-26 2012-11-29 メタウォーター株式会社 下水処理システム
JP2013046905A (ja) * 2011-07-27 2013-03-07 Metawater Co Ltd 水処理システムおよび水処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053384A (ja) * 2001-08-23 2003-02-25 Nippon Steel Corp 廃水からの窒素・リンの除去方法及びその装置
JP5197223B2 (ja) * 2008-08-08 2013-05-15 株式会社東芝 水処理システム
JP5481255B2 (ja) * 2010-04-01 2014-04-23 株式会社東芝 排水処理装置および排水処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794397A (en) * 1980-12-03 1982-06-11 Ebara Infilco Co Ltd Method and device for biological nitrification and denitrification of waste water
JPH07290085A (ja) * 1994-04-21 1995-11-07 Hitachi Plant Eng & Constr Co Ltd 排水処理方法及びその装置
JP2001246390A (ja) * 1999-12-27 2001-09-11 Hitachi Chem Co Ltd 二床並置型好気濾床槽及び汚水浄化槽、並びにこれらの運転方法
JP2011189286A (ja) * 2010-03-15 2011-09-29 Toshiba Corp 有機性排水の水処理システム
WO2012161339A1 (ja) * 2011-05-26 2012-11-29 メタウォーター株式会社 下水処理システム
JP2013046905A (ja) * 2011-07-27 2013-03-07 Metawater Co Ltd 水処理システムおよび水処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018015740A (ja) * 2016-07-29 2018-02-01 学校法人 龍谷大学 散水ろ床装置及び散水ろ床装置洗浄方法
JP2018202296A (ja) * 2017-05-31 2018-12-27 メタウォーター株式会社 下水処理システム

Also Published As

Publication number Publication date
JPWO2015001708A1 (ja) 2017-02-23
JP6383725B2 (ja) 2018-08-29

Similar Documents

Publication Publication Date Title
JP5676757B2 (ja) 下水処理システム
US6110389A (en) Filtration unit
KR100927629B1 (ko) 오폐수 처리 공법 및 그 장치
US9969635B2 (en) Downflow denitrification system
JP6383725B2 (ja) 水処理装置
US11219194B1 (en) Aquaponic nutrient generation module
JP2006314991A (ja) 畜産廃水及び糞尿等のような高濃度の窒素を含む汚廃水の処理装置及びその処理方法
JP5781871B2 (ja) 鉄、マンガン、アンモニア性窒素を含有する原水の浄化方法、および浄化装置
KR101186606B1 (ko) 하수 및 오/폐수의 질소 와 인을 복합적으로 제거하는 고도처리장치
JP5072638B2 (ja) バイオガスの生物脱硫装置
JP4344274B2 (ja) 生物ろ過装置
JP2010269203A (ja) 廃水処理装置及びその制御方法
KR100547463B1 (ko) 황 충전 mbr 반응기를 이용한 포기조내 질소제거 장치
JP2002143880A (ja) 生物学的排水処理装置
JP2004097926A (ja) 水処理方法及び水処理装置
JP4490848B2 (ja) 排水処理装置および排水処理方法
JP3887393B2 (ja) 硫黄酸化型脱窒素処理装置
JPH07308688A (ja) 生物学的処理装置
JP2697801B2 (ja) 浄化槽
JP2001096294A (ja) 酸化態窒素除去装置
KR100304404B1 (ko) 고정생물막 및 연속역세척 여과공법에 의한 밀집형 고도 하폐수처리방법
KR100619254B1 (ko) 황 산화 독립영양세균을 이용한 생물학적 질소제거공정
JP2005169171A (ja) 地下水の処理方法及びその装置
JP2000061445A (ja) 機能セラミックの触媒水を用いた排液処理システム
KR100572998B1 (ko) 복수의 황탈질반응조를 이용한 황탈질 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820298

Country of ref document: EP

Kind code of ref document: A1