WO2014208793A1 - 가스 하이드레이트 펠릿 성형장치 - Google Patents

가스 하이드레이트 펠릿 성형장치 Download PDF

Info

Publication number
WO2014208793A1
WO2014208793A1 PCT/KR2013/005696 KR2013005696W WO2014208793A1 WO 2014208793 A1 WO2014208793 A1 WO 2014208793A1 KR 2013005696 W KR2013005696 W KR 2013005696W WO 2014208793 A1 WO2014208793 A1 WO 2014208793A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas hydrate
pressure
roller
pressure tank
gas
Prior art date
Application number
PCT/KR2013/005696
Other languages
English (en)
French (fr)
Inventor
송명호
윤용석
정인기
김정욱
안승희
장상엽
이재원
김상민
양진섭
우타관
Original Assignee
동국대학교 산학협력단
주식회사동신유압
한국가스공사
주식회사 성일터빈
(주)대우건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단, 주식회사동신유압, 한국가스공사, 주식회사 성일터빈, (주)대우건설 filed Critical 동국대학교 산학협력단
Priority to PCT/KR2013/005696 priority Critical patent/WO2014208793A1/ko
Priority to US14/768,411 priority patent/US10351790B2/en
Priority to KR1020157015481A priority patent/KR101692260B1/ko
Publication of WO2014208793A1 publication Critical patent/WO2014208793A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/30Pressing, compressing or compacting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/48Expanders, e.g. throttles or flash tanks

Definitions

  • the present invention relates to a gas hydrate pellet forming apparatus. More specifically, the present invention relates to a gas hydrate pellet molding apparatus which improves cooling efficiency by preventing gas hydrates from intermingling in the cooler.
  • Natural gas is a clean fossil fuel that is subject to fierce competition for resource development because of the world's soaring demand because carbon dioxide per fuel mass is significantly lower than coal and petroleum.
  • Natural gas produced in the gas field is used as fuel through transportation and storage process after removing most sulfur, carbon dioxide, water and high molecular hydrocarbon components except methane.
  • the representative sea transportation method is Liquified Natural Gas (LNG), and the LNG compressibility is about 600 based on standard methane.
  • the LNG method is limited in securing economic feasibility due to the cryogenic demand of liquefied natural gas, and is applicable only to gas fields above a certain scale (about 3 TCFs (trillions of cubic feet)).
  • Methane the main component of natural gas, needs to be below 162 degrees Celsius in order to be stable as a liquid at atmospheric pressure.
  • Metallic materials used in LNG facilities exposed to cryogenic conditions have high concentrations of expensive nickel to minimize brittleness. Should be included as In addition, there is a disadvantage in that a large amount of BOG (Boil Off Gas) due to heat inflow due to the large temperature difference with the outside in the transport and storage process.
  • BOG Bit Off Gas
  • GTS Gas To Solid
  • a solid gas hydrate which transports / stores natural gas as a storage medium
  • Technology is actively being studied.
  • Professor Gudmundsson of Norway presented the theory of hydrate self preservation effect, developed countries including Japan began developing core technologies necessary for the realization of the GTS method with the aim of commercialization.
  • Natural Gas Hydrate is a crystal mixture in which natural gas molecules are trapped in a solid-phase lattice of water-molecules with hydrogen bonds. Its appearance is similar to ice, and stable at a given temperature at a certain temperature. Keep it. Low temperature below 80 degrees Celsius is required for methane hydrate to be thermodynamically stable at atmospheric pressure, but even around 20 degrees Celsius, an ice film is formed on the surface of hydrate particles, and self-preservation effect is delayed for several weeks. It became.
  • the gas compression rate of natural gas hydrates is about 170 (about 170 cc of standard state natural gas is stored in 1 cc of hydrate), which is disadvantageous compared to LNG.However, due to the favorable temperature conditions required for transportation and storage, natural gas hydrates are used for small and medium gas fields. It is theoretically verified that the GTS method used is an economic alternative to the LNG method.
  • the urea technology constituting the GTS method includes a technology for producing natural gas hydrate pellets (NGHP), which converts natural gas into pellet hydrates before transport and storage of natural gas, and then decomposes natural gas hydrate pellets. There is a regasification technique for recovering natural gas.
  • NGHP natural gas hydrate pellets
  • the GTS (Gas to Solid) technology chain consists of the production stage, the transportation and storage stage and the regasification stage.
  • the production stage is the processing of gaseous gas into solid gas hydrate pellets. Specifically, the process of preparing a gas hydrate slurry from gas and water in a relatively high pressure and low temperature environment, the dehydration process of removing water from the gas hydrate slurry and converting it into a relatively hard gas hydrate cake having a small amount of residual moisture, and a gas hydrate cake Cooling process to cool it to near -20 degrees below the self-preservation effect temperature, depressurization process to lower the cooled gas hydrate from production pressure to normal pressure, and briquetting from the cooled, decompressed powder or gas hydrate in relatively small lump form It consists of a pellet molding process to process into relatively large pellets by using such means.
  • a gas hydrate pellet forming apparatus having a plurality of stirring blades inside the cooler to prevent gas hydrates from intermingling, thereby improving cooling efficiency.
  • the gas hydrate is a predetermined temperature including a plurality of agitator blades having a rotary shaft therein, a rotary shaft therein, and installed along the height direction of the rotary shaft, the gas hydrate is dehydrated
  • a gas hydrate pellet forming apparatus comprising a cooler cooled by a furnace, a pressure reducer in which the cooled gas hydrate is reduced in pressure to a predetermined pressure, and a pellet molding machine for molding the reduced pressure gas hydrate into pellets.
  • the plurality of stirring blades may be different in rotation speed.
  • the gas hydrate pellet forming apparatus may further include a roller unit coupled to the rotating shaft and rotatable by friction with the inner circumferential surface of the cooler.
  • the roller portion may include a pair of first rollers formed to be spaced 180 degrees apart from the rotation shaft, and a pair of first rollers and a portion of the rollers in a circumferential direction of an inner circumferential surface of the cooler, respectively, in which a pair of first rollers are partially overlapped with each other.
  • the first roller may include a pair of second rollers 180 degrees apart from the rotating shaft so as to have a phase difference of 90 degrees with the first roller.
  • the gas hydrate pellet forming apparatus is formed between the first roller and the rotating shaft to support the first roller, and formed between the second roller and the rotating shaft to support the second roller.
  • the apparatus may further include a second roller supporter, and the first roller supporter and the second roller supporter may be provided with roller springs to closely contact the inner surface of the cooler with the first roller and the second roller, respectively.
  • the gas hydrate pellet forming apparatus further includes a stirring blade support portion formed between the plurality of stirring blades and the rotary shaft to support the plurality of stirring blades,
  • a lubrication surface is formed between the stirring blade support part and the rotating shaft, and the first roller support part, the second roller support part, and the plurality of stirring blade support parts may be connected to bevel gears.
  • the bevel gear formed on the upper portion of the first roller support and the bevel gear formed on the lower portion of the second roller support may be fixedly coupled to the rotation shaft.
  • the cooler may further include a cooling gas injecting unit formed at a lower portion and injecting a cooling gas therein, and a cooling gas discharge unit formed at an upper portion and discharging the cooling gas to the outside.
  • the gas hydrate pellet forming apparatus may further include a belt conveyor for transferring the reduced pressure gas hydrate pellets to the pellet molding machine, and the belt conveyor may be a mesh belt conveyor including a mesh having a predetermined size.
  • the gas hydrate pellet molding apparatus may further include a conveying unit configured to receive the gas hydrate that has passed through the mesh of the belt conveyor and transfer the gas hydrate to the pellet molding machine.
  • the belt conveyor may be adjusted in a traveling direction in the pellet molding machine direction or in the opposite direction of the pellet molding machine.
  • the pellet forming machine includes a briquetting machine, wherein the gas hydrate pellets conveyed by the briquetting machine may be molded into first pellets having a diameter larger than the gas hydrate pellets.
  • the gas hydrate pellet forming apparatus may further include a storage unit storing the first pellets formed in the briquetting machine and the second pellets collected by the belt conveyor running in the reverse direction of the pellet molding machine.
  • the pressure reducer may include a pressure reducing chamber in which the cooled gas hydrate is accommodated for pressure reduction, and a plurality of pressure tanks having different pressures connected to the pressure reducing chamber.
  • the pressure tank may include a first pressure tank, a second pressure tank having a lower pressure than the first pressure tank, a third pressure tank having a lower pressure than the second pressure tank, and a lower pressure than the third pressure tank. It may include a fourth pressure tank.
  • the fourth pressure tank is to maintain the normal pressure, it can be supplied with boil off gas (BOG) generated from the pellet forming machine.
  • BOG boil off gas
  • the fourth pressure tank, the third pressure tank, and the second pressure tank may be formed of the first pressure tank.
  • the gas may be supplied to each of the third pressure tank, the second pressure tank, and the first pressure tank.
  • a plurality of stirring blades may be provided inside the cooler to prevent the gas hydrates from interweaving during cooling, thereby improving cooling efficiency.
  • FIG. 1 is a view showing a gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a grinder of the gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • FIG 3 is a view showing a cooler of the gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • Figure 4 is a plan view showing a first roller and a second roller of the cooler of the gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • FIG. 5 is a view showing a rotating shaft and a roller support of the cooler of the gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • Figure 6 is a view showing a rotating shaft and the stirring blade support of the cooler of the gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • FIG. 7 is a view showing a pressure reducer of the gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a view showing a gas hydrate pellet molding apparatus according to an embodiment of the present invention
  • Figure 2 is a view showing a grinder of the gas hydrate pellet molding apparatus according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention 4 is a plan view showing a cooler of the gas hydrate pellet forming apparatus
  • Figure 4 is a plan view showing a first roller and a second roller of the cooler of the gas hydrate pellet forming apparatus according to an embodiment of the present invention
  • Figure 5 is FIG. 6 is a view illustrating a rotating shaft and a roller support of the cooler of the gas hydrate pellet forming apparatus
  • FIG. 6 is a view illustrating a rotating shaft and the stirring wing support of the cooler of the gas hydrate pellet forming apparatus according to an embodiment of the present invention
  • 7 is a view showing a pressure reducer of the gas hydrate pellet forming apparatus according to an embodiment of the present invention.
  • a gas hydrate pellet molding apparatus includes a grinder 100, a cooler 300, a pressure reducer 400, and a pellet molding machine 510.
  • the dehydrated gas hydrate is a solid mass of spherical, cylindrical or capsule type having an effective diameter of about 30 mm or more, which requires excessive cooling time.
  • the gas hydrate pellet forming apparatus may reduce the effective diameter by pulverizing the gas hydrate before the cooling process after the dehydration process, and may shorten the time required for cooling as the effective diameter decreases.
  • the grinder 100 may include a fixed blade F and a rotary blade W.
  • the gas hydrate injected into the grinder 100 may be rotated by the rotation of the rotary blade W. It can be crushed by the compression force by the wing (W) and the fixed blade (F).
  • Residual moisture not removed in the dehydration process may be clogged in the cooling process may cause clogging and breakage due to ice, the gas hydrate pellet forming apparatus according to the present invention using a plurality of stirring blades 320 in the cooling process This can reduce the above problems.
  • the rotary blade (W) is provided with a sawtooth can increase the grinding efficiency of the gas hydrate.
  • the pulverized gas hydrate is divided into a plurality of coolers 300 and distributed, and a plurality of pressure reducers 400 corresponding to the plurality of coolers 300 are provided below each cooler 300, thereby forming gas hydrate pellets. It is possible to cope with various variations of the cooling time and the decompression time, and it is possible to form gas hydrate pellets of various sizes by adjusting the respective cooling time and the decompression time.
  • the cooler 300 receives the pulverized gas hydrate and cools it below a predetermined temperature.
  • the cooler 300 may include a plurality of stirring vanes 320 formed along the rotating shaft 310 and having a rotating shaft 310 therein.
  • stirring blade 320 can reduce the overall cooling time to increase the overall throughput.
  • the cooler 300 may be provided in plural, and the pulverized gas hydrate may be distributed and introduced into the plurality of coolers 300 before being introduced into the cooler 300.
  • the stirring blade 320 may rotate in accordance with the rotation of the rotary shaft 310 may reduce the deadlock of the gas hydrate pellets that may occur inside the cooler (300).
  • the plurality of stirring blades 320 is different in the rotational speed can effectively reduce the problem of the interlocking or icing of the gas hydrate injected into the cooler 300.
  • the cooler 300 of the gas hydrate pellet forming apparatus may further include a roller unit 330.
  • roller unit 330 is coupled to the rotation shaft 310, and the other end is formed to reach the inner circumferential surface of the cooler 300, and includes a roller to rotate by friction with the inner circumferential surface of the cooler 300.
  • the roller unit 330 is 90 degrees in the circumferential direction of the inner circumferential surface of the pair of first rollers 331 and the pair of first rollers 331 and the cooler 300 formed 180 degrees apart from the rotary shaft 310 It may include a pair of second rollers 332 formed 180 degrees apart from the rotary shaft 310 to have a phase difference.
  • the pair of first rollers 331 and the pair of second rollers 332 are vertically crossed with respect to the center of the cooler 300.
  • the pair of first rollers 331 may be formed to have a higher installation height than the pair of second rollers 332, so that a part of the pair of first rollers 331 may overlap.
  • a first roller support part 340 supporting the first roller 331 is formed between the first roller 331 and the rotation shaft 310, and supports the second roller 332.
  • the second roller support part 350 is formed between the second roller 332 and the rotation shaft 310.
  • first roller support part 340 and the second roller support part 350 may be provided with a roller spring 360 to closely adhere the first roller 331 and the second roller 332 to the inner circumferential surface of the cooler 300. .
  • the first roller 331 and the second roller 332 revolves around the inner circumferential surface of the cooler 300 and rotates, thereby separating the gas hydrate pellets iced on the inner circumferential surface of the cooler 300 more efficiently. It is possible to increase the cooling treatment efficiency to reduce the cooling treatment time.
  • the treatment time of the entire process can be reduced, thereby increasing the efficiency of forming gas hydrate pellets.
  • the gas hydrate pellet forming apparatus further includes a stirring blade support 370, and a lubrication surface is formed between the stirring blade support 370 and the rotary shaft 310 to stir.
  • the wing 320 is not fixed to the rotation shaft 310.
  • the stirring blade support part 370 is formed between the plurality of stirring blades 320 and the rotating shaft 310 to support the plurality of stirring blades 320, and at this time, the stirring blade support part 370 and the first roller support part 340. ) And the second roller support part 350 may be connected to the bevel gear (B).
  • bevel gear B formed above the first roller support 340 and the bevel gear B formed below the second roller support 350 are fixedly coupled to the rotation shaft 310.
  • the outermost bevel gear B is fixed and does not rotate even when the rotating shaft 310 is rotated, and the first roller 331 and the second roller 332 are fixedly coupled to the rotating shaft 310 to rotate the rotating shaft 310.
  • the first roller support 340 and the second roller support 350 and the plurality of stirring blades 320 are connected by the bevel gear (B), so that the first roller 331 and the second roller Rotational speed and rotational speed of the plurality of stirring blades 320 will be different.
  • each of the first roller support portion 340 and the second roller support portion 350 It can be formed between.
  • the first roller 331 and the second roller 332 fixed to the rotary shaft 310 also rotate at the rotational speed of the rotary shaft 310, and the first roller support part 340 and the first roller 331 rotate.
  • 1 of the three stirring blades 320 connected to the roller support part 340 by the bevel gear (B) is the stirring blade 320 in the center does not rotate, and the remaining two stirring blades 320 are the first The roller 331 and the second roller 332 is rotated at a speed twice the rotation speed.
  • the principle of the differential gear by the bevel gear (B) described above is applied to the stirring blade 320, the first roller 331, and the second roller 332 in the cooler 300 of the present invention to adjust the respective rotation speeds. By doing so, it is possible to reduce the problem of the interlocking or freezing of the gas hydrate pellets by increasing the efficiency of the stirring inside the cooler (300).
  • the cooler 300 is formed under the cooler 300, and is provided on the coolant gas injection unit 380 and the cooler 300, which inject coolant gas into the cooler 300. It may further include a cooling gas discharge unit 390 is formed to discharge the cooling gas to the outside.
  • the internal temperature of the cooler 300 may be controlled by controlling the temperature and flow rate of the cooling gas injected into the cooling gas injection unit 380 or the cooling gas discharged to the cold gas discharge unit.
  • the gas hydrate pellets having passed through the cooler 300 are transferred to the pressure reducer 400 for pressure reduction.
  • the pressure reducer 400 may include a pressure reducing chamber 410 for receiving gas hydrate pellets for pressure reduction, and a plurality of pressure tanks having different pressures connected to the pressure reducing chamber 410.
  • the plurality of pressure tanks may include a first pressure tank 420, a second pressure tank 430 having a lower pressure than the first pressure tank 420, and a third pressure tank 440 having a lower pressure than the second pressure tank 430. ) And a fourth pressure tank 450 having a lower pressure than the third pressure tank 440.
  • Medium pressure tanks can be installed for economical operation of repeated step-down and step-up processes in the decompression process.
  • FIG. 7 is a view for explaining the intermediate pressure tanks and piping system used in the step-down and step-up process between about 50 atm and atmospheric pressure of the gas hydrate pellet forming pressure in accordance with an embodiment of the present invention.
  • the first pressure tank 420 to maintain the internal pressure of about 50 atm
  • the second pressure tank 430 to maintain the internal pressure around 30 atm
  • the third pressure tank to maintain the internal pressure at about 10 atm ( 440 and the fourth pressure tank 450 that maintains the internal pressure near the normal pressure.
  • the pressure of the pressure reduction chamber 410 is stepped down from 50 atm to atmospheric pressure as follows. 1) Open the valve connecting the decompression chamber 410 and the second pressure tank 430, the pressure difference between the decompression chamber 410 and the second pressure tank 430 is within a predetermined pressure size (for example 2 atm) If declining, close the valve. 2) Open the valve connecting the decompression chamber 410 and the third pressure tank 440, and the pressure difference between the decompression chamber 410 and the third pressure tank 440 is within a predetermined pressure level (for example, 2 atm). If declining, close the valve. 3) Open the valve connecting the decompression chamber 410 and the fourth pressure tank 450, and close the valve when the pressure difference between the decompression chamber 410 and the atmospheric pressure tank decreases within a predetermined pressure level (for example, 2 atm). .
  • the process of increasing the pressure in the decompression chamber 410 to 50 atm from the normal pressure is as follows. 1) Open the valve connecting the decompression chamber 410 and the third pressure tank 440, and the pressure difference between the decompression chamber 410 and the third pressure tank 440 is within a predetermined pressure level (for example, 2 atm). If declining, close the valve. 2) Open the valve connecting the decompression chamber 410 and the second pressure tank 430, and the pressure difference between the decompression chamber 410 and the second pressure tank 430 is within a predetermined pressure level (for example, 2 atm). If declining, close the valve. 3) Open the valve connecting the decompression chamber 410 and the first pressure tank 420, and close the valve when the pressure difference between the decompression chamber 410 and the high pressure tank decreases within a predetermined pressure level (for example, 2 atm). .
  • the fourth pressure tank 450 may receive boil off gas (BOG) generated from the pellet molding machine 510.
  • BOG boil off gas
  • the fourth pressure tank 450 When the pressure of each of the fourth pressure tank 450, the third pressure tank 440, and the second pressure tank 430 is equal to or greater than a preset value, the fourth pressure tank 450 and the third pressure tank 440. , And the second pressure tank 430 may supply gas to the third pressure tank 440, the second pressure tank 430, and the first pressure tank 420, respectively.
  • the gas of the first pressure tank 420 may be consumed in the gas hydrate slurry manufacturing process after the last step of the pressure-up of the pressure reducer 400 and the additional pressure-up.
  • the gas hydrate pellet forming apparatus may further include a belt conveyor (600).
  • the belt conveyor 600 may be a mesh belt conveyor including a mesh having a predetermined size by transferring the reduced pressure gas hydrate pellets to the pellet molding machine 510.
  • Some of the gas hydrate pellets dropped on the mesh belt conveyor pass through the mesh and are collected in the transfer part 610, and the transfer part 610 transfers the gas hydrate pellets to the pellet molding machine 510, and the gas hydrate pellets having a predetermined size or more. Is transferred to a pellet molding machine 510 or temporary storage 621 for temporarily storing gas hydrate pellets by a mesh belt conveyor.
  • the belt conveyor 600 is adjusted in the advancing direction in the direction of the pellet molding machine 510 or the temporary storage unit 621 in the opposite direction of the pellet molding machine 510, to pellet the gas hydrate pellets passing through the pressure reducer 400 It may be sent to the molding machine 510 or to the temporary storage unit 621.
  • Pellet forming machine 510 includes a briquetting machine 500, and the gas hydrate pellets transferred to pellet forming machine 510 can be molded into larger first pellets G.
  • gas hydrate pellets transferred to the temporary storage unit 621 are transferred to the storage unit 700 through the delivery unit 800 via a quantitative distributor 622 formed under the temporary storage unit 621.
  • the first pellet G which is formed in the pellet molding machine 510 and has a larger diameter, may also be transferred to the storage 700 and stored together.
  • the porosity can be reduced to improve the storage efficiency of the gas hydrate pellets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)

Abstract

본 발명에 따르면, 탈수공정을 거친 가스 하이드레이트가 분쇄되는 분쇄기, 내부에 회전축을 구비하고, 상기 회전축의 높이 방향을 따라 설치되는 복수의 교반날개를 포함하여 상기 가스 하이드레이트가 기설정된 온도로 냉각되는 냉각기, 냉각된 상기 가스 하이드레이트가 기설정된 압력으로 감압되는 감압기, 및 감압된 상기 가스 하이드레이트를 펠릿으로 성형하는 펠릿성형기를 포함하는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치가 제공된다.

Description

가스 하이드레이트 펠릿 성형장치
본 발명은 가스 하이드레이트 펠릿 성형장치에 관한 것이다. 보다 상세하게는, 냉각기 내부에서 가스 하이드레이트가 교착되지 않도록 하여 냉각 효율을 향상시킨 가스 하이드레이트 펠릿 성형장치에 관한 것이다.
천연가스는 연소 시 연료 질량 당 이산화탄소의 발생이 석탄과 석유에 비해 현저하게 적은 이유로 세계적으로 수요가 폭등하여 치열한 자원개발 경쟁의 대상이 되는 청정 화석연료이다.
가스전에서 생산된 천연가스는 메탄을 제외한 대부분의 황, 이산화탄소, 물, 고분자 탄화수소 성분 등을 제거하는 처리과정을 거친 후 수송 및 저장 과정을 통하여 연료로 사용된다.
천연가스 가격은 이윤과 이자를 제외하면 이 과정들을 구현하는 설비 및 운영 비용으로 구성되므로, 가스전의 크기, 소비지역과의 거리 및 기타 여건을 고려하여 가장 경제적인 수송 및 저장 방법을 선택한다. 현재 대표적인 해상 수송 방식은 액화천연가스(LNG; Liquified Natural Gas) 방식이며 LNG의 압축률은 표준상태 메탄을 기준으로 약 600 이다.
그러나, LNG 방식은 액화천연가스의 초저온 요구로 인하여 경제성 확보에 한계가 있으며 일정 규모 이상(현 기술 약 3 TCF(trillions of cubic feet))의 가스전에 대하여만 적용 가능하다.
천연가스의 주성분인 메탄이 상압 조건에서 액체로 안정적으로 존재하기 위해서는 영하 섭씨 162도 이하의 온도가 필요하다, 초저온 조건에 노출되는 LNG설비에 사용되는 금속재료는 취성을 최소화하도록 고가의 니켈이 고농도로 포함되어야 한다. 또, 수송과 저장과정에서 외부와 온도 차가 커서 열유입으로 인한 BOG(Boil Off Gas)가 대량으로 발생하는 단점이 있다.
이러한 단점을 극복하고 천연가스 생산비용을 감소시켜 상대적으로 작은 규모의 중소형 가스전 개발의 경제성을 확보하기 위해, 고체인 가스 하이드레이트(hydrate)를 저장 매체로 천연가스를 수송/저장하는 GTS(Gas To Solid) 기술이 활발하게 연구되기 시작하였다. 특히, 1990년 노르웨이의 Gudmundsson 교수가 하이드레이트의 자기보존 효과(self preservation effect) 이론을 제시하면서부터 일본을 비롯한 선진국들은 상용화를 목표로 GTS 방식의 실현에 필요한 핵심기술 개발에 착수하였다.
천연가스 하이드레이트(NGH; Natural Gas Hydrate)는 수소 결합을 하는 물분자의 고체상 격자 내에 천연가스 분자가 포집되는 결정 혼합물로 외형은 얼음과 유사하며 주어진 온도에서 특정 값 이상의 압력을 가하면 안정적으로 고체 상태를 유지한다. 메탄 하이드레이트가 상압에서 열역학적으로 안정하게 존재하려면 영하 섭씨 80도 이하의 저온이 요구되지만, 영하 섭씨 20도 부근에서도 하이드레이트 입자 표면에 얼음막이 생성되어 수 주 이상 하이드레이트의 분해가 지연되는 자기보존효과가 발견되었다.
천연가스 하이드레이트의 가스압축률은 약 170으로(약 170cc의 표준상태 천연가스가 하이드레이트 1 cc에 저장됨) LNG에 비해 불리하지만, 수송 및 저장에 필요한 온도 조건이 유리하여 중소형 가스전의 경우 천연가스 하이드레이트를 이용한 GTS방식이 LNG방식의 경제적 대안임이 이론적으로 검증되었다.
GTS방식을 구성하는 요소기술에는 천연가스의 수송 및 저장 과정 이전에 천연가스를 펠릿 형태의 하이드레이트로 변환하는 천연가스 하이드레이트 펠릿(NGHP; Natural Gas Hydrate Pellet)생산 기술과 이후에 천연가스 하이드레이트 펠릿를 분해하여 천연가스를 회수하는 재기화 기술이 있다.
GTS(Gas to Solid)기술체인은 생산단계, 수송 및 저장단계 및 재기화 단계로 구성된다. 생산단계는 기체상태의 가스를 고체상태의 가스 하이드레이트 펠릿으로 가공하는 단계이다. 이를 상세하면, 상대적으로 고압, 저온환경에서 가스와 물로부터 가스 하이드레이트 슬러리의 제조공정, 가스 하이드레이트 슬러리로부터 수분을 제거하여 소량의 잔류수분을 갖는 비교적 단단한 가스 하이드레이트 케이크로 변환하는 탈수공정, 가스 하이드레이트 케이크를 자기보존효과 온도인 영하 20도 부근까지 냉각하는 냉각공정, 냉각된 가스 하이드레이트를 생산 압력으로부터 상압까지 압력을 낮추는 감압공정, 및 냉각, 감압된 분말 또는 상대적으로 작은 덩어리 형태의 가스 하이드레이트로부터 브리케팅 등의 수단을 활용하여 상대적으로 대형 펠릿으로 가공하는 펠릿성형공정으로 구성된다.
관련한 기술로는 대한민국 특허공개공보 제2009-0124967호(2009.12.03 공개, 열가소성 수지 펠렛의 제조 방법 및 제조 장치)가 있다.
본 발명의 실시예에 따라, 냉각기 내부에 복수의 교반날개를 구비하여 가스 하이드레이트가 교착되지 않도록 하여 냉각 효율을 향상시킨 가스 하이드레이트 펠릿 성형장치를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 탈수공정을 거친 가스 하이드레이트가 분쇄되는 분쇄기, 내부에 회전축을 구비하고, 상기 회전축의 높이 방향을 따라 설치되는 복수의 교반날개를 포함하여 상기 가스 하이드레이트가 기설정된 온도로 냉각되는 냉각기, 냉각된 상기 가스 하이드레이트가 기설정된 압력으로 감압되는 감압기, 및 감압된 상기 가스 하이드레이트를 펠릿으로 성형하는 펠릿성형기를 포함하는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치가 제공된다.
복수의 상기 교반날개는 회전속도가 상이할 수 있다.
상기 가스 하이드레이트 펠릿 성형장치는, 상기 회전축에 결합되되, 상기 냉각기 내주면과 마찰에 의하여 회전할 수 있는 롤러부를 더 포함할 수 있다.
상기 롤러부는, 상기 회전축에 180도 이격되어 형성되는 한 쌍의 제1 롤러, 및 각각이 한 쌍의 제1 롤러와 상기 회전축 길이 방향으로 일부가 중첩되고, 상기 냉각기 내주면의 둘레방향으로 상기 한 쌍의 제1 롤러와 90도 위상차를 갖도록 상기 회전축에 180도 이격되어 형성되는 한 쌍의 제2 롤러를 포함할 수 있다.
상기 가스 하이드레이트 펠릿 성형장치는, 상기 제1 롤러 및 상기 회전축 사이에 형성되어 상기 제1 롤러를 지지하는 제1 롤러 지지부, 및 상기 제2 롤러 및 상기 회전축 사이에 형성되어 상기 제2 롤러를 지지하는 제2 롤러 지지부를 더 포함하고, 상기 제1 롤러 지지부 및 상기 제2 롤러 지지부에는 각각 상기 제1 롤러 및 상기 제2 롤러를 상기 냉각기 내주면에 밀착시킬 수 있도록 롤러 스프링이 구비될 수 있다.
상기 가스 하이드레이트 펠릿 성형장치는, 복수의 상기 교반날개와 상기 회전축 사이에 형성되어 복수의 상기 교반날개를 지지하는 교반날개 지지부를 더 포함하고,
상기 교반날개 지지부와 상기 회전축 사이에는 윤활면이 형성되며, 상기 제1 롤러 지지부 및 상기 제2 롤러 지지부와 복수의 상기 교반날개 지지부 각각은 베벨기어로 연결될 수 있다.
상기 제1 롤러 지지부의 상부에 형성된 베벨기어 및 상기 제2 롤러 지지부의 하부에 형성된 베벨기어는 상기 회전축에 고정결합될 수 있다.
상기 냉각기는, 하부에 형성되어 내부로 냉각가스가 주입되는 냉각가스 주입부, 및 상부에 형성되어 외부로 냉각가스가 배출되는 냉각가스 배출부를 더 포함할 수 있다.
상기 가스 하이드레이트 펠릿 성형장치는, 감압된 상기 가스 하이드레이트 펠릿을 상기 펠릿성형기로 이송하는 벨트컨베이어를 더 포함하고, 상기 벨트 컨베이어는 기설정된 크기의 메시(mesh)를 포함하는 메시 벨트컨베이어일 수 있다.
상기 가스 하이드레이트 펠릿 성형장치는, 상기 벨트컨베이어의 메시를 통과한 상기 가스 하이드레이트를 수용하여 상기 펠릿성형기로 이송하는 이송부를 더 포함할 수 있다.
상기 벨트 컨베이어는 상기 펠릿성형기 방향 또는 상기 펠릿성형기의 역방향으로 진행방향이 조절될 수 있다.
상기 펠릿성형기는, 브리케팅(briquetting) 머신을 포함하고, 상기 브리케팅 머신에 의하여 이송된 상기 가스 하이드레이트 펠릿이 상기 가스 하이드레이트 펠릿보다 직경이 큰 제1 펠릿으로 성형될 수 있다.
상기 가스 하이드레이트 펠릿 성형장치는, 상기 벨트 컨베이어가 상기 펠릿성형기의 역방향으로 진행되어 모아진 제2 펠릿 및 상기 브리케팅 머신에서 성형된 상기 제1 펠릿을 함께 저장하는 저장부를 더 포함할 수 있다.
상기 감압기는 냉각된 상기 가스 하이드레이트가 감압을 위하여 수용되는 감압실, 상기 감압실에 연결되는압력이 상이한 복수의 압력탱크를 포함할 수 있다.
상기 복수의 압력탱크는, 제1 압력탱크, 상기 제1 압력탱크보다 압력이 낮은 제2 압력탱크, 상기 제2 압력탱크보다 압력이 낮은 제3 압력탱크, 및 상기 제3 압력탱크보다 압력이 낮은 제4 압력탱크를 포함할 수 있다.
상기 제4 압력탱크는 상압을 유지하는 것으로, 상기 펠릿성형기로부터 발생되는 증발가스(BOG, Boil Off Gas)를 공급받을 수 있다.
상기 제4 압력탱크, 상기 제3 압력탱크, 및 상기 제2 압력탱크의 각각의 압력이 기설정값 이상인 경우, 상기 제4 압력탱크, 상기 제3 압력탱크, 및 상기 제2 압력탱크는 상기 제3 압력탱크, 상기 제2 압력탱크, 및 상기 제1 압력탱크로 각각 가스를 공급할 수 있다.
본 발명의 실시예들에 따르면, 냉각기 내부에 복수의 교반날개를 구비하여 냉각시 가스 하이드레이트가 교착되지 않도록 하여 냉각 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치를 나타낸 도면.
도 2는 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 분쇄기를 나타낸 도면.
도 3은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기를 나타낸 도면.
도 4는 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기의 제1 롤러 및 제2 롤러를 나타낸 평면도.
도 5는 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기의 회전축 및 롤러 지지부를 나타낸 도면.
도 6은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기의 회전축 및 교반날개 지지부를 나타낸 도면.
도 7은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 감압기를 나타낸 도면.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 따른 가스 하이드레이트 펠릿 성형장치의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치를 나타낸 도면, 도 2는 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 분쇄기를 나타낸 도면, 도 3은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기를 나타낸 도면, 도 4는 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기의 제1 롤러 및 제2 롤러를 나타낸 평면도, 도 5는 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기의 회전축 및 롤러 지지부를 나타낸 도면, 도 6은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기의 회전축 및 교반날개 지지부를 나타낸 도면, 도 7은 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 감압기를 나타낸 도면이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치는 분쇄기(100), 냉각기(300), 감압기(400), 및 펠릿성형기(510)를 포함한다.
탈수공정을 거친 가스 하이드레이트는 대략 30mm 이상의 유효직경을 갖는 구형, 원통형 또는 캡슐형 등의 고체 덩어리로서 이에 대한 냉각시간이 과도하게 소요된다.
따라서, 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치는 탈수공정 후 냉각공정을 거치기 전에 가스 하이드레이트를 분쇄하여 유효직경을 감소시키고, 유효직경이 감소함에 따라 냉각에 필요한 시간을 단축시킬 수 있다,
분쇄기(100)는 도 2에 도시된 바와 같이, 고정날개(F)와 회전날개(W)를 포함할 수 있고, 분쇄기(100)로 투입된 가스 하이드레이트는 회전날개(W)의 회전에 의하여, 회전날개(W) 및 고정날개(F)에 의한 압축력에 의하여 분쇄될 수 있다.
탈수공정에서 미처 제거되지 못한 잔류 수분은 냉각공정에서 응고되어 빙착에 의한 막힘과 파손의 원인이 될 수 있고, 본 발명에 따른 가스 하이드레이트 펠릿 성형장치는 냉각공정에서 복수개의 교반날개(320)를 이용하여 상술한 문제점을 감소시킬 수 있게된다.
또한, 회전날개(W)에는 톱니를 구비하여 가스 하이드레이트의 분쇄효율을 증가시킬 수 있게 된다.
분쇄된 가스 하이드레이트를 복수의 냉각기(300)로 나누어 분배하고, 각각의 냉각기(300) 하부에 복수의 냉각기(300)에 대응하는 복수의 감압기(400)를 구비함으로써, 가스 하이드레이트 펠릿 성형 소요되는 냉각시간 및 감압시간의 다양한 변동에 대응가능하며, 각각의 냉각시간 및 감압시간을 조절하여 다양한 크기의 가스 하이드레이트 펠릿을 성형할 수 있게 된다.
냉각기(300)는 분쇄된 가스 하이드레이트를 공급받아 기설정된 온도 이하로 냉각하는 것으로서, 내부에 회전축(310)을 구비하고 회전축(310)을 따라 형성된 복수의 교반날개(320)를 포함할 수 있다.
교반날개(320)를 이용하여 전체 냉각시간을 감소시켜 전체 처리량을 증대시킬 수 있다.
이때 냉각기(300)는 복수개가 구비될 수 있고, 분쇄된 가스 하이드레이트가 냉각기(300)에 투입되기 전에 복수의 냉각기(300)로 분배되어 투입될 수 있다.
교반날개(320)는 회전축(310)의 회전에 따라 회전하며 냉각기(300) 내부에서 발생할 수 있는 가스 하이드레이트 펠릿의 교착을 감소시킬 수 있다.
이때, 복수의 교반날개(320)는 회전속도가 상이하여 냉각기(300)에 투입된 가스 하이드레이트의 교착 또는 빙착의 문제를 효율적으로 감소시킬 수 있다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기(300)는 롤러부(330)를 더 포함할 수 있다.
롤러부(330)는 일단이 회전축(310)에 결합하고, 타단은 냉각기(300) 내주면에 닿을 정도로 형성되며, 냉각기(300) 내주면과 마찰에 의하여 회전할 수 있도록 롤러를 포함한다.
이때, 롤러부(330)는 회전축(310)에 180도 이격되어 형성되는 한 쌍의 제1 롤러(331) 및 한 쌍의 제1 롤러(331)와 냉각기(300) 내주면의 둘레방향으로 90도 위상차를 갖도록 회전축(310)에 180도 이격되어 형성되는 한 쌍의 제2 롤러(332)를 포함할 수 있다.
즉, 도 4에 도시된 바와 같이, 평면도에서 봤을때, 냉각기(300)의 중심을 기준으로 한 쌍의 제1 롤러(331) 및 한 쌍의 제2 롤러(332)는 수직으로 교차하되, 한 쌍의 제1 롤러(331)가 한 쌍의 제2 롤러(332)보다 설치 높이가 높게 형성되어, 일부가 중첩되도록 형성될 수 있다.
이때, 도 5를 참조하면, 제1 롤러(331)를 지지하는 제1 롤러 지지부(340)가 제1 롤러(331) 및 회전축(310) 사이에 형성되고, 제2 롤러(332)를 지지하는 제2 롤러 지지부(350)가 제2 롤러(332) 및 회전축(310) 사이에 형성된다.
또한, 제1 롤러 지지부(340) 및 제2 롤러 지지부(350)에는 롤러 스프링(360)이 구비되어 제1 롤러(331) 및 제2 롤러(332)를 냉각기(300) 내주면에 밀착시킬 수 있다.
제1 롤러(331) 및 제2 롤러(332)를 냉각기(300) 내주면에 밀착시킴으로써, 냉각기(300) 내주면에 교착될 수 있는 가스 하이드레이트 펠릿을 효율적으로 분리시킬 수 있게된다.
또한, 이 경우, 제1 롤러(331) 및 제2 롤러(332)는 냉각기(300) 내주면을 공전하며, 자전도 하게 되어, 냉각기(300) 내주면에 빙착된 가스 하이드레이트 펠릿을 더욱 효율적으로 분리할 수 있게 되어 냉각처리효율을 높여 냉각처리시간을 줄일 수 있게 된다.
냉각처리효율을 높이고 냉각처리시간을 줄임으로써 전체 공정의 처리시간을 줄이게 되어 가스 하이드레이트 펠릿의 성형의 효율을 높일 수 있게 된다.
도 3 및 도 6을 참조하면, 본 발명에 따른 가스 하이드레이트 펠릿 성형장치는 교반날개 지지부(370)를 더 포함하고, 교반날개 지지부(370)와 회전축(310) 사이에는 윤활면이 형성되어, 교반날개(320)는 회전축(310)에 고정되지 않게 된다.
교반날개 지지부(370)는 복수의 교반날개(320)와 회전축(310) 사이에 형성되어 복수의 교반날개(320)를 지지하며, 이때 복수의 교반날개 지지부(370)와 제1 롤러 지지부(340) 및 제2 롤러 지지부(350) 각각은 베벨기어(B)로 연결될 수 있다.
또한, 제1 롤러 지지부(340) 상부에 형성된 베벨기어(B) 및 제2 롤러 지지부(350) 하부에 형성된 베벨기어(B)는 회전축(310)에 고정결합되어 있다.
최외각의 베벨기어(B)는 고정되어 회전축(310)의 회전에도 회전하지 않으며, 제1 롤러(331)와 제2 롤러(332)는 회전축(310)에 고정결합되어 회전축(310)의 회전에 따라 회전하게 되며, 제1 롤러 지지부(340) 및 제2 롤러 지지부(350)와 복수의 교반날개(320)가 베벨기어(B)로 연결되어 있어, 제1 롤러(331) 및 제2롤러의 회전 속도와 복수의 교반날개(320) 회전속도는 차이가 나게 된다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치의 냉각기(300)의 교반날개(320)는 각각의 제1 롤러지지부(340)와 제2 롤러지지부(350) 사이에 형성될 수 있다.
회전축(310)이 회전함에 따라 회전축(310)에 고정된 제1 롤러(331) 및 제2 롤러(332) 또한 회전축(310)의 회전속도로 회전하게 되고, 제1 롤러 지지부(340)와 제1 롤러 지지부(340)에 베벨기어(B)로 연결된 3개의 교반날개(320) 중 중앙의 교반날개(320)는 회전하지 않고 정지 상태로 있게되며, 나머지 두개의 교반날개(320)는 제1 롤러(331) 및 제2 롤러(332)의 회전속도의 2배의 속도로 회전하게 된다.
상술한 베벨기어(B)에 의한 차동기어의 원리를 본 발명의 냉각기(300) 내부의 교반날개(320), 제1 롤러(331) 및 제2 롤러(332)에 적용하여 각각의 회전속도를 상이하게 함으로써, 냉각기(300) 내부에서 교반의 효율성을 높여 가스 하이드레이트 펠릿의 교착 또는 빙착의 문제점을 줄일 수 있게 된다.
도 3에 도시된 바와 같이, 본 발명에 따른 냉각기(300)는 냉각기(300) 하부에 형성되어 냉각기(300) 내부로 냉각가스를 주입하는 냉각가스 주입부(380) 및 냉각기(300) 상부에 형성되어 외부로 냉각가스를 배출하는 냉각가스 배출부(390)를 더 포함할 수 있다.
냉각가스 주입부(380)로 주입되는 냉각가스 또는 냉가스 배출부로 배출되는 냉각가스의 온도와 유량을 조절하여 냉각기(300) 내부의 내부온도를 조절할 수 있게된다.
도 1 및 도 7을 참조하면, 냉각기(300)를 거친 가스 하이드레이트 펠릿은 감압을 위하여 감압기(400)로 이송된다.
감압기(400)는 감압을 위하여 가스 하이드레이트 펠릿을 수용하는 감압실(410), 및 감압실(410)에 연결되는 압력이 상이한 복수의 압력탱크를 포함할 수 있다.
복수의 압력탱크는, 제1 압력탱크(420), 제1 압력탱크(420)보다 압력이 낮은 제2 압력탱크(430), 제2 압력탱크(430)보다 압력이 낮은 제3 압력탱크(440)와 제3 압력탱크(440)보다 압력이 낮은 제4 압력탱크(450)를 포함한다.
감압공정에서 반복되는 강압 및 승압 과정의 경제적인 운영을 위해 중간압력 탱크들이 설치될 수 있다.
도 7은 본 발명의 일 실시 예에 따라 가스 하이드레이트 펠릿 성형압력인 약 50 기압과 상압 사이에 강압 및 승압 과정에 사용되는 중간 압력 탱크들과 배관 시스템을 설명하기 위한 도면이다.
감압장치의 자동 운전을 위해 순간적으로 개폐되는 밸브를 사용하는 경우 고압용기 및 배관의 파손을 방지하고 안전사고를 예방하기 위해 밸브 양측의 압력차를 20 기압 이내로 운영함이 바람직하다.
따라서, 약 50 기압의 내부 압력을 유지하는 제1 압력탱크(420), 30 기압 부근의 내부 압력을 유지하는 제2 압력탱크(430), 10 기압 부근의 내부 압력을 유지하는 제3 압력탱크(440) 및 상압 부근의 내부압력을 유지하는 제4 압력탱크(450)를 구비할 수 있다.
감압실(410)의 압력이 50 기압으로부터 상압으로 강압되는 과정은 다음과 같다. 1) 감압실(410)과 제2 압력탱크(430)를 연결하는 밸브를 열고, 감압실(410)과 제2 압력탱크(430)의 압력차가 기설정된 압력 크기(예를 들어 2 기압) 이내로 감소하면 밸브를 닫는다. 2) 감압실(410)과 제3 압력탱크(440)를 연결하는 밸브를 열고, 감압실(410)과 제3 압력탱크(440)의 압력차가 기설정된 압력 크기(예를 들어 2 기압) 이내로 감소하면 밸브를 닫는다. 3) 감압실(410)과 제4 압력탱크(450)를 연결하는 밸브를 열고, 감압실(410)과 상압탱크의 압력차가 기설정된 압력 크기(예를 들어 2 기압) 이내로 감소하면 밸브를 닫는다.
감압실(410)의 압력이 상압으로부터 50 기압으로 승압되는 과정은 다음과 같다. 1) 감압실(410)과 제3 압력탱크(440)를 연결하는 밸브를 열고, 감압실(410)과 제3 압력탱크(440)의 압력차가 기설정된 압력 크기(예를 들어 2 기압) 이내로 감소하면 밸브를 닫는다. 2) 감압실(410)과 제2 압력탱크(430)를 연결하는 밸브를 열고, 감압실(410)과 제2 압력탱크(430)의 압력차가 기설정된 압력 크기(예를 들어 2 기압) 이내로 감소하면 밸브를 닫는다. 3) 감압실(410)과 제1 압력탱크(420)를 연결하는 밸브를 열고, 감압실(410)과 고압탱크의 압력차가 기설정된 압력 크기(예를 들어 2 기압) 이내로 감소하면 밸브를 닫는다.
제4 압력탱크(450)는 상압을 유지하는 것으로서, 펠릿성형기(510)로부터 발생되는 증발가스(BOG, Boil Off Gas)를 공급받을 수 있다.
제4 압력탱크(450), 제3 압력탱크(440), 및 제2 압력탱크(430)의 각각의 압력이 기설정값 이상인 경우, 제4 압력탱크(450), 제3 압력탱크(440), 및 제2 압력탱크(430)는 제3 압력탱크(440), 제2 압력탱크(430), 및 제1 압력탱크(420)로 각각 가스를 공급할 수 있다.
또한, 제1 압력탱크(420)의 가스는 감압기(400)의 승압 마지막 단계와 추가 승압 후 가스 하이드레이트 슬러리 제조과정에서 소비될 수 있다.
따라서, 감압과정에서 방출되는 고압 기체의 질량을 감축할 수 있고, 승압과정에서 방출되는 고압기체의 일부를 회수하여 재사용할 수 있게 된다.
복수개의 감압기(400)에 공동으로 제1 압력탱크(420), 제2 압력탱크(430), 제3 압력탱크(440), 제4 압력탱크(450)들을 사용하는 경우 별개 감압기(400)의 강압 또는 승압 과정이 동시에 이루어질 수 있으므로 개별 감압기(400)의 강압과정에서 밸브의 폐쇄가 지연되는 문제점이 발생할 수 있으므로, 본 발명의 실시예에서는 위해서 감압실(410)의 체적에 비하여 제1 압력탱크(420), 제2 압력탱크(430), 제3 압력탱크(440), 제4 압력탱크(450)의 체적을 충분히 크게 할 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 가스 하이드레이트 펠릿 성형장치는 벨트 컨베이어(600)를 더 포함할 수 있다.
벨트 컨베이어(600)는 감압된 가스 하이드레이트 펠릿을 펠릿성형기(510)로 이송하는 것으로 기설정된 크기의 메시(mesh)를 포함하는 메시 벨트컨베이어일 수 있다.
메시 벨트컨베이어에 낙하한 가스 하이드레이트 펠릿 중 일부는 메시를 통과하여 이송부(610)에 모아지고, 이송부(610)는 이러한 가스 하이드레이트 펠릿을 펠릿성형기(510)로 이송하며, 기설정크기 이상의 가스 하이드레이트 펠릿은 메시 벨트컨베이어에 의하여 펠릿성형기(510) 또는 가스 하이드레이트 펠릿을 일시적으로 저장하는 임시 보관부(621)로 이송된다.
즉, 벨트 컨베이어(600)는 펠릿성형기(510) 방향 또는 펠릿성형기(510)의 역방향인 임시 보관부(621) 방향으로 진행방향이 조절되어, 감압기(400)를 통과한 가스 하이드레이트 펠릿을 펠릿성형기(510)로 보내거나 임시 보관부(621)로 보낼 수 있다.
펠릿성형기(510)는 브리케팅(briquetting) 머신(500)을 포함하고, 펠릿성형기(510)로 이송된 가스 하이드레이트 펠릿은 더 큰 제1 펠릿(G)으로 성형될 수 있다.
또한, 임시 보관부(621)로 이송된 가스 하이드레이트 펠릿은 임시 보관부(621) 하부에 형성된 정량 배분기(622)를 거쳐 운반부(800)를 통하여 저장부(700)로 이송된다.
이때, 펠릿성형기(510)에서 성형되어 직경이 커진 제1 펠릿(G) 또한 저장부(700)로 이송되어 함께 저장될 수 있다.
본 발명에 따라, 크기가 상이한 가스 하이드레이트 펠릿을 혼합하여 저장함으로써, 공극률이 감소되어 가스 하이드레이트 펠릿의 저장효율이 향상될 수 있다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
B: 베벨기어
F: 고정날개
G: 제1 펠릿
H: 냉각된 가스 하이드레이트 펠릿
S: 메쉬를 통과한 가스 하이드레이트 펠릿
W: 회전날개
100: 분쇄기
200: 분배기
300: 냉각기
310: 회전축
320: 교반날개
330: 롤러부
331: 제1 롤러
332: 제2 롤러
340: 제1 롤러 지지부
350: 제2 롤러 지지부
360: 롤러 스프링
370: 교반날개 지지부
380: 냉각가스 주입부
390: 냉각가스 배출부
400: 감압기
410: 감압실
420: 제1 압력탱크
430: 제2 압력탱크
440: 제3 압력탱크
450: 제4 압력탱크
500: 브리케팅 머신
510: 펠릿성형기
600: 벨트 컨베이어
610: 이송부
621: 임시 보관부
622: 정량 배분기
700: 저장부
800: 운반부

Claims (17)

  1. 탈수공정을 거친 가스 하이드레이트가 분쇄되는 분쇄기;
    내부에 회전축을 구비하고, 상기 회전축의 높이 방향을 따라 설치되는 복수의 교반날개를 포함하여 상기 가스 하이드레이트가 기설정된 온도로 냉각되는 냉각기;
    냉각된 상기 가스 하이드레이트가 기설정된 압력으로 감압되는 감압기; 및
    감압된 상기 가스 하이드레이트를 펠릿으로 성형하는 펠릿성형기를 포함하는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  2. 제1항에 있어서,
    복수의 상기 교반날개는 회전속도가 상이한 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  3. 제2항에 있어서,
    상기 회전축에 결합되되 상기 냉각기 내주면과 마찰에 의하여 회전할 수 있는 롤러부를 더 포함하는 가스 하이드레이트 펠릿 성형장치.
  4. 제3항에 있어서,
    상기 롤러부는;
    상기 회전축에 180도 이격되어 형성되는 한 쌍의 제1 롤러; 및
    각각이 한 쌍의 제1 롤러와 상기 회전축 길이 방향으로 일부가 중첩되고, 상기 냉각기 내주면의 둘레방향으로 상기 한 쌍의 제1 롤러와 90도 위상차를 갖도록 상기 회전축에 180도 이격되어 형성되는 한 쌍의 제2 롤러를 포함하는 가스 하이드레이트 펠릿 성형장치.
  5. 제4항에 있어서,
    상기 제1 롤러 및 상기 회전축 사이에 형성되어 상기 제1 롤러를 지지하는 제1 롤러 지지부; 및
    상기 제2 롤러 및 상기 회전축 사이에 형성되어 상기 제2 롤러를 지지하는 제2 롤러 지지부를 더 포함하고,
    상기 제1 롤러 지지부 및 상기 제2 롤러 지지부에는 각각 상기 제1 롤러 및 상기 제2 롤러를 상기 냉각기 내주면에 밀착시킬 수 있도록 롤러 스프링이 구비되는 것을 특징으로 가스 하이드레이트 펠릿 성형장치.
  6. 제5항에 있어서,
    복수의 상기 교반날개와 상기 회전축 사이에 형성되어 복수의 상기 교반날개를 지지하는 교반날개 지지부를 더 포함하고,
    상기 교반날개 지지부와 상기 회전축 사이에는 윤활면이 형성되며,
    상기 제1 롤러 지지부 및 상기 제2 롤러 지지부와 복수의 상기 교반날개 지지부 각각은 베벨기어로 연결되는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  7. 제6항에 있어서,
    상기 제1 롤러 지지부의 상부에 형성된 베벨기어; 및
    상기 제2 롤러 지지부의 하부에 형성된 베벨기어는 상기 회전축에 고정결합되는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  8. 제1항에 있어서,
    상기 냉각기는,
    하부에 형성되어 내부로 냉각가스가 주입되는 냉각가스 주입부; 및
    상부에 형성되어 외부로 냉각가스가 배출되는 냉각가스 배출부를 더 포함하는 가스 하이드레이트 펠릿 성형장치.
  9. 제1항에 있어서,
    감압된 상기 가스 하이드레이트 펠릿을 상기 펠릿성형기로 이송하는 벨트컨베이어를 더 포함하고,
    상기 벨트 컨베이어는 기설정된 크기의 메시(mesh)를 포함하는 메시 벨트컨베이어인 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  10. 제9항에 있어서,
    상기 벨트컨베이어의 메시를 통과한 상기 가스 하이드레이트 펠릿을 수용하여 상기 펠릿성형기로 이송하는 이송부를 더 포함하는 가스 하이드레이트 펠릿 성형장치.
  11. 제10항에 있어서,
    상기 벨트 컨베이어는 상기 펠릿성형기 방향 또는 상기 펠릿성형기의 역방향으로 진행방향이 조절될 수 있는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  12. 제10항에 있어서,
    상기 펠릿성형기는,
    브리케팅(briquetting) 머신을 포함하고,
    상기 브리케팅 머신에 의하여 이송된 상기 가스 하이드레이트 펠릿이 상기 가스 하이드레이트 펠릿보다 직경이 큰 제1 펠릿으로 성형되는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  13. 제12항에 있어서,
    상기 벨트 컨베이어가 상기 펠릿성형기의 역방향으로 진행되어 모아진 제2 펠릿 및 상기 브리케팅 머신에서 성형된 상기 제1 펠릿을 함께 저장하는 저장부를 더 포함하는 가스 하이드레이트 펠릿 성형장치.
  14. 제1항에 있어서,
    상기 감압기는,
    냉각된 상기 가스 하이드레이트가 감압을 위하여 수용되는 감압실;
    상기 감압실에 연결되는 압력이 상이한 복수의 압력탱크를 포함하는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  15. 제14항에 있어서,
    상기 복수의 압력탱크는,
    제1 압력탱크;
    상기 제1 압력탱크보다 압력이 낮은 제2 압력탱크;
    상기 제2 압력탱크보다 압력이 낮은 제3 압력탱크; 및
    상기 제3 압력탱크보다 압력이 낮은 제4 압력탱크를 포함하는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  16. 제15항에 있어서,
    상기 제4 압력탱크는 상압을 유지하는 것으로,
    상기 펠릿성형기로부터 발생되는 증발가스(BOG, Boil Off Gas)를 공급받을 수 있는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
  17. 제16항에 있어서,
    상기 제4 압력탱크, 상기 제3 압력탱크, 및 상기 제2 압력탱크의 각각의 압력이 기설정값 이상인 경우, 상기 제4 압력탱크, 상기 제3 압력탱크, 및 상기 제2 압력탱크는 상기 제3 압력탱크, 상기 제2 압력탱크, 및 상기 제1 압력탱크로 각각 가스를 공급할 수 있는 것을 특징으로 하는 가스 하이드레이트 펠릿 성형장치.
PCT/KR2013/005696 2013-06-27 2013-06-27 가스 하이드레이트 펠릿 성형장치 WO2014208793A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2013/005696 WO2014208793A1 (ko) 2013-06-27 2013-06-27 가스 하이드레이트 펠릿 성형장치
US14/768,411 US10351790B2 (en) 2013-06-27 2013-06-27 Apparatus for molding gas hydrate pellets
KR1020157015481A KR101692260B1 (ko) 2013-06-27 2013-06-27 가스 하이드레이트 펠릿 성형장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005696 WO2014208793A1 (ko) 2013-06-27 2013-06-27 가스 하이드레이트 펠릿 성형장치

Publications (1)

Publication Number Publication Date
WO2014208793A1 true WO2014208793A1 (ko) 2014-12-31

Family

ID=52142110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005696 WO2014208793A1 (ko) 2013-06-27 2013-06-27 가스 하이드레이트 펠릿 성형장치

Country Status (3)

Country Link
US (1) US10351790B2 (ko)
KR (1) KR101692260B1 (ko)
WO (1) WO2014208793A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378866B1 (ko) * 2018-04-19 2022-03-25 주식회사 창성이엔지 펠릿 제조 장치
US11543262B2 (en) 2018-12-05 2023-01-03 Toyota Motor North America, Inc. Data analytics for smart vehicle fueling
CN112642248B (zh) * 2020-12-18 2022-08-02 四川宏华石油设备有限公司 一种页岩气高效除砂装置、除砂系统及除砂方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264105A (ja) * 2004-03-22 2005-09-29 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの製造方法とその装置
JP2007254503A (ja) * 2006-03-20 2007-10-04 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット製造装置
JP2007262376A (ja) * 2006-03-30 2007-10-11 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット冷却装置
JP2007270031A (ja) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート生成装置
KR20130030679A (ko) * 2011-09-19 2013-03-27 한국생산기술연구원 스크레퍼를 이용한 가스하이드레이트 반응기의 열전달 및 반응효율 향상 방법 및 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US449942A (en) * 1891-04-07 Conveyer and separator-apron for mining machinery
US2758A (en) * 1842-08-25 Noah h
US521315A (en) * 1894-06-12 Territory
US914973A (en) * 1906-07-23 1909-03-09 Charles F Burton Feed-regulator for powdered material.
US1535848A (en) * 1924-09-03 1925-04-28 Nicholson Arthur Harold Air refrigerating apparatus
NL106426C (ko) * 1958-10-07
US3250321A (en) * 1964-07-09 1966-05-10 Bethlehem Steel Corp Rotary batch processor
IT1258194B (it) * 1992-08-26 1996-02-21 Mopa Srl Stazione di distribuzione di prodotti su una linea di alimentazione dimacchine confezionatrici o di eventuale accumulo
US5545102A (en) * 1994-07-20 1996-08-13 General Motors Corporation Differential gear assembly
EP0788966B1 (de) * 1995-10-13 2003-04-23 Intertractor GmbH Vorrichtung zum Spannen und Abfedern des Leitrades von Kettenfahrzeugen
DE19711022A1 (de) * 1997-03-17 1998-09-24 Basf Ag Verwendung eines Mehrstufenrührers zur Herstellung von Polymerisaten
JP2002220353A (ja) * 2000-11-21 2002-08-09 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの造粒及び荷役並びに輸送方法
JP2003105362A (ja) * 2001-07-24 2003-04-09 Mitsubishi Heavy Ind Ltd 天然ガスハイドレートの生成方法および生成システム
MY134335A (en) * 2002-09-11 2007-12-31 Jfe Eng Corp Process for producing gas clathrate and production apparatus
JP4219282B2 (ja) * 2004-01-13 2009-02-04 三井造船株式会社 ガスハイドレート脱水機の攪拌翼構造
JP2006124532A (ja) 2004-10-29 2006-05-18 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート冷却装置
US7900857B2 (en) * 2008-07-17 2011-03-08 Xyleco, Inc. Cooling and processing materials
KR101404068B1 (ko) * 2013-07-09 2014-06-09 동국대학교 산학협력단 가스 하이드레이트 냉각장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264105A (ja) * 2004-03-22 2005-09-29 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの製造方法とその装置
JP2007254503A (ja) * 2006-03-20 2007-10-04 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット製造装置
JP2007262376A (ja) * 2006-03-30 2007-10-11 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット冷却装置
JP2007270031A (ja) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート生成装置
KR20130030679A (ko) * 2011-09-19 2013-03-27 한국생산기술연구원 스크레퍼를 이용한 가스하이드레이트 반응기의 열전달 및 반응효율 향상 방법 및 장치

Also Published As

Publication number Publication date
KR101692260B1 (ko) 2017-01-04
KR20150096657A (ko) 2015-08-25
US20160002550A1 (en) 2016-01-07
US10351790B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2014208793A1 (ko) 가스 하이드레이트 펠릿 성형장치
JP5019683B2 (ja) ガスハイドレートスラリーの脱水装置及び脱水方法
CN103154275B (zh) 冶金炉渣的干法粒化
WO2012026631A1 (ko) 천연가스 하이드레이트 제조 장치 및 천연가스 하이드레이트 제조 방법
CN107250078B (zh) 一种回收钢铁生产步骤中产生的白渣的装置
US4488838A (en) Process and apparatus for feeding particulate material into a pressure vessel
KR102389265B1 (ko) 벌크 재료의 냉각
JP2003105362A (ja) 天然ガスハイドレートの生成方法および生成システム
WO2014208791A1 (ko) 가스 하이드레이트 펠릿 재기화 장치
WO2014208792A1 (ko) 가스 하이드레이트 펠릿 저장장치
US3282059A (en) Method of purging heat exchangers of solidified impurities in the liquefaction of natural gas
NO135969B (ko)
US8597386B2 (en) Method and system for continuously pumping a solid material and method and system for hydrogen formation
JPS5844958B2 (ja) 高温粒状物質の熱回収方法
AU2011257264B2 (en) Method and device for manufacturing vitreous
KR20140140772A (ko) 천연가스 하이드레이트 수송선의 재기화 시스템 및 방법
JP4184906B2 (ja) ガスハイドレートペレットおよびその製造方法
US20170233839A1 (en) Blast furnace plant
KR20110029942A (ko) 괴성체 제조 장치 및 이를 포함하는 용철제조장치
JP3625810B2 (ja) Lng冷熱利用による炭酸ガス深冷分離方法および装置
JP4654171B2 (ja) 銅製錬用溶剤のボールミル粉砕方法
CN202272881U (zh) 热干燥颗粒状渣颗粒的热回收处理装置
JP2006105485A (ja) 灰処理装置
WO2012134077A2 (ko) 가스 수화물 연속 제조 장치
EP0022549A1 (fr) Procédé et installation d'injection de combustibles solides dans un four à cuve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015481

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14768411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888078

Country of ref document: EP

Kind code of ref document: A1