WO2014208620A1 - 酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉 - Google Patents
酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉 Download PDFInfo
- Publication number
- WO2014208620A1 WO2014208620A1 PCT/JP2014/066889 JP2014066889W WO2014208620A1 WO 2014208620 A1 WO2014208620 A1 WO 2014208620A1 JP 2014066889 W JP2014066889 W JP 2014066889W WO 2014208620 A1 WO2014208620 A1 WO 2014208620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tin oxide
- sno
- refractory
- zro
- sio
- Prior art date
Links
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 title claims abstract description 160
- 229910001887 tin oxide Inorganic materials 0.000 title claims abstract description 150
- 239000000203 mixture Substances 0.000 title claims abstract description 89
- 239000000843 powder Substances 0.000 title claims abstract description 86
- 239000011521 glass Substances 0.000 title claims description 41
- 238000002844 melting Methods 0.000 title claims description 34
- 230000008018 melting Effects 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000011823 monolithic refractory Substances 0.000 title abstract description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 78
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 116
- 239000002245 particle Substances 0.000 claims description 92
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 66
- 239000011819 refractory material Substances 0.000 claims description 36
- 239000006104 solid solution Substances 0.000 claims description 33
- 229910052845 zircon Inorganic materials 0.000 claims description 28
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 28
- 238000010276 construction Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000002699 waste material Substances 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 239000002270 dispersing agent Substances 0.000 claims description 9
- 239000004568 cement Substances 0.000 claims description 7
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000009472 formulation Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 27
- 239000002893 slag Substances 0.000 abstract description 24
- 230000007797 corrosion Effects 0.000 abstract description 17
- 238000005260 corrosion Methods 0.000 abstract description 17
- 239000000377 silicon dioxide Substances 0.000 abstract description 12
- 229910052681 coesite Inorganic materials 0.000 abstract 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract 4
- 229910052682 stishovite Inorganic materials 0.000 abstract 4
- 229910052905 tridymite Inorganic materials 0.000 abstract 4
- 230000003628 erosive effect Effects 0.000 description 31
- 230000000694 effects Effects 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 239000010419 fine particle Substances 0.000 description 11
- 239000012615 aggregate Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 230000001788 irregular Effects 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 239000011362 coarse particle Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 5
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- -1 Ta 2 O 5 Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009970 fire resistant effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 2
- ZECRJOBMSNYMJL-UHFFFAOYSA-N copper;oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[O-2].[Cu+2].[Zr+4] ZECRJOBMSNYMJL-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000025481 Symphonia <angiosperm> Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- AEJIMXVJZFYIHN-UHFFFAOYSA-N copper;dihydrate Chemical compound O.O.[Cu] AEJIMXVJZFYIHN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- VMZLBYMFCQDNOM-UHFFFAOYSA-L disodium 2,3-dihydroxybutanedioate 2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [Na+].[Na+].[O-]C(=O)C(O)C(O)C([O-])=O.OC(=O)CC(O)(C(O)=O)CC(O)=O VMZLBYMFCQDNOM-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 229940005740 hexametaphosphate Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229940045916 polymetaphosphate Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229960004599 sodium borate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940001593 sodium carbonate Drugs 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
- C04B35/457—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/42—Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
- C03B5/43—Use of materials for furnace walls, e.g. fire-bricks
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M5/00—Casings; Linings; Walls
- F23M5/02—Casings; Linings; Walls characterised by the shape of the bricks or blocks used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details peculiar to crucible or pot furnaces
- F27B14/10—Crucibles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/0003—Linings or walls
- F27D1/0006—Linings or walls formed from bricks or layers with a particular composition or specific characteristics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3218—Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5472—Bimodal, multi-modal or multi-fraction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M2900/00—Special features of, or arrangements for combustion chambers
- F23M2900/05004—Special materials for walls or lining
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details peculiar to crucible or pot furnaces
- F27B14/10—Crucibles
- F27B2014/104—Crucible linings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
Definitions
- the present invention relates to a powder composition for a tin oxide amorphous refractory, a method for producing a tin oxide amorphous refractory, a glass melting furnace and a waste melting furnace, and in particular, SnO 2 , ZrO 2 and SiO 2 are essential.
- the present invention relates to a method for producing an amorphous refractory, a glass melting furnace, and a waste melting furnace.
- Refractories used in glass melting furnaces and waste melting furnaces are roughly divided into regular refractories and irregular refractories. Since the construction of the fixed refractory is a brick-stacking operation and requires heavy labor and high technology, lining with an irregular refractory has been widely used in recent years.
- the materials conventionally used as amorphous refractories for melting furnaces are zirconia and chromia amorphous refractories for glass production, and alumina-chromium oxide amorphous refractories for waste melting furnaces.
- these materials have low corrosion resistance for zirconia amorphous refractories, and high corrosion resistance for chromia amorphous refractories, but produce hexavalent chromium. There was a problem inviting.
- tin oxide refractories obtained by sintering a refractory composition mainly composed of SnO 2 have very high corrosion resistance against slag as compared to commonly used refractories. Use as a refractory for waste melting furnaces is being studied.
- Patent Document 1 proposes a dense tin oxide refractory for a glass melting furnace containing 85 to 99% by weight of SnO 2 .
- Patent Document 2 monolithic refractories for waste melting furnace containing SnO 2 0.5 ⁇ 40% by weight have been proposed, monolithic refractories containing SnO 2 more than 40 wt% Has not been proposed so far.
- SnO 2 is volatilized as SnO in a high temperature field, particularly in a high temperature field of 1200 ° C. or higher. Due to this volatilization, the structure of the refractory becomes porous and embrittled, and the refractory peels off, or in the production of glass, the volatilized SnO component is concentrated and solidified in the low temperature part of the glass production apparatus. The SnO 2 component may be dropped and mixed as a foreign substance in the glass, resulting in a decrease in yield in the production of the glass molded body.
- a tin oxide sintered body is used as an electrode material for melting a glass in a high temperature field.
- a tin oxide electrode material contains 90 to 98% by mass or more of SnO 2 and 0.0. It is made from 1 to 2.0% by mass sintering aid and low resistance agent, and is used as a material that has both high corrosion resistance to molten glass and low resistance sufficient for energization. ing.
- a general tin oxide electrode material gradually evaporates as SnO in a high temperature field, particularly at a high temperature field of 1200 ° C. or more, and thus deterioration cannot be avoided.
- Non-Patent Document 1 discloses that 0.5 mol% of a sintering aid CoO is added to tin oxide powder, ZrO 2 is used as a volatilization suppressing component, and ZrO 2 It has been reported that a tin oxide sintered body containing 0 to 10 mol% with respect to the total content of 2 and SnO 2 and suppressing SnO 2 volatilization.
- Patent Document 3 discloses a Y component which is an oxide such as ZrO 2 , HfO 2 , TiO 2 , Ta 2 O 5 , and CeO 2 as a volatilization inhibitor, together with a sintering aid and a low resistance agent. and the additional inclusion so that 0-8% by weight relative to the total content of SnO 2, glass melting electrode material has been proposed which suppresses volatilization of SnO 2. Further, Patent Document 2, as an example of using SnO 2 as a refractory material of the monolithic refractories, is proposed monolithic refractories for waste melting furnace containing SnO 2 0.5 ⁇ 40 wt% Yes.
- the tin oxide sintered body containing these volatilization-suppressing components has a structure in which the volatilization-suppressing component is dissolved in the tin oxide particles.
- the volatilization-suppressing component is dissolved in the tin oxide particles.
- the volatilization suppressing component that has been dissolved is concentrated and deposited on the surface of the tin oxide particles and coats the surface of the tin oxide particles, the volatilization of SnO 2 can be suppressed.
- the SnO 2 volatilization suppressing component as described above is concentrated in the tin oxide particles due to the volatilization of SnO 2 , and is deposited on the surface of the tin oxide particles for the first time when the solid solution limit concentration is exceeded.
- the volatilization suppressing component In the initial stage after the start of volatilization of SnO 2, the volatilization suppressing component is not sufficiently deposited on the surface of the tin oxide particles, and an excellent volatilization suppression effect is not exhibited from the initial stage after the start of volatilization. For this reason, when a tin oxide refractory is used as a member for a long time, deterioration of the member due to volatilization of SnO 2 is inevitable.
- the refractory peels off due to embrittlement of the refractory structure, or in the production of glass, the volatilized SnO component is removed from the glass melting device.
- the SnO 2 component is dropped and mixed as a foreign substance in the glass, thereby causing a problem of reducing the yield in the production of the glass molded body.
- the present invention solves the problems of the above-described conventional technology, suppresses the volatilization of SnO 2 in a high temperature field from an early stage, and also has high erosion resistance against slag. It is intended to provide a powder composition capable of obtaining a tin oxide amorphous refractory suitable as a refractory for a waste melting furnace, a method for producing a tin oxide amorphous refractory, a glass melting furnace, and a waste melting furnace To do.
- the content ratio of SnO 2 is 83 to 98 mol%, the content ratio of ZrO 2 is 1 to 12 mol%, and the content of SiO 2 with respect to the total content of SnO 2 , ZrO 2 and SiO 2
- Any of [1] to [6] further including at least one component selected from the group consisting of oxides of CuO, ZnO, MnO, CoO and Li 2 O in the refractory composition.
- the tin oxide amorphous refractory according to crab [8] The tin oxide amorphous refractory powder according to any one of [1] to [7], wherein a dispersant is contained in an amount of 0.01 to 2% by mass based on the refractory composition. Composition. [9] The binder contains one or more selected from the group consisting of alumina cement and colloidal alumina, and the content of the binder in the refractory composition is 5% by mass or less. 8] The powder composition for tin oxide amorphous refractories according to any one of [8].
- the tin oxide material according to any one of [1] to [9], wherein tin oxide particles in which 1 to 25 mol% of ZrO 2 is solid-solved are used as the fire resistant compound.
- the powder composition for a tin oxide amorphous refractory is characterized in that a zircon phase and a zirconia phase are formed on the surface of tin oxide particles when heat-treated at 1300 ° C. for 350 hours after construction.
- a tin oxide amorphous refractory comprising the powder composition for a tin oxide amorphous refractory according to any one of [1] to [11], kneaded with water and then applied. Manufacturing method.
- a glass melting furnace comprising a tin oxide amorphous refractory obtained by applying the powder composition for a tin oxide amorphous refractory according to any one of [1] to [11].
- a waste melting furnace comprising an amorphous refractory obtained by applying the powder composition for a tin oxide amorphous refractory according to any one of [1] to [11].
- the powder composition for a tin oxide amorphous refractory and the method for producing a tin oxide amorphous refractory according to the present invention SnO 2 having high erosion resistance to slag and SnO 2 volatilization in a high temperature field are suppressed. Since a highly effective refractory containing ZrO 2 and SiO 2 in a well-balanced state is obtained, an excellent volatilization suppressing effect can be obtained from the initial stage after the start of volatilization of SnO 2 without greatly reducing the erosion resistance to glass. It is possible to provide an amorphous refractory with high corrosion resistance capable of exhibiting Furthermore, since this amorphous refractory can be constructed according to the shape of the construction object, the object is not limited and can be widely applied.
- the amorphous refractory obtained by applying the powder composition for tin oxide amorphous refractory is provided, there is no gap in the furnace wall or the like. It can be formed, exhibits excellent fire resistance, exhibits SnO 2 volatilization suppression effect, and has a tin oxide amorphous refractory with excellent erosion resistance against slag, thus extending the product life of the furnace it can.
- the tin oxide amorphous refractory powder composition of the present invention contains a refractory composition so that the contents of SnO 2 , ZrO 2 and SiO 2 in the tin oxide refractory are a predetermined amount. It has the characteristics.
- the present invention will be described in detail.
- the powder composition for tin oxide amorphous refractories according to the present invention contains a fire-resistant compound containing SnO 2 and ZrO 2 as essential components as an aggregate.
- SnO 2 used in the present invention has a strong resistance to slag erosion and has high heat resistance, so it is contained as a main component of the amorphous refractory.
- ZrO 2 used in the present invention is a component that has a strong resistance to erosion of molten slag and further has an action of suppressing the volatilization of SnO 2 which is the main component of the amorphous refractory.
- SiO 2 used in the present invention is a component that forms matrix glass and acts to relieve stress. Further, a component having also acts to suppress the volatilization of SnO 2 as the main component in monolithic refractories.
- the powder composition for tin oxide amorphous refractories of the present invention preferably contains a binder in addition to the refractory composition.
- the binder is a binder component used for improving the workability of the amorphous refractory.
- this component is contained, since the strength of the molded body after construction is improved, workability is improved.
- the corrosion resistance with respect to slag is low, and formation of the neck of a tin oxide and a zirconia particle is inhibited.
- the kind and addition amount of the binder used in the present invention are not particularly different from those used in conventional amorphous refractories.
- alumina cement, colloidal alumina, colloidal silica, magnesia cement, phosphate, silicate and the like can be used.
- alumina cement, colloidal alumina, and colloidal silica are preferable, and alumina cement is more preferable.
- the amount of the binder used is preferably 0 to 10% by mass, more preferably 0 to 5% by mass in the refractory formulation.
- colloidal alumina, colloidal silica, and the like are aqueous solutions, but the amount used in the present invention is expressed in terms of solid matter.
- the tin oxide refractory powder composition preferably contains a dispersant in addition to the refractory compound.
- the dispersant imparts fluidity during construction of the irregular refractory. Specific examples are not limited in any way. For example, sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium acid hexametaphosphate, sodium borate, sodium carbonate, polymetaphosphate, etc., sodium citrate Sodium tartrate, sodium polyacrylate, sodium sulfonate, polycarboxylate, ⁇ -naphthalenesulfonate, naphthalene sulfonic acid, carboxyl group-containing polyether dispersant, and the like.
- the addition amount is preferably 0.01 to 2% by mass, more preferably 0.03 to 1% by mass, based on 100% by mass of the refractory compound.
- the total content of SnO 2 , ZrO 2 and SiO 2 contained in the refractory composition is 70% by mass or more. This is because if the refractory contains too much other components, the excellent erosion resistance to the glass of SnO 2 is impaired.
- the total content of SnO 2 , ZrO 2 and SiO 2 is preferably 85% by mass or more, and more preferably 95% by mass or more.
- the total content of SnO 2 , ZrO 2 and SiO 2 is preferably 97 to 99.5% by mass.
- Aggregates used as a refractory composition are preferably applied as particles, and the particle diameter of the particles is, for example, a maximum particle diameter of 1 to 3 mm, coarse particles, medium particles, fine particles, fine particles and particle sizes. It is preferable to adjust appropriately by combining different particles.
- a refractory aggregate having a coarse particle size of 3 to 50 mm may be combined. Good.
- a particle size says the value measured according to JISR2552.
- a product obtained by pulverizing a product after using a refractory, a refractory waste, etc., and adjusting the particle size may be used.
- a powdery particle comprising one or more kinds selected from the group consisting of tin oxide particles having a particle size of less than 15 ⁇ m, zircon particles having a particle size of less than 15 ⁇ m, and solid solution particles of tin oxide and zirconia having a particle size of less than 15 ⁇ m. It is preferable to mix fine powder.
- the particle size of the fine powder used here is preferably a fine powder of 10 ⁇ m or less, more preferably a fine powder of 3 ⁇ m or less.
- fine powder of 3 ⁇ m or less is particularly referred to as fine powder.
- a neck is formed between the tin oxide particles having a larger particle diameter, and the corrosion resistance against the slag can be improved.
- a fine powder comprising at least one selected from the group consisting of tin oxide particles of 3 ⁇ m or less, zircon particles of 3 ⁇ m or less, and solid solution particles of tin oxide and zirconia of 3 ⁇ m or less in the fireproof compound 1 It is preferably contained in an amount of ⁇ 10% by mass, and the corrosion resistance against slag can be further improved.
- the content of SnO 2 , ZrO 2 and SiO 2 in the refractory composition is set within a predetermined range, and further, the relationship between these components is set to have a predetermined relationship, so that A tin oxide amorphous refractory that suppresses volatilization of SnO 2 from an early stage and also has high erosion resistance against slag is obtained.
- the composition contains SiO 2 as in the present invention, the cause is not clear, but the solid solution limit concentration of ZrO 2 in SnO 2 is greatly reduced to about 12 mol%. Accordingly, in the composition range containing SiO 2, compared with the case of containing only ZrO 2 without containing SiO 2, when SnO 2 was volatilized at high temperature field, it was dissolved in SnO 2 ZrO 2 reaches the solid solution limit at an early stage and precipitates on the surface of the tin oxide particles. Therefore, as compared with a case not containing SiO 2, it is possible excellent volatilization suppressing effect of SnO 2 from the initial stage after the start volatilization.
- tin oxide-zirconia solid solution most of the silica existing in an amorphous state between particles of tin oxide in which ZrO 2 is dissolved (hereinafter also referred to as tin oxide-zirconia solid solution) exceeds the solid solution limit and precipitates. and it reacted with zirconia, tin oxide as zircon - exist between the zirconia solid solution particles, reducing the relative surface area of SnO 2. Therefore, even if compared with the case of containing ZrO 2 without containing SiO 2 , it exhibits an excellent volatilization suppressing effect in the long term. Moreover, there exists zirconia which does not react with silica, and this zirconia alone exhibits a volatilization suppressing effect.
- the presence of zircon and zirconia can be confirmed by using an electron microscope apparatus such as SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Detector, manufactured by Hitachi High-Technologies Corporation, trade name: S-3000H).
- SEM-EDX Sccanning Electron Microscope-Energy Dispersive X-ray Detector, manufactured by Hitachi High-Technologies Corporation, trade name: S-3000H).
- the solid solution limit concentration is a refractory obtained by firing at 1400 ° C. by changing the addition amount of zircon, and the refractory structure is analyzed by SEM-EDX and is dissolved in SnO 2 . It was determined as the approximate solid solution limit concentration of ZrO 2 .
- the reason why the refractory composition in the present invention is limited to the above composition will be described below.
- the content ratio of each component when the total amount of SnO 2 , ZrO 2 and SiO 2 is 100 mol% is as described above, SnO 2 is 55 to 98 mol%, ZrO 2 is 1 to 30 mol%, SiO 2
- the solid solution limit concentration of ZrO 2 is reduced, and zirconia is precipitated on the surface of the tin oxide particles at an early stage from the start of volatilization of SnO 2 . Therefore, compared with the case where it does not contain SiO 2 at all, it is possible to exhibit an excellent SnO 2 volatilization suppressing effect from an earlier stage.
- silica reacts with zirconia precipitated beyond the solid solution limit, exists as particles between tin oxide-zirconia solid solution particles as zircon, and reduces the surface area of SnO 2 exposed to the external environment. Therefore, compared with the case where ZrO 2 is contained without containing SiO 2 , the SnO 2 volatilization suppressing effect which is excellent in the long term is exhibited.
- ZrO 2 is mainly in a solid solution state in SnO 2 , and the amount exceeding the solid solution limit is precipitated on the surface of the tin oxide particles.
- Precipitated zirconia reacts with silica and is present on the surface of tin oxide-zirconia solid solution particles as zircon.
- some of the unreacted zirconia as tin oxide-zirconia solid solution particles. Present on the surface.
- SiO 2 reacts with SnO 2 , ZrO 2 and other components to form a structure that exists between particles of tin oxide-zirconia solid solution in an amorphous state, and zirconia is precipitated on the particle surface. Reacts with zirconia to form zircon.
- the amount of solid solution of ZrO 2 in SnO 2 reached the solid solution limit concentration from the early stage where SnO 2 was volatilized, and zircon and zirconia were oxidized. Since it is formed in tin, it exhibits an excellent SnO 2 volatilization suppression effect.
- zircon deposited on the surface of tin oxide also serves as a neck that connects the tin oxide particles, and zircon has a strong resistance to erosion of molten slag, thus improving the corrosion resistance against slag. Contribute.
- the powder composition for a tin oxide amorphous refractory according to the present invention is configured to contain such a predetermined amount of components, so that the amorphous refractory obtained by construction is, for example, 1300 ° C., When heat treatment is performed for 350 hours, a zircon phase and a zirconia phase are formed on the tin oxide surface. Further, when the SiO 2 content is 3 mol% or more with respect to the total amount of SnO 2 , ZrO 2 and SiO 2 , the silica phase also remains. Therefore, if a high temperature treatment is performed before use, it is possible to manufacture and use a refractory that can exhibit an excellent volatilization suppressing effect immediately after use.
- the content of the ZrO 2 increases to 30 mole percent, low content of SnO 2 in the ZrO 2 content is too much Thus, the erosion resistance against the slag is reduced.
- the tin oxide amorphous refractory of the present invention preferably has a ZrO 2 content ratio in the range of 1 to 12 mol% with respect to the total content of SnO 2 , ZrO 2 and SiO 2 .
- the content ratio of SiO 2 is preferably in the range of 1 to 12 mol% with respect to the total content of SnO 2 , ZrO 2 and SiO 2 . Therefore, the content ratio of SnO 2 is preferably in the range of 76 to 98 mol% with respect to the total content of SnO 2 , ZrO 2 and SiO 2 .
- the heat treatment conditions before the use are not limited to the above conditions, and are generally performed by heat treatment at 1200 to 1600 ° C. for 3 to 5 hours. Therefore, depending on the heat treatment conditions for the actual treatment, SnO 2, ZrO 2 and may be adjusted the amount of SiO 2 in.
- said fireproof compound can be made to contain another component in the range which does not impair the characteristic as a refractory of this invention.
- this other component the well-known component used for a tin oxide amorphous refractory material is mentioned.
- other components include CuO, Cu 2 O, ZnO, MnO, CoO, Li 2 O, Al 2 O 3 , TiO 2 , Ta 2 O 5 , CeO 2 , CaO, Sb 2 O 3 , and Nb 2.
- oxides such as O 5 , Bi 2 O 3 , UO 2 , HfO 2, Cr 2 O 3 , MgO, and SiO 2 .
- the oxides it is preferable to contain at least one oxide selected from the group consisting of CuO, ZnO, MnO, CoO, and Li 2 O. Further, CuO, ZnO, MnO, CoO, Li 2 O, etc. act effectively as a sintering aid. When these sintering aids are contained, for example, a neck is formed between the tin oxide particles by firing at 1400 ° C. for 5 hours, and the corrosion resistance of the refractory can be further improved. Therefore, it is more preferable to contain at least one oxide selected from the group consisting of CuO, ZnO, MnO, CoO, and Li 2 O, and it is particularly preferable to contain CuO.
- the preferred tin oxide amorphous refractory powder composition of the present invention is, for example, an amorphous refractory obtained by construction after SnO 2 content after heat treatment at 1300 ° C., ⁇ 700 mmHg, 350 hours.
- a refractory having a volatilization rate of 1/5 or less as compared with 99 mol% or more tin oxide amorphous refractory is preferable.
- the comparison is made with a difference in open porosity of 2% or less.
- the open porosity is calculated by a known Archimedes method.
- the required amount of aggregate mixed with the particle size is weighed and mixed homogeneously to obtain a refractory compound, and a predetermined amount of binder (powder raw material) and / or dispersion is added to this refractory compound.
- the required amount of the agent is weighed and mixed homogeneously, and water is further added and mixed, and then mixed homogeneously again to obtain clay.
- the obtained clay is formed and applied in a desired shape, and dried, and then applied to obtain a tin oxide amorphous refractory.
- a vibrator may be used, and drying can be performed by leaving it at a temperature of 40 ° C. for 24 hours. Further, in order to enhance the volatilization suppressing effect from the stage before use, heat treatment may be performed in advance at a high temperature of 1200 ° C. or higher, preferably 1300 to 1450 ° C.
- the raw material is not limited to the combination of the above powders.
- zircon powder can be used as a raw material for ZrO 2 and SiO 2 which are the volatilization suppressing components.
- Zircon plays a role as a neck for connecting tin oxide particles when ZrO 2 is dissolved in SnO 2 to a solid solution limit concentration.
- tin oxide particles in which ZrO 2 is dissolved can be used as a raw material of SnO 2 and ZrO 2 .
- tin oxide particles in which ZrO 2 is dissolved for example, particles obtained by pulverizing a tin oxide sintered body in which ZrO 2 is dissolved into a desired particle size, or particles obtained by pulverizing and reusing an amorphous refractory can be used.
- powders of simple metals such as Zr, Si, Cu, metal salt compounds containing these metals, zirconium hydroxide (Zr (OH) 2 ), copper zirconate (CuZrO 3 ), copper carbonate (CuCO 3 ), or Copper hydroxide (Cu (OH) 2 ) or the like can be used.
- Zr (OH) 2 ) zirconium hydroxide
- CuZrO 3 copper zirconate
- CuCO 3 copper carbonate
- Cu (OH) 2 ) or the like can be used.
- copper zirconate (CuZrO 3 ) or copper carbonate (CuCO 3 ) is preferable.
- SnO 2 is composed of zircon in a range where the solid solution amount of ZrO 2 in SnO 2 is 12 mol% or less. Since it works as a dissociation accelerator, for example, the tin oxide amorphous refractory of the present invention can be produced by dissociating zircon into zirconia and silica by heat treatment at 1400 ° C. for 5 hours.
- zircon powder when used as a raw material, for example, it is not necessary to separately feed ZrO 2 and SiO 2 raw material powders into a mixing apparatus, and the manufacturing process can be simplified.
- the raw material powder can be easily mixed and a uniform mixture can be obtained, it contributes to shortening of the manufacturing process and stability of product quality.
- the method for producing a tin oxide amorphous refractory according to the present invention can be applied by pouring, press-fitting, spraying, etc., in addition to the above molding and application.
- spraying the mixed powder composition of aggregate, binder and dispersant is generally air-conveyed with a nozzle, and it is generally applied by adding construction water at the nozzle part and spraying it on the wall surface, etc. It can be arranged in a known construction method.
- the aggregate and the dispersing agent may be conveyed by airflow with a nozzle, and a part or all of the binder or the rapid setting agent may be added to the conveyed particles at the nozzle portion.
- the working moisture is, for example, 2 to 11% by mass, more preferably 3 to 7% by mass with respect to the entire amorphous refractory.
- this construction is not limited to new construction such as a furnace wall, but there is addition construction for repair.
- the quick setting agent is an admixture for remarkably accelerating the setting of the powder composition.
- a specific kind is not limited at all, and for example, nitrite, sulfate, aluminate, carbonate and the like can be used.
- the amount added is preferably 1 to 15% by mass, more preferably 2 to 8% by mass, based on 100% by mass of the refractory compound.
- a fire-resistant compound is mixed with a dispersant and construction water to obtain a clay, and this clay is constructed using a formwork.
- the working moisture is preferably 3 to 7% by mass with respect to the entire amorphous refractory. It is preferable to promote filling by applying vibration during construction. Curing and drying after construction.
- the construction may be performed directly on a glass melting furnace or a waste melting furnace, or a precast product prepared in advance may be used. Moreover, you may combine both a direct construction and a precast goods.
- the glass melting furnace or the waste melting furnace obtained by applying the amorphous refractory of the present invention to the wall surface or the ceiling is preferable because a furnace capable of obtaining the effect of the amorphous refractory is obtained.
- refractory bricks may be used partially even when the lining is constructed with an irregular refractory.
- amorphous refractories of different materials such as heat-insulated amorphous refractories may be used in places where the types of amorphous refractories are not in direct contact with the slag.
- the amorphous refractory obtained by the present invention exhibits an excellent corrosion resistance effect as a lining of the most severe part in a waste melting furnace where refractories of different materials are used for each zone. To do.
- Zirconia-tin oxide in Table 2 refers to “12 mol% zirconia-tin oxide” shown in Table 1, and indicates that the tin oxide particles are solid solution of 12 mol% of ZrO 2. ing.
- a tin oxide sintered body in which 12 mol% of ZrO 2 was dissolved was prepared, pulverized with a jaw crusher (BB51WC / WC, manufactured by Lecce), and classified by a sieve.
- the tin oxide sintered body in which ZrO 2 is solid solution is composed of 88 mol% tin oxide powder, 12 mol% zirconia powder, and 0.5 mass% copper oxide powder with respect to the total amount of SnO 2 and ZrO 2.
- the raw materials used as the refractory compound are coarse particles (840 ⁇ m or more and less than 1700 ⁇ m), medium particles (250 ⁇ m or more and less than 840 ⁇ m), fine particles (75 ⁇ m or more and less than 250 ⁇ m), fine particles (15 ⁇ m or more) , Less than 75 ⁇ m), fine powder (over 3 ⁇ m, 10 ⁇ m or less), and fine powder (0.1 ⁇ m or more, 3 ⁇ m or less).
- the particle sizes are (1700-840 ⁇ m), (840-250 ⁇ m), (250-75 ⁇ m), (75-15 ⁇ m), (10-3 ⁇ m), (3-0 .1 ⁇ m), this notation has the same meaning as described above.
- a test piece having a diameter of 15 mm and a height of 5 mm was cut out and subjected to heat treatment in an environment of 1300 ° C. and ⁇ 700 mmHg for 10 hours to 400 hours. These were measured (manufactured by A & D, trade name: GH-252 was used), and the volatilization amount (unit: mg) and the volatilization rate (unit: mg / hr) were calculated.
- a test piece of 15 mm ⁇ 25 mm ⁇ 50 mm (length ⁇ width ⁇ length) cut from the obtained tin oxide amorphous refractory was placed on soda lime glass (product name: Sun Green VFL, manufactured by Asahi Glass Co., Ltd.). Immersion treatment was performed at 1300 ° C. for 100 hours in an air atmosphere, and then the amount of erosion was measured to examine the erosion resistance.
- Examples 1 to 20 are examples of the present invention, and Examples 21 to 28 are comparative examples.
- the erosion resistance of the glass of each of the examples and comparative examples was compared with Example 22 of the alumina amorphous refractory widely used in the glass manufacturing apparatus in the temperature range of 1300 ° C.
- the relative erosion amount was shown with the maximum erosion depth of the erosion part after the erosion test of 100 as 100.
- the volatilization rates of Examples 1 to 20 and Examples 21 to 28 are as follows.
- the volatilization rate after heat-treating the test piece of Example 23 in an environment of 1300 ° C. and ⁇ 700 mmHg for 10 hours and 400 hours is defined as 100.
- the volatilization rate was shown.
- the volatilization rates after the heat treatment for 10 hours and 350 hours are the average volatilization rate per unit surface area calculated from the amount of mass loss from the heat treatment time 0 hours to 10 hours, and the heat treatment times 350 hours to 400 hours, respectively.
- the average volatilization rate per unit surface area calculated from the amount of mass reduction until the time was relatively shown.
- Example 21 is a zirconia amorphous refractory, which does not cause volatilization but has a lower erosion resistance to glass than Examples 1-20.
- Example 22 is an alumina amorphous refractory, and does not cause volatilization, but its erosion resistance to glass is lower than Examples 1-20.
- Example 23 is a tin oxide amorphous refractory having a composition excluding ZrO 2 and SiO 2 , and its erosion resistance to glass is almost the same as that of Examples 1 to 20, but does not contain a volatilization suppressing component. In addition, the volatilization rate of SnO 2 is very fast.
- Example 24 is a tin oxide amorphous refractory having a composition with an increased amount of SiO 2 , and the volatilization rate is almost the same as in Examples 1 to 20, but due to the small content of SnO 2 , corrosion resistance to glass The properties are lower than those of Examples 1-20.
- Example 25 is a tin oxide amorphous refractory having a composition with an increased amount of ZrO 2 , and the volatilization rate is almost the same as in Examples 1 to 20, but due to the small content of SnO 2 , corrosion resistance to glass. Is lower than Examples 1-20.
- Example 26 is a tin oxide amorphous refractory having a composition excluding ZrO 2 and has almost the same erosion resistance to glass as Examples 1 to 20, but does not contain ZrO 2 which is a volatilization suppressing component. Therefore, the volatilization rate of SnO 2 is very fast.
- Example 27 is a tin oxide amorphous refractory having a composition excluding SiO 2 , and the erosion resistance to glass is almost the same as in Examples 1 to 20, but it does not contain SiO 2 , so SnO 2
- the solid solution limit concentration of ZrO 2 is high. Further, since a small amount of ZrO 2 is a volatilization suppressing component, the volatilization of SnO 2, it takes time until the ZrO 2 reaches the solubility limit concentration, volatilization rate after heat treatment 10 hours SnO 2 examples Faster than 1-20. In addition, since it does not contain SiO 2 , the SnO 2 volatilization rate is higher than in Examples 1 to 20 even after 350 hours of heat treatment.
- Example 28 is a tin oxide amorphous refractory having a composition containing Al 2 O 3 as other components, and the volatilization rate is almost the same as in Examples 1 to 20, but the content of SnO 2 is small. Furthermore, the erosion resistance to glass is lower than those of Examples 1-20.
- Examples 1 to 20 which are examples of the present invention, have better volatilization rate and resistance to erosion to glass than Examples 21 to 28.
- Examples 3 to 20 are tin oxide amorphous refractories having a composition in which the content of a binder composed of alumina cement and / or colloidal alumina is 5% by mass or less. Higher than.
- Examples 9 to 14 are respectively tin oxide particles (Examples 9 to 12) of 10 ⁇ m or less, tin oxide particles (Examples 13 and 14) in which 12 mol% of ZrO 2 is dissolved, and zircon particles (Examples 9 to 14).
- the tin oxide amorphous refractory used is easy to form a neck between tin oxide particles, and therefore has higher erosion resistance to glass than Examples 1-8. From these evaluation results, the tin oxide amorphous refractory which is an example of the present invention is compared with the tin oxide amorphous refractory of the comparative example, both of which are SnO 2 volatilization suppressing effect and erosion resistance to glass. It was revealed that this is an excellent tin oxide amorphous refractory with a high balance between both physical properties.
- a fine powder containing at least one fine powder selected from the group consisting of tin oxide particles of 10 ⁇ m or less and solid solution particles of tin oxide and zirconia of 10 ⁇ m or less is blended with fireproof It was found that when 1 to 10% by mass was contained in the product, these fine particles formed a neck between the tin oxide particles, and the corrosion resistance against slag could be improved. Furthermore, the formation of the neck between the tin oxide particles is considered to contribute to the suppression of the volatilization rate because the fluidity of the gas in the amorphous refractory is lowered.
- the amorphous refractory obtained by the tin oxide amorphous refractory powder composition of the present invention is excellent in erosion resistance to slag and can effectively prevent SnO 2 volatilization, etc. It is suitable as an irregular refractory for a melting furnace. It should be noted that the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2013-133688 filed on June 26, 2013 are incorporated herein as the disclosure of the specification of the present invention. is there.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Combustion & Propulsion (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Description
また、特許文献2には、SnO2を不定形耐火物の耐火材料として使用した例として、SnO2を0.5~40重量%含有する廃棄物溶融炉用の不定形耐火物が提案されている。
[2]前記耐火性配合物中におけるSnO2、ZrO2およびSiO2の含有量の合量が、95質量%以上である[1]に記載の酸化スズ質不定形耐火物用紛体組成物。
[3]前記SnO2、ZrO2およびSiO2の含有量の合量に対して、SnO2の含有割合が70~98モル%、ZrO2の含有割合が1~20モル%、SiO2の含有割合が1~10モル%、である[1]または[2]に記載の酸化スズ質不定形耐火物用紛体組成物。
[4]前記SnO2、ZrO2およびSiO2の含有量の合量に対して、SnO2の含有割合が83~98モル%、ZrO2の含有割合が1~12モル%、SiO2の含有割合が1~5モル%、である[3]に記載の酸化スズ質不定形耐火物用紛体組成物。
[5]前記耐火性配合物中に、10μm以下の、酸化スズ粒子、ジルコン粒子および酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を含む微粉を1~10質量%含有する[1]乃至[4]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[6]前記耐火性配合物中に、3μm以下の、酸化スズ粒子、ジルコン粒子および酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を1~10質量%含有する[1]乃至[5]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[7]前記耐火性配合物中に、CuO、ZnO、MnO、CoOおよびLi2Oの酸化物からなる群から選ばれる少なくとも1種類以上の成分を、さらに含む[1]乃至[6]のいずれかに記載の酸化スズ質不定形耐火物。
[8]前記耐火性配合物に対し、分散剤を外掛けで0.01~2質量%含有する請求項[1]乃至[7]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[9]結合剤として、アルミナセメントおよびコロイダルアルミナからなる群から選ばれる1種類以上を含有し、前記耐火性配合物中における前記結合剤の含有量が5質量%以下である[1]乃至[8]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[10]前記耐火性配合物として、ZrO2が1~25モル%固溶している酸化スズ粒子を使用することを特徴とする[1]乃至[9]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[11]前記酸化スズ質不定形耐火物用紛体組成物が、施工後、1300℃、350時間の熱処理したとき、酸化スズ粒子の表面に、ジルコン相およびジルコニア相が形成されることを特徴とする[1]乃至[10]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[12][1]乃至[11]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物を、水と混練し、施工してなることを特徴とする酸化スズ質不定形耐火物の製造方法。
[13]前記施工後、1200℃以上で熱処理することを特徴とする[12]に記載の酸化スズ質不定形耐火物の製造方法。
[14][1]乃至[11]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる酸化スズ質不定形耐火物を具備してなるガラス溶解炉。
[15][1]乃至[11]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる不定形耐火物を具備してなる廃棄物溶融炉。
本発明に用いられる結合剤の種類、添加量は、従来の不定形耐火物に用いられるものと特に変わらない。例えば、アルミナセメント、コロイダルアルミナ、コロイダルシリカ、マグネシアセメント、リン酸塩、ケイ酸塩などが使用できる。これらの中でもアルミナセメント、コロイダルアルミナ、コロイダルシリカが好ましく、アルミナセメントがより好ましい。結合剤の使用量は、耐火性配合物中に0~10質量%が好ましく、0~5質量%がより好ましい。ここで、コロイダルアルミナ、コロイダルシリカ等は水溶液であるが、本発明において使用量は、固形物換算で表記した。
添加量は耐火性配合物100質量%に対し、外掛けで好ましくは0.01~2質量%、さらに好ましくは0.03~1質量%である。
また、不定形耐火物の耐スポーリング性の付与を目的として、前記の粗粒、中粒、細粒、微粒に加え、例えば粒径3~50mmの粗大粒径の耐火骨材を組み合わせてもよい。
ここで、例えば、粗粒は1700μm未満840μm以上、中粒は840μm未満250μm以上、細粒は250μm未満75μm以上、微粒は75μm未満15μm以上、とした場合、これら4種の骨材をそれぞれ調整して配合する。これら4種の骨材についてのみ説明すれば、これらを100質量%としたとき、粗粒を21~33質量%、中粒を15~28質量%、細粒を30~45質量%、微粒を5~18質量%、の範囲となる含有割合が坏土の充填の点で好ましい。なお、本明細書において、粒度は、JIS R2552に準じて測定された値をいう。この耐火性原料は、耐火物使用後品、耐火物廃材等を粉砕し、粒径を調整したものを使用してもよい。
このような粉末状の粒子として、上記した微細粉を含む微粉を、耐火性配合物中に1~10質量%含有するように配合させることが好ましい。このように粉末状の粒子の微細粉を含む微粉を所定の範囲で含有することにより、それよりも大きい粒径の酸化スズ粒子同士にネックが形成され、スラグに対する耐食性を向上させることができる。
特に、前記耐火性配合物中に、3μm以下の酸化スズ粒子、3μm以下のジルコン粒子および3μm以下の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を1~10質量%含有させるのが好ましく、スラグに対する耐食性をより向上させることができる。
また、シリカと反応しないジルコニアも存在し、このジルコニアは単独でも揮散抑制効果を発揮する。ジルコンおよびジルコニアは、SEM-EDX(Scanning Electron Microscope-Energy Dispersive X-ray Detector、日立ハイテクノロジーズ社製、商品名:S-3000H)等の電子顕微鏡装置を用いることで、その存在を確認できる。
SnO2、ZrO2およびSiO2の合量を100モル%としたときの各成分の含有割合が、上記のとおり、SnO2が55~98モル%、ZrO2が1~30モル%、SiO2が1~15モル%、の関係を満たすと、ZrO2の固溶限界濃度が低減し、SnO2の揮散開始時から、早期にジルコニアが酸化スズ粒子表面に析出する。したがって、SiO2を全く含有しない場合と比較して、より早期の段階から優れたSnO2の揮散抑制効果を発揮できる。また、シリカの大部分は、固溶限界を超えて析出したジルコニアと反応し、ジルコンとして酸化スズ-ジルコニア固溶体の粒子間に存在し、外部環境に露出しているSnO2の表面積を減少させる。そのため、SiO2を含有せずにZrO2を含有する場合と比較し、長期的に優れたSnO2の揮散抑制効果を発揮する。
この他の成分としては、例えば、CuO、Cu2O、ZnO、MnO、CoO、Li2O、Al2O3、TiO2、Ta2O5、CeO2、CaO、Sb2O3、Nb2O5、Bi2O3、UO2、HfO2、Cr2O3、MgO、SiO2などの酸化物が挙げられる。
まず、上記説明したように粒度配合された骨材を所要量秤取し均質に混合し、耐火性配合物を得、この耐火性配合物に所定量の結合剤(粉末原料)および/または分散剤を所要量秤取し均質に混合し、さらに水分を添加混合して、再び均質に混合することで坏土とする。次いで、得られた坏土を所望の形状に成形、塗布するなどし、これを乾燥させることで施工され、酸化スズ質不定形耐火物が得られる。所望の形状に成形するには、例えば、振動機を使用するなどして行えばよく、乾燥は40℃の温度下に24時間放置して行うことができる。また、揮散抑制効果を使用前の段階から高めるためには、予め1200℃以上、好ましくは1300~1450℃となるような高温で熱処理すればよい。
まず、酸化スズ質不定形耐火物用紛体組成物を製造するための原料として、表1に示した平均粒子径と化学成分および純度を有する粉末原料を準備した。
なお、表1および表2においては、それぞれの粒径として、(1700-840μm)、(840-250μm)、(250-75μm)、(75-15μm)、(10-3μm)、(3-0.1μm)と表記しているが、この表記は、上記した通りの意味である。
実施例および比較例のそれぞれのガラスに対する耐侵食性は、1300℃の温度域において、ガラス製造装置に広く利用されているアルミナ質不定形耐火物の例22と比較し、アルミナ質不定形耐火物の侵食試験後の侵食部の最大侵食深さを100として、相対的な侵食量を示した。
これらの評価結果から、本発明の実施例である酸化スズ質不定形耐火物は、比較例の酸化スズ質不定形耐火物と比較し、いずれもSnO2の揮散抑制効果およびガラスに対する耐侵食性が高く、両物性のバランスが取れた優れた酸化スズ質不定形耐火物であることが明らかとなった。
なお、2013年6月26日に出願された日本特許出願2013-133688の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (15)
- SnO2、ZrO2およびSiO2を必須成分とする耐火性配合物を含有する酸化スズ質不定形耐火物用紛体組成物であって、前記耐火性配合物中におけるSnO2、ZrO2およびSiO2の含有量の合量が70質量%以上であり、かつ、前記SnO2、ZrO2およびSiO2の含有量の合量に対して、SnO2の含有割合が55~98モル%、ZrO2の含有割合が1~30モル%、SiO2の含有割合が1~15モル%、であることを特徴とする酸化スズ質不定形耐火物用紛体組成物。
- 前記耐火性配合物中におけるSnO2、ZrO2およびSiO2の含有量の合量が、95質量%以上である請求項1に記載の酸化スズ質不定形耐火物用紛体組成物。
- 前記SnO2、ZrO2およびSiO2の含有量の合量に対して、SnO2の含有割合が70~98モル%、ZrO2の含有割合が1~20モル%、SiO2の含有割合が1~10モル%、である請求項1または2に記載の酸化スズ質不定形耐火物用紛体組成物。
- 前記SnO2、ZrO2およびSiO2の含有量の合量に対して、SnO2の含有割合が83~98モル%、ZrO2の含有割合が1~12モル%、SiO2の含有割合が1~5モル%、である請求項3に記載の酸化スズ質不定形耐火物用紛体組成物。
- 前記耐火性配合物中に、10μm以下の、酸化スズ粒子、ジルコン粒子および酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を含む微粉を1~10質量%含有する請求項1乃至4のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。
- 前記耐火性配合物中に、3μm以下の、酸化スズ粒子、ジルコン粒子および酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を1~10質量%含有する請求項1乃至5のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。
- 前記耐火性配合物中に、CuO、ZnO、MnO、CoOおよびLi2Oの酸化物からなる群から選ばれる少なくとも1種類以上の成分を、さらに含む請求項1乃至6のいずれか1項に記載の酸化スズ質不定形耐火物。
- 前記耐火性配合物に対し、分散剤を外掛けで0.01~2質量%含有する請求項1乃至7のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。
- 結合剤として、アルミナセメントおよびコロイダルアルミナからなる群から選ばれる1種類以上を含有し、前記耐火性配合物中における前記結合剤の含有量が5質量%以下である請求項1乃至8のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。
- 前記耐火性配合物として、ZrO2が1~25モル%固溶している酸化スズ粒子を使用することを特徴とする請求項1乃至9のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。
- 前記酸化スズ質不定形耐火物用紛体組成物が、施工後、1300℃、350時間の熱処理したとき、酸化スズ粒子の表面に、ジルコン相およびジルコニア相が形成されることを特徴とする請求項1乃至10のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。
- 請求項1乃至11のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物を、水と混練し、施工してなることを特徴とする酸化スズ質不定形耐火物の製造方法。
- 前記施工後、1200℃以上で熱処理することを特徴とする請求項12に記載の酸化スズ質不定形耐火物の製造方法。
- 請求項1乃至11のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる酸化スズ質不定形耐火物を具備してなるガラス溶解炉。
- 請求項1乃至11のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる酸化スズ質不定形耐火物を具備してなる廃棄物溶融炉。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480036755.5A CN105339323A (zh) | 2013-06-26 | 2014-06-25 | 氧化锡质不定形耐火物用粉体组合物、氧化锡质不定形耐火物的制造方法、玻璃熔窑及废弃物熔窑 |
EP14817027.7A EP3015441A4 (en) | 2013-06-26 | 2014-06-25 | POWDER COMPOSITION FOR MONOLITHIC TIN OXIDE REFRACTORY ELEMENT, PRODUCTION METHOD FOR MONOLITHIC TIN OXIDE REFRACTORY ELEMENT, GLASS FUSION FURNACE, AND WASTE FUSION FURNACE |
JP2015524096A JPWO2014208620A1 (ja) | 2013-06-26 | 2014-06-25 | 酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉 |
US14/943,403 US20160075605A1 (en) | 2013-06-26 | 2015-11-17 | Powder composition for tin oxide monolithic refractory, method for producing tin oxide monolithic refractory, glass melting furnace and waste melting furnace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-133688 | 2013-06-26 | ||
JP2013133688 | 2013-06-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/943,403 Continuation US20160075605A1 (en) | 2013-06-26 | 2015-11-17 | Powder composition for tin oxide monolithic refractory, method for producing tin oxide monolithic refractory, glass melting furnace and waste melting furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208620A1 true WO2014208620A1 (ja) | 2014-12-31 |
Family
ID=52141949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066889 WO2014208620A1 (ja) | 2013-06-26 | 2014-06-25 | 酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160075605A1 (ja) |
EP (1) | EP3015441A4 (ja) |
JP (1) | JPWO2014208620A1 (ja) |
CN (1) | CN105339323A (ja) |
WO (1) | WO2014208620A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022055727A1 (en) * | 2020-09-09 | 2022-03-17 | Seramic Materials Limited | Elaboration of ceramic materials made from refractory waste for high-temperature thermal energy storage applications |
CN114315341A (zh) * | 2021-12-28 | 2022-04-12 | 广州市石基耐火材料厂 | 含锰高纯锡陶瓷及其制备方法、含锰高纯锡砖和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2467144A (en) * | 1944-11-22 | 1949-04-12 | Corning Glass Works | Electrically conducting refractory body |
JPS54132611A (en) | 1978-04-05 | 1979-10-15 | Toshiba Ceramics Co | Tin oxide refractory for glass melting furnace |
DD205888A1 (de) * | 1982-04-29 | 1984-01-11 | Gerhard Lautenschlaeger | Gesinterte feuerfeste materialien mit hoher korrosionsbestaendigkeit |
JPS63103869A (ja) * | 1986-10-17 | 1988-05-09 | 旭硝子株式会社 | ZrO↓2質不定形耐火物 |
JP2004196637A (ja) | 2002-12-20 | 2004-07-15 | Kurosaki Harima Corp | 廃棄物溶融炉用不定形耐火物およびそれを内張りした廃棄物溶融炉 |
WO2006124742A2 (en) | 2005-05-19 | 2006-11-23 | Saint-Gobain Ceramics & Plastics, Inc. | Tin oxide-based electrodes having improved corrosion resistance |
WO2013100074A1 (ja) * | 2011-12-28 | 2013-07-04 | 旭硝子株式会社 | 酸化スズ質耐火物およびその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3215537A1 (de) * | 1982-04-26 | 1983-10-27 | C. Conradty Nürnberg GmbH & Co KG, 8505 Röthenbach | Verwendung von temperatur- und korosionsbestaendigen gasdichten materialien als schutzueberzug fuer den metallteil von kombinationselektroden fuer die schmelzflusselektrolyse zur gewinnung von metallen, sowie hieraus gebildete schutzringe |
US6158248A (en) * | 1998-02-26 | 2000-12-12 | Asahi Glass Company Ltd. | Fused-cast-alumina-zirconia-silica refractory, methods of making it and glass melting furnace employing it |
CN102811971A (zh) * | 2009-10-15 | 2012-12-05 | 优美科公司 | 氧化锡陶瓷溅射靶材及其制备方法 |
FR2961506B1 (fr) * | 2010-06-21 | 2014-03-14 | Saint Gobain Ct Recherches | Bloc refractaire et four de fusion de verre |
-
2014
- 2014-06-25 EP EP14817027.7A patent/EP3015441A4/en not_active Withdrawn
- 2014-06-25 WO PCT/JP2014/066889 patent/WO2014208620A1/ja active Application Filing
- 2014-06-25 JP JP2015524096A patent/JPWO2014208620A1/ja active Pending
- 2014-06-25 CN CN201480036755.5A patent/CN105339323A/zh active Pending
-
2015
- 2015-11-17 US US14/943,403 patent/US20160075605A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2467144A (en) * | 1944-11-22 | 1949-04-12 | Corning Glass Works | Electrically conducting refractory body |
JPS54132611A (en) | 1978-04-05 | 1979-10-15 | Toshiba Ceramics Co | Tin oxide refractory for glass melting furnace |
DD205888A1 (de) * | 1982-04-29 | 1984-01-11 | Gerhard Lautenschlaeger | Gesinterte feuerfeste materialien mit hoher korrosionsbestaendigkeit |
JPS63103869A (ja) * | 1986-10-17 | 1988-05-09 | 旭硝子株式会社 | ZrO↓2質不定形耐火物 |
JP2004196637A (ja) | 2002-12-20 | 2004-07-15 | Kurosaki Harima Corp | 廃棄物溶融炉用不定形耐火物およびそれを内張りした廃棄物溶融炉 |
WO2006124742A2 (en) | 2005-05-19 | 2006-11-23 | Saint-Gobain Ceramics & Plastics, Inc. | Tin oxide-based electrodes having improved corrosion resistance |
WO2013100074A1 (ja) * | 2011-12-28 | 2013-07-04 | 旭硝子株式会社 | 酸化スズ質耐火物およびその製造方法 |
Non-Patent Citations (4)
Title |
---|
GAILLARD- ALLEMAND ,B. ET AL.: "Experimental study of the SnO2-ZrO2 phase diagram", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 22, no. 13, 2002, pages 2297 - 2303, XP027368764 * |
MAITRE* A: "Effect of Zr02 additions on sintering of Sn02-based ceramics", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 24, no. 10-11, 2004, pages 3111 - 3118, XP004504417 * |
MAITRE, D. BEYSSEN; R. PODOR: "Effect of Zr0 additions on sintering of Sn0 -based ceramics", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 24, 2004, pages 3111 - 3118, XP004504417, DOI: doi:10.1016/j.jeurceramsoc.2003.11.009 |
See also references of EP3015441A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20160075605A1 (en) | 2016-03-17 |
EP3015441A4 (en) | 2016-12-21 |
EP3015441A1 (en) | 2016-05-04 |
JPWO2014208620A1 (ja) | 2017-02-23 |
CN105339323A (zh) | 2016-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101856265B1 (ko) | 크롬 옥사이드 파우더 | |
JP5166518B2 (ja) | イットリア系耐火性組成物 | |
WO2010047136A1 (ja) | 不定形耐火物用結合剤及び不定形耐火物 | |
CN108424124B (zh) | 一种氧化镁晶须原位合成尖晶石增强氧化镁基坩埚及其制备方法 | |
JP4234330B2 (ja) | 不定形耐火組成物 | |
JP4094353B2 (ja) | 希土類金属含有不定形耐火物と施工体およびこれらで内張りされた窯炉 | |
JP6044552B2 (ja) | 酸化スズ質耐火物およびその製造方法 | |
WO2014208620A1 (ja) | 酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉 | |
CN112094125A (zh) | 一种低导热低热膨胀镁基原料及其制备方法 | |
JPWO2004087609A1 (ja) | 廃棄物溶融炉用クロムフリー不定形耐火物およびこれを内張りした廃棄物溶融炉 | |
JP4220131B2 (ja) | 溶鋼取鍋用不定形耐火組成物 | |
WO2014208618A1 (ja) | 酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉 | |
WO2013100071A1 (ja) | 酸化スズ質耐火物 | |
JPH11171639A (ja) | アルミナ基焼結体及びその製造方法 | |
JP2015009992A (ja) | 酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉 | |
JP2004203702A (ja) | 蛇紋石又はタルクを含有する不定形耐火物と施工体およびこれらで内張りされた窯炉 | |
CN113213956A (zh) | 综合性能优良、价格适中的镁铝尖晶石砖及其制备方法 | |
WO2003095391A1 (fr) | Composition refractaire monolithique | |
JP2017066025A (ja) | 不定形耐火物 | |
JP4576367B2 (ja) | 廃棄物溶融炉用クロムフリー不定形耐火物およびこれを内張りに使用した廃棄物溶融炉 | |
JP2005008496A (ja) | 不定形耐火物 | |
JP2011047563A (ja) | 不定形耐火物用粉体組成物及びそれを用いた耐火物の製造方法 | |
KR20200133119A (ko) | 지르코니아계 세라믹 비드 및 그 제조 방법 | |
WO2015132848A1 (ja) | 不定形耐火物 | |
JP6927054B2 (ja) | アルミナ−マグネシア質キャスタブル耐火物、及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480036755.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14817027 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015524096 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014817027 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |