WO2014208587A1 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
WO2014208587A1
WO2014208587A1 PCT/JP2014/066811 JP2014066811W WO2014208587A1 WO 2014208587 A1 WO2014208587 A1 WO 2014208587A1 JP 2014066811 W JP2014066811 W JP 2014066811W WO 2014208587 A1 WO2014208587 A1 WO 2014208587A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
image
recording medium
image forming
reading
Prior art date
Application number
PCT/JP2014/066811
Other languages
English (en)
French (fr)
Inventor
菅谷 豊明
満 小幡
敏幸 水谷
隆 村松
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US14/901,446 priority Critical patent/US20160279950A1/en
Priority to EP14817858.5A priority patent/EP3016365B1/en
Priority to JP2015524075A priority patent/JP6288087B2/ja
Priority to CN201480036396.3A priority patent/CN105340256A/zh
Publication of WO2014208587A1 publication Critical patent/WO2014208587A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00216Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using infrared [IR] radiation or microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00214Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16517Cleaning of print head nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16579Detection means therefor, e.g. for nozzle clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2142Detection of malfunctioning nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/46Applications of alarms, e.g. responsive to approach of end of line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/60Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for printing on both faces of the printing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2139Compensation for malfunctioning nozzles creating dot place or dot size errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J2025/008Actions or mechanisms not otherwise provided for comprising a plurality of print heads placed around a drum

Definitions

  • the present invention relates to an image forming apparatus.
  • Image forming apparatuses including a reading unit that optically reads an image formed on a recording medium before discharging the recording medium are known (for example, Patent Documents 1 and 2).
  • Such an image forming apparatus has a function of reading an image formed on a recording medium by a reading unit and performing various determinations such as determination of whether the image formation is good or not and whether an existing image exists on the recording medium. .
  • the image forming apparatus provided with the above-described reading unit is provided with a reading unit for reading each of both sides in order to cope with image formation on both sides of the recording medium.
  • the reading unit separately for reading both sides of the recording medium increases the cost of the image forming apparatus. Further, when an image is formed on one side of the recording medium, the reading unit corresponding to the side on which no image is formed does not operate, and there is a waste that the reading unit for reading both sides is not used. In addition, in the method in which image formation is performed sequentially on each side, and both sides of the image are formed, and then both sides of the image are read, the determination is made even if there is an abnormality in the image formation on the first side, and not after the formation of both sides of the image. Therefore, useless image formation is performed, and materials and time are wasted.
  • An object of the present invention is to provide an image forming apparatus capable of reading both sides at low cost and without waste.
  • An image forming apparatus includes an image forming unit that forms an image on a recording medium, a reading unit that reads an image formed on one surface of the recording medium by the image forming unit, and one surface of the recording medium.
  • a conveyance unit that conveys a recording medium so as to pass near the positions where the image forming unit and the reading unit are disposed while facing the image forming unit and the reading unit, and the image forming unit on both sides of the recording medium.
  • a reversing unit that reverses the front and back of the recording medium on which the image is formed on one side and conveys the recording medium to the upstream side of the image forming unit in the conveyance direction of the conveyance unit;
  • the reading unit is provided on the downstream side of the image forming unit in the transport direction and on the upstream side of the reversing unit.
  • a second aspect of the present invention is the image forming apparatus according to the first aspect, further comprising a changing unit that changes a condition related to image formation by the image forming unit based on a reading result by the reading unit.
  • the image forming unit includes a recording head that ejects ink from a nozzle, and the condition is that the ink from the nozzle It includes a condition relating to ejection.
  • the invention according to claim 4 is the image forming apparatus according to claim 2 or 3, wherein the condition includes content related to brightness of the image.
  • a fifth aspect of the present invention is the image forming apparatus according to any one of the second to fourth aspects, wherein the image data that is the basis of an image formed by the image forming unit, and the image data And a comparison unit that compares read data generated by reading the image formed by the image forming unit with the reading unit based on a comparison result by the comparison unit. It is characterized by changing conditions.
  • a sixth aspect of the present invention is the image forming apparatus according to any one of the first to fifth aspects, wherein the image forming apparatus includes a fixing unit that fixes an image on a recording medium on which an image is formed by the image forming unit.
  • the reading unit is provided on the downstream side of the fixing unit.
  • a seventh aspect of the present invention is the image forming apparatus according to any one of the first to sixth aspects, wherein an image is formed by the image forming unit on one side or both sides of a recording medium.
  • a setting unit for setting, and a display unit for performing display related to the setting by the setting unit are provided.
  • the invention according to an eighth aspect is the image forming apparatus according to any one of the first to seventh aspects, further including a control unit that controls conveyance of the recording medium based on a reading result by the reading unit. It is characterized by that.
  • a ninth aspect of the present invention is the image forming apparatus according to any one of the first to eighth aspects, wherein the reading unit is arranged on one side of a conveyance path of the recording medium by the conveyance unit.
  • the image formed on the one surface of the recording medium is read from the one side, and then reversely conveyed by the reversing unit, and the image formed on the other surface of the recording medium by the image forming unit is It is characterized by reading from the side.
  • 1 is a diagram illustrating a main configuration of an image forming system according to an embodiment of the present invention.
  • 1 is a block diagram illustrating a main configuration according to an image forming system. It is a figure which shows the example of a change of the conditions which concern on the discharge of the ink from a nozzle, and is a figure which shows an example of the discharge condition of the ink in which a missing part exists. It is a figure which shows the example of a change of the conditions which concern on the discharge of the ink from a nozzle, and is a figure which shows an example of the discharge condition of the ink by which conditions were changed so that a missing part might be compensated. It is a figure which shows an example of the specific structure of an irradiation part.
  • FIG. 1 is a diagram illustrating a main configuration of an image forming system 1 including an image forming apparatus according to an embodiment of the present invention.
  • the image forming system 1 includes a supply unit 10, a main body unit 100, and a discharge unit 20.
  • the supply unit 10, the main body unit 100, and the discharge unit 20 are provided and connected along a predetermined direction (the X direction shown in FIG. 1).
  • the supply unit 10 stores a recording medium P (for example, paper) on which an image is formed by the image forming unit 120 provided in the main body unit 100 and supplies the recording medium P to the main body unit 100 one by one.
  • a recording medium P for example, paper
  • the main body 100 forms an image on the recording medium P supplied from the supply unit 10 and discharges the recording medium P on which the image is formed to the discharge unit 20.
  • the main body 100 includes a transport unit 110 that transports the recording medium P, an image forming unit 120 that forms an image on the recording medium P, an irradiation unit 130 that irradiates the recording medium P on which an image is formed by the image forming unit 120, A reading unit 140 that reads a medium conveyed to the conveyance unit 110 is provided, and functions as an image forming apparatus in the image forming system 1.
  • the transport unit 110 transports the medium to the image forming unit 120, the irradiation unit 130, and the reading unit 140.
  • the transport unit 110 includes, for example, a cylindrical drum 110a.
  • the drum 110a is provided so as to be rotatable about an axis passing through the circular center of the cylinder, and carries the recording medium P on the cylindrical outer peripheral surface of the drum 110a.
  • the conveyance unit 110 conveys one surface of the recording medium P carried on the outer peripheral surface while facing the image forming unit 120, the irradiation unit 130, and the reading unit 140 by rotating the drum 110a.
  • the image forming unit 120, the irradiation unit 130, and the reading unit 140 are provided along the outer peripheral surface in the vicinity of the position where the outer peripheral surface of the rotating drum 110a passes. Specifically, as illustrated in FIG. 1, the image forming unit 120, the irradiation unit 130, and the reading unit 140 are supplied from the supply unit 10 in a conveyance path along which the recording medium P is conveyed by passing through the outer peripheral surface of the drum 110 a.
  • the image forming unit 120, the irradiation unit 130, and the reading unit 140 are provided in this order from the upstream side to the downstream side along the conveyance path for conveying the supplied recording medium P to the discharge unit 20 side.
  • the transport unit 110 includes a detection unit 110b that detects the rotation angle of the drum 110a, and a recording medium that is carried and transported on the outer peripheral surface of the drum 110a based on the rotation angle of the drum 110a detected by the detection unit 110b. It is provided so that the position of P can be detected.
  • the detection unit 110b is, for example, an encoder provided on the rotation shaft of the drum 110a.
  • the detection unit 110b is an example and is not limited to this, and may be any configuration that can detect the rotation angle of the drum 110a.
  • the transport unit 110 has a mechanism for inverting the front and back of the recording medium P.
  • the transport unit 110 includes, for example, a switchback unit 115.
  • the switchback unit 115 reverses and conveys the recording medium P by switchback.
  • the switchback unit 115 includes, for example, two cylinders (first cylinder 115a and second cylinder 115b) and a pair of belt loops (belt loop 115c) shown in FIG.
  • the recording medium P is transferred from the drum 110a to the first cylinder 115a that rotates counterclockwise in FIG. 1 through the cylinder 111 that rotates clockwise in FIG. 1, and then rotates in the clockwise direction in FIG. It is delivered to the two cylinders 115b.
  • the belt loop 115c reverses in the clockwise direction in FIG. To the drum 110a.
  • the recording medium P returned to the drum 110a by the belt loop 115c is again carried on the drum 110a in a state where the surface on which the image is formed abuts on the outer peripheral surface of the drum 110a. That is, the recording medium P is turned over by the switchback unit 115. Further, the leading end along the conveyance direction of the recording medium P returned to the drum 110a is the end on the trailing side when the recording medium P is conveyed by the drum 110a before being returned. That is, the recording medium P is turned over by being conveyed by the switchback unit 115 so as to be reversed. In this way, the transport unit 110 can transport the recording medium P such that the both surfaces of the recording medium P and the like are sequentially opposed to the image forming unit 120 by reversing and transporting the recording medium P by the switchback unit 115. Is provided.
  • the position where the first cylinder 115a of the switchback unit 115 takes over the conveyance of the recording medium P from the drum 110a is downstream of the irradiation unit 130 in the conveyance direction of the recording medium P. Further, when the belt loop 115c returns the recording medium P to the drum 110a, the returned recording medium P is conveyed again to the image forming unit 120 from the upstream side of the image forming unit 120.
  • the switchback unit 115 reverses the front and back of the recording medium P on which the image is formed on one side, It functions as a reversing unit that transports the recording medium P to the upstream side of the image forming unit 120 in the transport direction 110.
  • the reading unit 140 is provided on the downstream side of the image forming unit 120 in the transport direction and on the upstream side of the switchback unit 115. Therefore, the switchback unit 115 conveys the recording medium P conveyed by the conveyance unit 110 through the image forming unit 120 and the reading unit 140 to the upstream side of the reading unit 140 in the conveyance direction of the conveyance unit 110. Then, it functions as a re-conveying unit that conveys the conveying unit 110 again.
  • the image forming unit 120 forms an image on the recording medium P.
  • the image forming unit 120 includes, for example, a head unit 121 provided with a plurality of recording heads H including nozzles that eject ink onto the recording medium P carried on the drum 110a.
  • the head unit 121 is provided individually for each color of ink ejected onto the recording medium P (for example, four colors of cyan (C), magenta (M), yellow (Y), and black (K)).
  • the image forming unit 120 having such a head unit 121 forms an image on the recording medium P by ejecting ink.
  • the irradiation unit 130 irradiates energy for fixing the image on the recording medium P on which the image is formed by the image forming unit 120.
  • the energy irradiated by the irradiation unit 130 depends on the ink characteristics. For example, when ultraviolet curable ink that is cured by ultraviolet irradiation is used in the head unit 121 of the image forming unit 120, the energy irradiated from the irradiation unit 130 is ultraviolet.
  • the irradiation unit 130 sets a predetermined range of the light source 131 such as a light emitting diode (LED) that emits ultraviolet (UV) and the range irradiated with the ultraviolet light emitted from the light source 131 (irradiation range).
  • LED light emitting diode
  • the shielding part 132 etc. which are the irradiation area A (see FIG. 7A).
  • the predetermined irradiation area A is an area in a path through which the outer peripheral surface of the drum 110 a of the transport unit 110 carries the recording medium P and passes.
  • the irradiation unit 130 irradiates the recording medium P conveyed by the conveyance unit 110 and passing through the predetermined irradiation area A with ultraviolet rays.
  • the irradiation unit 130 functions as a fixing unit that fixes an image on the recording medium P on which the image is formed by the image forming unit 120.
  • the reading unit 140 reads the medium transported to the transport unit 110.
  • the reading unit 140 includes, for example, an imaging element such as a charge-coupled device (CCD) image sensor, illumination that illuminates the recording medium P, and a lens provided on the ray between the imaging element and the recording medium P. Then, the reflected light from the recording medium P illuminated by the illumination is detected by the image sensor, and an electric signal corresponding to the detection result is output. Based on the electrical signal output from the image sensor of the reading unit 140, data corresponding to the reading (reading) result is generated and processed as the reading result.
  • CCD charge-coupled device
  • the discharge unit 20 causes the recording medium P to wait until the user collects the recording medium P discharged from the drum 110a of the main body unit 100 through the cylinder 111, the belt loop 112, and the discharge switching guide 113.
  • the control unit 250 controls whether the recording medium P is discharged to the discharge unit 20 via the cylinder 111 or conveyed to the switchback unit 115.
  • the image forming system 1 may be provided with a conveyance path for allowing correction media related to various corrections to pass through the main body 100.
  • the supply unit 10 includes a correction medium supply tray that is provided separately from the tray that stores the recording medium P and supplies the correction medium. Also good.
  • the discharge unit 20 may include a sub-tray 20b for discharging the correction medium, which is provided separately from the main tray 20a for waiting the recording medium P.
  • the control unit 250 controls the discharge switching guide 113 to switch whether the recording medium P is discharged to the main tray 20a or the sub-tray 20b.
  • the image forming system 1 is provided so that various media (for example, a correction medium) including the recording medium P can be conveyed and read by the reading unit 140.
  • the medium may be a sheet having a size that can be conveyed by the conveyance unit 110.
  • the size in the direction along the transport direction depends on, for example, the circumferential length of the drum 110a.
  • the size of the medium in the width direction orthogonal to the transport direction depends on, for example, the width of the outer peripheral surface of the drum 110a (the width in the direction along the central axis of the cylinder of the drum 110a).
  • FIG. 2 is a block diagram illustrating the main configuration of the image forming system 1.
  • the image forming system 1 includes, for example, a setting unit 210, an acquisition unit 220, a generation unit 230, a change unit 240, a control unit 250, a display unit 260, and the like in the main body unit 100.
  • the setting unit 210 includes input devices such as buttons, keys, and a touch panel used for input for various settings related to the operation of the image forming system 1, and corresponds to setting contents corresponding to user operations on the input devices. To the control unit 250. Specifically, for example, the setting unit 210 outputs a signal for setting whether to form an image by the image forming unit 120 on one side or both sides of the recording medium P in accordance with a user operation. Output to.
  • the acquisition unit 220 acquires data that is the basis of an image formed by the image forming unit 120.
  • the acquisition unit 220 includes a configuration related to communication such as a network interface card (NIC), for example, and a print job transmitted from an external device such as a PC connected via the communication. To get.
  • the print job includes image data corresponding to the image formed by the image forming unit 120.
  • the generation unit 230 generates composite image data in which an image (for example, an image corresponding to image data included in a print job) and a pattern image Q formed on the recording medium P together with the image are combined (FIG. 12). reference).
  • the pattern image Q is an image that is formed in the margin of the recording medium P on which the image is formed and is used for adjustment of the image forming unit 120.
  • the generation unit 230 is, for example, an integrated circuit such as a programmable logic device (PLD) such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC) or a combination thereof. It consists of a circuit.
  • PLD programmable logic device
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • the generation unit 230 includes a processing unit and a storage device (memory) mounted on the circuit, stores image data included in the print job and image data corresponding to the pattern image Q stored in advance in a memory, Composite image data is generated by the operation of the processing unit.
  • a storage device memory mounted on the circuit, stores image data included in the print job and image data corresponding to the pattern image Q stored in advance in a memory, Composite image data is generated by the operation of the processing unit.
  • the changing unit 240 changes a condition relating to image formation by the image forming unit 120 based on the reading result by the reading unit 140.
  • the changing unit 240 includes, for example, an integrated circuit such as a PLD or an ASIC, or a combination thereof, and the conditions related to image formation are determined by the cooperation of the processing unit and the storage device mounted on the circuit. Processing is performed. For example, when the clogging of any nozzle of the recording head H provided in the head unit 121 is detected based on the result of reading the test chart (see FIG. 9) by the reading unit 140, the conditions for image formation are satisfied.
  • the conditions relating to the ejection of ink from the nozzles are changed so as to take into account that no ink is ejected from the nozzles that are clogged.
  • the changing unit 240 uses the ink of the dots D that are ejected around the defective portion E where ink is not ejected due to nozzle clogging.
  • the conditions relating to the ejection of ink from the nozzles are changed. More specifically, the missing portion E is compensated for as shown in FIG. 3B by increasing the amount of ink of the dots D ejected around the missing portion E shown in FIG. 3A. Thereby, the influence which the missing part E has on the image quality can be reduced.
  • the conditions relating to image formation changed by the changing unit 240 include conditions relating to ejection of ink from the nozzles.
  • An example of changing the conditions for covering the defective portion E with the ink discharged around the defective portion E is a change in the drive signal of the nozzle that discharges the ink discharged around the defective portion E.
  • the missing portion E is covered by increasing the amount of ink ejected by correcting the color value.
  • the control unit 250 controls the operation of each unit of the image forming system 1.
  • the control unit 250 includes, for example, a CPU, a RAM, a ROM, and the like.
  • the CPU reads and executes various programs, data, and the like corresponding to the processing contents from a storage device such as a ROM, and controls the operation of each unit of the image forming system 1 according to the executed processing contents.
  • the RAM temporarily stores various programs and data processed by the CPU.
  • the ROM stores various programs and data read by the CPU or the like.
  • the display unit 260 performs various displays related to the operation of the image forming system 1 under the control of the control unit 250.
  • the display unit 260 includes, for example, a display device such as a liquid crystal display provided integrally with an input device for performing input in a touch panel format, and performs various displays using the display device.
  • the liquid crystal display is merely an example of a display device, and may be another display device (for example, an organic EL (Electroluminescence) display).
  • the display unit 260 performs display related to the setting by the setting unit 210, for example.
  • a display screen for selecting a surface (one side or both sides) on which an image is to be formed depends on the setting of whether the image forming unit 120 forms an image on one side or both sides of the recording medium P. indicate.
  • the setting unit 210 performs image formation by the image forming unit 120 on one side of the recording medium P or A signal for setting which of the two sides is to be performed is output to the control unit 250.
  • the conveyance by the conveyance unit 110 when the both sides of the medium are read by the reading unit 140 and the operation of the reading unit 140 will be described.
  • the medium is carried by the drum 110a with one surface (front surface) of the medium facing the reading unit 140, and is conveyed from the upstream side to the downstream side of the reading unit 140 in the medium conveyance direction.
  • the reading unit 140 reads one surface of the medium that has passed the reading position SC (see FIG. 7A and the like).
  • the medium conveyed to the downstream side of the reading unit 140 is switched back and conveyed by the switchback unit 115.
  • the medium is carried by the drum 110 a with the other surface (back surface) facing the reading unit 140 and is positioned on the upstream side of the reading unit 140 again. Thereafter, the medium is transported again from the upstream side to the downstream side of the reading unit 140 in the medium transport direction. Accordingly, the reading unit 140 reads the other surface of the medium that has passed the reading position SC. Thus, both sides of the medium can be read by the reading unit 140 provided to read one side of the medium.
  • FIG. 4 is a diagram illustrating an example of a specific configuration of the irradiation unit 130.
  • the irradiation unit 130 is supplied with a connector 133 to which a power line for supplying power to the light source 131 is connected, and cooling water for cooling the light source 131.
  • a water cooling port 134 is provided.
  • the shielding part 132 is provided, for example, so as to extend from the side part of the casing of the light source 131 toward the outer peripheral surface side of the drum 110a of the transport part 110. Further, the shielding part 132 is provided so as to be divergent at a predetermined angle from the light source 131 toward the outer peripheral surface of the drum 110a in the direction along the conveyance direction of the recording medium P by the drum 110a of the conveyance part 110. Specifically, the shielding part 132 is provided at an angle of 19.4 [°] with respect to the center line CL connecting the center of the generation region where light is emitted from the light source 131 and the rotation center of the drum 110a.
  • the shielding portion 132 of the present embodiment is configured by an aluminum plate provided so as to reflect 98% of the ultraviolet rays emitted from the light source 131 inside a bulky portion provided in a divergent shape.
  • These specific items related to the specific configuration of the shielding part 132 are merely examples, and are not limited to these.
  • Various specific design items such as a predetermined angle, material, and reflectance can be changed as appropriate. It is.
  • the irradiation angle FL of the ultraviolet rays emitted from the light source 131 in the direction along the conveyance direction of the recording medium P by the drum 110a of the conveyance unit 110 is relative to the center line CL.
  • the light source 131 spreads from the light source 131 toward the drum 110a at an angle exceeding 19.4 [°].
  • the shielding unit 132 extends from the light source 131 to block the ultraviolet rays, and a position where a part of the ultraviolet rays is not intended in the direction along the conveyance direction of the recording medium P by the drum 110a of the conveyance unit 110 (for example, the reading unit 140).
  • the area irradiated with ultraviolet rays is defined as a predetermined irradiation area A.
  • the shielding unit 132 blocks part of the energy irradiated from the irradiation unit 130 between the irradiation unit 130 and the reading unit 140.
  • the shielding portion 132 may include an extending portion 132 a that is extended so that the end portion on the drum 110 a side substantially follows the outer peripheral surface of the drum 110 a.
  • the extending portion 132a is provided such that the surface on the drum 110a side does not easily reflect light (such as ultraviolet rays) from the light source 131.
  • the extended portion 132a has, for example, a non-reflective material attached to the surface on the drum 110a side.
  • the extending part 132a reduces the reflection of light between the recording medium P carried on the drum 110a and the extending part 132a, and reduces the intensity of the light guided in the direction away from the center line CL.
  • FIG. 5 is a diagram illustrating an example of a correspondence relationship between the wavelength of light emitted from the light source 131 of the irradiation unit 130, the integrated light amount necessary for curing the four colors of ink, and the illuminance of light emitted from the light source 131. .
  • FIG. 5 is also a diagram illustrating an example of numerical conditions relating to the degree of ultraviolet irradiation in the present embodiment.
  • the recording medium P is irradiated with light (ultraviolet rays) by the irradiation unit 130. While passing through the predetermined irradiation area A, there is a condition that ultraviolet rays corresponding to the integrated light amount shown in FIG. 5 need to be irradiated according to the wavelength of light. For example, when the wavelength of light is 395 [nm], the necessary integrated light amount is 350 [mJ / cm 2 ]. In addition, when the light wavelength is 405 [nm], the necessary integrated light amount is 475 [mJ / cm 2 ].
  • the intensity (for example, light wavelength and illuminance) of the ultraviolet rays irradiated by the irradiation unit 130 is set based on the above conditions.
  • the conveyance speed of the recording medium P carried and conveyed by the drum 110a is 850 [mm / sec]
  • the length in the direction along the conveyance direction of the recording medium P by the drum 110a in the predetermined irradiation area A is 68 [mm. ]
  • the correspondence between the wavelength of light and the illuminance as shown in FIG. 5 is set.
  • the illuminance of light shown in FIG. 5 is a measurement result obtained when measurement is performed with a dedicated illuminometer at a distance of 10 [mm] from the light generation source by the light source 131, and such measurement result is obtained.
  • the operating condition of the light source 131 is set.
  • FIG. 6 is a diagram illustrating an example of spectral sensitivity characteristics of the CCD image sensor of the reading unit 140.
  • the CCD image sensor has sensitivity to light having a wavelength of 400 to 700 [nm]. For this reason, for example, when the wavelength of light emitted from the light source 131 of the irradiation unit 130 is 405 [nm], the CCD image sensor has sensitivity to light emitted from the light source 131 of the irradiation unit 130 and reflected light of the light. It will have.
  • FIG. 6 is a diagram illustrating an example of spectral sensitivity characteristics of the CCD image sensor of the reading unit 140.
  • the CCD image sensor has sensitivity to light having a wavelength of 400 to 700 [nm]. For this reason, for example, when the wavelength of light emitted from the light source 131 of the irradiation unit 130 is 405 [nm], the CCD image sensor has sensitivity to light emitted from the light source 131 of the irradiation unit 130 and
  • the CCD image sensor is not completely insensitive to all light of less than 400 [nm] such as 395 [nm]. Further, the wavelength of light set in the light source 131 is only the center wavelength, and the wavelength of the light actually emitted from the light source 131 is not a complete single wavelength. For this reason, even if the wavelength of light emitted from the light source 131 of the irradiation unit 130 is set to be less than 400 [nm], the CCD image sensor can detect the light emitted from the light source 131 of the irradiation unit 130 or the light. May show sensitivity to reflected light.
  • the detection result by the CCD image sensor is affected. May give. Specifically, for example, in the case where ultraviolet rays are irradiated from the irradiation unit 130 as in the present embodiment, when the light irradiated from the irradiation unit 130 enters the CCD image sensor during the reading operation of the reading unit 140, There may be a deviation in the detection results relating to purple and blue colors detected by light having a wavelength closer to that of ultraviolet rays.
  • the reach distance of the light emitted from the light source 131 also varies depending on whether or not the recording medium P irradiated with the light is processed.
  • gloss processing is known as one of the processing processes of the recording medium P, and a paper on which gloss processing has been performed is called glossy paper.
  • glossy paper shows a property that the light irradiated on the recording surface is reflected more strongly in a specific direction than glossy paper having a relatively low gloss. For this reason, when high gloss paper is used as the recording medium P, the light emitted from the irradiation unit 130 is more strongly reflected by the recording medium P and can reach other configurations (for example, the reading unit 140). The sex will go up relatively.
  • a fluorescent whitening agent may be used for the purpose of enhancing the whiteness of the recording surface of the recording medium P. Since the recording surface whose whiteness has been strengthened by the fluorescent whitening agent reflects light more strongly, when the fluorescent whitening agent is used for the recording medium P, the light emitted from the irradiation unit 130 Is more strongly reflected by the recording medium P, and the possibility of reaching another configuration (for example, the reading unit 140) is relatively increased.
  • the irradiation unit 130 and the reading unit 140 need to be provided.
  • the positional relationship between the irradiation unit 130 and the reading unit 140 is such that the irradiation range where the recording medium P is irradiated with energy by the irradiation unit 130 and the reading position SC where the reading unit 140 reads the recording medium P overlap. It becomes a positional relationship that should not be.
  • the positional relationship between the irradiation unit 130 and the reading unit 140 in the present embodiment is that the intensity of light entering the reading position SC when the image is read by the reading unit 140 among the light irradiated from the irradiation unit 130 is as follows.
  • the positional relationship is less than or equal to the light intensity (for example, 0.4 [%]) necessary for detecting the gradation difference of the image read by the reading unit 140.
  • the CCD image sensor has 8 bits for each of red (R), green (G), and blue (B), that is, a numerical value of 0 to 255. A case will be described in which the 256 gradations shown in FIG.
  • the 8-bit CCD image sensor identifies up to 256 gradations as a detection result corresponding to the intensity of light of each color.
  • the intensity is 0 [%]
  • the intensity is 100 [%].
  • the difference in the light intensity when a difference of one gradation occurs is about 0.4 [%] (0.392... [%]). Therefore, when the reading unit 140 is provided with an 8-bit CCD image sensor, the intensity of light entering the reading unit 140 when the reading unit 140 reads an image out of the light irradiated from the irradiation unit 130 is as follows.
  • the intensity of light used for reading by the reading unit 140 (for example, light emitted by illumination and reflected by the recording medium P to reach the CCD image sensor) is 0.4 [%] or less, substantially. In other words, the light emitted from the irradiation unit 130 does not affect the reading of the image by the reading unit 140. In other words, in the case of an 8-bit CCD image sensor, the light intensity required to detect the gradation difference of the image read by the reading unit 140 is 0 with respect to the light intensity used for reading by the reading unit 140. The strength exceeds 4%.
  • the intensity of light allowed as the intensity of light entering the reading unit 140 when the reading unit 140 reads an image is:
  • the intensity of light used for reading by the reading unit 140 may be 0.1 [%] (0.0976... [%]) Or less.
  • the intensity of light that is allowed as the intensity of light entering the reading unit 140 when the reading unit 140 reads an image out of the light emitted from the irradiation unit 130 is read. It may be 0.02 [%] (0.024... [%]) Or less with respect to the light intensity used for reading by the unit 140.
  • the irradiation unit 130 in which the irradiation range where the recording medium P is irradiated with energy by the irradiation unit 130 and the reading position SC where the reading unit 140 reads the recording medium P does not overlap. Therefore, the energy irradiated from the irradiation unit 130 does not affect the reading of the image by the reading unit 140.
  • the positional relationship between the irradiation unit 130 and the reading unit 140 is 0.4% or less with respect to the intensity of light used for reading by the reading unit 140 (light by illumination).
  • FIG. 7A and 7B are diagrams illustrating an example of a positional relationship among the drum 110a, the image forming unit 120, the irradiation unit 130, and the reading unit 140.
  • FIG. 7A is a diagram relating to a description of a predetermined irradiation area A and deceleration area SL.
  • FIG. 7B is a diagram relating to the description of the distance F between the intersection of the center line CL and the outer peripheral surface of the drum 110a and the reading position SC by the reading unit 140.
  • 8A and 8B are graphs showing the relationship between the position of the reading unit 140 with respect to the center line CL and the intensity of ultraviolet rays that enter the CCD image sensor during reading by the reading unit 140.
  • FIG. 7A is a diagram relating to a description of a predetermined irradiation area A and deceleration area SL.
  • FIG. 7B is a diagram relating to the description of the distance F between the intersection of the center line CL and the outer peripheral surface of
  • FIG. 8A is a graph in the case where the shielding part 132 is present.
  • FIG. 8B is a graph when the shielding part 132 is not provided.
  • 8A and 8B corresponds to the distance F.
  • the CCD image sensor is used for reading by the reading unit 140 as compared with the distance F of less than 70 [mm].
  • the intensity of the entering ultraviolet ray is drastically reduced, and by setting the distance F to exceed 100 [mm], the intensity of the ultraviolet ray entering the CCD image sensor upon reading by the reading unit 140 is substantially 0 [%]. be able to.
  • the distance F between the intersection of the center line CL and the outer peripheral surface of the drum 110a and the reading position SC by the reading unit 140 is set to 157 [mm].
  • the irradiation range where the recording medium P is irradiated with energy by the irradiation unit 130 and the reading position SC where the reading unit 140 reads the recording medium P do not overlap, and the energy irradiated from the irradiation unit 130 is the reading unit 140.
  • the positional relationship that does not affect the reading of the image is established.
  • the intensity of the light entering the reading unit 140 when the reading unit 140 reads the image is the processing applied to the recording medium P used in the image forming system 1.
  • the position of the irradiation unit 130 relative to the drum 110a is the recording medium P in which the configuration of the irradiation unit 130 (for example, the extended portion 132a at the end of the shielding unit 132 on the drum 110a side) is carried on the drum 110a. It is preferable that the position is as close as possible to the drum 110a within a range that does not hinder the conveyance of the drum 110a. Thereby, it can suppress more that energy, such as light, reaches
  • the formation of the pattern image Q by the image forming unit 120 will be described.
  • the pattern image Q for example, a test chart (see FIG. 9) for detecting whether or not the nozzles of the recording head H provided in the head unit 121 are clogged, a plurality of patterns provided in the head unit 121 are used.
  • a positional relationship adjustment image for confirming the positional relationship between the recording heads H can be used.
  • the test chart includes a line having a predetermined length along the conveyance direction of the recording medium P, which is formed by ejecting ink from each nozzle.
  • the number of lines having a predetermined length corresponds to the number of nozzles. If there are nozzles that are clogged, abnormalities such as defects and blurring will appear due to the formation of lines corresponding to the nozzles that are clogged. The presence or absence can be detected.
  • the positional relationship adjusted image overlaps at least in the direction along the conveyance direction of the recording medium P among the nozzle surfaces of the plurality of recording heads H (for example, FIG. 10).
  • the pattern Pa is each of the nozzles existing in the overlapping portion P1
  • the existing recording head H is formed along the conveyance direction of the recording medium P among a plurality of lines formed by the different nozzles. Consists of multiple lines.
  • the positional relationship in the direction (width direction) orthogonal to the conveyance direction of the recording medium P among the positional relationships between the recording heads H that overlap in the overlapping portion P1 is known.
  • the pattern Pb is composed of a plurality of lines formed by the different nozzles of the existing recording head H.
  • the positional relationship in the direction along the conveyance direction of the recording medium P among the positional relationships between the plurality of recording heads H that overlap in the overlapping portion P1 can be understood from the spacing P2 between the plurality of lines.
  • the positional relationship between the plurality of recording heads H can be confirmed by the positional relationship adjustment image.
  • the recording head H is illustrated in FIG. 10, it is an illustration for showing a relationship with a plurality of lines constituting the patterns Pa and Pb, and an image relating to the recording head H is included in the positional relationship adjustment image. Absent.
  • the control unit 250 causes the image forming unit 120 to apply a blank portion existing on one end side of both ends of the recording medium P in the direction along the conveyance direction by the conveyance unit 110.
  • a pattern image Q is formed.
  • the control unit 250 determines the positional relationship between the image and the pattern image Q so as to form the pattern image Q in the margins on both sides existing on one end side of the recording medium P that is switched back and conveyed by the switchback unit 115. Control. Therefore, as shown in FIG.
  • the pattern image Q is formed on one end side positioned on the downstream side in the transport direction in image formation on one surface (front surface) of the recording medium P, for example. In the image formation on the other surface (back surface), it is formed on one end side positioned on the upstream side in the transport direction.
  • the control unit 250 may control the positional relationship between the image and the pattern image Q so that the double-sided pattern image Q is formed on the other end opposite to the example shown in FIG.
  • the generation unit 230 In connection with the control of the positional relationship between the image and the pattern image Q, the generation unit 230 forms the image on both sides of the recording medium P (for example, the image corresponding to the image data included in the print job) and forms the pattern image Q on both sides. In the case of forming, composite image data in which the positional relationship between the image and the pattern image Q is adjusted so that the pattern image Q is formed in a blank portion existing on one end side is generated for each of both surfaces. Specifically, for example, as illustrated in FIG. 12, the generation unit 230 stores image data included in a print job and image data corresponding to the pattern image Q in separate memory areas.
  • the generation unit 230 forms a pattern on one end (for example, the upper side shown in FIG. 12) of the image formed on one surface (front surface) of the recording medium P. Composite image data in which the images Q are concatenated is generated. Further, the generation unit 230 determines the other end of the image (for example, the lower side shown in FIG. 12) for the image formed on the other side (back side) of the recording medium P among the images corresponding to the image data included in the print job. Side) to generate combined image data in which the pattern image Q is connected.
  • one end and the other end to which the pattern image Q is connected correspond to end portions in the direction along the conveyance direction of the recording medium P when the image is formed on the recording medium P.
  • the upper side shown in FIG. 12 corresponds to the downstream side of the image formed on the recording medium P being conveyed. Therefore, the pattern image Q is formed on one end (front surface) of the recording medium P on one end side which is located downstream in the transport direction, and the other surface (back surface) of the recording medium P is transported. A pattern image Q is formed on one end side that will be located upstream in the direction.
  • the control unit 250 controls the operation of the image forming unit 120 to form the image and the pattern image Q on both sides of the recording medium P using the composite image data generated by the generating unit 230.
  • the control unit 250 sets the image forming unit 120 so that the formation regions in the direction along the transport direction coincide with each other among the formation regions of the pattern image Q on both surfaces.
  • the image formation timing of the recording medium and the conveyance timing of the recording medium P by the conveyance unit 110 are controlled.
  • the image forming system 1 is not limited to a margin part, and uses an image forming area (for example, an area in which an image corresponding to image data is formed) existing on the recording surface of the recording medium P. It is possible to form an image used for the adjustment of the image. Specifically, the image forming system 1 records, for example, a shading image (see FIG. 13) for confirming the reproducibility of each shade of colors handled by the image forming unit 120 (for example, four colors of CMYK). Form on medium P.
  • a shading image see FIG. 13
  • the shading image is an image formed by increasing or decreasing the amount of ink ejected from the nozzles of each head unit 121 stepwise along the conveyance direction of the recording medium P. Based on the shading image, the reproducibility of color shading depending on the amount of ink ejected onto the recording medium P can be confirmed.
  • the shading image is individually formed for the colors handled by the image forming unit 120.
  • English initials indicating each color are used as codes for shaded images of yellow (Y), magenta (M), cyan (C), and black (K).
  • specific aspects, such as the positional relationship of the shading image of each color in the recording medium P are not restricted to this, It can change suitably.
  • the image forming system 1 can also form the pattern image Q in the image forming area existing on the recording surface of the recording medium P, not limited to the blank portion, if necessary.
  • An image used for adjustment of the image forming unit 120 such as a pattern image Q such as the test chart and the positional relationship adjustment image, a shading image, or the like is read by the reading unit 140.
  • the control unit 250 performs various operations related to the adjustment of the image forming unit 120 based on the reading result by the reading unit 140.
  • various operations for example, a condition change by the changing unit 240, a temporary stop of image formation by the image forming unit 120, a process for notifying the user, and the like can be cited.
  • the pattern image Q according to the above example, it is sufficient that the test chart is read at a resolution with which it is possible to confirm the presence or absence of line loss or blur.
  • the shading image is read at a resolution at which the color density can be confirmed.
  • the positional relationship adjustment image is read at a higher resolution than the test chart and the shading image because of the necessity of adjusting the positional relationship between the recording heads H more precisely. Need to be done.
  • an image read by the reading unit 140 requires an image that requires a relatively low resolution reading (such as a test chart or a shading image) and a relatively high resolution reading. There is an image (high-resolution read image) to be performed.
  • the resolution that can be read by the reading unit 140 depends on the performance of the reading unit 140 and the relative moving speed between the reading unit 140 and the recording medium P. Specifically, in the case of this embodiment, when the recording medium P is transported at the transport speed (first transport speed) of the recording medium P when the image is formed by the image forming unit 120, the low-resolution read image is read. The performance of the reading unit 140 is ensured to obtain a resolution that can be obtained at a possible resolution (first resolution) without causing a problem in reading a low-resolution read image. The reason for the performance of the reading unit 140 will be described.
  • the performance of the reading unit 140 is ensured to obtain a resolution with no problem in reading a low-resolution read image such as a test chart at the first transport speed.
  • the resolution (second resolution) necessary for reading the high-resolution read image is obtained by reading the pattern image Q or the like formed on the recording medium P conveyed at the first conveyance speed. It is not possible. This is because the reading unit 140 that can read the recording medium P conveyed at the first conveyance speed at the second resolution is expensive and difficult to employ in the present embodiment. Therefore, in order to perform reading with the second resolution, it is necessary to set the conveyance speed of the recording medium P by the conveyance unit 110 to a conveyance speed (second conveyance speed) slower than the first conveyance speed.
  • the control unit 250 controls the conveyance speed by the conveyance unit 110 based on the relationship between the performance of the reading unit 140 and the conveyance speed described above.
  • the control unit 250 has a resolution that can be read by the reading unit 140 when the recording medium P is transported at the first transport speed that is the transport speed of the recording medium P when the image forming unit 120 forms an image.
  • the transport speed of the recording medium P by the transport unit 110 is set to the first speed.
  • the second transport speed is a transport speed that is slower than the transport speed.
  • the control unit 250 performs the recording after the formation of the pattern image Q is completed.
  • the medium P is transported to the transport unit 110 at the second transport speed.
  • the control unit 250 records the recording medium P at the first conveyance speed when the pattern image Q that needs to be read at the second resolution is formed on the recording medium P by the image forming unit 120.
  • the downstream end of the end in the direction along the transport direction of the pattern image Q reaches the reading position SC by the reading unit 140 before the image including the pattern image Q is scanned.
  • the control unit 250 sets the conveyance speed of the recording medium P to the second conveyance speed until the recording medium P reaches the reading position SC after the formation of the pattern image Q is completed.
  • the deceleration area SL is, for example, a straight line connecting the end position on the downstream side of the predetermined irradiation area A and the rotation center of the drum 110a, and a straight line obtained by extending the reading position SC by the reading unit 140 to the rotation center of the drum 110a.
  • the region corresponding to the rotation angle range of the drum 110a to be formed is an example and is not limited to this.
  • an image pattern image Q of a high-resolution read image
  • the recording medium P is recorded on the recording medium P before the downstream end of the recording medium P carried and conveyed by the drum 110a reaches the upstream end of the deceleration region SL.
  • the reading position SC is reached by the reading unit 140.
  • control unit 250 rotates the drum 110a during the rotation operation of the drum 110a until the downstream end of the recording medium P passes through the deceleration region SL and reaches the reading position SC by the reading unit 140. Decelerate. Thereby, the control unit 250 reduces the transport speed of the recording medium P transported at the first transport speed during image formation to the second transport speed. Then, the control unit 250 operates the reading unit 140 to read the high-resolution read image formed on the recording medium P conveyed at the second conveyance speed at the second resolution.
  • the control unit 250 acquires the positional relationship between the recording medium P carried on the drum 110a and the image forming unit 120, the irradiation unit 130, and the reading unit 140 based on the detection result by the detection unit 110b, and the conveyance speed.
  • this is an example and not limited to this.
  • the control unit 250 determines to which part of the upstream side of the transported recording medium P the image including the pattern image Q is continued. The position information indicated is acquired. Further, the control unit 250 acquires the position information of the recording medium P detected by the detection unit 110b.
  • the control unit 250 captures an image at a timing when the downstream end of the pattern image Q formed on the transported recording medium P reaches the upstream end of the deceleration region SL. You may make it determine the presence or absence of continuation of formation.
  • the image forming unit 120 forms an image including the pattern image Q before the downstream end of the end of the pattern image Q along the conveyance direction reaches the upstream end of the deceleration region SL. Is completed, the control unit 250 sets the transport speed of the recording medium P to the second transport until the recording medium P reaches the reading position SC after the image forming unit 120 completes the formation of the image including the pattern image Q. You may make it speed.
  • the control unit 250 uses the re-conveying unit (for example, the switchback unit 115) to read the reading unit 140.
  • the recording medium P transported upstream may be transported to the transport unit 110 at the second transport speed.
  • the downstream end of the recording medium P passes through the deceleration region SL and is read by the reading unit 140. It is conceivable that image formation on the recording medium P is continued even when reaching SC.
  • the control unit 250 when the pattern image Q is a high-resolution read image, the conveyance speed must be reduced in order to read the pattern image Q.
  • the reduction in the conveyance speed during image formation is caused by the ink ejection position. It affects the image quality, such as changes.
  • the control unit 250 when the reading unit 140 cannot perform the deceleration for reading during conveyance accompanying image formation, the control unit 250 completes the image formation without reducing the conveyance speed during image formation. . At this time, the reading unit 140 does not operate. Thereafter, the control unit 250 operates the switchback unit 115 to re-transport the recording medium P on which the image is formed. Specifically, the control unit 250 performs the inversion of the recording medium P by the switchback unit 115 twice.
  • the recording medium P on which one surface (front surface) on which the pattern image Q is formed on the upstream side in the transport direction is opposed to the reading unit 140 is turned over by the first reversal and then the second reversal. Then, the drum 110 a is again carried with one surface (front surface) facing the reading unit 140. At the same time, the recording medium P is conveyed to the upstream side of the reading unit 140 due to inversion by the switchback unit 115. After the recording medium P is reversed twice by the switchback unit 115, the control unit 250 sets the conveyance speed of the recording medium P to the second conveyance speed, operates the reading unit 140, and conveys the recording medium P at the second conveyance speed.
  • the high-resolution read image formed on the recording medium P to be read is read at the second resolution. Note that not only the pattern image Q that is a high-resolution read image but also an image that needs to be read at the second resolution is formed, the downstream end of the recording medium P passes through the deceleration region SL and is read.
  • the control unit 250 causes the re-conveying unit (for example, the switchback unit 115) to move upstream of the reading unit 140.
  • the transported recording medium P is transported to the transport unit 110 at the second transport speed.
  • the control unit 250 is configured to transport the irradiation amount per unit time of the energy irradiated by the irradiation unit 130 at the first transport speed. Less than. Specifically, when the recording medium P is transported at the second transport speed and the energy irradiation by the irradiation unit 130 is necessary, the control unit 250 records the recording medium P transported at the second transport speed. Irradiation is performed by the irradiation unit 130 for the purpose of making the integrated amount of energy per unit area (for example, integrated light amount) uniform and the integrated amount of energy per unit area of the recording medium P transported at the first transport speed.
  • the integrated amount of energy per unit area for example, integrated light amount
  • the amount of energy applied per unit time is reduced as compared with the case where the recording medium P is transported at the first transport speed. More specifically, for example, as shown in FIG. 14, the image formation by the image forming unit 120 has been completed, and even if the conveyance speed of the recording medium P is decreased in the deceleration region SL, the ink discharge position can be changed. Even if there is no influence on the image quality due to the change, the irradiation of energy to the image formed on the recording medium P is completed when the downstream end of the recording medium P reaches the reading position SC by the reading unit 140. There may be cases where it is not.
  • the control unit 250 reduces the irradiation amount of energy irradiated by the irradiation unit 130 per unit time as compared with the case where the recording medium P is transported at the first transport speed.
  • the specific degree of reduction depends on, for example, the ratio between the first transport speed and the second transport speed.
  • control unit 250 may not operate the irradiation unit 130 when the recording medium P is transported at the second transport speed.
  • the re-transport unit (for example, switchback unit 115) transports the recording medium P to the upstream side of the reading unit 140, and transports the recording medium P to the transport unit 110 at the second transport speed.
  • the image formation on the recording medium P conveyed to the upstream side of the reading unit 140 has already been completed.
  • the control unit 250 stops the operation of the irradiation unit 130, and the irradiation unit 130
  • the irradiation amount per unit time of the energy irradiated by 130 is set to zero.
  • the control unit 250 records the recording medium at the first transport speed performed when the pattern image Q is formed on the transport unit 110.
  • reading of the recording medium P conveyed at the first conveying speed such as reading of a low-resolution read image by the reading unit 140, can ensure a sufficient resolution according to the purpose.
  • the conveyance at the first conveyance speed can be continued regardless of whether or not the image is formed when the low-resolution read image reaches the reading position SC by the reading unit 140.
  • the control unit 250 continues the conveyance of the recording medium P at the first conveyance speed performed when the low resolution read image is formed on the conveyance unit 110, and the low resolution read image is formed at the reading position SC by the reading unit 140.
  • the recording medium P is passed.
  • the control unit 250 sends the image to the transport unit 110.
  • the conveyance of the recording medium P at the first conveyance speed performed at the time of forming is continued, and the recording medium P on which the image is formed is passed near the reading unit 140.
  • the reversing unit for example, the switchback unit 115
  • the reading unit 140 is downstream of the image forming unit 120 in the transport direction and upstream of the reversing unit. Since both sides of the recording medium P can be read by the reading unit 140 by the operation of the double-sided conveyance mechanism, the recording medium P can be read without providing a dedicated reading unit 140 for reading each of both sides. Therefore, both sides can be read with a cheaper configuration.
  • the changing unit 240 that changes the conditions related to the image formation by the image forming unit 120 based on the reading result by the reading unit 140 is provided, the reading result by the reading unit 140 should not continue the image formation without changing the condition.
  • an event for example, nozzle clogging, etc.
  • Various types of waste for example, waste of the recording medium P and ink and waste of time spent for image formation under inappropriate conditions
  • the condition changed by the changing unit 240 includes a condition relating to ink ejection from the nozzle
  • the reading result by the reading unit 140 continues image formation without changing the condition relating to ink ejection from the nozzle.
  • an event that should not have occurred for example, nozzle clogging, etc.
  • the reading unit 140 is provided on the downstream side of the irradiation unit 130 (fixing unit), an image that is fixed by the irradiation unit 130 and does not change any more can be read by the reading unit 140. An image reading result equivalent to the image to be obtained can be obtained.
  • the positional relationship between the irradiation unit 130 and the reading unit 140 is such that the irradiation range where the recording medium P is irradiated with energy by the irradiation unit 130 and the reading position SC where the reading unit 140 reads the recording medium P do not overlap. Therefore, even if the irradiation unit 130 is operating during the reading operation by the reading unit 140, the reading by the reading unit 140 can be performed without any problem. That is, according to the image forming system 1 of the present embodiment, it is possible to further reduce the influence of the energy irradiated on the recording medium P by the irradiation unit 130 on the reading result by the reading unit 140.
  • the shielding unit 132 that blocks a part of the energy irradiated from the irradiation unit 130 is provided between the irradiation unit 130 and the reading unit 140, the range in which the energy irradiated from the irradiation unit 130 reaches can be limited. Therefore, the positional relationship in which the irradiation range where the recording medium P is irradiated with energy by the irradiation unit 130 and the reading position SC where the reading unit 140 reads the recording medium P does not overlap can be realized more easily.
  • the irradiation unit 130 and the reading unit 140 can be brought closer to each other, the image forming apparatus (main body unit 100) can be made more compact.
  • the positional relationship between the irradiation unit 130 and the reading unit 140 is that the reading unit 140 reads the intensity of light entering the reading position SC when the reading unit 140 reads an image out of the light emitted from the irradiation unit 130.
  • the positional relationship is equal to or lower than the light intensity necessary for detecting the gradation difference of the image to be obtained. Accordingly, since both the irradiation unit 130 and the reading unit 140 are provided so as to face the recording medium P conveyed by the conveyance unit 110, it is difficult to completely physically separate the irradiation unit 130 and the reading unit 140.
  • the energy is read by the shielding unit 132 by attenuating the arrival of the energy. It is possible to prevent the reading of an image by 140 from being affected.
  • the control unit 250 forms an image forming unit on a blank portion existing on one end side of both ends of the recording medium P in the direction along the conveyance direction by the conveyance unit 110. Since the pattern image Q is formed by 120, the other end of both sides can be used for image formation. Therefore, more images are formed on both sides of the recording medium P in the formation of the image and the pattern image Q. Can be used.
  • the generation unit 230 forms the pattern image Q on both sides together with the image formation on both sides of the recording medium P, the positions of the image and the pattern image Q so that the pattern image Q is formed in the blank portion existing on one end side. Since the composite image data whose relationship is adjusted is generated for each of both sides, the control unit 250 only forms the image and the pattern image Q on both sides of the recording medium P using the composite image data generated by the generation unit 230. Thus, since the pattern image Q can be formed in the blank portion existing on one end side for each of both surfaces of the recording medium P, the processing relating to the positional relationship between the image and the pattern image Q on each of both surfaces is further simplified. be able to.
  • control unit 250 determines the image formation timing by the image forming unit 120 and the conveyance unit 110 so that the formation regions in the direction along the conveyance direction coincide with each other among the formation regions of the pattern image Q on both sides. Since the conveyance timing of the recording medium P is controlled, the area used for the pattern image Q in the conveyance direction can be matched on both sides, so that the image forming unit 120 can form an image on the recording medium P. Of these, the area other than the area of the pattern image Q can be used in common for both sides to form an image other than the pattern image Q (an image corresponding to the image data), and a larger area can be used for image formation. Can do.
  • control unit 250 uses the transport unit 110 when reading at the second resolution, which is higher than the first resolution, is required and an image is not formed by the image forming unit 120. Since the conveyance speed of the recording medium P is the second conveyance speed, which is a conveyance speed slower than the first conveyance speed, the conveyance speed of the recording medium P with respect to the reading unit 140 in image reading is further reduced without degrading the image quality. It is possible to realize both compatibility with both the first resolution and the second resolution and ensuring the image quality by controlling the transport speed according to the required resolution.
  • the control unit 250 removes the recording medium P from the second after the formation of the pattern image Q is completed. Since the sheet is conveyed to the conveyance unit 110 at the conveyance speed, the conveyance speed of the recording medium P with respect to the reading unit 140 in image reading can be further reduced without causing disturbance in the formation of the pattern image Q. Therefore, it is possible to realize both the control of the conveyance speed for reading the pattern image Q that needs to be read and the formation of the correct pattern image Q.
  • the pattern image Q is transported in the transport direction.
  • the control unit 250 Since the conveyance speed of the recording medium P is set to the second conveyance speed until the recording medium P reaches the reading position SC after the formation of the pattern image Q is completed, the switchback unit 115 is accompanied by the conveyance for image formation.
  • the pattern image Q can be read without re-conveying using a configuration relating to re-conveying such as image formation and patterning including the formation of the pattern image Q with a shorter conveying path. Reading down image Q bets can be performed.
  • the control unit 250 uses the re-conveying unit (for example, the switchback unit 115) to read the reading unit 140. Since the recording medium P transported upstream is transported to the transport unit 110 at the second transport speed, the transport speed is set to the second transport during image formation involving the formation of the pattern image Q that requires reading at the second resolution. Even if the speed cannot be achieved, the pattern image Q can be read at the second resolution.
  • the re-conveying unit for example, the switchback unit 115
  • the control unit 250 records the recording medium at the first transport speed performed when the pattern image Q is formed on the transport unit 110. Since the conveyance of P is continued, the pattern image Q can be read along with the conveyance for image formation without passing through the re-conveyance using the configuration related to the re-conveyance such as the switchback unit 115. Image formation including formation of the pattern image Q and reading of the pattern image Q can be performed on the conveyance path.
  • the control unit 250 is configured to transport the irradiation amount per unit time of the energy irradiated by the irradiation unit 130 at the first transport speed. Therefore, the integrated amount of energy per unit area of the recording medium P conveyed at the second conveyance speed (for example, the integrated light amount) and the unit area of the recording medium P conveyed at the first conveyance speed. Since the integrated amount of energy can be made uniform, the image quality of the image fixed on the recording medium P can be made uniform regardless of the conveyance speed.
  • the controller 250 does not operate the irradiation unit 130 when the recording medium P is conveyed at the second conveyance speed, the irradiation unit 130 operates during conveyance of the recording medium P without the operation of the image forming unit 120. Therefore, it is possible to prevent waste of energy, change of the recording medium P and an image formed on the recording medium P due to unnecessary energy irradiation, and the like.
  • the changing unit 240 that changes a condition related to image formation by the image forming unit 120. Therefore, it is possible to prevent various kinds of waste such as waste of ink caused by an image formed under an inappropriate condition.
  • control unit 250 may control the formation position of the pattern image Q on the recording medium P so that the formation position of the pattern image Q on each of both surfaces does not overlap on both faces.
  • the pattern image Q is formed on one surface (the region where the pattern image Q is formed on the front surface and the other surface (back surface).
  • the area control of the pattern image Q may be performed for the pattern image Q that falls within an area that is not more than half of the maximum width in which the image can be formed in the width direction of the recording medium P.
  • Specific examples include formation of a test chart of the image forming unit 120 having the head unit 121 that reciprocates in the width direction as in a non-one-pass ink jet recording apparatus.
  • control unit 250 performs operation control related to the formation of the pattern image Q so that the pattern image Q is formed only on one surface and not formed on the other surface (for example, when the discrepancy is impossible). May be. Specifically, for example, in the case of the recording medium P in which an image formed on one surface (front surface) can be seen through from the other surface (back surface), the pattern images Q formed on one end side overlap each other. A case where the reading result of the pattern image Q formed on the other surface cannot be obtained correctly is considered. In this case, the controller 250 may form the pattern image Q only on one side and not on the other side.
  • the generation unit 230 provided in the main body unit 100 generates the composite image data, but this is an example and the present invention is not limited to this.
  • the information processing apparatus connected to the image forming system 1 such as the PC shown in FIG. 2 forms an image on both sides of the recording medium P and forms the pattern image Q on both sides, a blank space on one end side exists.
  • the composite image data in which the positional relationship between the image and the pattern image Q is adjusted so as to form the pattern image Q in the part is generated for each of both surfaces and output to the image forming apparatus.
  • the control unit 250 of the image forming system 1 The image and the pattern image Q may be formed on both sides of the recording medium P using the composite image data output from the information processing apparatus.
  • the composite image data generated by the information processing apparatus connected to the image forming system 1 the formation areas in the direction along the transport direction among the formation areas of the pattern image Q for each of the both faces coincide with each other.
  • a blank portion corresponding to the carry amount for adjusting the image formation timing by the image forming unit 120 may be included.
  • the composite image data includes, for example, a pattern image Q arranged so that the pattern image Q is formed on one end side and an image other than the pattern image Q (as shown in FIG. Corresponding images, which are images formed on both sides), and the maximum area where image formation by the image forming unit 120 on one side of the recording medium P is possible. You may have a blank part corresponding to fields other than a formation field.
  • the pattern image Q in the composite image data is adjusted so that the formation areas of the pattern image Q on both surfaces coincide with each other in the direction along the conveyance direction.
  • the information processing apparatus generates composite image data for both sides and outputs the composite image data to the image forming apparatus, so that the control unit 250 does not perform special control related to the position of the pattern image Q, but each pattern image on both sides. Q can be formed on one end side of the recording medium P.
  • the formation areas in the direction along the transport direction in the formation areas of the pattern image Q for each of the both faces coincide with each other.
  • the area used for the pattern image Q in the conveyance direction can be more easily matched on both sides.
  • the area other than the area of the pattern image Q is shared on both sides, and an image other than the pattern image Q (an image corresponding to the image data) is stored. More regions can be used for image formation. In the case of the example shown in FIG.
  • the blank portion is provided on the other end side on both sides, but this is an example and the present invention is not limited to this.
  • a blank portion may be provided between the blank portion where the pattern image Q is formed and the portion where the image corresponding to the image data is formed, or a part of the periphery of the image corresponding to the image data Or a blank part may be provided in all.
  • the reading unit 140 reads the pattern image Q and the shading image.
  • the reading unit 140 is an example, and the reading unit 140 is not limited to this.
  • the main body 100 of the image forming system 1 further includes image data that is the basis of an image formed by the image forming unit 120 and the image forming unit 120 based on the image data.
  • the comparison unit 270 may be provided that compares the read data generated by reading the image formed by the reading unit 140 with the reading unit 140.
  • the changing unit 240 may change the condition based on the comparison result by the comparing unit 270.
  • the conditions relating to image formation changed by the changing unit 240 are not limited to the conditions relating to ink ejection from the nozzles.
  • the condition may include content related to the brightness of the image.
  • the changing unit 240 may change the degree of ink ejection related to the reproduction of the shading of each color based on the reading result of the shading image by the reading unit 140.
  • the image formed on the basis of the image data is read by the reading unit 140, and each color (for example, four colors of CMYK) used for forming the image is compared by the comparison unit 270, and formed on the recording medium P. You may make it change the discharge amount of the ink of each color, etc. so that the brightness of an image may be made the same with the brightness in image data.
  • the brightness of the image formed on the recording medium P can be made the same as the brightness in the image data.
  • the specific contents of the conditions relating to image formation changed by the changing unit 240 are not limited to the above example.
  • the changing unit 240 relates to image formation so as to stop image formation by the image forming unit 120.
  • Conditions may be changed.
  • the control unit 250 may cause the image forming unit 120 to perform a maintenance operation for eliminating clogging of the nozzles.
  • Specific contents of the maintenance operation include, for example, ejection that eliminates nozzle clogging by moving the head unit 121 to the cleaning unit and driving the nozzles to forcibly eject ink from the clogged nozzles. Maintenance is mentioned.
  • the comparison by the comparison unit 270 is not limited to the comparison related to the brightness of the image.
  • the comparison unit 270 checks each pixel in the image data and each image data in the image data corresponding to the reading result generated by reading by the reading unit 140 in order to confirm the reproducibility of the image formed on the recording medium P. You may make it compare with a pixel.
  • the changing unit 240 stops image formation by the image forming unit 120. In this way, the conditions relating to image formation may be changed.
  • the shielding part 132 is extended from the side part of the casing of the light source 131 toward the outer peripheral surface side of the drum 110a of the transport part 110.
  • this is an example and the present invention is not limited thereto.
  • it may be provided independently of the irradiation unit 130 and the reading unit 140 like a light shielding plate provided so as to be interposed between the irradiation unit 130 and the reading unit 140.
  • the shielding unit 132 may be provided integrally with the reading unit 140.
  • the energy irradiated from the irradiation part 130 is an ultraviolet-ray, it is an example and is not restricted to this.
  • Other energies include infrared (IR), other light beams that cause the ink to cure, or waves such as electromagnetic waves, or heat generated by these waves.
  • the energy is specifically selected according to the characteristics of the ink.
  • the specific content related to the influence of the energy irradiated from the irradiation unit 130 on the reading unit 140 depends on the energy. For example, when IR is used as energy, the influence of light having a wavelength of 700 [nm] or more among light having a wavelength at which the CCD image sensor exhibits sensitivity is more seriously considered.
  • the specific structure and material of the shielding unit 132 are also provided so as to shield part of the energy irradiated from the irradiation unit 130 between the irradiation unit 130 and the reading unit 140.
  • the reading unit 140 of the present embodiment based on the example illustrated in FIG. 6 is a CCD image sensor, but is an example and is not limited thereto.
  • the influence of the energy irradiated from the irradiation unit 130 depends on the characteristics of the image sensor employed as the reading unit 140.
  • the shielding unit 132 in the above embodiment is provided between the irradiation unit 130 and the reading unit 140 for the purpose of setting a range (irradiation range) irradiated with ultraviolet rays emitted from the light source 131 as a predetermined irradiation region A. Although it extends beyond the position which interrupts a part of energy irradiated from the irradiation part 130, it is an example and is not restricted to this, At least between the irradiation part 130 and the reading part 140 It may be provided so as to block a part of the energy irradiated from the irradiation unit 130.
  • the image forming unit 120 in the above-described embodiment performs image formation by an ink jet method, but is an example and is not limited thereto.
  • the image forming unit 120 is a primary transfer unit that forms an image on a photoconductor provided to contact the recording medium P carried on the drum 110a, and a secondary transfer that transfers an image from the photoconductor to the recording medium P.
  • the image may be formed by an electrophotographic method or an image may be formed by another image forming method.
  • control unit 250 may control the conveyance of the recording medium P based on the reading result by the reading unit 140. Specifically, for example, the recording medium P on which an image determined to be defective based on the reading result by the reading unit 140 is discharged to the sub-tray 20b, and only the recording medium P on which an image determined to be normal is formed.
  • the discharge switching guide 113 may be controlled so as to be discharged to the main tray 20a. By performing such control, the user can easily distinguish between the recording medium P on which an image is normally formed and the recording medium P on which an image determined to be defective is formed.
  • the recording medium P is not conveyed to the switchback unit 115 and the belt
  • the paper may be immediately discharged to the sub-tray 20b via the loop 112 and the discharge switching guide 113, and the image formation may be performed again on another recording medium P after changing the above-described conditions for image formation.
  • waste of materials such as ink and time due to wasteful recording on the recording medium P can be prevented.
  • the second side If the image formation on the (back side) is not started, the recording medium P is discharged to the sub-tray 20b via the drum 110a, the cylinder 111, the belt loop 112, and the discharge switching guide 113 without image formation, and the second side (back side). After the start of the image formation, the back side image formation may be stopped, and the recording medium P may be discharged to the sub-tray 20b via the drum 110a, the cylinder 111, the belt loop 112, and the discharge switching guide 113. Accordingly, it is possible to prevent waste of materials such as ink due to wasteful recording on the recording medium P.
  • the deceleration region SL is set in connection with the control of the conveyance speed, but this is an example and the present invention is not limited to this.
  • the pattern image Q is transported in the transport direction.
  • the control unit 250 The conveyance unit 110 may be stopped once when the formation of the image Q is completed, and then the recording medium P may be conveyed to the conveyance unit 110 at the second conveyance speed.
  • the recording medium that is transported at the second transport speed in the transport process in the transport process of the recording medium P when the pattern image Q is formed on the recording medium P. P can be read by the reading unit 140.
  • the acquisition unit 220 may include various interfaces that can be connected to a storage device that stores image data that is a source of an image formed on the recording medium P, such as a hard disk or a flash memory card.
  • the switchback unit 115 reverses and re-transports the paper.
  • the switchback unit 115 is an example, and the present invention is not limited to this.
  • the specific composition is not asked.
  • a reversing and re-transporting mechanism by a combination of a plurality of rollers may be used.
  • the number of reading units 140 in the above embodiment is one, but this is an example and the present invention is not limited to this.
  • the main body unit 100 may include a plurality of reading units 140 provided to read one surface of the medium.
  • the specific configuration of the embodiment of the present invention can be changed as appropriate without departing from the characteristics of the present invention.
  • the present invention can be used for an image forming apparatus.
  • Image Forming System 100 Main Body (Image Forming Apparatus) 110 Conveying section 110a Drum 115 Switchback section (reversing section) 120 Image forming unit 130 Irradiation unit (fixing unit) 140 Reading unit 210 Setting unit 240 Changing unit 250 Control unit 260 Display unit 270 Comparison unit

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Ink Jet (AREA)
  • Facsimiles In General (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

低コストで無駄のない両面の読み取りを行う。画像形成装置である本体部100は、記録媒体Pに画像を形成する画像形成部120と、画像形成部120により記録媒体Pの一面に形成された画像を読み取る読取部140と、記録媒体Pの一面を画像形成部120及び読取部140に対向させながら画像形成部120及び読取部140の配設位置の近傍を通過させるように記録媒体Pを搬送する搬送部110と、画像形成部120により記録媒体Pの両面に画像の形成が行われる場合、一方の面に画像が形成された記録媒体Pの表裏を反転させて、搬送部110の搬送方向における画像形成部120の上流側に記録媒体Pを搬送する反転部として機能するスイッチバック部115と、を備え、読取部140は、搬送方向における画像形成部120の下流側であって、反転部の上流側に設けられる。

Description

画像形成装置
 本発明は、画像形成装置に関する。
 記録媒体に形成された画像を当該記録媒体の排出前に光学的に読み取る読取部を備える画像形成装置が知られている(例えば、特許文献1、2)。かかる画像形成装置は、記録媒体に形成された画像を読取部で読み取って、画像形成の良否の判定、記録媒体に既存の画像が存するか否かの判定等、各種の判定を行う機能を有する。
 また、上記の読取部を備える画像形成装置は、記録媒体の両面に対する画像形成に対応するため、両面の各々を読み取るための読取部が個別に設けられている。
特開2009-25374号公報 特開2009-169105号公報
 しかしながら、記録媒体の両面の読み取りのために読取部を個別に設けることは、画像形成装置のコスト増をもたらす。また、記録媒体の片面に対する画像形成に際して、画像が形成されない側の面に対応する読取部は動作しないこととなるため、両面の読み取りのための読取部が活用されないという無駄があった。
 また、片面ずつ順次画像形成を行い両面の画像形成を行った後に両面の画像を読み取って判定を行う方式では、最初の面の画像形成に異常があった場合でも両面の画像形成後でないとこれを検知できないため、無駄な画像形成を行い、資材と時間が無駄になっていた。
 本発明は、より低コストで無駄のない両面の読み取りが可能な画像形成装置を提供することを目的とする。
 請求項1に記載の発明による画像形成装置は、記録媒体に画像を形成する画像形成部と、前記画像形成部により記録媒体の一面に形成された画像を読み取る読取部と、記録媒体の一面を前記画像形成部及び前記読取部に対向させながら前記画像形成部及び前記読取部の配設位置の近傍を通過させるように記録媒体を搬送する搬送部と、前記画像形成部により記録媒体の両面に画像の形成が行われる場合、一方の面に画像が形成された記録媒体の表裏を反転させて、前記搬送部の搬送方向における前記画像形成部の上流側に記録媒体を搬送する反転部と、を備え、前記読取部は、前記搬送方向における前記画像形成部の下流側であって、前記反転部の上流側に設けられることを特徴とする。
 請求項2に記載の発明は、請求項1に記載の画像形成装置であって、前記読取部による読み取り結果に基づいて前記画像形成部による画像形成に係る条件を変更する変更部を備えることを特徴とする。
 請求項3に記載の発明は、請求項2に記載の画像形成装置であって、前記画像形成部は、ノズルからインクを吐出する記録ヘッドを有し、前記条件は、前記ノズルからのインクの吐出に係る条件を含むことを特徴とする。
 請求項4に記載の発明は、請求項2又は3に記載の画像形成装置であって、前記条件は、前記画像の明るさに係る内容を含むことを特徴とする。
 請求項5に記載の発明は、請求項2から4のいずれか一項に記載の画像形成装置であって、前記画像形成部により形成される画像のもととなる画像データと、当該画像データに基づいて前記画像形成部により形成された画像を前記読取部により読み取ることで生成された読み取りデータと、を比較する比較部を備え、前記変更部は、前記比較部による比較結果に基づいて前記条件を変更することを特徴とする。
 請求項6に記載の発明は、請求項1から5のいずれか一項に記載の画像形成装置であって、前記画像形成部により画像が形成された記録媒体に画像を定着させる定着部を備え、前記読取部は、前記定着部の下流側に設けられることを特徴とする。
 請求項7に記載の発明は、請求項1から6のいずれか一項に記載の画像形成装置であって、前記画像形成部による画像の形成を記録媒体の片面又は両面のいずれに行うかを設定する設定部と、前記設定部による設定に係る表示を行う表示部と、を備えることを特徴とする。
 請求項8に記載の発明は、請求項1から7のいずれか一項に記載の画像形成装置であって、前記読取部による読み取り結果に基づいて前記記録媒体の搬送を制御する制御部を備えることを特徴とする。
 請求項9に記載の発明は、請求項1から8のいずれか一項に記載の画像形成装置であって、前記読取部は、前記搬送部による記録媒体の搬送路の一方の側に配置され、前記記録媒体の一方の面に形成された画像を前記一方の側から読み取り後、前記反転部により反転搬送されて前記画像形成部で前記記録媒体の他方の面に形成された画像を前記一方の側から読み取ることを特徴とする。
 本発明によれば、より低コストで無駄のない両面の読み取りを行うことができる。
本発明の一実施形態である画像形成システムの主要構成を示す図である。 画像形成システムに係る主要構成を示すブロック図である。 ノズルからのインクの吐出に係る条件の変更例を示す図であり、欠損箇所が存するインクの吐出状況の一例を示す図である。 ノズルからのインクの吐出に係る条件の変更例を示す図であり、欠損箇所を補うように条件が変更されたインクの吐出状況の一例を示す図である。 照射部の具体的構成の一例を示す図である。 照射部の光源から発せられる光の波長と、四色のインクの硬化に必要な積算光量と、当該光源から発せられる光の照度との対応関係の一例を示す図である。 読取部のCCDイメージセンサーの分光感度特性の一例を示す図である。 ドラム、画像形成部、照射部及び読取部の位置関係の一例を示す図であり、所定の照射領域と減速領域の説明に係る図である。 ドラム、画像形成部、照射部及び読取部の位置関係の一例を示す図であり、中心線とドラムの外周面との交点と読取部による読取位置との距離の説明に係る図である。 遮蔽部がある場合の、中心線に対する読取部の位置と、読取部による読取に際してCCDイメージセンサーに進入する紫外線の強度との関係を示すグラフである。 遮蔽部がない場合の、中心線に対する読取部の位置と、読取部による読取に際してCCDイメージセンサーに進入する紫外線の強度との関係を示すグラフである。 テストチャートの一例を示す図である。 位置関係調整画像の一例を示す図である。 パターン画像の形成位置の一例を示す図である。 合成画像データの生成例を示す図である。 シェーディング画像の一例を示す図である。 記録媒体に形成されているパターン画像の搬送方向に沿う方向の端部のうち、下流側の端部が読取部による読取位置に到達する前にパターン画像の形成が完了している例を示す図である。 パターン画像の形成位置が両面で重複しない一例を示す図である。 空白部が設けられた合成画像データの一例を示す図である。 比較部をさらに備える画像形成システムに係る主要構成を示すブロック図である。
 以下に、本発明の実施形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
 図1は、本発明の一実施形態である画像形成装置を含む画像形成システム1の主要構成を示す図である。
 画像形成システム1は、供給部10、本体部100、排出部20を備える。供給部10、本体部100、排出部20は、所定の方向(図1に示すX方向)に沿って設けられて連結している。
 供給部10は、本体部100に設けられた画像形成部120により画像が形成される記録媒体P(例えば、用紙等)を備蓄するとともに、記録媒体Pを一枚ずつ本体部100に供給する。
 本体部100は、供給部10から供給された記録媒体Pに画像を形成し、画像が形成された記録媒体Pを排出部20に排出する。
 本体部100は、記録媒体Pを搬送する搬送部110、記録媒体Pに画像を形成する画像形成部120、画像形成部120により画像が形成された記録媒体Pにエネルギーを照射する照射部130、搬送部110に搬送される媒体を読み取る読取部140等を備え、画像形成システム1における画像形成装置として機能する。
 搬送部110は、画像形成部120、照射部130及び読取部140に媒体を搬送する。
 具体的には、搬送部110は、例えば、円筒状のドラム110aを有する。ドラム110aは、円筒の円中心を通る軸を中心に回転可能に設けられて、ドラム110aの円筒状の外周面で記録媒体Pを担持する。搬送部110は、ドラム110aを回転させることで、外周面に担持された記録媒体Pの一面を画像形成部120、照射部130及び読取部140に対向させながら搬送する。
 画像形成部120、照射部130及び読取部140は、回転するドラム110aの外周面が通過する位置の近傍に、当該外周面に沿って設けられる。具体的には、画像形成部120、照射部130及び読取部140は、図1に示すように、ドラム110aの外周面の通過により記録媒体Pが搬送される搬送経路のうち、供給部10から供給された記録媒体Pを排出部20側に搬送する搬送経路に沿って、上流側から下流側に向かって、画像形成部120、照射部130、読取部140の順に設けられる。
 また、搬送部110は、ドラム110aの回転角度を検知する検知部110bを有し、検知部110bにより検知されたドラム110aの回転角度により、ドラム110aの外周面に担持されて搬送される記録媒体Pの位置を検知可能に設けられている。検知部110bは、例えば、ドラム110aの回転軸に設けられたエンコーダーであるが、一例であってこれに限られるものでなく、ドラム110aの回転角度を検知可能な構成であればよい。
 また、搬送部110は、記録媒体Pの表裏を反転させる機構を有する。
 具体的には、搬送部110は、例えば、スイッチバック部115を有する。スイッチバック部115は、スイッチバックにより記録媒体Pを反転して搬送する。
 より具体的には、スイッチバック部115は、例えば、図1に示す2つのシリンダー(第1シリンダー115a、第2シリンダー115b)と1対のベルトループ(ベルトループ115c)から構成される。
 記録媒体Pは、ドラム110aから図1における時計方向に回転するシリンダー111を介して図1における反時計方向に回転する第1シリンダー115aに受け渡され、続いて図1における時計方向に回転する第2シリンダー115bに受け渡される。記録媒体Pの後端が第2シリンダー115bと図1における反時計方向に回転するベルトループ115cのニップ部近傍に到達するとベルトループ115cは図1における時計方向に逆転し、記録媒体Pを吸着してドラム110aまで搬送する。ここで、ベルトループ115cによりドラム110aに戻された記録媒体Pは、画像が形成された面がドラム110aの外周面に当接する状態でドラム110aに再び担持される。即ち、記録媒体Pは、スイッチバック部115により裏返される。また、ドラム110aに戻された記録媒体Pの搬送方向に沿った先頭側の端部は、戻される前にドラム110aにより搬送されていた時の末尾側の端部となる。即ち、記録媒体Pは、スイッチバック部115により反転するように搬送されることで裏返った状態となる。
 このように、搬送部110は、スイッチバック部115により記録媒体Pの表裏を反転して搬送することにより記録媒体P等の媒体の両面を順次画像形成部120に対向させて搬送することが可能に設けられている。
 スイッチバック部115の第1シリンダー115aがドラム110aから記録媒体Pの搬送を引き継ぐ位置は、記録媒体Pの搬送方向における照射部130の下流側である。また、ベルトループ115cがドラム110aに記録媒体Pを戻すことで、戻された記録媒体Pは、画像形成部120の上流側から再度画像形成部120に搬送されることとなる。
 このように、スイッチバック部115は、画像形成部120により記録媒体Pの両面に画像の形成が行われる場合、一方の面に画像が形成された記録媒体Pの表裏を反転させて、搬送部110の搬送方向における画像形成部120の上流側に記録媒体Pを搬送する反転部として機能する。
 また、読取部140は、搬送方向における画像形成部120の下流側であって、スイッチバック部115の上流側に設けられる。このことから、スイッチバック部115は、搬送部110により画像形成部120及び読取部140を通過して搬送された記録媒体Pを、搬送部110の搬送方向における読取部140の上流側に搬送して搬送部110に再度搬送させる再搬送部として機能する。
 画像形成部120は、記録媒体Pに画像を形成する。
 具体的には、画像形成部120は、例えば、ドラム110aに担持された記録媒体Pにインクを吐出するノズルを備えた記録ヘッドHが複数設けられたヘッドユニット121を有する。ヘッドユニット121は、記録媒体Pに吐出されるインクの色(例えば、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の四色)ごとに個別に設けられる。かかるヘッドユニット121を有する画像形成部120は、インクの吐出により記録媒体Pに画像を形成する。
 照射部130は、画像形成部120により画像が形成された記録媒体Pに画像を定着させるためのエネルギーを照射する。
 照射部130により照射されるエネルギーは、インクの特性に応じる。例えば、画像形成部120のヘッドユニット121において紫外線の照射により硬化する紫外線硬化性インクが用いられる場合、照射部130から照射されるエネルギーは、紫外線である。この場合、照射部130は、例えば、紫外線(ultraviolet:UV)を発する発光ダイオード(Light Emitting Diode:LED)等の光源131、光源131から発せられた紫外線が照射される範囲(照射範囲)を所定の照射領域A(図7A参照)とする遮蔽部132等を有する。ここで、所定の照射領域Aは、搬送部110のドラム110aの外周面が記録媒体Pを担持して通過する経路における領域である。照射部130は、搬送部110により搬送されて所定の照射領域Aを通過する記録媒体Pに対して紫外線を照射する。
 照射部130によりエネルギーが照射されると、記録媒体Pの記録面上に吐出されたインクが硬化して、記録面に定着されることとなる。このように、照射部130は、画像形成部120により画像が形成された記録媒体Pに画像を定着させる定着部として機能する。
 読取部140は、搬送部110に搬送される媒体を読み取る。
 具体的には、読取部140は、例えば、CCD(charge-coupled device)イメージセンサー等の撮像素子、記録媒体Pを照らす照明、撮像素子と記録媒体Pとの射線上に設けられるレンズ等を有し、照明により照らされた記録媒体Pからの反射光を撮像素子により検知して、検知結果に応じた電気信号を出力する。読取部140の撮像素子から出力された電気信号に基づいて、読取(読み取り)結果に応じたデータが生成され、読取結果として処理される。
 排出部20は、本体部100のドラム110aからシリンダー111、ベルトループ112、排出切替ガイド113を介して排出された記録媒体Pがユーザーに回収されるまで、記録媒体Pを待機させる。記録媒体Pがシリンダー111を介して排出部20に排出されるか、スイッチバック部115に搬送されるかは、制御部250により制御される。
 また、画像形成システム1には、各種の補正に係る補正用媒体を本体部100に通過させるための搬送経路が設けられていてもよい。
 具体的には、例えば、図1に示すように、供給部10は、記録媒体Pを備蓄するトレーと別個に設けられた、補正用媒体を供給するための補正用媒体供給トレーを備えていてもよい。また、排出部20は、記録媒体Pを待機させるためのメイントレー20aと別個に設けられた、補正用媒体を排出するためのサブトレー20bを備えていてもよい。制御部250は、排出切替ガイド113を制御して、記録媒体Pをメイントレー20aに排出するか、サブトレー20bに排出するか排出先を切り替える。
 このように、画像形成システム1は、記録媒体Pを含む各種の媒体(例えば、補正用媒体等)を搬送し、読取部140により読み取ることが可能に設けられる。
 媒体は、搬送部110により搬送可能な大きさのシート状のものであればよい。媒体の大きさのうち、搬送方向に沿う方向の大きさは、例えば、ドラム110aの円周長に応じる。また、媒体の大きさのうち、搬送方向に直交する幅方向の大きさは、例えば、ドラム110aの外周面の幅(ドラム110aの円筒の中心軸に沿う方向の幅)に応じる。
 図2は、画像形成システム1に係る主要構成を示すブロック図である。
 画像形成システム1は、例えば、設定部210、取得部220、生成部230、変更部240、制御部250、表示部260等を本体部100に備える。
 設定部210は、画像形成システム1の動作に係る各種の設定のための入力に用いられるボタン、キー、タッチパネル等の入力装置を有し、当該入力装置に対するユーザーの操作に応じた設定内容に対応する信号を制御部250に出力する。
 具体的には、設定部210は、例えば、ユーザーの操作に応じて、画像形成部120による画像の形成を記録媒体Pの片面又は両面のいずれに行うかを設定するための信号を制御部250に出力する。
 取得部220は、画像形成部120により形成される画像の元となるデータを取得する。
 具体的には、取得部220は、例えば、ネットワークインターフェースカード(Network Interface Card:NIC)等の通信に係る構成を備え、通信を介して接続されたPC等の外部の機器から送信された印刷ジョブを取得する。印刷ジョブには、画像形成部120により形成される画像に対応する画像データが含まれる。
 生成部230は、画像(例えば、印刷ジョブに含まれる画像データに対応する画像)と、当該画像とともに記録媒体Pに形成されるパターン画像Qとが合成された合成画像データを生成する(図12参照)。パターン画像Qは、画像が形成された記録媒体Pの余白部分に形成されて画像形成部120の調整に用いられる画像である。
 具体的には、生成部230は、例えば、FPGA(Field-Programmable Gate Array)等のプログラマブルロジックデバイス(programmable logic device:PLD)又はASIC(Application-Specific Integrated Circuit)のような集積回路あるいはこれらの組み合わせによる回路からなる。生成部230は、当該回路に実装された処理部及び記憶装置(メモリー)を有し、印刷ジョブに含まれる画像データ及び予め記憶されたパターン画像Qに対応した画像データをメモリーに記憶して、処理部の動作により合成画像データを生成する。
 変更部240は、読取部140による読取結果に基づいて画像形成部120による画像形成に係る条件を変更する。
 具体的には、変更部240は、例えば、PLD又はASICのような集積回路あるいはこれらの組み合わせによる回路からなり、当該回路に実装された処理部及び記憶装置の協働により画像形成に係る条件のための処理が行われる。
 例えば、読取部140によるテストチャート(図9参照)の読取結果に基づいて、ヘッドユニット121に設けられた記録ヘッドHのいずれかのノズルの詰まりが検知された場合に、画像形成に係る条件のうち、ノズルからのインクの吐出に係る条件を、詰まりが生じているノズルからのインクの吐出が行われなくなることが考慮された条件とするよう変更する。
 具体的には、変更部240は、例えば、図3A及び図3Bに示すように、ノズルの詰まりによりインクの吐出が行われなくなる欠損箇所Eの周囲に吐出されるドットDのインクで当該欠損箇所Eを補うように、ノズルからのインクの吐出に係る条件を変更する。より具体的には、図3Aにて示す欠損箇所Eの周囲に吐出されるドットDのインクの量を増加させることで、図3Bに示すように、欠損箇所Eを補う。これにより、欠損箇所Eが画質に与える影響を低減することができる。
 このように、変更部240により変更される画像形成に係る条件は、ノズルからのインクの吐出に係る条件を含む。
 なお、欠損箇所Eの周囲に吐出されるインクで欠損箇所Eを覆うための条件変更の例として、欠損箇所Eの周囲に吐出されるインクを吐出するノズルの駆動信号の変更が挙げられる。
 また、別の例として、ノズルの駆動条件を決定する元のデータとなる画像データにおける欠損箇所Eに対応する画素や当該画素の周囲の画素等の色値に対する補正による変更が挙げられる。この場合、色値に対する補正により吐出されるインク量が増加することで、欠損箇所Eが覆われることとなる。
 制御部250は、画像形成システム1の各部の動作を制御する。
 具体的には、制御部250は、例えば、CPU、RAM、ROM等を有する。
 CPUは、ROM等の記憶装置から処理内容に応じた各種のプログラムやデータ等を読み出して実行し、実行された処理内容に応じて画像形成システム1の各部の動作を制御する。RAMは、CPUにより処理される各種のプログラムやデータ等を一時的に記憶する。ROMは、CPU等により読み出される各種のプログラムやデータ等を記憶する。
 表示部260は、制御部250の制御下で、画像形成システム1の動作に係る各種の表示を行う。
 具体的には、表示部260は、例えば、タッチパネル形式による入力を行うための入力装置と一体的に設けられた液晶ディスプレイ等の表示装置を有し、当該表示装置により各種の表示を行う。なお、液晶ディスプレイは、あくまで表示装置の一例であり、他の表示装置(例えば、有機EL(Electroluminescence)ディスプレイ等)であってもよい。
 表示部260は、例えば、設定部210による設定に係る表示を行う。具体的には、画像形成部120による画像の形成を記録媒体Pの片面又は両面のいずれに行うかの設定に係り、画像が形成される面の選択(片面又は両面)のための表示画面を表示する。ユーザーにより当該表示に応じて片面又は両面のいずれかの選択に応じた操作が設定部210に対して行われると、設定部210は、画像形成部120による画像の形成を記録媒体Pの片面又は両面のいずれに行うかを設定するための信号を制御部250に出力する。
 以下、画像形成システム1に係るより詳細な特徴について、順次説明する。
 まず、媒体の両面を読取部140により読み取る場合の搬送部110による搬送及び読取部140の動作について説明する。
 媒体は、まず、媒体の一方の面(表面)が読取部140に対向する状態でドラム110aにより担持されて、媒体の搬送方向における読取部140の上流側から下流側へ搬送される。これに伴い、読取部140は、読取位置SC(図7A等参照)を通過した媒体の一方の面を読み取る。
 読取部140の下流側まで搬送された媒体は、スイッチバック部115によりスイッチバック搬送される。これにより、媒体は、他方の面(裏面)が読取部140に対向する状態でドラム110aにより担持されるとともに、再び読取部140の上流側に位置することとなる。その後、媒体は、再度、媒体の搬送方向における読取部140の上流側から下流側へ搬送される。これに伴い、読取部140は、読取位置SCを通過した媒体の他方の面を読み取る。
 これにより、媒体の一面を読み取るように設けられた読取部140によって媒体の両面を読み取ることができる。
 次に、照射部130についてより詳細に説明する。
 図4は、照射部130の具体的構成の一例を示す図である。
 照射部130は、上記にて述べた光源131及び遮蔽部132の他に、光源131に電力を供給するための電力線が接続されるコネクター133、光源131を冷却するための冷却水が供給される水冷口134等を供える。
 遮蔽部132は、例えば、光源131の筐体の側部から搬送部110のドラム110aの外周面側に向かって延設されるように設けられる。また、遮蔽部132は、搬送部110のドラム110aによる記録媒体Pの搬送方向に沿う方向について、光源131からドラム110aの外周面に向かって所定の角度で末広がり状となるように設けられる。
 具体的には、遮蔽部132は、光源131から光が発せられる発生領域の中心とドラム110aの回転中心とを結ぶ中心線CLに対して19.4[°]の角度で設けられる。また、本実施形態の遮蔽部132は、末広がり状に設けられたかさの内側で光源131から発せられる紫外線を98[%]反射するよう設けられたアルミニウム製の板により構成される。これら、遮蔽部132の具体的な構成に係る特定事項はあくまで一例であってこれに限られるものでなく、所定の角度、素材及び反射率等の各種の具体的な設計事項については適宜変更可能である。
 図4に示すように、仮に、遮蔽部132がない場合、搬送部110のドラム110aによる記録媒体Pの搬送方向に沿う方向における光源131から発せられる紫外線の照射角度FLは、中心線CLに対して19.4[°]を超えた角度で光源131からドラム110a側に向かって末広がり状となる。遮蔽部132は、光源131から延設されることで紫外線を遮り、搬送部110のドラム110aによる記録媒体Pの搬送方向に沿う方向について、紫外線の一部が意図しない位置(例えば、読取部140による記録媒体Pの読取位置SC等)まで照射されることを防止して、紫外線が照射される領域(照射範囲)を所定の照射領域Aとする。
 このように、遮蔽部132は、照射部130と読取部140との間で照射部130から照射されるエネルギーの一部を遮る。
 また、遮蔽部132は、図4に示すように、ドラム110a側の端部が、ドラム110aの外周面にほぼ沿うように延設された延設部132aを有していてもよい。
 延設部132aは、ドラム110a側の面が光源131からの光(紫外線等)を反射しにくいよう設けられている。具体的には、延設部132aは、例えば、ドラム110a側の面に非反射材が貼り付けられている。これにより、延設部132aは、ドラム110aに担持された記録媒体Pと延設部132aとの間における光の反射を低減して、中心線CLから離れる方向に導かれる光の強さを低減させる。
 次に、本実施形態において照射部130により照射されるエネルギーである光(紫外線)と、本実施形態において画像形成部120により用いられるインクの硬化特性との関係について説明する。
 図5は、照射部130の光源131から発せられる光の波長と、四色のインクの硬化に必要な積算光量と、光源131から発せられる光の照度との対応関係の一例を示す図である。また、図5は、本実施形態における紫外線の照射の度合いに係る数値条件の一例を示す図でもある。
 ドラム110aに担持されて搬送される記録媒体Pに吐出されて画像を形成している四色のインクを確実に硬化させるためには、当該記録媒体Pが照射部130により光(紫外線)が照射される所定の照射領域Aを通過している間に、光の波長に応じて、図5に示す積算光量に対応する紫外線が照射される必要があるという条件が存する。例えば、光の波長が395[nm]である場合に必要な積算光量は、350[mJ/cm]である。また、光の波長が405[nm]である場合に必要な積算光量は、475[mJ/cm]である。一般的に、波長がより短いほど、積算光量がより小さくなる傾向がある。
 照射部130により照射される紫外線の強度(例えば、光の波長及び照度)は、上記の条件に基づいて設定されている。例えば、ドラム110aに担持されて搬送される記録媒体Pの搬送速度が850[mm/秒]、所定の照射領域Aにおけるドラム110aによる記録媒体Pの搬送方向に沿う方向の長さが68[mm]である場合、図5に示すような光の波長と照度との対応関係が成立するよう設定される。具体的には、例えば、光源131から発せられる光の波長が395[nm]である場合、3.0[W/cm]の照度となるよう設定される。また、波長が405[nm]である場合、4.0[W/cm]の照度となるよう設定される。なお、図5に示す光の照度は、光源131による光の発生源から10[mm]の距離で専用の照度計による測定を行った場合に得られる測定結果であり、かかる測定結果が得られるように光源131の動作条件が設定される。
 次に、本実施形態において照射部130により照射されるエネルギーである紫外線と、読取部140による読取に係る光の検知との関係について説明する。
 図6は、読取部140のCCDイメージセンサーの分光感度特性の一例を示す図である。
 CCDイメージセンサーは、図6に示すように、波長が400~700[nm]の光に対する感度を有する。このため、例えば、照射部130の光源131から発せられる光の波長が405[nm]である場合、CCDイメージセンサーは、照射部130の光源131から発せられる光や当該光の反射光に対する感度を有していることとなる。
 また、図6では図示していないが、CCDイメージセンサーは、例えば、395[nm]等、400[nm]未満の全ての光に対する感度が全くないわけではない。また、光源131に設定される光の波長はあくまで中心波長であり、光源131から実際に発せられる光の波長が完全な単一波長であるわけではない。このため、照射部130の光源131から発せられる光の波長が400[nm]未満に設定されている場合であっても、CCDイメージセンサーは、照射部130の光源131から発せられる光や当該光の反射光に対する感度を示すことがある。
 照射部130から照射された光が読取部140の読取動作中にCCDイメージセンサーに進入し、かつ、CCDイメージセンサーに進入した光が所定の強度以上である場合、CCDイメージセンサーによる検知結果に影響を与えることがある。具体的には、例えば、本実施形態のように照射部130から紫外線が照射される場合において、照射部130から照射された光が読取部140の読取動作中にCCDイメージセンサーに進入したとき、紫外線により近い波長の光により検知される紫や青の色に係る検知結果にずれを生じることがある。
 また、光源131から発せられた光の到達距離は、光が照射された記録媒体Pの加工の有無等によっても変化する。
 例えば、記録媒体Pの加工処理の一つとして、光沢処理が知られており、光沢処理が施された用紙は光沢紙と呼ばれるが、より強い光沢を示す光沢紙(高光沢紙)は、相対的に光沢が弱い光沢紙よりも、記録面に照射された光を特定方向により強く反射する性質を示す。このことから、記録媒体Pとして高光沢紙が用いられた場合、照射部130から発せられた光が記録媒体Pでより強く反射されて他の構成(例えば、読取部140等)に到達する可能性が相対的に上がることとなる。
 また、記録媒体Pの記録面の白さをより強めることを目的として、蛍光増白剤が用いられることがある。蛍光増白剤により白さがより強まった記録面は、より強く光を反射するようになることから、記録媒体Pに蛍光増白剤が用いられている場合、照射部130から発せられた光が記録媒体Pでより強く反射されて他の構成(例えば、読取部140等)に到達する可能性が相対的に上がることとなる。
 これらのことから、読取部140による読取精度を維持するためには、照射部130から照射されたエネルギー(例えば、紫外線等の光)が読取部140による画像の読取に影響を与えないよう照射部130及び読取部140が設けられる必要がある。このため、照射部130と読取部140との位置関係は、照射部130により記録媒体Pにエネルギーが照射される照射範囲と読取部140により記録媒体Pの読取が行われる読取位置SCとが重ならない位置関係となる。さらに、本実施形態における照射部130と読取部140との位置関係は、照射部130から照射される光のうち、読取部140による画像の読取に係り読取位置SCに進入する光の強度が、読取部140により読み取られる画像の階調差を検知するために必要な光の強度(例えば、0.4[%])以下となる位置関係である。
 上記の照射部130と読取部140の位置関係に係り、一例として、CCDイメージセンサーが、赤(R)、緑(G)、青(B)の各々について8ビット、即ち、0~255の数値により示される256階調の識別を可能に設けられていた場合について記載する。
 8ビットのCCDイメージセンサーは、各色の光の強度に応じた検知結果として、最大で256階調を識別する。ここで、光が全く検知されない場合(検知結果:0)を0[%]の強度、最も強い光が検知された場合(検知結果:255)を100[%]の強度とした場合、検知結果において1階調の差が生じる場合の光の強度の差は、約0.4[%](0.392…[%])となる。よって、読取部140に8ビットのCCDイメージセンサーが設けられている場合、照射部130から照射される光のうち、読取部140による画像の読取に係り読取部140に進入する光の強度が、読取部140による読取に用いられる光(例えば、照明により発せられて記録媒体Pにより反射されてCCDイメージセンサーに到達する光)の強度に対して0.4[%]以下であれば、実質的に照射部130から照射された光が読取部140による画像の読取に影響を与えないこととなる。言い換えれば、読取部140により読み取られる画像の階調差を検知するために必要な光の強度は、8ビットのCCDイメージセンサーの場合、読取部140による読取に用いられる光の強度に対して0.4[%]を超える強度である。
 同様に、10ビットのCCDイメージセンサーの場合、照射部130から照射される光のうち、読取部140による画像の読取に係り読取部140に進入する光の強度として許容される光の強度は、読取部140による読取に用いられる光の強度に対して0.1[%](0.0976…[%])以下であればよい。また、12ビットのCCDイメージセンサーの場合、照射部130から照射される光のうち、読取部140による画像の読取に係り読取部140に進入する光の強度として許容される光の強度は、読取部140による読取に用いられる光の強度に対して0.02[%](0.024…[%])以下であればよい。
 そこで、本実施形態の画像形成システム1は、照射部130により記録媒体Pにエネルギーが照射される照射範囲と読取部140により記録媒体Pの読取が行われる読取位置SCとが重ならない照射部130と読取部140の位置関係により、照射部130から照射されたエネルギーが読取部140による画像の読取に影響を与えないようにしている。具体的には、本実施形態の画像形成システム1では、照射部130から照射された光のうち、8ビットのCCDイメージセンサーを有する読取部140に対して進入する可能性のある光の強度が、読取部140による読取に用いられる光(照明による光)の強度に対して0.4[%]以下となる照射部130と読取部140の位置関係が成立している。
 図7A及び図7Bは、ドラム110a、画像形成部120、照射部130及び読取部140の位置関係の一例を示す図である。図7Aは、所定の照射領域Aと減速領域SLの説明に係る図である。図7Bは、中心線CLとドラム110aの外周面との交点と読取部140による読取位置SCとの距離Fの説明に係る図である。
 図8A及び図8Bは、中心線CLに対する読取部140の位置と、読取部140による読取に際してCCDイメージセンサーに進入する紫外線の強度との関係を示すグラフである。図8Aは、遮蔽部132がある場合のグラフである。図8Bは、遮蔽部132がない場合のグラフである。図8A及び図8Bの横軸の絶対値が距離Fに相当する。
 図8Aに示すように、遮蔽部132がある場合、70[mm]以上の距離Fを取ることで、70[mm]未満の距離Fに比して、読取部140による読取に際してCCDイメージセンサーに進入する紫外線の強度は飛躍的に減少し、100[mm]を超える距離Fとすることで、実質上、読取部140による読取に際してCCDイメージセンサーに進入する紫外線の強度を0[%]とすることができる。
 また、遮蔽部132がなく、照射部130からの光がドラム110aや記録媒体Pにて反射しない場合、図8Bに示すように、遮蔽部132がある場合のような、70[mm]以上の距離Fとなった場合の紫外線の強度の減衰は生じないものの、140[mm]を超える距離Fとすることで、実質上、読取部140による読取に際してCCDイメージセンサーに進入する紫外線の強度を0[%]とすることができる。
 ここで、照射部130からの光がドラム110aや記録媒体Pにて反射される場合は、その反射光が読取部140に侵入するため、図8Bにて示すよりも更に遠い距離に設置しなければならない。
 本実施形態では、照射部130と読取部140の位置関係について、中心線CLとドラム110aの外周面との交点と読取部140による読取位置SCとの距離Fを157[mm]とすることで、照射部130により記録媒体Pにエネルギーが照射される照射範囲と読取部140により記録媒体Pの読取が行われる読取位置SCとが重ならず、照射部130から照射されたエネルギーが読取部140による画像の読取に影響を与えない位置関係を成立させている。
 なお、照射部130から照射される光のうち、読取部140による画像の読取に係り読取部140に進入する光の強度は、画像形成システム1にて用いられる記録媒体Pに施される加工のうち、照射部130から照射される光が最も強く反射される加工が施された記録媒体Pが搬送部110に搬送されている場合に基づいて計測されることが望ましい。
 また、照射部130の位置のうち、ドラム110aに対する位置は、照射部130の構成(例えば、遮蔽部132のドラム110a側の端部の延設部132a)がドラム110aに担持された記録媒体Pの搬送を阻害することのない範囲内で、可能な限りドラム110aにより近い位置であることが好ましい。これにより、照射部130とドラム110aとの間の間隙から光等のエネルギーが他の構成に到達することをより抑制することができる。
 次に、画像形成部120によるパターン画像Qの形成について説明する。
 パターン画像Qとして、具体的には、例えば、ヘッドユニット121に設けられた記録ヘッドHのノズルの詰まりの有無を検知するためのテストチャート(図9参照)、ヘッドユニット121に設けられた複数の記録ヘッドHどうしの位置関係を確認するための位置関係調整画像(図10参照)等が挙げられる。
 テストチャートは、例えば、図9に示すように、ノズルの各々からのインクの吐出により形成された、記録媒体Pの搬送方向に沿った所定の長さの線により構成される。ここで、所定の長さの線の数は、ノズルの数に対応する。仮に、詰まりを生じているノズルが存する場合、詰まりを生じているノズルに対応する線の形成に係り、欠損やかすれ等の異常が現れることとなるので、テストチャートに基づいて、ノズルの詰まりの有無を検知することができる。
 位置関係調整画像は、例えば、図10のパターンPa、Pbに示すように、複数の記録ヘッドHのノズル面のうち、少なくとも記録媒体Pの搬送方向に沿う方向において重複する部分(例えば、図10の重複部分P1)に設けられた複数のノズルにより形成される複数の線により構成される。
 ここで、パターンPaは、重複部分P1に存するノズルの各々であって、存する記録ヘッドHが異なるノズルの各々により形成された複数の線のうち、記録媒体Pの搬送方向に沿って形成された複数の線により構成される。当該複数の線どうしの位置関係により、重複部分P1で重複する複数の記録ヘッドHどうしの位置関係のうち、記録媒体Pの搬送方向に直交する方向(幅方向)の位置関係が分かる。
 また、パターンPbは、存する記録ヘッドHが異なるノズルの各々により形成された複数の線により構成される。当該複数の線どうしの間隔P2により、重複部分P1で重複する複数の記録ヘッドHどうしの位置関係のうち、記録媒体Pの搬送方向に沿う方向の位置関係が分かる。このように、位置関係調整画像により、複数の記録ヘッドHどうしの位置関係を確認することができる。
 なお、図10において記録ヘッドHを図示しているが、パターンPa、Pbを構成する複数の線との関係を示すための図示であり、位置関係調整画像に記録ヘッドHに係る画像は含まれない。
 次に、記録媒体Pの両面に対するパターン画像Qの形成について説明する。
 制御部250は、記録媒体Pの両面にパターン画像Qを形成する場合、搬送部110による搬送方向に沿う方向の記録媒体Pの両端のうち、一端側に存する余白部分に、画像形成部120によりパターン画像Qを形成させる。
 具体的には、制御部250は、スイッチバック部115によりスイッチバック搬送される記録媒体Pの一端側に存する両面の余白部分にパターン画像Qを形成するよう画像とパターン画像Qとの位置関係を制御する。よって、図11に示すように、パターン画像Qは、例えば、記録媒体Pの一方の面(表面)に対する画像形成において搬送方向の下流側に位置する一端側に形成されるとともに、記録媒体Pの他方の面(裏面)に対する画像形成において搬送方向の上流側に位置する一端側に形成されることとなる。無論、制御部250は、図11に示す例と逆の他端側に両面のパターン画像Qを形成するよう画像とパターン画像Qとの位置関係を制御してもよい。
 画像とパターン画像Qとの位置関係の制御に係り、生成部230は、記録媒体Pの両面に対する画像(例えば、印刷ジョブに含まれる画像データに対応する画像)の形成とともにパターン画像Qを両面に形成する場合、一端側に存する余白部分にパターン画像Qが形成されるよう画像とパターン画像Qとの位置関係が調整された合成画像データを両面の各々について生成する。
 具体的には、生成部230は、例えば、図12に示すように、印刷ジョブに含まれる画像データと、パターン画像Qに対応する画像データとを個別のメモリー領域に記憶する。生成部230は、印刷ジョブに含まれる画像データに対応する画像のうち、記録媒体Pの一方の面(表面)に形成される画像について、画像の一端(例えば、図12に示す上側)にパターン画像Qが連結された合成画像データを生成する。また、生成部230は、印刷ジョブに含まれる画像データに対応する画像のうち、記録媒体Pの他方の面(裏面)に形成される画像について、画像の他端(例えば、図12に示す下側)にパターン画像Qが連結された合成画像データを生成する。ここで、パターン画像Qが連結される一端及び他端は、画像が記録媒体Pに形成された場合に記録媒体Pの搬送方向に沿う方向の端部に対応する。
 なお、図12に示す上側が、搬送される記録媒体Pに形成される画像の下流側に対応する。よって、記録媒体Pの一方の面(表面)については、搬送方向の下流側に位置することになる一端側にパターン画像Qが形成され、記録媒体Pの他方の面(裏面)については、搬送方向の上流側に位置することになる一端側にパターン画像Qが形成される。
 制御部250は、生成部230により生成された合成画像データを用いて記録媒体Pの両面に画像及びパターン画像Qを形成させるように画像形成部120の動作を制御する。
 ここで、制御部250は、例えば、図11に示すように、両面の各々に対するパターン画像Qの形成領域のうち、搬送方向に沿う方向の形成領域が両面で一致するように、画像形成部120による画像の形成タイミング及び搬送部110による記録媒体Pの搬送タイミングを制御する。
 次に、画像形成部120の調整に用いられる別の画像について説明する。
 本実施形態の画像形成システム1は、余白部分に限らず、記録媒体Pの記録面に存する画像形成領域(例えば、画像データに対応する画像が形成される領域)を用いて、画像形成部120の調整に用いられる画像を形成することができる。
 具体的には、画像形成システム1は、例えば、画像形成部120により取り扱われる色(例えば、CMYKの四色)の各々の濃淡の再現性を確認するためのシェーディング画像(図13参照)を記録媒体Pに形成する。
 シェーディング画像は、各々のヘッドユニット121のノズルから吐出されるインクの量を記録媒体Pの搬送方向に沿って段階的に増加又は減少させることにより形成された画像である。シェーディング画像により、記録媒体Pに吐出されるインクの量の多少による色の濃淡の再現性を確認することができる。
 シェーディング画像は、図13に示すように、画像形成部120により取り扱われる色について個別に形成される。図13に示す例では、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色のシェーディング画像に対して、各色を示す英語のイニシャルを符号としている。なお、記録媒体Pにおける各色のシェーディング画像の位置関係等、具体的な態様はこれに限られるものでなく、適宜変更可能である。
 無論、画像形成システム1は、上記のパターン画像Qについても、必要に応じて、余白部分に限らない記録媒体Pの記録面に存する画像形成領域に形成することができる。
 上記のテストチャート及び位置関係調整画像のようなパターン画像Qや、シェーディング画像等、画像形成部120の調整に用いられる画像は、読取部140により読み取られる。制御部250は、読取部140による読取結果に基づいて、画像形成部120の調整に係る各種の動作を行う。ここで、各種の動作として、例えば、変更部240による条件の変更や、画像形成部120による画像形成の一時的な停止、ユーザーに対する報知のための処理等が挙げられる。
 ここで、上記の例によるパターン画像Qのうち、テストチャートは、線の欠損やかすれの有無が確認可能な解像度で読み取られれば足りる。また、シェーディング画像は、色の濃淡が確認可能な解像度で読み取られれば足りる。
 一方、上記の例によるパターン画像Qのうち、位置関係調整画像は、記録ヘッドHどうしの位置関係をより精密に調整する必要性等から、テストチャート及びシェーディング画像に比してより高解像度で読み取られる必要がある。
 このように、読取部140により読み取られる画像には、テストチャートやシェーディング画像のように、相対的に低解像度の読取で足りる画像(低解像度読取画像)と、相対的に高解像度の読取が要求される画像(高解像度読取画像)がある。
 次に、読取部140による読取が行われる場合における搬送部110の動作に係る制御について説明する。
 読取部140により読取可能な解像度は、読取部140の性能及び読取部140と記録媒体Pとの相対移動速度に応じる。具体的には、本実施形態の場合、画像形成部120による画像の形成時における記録媒体Pの搬送速度(第一搬送速度)で記録媒体Pが搬送されている場合に低解像度読取画像が読取可能な解像度(第一解像度)で、低解像度読取画像の読取に問題のない解像度を得られる性能が、読取部140の性能として確保されている。
 読取部140の性能の根拠について説明すると、記録媒体Pの両面に対する印刷に際して、一方の面(表面)に対する画像の形成とともに形成されたテストチャートの読取結果により、ノズルの詰まり等、画像形成に係る問題が発見された場合に、変更部240により他方の面(裏面)に対する画像形成に係る条件を変更することが好ましいと考えられるためである。
 仮に、ノズルの詰まり等の問題を看過して画像を形成した場合、一方の面のみならず他方の面(裏面)にも当該問題により画質が不十分な画像が形成される可能性があることから、記録媒体Pやインクの無駄な消費を防止する観点において好ましくない。一方、画像形成に係る条件の変更により、他方の面(裏面)に対する画像形成に係る条件を変更したならば、当該問題により生じる記録媒体Pやインクの無駄な消費を防止することができる。
 これを実現するために、第一搬送速度でテストチャート等の低解像度読取画像の読取に問題のない解像度を得られる性能が、読取部140の性能として確保されている。
 ただし、かかる読取部140の性能では、第一搬送速度で搬送される記録媒体Pに形成されたパターン画像Q等の読取により、高解像度読取画像の読取に必要な解像度(第二解像度)を得ることはできない。第一搬送速度で搬送される記録媒体Pを第二解像度で読取可能な読取部140は、高コストであり、本実施形態での採用が難しいためである。
 このことから、第二解像度による読取を行うために、搬送部110による記録媒体Pの搬送速度を第一搬送速度よりも遅い搬送速度(第二搬送速度)とする必要がある。
 制御部250は、上記にて説明した読取部140の性能と搬送速度との関係に基づいて、搬送部110による搬送速度を制御する。
 制御部250は、画像形成部120による画像の形成時における記録媒体Pの搬送速度である第一搬送速度で記録媒体Pが搬送されている場合に読取部140が読取可能な解像度である第一解像度よりも高い解像度である第二解像度での読取が必要であって、かつ、画像形成部120による画像の形成が行われていない場合に、搬送部110による記録媒体Pの搬送速度を第一搬送速度よりも遅い搬送速度である第二搬送速度とする。
 具体的には、制御部250は、例えば、第二解像度での読取が必要なパターン画像Qが記録媒体Pに形成された場合、制御部250は、当該パターン画像Qの形成完了後に、当該記録媒体Pを第二搬送速度で搬送部110に搬送させる。
 より具体的な例を挙げると、制御部250は、画像形成部120により第二解像度での読取が必要なパターン画像Qが記録媒体Pに形成される際の第一搬送速度による当該記録媒体Pの搬送において、当該パターン画像Qの搬送方向に沿う方向の端部のうち下流側の端部が読取部140による読取位置SCに到達する前に画像形成部120による当該パターン画像Qを含む画像の形成が完了する場合、制御部250は、当該パターン画像Qの形成の完了後に当該記録媒体Pが読取位置SCに到達するまでに当該記録媒体Pの搬送速度を第二搬送速度にする。この具体例について、図14を参照して説明する。
 本実施形態では、図14に示すように、ドラム110aに担持されて搬送される記録媒体Pの搬送経路のうち、画像形成部120により記録媒体Pに対して画像が形成される最も下流側の位置と読取部140による読取位置SCとの間には、第一搬送速度で搬送される記録媒体Pの搬送速度を第二搬送速度に減速させるための減速領域SLが設けられている。減速領域SLは、例えば、所定の照射領域Aの下流側の端部位置とドラム110aの回転中心とを結ぶ直線と、読取部140による読取位置SCをドラム110aの回転中心まで延長した直線とにより形成されるドラム110aの回転角度範囲内に対応する領域であるが、一例であってこれに限られるものでない。
 例えば、ドラム110aに担持されて搬送される記録媒体Pの下流側の端部が減速領域SLの上流側の端部に到達するまでに当該記録媒体Pに対する画像(高解像度読取画像のパターン画像Qを含む)の形成が完了している場合、当該記録媒体Pに形成されているパターン画像Qの搬送方向に沿う方向の端部のうち下流側の端部が読取部140による読取位置SCに到達する前に、当該パターン画像Qの形成が完了していることになる。この場合、制御部250は、当該記録媒体Pの下流側の端部が減速領域SLを通過して読取部140による読取位置SCに到達するまでのドラム110aの回転動作中にドラム110aの回転速度を減速させる。これにより、制御部250は、画像形成中に第一搬送速度で搬送されていた当該記録媒体Pの搬送速度を第二搬送速度に減速させる。そして、制御部250は、読取部140を動作させて、第二搬送速度で搬送される記録媒体Pに形成された高解像度読取画像を第二解像度で読み取らせる。
 制御部250は、例えば、検知部110bによる検知結果に基づいて、ドラム110aに担持される記録媒体Pと、画像形成部120、照射部130及び読取部140との位置関係を取得し、搬送速度の制御を行うが、一例であってこれに限られるものでない。例えば、制御部250は、合成画像データ等、パターン画像Qを含む画像データに基づいて、搬送される記録媒体Pの上流側のどの部分までパターン画像Qを含む画像の形成が継続されているかを示す位置情報を取得する。また、制御部250は、検知部110bにより検知される記録媒体Pの位置情報を取得する。そのうえで、制御部250は、これらの位置情報に基づいて、搬送される記録媒体Pに形成されたパターン画像Qの下流側の端部が減速領域SLの上流側の端部に到達したタイミングにおける画像形成の継続の有無を判定するようにしてもよい。そして、パターン画像Qの搬送方向に沿う方向の端部のうち下流側の端部が減速領域SLの上流側の端部に到達する前に画像形成部120による当該パターン画像Qを含む画像の形成が完了する場合、制御部250は、画像形成部120による当該パターン画像Qを含む画像の形成完了後に当該記録媒体Pが読取位置SCに到達するまでに当該記録媒体Pの搬送速度を第二搬送速度にするようにしてもよい。
 また、画像形成部120により第二解像度での読取が必要なパターン画像Qが記録媒体Pに形成された場合、制御部250は、再搬送部(例えば、スイッチバック部115)により読取部140の上流側に搬送された当該記録媒体Pを第二搬送速度で搬送部110に搬送させるようにしてもよい。
 例えば、パターン画像Qが搬送方向の下流側に形成される一方の面(表面)に対する画像形成の場合、記録媒体Pの下流側の端部が減速領域SLを通過して読取部140による読取位置SCに到達した時点でも、当該記録媒体Pに対する画像の形成が継続されていることが考えられる。このため、パターン画像Qが高解像度読取画像である場合、当該パターン画像Qの読取のためには搬送速度を減速させなければならないが、画像形成中における搬送速度の減速は、インクの吐出位置の変化等、画質に影響を及ぼす。このように、画像形成に伴う搬送中に読取部140による読取のための減速を実施することができない場合に、制御部250は、画像形成中に搬送速度を減速させることなく画像形成を完了させる。このとき、読取部140は動作しない。その後、制御部250は、スイッチバック部115を動作させて、画像が形成された記録媒体Pの再搬送を行う。具体的には、制御部250は、スイッチバック部115による記録媒体Pの反転を2回実施する。これにより、パターン画像Qが搬送方向の上流側に形成された一方の面(表面)が読取部140に対向していた記録媒体Pは、1回目の反転で裏返された後、2回目の反転で再度裏返されることにより、再び一方の面(表面)が読取部140に対向する状態でドラム110aに担持されることとなる。同時に、当該記録媒体Pは、スイッチバック部115による反転により、読取部140の上流側に搬送されることとなる。制御部250は、スイッチバック部115による記録媒体Pの反転を2回実施した後、当該記録媒体Pの搬送速度を第二搬送速度とし、読取部140を動作させて、第二搬送速度で搬送される記録媒体Pに形成された高解像度読取画像を第二解像度で読み取らせる。
 なお、高解像度読取画像であるパターン画像Qに限らず、第二解像度での読取が必要な画像が形成される場合において、記録媒体Pの下流側の端部が減速領域SLを通過して読取部140による読取位置SCに到達した時点で当該記録媒体Pに対する画像の形成が継続されているとき、制御部250は、再搬送部(例えば、スイッチバック部115)により読取部140の上流側に搬送された当該記録媒体Pを第二搬送速度で搬送部110に搬送させる。
 また、制御部250は、第二搬送速度で記録媒体Pが搬送される場合、照射部130により照射されるエネルギーの単位時間あたりの照射量を第一搬送速度で記録媒体Pが搬送される場合よりも低減させる。
 具体的には、制御部250は、第二搬送速度で記録媒体Pが搬送される場合であって、照射部130によるエネルギーの照射が必要な場合、第二搬送速度で搬送される記録媒体Pの単位面積あたりに対するエネルギーの積算量(例えば、積算光量)と、第一搬送速度で搬送される記録媒体Pの単位面積あたりに対するエネルギーの積算量とを均一にする目的で、照射部130により照射されるエネルギーの単位時間あたりの照射量を第一搬送速度で記録媒体Pが搬送される場合よりも低減させる。
 より具体的には、例えば、図14に示す場合のように、画像形成部120による画像形成は完了しており、減速領域SLで記録媒体Pの搬送速度を減少させてもインクの吐出位置の変化による画質への影響がないとしても、当該記録媒体Pの下流側の端部が読取部140による読取位置SCに到達した時点で、当該記録媒体Pに形成された画像に対するエネルギーの照射が完了していない場合が考えられる。このような場合、照射部130によるエネルギーの照射量が第一搬送速度と同様のままであると、第二搬送速度に減速された後に所定の照射領域Aを通過する画像に対するエネルギーの積算量が、第一搬送速度で搬送される状態で所定の照射領域Aを通過する画像に比して多くなってしまう。そこで、制御部250は、照射部130により照射されるエネルギーの単位時間あたりの照射量を第一搬送速度で記録媒体Pが搬送される場合よりも低減させる。具体的な低減の度合いは、例えば、第一搬送速度と第二搬送速度の比率に応じる。
 また、制御部250は、第二搬送速度で記録媒体Pが搬送される場合、照射部130を動作させないようにしてもよい。例えば、再搬送部(例えば、スイッチバック部115)によって記録媒体Pを読取部140の上流側に搬送して当該記録媒体Pを第二搬送速度で搬送部110に搬送させることで読取部140により第二解像度での読取を行う場合、読取部140の上流側に搬送された記録媒体Pに対する画像形成は、既に完了している。このような場合、既に画像形成が完了した記録媒体Pに対して照射部130によるエネルギーの照射を再度行う必要はないことから、制御部250は、照射部130の動作を停止させて、照射部130により照射されるエネルギーの単位時間あたりの照射量を0にする。
 また、第一解像度での読取で対応可能なパターン画像Qが記録媒体Pに形成された場合、制御部250は、搬送部110に当該パターン画像Qの形成に際して行われる第一搬送速度による記録媒体Pの搬送を継続させる。
 具体的には、例えば、読取部140による低解像度読取画像の読取のように、第一搬送速度で搬送される記録媒体Pの読取によって目的に応じた十分な解像度を確保することができる読取の場合、低解像度読取画像が読取部140による読取位置SCに到達した時点で画像の形成が行われているか否かに関わらず、第一搬送速度での搬送を継続することができる。よって、制御部250は、搬送部110に低解像度読取画像の形成に際して行われる第一搬送速度による記録媒体Pの搬送を継続させて、読取部140による読取位置SCに低解像度読取画像が形成された記録媒体Pを通過させる。
 なお、低解像度読取画像であるパターン画像Qに限らず、シェーディング画像のように、第一解像度での読取で対応可能な画像の読取が行われる場合、制御部250は、搬送部110に当該画像の形成に際して行われる第一搬送速度による記録媒体Pの搬送を継続させて、読取部140の近傍に当該画像が形成された記録媒体Pを通過させる。
 以上、本実施形態の画像形成システム1によれば、反転部(例えば、スイッチバック部115)を備え、読取部140は、搬送方向における画像形成部120の下流側であって、反転部の上流側に設けられるので、両面搬送機構の動作により記録媒体Pの両面を読取部140に読み取らせることができることから、両面の各々を読み取るための専用の読取部140を個別に設けることなく記録媒体Pの読取を行うことができ、より安価な構成で両面の読取を行うことができる。
 また、読取部140による読取結果に基づいて画像形成部120による画像形成に係る条件を変更する変更部240を備えるので、読取部140による読取結果が条件の変更なく画像形成を継続すべきでない何らかの事象(例えば、ノズルの詰まり等)を示している場合に条件を変更することにより、画像形成において当該事象に対応した動作制御を行うことができることから、不適当な条件下で形成された画像により生じる各種の無駄(例えば、記録媒体P及びインクの無駄ならびに不適当な条件下での画像形成に費やされる時間等の無駄)を防止することができる。
 また、変更部240により変更される条件は、ノズルからのインクの吐出に係る条件を含むので、読取部140による読取結果が、ノズルからのインクの吐出に係る条件の変更なく画像形成を継続すべきでない何らかの事象(例えば、ノズルの詰まり等)を示している場合に、条件を変更することにより、画像形成において当該事象に対応した動作制御を行うことができることから、不適当な条件下で形成された画像により生じるインクの無駄な消費等の各種の無駄を防止することができる。
 また、読取部140は、照射部130(定着部)の下流側に設けられるので、照射部130により定着されてこれ以上変化しない状態の画像を読取部140により読み取ることができることから、ユーザーが視認する画像と同等の画像の読取結果を得ることができる。
 さらに、照射部130と読取部140の位置関係は、照射部130により記録媒体Pにエネルギーが照射される照射範囲と読取部140により記録媒体Pの読取が行われる読取位置SCとが重ならない位置関係であるので、読取部140による読取動作時に照射部130が動作していたとしても、問題なく読取部140による読取を行うことができる。即ち、本実施形態の画像形成システム1によれば、照射部130により記録媒体Pに照射されたエネルギーが読取部140による読取結果に与える影響をより低減することができる。
 さらに、照射部130と読取部140との間で照射部130から照射されるエネルギーの一部を遮る遮蔽部132を備えるので、照射部130から照射されるエネルギーが到達する範囲を限定することができることから、照射部130により記録媒体Pにエネルギーが照射される照射範囲と読取部140により記録媒体Pの読取が行われる読取位置SCとが重ならない位置関係をより容易に実現することができる。
 加えて、照射部130と読取部140とをより近接させることができることから、画像形成装置(本体部100)をよりコンパクトにすることができる。
 さらに、照射部130と読取部140の位置関係は、照射部130から照射される光のうち、読取部140による画像の読取に係り読取位置SCに進入する光の強度が、読取部140により読み取られる画像の階調差を検知するために必要な光の強度以下となる位置関係である。これにより、照射部130と読取部140がともに搬送部110により搬送される記録媒体Pに面するよう設けられることから、照射部130と読取部140とを完全に物理的に隔離することが困難であり、照射部130から照射されたエネルギーの一部が読取部140の読取位置SCに到達するような場合であっても、遮蔽部132によりエネルギーの到達を減衰させることで当該エネルギーが読取部140による画像の読取に影響を与えないようにすることができる。
 さらに、制御部250は、記録媒体Pの両面にパターン画像Qを形成する場合、搬送部110による搬送方向に沿う方向の記録媒体Pの両端のうち、一端側に存する余白部分に、画像形成部120によりパターン画像Qを形成させるので、両面の他端側を画像の形成に用いることができることから、記録媒体Pの両面に対する画像及びパターン画像Qの形成に係り、より多くの領域を画像の形成に用いることができる。
 さらに、生成部230が、記録媒体Pの両面に対する画像の形成とともにパターン画像Qを両面に形成する場合、一端側に存する余白部分にパターン画像Qが形成されるよう画像とパターン画像Qとの位置関係が調整された合成画像データを両面の各々について生成するので、制御部250は、生成部230により生成された合成画像データを用いて記録媒体Pの両面に画像及びパターン画像Qを形成させるだけで、記録媒体Pの両面の各々について、一端側に存する余白部分にパターン画像Qを形成することができることから、両面の各々における画像とパターン画像Qとの位置関係に係る処理をより単純化することができる。
 さらに、制御部250は、両面の各々に対するパターン画像Qの形成領域のうち、搬送方向に沿う方向の形成領域が両面で一致するように、画像形成部120による画像の形成タイミング及び搬送部110による記録媒体Pの搬送タイミングを制御するので、搬送方向についてパターン画像Qのために用いられる領域を両面で一致させることができることから、記録媒体Pに対して画像形成部120により画像形成が可能な領域のうち、パターン画像Qの領域以外の領域を両面で共通してパターン画像Q以外の画像(画像データに対応する画像)の形成に用いることができ、より多くの領域を画像の形成に用いることができる。
 さらに、制御部250は、第一解像度よりも高い解像度である第二解像度での読取が必要であって、かつ、画像形成部120による画像の形成が行われていない場合に、搬送部110による記録媒体Pの搬送速度を第一搬送速度よりも遅い搬送速度である第二搬送速度とするので、画質を低下させることなく、画像の読取における読取部140に対する記録媒体Pの搬送速度をより下げることができ、求められる解像度に応じて搬送速度を制御することによる第一解像度、第二解像度の両方への対応と画質の確保との両立を実現することができる。
 さらに、画像形成部120により第二解像度での読取が必要なパターン画像Qが記録媒体Pに形成された場合、制御部250は、当該パターン画像Qの形成完了後に、当該記録媒体Pを第二搬送速度で搬送部110に搬送させるので、パターン画像Qの形成に乱れを生じさせることなく、画像の読取における読取部140に対する記録媒体Pの搬送速度をより下げることができることから、第二解像度での読取が必要なパターン画像Qの読取のための搬送速度の制御と正しいパターン画像Qの形成との両立を実現することができる。
 さらに、画像形成部120により第二解像度での読取が必要なパターン画像Qが記録媒体Pに形成される際の第一搬送速度による当該記録媒体Pの搬送において、当該パターン画像Qの搬送方向に沿う方向の端部のうち下流側の端部が読取部140による読取位置SCに到達する前に画像形成部120による当該パターン画像Qを含む画像の形成が完了する場合、制御部250は、当該パターン画像Qの形成の完了後に当該記録媒体Pが読取位置SCに到達するまでに当該記録媒体Pの搬送速度を第二搬送速度にするので、画像形成のための搬送に伴い、スイッチバック部115等の再搬送に係る構成を用いた再搬送を経ることなくパターン画像Qの読取を行うことができ、より短い搬送経路でパターン画像Qの形成を含む画像形成とパターン画像Qの読取とを行うことができる。
 さらに、画像形成部120により第二解像度での読取が必要なパターン画像Qが記録媒体Pに形成された場合、制御部250は、再搬送部(例えば、スイッチバック部115)により読取部140の上流側に搬送された当該記録媒体Pを第二搬送速度で搬送部110に搬送させるので、第二解像度での読取が必要なパターン画像Qの形成を伴う画像形成中に搬送速度を第二搬送速度にすることができない場合であっても、当該パターン画像Qを第二解像度で読み取ることができる。
 さらに、第一解像度での読取で対応可能なパターン画像Qが記録媒体Pに形成された場合、制御部250は、搬送部110に当該パターン画像Qの形成に際して行われる第一搬送速度による記録媒体Pの搬送を継続させるので、画像形成のための搬送に伴い、スイッチバック部115等の再搬送に係る構成を用いた再搬送を経ることなくパターン画像Qの読取を行うことができ、より短い搬送経路でパターン画像Qの形成を含む画像形成とパターン画像Qの読取とを行うことができる。
 さらに、制御部250は、第二搬送速度で記録媒体Pが搬送される場合、照射部130により照射されるエネルギーの単位時間あたりの照射量を第一搬送速度で記録媒体Pが搬送される場合よりも低減させるので、第二搬送速度で搬送される記録媒体Pの単位面積あたりに対するエネルギーの積算量(例えば、積算光量)と、第一搬送速度で搬送される記録媒体Pの単位面積あたりに対するエネルギーの積算量とを均一にすることができることから、搬送速度に関わらず、記録媒体Pに定着された画像の画質を均一化することができる。
 さらに、制御部250は、第二搬送速度で記録媒体Pが搬送される場合、照射部130を動作させないので、画像形成部120の動作を伴わない記録媒体Pの搬送時に照射部130が動作することによるエネルギーの無駄や、不必要なエネルギーの照射による記録媒体P及び当該記録媒体Pに形成された画像の変化等を防止することができる。
 さらに、画像形成部120および照射部130と読取部140の距離を読取結果に影響を与えない範囲で近づけて配置可能となる為、画像形成部120による画像形成に係る条件を変更する変更部240への変更を早期に実施可能となることから、不適当な条件下で形成された画像により生じるインクの無駄な消費等の各種の無駄を防止することができる。
 なお、本発明の実施の形態は、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 例えば、制御部250は、両面の各々に対するパターン画像Qの形成位置が両面で重複しないように、記録媒体Pに対するパターン画像Qの形成位置を制御するようにしてもよい。
 具体的には、例えば、図15に示すように、記録媒体Pの幅方向について、一方の面(表面においてパターン画像Qが形成される領域と他方の面(裏面)においてパターン画像Qが形成される領域とを分けるようにしてもよい。かかるパターン画像Qの領域制御は、記録媒体Pの幅方向について、画像が形成可能な最大幅の半分以下の領域内に収まるパターン画像Qについて行うことができる。具体例として、非ワンパス方式のインクジェット記録装置のように幅方向について往復移動するヘッドユニット121を有する画像形成部120のテストチャートの形成等が挙げられる。
 また、制御部250は、一方の面にのみパターン画像Qを形成し、他方の面には形成しない(例えば、食い違いが不可能な場合等)ようにパターン画像Qの形成に係る動作制御を行ってもよい。
 具体的には、例えば、一方の面(表面)に形成された画像が他方の面(裏面)から透けて見える記録媒体Pの場合、一端側に形成されたパターン画像Qどうしが重なることで、他方の面に形成されたパターン画像Qの読取結果が正しく得られない場合が考えられる。この場合、制御部250は、一方の面にのみパターン画像Qを形成し、他方の面には形成しないようにしてもよい。
 また、上記の実施形態では、本体部100に設けられた生成部230が合成画像データを生成しているが、一例であってこれに限られるものでない。例えば、上記の図2に示すPC等、画像形成システム1に接続された情報処理装置が、記録媒体Pの両面に対する画像の形成とともにパターン画像Qを両面に形成するために、一端側に存する余白部分にパターン画像Qを形成するよう画像とパターン画像Qとの位置関係が調整された合成画像データを両面の各々について生成して画像形成装置に出力し、画像形成システム1の制御部250が、情報処理装置から出力された合成画像データを用いて記録媒体Pの両面に画像及びパターン画像Qを形成させるようにしてもよい。
 また、画像形成システム1に接続された情報処理装置により生成される合成画像データは、両面の各々に対するパターン画像Qの形成領域のうち、搬送方向に沿う方向の形成領域が両面で一致するように画像形成部120による画像の形成タイミングを調整するための搬送量に対応する空白部を含んでいてもよい。
 具体的には、かかる合成画像データは、例えば、図16に示すように、一端側にパターン画像Qが形成されるように配置されたパターン画像Qと、パターン画像Q以外の画像(画像データに対応する画像であって、両面の各々に形成される画像)と、記録媒体Pの一面において画像形成部120による画像形成が可能な最大領域のうち、パターン画像Q及びパターン画像Q以外の画像の形成領域以外の領域に対応する空白部とを有していてもよい。ここで、図16に示すように、合成画像データにおけるパターン画像Qは、搬送方向に沿う方向について両面の各々に対するパターン画像Qの形成領域が一致するように調整されている。
 情報処理装置が合成画像データを両面の各々について生成して画像形成装置に出力することで、制御部250は、パターン画像Qの位置に係る特段の制御を行わずとも、両面の各々のパターン画像Qを記録媒体Pの一端側に形成することができる。
 さらに、画像形成システム1に接続された情報処理装置により生成される合成画像データが、両面の各々に対するパターン画像Qの形成領域のうち、搬送方向に沿う方向の形成領域が両面で一致するように画像形成部120による画像の形成タイミングを調整するための搬送量に対応する空白部を含むことで、搬送方向についてパターン画像Qのために用いられる領域を両面でより容易に一致させることができることから、記録媒体Pに対して画像形成部120により画像形成が可能な領域のうち、パターン画像Qの領域以外の領域を両面で共通してパターン画像Q以外の画像(画像データに対応する画像)の形成に用いることができ、より多くの領域を画像の形成に用いることができる。
 なお、図16に示す例の場合、両面とも空白部が他端側に設けられているが、一例であってこれに限られるものでない。例えば、パターン画像Qが形成される余白部分と、画像データに対応する画像が形成される部分との間に空白部が設けられていてもよいし、画像データに対応する画像の周囲の一部又は全部に空白部が設けられていてもよい。
 また、上記の実施形態において、読取部140は、パターン画像Qやシェーディング画像を読み取っているが、一例であってこれに限られるものでなく、搬送部110により搬送可能な媒体に形成された画像であれば何でも読み取ることができる。
 ここで、画像形成システム1の本体部100は、さらに、図17に示すように、画像形成部120により形成される画像のもととなる画像データと、当該画像データに基づいて画像形成部120により形成された画像を読取部140により読み取ることで生成された読取データと、を比較する比較部270を備えていてもよい。この場合、変更部240は、比較部270による比較結果に基づいて条件を変更するようにしてもよい。
 また、変更部240により変更される画像形成に係る条件は、ノズルからのインクの吐出に係る条件に限らない。
 例えば、条件は、画像の明るさに係る内容を含んでいてもよい。
 例えば、変更部240は、読取部140によるシェーディング画像の読取結果に基づいて、各色の濃淡の再現に係るインクの吐出の度合いを変更するようにしてもよい。また、読取部140により画像データに基づいて形成された画像を読み取って、画像の形成に用いられる各色(例えば、CMYKの四色)について比較部270による比較を行い、記録媒体Pに形成される画像の明るさを画像データにおける明るさと同一とするように各色のインクの吐出量等を変更するようにしてもよい。
 このように、条件が、画像の明るさに係る内容を含むことで、記録媒体Pに形成される画像の明るさを画像データにおける明るさと同一とすることができる。
 また、変更部240により変更される画像形成に係る条件の具体的内容は、上記の例に限られない。
 例えば、テストチャートの読取結果に基づいて、詰まりが検知されたノズルの数が所定数以上であった場合に、変更部240は、画像形成部120による画像形成を中止するように画像形成に係る条件を変更してもよい。また、この場合、制御部250は、ノズルの詰まりを解消するためのメンテナンス動作を画像形成部120に行わせるようにしても良い。メンテナンス動作の具体的内容としては、例えば、ヘッドユニット121をクリーニング部に移動させて、詰まりを生じたノズルから強制的にインクを吐出させるようにノズルを駆動することでノズルの詰まりを解消する吐出メンテナンスが挙げられる。
 また、比較部270による比較は、画像の明るさに係る比較に限らない。
 例えば、比較部270は、記録媒体Pに形成された画像の再現性に係る確認のため、画像データにおける各画素と、読取部140により読み取られて生成された読取結果に対応する画像データにおける各画素とを比較するようにしてもよい。ここで、各画素の色の相違の度合いが所定の度合いを超える等、画像の再現性において問題があることが確認された場合に、変更部240は、画像形成部120による画像形成を中止するように画像形成に係る条件を変更してもよい。これにより、例えば、画像データにおける画像には存在しない白スジが生じる等の問題が記録媒体Pに形成された画像に生じた場合に、そのまま画像形成が継続されて記録媒体Pやインク等の無駄がさらに生じることを防止することができる。
 なお、上記の所定数や、所定の度合いのように、画像形成を中止する基準となる事項は、設定部210等を介したユーザーの操作により任意に設定可能である。
 また、上記の実施形態では、遮蔽部132が光源131の筐体の側部から搬送部110のドラム110aの外周面側に向かって延設されているが、一例であってこれに限られるものでない。例えば、照射部130と読取部140との間に介在するよう設けられた遮光板のように、照射部130及び読取部140から独立して設けられてもよい。また、遮蔽部132が読取部140と一体的に設けられていてもよい。
 また、上記の実施形態において、照射部130から照射されるエネルギーは紫外線であるが、一例であってこれに限られるものでない。他のエネルギーの具体例として、赤外線(infrared:IR)、インクを硬化させる作用をもたらすその他の光線又は電磁波等の波動あるいはこれらの波動により生じる熱等が挙げられる。エネルギーは、インクの特性に応じて具体的に選定される。
 また、照射部130から照射されるエネルギーが読取部140に対して与える影響に係る具体的内容は、エネルギーに応じる。例えば、エネルギーとしてIRが用いられる場合、CCDイメージセンサーが感度を示す波長の光のうち、700[nm]以上の波長の光に係る影響がより重点的に考慮される。また、遮蔽部132の具体的な構造や素材についても、照射部130と読取部140との間で照射部130から照射されるエネルギーの一部を遮るよう設けられる。
 また、図6に示す例に基づく本実施形態の読取部140はCCDイメージセンサーであるが、一例であってこれに限られるものでない。照射部130から照射されるエネルギーによる影響は、読取部140として採用されるイメージセンサーの特性に応じたものとなる。
 また、上記の実施形態における遮蔽部132は、光源131から発せられた紫外線が照射される範囲(照射範囲)を所定の照射領域Aとする目的で、照射部130と読取部140との間で照射部130から照射されるエネルギーの一部を遮る位置以外にも延設されているが、一例であってこれに限られるものでなく、最低限、照射部130と読取部140との間で照射部130から照射されるエネルギーの一部を遮るよう設けられていればよい。
 また、上記の実施形態における画像形成部120は、インクジェット方式による画像形成を行うが、一例であってこれに限られるものでない。例えば、画像形成部120は、ドラム110aに担持された記録媒体Pに当接するよう設けられた感光体に画像を形成する一次転写部、当該感光体から記録媒体Pに画像を転写する二次転写部等を備え、電子写真方式により画像を形成してもよいし、他の画像形成方式により画像を形成してもよい。
 また、制御部250は、読取部140による読み取り結果に基づいて記録媒体Pの搬送を制御するようにしてもよい。
 具体的には、例えば、読取部140による読取結果に基づいて不良と判断された画像が形成された記録媒体Pをサブトレー20bに排出し、正常と判断された画像が形成された記録媒体Pのみをメイントレー20aに排出するように排出切替ガイド113を制御してもよい。かかる制御を行うことで、ユーザーは、正常に画像が形成された記録媒体Pと不良と判断された画像が形成された記録媒体Pとを容易に区別することができる。
 また、両面に画像を形成する場合であっても、最初の面(表面)に記録された画像が異常と判断された場合には、記録媒体Pをスイッチバック部115へ搬送せずに、ベルトループ112と排出切替ガイド113を介してサブトレー20bに直ちに排出し、前述した画像形成に係る条件を変更した後に別の記録媒体Pに再度画像形成を行ってもよい。これにより、記録媒体Pに無駄な記録が行われることによるインク等の資材と時間の浪費を防止することができる。
 また、両面に画像を形成する場合であって、記録媒体Pをスイッチバック部115へ搬送した後に最初の面(表面)に記録された画像が異常と判断された場合には、第2の面(裏面)の画像形成開始前であれば画像形成せずに記録媒体Pをドラム110a、シリンダー111、ベルトループ112、排出切替ガイド113を介してサブトレー20bに排出し、第2の面(裏面)の画像形成開始後であれば裏面の画像形成を中止し、記録媒体Pをドラム110a、シリンダー111、ベルトループ112、排出切替ガイド113を介してサブトレー20bに排出してもよい。これにより、記録媒体Pに無駄な記録が行われることによるインク等の資材の浪費を防止することができる。
 また、上記の実施形態では、搬送速度の制御に係り、減速領域SLが設定されているが、一例であってこれに限られるものでない。
 例えば、画像形成部120により第二解像度での読取が必要なパターン画像Qが記録媒体Pに形成される際の第一搬送速度による当該記録媒体Pの搬送において、当該パターン画像Qの搬送方向に沿う方向の端部のうち下流側の端部が読取部140による読取位置SCに到達する前に画像形成部120による当該パターン画像Qを含む画像の形成が完了する場合、制御部250は、パターン画像Qの形成が完了した時点で一度搬送部110を停止させて、その後、搬送部110に第二搬送速度で当該記録媒体Pを搬送させるようにしてもよい。この場合、減速領域SLが設定されていなくても、パターン画像Qが記録媒体Pに形成される際の当該記録媒体Pの搬送の過程における搬送工程において、第二搬送速度で搬送される記録媒体Pを読取部140により読み取ることができる。
 また、上記の取得部220の具体的構成は、一例であってこれに限られるものでない。取得部220は、例えば、ハードディスクやフラッシュメモリーカード等、記録媒体Pに形成される画像の元となる画像データが記憶された記憶装置を接続可能な各種のインターフェースを備えていてもよい。
 また、上記の実施形態では、スイッチバック部115が用紙を反転、再搬送しているが、一例であってこれに限られるものでなく、用紙を反転、再搬送可能に設けられていれば、その具体的構成は問われない。例えば、複数のローラーの組み合わせによる反転、再搬送機構であってもよい。
 また、上記の実施形態における読取部140は一つであるが、一例であってこれに限られるものでない。例えば、本体部100は、媒体の一面を読み取るように設けられた複数の読取部140を備えていてもよい。
 その他、本発明の実施形態の具体的構成は、本発明の特徴を逸脱しない範囲内において、適宜変更可能である。
 本発明は、画像形成装置に利用することができる。
1    画像形成システム
100  本体部(画像形成装置)
110  搬送部
110a ドラム
115  スイッチバック部(反転部)
120  画像形成部
130  照射部(定着部)
140  読取部
210  設定部
240  変更部
250  制御部
260  表示部
270  比較部

Claims (9)

  1.  記録媒体に画像を形成する画像形成部と、
     前記画像形成部により記録媒体の一面に形成された画像を読み取る読取部と、
     記録媒体の一面を前記画像形成部及び前記読取部に対向させながら前記画像形成部及び前記読取部の配設位置の近傍を通過させるように記録媒体を搬送する搬送部と、
     前記画像形成部により記録媒体の両面に画像の形成が行われる場合、一方の面に画像が形成された記録媒体の表裏を反転させて、前記搬送部の搬送方向における前記画像形成部の上流側に記録媒体を搬送する反転部と、
     を備え、
     前記読取部は、前記搬送方向における前記画像形成部の下流側であって、前記反転部の上流側に設けられることを特徴とする画像形成装置。
  2.  前記読取部による読み取り結果に基づいて前記画像形成部による画像形成に係る条件を変更する変更部を備えることを特徴とする請求項1に記載の画像形成装置。
  3.  前記画像形成部は、ノズルからインクを吐出する記録ヘッドを有し、
     前記条件は、前記ノズルからのインクの吐出に係る条件を含むことを特徴とする請求項2に記載の画像形成装置。
  4.  前記条件は、前記画像の明るさに係る内容を含むことを特徴とする請求項2又は3に記載の画像形成装置。
  5.  前記画像形成部により形成される画像のもととなる画像データと、当該画像データに基づいて前記画像形成部により形成された画像を前記読取部により読み取ることで生成された読み取りデータと、を比較する比較部を備え、
     前記変更部は、前記比較部による比較結果に基づいて前記条件を変更することを特徴とする請求項2から4のいずれか一項に記載の画像形成装置。
  6.  前記画像形成部により画像が形成された記録媒体に画像を定着させる定着部を備え、
     前記読取部は、前記定着部の下流側に設けられることを特徴とする請求項1から5のいずれか一項に記載の画像形成装置。
  7.  前記画像形成部による画像の形成を記録媒体の片面又は両面のいずれに行うかを設定する設定部と、
     前記設定部による設定に係る表示を行う表示部と、
     を備えることを特徴とする請求項1から6のいずれか一項に記載の画像形成装置。
  8.  前記読取部による読み取り結果に基づいて前記記録媒体の搬送を制御する制御部を備えることを特徴とする請求項1から7のいずれか一項に記載の画像形成装置。
  9.  前記読取部は、前記搬送部による記録媒体の搬送路の一方の側に配置され、前記記録媒体の一方の面に形成された画像を前記一方の側から読み取り後、前記反転部により反転搬送されて前記画像形成部で前記記録媒体の他方の面に形成された画像を前記一方の側から読み取ることを特徴とする請求項1から8のいずれか一項に記載の画像形成装置。
PCT/JP2014/066811 2013-06-28 2014-06-25 画像形成装置 WO2014208587A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/901,446 US20160279950A1 (en) 2013-06-28 2014-06-25 Image Forming Device
EP14817858.5A EP3016365B1 (en) 2013-06-28 2014-06-25 Image forming device
JP2015524075A JP6288087B2 (ja) 2013-06-28 2014-06-25 画像形成装置
CN201480036396.3A CN105340256A (zh) 2013-06-28 2014-06-25 图像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-136665 2013-06-28
JP2013136665 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014208587A1 true WO2014208587A1 (ja) 2014-12-31

Family

ID=52141919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066811 WO2014208587A1 (ja) 2013-06-28 2014-06-25 画像形成装置

Country Status (5)

Country Link
US (1) US20160279950A1 (ja)
EP (1) EP3016365B1 (ja)
JP (1) JP6288087B2 (ja)
CN (1) CN105340256A (ja)
WO (1) WO2014208587A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190335A1 (ja) * 2015-05-26 2016-12-01 コニカミノルタ株式会社 インクジェット記録装置
JP2021059092A (ja) * 2019-10-09 2021-04-15 コニカミノルタ株式会社 画像形成装置及び画像形成方法
US11206334B2 (en) 2019-07-19 2021-12-21 Canon Kabushiki Kaisha Image forming apparatus having plurality of conveyance modes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778761B (zh) * 2016-04-12 2020-05-29 惠普发展公司有限责任合伙企业 具有可移除的双工装置的打印双工组件
DE102016221192A1 (de) * 2016-10-27 2018-05-03 Bundesdruckerei Gmbh Vorrichtung und Verfahren zum Bedrucken eines bogenförmigen Substrats
CN110418717A (zh) * 2017-03-16 2019-11-05 柯尼卡美能达株式会社 图像检测装置及喷墨记录装置
DE102017218403B4 (de) * 2017-10-13 2023-04-06 Koenig & Bauer Ag Bogendruckmaschine
WO2019072612A1 (de) 2017-10-13 2019-04-18 Koenig & Bauer Ag Bogendruckmaschine
CN108189558B (zh) * 2017-12-28 2020-04-14 广东易美图影像科技股份有限公司 一种鼓式连续旋转喷墨打印机
US10762622B2 (en) * 2018-09-19 2020-09-01 Kyocera Document Solutions Inc. Fabric inspection device and ink-jet printing device therewith
DE102018125390B4 (de) 2018-10-15 2023-11-16 Bundesdruckerei Gmbh Druckvorrichtung und verfahren zum bedrucken eines bogenförmigen substrats
JP7082086B2 (ja) * 2019-04-25 2022-06-07 コニカミノルタ株式会社 インク供給装置および画像形成装置
JP7263916B2 (ja) * 2019-05-20 2023-04-25 セイコーエプソン株式会社 印刷装置及び紫外線照射部の位置決め方法
JP7367348B2 (ja) * 2019-06-13 2023-10-24 コニカミノルタ株式会社 画像形成装置および画像形成方法
DE102020110185A1 (de) 2020-04-14 2021-10-14 Bundesdruckerei Gmbh Trommel für eine druckvorrichtung, druckvorrichtung und verfahren zum zeitweisen fixieren eines bogenförmigen substrats an einer trommel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106239A (ja) * 2002-09-13 2004-04-08 Ricoh Co Ltd インクジェット記録装置
JP2005115355A (ja) * 2003-09-19 2005-04-28 Ricoh Co Ltd 画像形成装置、画像処理装置、画像形成方法、およびその方法をコンピュータに実行させるプログラム
JP2005173261A (ja) * 2003-12-11 2005-06-30 Fuji Xerox Co Ltd 画像形成装置及び画像調整方法、画像調整プログラム、記憶媒体
JP2005205668A (ja) * 2004-01-21 2005-08-04 Fuji Xerox Co Ltd 画像形成装置およびその方法、画像形成結果検査方法
JP2009025374A (ja) 2007-07-17 2009-02-05 Konica Minolta Business Technologies Inc 画像形成装置
JP2009169105A (ja) 2008-01-16 2009-07-30 Ricoh Co Ltd 画像形成装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100636325B1 (ko) * 2004-12-14 2006-10-18 삼성전자주식회사 프린터의 미싱 노즐 보상 방법 및 이를 이용하는 프린터
US7503648B2 (en) * 2005-06-09 2009-03-17 Xerox Corporation Ink consumption determination
JP5084333B2 (ja) * 2007-04-10 2012-11-28 キヤノン株式会社 記録装置および搬送誤差補正値取得方法
US20090315939A1 (en) * 2008-06-24 2009-12-24 Xerox Corporation System And Method For Defective Inkjet Correction Using Edge Information In An Image
JP4979784B2 (ja) * 2010-02-26 2012-07-18 キヤノン株式会社 プリント装置
JP5595069B2 (ja) * 2010-02-26 2014-09-24 キヤノン株式会社 画像形成装置
JP4999962B2 (ja) * 2010-05-13 2012-08-15 キヤノン株式会社 プリント装置およびプリント方法
JP5599239B2 (ja) * 2010-06-28 2014-10-01 富士フイルム株式会社 インクジェット印刷装置及びその印刷方法
US20120069114A1 (en) * 2010-09-17 2012-03-22 Toshiba Tec Kabushiki Kaisha Image forming apparatus and image forming method
US8540330B2 (en) * 2010-09-27 2013-09-24 Xerox Corporation System and method to compensate for an inoperative inkjet in an inkjet printer
JP5729972B2 (ja) * 2010-11-10 2015-06-03 キヤノン株式会社 インクジェット記録装置及びインクジェット記録方法
JP5812624B2 (ja) * 2011-02-08 2015-11-17 キヤノン株式会社 プリント方法およびプリント装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106239A (ja) * 2002-09-13 2004-04-08 Ricoh Co Ltd インクジェット記録装置
JP2005115355A (ja) * 2003-09-19 2005-04-28 Ricoh Co Ltd 画像形成装置、画像処理装置、画像形成方法、およびその方法をコンピュータに実行させるプログラム
JP2005173261A (ja) * 2003-12-11 2005-06-30 Fuji Xerox Co Ltd 画像形成装置及び画像調整方法、画像調整プログラム、記憶媒体
JP2005205668A (ja) * 2004-01-21 2005-08-04 Fuji Xerox Co Ltd 画像形成装置およびその方法、画像形成結果検査方法
JP2009025374A (ja) 2007-07-17 2009-02-05 Konica Minolta Business Technologies Inc 画像形成装置
JP2009169105A (ja) 2008-01-16 2009-07-30 Ricoh Co Ltd 画像形成装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190335A1 (ja) * 2015-05-26 2016-12-01 コニカミノルタ株式会社 インクジェット記録装置
JPWO2016190335A1 (ja) * 2015-05-26 2018-03-15 コニカミノルタ株式会社 インクジェット記録装置
US11206334B2 (en) 2019-07-19 2021-12-21 Canon Kabushiki Kaisha Image forming apparatus having plurality of conveyance modes
JP2021059092A (ja) * 2019-10-09 2021-04-15 コニカミノルタ株式会社 画像形成装置及び画像形成方法
JP7380052B2 (ja) 2019-10-09 2023-11-15 コニカミノルタ株式会社 画像形成装置及び画像形成方法

Also Published As

Publication number Publication date
CN105340256A (zh) 2016-02-17
EP3016365A4 (en) 2017-02-01
US20160279950A1 (en) 2016-09-29
EP3016365B1 (en) 2020-10-14
JP6288087B2 (ja) 2018-03-07
EP3016365A1 (en) 2016-05-04
JPWO2014208587A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6288087B2 (ja) 画像形成装置
US8534827B2 (en) Image forming apparatus
JP6384478B2 (ja) 画像形成装置
US20110311293A1 (en) Image forming apparatus
JP6186947B2 (ja) 画像形成装置及び画像読取方法
US10218878B2 (en) Method for correcting density irregularity, printing apparatus, and imaging module
JP2012051241A (ja) プリント装置
US9085189B2 (en) Image forming apparatus
WO2017217173A1 (ja) 情報処理装置、インクジェット記録装置及び情報処理方法
US20170057265A1 (en) Printing apparatus and imaging module
US8920051B2 (en) Printing method and printing apparatus for printing a plurality of images on a sheet using a print head
JP6111900B2 (ja) 画像形成システム
JP2017154396A (ja) 画像形成装置、画像形成方法、およびプログラム
WO2015190146A1 (ja) インクジェット記録装置
US8807687B2 (en) Printing method and printing apparatus
JP7562462B2 (ja) 印刷装置および印刷システム
JP6146175B2 (ja) 画像形成装置
WO2015098585A1 (ja) 画像形成装置
JP2016159581A (ja) 画像記録装置及び画質不良検出方法
JP6136646B2 (ja) 画像形成装置及びシェーデイング補正方法
JP7456272B2 (ja) 画像検査装置、及び、画像形成システム
US10773518B2 (en) Liquid ejection apparatus
JP4692160B2 (ja) 光電変換素子の検査方法、画像読み取り装置およびプログラム
JP2004155102A (ja) 印刷装置およびこの装置で実行されるプログラム並びに印刷方法
JP2013159047A (ja) 不良ノズル検出装置、不良ノズル検出方法、および、コンピュータープログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036396.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524075

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014817858

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14901446

Country of ref document: US