WO2014208295A1 - 多能性幹細胞の増殖促進因子のスクリーニング法 - Google Patents

多能性幹細胞の増殖促進因子のスクリーニング法 Download PDF

Info

Publication number
WO2014208295A1
WO2014208295A1 PCT/JP2014/064764 JP2014064764W WO2014208295A1 WO 2014208295 A1 WO2014208295 A1 WO 2014208295A1 JP 2014064764 W JP2014064764 W JP 2014064764W WO 2014208295 A1 WO2014208295 A1 WO 2014208295A1
Authority
WO
WIPO (PCT)
Prior art keywords
serum
cells
medium
feeder
pluripotent stem
Prior art date
Application number
PCT/JP2014/064764
Other languages
English (en)
French (fr)
Inventor
智久 加藤
金村 米博
智子 正札
勇人 福角
Original Assignee
株式会社カネカ
独立行政法人国立病院機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 独立行政法人国立病院機構 filed Critical 株式会社カネカ
Priority to CN201480036983.2A priority Critical patent/CN105358707B/zh
Priority to EP14818252.0A priority patent/EP3015551B1/en
Priority to JP2015523947A priority patent/JP6336976B2/ja
Priority to US14/900,975 priority patent/US10066211B2/en
Publication of WO2014208295A1 publication Critical patent/WO2014208295A1/ja
Priority to US16/053,583 priority patent/US10415018B2/en
Priority to US16/519,676 priority patent/US20200056158A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/99Serum-free medium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)

Definitions

  • the present invention relates to a highly efficient feeder-free serum-free culture technique for cell culture and a screening method based on the culture technique.
  • pluripotent stem cells such as human ES cells (hESC) and human iPS cells (hiPSC) has increased the possibility of practical application of regenerative medicine. Since these cells have the ability to proliferate indefinitely and have the ability to differentiate into various cells, regenerative medicine using pluripotent stem cells is a treatment method for intractable diseases, lifestyle-related diseases, etc. Is expected to fundamentally change From pluripotent stem cells, it has already been possible to induce differentiation into various types of cells such as nerve cells, cardiomyocytes, blood cells, and retinal cells in vitro.
  • human pluripotent stem cells such as hESC and hiPSC have been mainly cultured on feeder cell layers using mouse-derived fetal fibroblasts MEF (mouse embryonic fibroblast).
  • Feeder cells have a function of supplying stem cells with growth factors useful for maintaining and culturing human pluripotent stem cells.
  • the activity that enables maintenance culture of human pluripotent stem cells has been reported in various human cell types in addition to MEF (Non-Patent Documents 1 to 4).
  • Non-Patent Documents 1 to 4 Non-Patent Documents 1 to 4).
  • it takes time to prepare feeder cells at the time of culture and there is a risk that the feeder cells are mixed with stem cells, and therefore, a safer alternative method is required to be developed.
  • Non-Patent Document 5 a method in which a medium supplemented with serum such as FBS or a serum substitute is previously conditioned with MEF (MEF-CM) or MEF is chemically immobilized.
  • MEF-CM a medium supplemented with serum
  • MEF-CM a serum substitute
  • MEF chemically immobilized.
  • Non-Patent Document 6 a method of using various human-derived cells (fibroblasts, placental cells, bone marrow cells, endometrial cells, etc.) as live feeder cells without using heterogeneous cells has been reported.
  • bovine serum in order to culture human pluripotent stem cells, bovine serum, KNOCKOUT TM SR (Knockout Serum Replacement: an additive capable of culturing ES / iPS cells by being used instead of serum), etc.
  • KNOCKOUT TM SR Knockout Serum Replacement: an additive capable of culturing ES / iPS cells by being used instead of serum
  • bovine serum in order to culture human pluripotent stem cells, bovine serum, KNOCKOUT TM SR (Knockout Serum Replacement: an additive capable of culturing ES / iPS cells by being used instead of serum), etc.
  • BSE bovine spongiform encephalopathy
  • human-derived serum is also used in some cases, it is not suitable for practical use because it is limited in use and limited in quantity.
  • Non-patent Documents 7 and 8 development of a completely synthetic medium for culturing without using MEF is also in progress.
  • Analysis of functional proteins for MEF secretions has also been performed (Non-patent Document 9).
  • An object of the present invention is to provide a highly efficient feeder-free and serum-free culture technique for cell culture. It is another object of the present invention to provide a method for screening a growth promoting factor applying the culture technique.
  • the present inventors have conditioned a serum-free medium that can be used for culturing pluripotent stem cells in advance with feeder cells without co-culturing with feeder cells. Finding that a medium capable of stably culturing pluripotent stem cells and improving proliferation can be prepared, and screening the prepared medium enables efficient identification of growth promoting factors for pluripotent stem cells The inventors have found the technology and have completed the present invention.
  • the present inventors have also found that the proliferation of pluripotent stem cells can be further enhanced by cultivating pluripotent stem cells in a serum-free medium containing a predetermined component, followed by feeder-free culture. .
  • the present invention includes the following.
  • a method for screening a growth promoting factor for pluripotent stem cells a) culturing feeder cells in a serum-free medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate but not serum and serum replacement, and recovering the conditioned medium produced; and b ) Detecting a growth promoting factor for pluripotent stem cells contained in the collected conditioned medium, Including methods.
  • the serum-free medium may be a DMEM / F12 medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate.
  • this screening method it is also preferable to culture feeder cells by adding a growth factor to the serum-free medium.
  • the growth factor added in this screening method is preferably FGF2 and / or TGF- ⁇ 1.
  • the feeder cells can be mouse embryonic fibroblasts.
  • the pluripotent stem cell is preferably an ES cell or an iPS cell.
  • a method for preparing a culture medium for pluripotent stem cell culture
  • the serum-free medium may be a DMEM / F12 medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate.
  • the preparation method in one embodiment, it is also preferable to culture feeder cells by adding a growth factor to the serum-free medium.
  • the growth factor added in this preparation method is preferably FGF2 and / or TGF- ⁇ 1.
  • the feeder cells can be mouse embryonic fibroblasts.
  • the pluripotent stem cell is preferably an ES cell or an iPS cell.
  • Pluripotent in a conditioned medium produced by culturing feeder cells in a serum-free medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate but not serum and serum replacement A method for proliferating pluripotent stem cells, comprising culturing stem cells without feeder.
  • the serum-free medium may be a DMEM / F12 medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate.
  • feeder cells it is also preferable to culture feeder cells by adding a growth factor to the serum-free medium.
  • feeder cells are cultured without adding a growth factor to the serum-free medium, and feeder-free culture of pluripotent stem cells is performed with a growth factor added to the conditioned medium.
  • the growth factor added in this growth method is preferably FGF2 and / or TGF- ⁇ 1.
  • the feeder cells can be mouse embryonic fibroblasts.
  • the pluripotent stem cells are preferably ES cells or iPS cells.
  • the serum-free medium preferably does not contain albumin.
  • the proliferation of pluripotent stem cells in feeder-free culture can be improved.
  • FIG. 1 is a photograph showing the effect of serum-free MEF-conditioned medium on iPS cell growth in feeder-free culture.
  • A is proliferative (+++) in conditioned medium prepared from basal medium (serum-free medium) A + ITS + FGF2 + TGF- ⁇ 1
  • B is proliferative (+) in basal medium (serum-free medium) A + ITS + FGF2 + TGF- ⁇ 1 (no acclimation)
  • C is basal Proliferation (++) in conditioned medium prepared from medium (serum-free medium) A + ITS (after acclimation, FGF2 + TGF- ⁇ 1 added)
  • D is conditioned medium prepared from basal medium (serum-free medium) A (after conditioned, ITS + FGF2 + TGF- ⁇ 1)
  • E is basal medium (serum-free medium)
  • B is conditioned medium prepared from B + ITS (after acclimation, FGF2 + TGF- ⁇ 1 added) ( ⁇ )
  • FIG. 2 is a photograph showing the growth results of human iPS cells in a serum-free conditioned medium in plastic culture dishes coated with various culture substrates.
  • a and B used Matrigel (registered trademark), C and D used vitronectin, and E and F used PCM-DM.
  • A, C, and E were serum-free media that were not conditioned
  • B, D, and F were MEF-conditioned media.
  • FIG. 3 shows a table comparing the proliferation of human iPS cells in culture using a serum-free medium not conditioned with MEF or a serum-free medium not conditioned.
  • FIG. 3 shows a table comparing the proliferation of human iPS cells in culture using a serum-free medium not conditioned with MEF or a serum-free medium not conditioned.
  • FIG. 4 shows the results of analyzing the expression of undifferentiated markers by flow cytometry for human iPS cells cultured in a serum-free medium conditioned with or without MEF.
  • FIG. 5 shows the growth after human iPS cells cultured on feeder using serum-replacement-containing medium (B to E) or serum-free medium (G to J) containing a predetermined component are transferred to feeder-free culture. It is a photograph which shows the result of having compared.
  • the level of proliferation is indicated by the number of ⁇ (not proliferating) or +.
  • the present invention relates to a method for preparing a medium suitable for growing pluripotent stem cells in feeder-free culture by acclimating a serum-free medium with feeder cells.
  • a “pluripotent stem cell” is a cell having multipotency (pluripotency) that can be differentiated into all types of cells constituting a living body, and is cultured in vitro. Refers to cells that can continue to grow indefinitely while maintaining pluripotency.
  • pluripotent stem cells to be proliferated in the present invention include, for example, embryonic stem cells (ES cells), EG cells that are pluripotent stem cells derived from fetal primordial germ cells (Shamblott MJ et al., Proc. Natl Acad. Sci. USA.
  • iPS cells induced pluripotent stem cells
  • the pluripotent stem cell grown in the present invention is particularly preferably an ES cell or an iPS cell.
  • the ES cell is a cultured cell derived from an undifferentiated cell collected from an inner cell mass existing in an early embryo called a blastocyst.
  • An iPS cell is a cultured cell to which a somatic cell is initialized to an undifferentiated state by introducing an reprogramming factor into the somatic cell, thereby imparting pluripotency.
  • reprogramming factors include Oct family genes (eg, Oct3 / 4) and Klf family genes (eg, Klf4), and Myc family genes (eg, c-Myc) and / or Sox family genes (eg, Sox2) are used. be able to.
  • Pluripotent stem cells may be derived from any animal, for example, rodents such as mice, rats, hamsters, primates such as humans, gorillas, chimpanzees, dogs, cats, rabbits, cows, horses Although it may be derived from livestock such as sheep and goats or mammals such as pets, human-derived pluripotent stem cells are particularly preferred.
  • pluripotent stem cells including ES cells and iPS cells commercially available products or cells that have been distributed may be used, or newly prepared cells may be used.
  • Stimulus-triggered acquisition cells Stimulus-triggered acquisition cells (Stimulus-Acquisition of Pluripotency cells: STAP cells) may also be used as pluripotent stem cells.
  • STAP cells are cells in which animal cells are given strong stimulation (stress) from the outside to have differentiation pluripotency (Nature, 505, 641-647, (2014)).
  • a serum-free medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate, and not serum and serum replacement is used for conditioning.
  • serum refers to serum derived from any animal (eg, human, cow, horse, goat, etc.).
  • a “serum replacement” is a reagent used for maintaining and culturing cells in an undifferentiated state as a substitute for serum (FBS, etc.) in the culture of ES cells and iPS cells.
  • KNOCKOUT TM SR KnockOut TM Serum Replacement (KSR); GIBCO
  • StemSure registered trademark Serum Replacement (SSR; Wako Pure Chemical Industries), N2 supplement (Wako Pure Chemical Industries), and the like.
  • This serum-free medium can be prepared using any liquid medium for animal cell culture that does not contain serum and serum substitutes as a basal medium.
  • BME medium BME medium, BGJb medium, CMRL1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium (Iscove's Modified Dulbecco's Medium), Medium 199M medium, EMEM medium, EMag medium (Dulbecco's Modified Eagle's Medium), Ham F10 medium, Ham F12 medium, RPMI 1640 medium, Fischer's medium, and mixed media thereof (for example, DMEM / F12 medium (Dulbecco's Modified Eagle's Medium / A medium such as Nutrient Mixture F-12 Ham)) can be used, but is not particularly limited.
  • L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate may be added to the basal media.
  • a serum-free medium is prepared using a liquid medium that does not contain serum and serum replacement, to which at least one of L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate is added in advance. You can also.
  • a serum-free medium may be prepared by adding components not included in the medium among L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate to the medium.
  • a serum-free medium may be prepared by adding L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate to the medium including the components contained therein.
  • CHO-S-SFM II manufactured by GIBCO BRL
  • Hybridoma-SFM manufactured by GIBCO BRL
  • eRDF Dry Powdered Media manufactured by GIBCO BRL
  • UltraCULTURE TM manufactured by BioWhittaker
  • UltraDOMA TM manufactured by BioWhittaker
  • UltraCHO TM manufactured by BioWhittaker
  • UltraMDCK TM manufactured by BioWhittaker
  • STEMPRO registered trademark
  • hESC SFM manufactured by Life Technologies
  • mTeSR1 manufactured by Veritas
  • TeSR2 manufactured by Veritas
  • Essential 8 TM medium manufactured by Life Technologies in which the protein component is limited to a small part can also be suitably used.
  • a preferred example of the serum-free medium is a DMEM / F12 medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate.
  • the medium used for the preparation of the serum-free medium in the present invention may contain a fatty acid, a collagen precursor, a trace element, 2-mercaptoethanol, 3 ′ thiolglycerol, or an equivalent thereof.
  • the content of the protein component is preferably as low as possible.
  • the serum-free medium used in the present invention preferably does not contain albumin. This is because albumin is often added to a serum-free medium, but there are concerns about problems such as large variations in quality from lot to lot.
  • the medium used for the preparation of a serum-free medium in the present invention preferably has a known composition. For example, when a growth promoting factor for pluripotent stem cells is screened from a conditioned medium, the medium composition is preferably known.
  • L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate may be added to the animal cell culture medium in the form of a solution, derivative, salt, or mixed reagent. It can.
  • L-ascorbic acid may be added to the medium in the form of a derivative such as magnesium 2-phosphate ascorbate.
  • Selenium may be added to the medium in the form of selenite (such as sodium selenite).
  • Insulin and transferrin may be of natural origin isolated from tissues or sera of animals (preferably, humans, mice, rats, cows, horses, goats, etc.) or recombinants prepared by genetic engineering. It may be a protein.
  • Insulin, transferrin, and selenium may be added to the medium in the form of the reagent ITS (insulin-transferrin-selenium).
  • ITS is an additive for promoting cell growth, including insulin, transferrin, and sodium selenite.
  • the serum-free medium used for acclimation in the present invention contains fatty acids or lipids, amino acids (for example, non-essential amino acids), vitamins, growth factors, cytokines, antioxidants, 2-mercaptoethanol, pyruvic acid, buffers, inorganic salts, and the like. You may contain.
  • 2-mercaptoethanol when 2-mercaptoethanol is included, its concentration is not limited as long as it is suitable for culturing stem cells, but may be, for example, about 0.05 to 1.0 mM, preferably about 0.1 to 0.5 mM.
  • the medium is acclimated by culturing feeder cells in the serum-free medium as described above.
  • the feeder cells are preferably used for acclimation after inactivating mitosis by mitomycin treatment, ⁇ -irradiation treatment or the like.
  • the feeder cells used in the present invention are cells that can be used for culturing pluripotent stem cells on a feeder cell layer (on-feeder culture).
  • the feeder cells may be cells such as fibroblasts, placental cells, bone marrow cells, endometrial cells derived from mammalian embryos or tissues such as humans, mice, rats, and cows.
  • feeder cells include mouse embryonic fibroblast MEF or STO cell lines, STO cell derivatives (for example, SNL cells stably incorporating a neomycin resistance gene expression vector and an LIF expression vector), etc. However, it is not limited to these.
  • the serum-free medium used for acclimation with feeder cells may contain a growth factor or may not contain a growth factor. Regardless of whether the serum-free medium contains or does not contain growth factors, the serum-free medium does not need to contain growth factors when acclimated, but the serum-free medium contains growth factors. If not, it is more preferable to add a growth factor for acclimation.
  • Growth factors include, but are not limited to, FGF2 (Basic fibroblast growth factor), TGF- ⁇ 1 (Transforming growth factor- ⁇ 1), MCP-1, IL-6, PAI, PEDF, IGFBP-2, LIF and IGFBP Preferably one or more selected from the group consisting of -7, for example FGF2 and / or TGF- ⁇ 1. Particularly preferred growth factors are FGF2 and / or TGF- ⁇ 1.
  • Conditioning of the medium by the feeder cells can be carried out by replacing the medium in the culture vessel with the above serum-free medium after culturing the feeder cells for proliferation.
  • the culture of feeder cells can be performed by a conventional method. Culturing in a serum-free medium for conditioning can be performed at a temperature of 4 to 45 ° C., for example, 25 to 40 ° C., for 1 to 72 hours, for example, 8 to 36 hours. This culture is also preferably carried out at a CO 2 concentration of 4 to 10%, for example 5%.
  • the culture vessel is not particularly limited as long as it is a vessel that can be used for cell culture.
  • a flask a flask for tissue culture, a dish, a petri dish, a culture dish, a multi-dish, a microplate, a microwell plate, a multiplate
  • Examples include multi-well plates, chamber slides, petri dishes, tubes, trays, culture bags, roller bottles, hollow fiber incubators.
  • feeder cells can be cultured in a serum-free medium, and growth-promoting factors and the like can be secreted from the feeder cells into the medium to acclimate the serum-free medium.
  • the conditioned medium thus produced can be separated from the feeder cells and recovered by a conventional method.
  • the conditioned medium may be collected by filtering and / or centrifuging, for example, by centrifuging at 1000 rpm for 5 minutes to separate the liquid medium from the feeder cells and collecting it. After the conditioned medium is collected, the culture in a serum-free medium for acclimation can be further repeated (for example, 2 to 10 times).
  • conditioned medium preparation procedure monolayer MEFs are cultured until confluent, treated with 10 ⁇ g / ml mitomycin C, then the cells are detached with a cell detachment solution such as Trypsin-EDTA, and the recovered MEF was seeded on a culture dish at a cell density of 3-5 ⁇ 10 5 cells / 60 mm dish and cultured for 1-2 days. After replacing the medium in the culture dish with the above serum-free medium, every 24 hours The conditioned medium can also be prepared by collecting the liquid medium.
  • a cell detachment solution such as Trypsin-EDTA
  • the obtained conditioned medium can be suitably used as a culture medium for pluripotent stem cells, particularly for feeder-free serum-free and serum-free substitute culture.
  • “feeder-free serum-free serum-free culture” refers to culture without a feeder cell layer (feeder-free culture), which is performed in a medium that does not contain serum or serum substitutes. Means culture.
  • the growth factor or medium component does not contain a heterogeneous component for pluripotent stem cells, it can be particularly preferably used as a heterogeneous component-free medium (xenofree medium).
  • the present invention also relates to a method for preparing such a conditioned medium for pluripotent stem cell culture, and a conditioned medium for pluripotent stem cell culture obtained by this method.
  • pluripotent stem cells can be cultured in a feeder-free manner using the conditioned medium produced as described above.
  • the proliferation of pluripotent stem cells in feeder-free culture can be significantly improved.
  • the present invention also relates to a method for proliferating pluripotent stem cells, comprising culturing pluripotent stem cells in a conditioned medium as described above in a feeder-free manner.
  • Pluripotent stem cells cultured in a conditioned medium can be maintained and cultured in advance by a conventional method.
  • the pluripotent stem cells that have been cultured for maintenance are preferably dissociated from the culture vessel with a dissociation solution such as a collagenase solution, and collected in a small mass of about several tens, for example, about 20 to 50.
  • a dissociation solution such as a collagenase solution
  • the recovered pluripotent stem cells are incubated in a gelatin-coated culture vessel to adhere the MEF to the culture vessel and float in the medium. The MEF can be removed by collecting the.
  • the pluripotent stem cells thus prepared are preferably seeded in a culture vessel coated with a culture substrate that serves as a cell scaffold.
  • the culture vessel is similar to that described for the preparation of the conditioned medium.
  • the culture substrate is not particularly limited as long as it can be used for cell culture.
  • Matrigel registered trademark
  • laminin laminin-511, laminin-511, produced from gelatin
  • Engelbreth-Holm-Swarm (EHS) mouse sarcoma Laminin-111, laminin-332, etc.
  • fibronectin vitronectin
  • collagen E-cadherin
  • synthetic peptides synthetic polymers, etc.
  • MEF extracellular matrix derived from human serum or decidual mesenchymal cells (PCM-CM) Etc.
  • a hydrogel such as a temperature-sensitive hydrogel having 2- (diethylamino) ethyl acrylate as a basic skeleton can also be used as a culture substrate (Zhang (etZal., Nature Communications, (2013) 4). , Article number: 1335).
  • the coating of culture vessels with these culture substrates is well known to those skilled in the art and can be performed by conventional methods.
  • the culture container can be coated by placing a culture substrate solution (for example, vitronectin solution) in the culture container and incubating for a certain time (for example, 1 hour).
  • the culture of pluripotent stem cells in the above-mentioned conditioned medium is not limited, but is preferably performed at 20 to 40 ° C., for example, 35 to 40 ° C., for 1 to 7 days, for example, 1 to 24 hours. Just do it. Cultivation of pluripotent stem cells in a conditioned medium is also preferably performed at a CO 2 concentration of 4 to 10%, for example 5%.
  • the culture of pluripotent stem cells may involve passage.
  • the proliferation of the pluripotent stem cells cultured in this manner is remarkably improved as compared with the case where an unconditioned medium is used.
  • the number of pluripotent stem cells grown in a conditioned medium is preferably 10 times or more, more preferably 100 times or more, and even more preferably 200, as compared to the case where an unconditioned medium is used. More than double, for example, 250 to 300 times.
  • the increase in the number of cells can be based on, for example, a value measured after 5 passages.
  • pluripotent stem cells cultured in this conditioned medium can maintain an undifferentiated state.
  • the undifferentiated state of pluripotent stem cells can be confirmed by the expression of undifferentiation markers (for example, genes or proteins such as SSEA3, SSEA4, Tra1-60, Tra1-81, Oct4, NANOG, and SOX2).
  • the conditioned medium obtained as described above contains a substance (growth promoting factor for pluripotent stem cells) secreted from feeder cells such as MEF that can promote the proliferation of pluripotent stem cells in an undifferentiated state. Including. Therefore, the present invention can be further subjected to screening for the conditioned medium obtained as described above to identify such a growth promoting factor. In this screening, a growth promoting factor can be identified by detecting a growth promoting factor for pluripotent stem cells contained in the conditioned medium. That is, the present invention screens a growth promoting factor for pluripotent stem cells, which comprises collecting the conditioned medium produced as described above and detecting a growth promoting factor for pluripotent stem cells contained in the collected conditioned medium. A method is also provided.
  • the growth promoting factor for pluripotent stem cells may be a protein or nucleic acid (RNA or the like), or may be an amino acid, a peptide, a sugar chain, or a low molecular compound such as a metabolite.
  • the collected conditioned medium it is preferable to separate and / or purify the collected conditioned medium by any method to identify the growth promoting factor.
  • any method to identify the growth promoting factor For example, two-dimensional electrophoresis, isoelectric focusing, electrophoresis such as SDS-PAGE, high performance liquid chromatography (HPLC), ion exchange chromatography, chromatography such as affinity chromatography, matrix-assisted laser desorption ionization / Separation, purification, and identification of growth-promoting factors using mass spectrometry such as time-of-flight mass spectrometry (MALDI / TOFMS), liquid chromatography / tandem mass spectrometry (LC-MS / MS), etc. it can.
  • mass spectrometry such as time-of-flight mass spectrometry (MALDI / TOFMS), liquid chromatography / tandem mass spectrometry (LC-MS / MS), etc.
  • components separated or purified from the conditioned medium and / or identified in the culture system of pluripotent stem cells in the medium for pluripotent stem cell culture are added and cultured, and the proliferation of pluripotent stem cells (especially undifferentiated) is compared with a system in which the component is not added (control). It may be confirmed whether the proliferation has increased.
  • the proliferative property the number of cells after proliferation
  • the component can be confirmed to be a growth promoting factor for pluripotent stem cells.
  • the screening method of the present invention may include such a step of detecting a proliferation promoting activity against pluripotent stem cells for components in the conditioned medium. Whether or not proliferation of pluripotent stem cells in an undifferentiated state (undifferentiated proliferation) can be promoted further depends on an undifferentiation marker (for example, SSEA3, SSEA4, Tra1-60, Tra1-81, Oct4, NANOG, and It can be determined by confirming that expression of a gene or protein such as SOX2 is maintained.
  • an undifferentiation marker for example, SSEA3, SSEA4, Tra1-60, Tra1-81, Oct4, NANOG
  • the growth promoting factor for pluripotent stem cells obtained by the screening method of the present invention can be used to promote undifferentiated proliferation of pluripotent stem cells by adding it to the culture system of pluripotent stem cells.
  • the present invention also includes transferring pluripotent stem cells cultured on feeder cells in a serum-free medium usable for culturing pluripotent stem cells in the absence of feeder cells and culturing without feeders. Also provided are methods of expanding pluripotent stem cells. In a particularly preferred embodiment of this method for expanding pluripotent stem cells, feeder cells are used using serum-free medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate, and no serum and serum replacement. The pluripotent stem cells cultured above are transferred to the absence of feeder cells and cultured without feeders.
  • pluripotent stem cells are maintained and cultured while acclimating a serum-free medium with feeder cells, and then feeder-free culture is performed. According to this method, the proliferation of pluripotent stem cells in feeder-free culture can be further enhanced.
  • the pluripotent stem cells, feeder cells, culture conditions and procedures used in this method are the same as described above.
  • the serum-free medium the same serum-free medium as used for the preparation of the conditioned medium can be preferably used.
  • pluripotent stem cells are cultured on feeder cells using a serum-free medium comprising L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate, but not arginine, serum and serum replacement. Then, pluripotent stem cells can be proliferated with high efficiency by feeder-free culture.
  • feeder-free culture can be particularly suitably performed using a polymer compound such as Matrigel (registered trademark) or a synthetic polymer as a culture substrate.
  • synthetic polymers include hydrogels, for example, temperature sensitive hydrogels having 2- (diethylamino) ethyl acrylate as a basic skeleton.
  • feeder-free culture can be performed using a culture vessel such as a culture dish coated on the inside with such a culture substrate.
  • a culture vessel such as a culture dish coated on the inside with such a culture substrate.
  • feeder-free culture is carried out using a conditioned medium of serum-free medium containing L-ascorbic acid, insulin, transferrin, selenium, and sodium bicarbonate as described above, but not serum and serum replacement.
  • any other serum-free medium may be used instead of the conditioned medium.
  • the proliferation (undifferentiated proliferation) of pluripotent stem cells in feeder-free culture can be remarkably enhanced.
  • Example 1 undifferentiated human iPS cells maintained on mouse embryonic fibroblasts (MEF cells; feeder cells) inactivated by mitomycin treatment were coated with vitronectin (VTN-N) as follows. In the culture wells, the cells were transferred in the absence of feeder cells and cultured in the presence of MEF-conditioned nutrient medium.
  • MEF cells mouse embryonic fibroblasts
  • VTN-N vitronectin
  • DMEM / F12 medium Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham; Sigma D6421
  • KNOCKOUT TM SR KnockOut TM SerumGp
  • NEAA non-essential amino acids; non-essential amino acids
  • 2 mM L-glutamine 5 ng / ml human FGF2 (also called basic FGF or bFGF)
  • 0.1 mM 2-mercaptoethanol Using the medium prepared by addition, the cells were cultured in a CO 2 incubator at 37 ° C. (5% CO 2 concentration). Passaging was performed every 6-7 days.
  • human iPS cell colonies are dissociated from the feeder cell layer using a dissociation solution (collagenase solution), made into about 20-50 small clusters by pipetting, and then a new feeder cell layer is prepared. Sowing on top.
  • a dissociation solution collagenase solution
  • Human iPS cells maintained and cultured on feeder cells as described above were dissociated with a dissociation solution, made into about 20-50 small clusters by pipetting, and iPS cells were collected by centrifugation at 300 rpm for 5 minutes.
  • the collected iPS cells were incubated on a gelatin-coated culture dish for 30 minutes to adhere the MEF cells to the dish, and the iPS cells floating in the medium were collected to remove the MEF cells. Subsequently, the collected iPS cells were divided into quarters (1/4 divisions) and seeded on plastic culture dishes coated with vitronectin (VTN-N; Gibco).
  • the culture dish was coated with vitronectin (VTN-N) by incubating with a vitronectin solution at a concentration of 0.5 ⁇ g / cm 2 for 1 hour at room temperature.
  • CM conditioned medium
  • MEF cells mouse fetal fibroblasts
  • DMEM medium supplemented with 10% FBS fetal fibroblasts
  • the cells were cultured for at least 16 hours, then washed with PBS ( ⁇ ) and then with serum-free medium, and the medium was replaced with the same serum-free medium.
  • the composition of the serum-free medium used is as follows.
  • Serum-free medium A (DMEM / F12 medium, 64 mg / L 2-phosphate magnesium ascorbate, and 543 mg / L sodium bicarbonate) Serum-free medium A + ITS (DMEM / F12 medium, 64 mg / L 2-phosphate magnesium ascorbate, 543 mg / L sodium bicarbonate, 1% ITS (insulin-transferrin-selenium; Life technologies))
  • FGF + TGF added 100 ⁇ g / L human FGF2 and 2 ⁇ g / L TGF- ⁇ 1 were added to the serum-free medium (FGF + TGF added).
  • a conditioned medium was prepared using a serum-free medium to which no growth factor was added.
  • the medium after 24 hours of culture was collected and centrifuged at 1000 rpm for 5 minutes, and the resulting liquid medium (supernatant) was used as the MEF-conditioned medium.
  • iPS cells without using feeder cells
  • iPS cells were cultured in MEF-conditioned medium for 5 days at 37 ° C. and 5% CO 2 concentration.
  • the cultured cells were stained with alkaline phosphatase. Staining was performed by fixing the cells on the culture plate with 10% formalin, adding 1 ml of One-step NBT / BCIP solution (Pierce), and allowing to stand at room temperature for 30 minutes.
  • FIG. 1 high proliferation of iPS cells was observed in MEF-conditioned medium prepared using serum-free medium A + ITS. It should be noted that iPS cells showed good growth even when growth factors were added after acclimation (FIG. 1C). However, using a conditioned medium prepared with a medium added with growth factors further improved the growth of iPS cells. Was observed (FIG. 1A).
  • Serum-free medium A (DMEM / F12, 64 mg / L 2-phosphate magnesium ascorbate, 543 mg / L sodium bicarbonate) was used as the serum-free medium, and a MEF-conditioned medium was prepared without adding growth factors.
  • DMEM / F12, 64 mg / L 2-phosphate magnesium ascorbate, 543 mg / L sodium bicarbonate was used as the serum-free medium, and a MEF-conditioned medium was prepared without adding growth factors.
  • 1% ITS insulin-transferrin-selenium
  • 100 ⁇ g / L human FGF2 and 2 ⁇ g / L TGF- ⁇ 1 were added to iPS cells and used for culture.
  • IPS cells were cultured in serum conditioned medium.
  • FIG. 1D The observation results after alkaline phosphatase staining are shown in FIG. 1D.
  • MEF-conditioned medium prepared using serum-free medium A containing no ITS and growth factor even if ITS, human FGF2 and TGF- ⁇ 1 were added during iPS cell culture, almost no proliferation of iPS cells was observed. .
  • IPS cells were prepared in the same manner as in Example 1, and serum-free medium A + ITS (DMEM / F12, 64 mg / L) not conditioned by MEF was applied to iPS cells seeded in a culture dish coated with vitronectin (VTN-N). 2-sodium ascorbate phosphate, 543 mg / L sodium bicarbonate, 1% ITS (insulin-transferrin-selenium; Life technologies)) was added. Further, 100 ⁇ g / L human FGF2 and 2 ⁇ g / L TGF- ⁇ 1 were added, and iPS cells were cultured in the same manner as in Example 1.
  • FIG. 1B The observation results after alkaline phosphatase staining are shown in FIG. 1B.
  • iPS cells were cultured using a serum-free medium A + ITS that had not been conditioned by MEF, the growth of iPS cells was low even when growth factors were added.
  • serum-free medium B + ITS DMEM (Dulbecco's Modified Eagle's Medium), 2 mM L-glutamine, 0.1 mM NEAA (non-essential amino acids; non-essential amino acids), 1% ITS (insulin-transferrin) Example 1 except that selenium) and 0.1 mM ⁇ -mercaptoethanol
  • ITS insulin-transferrin
  • Example 2 undifferentiated human iPS cells maintained on mouse fetal fibroblasts MEF (feeder cells) inactivated by mitomycin treatment were treated with matrigel, vitronectin (VTN-N), or PCM as follows. In culture wells coated with DM, they were transferred in the absence of feeder cells and cultured in the presence of MEF cell conditioned nutrient medium.
  • PCM-DM is an extracellular matrix of mesenchymal cells derived from human decidua (D. Kanematsu et al: Differentiation, 82, 77-88, 2011).
  • Human iPS cells The 201B7 cell line obtained from iPS Academia Japan was used as human iPS cells (undifferentiated human iPS cells). Human iPS cells were maintained and cultured on plastic culture dishes seeded with mouse fetal fibroblasts MEF (feeder cells) inactivated by mitomycin treatment.
  • mouse fetal fibroblasts MEF feeder cells
  • DMEM / F12 medium Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham; Sigma D6421
  • KNOCKOUT TM SR KnockOut TM SerumGp
  • NEAA non-essential amino acids; non-essential amino acids
  • 2 mM L-glutamine 5 ng / ml human FGF2 (also referred to as bFGF or FGF2)
  • 0.1 mM 2-mercaptoethanol The medium prepared above was cultured in a CO 2 incubator at 37 ° C. (5% CO 2 concentration). Passaging was performed every 6-7 days.
  • human iPS cell colonies are dissociated from the feeder cell layer using a dissociation solution (collagenase solution), made into about 20-50 small clusters by pipetting, and then a new feeder cell layer is prepared. Sowing on top.
  • a dissociation solution collagenase solution
  • the human iPS cells maintained on feeder cells as described above were dissociated with a dissociation solution, made into about 20 to 50 small clusters by pipetting, and centrifuged at 300 rpm for 5 minutes to collect iPS cells.
  • the collected iPS cells were incubated on a gelatin-coated culture dish for 30 minutes to adhere the MEF to the dish, and the iPS cells floating in the medium were collected to remove the MEF.
  • CM conditioned medium
  • MEF cells mouse fetal fibroblasts
  • FBS fetal fibroblasts
  • serum-free medium A (DMEM / F12 medium, 64 mg / L 2-phosphorus) supplemented with PBS ( ⁇ ) and then with 1% ITS, 100 ⁇ g / L human FGF2 and 2 ⁇ g / L TGF- ⁇ 1 Washed with acid magnesium ascorbate and 543 mg / L sodium bicarbonate (also called basal medium A), the medium was replaced with the same serum-free medium.
  • VTN-N vitronectin
  • IPS cells prepared and recovered in step (b) and MEF removed were cultured in the same medium not conditioned with MEF.
  • Example 3 IPS cells in medium conditioned with MEF (serum-free medium A + ITS + FGF + TGF) and medium not conditioned with MEF (serum-free medium A + ITS + FGF + TGF) using plastic culture dishes coated with Matrigel or PCM-DM, prepared according to Example 2 was continued for 5 passages. The result of comparing the cell growth rate during that time is shown in FIG. When iPS cells were cultured using the MEF-conditioned medium of serum-free medium A + ITS + FGF + TGF, the growth efficiency was about 300 times higher than when the unconditioned medium was used.
  • Example 4 Culture of iPS cells in medium conditioned by MEF (serum-free medium A + ITS + FGF + TGF) and medium not conditioned by MEF (serum-free medium A + ITS + FGF + TGF) using plastic culture dishes coated with vitronectin prepared according to Example 2 Continued over 4 passages. As controls, culture of iPS cells using MEF as feeder cells (on-feeder culture) and iPS cells in MEF-CM were also performed.
  • Control of MEF-CM is, DMEM / F12 medium (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F12 Ham; Sigma D6421) to a final concentration of 20% KNOCKOUT TM SR (KnockOut TM Serum Replacement (KSR); GIBCO
  • TM SR KnockOut TM Serum Replacement
  • GIBCO TM Serum Replacement
  • iPS cells in culture were positive for alkaline phosphatase (ALP) and maintained in an undifferentiated state regardless of the conditions.
  • ALP alkaline phosphatase
  • iPS cells were cultured in serum-free conditioned medium with improved proliferative properties, including culture in serum-free medium not conditioned, on-feeder culture, and culture in MEF-CM. In comparison, the expression state of the undifferentiated marker was not changed, and it was confirmed that there was no change in the cell properties.
  • the serum-free medium conditioned with MEF can increase the proliferation efficiency of iPS cells while maintaining the undifferentiated state.
  • Example 5 The conditioned medium prepared in the medium added with ITS and growth factor in Example 1 (FIG. 1A) and the conditioned medium prepared in the medium containing no ITS and growth factor in Comparative Example 1 (FIG. 1D) As a control, the protein secreted into each medium was analyzed by two-dimensional gel electrophoresis. First, proteins were collected from 1 ml of each medium by acetone precipitation. Each recovered protein is suspended in a swelling buffer, added to an immobilized pH gradient gel ReadyStrip IPG strip (pH 3-10, 11 cm; Bio-Rad), and an isoelectric focusing device Protean (registered trademark) IEF cell ( Bio-Rad) was swelled at 50 V and 20 ° C.
  • the ReadyStrip IPG strip was shaken in SDS-PAGE equilibration buffer (containing 2% DTT) for 10 minutes and then in SDS-PAGE equilibration buffer (containing 2.5% iodoacetamide) for 10 minutes, and then the protein was analyzed by SDS-PAGE. Expanded. In the conditioned medium prepared in the medium added with ITS and growth factor in Example 1, 40 spots were found in the conditioned medium prepared in the medium not containing ITS and growth factor in Comparative Example 1, and 12 spots of MEF-derived secreted proteins were spotted. I was able to detect it. From this, it was shown that the conditioned medium (FIG. 1A) prepared in the medium added with ITS and growth factor in Example 1 contains a protein that contributes to growth promotion.
  • SDS-PAGE equilibration buffer containing 2% DTT
  • SDS-PAGE equilibration buffer containing 2.5% iodoacetamide
  • Example 6 Feeder-free culture using MEF-conditioned medium Human iPS cells were cultured on mouse fetal fibroblasts MEF (feeder cells) inactivated by mitomycin treatment as described in “1. Preparation of human iPS cells” in Example 2. (On-feeder culture) and collected to remove MEF.
  • the human iPS cells prepared in this way were transferred to the absence of feeder cells in a culture well coated with Matrigel, and cultured using various media (feeder-free culture). The following media were used.
  • Serum-free medium A + ITS + FGF + TGF (DMEM, 2 mM L-glutamine, 0.1 mM NEAA, 1% ITS, 0.1 mM ⁇ -mercaptoethanol with 100 ⁇ g / L human FGF2 and 2 ⁇ g / L TGF- ⁇ 1) (FIG. 5) Middle, E8) -MEF-conditioned medium of serum-free medium A + ITS + FGF + TGF prepared according to the description in “2. Preparation of conditioned medium” in Example 2 (E8-CM in FIG.
  • Example 5 -MEF-CM prepared as described in Example 4 -MTeSR TM 1 medium (modified Tenure Serum Replacer 1) (STEMCELL Technologies) As a control, it was prepared by adding 20% final concentration of KNOCKOUT TM SR, 0.1 mM NEAA, 2 mM L-glutamine, 5 ng / ml human FGF2 and 0.1 mM 2-mercaptoethanol to DMEM / F12 medium. A test in which only on-feeder culture in the medium was performed was also conducted. (KSR in FIG. 5) The culture dish was coated with Matrigel according to the description in “3. Preparation of substrate-coated culture dish” in Example 2.
  • the culture and alkaline phosphatase staining were performed according to the procedure described in “4. Cultivation of iPS cells without using feeder cells” in Example 2 except that the culture period was 4 days.
  • FIGS. 5A to 5E The results are shown in FIGS. 5A to 5E. After the transition from on-feeder culture to non-feeder culture, growth was observed in the serum-free medium A + ITS + FGF + TGF MEF-conditioned medium (E8-CM), but almost no growth was observed in other media.
  • Non-feeder culture medium after transfer from on-feeder culture in a medium containing a predetermined component As final medium, DMEM / F12 medium with 20% final concentration of KNOCKOUT TM SR, 0.1 mM NEAA, 2 mM L-glutamine, 5 ng / According to the description in “1.
  • Preparation of human iPS cells in Example 2, except that serum-free medium A + ITS + FGF + TGF was used instead of the medium prepared by adding ml human FGF2 and 0.1 mM 2-mercaptoethanol.
  • Human iPS cells were cultured on mouse fetal fibroblasts MEF (feeder cells) inactivated by mitomycin treatment (on-feeder culture), collected, and MEF was removed.
  • the human iPS cells prepared in this way were transferred to a Matrigel-coated culture well in the absence of feeder cells. In the same manner, no feeder culture was performed using the same various media as described above, and alkaline phosphatase staining was performed.
  • pluripotent stem cells can be further enhanced by performing on-feeder culture using the above serum-free medium and then shifting to feeder-free culture.
  • Example 7 A culture dish coated with a temperature-sensitive hydrogel based on 2- (diethylamino) ethyl acrylate was prepared (Zhang et al., Nature Communications, (2013) 4, Article number: 1335). Specifically, N-methyl-2-pyrrolidone contains N-acryloyl-N′-propylpiperazine, 2,2 ′-(ethylenedioxy) bis (ethylamine) monoacrylamide, a crosslinking agent and a photopolymerization initiator.
  • the dissolved mixed solution was added to a plastic culture dish previously treated with 3- (trimethoxysilyl) propyl methacrylate, irradiated with 365 nm UV light for 30 minutes, and then allowed to stand at 50 ° C. overnight. Then, it wash
  • the hydrogel coat culture dish prepared in this way was used in place of the Matrigel coat culture dish in Example 6-2.
  • human iPS cells were subjected to on-feeder culture and subsequent feeder-free culture using various media. As a result, iPS cells showed high growth in any medium.
  • the present invention can be suitably used for feeder-free serum-free culture of pluripotent stem cells.
  • the present invention also provides a serum-free medium for culturing human pluripotent stem cells, such as a serum-free fully synthetic medium, containing a growth promoting factor that facilitates the proliferation of highly safe pluripotent stem cells. Can be used to By using such a medium, it becomes possible to stably and efficiently carry out feeder-free culture of human pluripotent stem cells.
  • a medium that makes it possible to isolate a growth promoting factor secreted from feeder cells such as MEF.
  • Such a medium can be used to screen for factors useful for the growth of human pluripotent stem cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地において、フィーダー細胞を培養して生成される馴化培地を用いた、多能性幹細胞に対する増殖促進因子をスクリーニングする方法、及び該馴化培地を用いた無フィーダー培養による多能性幹細胞の増殖方法、並びに該無血清培地で事前にオンフィーダー培養した多能性幹細胞を無フィーダー培養することによる多能性幹細胞の増殖方法に関する。

Description

多能性幹細胞の増殖促進因子のスクリーニング法
 本発明は、細胞培養のための高効率な無フィーダー無血清培養技術、及び前記培養技術に基づくスクリーニング方法に関する。
 ヒトES細胞(hESC)やヒトiPS細胞(hiPSC)等のヒト多能性幹細胞の近年の研究により、再生医療の実用化の可能性が高まっている。これらの細胞は、無限に増殖できる能力と、様々な細胞に分化する能力を有していることから、多能性幹細胞を用いた再生医療には、難治性疾患、生活習慣病等に対する治療法を根本的に変革することが期待されている。多能性幹細胞からは、神経細胞をはじめとして、心筋細胞、血液細胞、及び網膜細胞などさまざまな種類の細胞に試験管内で分化誘導することが既に可能になっている。
 従来、hESCやhiPSC等のヒト多能性幹細胞は、主にマウス由来の胎児線維芽細胞MEF(mouse embryonic fibroblast)を用いたフィーダー細胞層上で培養されてきた。フィーダー細胞には、ヒト多能性幹細胞を維持培養するために有益な増殖因子を幹細胞に供給する働きがある。このヒト多能性幹細胞の維持培養を可能とする活性は、MEF以外に、種々のヒト細胞種でも報告されている(非特許文献1~4)。しかし、従来の方法では培養時にフィーダー細胞を調製するのに手間がかかる上に、幹細胞にフィーダー細胞が混入するリスクがあるため、より安全な代替法の開発が必要とされている。
 MEFを用いずに多能性幹細胞を培養する方法として、FBS等の血清や血清代替物を添加した培地を予めMEFで馴化したもの(MEF-CM)を用いる方法やMEFを化学的に固定化する方法(非特許文献5)が知られている。また、異種細胞を用いず、各種ヒト由来細胞(線維芽細胞、胎盤細胞、骨髄細胞、子宮内膜細胞など)を生フィーダー細胞として用いる方法も報告されている(非特許文献6)。これらの方法では、ヒト多能性幹細胞を培養するために、牛血清や、KNOCKOUTTM SR(Knockout Serum Replacement:血清の代わりとして用いることによりES/iPS細胞を培養することができる添加剤)などを添加した培地が使用されているが、それらの添加成分は、ウシ血清から抽出されたタンパク質を用いたものが多く、牛海綿状脳症(BSE)などの感染症や、ウイルスによる細胞汚染が懸念されている。ヒト由来血清も一部では用いられているが、使用する上での制約や量的に有限なものであるため実用化には向いていない。
 また、MEFを用いずに培養するための完全合成培地(Chemical defined medium)の開発も進められている(非特許文献7及び8)。MEFの分泌物についての機能性タンパク質の解析も行われている(非特許文献9)。しかしながら、無フィーダー無血清培養法でヒト多能性幹細胞を安定して培養するのは依然として難しく、良好な増殖を可能にする技術の開発がなお求められている。
Hovatta O. et al., Hum. Reprod. (2003) 18, p.1404-1409 Richards M. et al., Nat. Biotechnol. (2002) 20, p.933-936 Cheng L. et al., Stem Cells (2003) 21, p.131-142 Richards M. et al., Stem Cells (2003) 21, p.546-556 Yue X-S. et al., PLoS. ONE (2012) 7, e32707 福角勇人及び金村米博、ヒトES/iPS細胞の無フィーダー細胞培養技術の開発、医学のあゆみ、(2011) 239, p.1338-1344 Akopian V. et al., In Vitro Cell Dev. Biol. Anim. (2010) 46, p.247-258 Chen G. et al., Nat. Methods (2011) 8, p.424-429 Chin AC. et al., J. Biotechnol. (2007) 130, p.320-328
 本発明は、細胞培養のための高効率な無フィーダー無血清培養技術を提供することを課題とする。さらに、前記培養技術を応用した増殖促進因子のスクリーニング方法を提供することを課題とする。
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、多能性幹細胞の培養に利用可能な無血清培地を予めフィーダー細胞で馴化することにより、フィーダー細胞と共培養することなく多能性幹細胞を安定的に培養でき、増殖性を向上させることができる培地を調製できることを見出し、さらに調製した培地をスクリーニングすることによって、効率的に多能性幹細胞の増殖促進因子を同定できる技術を見出し、本発明を完成するに至った。
 また本発明者らは、所定の成分を含む無血清培地で多能性幹細胞をオンフィーダー培養した後、無フィーダー培養することにより、多能性幹細胞の増殖性をさらに高めることができることも見出した。
 すなわち、本発明は以下を包含する。
[1]多能性幹細胞に対する増殖促進因子をスクリーニングする方法であって、
 a)L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地において、フィーダー細胞を培養し、生成した馴化培地を回収する工程、及び
 b)回収した馴化培地に含まれる、多能性幹細胞に対する増殖促進因子を検出する工程、
を含む方法。
 本スクリーニング方法の好ましい一実施形態では、前記無血清培地は、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含む、DMEM/F12培地であってよい。
 本スクリーニング方法の一実施形態では、フィーダー細胞の培養を、前記無血清培地に増殖因子を添加して行うことも好ましい。本スクリーニング方法において添加する増殖因子は、FGF2及び/又はTGF-β1であることが好ましい。
 本スクリーニング方法において、フィーダー細胞はマウス胎児線維芽細胞であり得る。
 本スクリーニング方法において、多能性幹細胞は、好ましくは、ES細胞又はiPS細胞である。
[2]L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地において、フィーダー細胞を培養し、生成した馴化培地を回収することを含む、多能性幹細胞培養用培地の調製方法。
 本調製方法の好ましい一実施形態では、前記無血清培地は、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含む、DMEM/F12培地であってよい。
 本調製方法において、一実施形態では、フィーダー細胞の培養を、前記無血清培地に増殖因子を添加して行うことも好ましい。本調製方法において添加する増殖因子は、FGF2及び/又はTGF-β1であることが好ましい。
 本調製方法において、フィーダー細胞はマウス胎児線維芽細胞であり得る。
 本調製方法において、多能性幹細胞は、好ましくは、ES細胞又はiPS細胞である。
[3]上記[2]の方法によって調製される、多能性幹細胞培養用馴化培地。
[4]L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地でフィーダー細胞を培養することにより生成された馴化培地において、多能性幹細胞を無フィーダー培養することを含む、多能性幹細胞の増殖方法。
 本増殖方法の好ましい一実施形態では、前記無血清培地は、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含む、DMEM/F12培地であってよい。
 本増殖方法において、一実施形態では、フィーダー細胞の培養を、前記無血清培地に増殖因子を添加して行うことも好ましい。別の実施形態では、フィーダー細胞の培養を、前記無血清培地に増殖因子を添加せずに行い、かつ、多能性幹細胞の無フィーダー培養を、前記馴化培地に増殖因子を添加して行うことも好ましい。本増殖方法において添加する増殖因子は、FGF2及び/又はTGF-β1であることが好ましい。
 本増殖方法において、フィーダー細胞はマウス胎児線維芽細胞であり得る。
 本増殖方法において、多能性幹細胞は、好ましくは、ES細胞又はiPS細胞である。
[5]L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地を用いてフィーダー細胞上で培養した多能性幹細胞を、フィーダー細胞非存在下に移行して無フィーダー培養することを含む、多能性幹細胞の増殖方法。
 この方法の好ましい一実施形態では、無血清培地はアルブミンを含まないことが好ましい。
 本明細書は本願の優先権主張の基礎となる日本国特許出願 特願2013-137206号の開示内容を包含する。
 本発明によれば、血清及び血清代替物を使用しない無血清培地を用いて、多能性幹細胞の無フィーダー培養における増殖性を向上させることができる。また本発明によれば、無フィーダー培養において多能性幹細胞の未分化増殖を促進する因子をスクリーニング可能な馴化培地を取得することができる。
図1は無フィーダー培養でのiPS細胞の増殖性に対する無血清MEF馴化培地の効果を示す写真である。Aは基本培地(無血清培地)A+ITS+FGF2+TGF-β1から調製した馴化培地における増殖性(+++)、Bは基本培地(無血清培地)A+ITS+FGF2+TGF-β1(馴化なし)における増殖性(+)、Cは基本培地(無血清培地)A+ITSから調製した馴化培地(馴化後、FGF2+TGF-β1添加)における増殖性(++)、Dは基本培地(無血清培地)Aから調製した馴化培地(馴化後、ITS+FGF2+TGF-β1添加)における増殖性(-)、Eは基本培地(無血清培地)B+ITSから調製した馴化培地(馴化後、FGF2+TGF-β1添加)における増殖性(-)、Fは基本培地(無血清培地)B+ITS+FGF2+TGF-β1(馴化なし)における増殖性(-)を示す。 図2は各種培養基質でコーティングしたプラスチック培養ディッシュにおける、無血清馴化培地中でのヒトiPS細胞の増殖結果を示す写真である。培養基質として、A、Bはマトリゲル(登録商標)、C、Dはビトロネクチン、E、FはPCM-DMを用いた。A、C、Eは馴化していない無血清培地、B、D、FはMEF馴化培地を使用した。 図3はMEFで馴化した無血清培地又は馴化していない無血清培地を用いた培養でのヒトiPS細胞の増殖性を比較した表を示す。 図4はMEFで馴化した無血清培地又は馴化していない無血清培地で培養したヒトiPS細胞について、フローサイトメトリーにより未分化マーカーの発現を解析した結果を示す。 図5は、血清代替物含有培地(B~E)又は所定の成分を含む無血清培地(G~J)を用いてオンフィーダー培養したヒトiPS細胞を、無フィーダー培養に移行した後の増殖性を比較した結果を示す写真である。図5中、増殖性のレベルを、-(増殖せず)又は+の個数で示す。
 以下、本発明を詳細に説明する。
 本発明は、フィーダー細胞により無血清培地を馴化することにより、無フィーダー培養で多能性幹細胞を増殖させるのに好適な培地を調製する方法に関する。
 本発明において「多能性幹細胞」とは、生体を構成する全ての種類の細胞に分化することができる多分化能(多能性)を有する細胞であって、インビトロ(in vitro)での培養において多能性を維持したまま無限に増殖を続けることができる細胞をいう。本発明において増殖させる多能性幹細胞の具体例としては、例えば、胚性幹細胞(ES細胞)、胎児の始原生殖細胞由来の多能性幹細胞であるEG細胞(Shamblott M.J. et al., Proc. Natl. Acad. Sci. USA. (1998) 95, p.13726-13731)、精巣由来の多能性幹細胞であるGS細胞(Conrad S., Nature (2008) 456, p.344-349)、体細胞由来の人工多能性幹細胞であるiPS細胞(induced pluripotent stem cells)等が挙げられるが、これらに限定されるものではない。本発明において増殖させる多能性幹細胞は、特に好ましくは、ES細胞又はiPS細胞である。ES細胞は、胚盤胞と呼ばれる初期胚の内部に存在する内部細胞塊から採取した未分化細胞に由来する培養細胞である。iPS細胞は、体細胞に初期化因子を導入することにより体細胞を未分化状態へと初期化し、多能性を付与した培養細胞である。初期化因子としては、Octファミリー遺伝子(例えば、Oct3/4)及びKlfファミリー遺伝子(例えば、Klf4)、並びにMycファミリー遺伝子(例えば、c-Myc)及び/又はSoxファミリー遺伝子(例えば、Sox2)を用いることができる。多能性幹細胞は、任意の動物由来のものであってよく、例えば、マウス、ラット、ハムスター等のげっ歯類、ヒト、ゴリラ、チンパンジー等の霊長類、さらにイヌ、ネコ、ウサギ、ウシ、ウマ、ヒツジ、ヤギ等の家畜又は愛玩動物などの哺乳動物由来のものであってよいが、ヒト由来の多能性幹細胞が特に好ましい。ES細胞、iPS細胞を始めとする多能性幹細胞は、市販品又は分譲を受けた細胞を用いてもよいし、新たに作製したものを用いてもよい。また、刺激惹起性多能性獲得細胞(Stimulus-Triggered Acquisition of Pluripotency cells:STAP細胞)を多能性幹細胞として用いてもよい。STAP細胞は、動物細胞に外部から強い刺激(ストレス)を与えて分化多能性を持たせた細胞である(Nature, 505, 641-647, (2014))。
 本発明においては、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地を馴化に供する。本発明において「血清」とは、任意の動物(例えば、ヒト、ウシ、ウマ、ヤギ等)由来の血清を指す。また「血清代替物」(serum replacement)とは、ES細胞やiPS細胞の培養において血清(FBS等)の代替品として細胞の未分化状態の維持及び培養のために使用される試薬であり、例えば、KNOCKOUTTM SR(KnockOutTM Serum Replacement(KSR); GIBCO社)、StemSure(登録商標) Serum Replacement(SSR;和光純薬工業)、N2サプリメント(和光純薬工業)等が挙げられる。この無血清培地は、血清及び血清代替物を含まない、任意の動物細胞培養用液体培地を基礎培地として調製することができる。基礎培地としては、BME培地、BGJb培地、CMRL1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地(Iscove’s Modified Dulbecco’s Medium)、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地(Dulbecco’s Modified Eagle’s Medium)、ハムF10培地、ハムF12培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地(例えば、DMEM/F12培地(Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham))等の培地を使用することができるが、特に限定されない。これらの基礎培地を用いて無血清培地を調製する場合には、基礎培地にL-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを添加すればよい。
 あるいは、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムのうち少なくとも1つ以上が予め添加された、血清及び血清代替物を含まない液体培地を用いて、無血清培地を調製することもできる。この場合には、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムのうち培地に含まれていない成分を培地に添加することにより、無血清培地を調製してもよいし、培地に含まれている成分も含めてL-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを培地に添加して無血清培地を調製してもよい。例えば、インスリン及びトランスフェリンを添加した血清由来成分不含培地である、CHO-S-SFM II(GIBCO BRL社製)、Hybridoma-SFM(GIBCO BRL社製)、eRDF Dry Powdered Media(GIBCO BRL社製)、UltraCULTURETM(BioWhittaker社製)、UltraDOMATM(BioWhittaker社製)、UltraCHOTM(BioWhittaker社製)、UltraMDCKTM(BioWhittaker社製)等を用いることができる。STEMPRO(登録商標) hESC SFM(Life Technologies社製)、mTeSR1(Veritas社製)、TeSR2(Veritas社製)なども好適に用いることができる。タンパク質成分がごく一部に限定されたEssential 8TM培地(Life Technologies社製)も好適に使用することができる。
 上記無血清培地の好ましい例は、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムをを含む、DMEM/F12培地である。
 本発明において無血清培地の調製に用いる培地は、脂肪酸、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’チオールグリセロール、又はこれらの均等物などを含有してもよいが、増殖因子以外のタンパク質成分の含量はできる限り少ない方が好ましい。一実施形態では、本発明で用いる無血清培地は、アルブミンを含まないことも好ましい。アルブミンは無血清培地に添加されることが多いが、ロットによる品質の変動が大きいことなどの問題が懸念されるためである。一実施形態では、本発明において無血清培地の調製に用いる培地は、その組成が既知のものが好ましい。例えば、多能性幹細胞に対する増殖促進因子を馴化培地からスクリーニングする場合には、培地組成が既知であることが好ましい。
 無血清培地を調製する際には、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムは、溶液、誘導体、塩又は混合試薬等の形態で動物細胞培養用の培地に添加することができる。例えば、L-アスコルビン酸は、2-リン酸アスコルビン酸マグネシウムなどの誘導体の形態で培地に添加してもよい。セレンは亜セレン酸塩(亜セレン酸ナトリウムなど)の形態で培地に添加してもよい。インスリン及びトランスフェリンは、動物(好ましくは、ヒト、マウス、ラット、ウシ、ウマ、ヤギ等)の組織又は血清等から分離した天然由来のものであってもよいし、遺伝子工学的に作製した組換えタンパク質であってもよい。インスリン、トランスフェリン、及びセレンは、試薬ITS(インスリン-トランスフェリン-セレン)の形態で培地に添加してもよい。ITSは、インスリン、トランスフェリン、及び亜セレン酸ナトリウムを含む、細胞増殖促進用の添加剤である。
 本発明において馴化に供する無血清培地は、脂肪酸又は脂質、アミノ酸(例えば、非必須アミノ酸)、ビタミン、増殖因子、サイトカイン、抗酸化剤、2-メルカプトエタノール、ピルビン酸、緩衝剤、無機塩類等を含有してもよい。例えば、2-メルカプトエタノールを含む場合、その濃度は幹細胞の培養に適する限り限定されないが、例えば約0.05~1.0mM、好ましくは約0.1~0.5mMであってよい。
 本発明では、上記のような無血清培地においてフィーダー細胞を培養することにより、培地を馴化する。フィーダー細胞は、マイトマイシン処理やγ線照射処理等により、有糸分裂を不活性化してから馴化に用いることが好ましい。本発明で用いるフィーダー細胞は、多能性幹細胞のフィーダー細胞層上での培養(オンフィーダー培養)のために使用可能な細胞である。フィーダー細胞は、ヒト、マウス、ラット、ウシ等の哺乳動物の胚又は組織由来の、線維芽細胞、胎盤細胞、骨髄細胞、子宮内膜細胞などの細胞であってよい。フィーダー細胞の具体例としては、マウス胎児線維芽細胞であるMEF又はSTO細胞株、STO細胞の派生株(例えば、ネオマイシン抵抗性遺伝子発現ベクターとLIF発現ベクターを安定的に組み込んだSNL細胞など)などが挙げられるが、これらに限定されるものではない。
 フィーダー細胞による馴化に供する無血清培地には、増殖因子が含まれていてもよいが、含まれていなくてもよい。無血清培地に増殖因子が含まれるか含まれないかにかかわらず、無血清培地には、馴化を実施する際に、増殖因子を添加しなくてもよいが、無血清培地に増殖因子が含まれない場合は増殖因子を添加して馴化に供することがより好ましい。増殖因子としては、限定するものではないが、FGF2(Basic fibroblast growth factor)、TGF-β1(Transforming growth factor-β1)、MCP-1、IL-6、PAI、PEDF、IGFBP-2、LIF及びIGFBP-7からなる群から選択される1つ以上、例えばFGF2及び/又はTGF-β1、を含むことが好ましい。特に好ましい増殖因子は、FGF2及び/又はTGF-β1である。
 フィーダー細胞による培地の馴化は、増殖のためのフィーダー細胞の培養後、培養容器内の培地を上記の無血清培地に置換し、培養することにより実施することができる。フィーダー細胞の培養は、常法により行うことができる。馴化のための無血清培地での培養は、温度4~45℃、例えば25~40℃にて、1~72時間、例えば8時間~36時間かけて行うことができる。この培養は、4~10%、例えば5%のCO濃度下で行うことも好ましい。
 培養容器は、細胞培養用に使用可能な容器であれば特に限定されないが、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリディッシュ、培養ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトル、中空糸培養器などが挙げられる。
 以上のようにして無血清培地でフィーダー細胞を培養し、フィーダー細胞から培地中に増殖促進因子等を分泌させ、無血清培地を馴化することができる。このようにして生成される馴化培地は、常法によりフィーダー細胞から分離して回収することができる。馴化培地の回収は、濾過及び/又は遠心分離により、例えば1000rpmで5分間遠心することにより、液体培地をフィーダー細胞と分離し、それを回収することにより行ってもよい。馴化培地の回収後、馴化のための無血清培地での培養をさらに反復して(例えば2~10回)行うこともできる。
 馴化培地の調製手順の具体例を挙げれば、単層のMEFをコンフルエントになるまで培養し、10μg/mlマイトマイシンCで処理した後、Trypsin-EDTA等の細胞剥離液により細胞を剥がし、回収したMEFを、培養ディッシュ上に3~5×10細胞/60 mmディッシュの細胞密度で播種し、1~2日培養した後に、培養ディッシュ中の培地を上記無血清培地と置換した後、24時間毎に液体培地を回収することにより馴化培地を調製することもできる。
 得られた馴化培地は、多能性幹細胞培養用培地として、特に無フィーダー無血清・無血清代替物培養に好適に用いることができる。本発明において「無フィーダー無血清・無血清代替物培養」とは、フィーダー細胞層を用いない培養(無フィーダー培養;feeder-free culture)であって、血清も血清代替物も含まない培地で行う培養を意味する。増殖因子や培地成分に多能性幹細胞にとっての異種由来成分を含まない場合には、異種由来成分不含培地(ゼノフリー培地)として特に好適に用いることができる。本発明は、このような多能性幹細胞培養用の馴化培地の調製方法、及びこの方法により得られる多能性幹細胞培養用の馴化培地にも関する。
 本発明では、上記のようにして生成された馴化培地を用いて、多能性幹細胞を無フィーダー培養することができる。この馴化培地の使用により、無フィーダー培養での多能性幹細胞の増殖性を格段に向上させることができる。すなわち本発明は、上記の馴化培地において多能性幹細胞を無フィーダー培養することを含む、多能性幹細胞の増殖方法にも関する。
 馴化培地で培養する多能性幹細胞は、予め常法により維持培養しておくことができる。維持培養しておいた多能性幹細胞は、コラゲナーゼ溶液等の解離液で培養容器から解離し、およそ数十個、例えば20~50個程度の小塊にして回収することが好ましい。維持培養においてフィーダー細胞を使用した場合には、回収した多能性幹細胞から、混入したフィーダー細胞を常法により除去することが好ましい。例えば、MEFをフィーダー細胞として維持培養した場合には、回収した多能性幹細胞をゼラチンコーティングした培養容器にてインキュベートすることでMEFを培養容器に接着させ、培地に浮遊している多能性幹細胞を採取することによって、MEFを除去することができる。
 このようにして調製した多能性幹細胞は、細胞の足場となる培養基質でコーティングした培養容器に播種することが好ましい。培養容器は、馴化培地の調製に関して記載したものと同様である。培養基質としては、細胞培養用に使用できるものであれば特に限定されないが、例えば、ゼラチン、Engelbreth-Holm-Swarm(EHS)マウス肉腫から産生されるマトリゲル(登録商標)、ラミニン(ラミニン-511、ラミニン-111、ラミニン-332等)、フィブロネクチン、ビトロネクチン、コラーゲン、E-カドヘリン、合成ペプチド、合成ポリマー等の他、MEF又はヒト血清や脱落膜間葉系細胞由来の細胞外マトリクス(PCM-CM)などが挙げられる。また、合成ポリマーの例として、ハイドロゲル、例えばアクリル酸2-(ジエチルアミノ)エチルを基本骨格とする温度感受性ハイドロゲルも培養基質として用いることができる(Zhang et al., Nature Communications, (2013) 4, Article number: 1335)。これらの培養基質による培養容器のコーティングは、当業者には良く知られており、常法により行うことができる。例えば、培養容器に培養基質溶液(例えば、ビトロネクチン溶液)を入れて一定時間(例えば、1時間)インキュベートすることにより培養容器をコーティングすることができる。
 上記の馴化培地における多能性幹細胞の培養は、限定するものではないが、好適には、20~40℃、例えば35~40℃にて、1時間~7日間、例えば1~24時間にわたって行えばよい。馴化培地における多能性幹細胞の培養は、4~10%、例えば5%のCO濃度下で行うことも好ましい。多能性幹細胞の培養は、継代を伴ってもよい。
 このようにして培養された多能性幹細胞は、馴化しない培地を使用した場合と比較して、増殖性が顕著に向上する。好適な実施形態では、馴化培地で増殖させた多能性幹細胞の細胞数は、馴化しない培地を使用した場合と比較して、好ましくは10倍以上、より好ましくは100倍以上、さらに好ましくは200倍以上、例えば250~300倍に増加する。この細胞数の増加は、例えば、5継代後に測定した値を基準とすることができる。またこの馴化培地で培養された多能性幹細胞は、未分化状態を維持することができる。多能性幹細胞の未分化状態は、未分化マーカー(例えば、SSEA3、SSEA4、Tra1-60、Tra1-81、Oct4、NANOG、及びSOX2等の遺伝子又はタンパク質)の発現によって確認することができる。
 上記のようにして得られる馴化培地は、MEF等のフィーダー細胞から分泌された、多能性幹細胞の未分化状態での増殖を促進することができる物質(多能性幹細胞に対する増殖促進因子)を含む。したがって本発明はさらに、上記のようにして得られる馴化培地を、そのような増殖促進因子を同定するために、スクリーニングに供することができる。このスクリーニングでは、上記の馴化培地中に含まれる、多能性幹細胞の増殖促進因子を検出することにより、増殖促進因子を同定することができる。すなわち本発明は、上記のように生成した馴化培地を回収し、回収した馴化培地に含まれる多能性幹細胞の増殖促進因子を検出することを含む、多能性幹細胞に対する増殖促進因子をスクリーニングする方法も提供する。ここで、多能性幹細胞に対する増殖促進因子は、タンパク質や核酸(RNA等)であってもよいし、アミノ酸、ペプチド、及び糖鎖や、代謝産物等の低分子化合物であってもよい。
 このスクリーニング方法では、回収した馴化培地を任意の方法で分離及び/又は精製し、増殖促進因子を同定することが好ましい。例えば、二次元電気泳動、等電点電気泳動、SDS-PAGE等の電気泳動法、高速液体クロマトグラフィー(HPLC)、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等のクロマトグラフィー、マトリックス支援レーザー脱離イオン化/飛行時間型質量分析法(MALDI/TOFMS)、液体クロマトグラフィー/タンデム質量分析法(LC-MS/MS)等の質量分析法等を用いて、増殖促進因子の分離・精製や同定を行うことができる。このような馴化培地中の成分の分析結果を、馴化前の無血清培地に用いた培地成分の分析結果と比較し、馴化培地において異なって含まれている成分を、多能性幹細胞に対する増殖促進因子の候補として検出できる。このため、スクリーニングに用いる目的では、馴化に用いる無血清培地の成分は全て既知であることが好ましい。
 馴化培地に含まれる、多能性幹細胞に対する増殖促進因子の検出においては、多能性幹細胞培養用の培地における多能性幹細胞の培養系に、馴化培地から分離若しくは精製及び/又は同定された成分(特に、多能性幹細胞に対する増殖促進因子の候補である成分)を添加して培養し、その成分を非添加の系(対照)と比較して多能性幹細胞の増殖性(特に、未分化増殖)が増加したかどうかを確認してもよい。増殖性(増殖後の細胞数)が例えば10倍以上、好ましくは100倍以上に上昇した場合、当該成分は多能性幹細胞に対する増殖促進因子であると確認することができる。本発明のスクリーニング方法は、馴化培地中の成分について多能性幹細胞に対する増殖促進活性を検出するこのような工程を含んでもよい。多能性幹細胞の未分化状態での増殖(未分化増殖)を促進することができるかどうかは、さらに未分化マーカー(例えば、SSEA3、SSEA4、Tra1-60、Tra1-81、Oct4、NANOG、及びSOX2等の遺伝子又はタンパク質)の発現が維持されていることを確認することによって判定することができる。
 本発明のスクリーニング方法で得られた多能性幹細胞に対する増殖促進因子は、多能性幹細胞の培養系に添加することにより、多能性幹細胞の未分化増殖の促進のために用いることができる。
 本発明はまた、多能性幹細胞の培養に利用可能な無血清培地中、フィーダー細胞上で培養した多能性幹細胞を、フィーダー細胞非存在下に移行して、無フィーダー培養することを含む、多能性幹細胞の増殖方法も提供する。この多能性幹細胞の増殖方法の特に好適な実施形態では、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地を用いてフィーダー細胞上で培養した多能性幹細胞を、フィーダー細胞非存在下に移行し、無フィーダー培養する。すなわちこの方法では、フィーダー細胞による無血清培地の馴化を行いながら多能性幹細胞を維持培養し、その後、無フィーダー培養を行う。この方法によれば、無フィーダー培養における多能性幹細胞の増殖をさらに増強することができる。
 この方法で用いる多能性幹細胞、フィーダー細胞、培養条件・手順等は上記と同様である。無血清培地としては、上記で馴化培地の調製に用いたのと同様の無血清培地を好適に用いることができる。
 一実施形態では、多能性幹細胞を、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、アルギニン、血清及び血清代替物を含まない無血清培地を用いてフィーダー細胞上で培養した後、無フィーダー培養することにより、多能性幹細胞を高効率に増殖させることができる。この方法では例えば、マトリゲル(登録商標)、合成ポリマー等の高分子化合物を培養基質として用いて無フィーダー培養を特に好適に行うことができる。合成ポリマーの例としては、ハイドロゲル、例えばアクリル酸2-(ジエチルアミノ)エチルを基本骨格とする温度感受性ハイドロゲルが挙げられる。例えば、そのような培養基質で内側をコーティングした培養ディッシュなどの培養容器を用いて、無フィーダー培養を行うことができる。フィーダー細胞上で培養した多能性幹細胞を、フィーダー細胞を除去した後に、フィーダー細胞を含まない培養容器中の培地に移して培養することにより、好適に無フィーダー培養を実施することができる。
 本方法では、無フィーダー培養は、上述のようなL-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地の馴化培地を用いて行うことができるが、馴化培地に代えて他の任意の無血清培地を用いて行ってもよい。本方法では、後者の場合でも、無フィーダー培養における多能性幹細胞の増殖(未分化増殖)を顕著に増強することができる。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
[実施例1]
 本実施例では、以下のように、マイトマイシン処理により不活性化したマウス胎児線維芽細胞(MEF細胞;フィーダー細胞)上で維持培養した未分化ヒトiPS細胞を、ビトロネクチン(VTN-N)でコーティングした培養ウェル中、フィーダー細胞の非存在下に移行し、MEF馴化栄養培地の存在下で培養した。
1.ヒトiPS細胞の調製
 iPSアカデミアジャパン株式会社(日本、京都)より入手した201B7細胞株(Takahashi K., et al., Cell 131, 1-12 (2007))をヒトiPS細胞(未分化ヒトiPS細胞)として使用した。ヒトiPS細胞は、マイトマイシン処理により不活性化したマウス胎児線維芽細胞MEF(フィーダー細胞)を播いたプラスチック培養ディッシュの上で維持培養した。培養には、DMEM/F12培地(Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham; Sigma D6421)に終濃度20%のKNOCKOUTTM SR(KnockOutTM Serum Replacement(KSR); GIBCO社)、0.1 mM NEAA(non-essential amino acids; 非必須アミノ酸)、2 mM L-グルタミン、5 ng/ml ヒトFGF2(塩基性FGF又はbFGFとも称される)及び0.1 mM 2-メルカプトエタノールを添加して調製した培地を用い、37℃にてCOインキュベーター内で培養した(5%CO濃度)。継代は6~7日毎に行った。継代の際には、解離液(コラゲナーゼ溶液)を用いて、ヒトiPS細胞のコロニーをフィーダー細胞層から解離し、ピペット操作で20~50個程度の小塊にした後、新しいフィーダー細胞層の上に播いた。
 以上のようにしてフィーダー細胞上で維持培養したヒトiPS細胞を、解離液で解離し、ピペット操作で20~50個程度の小塊にし、300rpmで5分間遠心することによりiPS細胞を回収した。回収したiPS細胞をゼラチンでコートした培養ディッシュ上で30分インキュベートして、MEF細胞をディッシュに接着させ、培地中に浮遊しているiPS細胞を回収することによりMEF細胞を除去した。続いて回収したiPS細胞を4分の1に分け(1/4分割)、ビトロネクチン(VTN-N;Gibco社)でコーティングされたプラスチック培養ディッシュに播種した。培養ディッシュのビトロネクチン(VTN-N)によるコーティングは、0.5μg/cmの濃度のビトロネクチン溶液で室温にて1時間インキュベートすることにより行った。
2.馴化培地の調製
 馴化培地(CM)は、マイトマイシン処理により不活性化したマウス胎児線維芽細胞(MEF細胞)を用いて無血清培地から調製した。マイトマイシン処理により不活性化したマウス胎児線維芽細胞MEFを、MEF用培地(10%FBSを添加したDMEM培地)中に約500,000 細胞/直径60mmディッシュの細胞密度で播種した。細胞を少なくとも16時間培養した後、PBS(-)、次いで無血清培地で洗浄し、培地を同じ無血清培地に置換した。用いた無血清培地の組成は以下の通りである。
・無血清培地A(DMEM/F12培地、64mg/L 2-リン酸アスコルビン酸マグネシウム、及び543mg/L 炭酸水素ナトリウム)
・無血清培地A+ITS(DMEM/F12培地、64mg/L 2-リン酸アスコルビン酸マグネシウム、543mg/L 炭酸水素ナトリウム、1% ITS(インスリン-トランスフェリン-セレン; Life technologies社))
 無血清培地には、馴化前に、増殖因子として100μg/L ヒトFGF2及び2μg/L TGF-β1を添加した(FGF+TGF添加)。並行して、増殖因子を添加しない無血清培地を用いた馴化培地の調製も行った。
 培地を置換した後、24時間COインキュベーター内でインキュベートした(37℃、5%CO濃度)。
 24時間培養した後の培地を回収し、1000rpmで5分間遠心し、得られた液体培地(上清)をMEF馴化培地とした。
3.フィーダー細胞を使用しないiPS細胞の培養
 本実施例の1.でビトロネクチン(VTN-N)でコーティングされた培養ディッシュに播種したiPS細胞に、本実施例の2.で調製したMEF馴化培地を2ml加えた。増殖因子としてヒトFGF2及び2μg/L TGF-β1を添加せずに調製したMEF馴化培地には、この段階で100μg/L ヒトFGF2及び2μg/L TGF-β1を添加した。iPS細胞をMEF馴化培地で37℃、5%CO濃度で5日間培養した。
 培養後の細胞をアルカリフォスファターゼで染色した。染色は、培養プレート上の細胞を10%ホルマリンで固定化した後、1mlのOne-step NBT/BCIP溶液(Pierce社)を加え、室温にて遮光して30分静置することにより行った。
 図1に示すように、無血清培地A+ITSを用いて調製したMEF馴化培地においてiPS細胞の高い増殖性が認められた(図1A、C)。なお、馴化後に増殖因子を加えてもiPS細胞は良好な増殖性を示した(図1C)が、増殖因子を加えた培地で調製した馴化培地を用いると、iPS細胞の増殖性のさらなる向上が認められた(図1A)。
[比較例1]
 無血清培地として、無血清培地A(DMEM/F12、64mg/L 2-リン酸アスコルビン酸マグネシウム、543mg/L 炭酸水素ナトリウム)を使用し、増殖因子を加えずにMEF馴化培地を調製し、それをiPS細胞に添加して培養に用いる際に1% ITS(インスリン-トランスフェリン-セレン)、100μg/L ヒトFGF2及び2μg/L TGF-β1を添加したこと以外は、実施例1と同様にして無血清馴化培地でiPS細胞を培養した。
 アルカリフォスファターゼ染色後の観察結果を図1Dに示す。ITS及び増殖因子を含まない無血清培地Aを用いて調製したMEF馴化培地においては、iPS細胞培養時にITS、ヒトFGF2及びTGF-β1を添加しても、iPS細胞の増殖はほとんど認められなかった。
[比較例2]
 実施例1と同様にしてiPS細胞を調製し、ビトロネクチン(VTN-N)でコーティングされた培養ディッシュに播種したiPS細胞に、MEFにより馴化していない無血清培地A+ITS(DMEM/F12、64mg/L 2-リン酸アスコルビン酸マグネシウム、543mg/L 炭酸水素ナトリウム、1% ITS(インスリン-トランスフェリン-セレン; Life technologies社))を添加した。さらに100μg/L ヒトFGF2及び2μg/L TGF-β1を添加し、実施例1と同様にしてiPS細胞を培養した。
 アルカリフォスファターゼ染色後の観察結果を図1Bに示す。MEFにより馴化していない、無血清培地A+ITSを用いてiPS細胞を培養した場合、増殖因子を添加しても、iPS細胞の増殖性は低かった。
[比較例3]
 無血清培地として、無血清培地B+ITS(DMEM(Dulbecco’s Modified Eagle’s Medium)、2mM L-グルタミン、0.1mM NEAA(non-essential amino acids; 非必須アミノ酸)、1% ITS(インスリン-トランスフェリン-セレン)、0.1mM β-メルカプトエタノール)を使用し、増殖因子として100μg/L ヒトFGF2及び2μg/L TGF-β1を添加して(FGF+TGF添加)馴化を行ったこと以外は、実施例1と同様にして無血清馴化培地でiPS細胞を培養した。また、MEFにより馴化していない無血清培地B+ITSを用いて、比較例2と同様に100μg/L ヒトFGF2及び2μg/L TGF-β1を添加してiPS細胞を培養した実験も行った。
 アルカリフォスファターゼ染色後の観察結果を図1に示す。無血清培地B+ITSを用いて調製したMEF馴化培地においても(図1E)、MEF細胞により馴化していない無血清培地B+ITSにおいても(図1F)、MEF細胞による馴化の有無にかかわらず、iPS細胞の増殖は認められなかった。この結果から、無血清培地B+ITSを用いて調製した馴化培地には、無血清培地A+ITSを用いて調製した馴化培地とは異なり、iPS細胞の増殖を促進する因子は分泌されないことが示された。
[実施例2]
 本実施例では、以下のように、マイトマイシン処理により不活性化したマウス胎児線維芽細胞MEF(フィーダー細胞)上で維持培養した未分化ヒトiPS細胞を、マトリゲル、ビトロネクチン(VTN-N)、又はPCM-DMでコーティングした培養ウェル中、フィーダー細胞の非存在下に移行し、MEF細胞馴化栄養培地の存在下で培養した。PCM-DMは、ヒト脱落膜由来の間葉系細胞の細胞外マトリクス(D. Kanematsu et al: Differentiation, 82, 77-88, 2011)である。
1.ヒトiPS細胞の調製
 iPSアカデミアジャパン株式会社より入手した201B7細胞株をヒトiPS細胞(未分化ヒトiPS細胞)として使用した。ヒトiPS細胞は、マイトマイシン処理により不活性化したマウス胎児線維芽細胞MEF(フィーダー細胞)を播いたプラスチック培養ディッシュの上で維持培養した。培養には、DMEM/F12培地(Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham; Sigma D6421)に終濃度20%のKNOCKOUTTM SR(KnockOutTM Serum Replacement (KSR); GIBCO社)、0.1 mM NEAA(non-essential amino acids; 非必須アミノ酸)、2 mM L-グルタミン、5 ng/ml ヒトFGF2(bFGF又はFGF2とも称される)及び0.1 mM 2-メルカプトエタノールを添加して調製した培地を用い、37℃にてCOインキュベーター内で培養した(5%CO濃度)。継代は6~7日毎に行った。継代の際には、解離液(コラゲナーゼ溶液)を用いて、ヒトiPS細胞のコロニーをフィーダー細胞層から解離し、ピペット操作で20~50個程度の小塊にした後、新しいフィーダー細胞層の上に播いた。
 以上のようにしてフィーダー細胞上で維持培養したヒトiPS細胞を、解離液で解離し、ピペット操作で20~50個程度の小塊にし、300rpmで5分間遠心することによりiPS細胞を回収した。回収したiPS細胞をゼラチンでコートした培養ディッシュ上で30分インキュベートして、MEFをディッシュに接着させ、培地中に浮遊しているiPS細胞を回収することによりMEFを除去した。
2.馴化培地の調製
 馴化培地(CM)は、マイトマイシン処理により不活性化したマウス胎児線維芽細胞(MEF細胞)を用いて無血清培地から調製した。マイトマイシン処理により不活性化したマウス胎児線維芽細胞(MEF細胞)を、MEF用培地(10%FBSを添加したDMEM培地)中に約500,000 細胞/直径60mmディッシュの細胞密度で播種した。細胞を少なくとも16時間培養した後、PBS(-)、次いで1% ITS、100μg/L ヒトFGF2及び2μg/L TGF-β1を添加した無血清培地A(DMEM/F12培地、64mg/L 2-リン酸アスコルビン酸マグネシウム、及び543mg/L 炭酸水素ナトリウム)(基本培地Aとも呼ぶ)で洗浄し、培地を同じ無血清培地に置換した。
 培地を置換した後、24時間COインキュベーター内でインキュベートした(37℃、5%CO濃度)。24時間培養した後の培地を回収し、新鮮な培地と入れ替えることを6回まで繰り返し実施した。回収した培地は1000rpmで5分間遠心し、得られた液体培地をMEF馴化培地(無血清培地A+ITS+FGF+TGF)とした。
3.基質コーティング培養ディッシュの調製
 マトリゲルでの培養ディッシュのコーティングは、Life technologies社のプロトコールに従い、マトリゲル(登録商標)(BD社)の、DMEM/F12での30倍希釈液で、室温にて1時間インキュベートすることにより実施した。
 PCM-DMでコーティングされた培養ディッシュの作製は、従来の方法(D. Kanematsu et al: Differentiation, 82, 77-88, 2011)に従った。具体的には、まず、0.1%ゼラチンでコーティングしたプラスチック培養ディッシュに、ヒト脱落膜由来間葉系細胞を3.5×10 細胞/cmの濃度で播種し、3日間コンフルエントな状態を維持した状態で培養した。培養細胞をPBS(-)で洗浄した後、その細胞をデオキシコール酸処理(0.5% デオキシコール酸ナトリウム/10 mM Tris-HCl, pH8.0を培養ディッシュに加えて4℃で30分処理)することにより、細胞成分を融解した。その後、培養ディッシュに残った細胞外マトリクス成分をPBS(-)で洗浄した。
 ビトロネクチン(VTN-N)でコーティングされた培養ディッシュの作製は、実施例1と同様にして行った。
4.フィーダー細胞を使用しないiPS細胞の培養
 本実施例の1.において調製及び回収しMEF細胞を除去したiPS細胞を、本実施例の3.で調製したマトリゲル、ビトロネクチン、又はPCM-DMのそれぞれでコーティングされたプラスチック培養ディッシュに、4分の1に分け(1/4分割)、播種した。培地として、本実施例の2.で調製した無血清培地A+ITS+FGF+TGFのMEF馴化培地を用いて、培養を行った(5%CO濃度、37℃、5日間)。
 並行して、本実施例の1.において調製及び回収しMEFを除去したiPS細胞を、MEFで馴化していない同培地でも培養した。
 アルカリフォスファターゼ染色後の観察結果を図2に示す。MEF馴化培地を用いた培養では、マトリゲル、ビトロネクチン、及びPCM-DMのいずれの培養基質でコーティングした培養ディッシュにおいても、iPS細胞の増殖性の向上を示した。
[実施例3]
 実施例2に従って調製した、マトリゲル又はPCM-DMでコーティングしたプラスチック培養ディッシュを用いた、MEFにより馴化した培地(無血清培地A+ITS+FGF+TGF)及びMEFにより馴化していない培地(無血清培地A+ITS+FGF+TGF)におけるiPS細胞の培養を、5継代にわたって継続した。その間の細胞増殖率を比較した結果を図3に示す。無血清培地A+ITS+FGF+TGFのMEF馴化培地を用いてiPS細胞を培養した場合、馴化していない培地を用いた場合と比べて、約300倍高い増殖効率が示された。
[実施例4]
 実施例2に従って調製した、ビトロネクチンでコーティングしたプラスチック培養ディッシュを用いた、MEFにより馴化した培地(無血清培地A+ITS+FGF+TGF)及びMEFにより馴化していない培地(無血清培地A+ITS+FGF+TGF)におけるiPS細胞の培養を、4継代にわたって継続した。対照として、MEFをフィーダー細胞として用いたiPS細胞の培養(オンフィーダー培養)、及びMEF-CMにおけるiPS細胞の培養も行った。対照のMEF-CMは、DMEM/F12培地(Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham; Sigma D6421)に終濃度20%のKNOCKOUTTM SR(KnockOutTM Serum Replacement(KSR); GIBCO社)を添加して調製した培地において、MEFを37℃にて5%CO濃度で培養した後、培地を回収することにより、調製した。
 アルカリフォスファターゼ染色の結果、培養中のiPS細胞は、いずれの条件で培養した場合でもアルカリフォスファターゼ(ALP)陽性であり、未分化状態が保持されていることが示された。
 培養後のiPS細胞をフローサイトメーターで解析した結果、未分化マーカーSSEA3、SSEA4、Tra1-60、及びTra1-81陽性であった(図4)。このことから、上記実施例で示されたように増殖性が向上する無血清馴化培地におけるiPS細胞の培養でも、馴化しない無血清培地での培養、オンフィーダー培養、及びMEF-CMでの培養と比べて未分化マーカーの発現状態は変わっておらず、細胞の性質に変化はないことが確認された。
 またRT-qPCR解析を行った結果、未分化マーカーOct4、NANOG、及びSOX2の遺伝子発現も確認できた。
 このように、MEFで馴化した無血清培地においては、未分化状態を維持したまま、iPS細胞の増殖効率を高めることができることが示された。
[実施例5]
 実施例1においてITS及び増殖因子を加えた培地で調製した馴化培地(図1A)と、比較例1においてITS及び増殖因子を含まない培地で調製した馴化培地(図1D)について、馴化しない培地をコントロールとしてそれぞれの培地中に分泌されたタンパク質の解析を二次元ゲル電気泳動により行った。まずそれぞれの培地1mlからアセトン沈殿によりタンパク質を回収した。それぞれの回収したタンパク質を、膨潤バッファーに懸濁し、固定化pH勾配ゲルReadyStrip IPGストリップ(pH3-10、11cm; Bio-Rad)に添加して等電点電気泳動装置Protean(登録商標) IEF cell (Bio-Rad)により50V、20℃で12時間膨潤後、等電点電気泳動を行った。その後、ReadyStrip IPGストリップをSDS-PAGE平衡化バッファー(2% DTT含有)中で10分間、次いでSDS-PAGE平衡化バッファー(2.5% ヨードアセトアミド含有)で10分間振盪後、SDS-PAGEによりタンパク質を展開した。実施例1においてITS及び増殖因子を加えた培地で調製した馴化培地では40個、比較例1においてITS及び増殖因子を含まない培地で調製した馴化培地では12個のMEF由来の分泌タンパク質のスポットを検出することができた。このことから、実施例1においてITS及び増殖因子を加えた培地で調製した馴化培地(図1A)には、増殖促進に寄与するタンパク質が含まれることが示された。
[実施例6]
1.MEF馴化培地を用いた無フィーダー培養
 実施例2の「1.ヒトiPS細胞の調製」の記載に従って、マイトマイシン処理により不活性化したマウス胎児線維芽細胞MEF(フィーダー細胞)上でヒトiPS細胞を培養し(オンフィーダー培養)、回収し、MEFを除去した。
 このようにして調製したヒトiPS細胞を、マトリゲルでコーティングした培養ウェル中、フィーダー細胞の非存在下に移行し、各種培地を用いて培養した(無フィーダー培養)。以下の培地を用いた。
・無血清培地A+ITS+FGF+TGF(DMEM、2mM L-グルタミン、0.1mM NEAA、1% ITS、0.1mM β-メルカプトエタノールに100μg/L ヒトFGF2及び2μg/L TGF-β1を添加したもの)(図5中、E8)
・実施例2の「2.馴化培地の調製」の記載に従って調製した、無血清培地A+ITS+FGF+TGFのMEF馴化培地(図5中、E8-CM)
・実施例4の記載に従って調製したMEF-CM
・mTeSRTM1培地(modified Tenneille Serum Replacer 1)(STEMCELL Technologies)
 対照として、DMEM/F12培地に終濃度20%のKNOCKOUTTM SR、0.1 mM NEAA、2 mM L-グルタミン、5 ng/ml ヒトFGF2及び0.1 mM 2-メルカプトエタノールを添加して調製した培地中でのオンフィーダー培養のみを行う試験も実施した。(図5中、KSR) なおマトリゲルでの培養ディッシュのコーティングは、実施例2の「3.基質コーティング培養ディッシュの調製」の記載に従って行った。
 培養期間が4日間であったこと以外は、実施例2の「4.フィーダー細胞を使用しないiPS細胞の培養」に記載された手順に従って、培養及びアルカリフォスファターゼ染色を行った。
 その結果を図5A~Eに示す。オンフィーダー培養から無フィーダー培養への移行後、無血清培地A+ITS+FGF+TGFのMEF馴化培地(E8-CM)では増殖が認められたが、他の培地では増殖がほとんど認められなかった。
2.所定成分を含む培地でのオンフィーダー培養からの移行後の無フィーダー培養
 培地として、DMEM/F12培地に終濃度20%のKNOCKOUTTM SR、0.1 mM NEAA、2 mM L-グルタミン、5 ng/ml ヒトFGF2及び0.1 mM 2-メルカプトエタノールを添加して調製した培地に代えて、無血清培地A+ITS+FGF+TGFを使用したこと以外は、実施例2の「1.ヒトiPS細胞の調製」の記載に従ってマイトマイシン処理により不活性化したマウス胎児線維芽細胞MEF(フィーダー細胞)上でヒトiPS細胞を培養し(オンフィーダー培養)、回収し、MEFを除去した。
 このようにして調製したヒトiPS細胞を、マトリゲルでコーティングした培養ウェル中、フィーダー細胞の非存在下に移行し、本実施例の1.と同じ各種培地を用いて同様に無フィーダー培養し、アルカリフォスファターゼ染色を行った。
 その結果、本実施例の1.の結果と比較して、いずれの培地を用いた無フィーダー培養においても、顕著に高い増殖性を示した。
 このことから、上記無血清培地を用いてオンフィーダー培養を行った後に無フィーダー培養に移行することにより、多能性幹細胞の増殖をさらに増強できることが示された。
[実施例7]
 アクリル酸2-(ジエチルアミノ)エチルを基本骨格とする温度感受性ハイドロゲルでコートした培養ディッシュを作製した(Zhang et al., Nature Communications, (2013) 4, Article number: 1335)。具体的には、N-メチル-2-ピロリドン中に、N-アクリロイル-N’-プロピルピペラジン、2,2’-(エチレンジオキシ)ビス(エチルアミン)モノアクリルアミド、架橋剤及び光重合開始剤を溶解した混合溶液を、3-(トリメトキシシリル)プロピルメタクリレートで予め処理したプラスチック培養ディッシュに添加し、365nmのUV光を30分照射した後、50℃で一晩放置した。その後、エタノール、アセトンで順次洗浄し、風乾した。
 このようにして作製したハイドロゲルコート培養ディッシュを、マトリゲルコート培養ディッシュの代わりに用いて、実施例6の2.の記載に従って、ヒトiPS細胞についてオンフィーダー培養とその後の各種培地を用いた無フィーダー培養を行った。その結果、いずれの培地においても、iPS細胞は高い増殖性を示した。
 本発明は、多能性幹細胞の無フィーダー無血清培養に好適に利用できる。本発明はまた、安全性の高い多能性幹細胞の増殖を容易にする増殖促進因子を含む、ヒト多能性幹細胞の培養を行うための無血清培地、例えば無血清の完全合成培地、を調製するために用いることができる。そのような培地を用いることにより、ヒト多能性幹細胞の無フィーダー培養を安定に効率良く実施することが可能になる。また、本発明によれば、MEF等のフィーダー細胞から分泌される増殖促進因子の単離を可能にする培地を得ることができる。そのような培地は、ヒト多能性幹細胞の増殖に有用な因子をスクリーニングするために用いることができる。
 本明細書で引用した全ての刊行物、特許及び特許出願はその全体が引用により本明細書に組み入れられるものとする。

Claims (15)

  1.  多能性幹細胞に対する増殖促進因子をスクリーニングする方法であって、
     a)L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地において、フィーダー細胞を培養し、生成した馴化培地を回収する工程、及び
     b)回収した馴化培地に含まれる、多能性幹細胞に対する増殖促進因子を検出する工程、
    を含む方法。
  2.  前記無血清培地が、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含む、DMEM/F12培地である、請求項1に記載の方法。
  3.  フィーダー細胞の培養を、前記無血清培地に増殖因子を添加して行う、請求項1に記載の方法。
  4.  増殖因子がFGF2及び/又はTGF-β1である、請求項3に記載の方法。
  5.  フィーダー細胞が、マウス胎児線維芽細胞である、請求項1~4のいずれか1項に記載の方法。
  6.  多能性幹細胞がES細胞又はiPS細胞である、請求項1~5のいずれか1項に記載の方法。
  7.  L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地でフィーダー細胞を培養することにより生成された馴化培地において、多能性幹細胞を無フィーダー培養することを含む、多能性幹細胞の増殖方法。
  8.  前記無血清培地が、L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含む、DMEM/F12培地である、請求項7に記載の方法。
  9.  フィーダー細胞の培養を、前記無血清培地に増殖因子を添加して行う、請求項7又は8に記載の方法。
  10.  フィーダー細胞の培養を、前記無血清培地に増殖因子を添加せずに行い、かつ、多能性幹細胞の無フィーダー培養を、前記馴化培地に増殖因子を添加して行う、請求項7又は8に記載の方法。
  11.  増殖因子がFGF2及び/又はTGF-β1である、請求項9又は10に記載の方法。
  12.  フィーダー細胞が、マウス胎児線維芽細胞である、請求項7~11のいずれか1項に記載の方法。
  13.  多能性幹細胞がES細胞又はiPS細胞である、請求項7~12のいずれか1項に記載の方法。
  14.  L-アスコルビン酸、インスリン、トランスフェリン、セレン、及び炭酸水素ナトリウムを含み、血清及び血清代替物を含まない無血清培地を用いてフィーダー細胞上で培養した多能性幹細胞を、フィーダー細胞非存在下に移行して無フィーダー培養することを含む、多能性幹細胞の増殖方法。
  15.  前記無血清培地がアルブミンを含まない、請求項14に記載の方法。
PCT/JP2014/064764 2013-06-28 2014-06-03 多能性幹細胞の増殖促進因子のスクリーニング法 WO2014208295A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480036983.2A CN105358707B (zh) 2013-06-28 2014-06-03 筛选多能干细胞生长促进因子的方法
EP14818252.0A EP3015551B1 (en) 2013-06-28 2014-06-03 Method for screening for pluripotent stem cell growth-promoting factor
JP2015523947A JP6336976B2 (ja) 2013-06-28 2014-06-03 多能性幹細胞の増殖促進因子のスクリーニング法
US14/900,975 US10066211B2 (en) 2013-06-28 2014-06-03 Method for screening for pluripotent stem cell growth-promoting factor
US16/053,583 US10415018B2 (en) 2013-06-28 2018-08-02 Method for screening for pluripotent stem cell growth-promoting factor
US16/519,676 US20200056158A1 (en) 2013-06-28 2019-07-23 Method for screening for pluripotent stem cell growth-promoting factor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013137206 2013-06-28
JP2013-137206 2013-06-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/900,975 A-371-Of-International US10066211B2 (en) 2013-06-28 2014-06-03 Method for screening for pluripotent stem cell growth-promoting factor
US16/053,583 Division US10415018B2 (en) 2013-06-28 2018-08-02 Method for screening for pluripotent stem cell growth-promoting factor

Publications (1)

Publication Number Publication Date
WO2014208295A1 true WO2014208295A1 (ja) 2014-12-31

Family

ID=52141643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064764 WO2014208295A1 (ja) 2013-06-28 2014-06-03 多能性幹細胞の増殖促進因子のスクリーニング法

Country Status (5)

Country Link
US (3) US10066211B2 (ja)
EP (1) EP3015551B1 (ja)
JP (1) JP6336976B2 (ja)
CN (1) CN105358707B (ja)
WO (1) WO2014208295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080047A1 (ja) * 2013-11-27 2015-06-04 株式会社カネカ 細胞培養培地及びそれを用いた培養方法
KR20190027768A (ko) * 2017-09-07 2019-03-15 사회복지법인 삼성생명공익재단 세포 배양을 위한 맞춤형 생장 인자 스크리닝 시스템

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608894A (zh) * 2020-12-31 2021-04-06 任建华 一种间充质干细胞培养基
EP4342977A1 (en) * 2022-09-26 2024-03-27 Ares Trading S.A. Serum free medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137206A (ja) 2011-12-28 2013-07-11 Kao Corp 被搬送物の検査方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0613756D0 (en) * 2006-07-12 2006-08-23 Univ Sheffield Cell culture medium
JP6276918B2 (ja) * 2009-11-12 2018-02-07 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 多能性幹細胞を未分化状態で培養する培地、細胞培養および方法
DK2601288T3 (en) * 2010-08-05 2016-05-30 Wisconsin Alumni Res Found Simplified base media for human pluripotent cell culture
US9133266B2 (en) * 2011-05-06 2015-09-15 Wisconsin Alumni Research Foundation Vitronectin-derived cell culture substrate and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137206A (ja) 2011-12-28 2013-07-11 Kao Corp 被搬送物の検査方法

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
AKOPIAN V. ET AL., IN VITRO CELL DEV. BIOL. ANIM, vol. 46, 2010, pages 247 - 258
CHEN G ET AL., NAT. METHODS, vol. 8, 2011, pages 424 - 429
CHEN G. ET AL.: "Chemically defined conditions for human iPSC derivation and culture", NAT. METHODS, vol. 8, no. 5, 2011, pages 424 - 9, XP055092759 *
CHENG L. ET AL., STEM CELLS, vol. 21, 2003, pages 131 - 142
CHIN A. C. ET AL., J. BIOTECHNOL., vol. 130, 2007, pages 320 - 328
CHIN A.C.P. ET AL.: "Identification of proteins from feeder conditioned medium that support human embryonic stem cells", J.BIOTECHNOL., vol. 130, no. 3, 2007, pages 320 - 8, XP022119696 *
CONRAD S., NATURE, vol. 456, 2008, pages 344 - 349
D. KANEMATSU ET AL., DIFFERENTIATION, vol. 82, 2011, pages 77 - 88
HAYATO FUKUSUMI; YONEHIRO KANEMURA: "Development of Feeder-free Cell Culture Technique of Human ES/iPS Cells", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 239, 2011, pages 1338 - 1344
HOVATTA O. ET AL., HUM. REPROD., vol. 18, 2003, pages 1404 - 1409
LIM J.W.E. ET AL.: "Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells", PROTEOMICS, vol. 2, no. 9, 2002, pages 1187 - 203, XP008042735 *
NATURE, vol. 505, 2014, pages 641 - 647
RICHARDS M ET AL., STEM CELLS, vol. 21, 2003, pages 546 - 556
RICHARDS M. ET AL., NAT. BIOTECHNOL., vol. 20, 2002, pages 933 - 936
SHAMBLOTT M. J. ET AL., PROC. NATL. ACAD. SCI., U.S.A., vol. 95, 1998, pages 13726 - 13731
TAKAHASHI K. ET AL., CELL, vol. 131, 2007, pages 1 - 12
YUE X-S ET AL., PLOS. ONE, vol. 7, 2012, pages E32707
ZHANG ET AL., NATURE COMMUNICATIONS, vol. 4, 2013
ZHANG ET AL., NATURE COMMUNICATIONS, vol. 4, 2013, pages 1335

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080047A1 (ja) * 2013-11-27 2015-06-04 株式会社カネカ 細胞培養培地及びそれを用いた培養方法
US10377984B2 (en) 2013-11-27 2019-08-13 Kaneka Corporation Cell culture medium and culture method using the same
KR20190027768A (ko) * 2017-09-07 2019-03-15 사회복지법인 삼성생명공익재단 세포 배양을 위한 맞춤형 생장 인자 스크리닝 시스템
KR102269072B1 (ko) 2017-09-07 2021-06-24 사회복지법인 삼성생명공익재단 세포 배양을 위한 맞춤형 생장 인자 스크리닝 시스템

Also Published As

Publication number Publication date
CN105358707B (zh) 2019-06-14
US10415018B2 (en) 2019-09-17
EP3015551A4 (en) 2016-11-23
CN105358707A (zh) 2016-02-24
JPWO2014208295A1 (ja) 2017-02-23
US20180355324A1 (en) 2018-12-13
EP3015551B1 (en) 2019-03-06
US20160177272A1 (en) 2016-06-23
US10066211B2 (en) 2018-09-04
JP6336976B2 (ja) 2018-06-06
EP3015551A1 (en) 2016-05-04
US20200056158A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US20220033770A1 (en) Macs-based purification of stem cell-derived retinal pigment epithelium
US20210139847A1 (en) Method for reproducible differentiation of clinical-grade retinal pigment epithelium cells
JP6682446B2 (ja) 網膜組織の製造方法
US20200056158A1 (en) Method for screening for pluripotent stem cell growth-promoting factor
JP5227318B2 (ja) 細胞増殖培地
US20220177836A1 (en) Methods for differentiating cells
KR20180135482A (ko) 망막 조직의 제조 방법
Brevini et al. Pluripotency network in porcine embryos and derived cell lines
JP6416622B2 (ja) 幹細胞および幹細胞に由来する細胞を単離するための、接着シグネチャーベースの方法
JP5067765B2 (ja) 卵膜由来細胞の細胞外マトリクスを用いた多能性幹細胞の培養方法
JP2017108705A (ja) 心筋細胞の製造方法
CN106085951B (zh) 一种建立可持续传代的树鼩精原干细胞细胞系的方法
Li et al. PDGF mediates derivation of human embryonic germ cells
JP2020129970A (ja) 多能性幹細胞を培養するための組成物及び方法
JP2014143954A (ja) 多能性幹細胞を効率的に作製する方法
Gillett The effect of in vitro culture on the stability, expansion and neuronal differentiation of human pluripotent cell lines
WO2024030443A1 (en) Bovine blastocyst like structures and uses thereof
TW202204607A (zh) 誘導性多功能幹細胞(iPSC)之誘導

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036983.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523947

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014818252

Country of ref document: EP