WO2014207125A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2014207125A1
WO2014207125A1 PCT/EP2014/063562 EP2014063562W WO2014207125A1 WO 2014207125 A1 WO2014207125 A1 WO 2014207125A1 EP 2014063562 W EP2014063562 W EP 2014063562W WO 2014207125 A1 WO2014207125 A1 WO 2014207125A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
measuring
fluid
component
measuring device
Prior art date
Application number
PCT/EP2014/063562
Other languages
English (en)
French (fr)
Inventor
Lukas RIEDINGER
Immanuel Aichele
Klaus FAHRLÄNDER
Original Assignee
Marquardt Mechatronik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marquardt Mechatronik Gmbh filed Critical Marquardt Mechatronik Gmbh
Priority to EP14733622.6A priority Critical patent/EP3014234B1/de
Priority to PL14733622T priority patent/PL3014234T3/pl
Publication of WO2014207125A1 publication Critical patent/WO2014207125A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4287Temperature measuring or regulating arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4289Spray-pressure measuring or regulating arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4297Arrangements for detecting or measuring the condition of the washing water, e.g. turbidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/22Condition of the washing liquid, e.g. turbidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/22Condition of the washing liquid, e.g. turbidity
    • D06F34/24Liquid temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0636Protection against aggressive medium in general using particle filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • G01L19/143Two part housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/148Details about the circuit board integration, e.g. integrated with the diaphragm surface or encapsulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/16Washing liquid temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/20Washing liquid condition, e.g. turbidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances

Definitions

  • the invention relates to a measuring device according to the preamble of patent claim 1.
  • Such measuring devices are used for measuring measured variables of a fluid in the domestic appliance and building services industry. In particular, these are
  • Measuring devices for household appliances such as washing machines, dishwashers, wet and / or dry vacuum cleaners o. The like. Or for other water-bearing parts of household appliances determined.
  • Such a measuring device for measuring a measured variable of a fluid has a housing.
  • the housing contains a measuring component for measuring the measured variable. If the measurement of several measured variables is required, then the corresponding measuring devices with their respective associated peripherals, such as
  • the invention has for its object to further develop the measuring device with regard to their functionality for measuring a plurality of measured variables.
  • This object is in a generic measuring device by the
  • a first measuring component for measuring the pressure of the fluid a second measuring component for measuring the temperature of the fluid and a third measuring component for measuring the turbidity of the fluid are arranged in the one housing, preferably integrated in the housing.
  • a plurality of measured variables of the fluid which may preferably be cleaning parameters for the operation of the domestic appliance, can be measured simultaneously.
  • a pressure, turbidity and temperature sensor in a housing in particular for the detection of cleaning parameters in a washing and / or dishwasher, is integrated.
  • the sensor according to the invention is designed so that a variant formation can be realized as follows:
  • Pressure sensor with integrated temperature sensor (with an NTC or PTC resistor),
  • the housing may consist of a housing body and a housing cover.
  • the measuring components can be arranged on and / or in the housing body.
  • the housing cover may be secured locked to the housing body.
  • the first measuring component may comprise a membrane arranged in and / or on the housing.
  • an elastic element can be provided to return the membrane.
  • Arrangement may be a signal generator with the membrane and / or the elastic element in operative connection.
  • a signal sensor can cooperate with the signal transmitter, in particular magnetically, to generate the measured variable.
  • the elastic element may be designed in the manner of a disk-shaped leaf spring.
  • the leaf spring may have a circular shape.
  • the leaf spring may have a spring element running helically from the center to the edge region of the leaf spring.
  • the signal generator can be attached to the elastic element in the center, in particular by gluing.
  • the signal generator may consist of a magnet, in particular a permanent magnet.
  • the Signalaufford can one of the of
  • Magnet generated magnetic field detecting position sensor in particular from a Hall sensor consist. Protected against external influences, the diaphragm and the elastic element as well as the signal transmitter and the signal sensor inside the
  • Housing be arranged. Conveniently, then, the housing, in particular the housing cover, having an opening for supplying the fluid to the membrane.
  • the second measuring component may comprise a temperature sensor arranged in and / or on the housing.
  • the second measuring component may comprise a temperature sensor arranged in and / or on the housing.
  • Temperaturfuhler be mounted in the housing.
  • the housing In a compact design, the
  • Temperature sensor protrude into a housing approach, in particular in the manner of a hump-shaped bulge on the housing cover.
  • a cost effective manner can be provided as Temperaturfuhler an NTC resistor, a PTC resistor o. The like.
  • the signal receiver of the first measurement component may be mounted on a circuit board. It may be that the circuit board in
  • housing body is fixed.
  • the temperature sensor of the second measuring component can be in electrical connection with the printed circuit board.
  • the third measuring component may include a transmitter and a receiver for optical radiation, in particular for infrared radiation, and a measuring path for the fluid located between the transmitter and the receiver.
  • the transmitter and / or the receiver can be arranged in a projection on the housing cover, in particular in the form of a bump-shaped bulge.
  • the approach can be largely transparent at least in the region of the transmitter and / or the receiver for the optical radiation.
  • the transmitter and / or receiver may be mounted on a finger of a circuit board projecting into the socket. It may be appropriate that the circuit board is fixed in the housing body. In a simple manner, a light-emitting diode can be provided as a transmitter. Furthermore, it may be that a phototransistor is used as the receiver.
  • connection contact for the signal generated by the respective measuring component.
  • the printed circuit board can be fixable in the housing body by means of a guide frame surrounding the connection contact.
  • a plug can be plugged onto the connection contact for signal forwarding, in particular on the guide frame.
  • the measuring component may comprise a membrane arranged in and / or on the housing. Since the membrane is in contact with the fluid, impurities in the fluid can deposit on the membrane, resulting in falsification of the measurement. Furthermore, these contaminants can also damage the membrane, which can ultimately lead to failure of the measuring device.
  • the invention is preferably further based on the object, the measuring device with regard to their operating and / or
  • a generic measuring device characterized in that a diaphragm covering the diaphragm is arranged on the housing.
  • a kind of chamber is formed in the housing, so that the membrane is protected from direct, mechanical action of foreign bodies.
  • a contour surrounding the mandrel is arranged on the housing in such a way that foreign objects coming to the side are intercepted and / or deflected via the dome located inside the contour.
  • At the dome and / or at the contour and / or in a recess between the dome and the contour is at least one opening, preferably at the dome opposite each other, narrow openings, befindlich, so that the fluid enters the chamber and thus to the membrane.
  • Measuring component for measuring the pressure of the fluid to be arranged in the housing. Further, a second measuring component for measuring the temperature of the fluid in
  • Housing be arranged.
  • a third measuring component for measuring the turbidity of the fluid can be arranged in the housing.
  • the housing may consist of a housing body and a housing cover.
  • the measuring components can be arranged on and / or in the housing body.
  • the housing cover may be secured locked to the housing body.
  • the dome and / or the contour and / or the depression between the dome and the contour are located on the housing cover.
  • an elastic element can be provided to return the membrane.
  • a signal generator can be in operative connection with the membrane and / or the elastic element.
  • a signal sensor can cooperate with the signal transmitter, in particular magnetically, to generate the measured variable.
  • the elastic element in the manner of a
  • the leaf spring may have a circular shape.
  • the leaf spring may have a spring element running helically from the center to the edge region of the leaf spring.
  • the signal generator can be attached to the elastic element in the center, in particular by gluing.
  • the signal generator may consist of a magnet, in particular a permanent magnet.
  • the Signalaufford can one of the of
  • Magnet generated magnetic field detecting position sensor in particular from a Hall sensor consist. Protected against external influences, the diaphragm and the elastic element as well as the signal transmitter and the signal sensor inside the
  • Housing be arranged.
  • the signal receiver may be mounted on a printed circuit board. It may be appropriate that the circuit board is fixed in the housing body.
  • a connection contact for the signal generated by the measuring component can be located on the printed circuit board.
  • the printed circuit board can be fixable in the housing body by means of a guide frame surrounding the connection contact.
  • a plug can be plugged onto the connection contact for signal forwarding, in particular on the guide frame.
  • Measuring component can occur.
  • the invention is furthermore preferably based on the object of further developing the measuring device with regard to its measuring accuracy.
  • a component of the measuring component in a separate component fixing which consists in particular of plastic, is used.
  • the component fixing is in turn secured in the housing.
  • the pressing of the component fixing in the housing is suitable for fastening.
  • the measuring component can be arranged in and / or on the housing
  • Measuring component can be clamped in the component fixing. Achieved is at the
  • thermocouple advantageously the dimensionally accurate positioning of the measuring component, such as a thermocouple, in particular taking into account the electrical protection class II.
  • a first measuring component such as a thermocouple
  • Measuring component for measuring the pressure of the fluid to be arranged in the housing. Further, a second measuring component for measuring the temperature of the fluid in
  • Housing be arranged.
  • a third measuring component for measuring the turbidity of the fluid can be arranged in the housing.
  • the housing may consist of a housing body and a housing cover.
  • the measuring components can be arranged on and / or in the housing body.
  • the housing cover may be secured locked to the housing body.
  • Protrude housing cover In a cost-effective manner may be provided as a temperature sensor, an NTC resistor, a PTC resistor o. The like. Finally, in a simple manner, the component fixing directly in the housing cover, and in particular in
  • the temperature sensor may be in electrical communication with a printed circuit board. It may be appropriate that the circuit board is fixed in the housing body. For a simple electrical connection, a connection contact for the signal generated by the measuring component can be located on the printed circuit board. In a compact and reliable manner, the circuit board by means of a
  • Connection contact surrounding guide frame in the housing body be fixable.
  • connection contact for signal forwarding especially on the guide frame, be plugged.
  • the measuring device may have a housing which has a housing wall.
  • elaborate measures for sealing the housing are provided to protect the measuring component from adverse effects.
  • the invention is also preferably based on the object of further developing the measuring device with regard to its sealing. This object is achieved in a generic measuring device according to a first
  • Measuring component and the fluid and / or the other electrical components are arranged.
  • two further electrical insulation layers surround the measurement component, with the insulation layers preferably being able to be positively and / or cohesively joined to one another.
  • the electrical protection class II is advantageously realized for the measuring device.
  • an electrically insulating casting between the measuring component and the housing wall is provided, wherein the potting has a thickness of at least 2 mm.
  • Housing be positively and / or cohesively joined together. Created is thus advantageously a potting for the measuring device for the realization of the electrical protection class II, in particular the potting of optical components of a turbidity sensor.
  • Measuring component for measuring the pressure of the fluid to be arranged in the housing. Further, a second measuring component for measuring the temperature of the fluid in
  • Housing be arranged.
  • a third measuring component for measuring the turbidity of the fluid can be arranged in the housing.
  • the housing may consist of a housing body and a housing cover.
  • the measuring components can be arranged on and / or in the housing body.
  • the housing cover may be secured locked to the housing body.
  • the second measuring component may comprise a temperature sensor arranged in and / or on the housing.
  • Temperature sensor protrude into a housing approach, in particular in the manner of a hump-shaped bulge on the housing cover.
  • a cost effective manner can as Temperature sensor, an NTC resistor, a PTC resistor o. The like. Be provided.
  • the temperature sensor may have a sheath as electrical base insulation, an additional electrical insulation in the manner of a potting and the housing as further electrical insulation.
  • Isolation property may consist of the basic insulation and / or the additional insulation of epoxy resin.
  • the third measuring component may comprise a transmitter and a receiver for optical radiation, in particular for infrared radiation, and a measuring path for the fluid located between the transmitter and the receiver.
  • the transmitter and / or the receiver in an approach on
  • Housing cover in particular in the manner of a hump-shaped bulge, be arranged.
  • the approach can be largely transparent at least in the region of the transmitter and / or the receiver for the optical radiation.
  • the transmitter and / or receiver may be mounted on a finger of a circuit board projecting into the socket. It may be appropriate that the circuit board is fixed in the housing body.
  • a light-emitting diode can be provided as a transmitter.
  • a phototransistor is used as the receiver.
  • the interior of the housing in the region of the transmitter and / or the receiver, in particular the approach be provided with a substantially transparent to optical radiation casting as electrical insulation.
  • the potting may be made of silicone resin.
  • the sensing component may be in electrical communication with a printed circuit board.
  • a connection contact for the signal generated by the respective measuring component can be located on the printed circuit board.
  • the printed circuit board can be fixable in the housing body by means of a guide frame surrounding the connection contact.
  • the measuring component is provided to the circuit board with a potting as electrical insulation.
  • the measuring device is installed in the household appliance in such a way that the housing projects into the working space and thus has a surface located in the fluid and / or exposed to the fluid. There is a risk that located in the fluid
  • the invention is further preferably the object of further developing the measuring device such that their impairment is reduced by contamination.
  • the hydrophilization of the surface of the housing can be generated by plasma activation of the surface. It may be that the plasma activation under oxygen atmosphere and / or under low pressure
  • the hydrophilization can also be generated by a fluorination of the material for the housing, in particular of the material for at least part of the surface and / or for the entire surface of the housing.
  • the housing may consist of a housing body and a housing cover.
  • the measuring component on and / or in the Be arranged housing body may be secured locked to the housing body.
  • the measuring component may be one for measuring the turbidity of the fluid.
  • the measuring component may comprise a transmitter and a receiver for optical radiation, in particular for infrared radiation, as well as a measuring path for the fluid located between the transmitter and the receiver.
  • the transmitter and / or the receiver can be arranged in a projection on the housing cover, in particular in the manner of a bump-shaped bulge.
  • the approach can be largely transparent at least in the region of the transmitter and / or the receiver for the optical radiation.
  • the transmitter and / or receiver may be mounted on a finger of a printed circuit board protruding into the socket. It may be appropriate that the circuit board is fixed in the housing body. In a simple manner, a light-emitting diode can be provided as a transmitter. Furthermore, it may be that a phototransistor is used as the receiver.
  • the sensing component may be in electrical communication with a printed circuit board.
  • a simple electrical connection can be made by the fact that on the circuit board, a connection contact for that of the respective
  • Measuring component generated signal is located.
  • the circuit board by means of a surrounding the connection contact
  • Guide frame can be fixed in the housing body. Furthermore, for easy installation, a plug can be plugged onto the connection contact for signal forwarding, in particular on the guide frame.
  • the entire sensor is designed so that the respective protection class II is met. This means that the pressure and / or temperature sensor has three insulation layers that meet the required standard requirements. At the same time is the
  • Turbidity sensor board either designed so that when water penetrates a short circuit is triggered immediately and thus a galvanic isolation in the
  • the second possibility of realization for the protection class II in the turbidity sensor area is realized by a further potting compound, which remains optically transparent over the lifetime and thus does not affect the sensor characteristic and also serves as 2 mm strong base insulation.
  • a protective varnish can be applied to the printed circuit board, which then counts as a third insulation layer and thus again complies with protection class II.
  • Areas that can absorb water in the event of mechanical damage to the pressure sensor membrane are specifically dewatered by certain geometries on the housing. This ensures that no water can hit live lines and run into the bottom of the machine, similar to condensate protection geometries.
  • the pressure sensor can not as previously via an air trap indirectly determine the pressure exerted by the water, but must also deflected directly from the medium become.
  • unwanted dirt particles and / or small parts can reach and damage the sensor membrane, which serves to transmit the deflection of the measuring system, or can permanently deposit there.
  • These foreign bodies can be, for example, textile fibers, sediments, paper clips, needles or even a bra strap.
  • the medium flows through the drum movement of the household appliance in a defined vector, which moves depending on the direction of rotation counterclockwise (UZS) or clockwise (UZS) coming from the left or coming from the right over the medium located sensor contours.
  • UZS counterclockwise
  • UZS clockwise
  • This also results comprehensible ways in which foreign bodies move depending on the flow intensity.
  • a certain self-cleaning effect sets in by this movement or dirt particles are detached again.
  • a circumferential contour For trapping laterally coming foreign bodies, a circumferential contour is designed, which deflects these foreign bodies via an inner dome.
  • This inner dome protects the membrane within the sensor from direct, mechanical action of foreign bodies. It also has opposite, narrow openings that allow the pressure medium to reach the printing system. Since these slots allow pointed parts (needles, paper clips, etc.) to penetrate into the interior of the sensor, the circumferential contour must be chosen so that no possible angle of elevation allows a foreign object to continue to penetrate. In addition, the opening must not be designed too narrow, otherwise textile fibers and detergent or
  • the contours introduce and calm some of the medium so that it produces as few flows as possible upon contact with the membrane which could increase the measurement error.
  • vents are provided annularly at its tip, through which also no foreign bodies can penetrate.
  • the temperature of the cleaning water is measured, among other things.
  • the response time of a temperature sensor must be less than 20 sec.
  • the protection class II according to the standard DIN EN 60335 must be fulfilled. This means that three independent insulation layers with a certain minimum breakdown voltage between water and current-carrying components or lines must be present.
  • the erfmdungssiee solution describes the compromise of minimum layer thicknesses of the individual insulation layers, the highest possible thermal conductivity of the individual materials despite neutral costs and realization of the lowest possible manufacturing tolerance.
  • the temperature sensor is clamped in a separate component fixing plastic and then pressed directly into the lid contour, whereby the tolerance chain is significantly reduced.
  • the required by the customer short response time can be realized without high standard deviation.
  • Potting compounds are designed so that all standard specifications are achieved.
  • turbidity sensors with functional grounding are used in washing machines and / or dishwashers. This means a higher effort in the wiring harness and the power supply. Since there is no protection between the electronic components and the medium to be measured in addition to the housing with such a sensor, this is necessary for personal protection.
  • the protection class II is also achieved if at least a wall thickness of 2 mm and a sufficient dielectric strength is given and / or three
  • Insulation layers with a small wall thickness and sufficient dielectric strength between the medium and the electrical components are present. However, such layers must also be located in the optical measuring path of the sensor and therefore have further requirements that also have to be met.
  • Silicone Vergusssystemen this can be realized without major changes in the sensor characteristic and the sensor structure.
  • the encapsulation has a thickness of 2 mm when installed, which is sufficient to fulfill protection class II.
  • a multi-layer solution must be used. In this case, all the conductive components of the sensor must be enclosed by at least three layers, namely a base insulation and two
  • Connection does not meet the requirements, can be made by a better vote of the materials or by an additional increase in the surface energy or polarity a cohesive connection. These measures would also reduce a phase transition change due to different coefficients of expansion, in which case significantly better results can be achieved by the targeted use of elastic silicone encapsulation.
  • turbidity sensors are used for several years, which determine the dirt particle density in the medium to be measured and thereby vary the water use and the number of rinses. For some years, the dosing amount of liquid detergent has been controlled.
  • the invention proposes that a permanent hydrophilization of the surface of the sensor is made. With the help of such a hydrophilization as long as possible and a uniform wetting of the
  • hydrophilization Several methods can be used for the hydrophilization, which can either be used directly in production or applied as bulk material to contract coaters. Thus, the costs are significantly lower and a change in the series can be realized for the sensor.
  • the housing material used has the
  • a special feature is that after surface activation, this effect persists for a long time during storage and, when the sensor is used in the medium, a permanent - sometimes even increased - hydrophilicity sets in.
  • a plasma activation under oxygen atmosphere which can be carried out directly in the production line, is available.
  • an activation in low pressure can be made, which achieves the same effect as in the atmosphere.
  • the activation level and the Aktiv istshaltles are significantly increased.
  • the activation can also be carried out in batch mode.
  • hydrophilization is the fluorination of the material for the housing.
  • a large number of housings can be treated at the same time because very large process chambers are available from job coaters. Also the
  • the advantages achieved by the invention are, in particular, that a reduction of the interfaces in the customer device is achieved. Furthermore, a direct pressure measurement of the rinse water in the domestic appliance without the use of an air trap is possible. Furthermore, the turbidity measurement no longer requires a galvanically isolating power supply. After all the measuring device according to the invention offers an extended functionality and is very compact and inexpensive.
  • Still further advantages achieved by the invention are, in particular, that a high degree of integration capability into existing sensors for the savings of the interfaces at the customer is achieved. Furthermore, a realization of the sensor made of plastic in a cost-effective manner is possible. Finally, a reduction of the wiring harness in stationary household cleaning equipment is achieved.
  • Measuring device achieved. Overall, an increase in safety for the user of the measuring device as well as a reduction in costs and an increase in the service life and / or the reliability of the measuring device is thus given.
  • FIG. 2 shows the measuring device of FIG. 1 in exploded view
  • FIG. 3 shows the view of the measuring device from the bottom according to the direction III in Fig. 1,
  • FIG. 4 shows the view of the measuring device from the top according to the direction IV in Fig. 1,
  • Fig. 8 is a section along the line 8-8 in Fig. 4 and
  • FIG. 1 shows a measuring device 1 for measuring a measured variable of a fluid.
  • the measuring device 1 can be used in household appliances, such as in washing machines, in
  • Dishwashers o. The like, are used, as a sensor for measuring measured variables of the fluid used as a washing liquid in the working space of the
  • the senor 1 is used for measuring the pressure and / or the turbidity and / or the temperature of the water serving as the washing liquid in the
  • the sensor 1 has a housing 2.
  • the housing 2 is mounted by means of an O-ring 3 as a seal in the household appliance that a part of the housing 2 in the working space protrudes and this part of the surface 37 of the housing 2 is exposed there to the fluid.
  • the other part of the housing 2 is located outside of the working space and is connected to the electrical leads for the sensor 1.
  • the housing 2 consists of a housing body 4 and a housing cover 5.
  • the housing cover 5 is fastened in a latched manner by means of latching hooks 9 on the housing body 4.
  • the measuring component for measuring the respective measured variable.
  • a first measuring component 6 for measuring the pressure of the fluid a second measuring component 7 for measuring the temperature of the fluid, and a third measuring component 8 for measuring the turbidity of the fluid are integrated in the housing 2.
  • a plurality of measured variables of the fluid wherein these measured variables are preferably cleaning parameters for the operation of the
  • the measuring components 6, 7, 8 are arranged on and / or in the housing body 4.
  • the first measuring component 6 for measuring pressure comprises a membrane 10 arranged in and / or on the housing 2, as can be seen in FIG. It is further provided an elastic element 1 1 for returning the membrane 10.
  • a signal generator 12 is connected to the
  • a signal sensor 13 cooperates with the signal generator 12 to generate the measured variable.
  • the elastic element 1 1 is designed in the manner of a disk-shaped leaf spring, which is shown as an item closer in Fig. 9.
  • the leaf spring 11 has a circular shape. Furthermore, the leaf spring 1 1 from the center 36 to the edge region of the leaf spring 1 1 spirally extending spring element 35.
  • the signal generator 12 is attached as shown in FIG. 5 on the elastic element 1 1 in the center 36 by gluing.
  • the signal generator 12 consists of a magnet, in the present case of a
  • the signal sensor 13 interacts magnetically with the signal generator 12.
  • the signal sensor 13 consists of a position sensor detecting the magnetic field generated by the magnet 12, in the present case from a Hall sensor.
  • the membrane 10 and the elastic member 11 and the signal generator 12 and the signal sensor 13 are arranged in the interior of the housing 2, as can be seen with reference to FIG. 5.
  • a diaphragm 10 covering the dome 27 is arranged on the housing 2.
  • a chamber 28 is formed in the housing 2, as shown in FIG. 5 can be seen.
  • the housing 2 or the housing cover 5 in FIG. 1 has visible openings 14 for the supply of the fluid into the chamber 28.
  • the dome 27 is located opposite narrow openings 14, such that the fluid passes to the membrane 10 in the chamber 28.
  • a contour 29 surrounding the dome 27 is arranged on the housing 2 in such a way that foreign objects located laterally in the fluid are intercepted and / or deflected via the dome 27 located within the contour 29.
  • the openings 14 can likewise be arranged on the contour 29 and / or in a depression between the dome 27 and the contour 29.
  • the dome 27 and the contour 29 and the recess between the dome 27 and the contour 29 are located on the housing cover 5.
  • the second measuring component 7 comprises a temperature sensor 15 arranged in and / or on the housing 2.
  • the temperature sensor 15 is fastened in the housing 2.
  • the temperature sensor 15 protrudes into a housing projection 16, which is designed in the manner of a hump-shaped bulge, on the housing cover 5.
  • a NTC resistor, a PTC resistor or the like is provided as the temperature sensor 15.
  • a separate component fixing 30, which consists of plastic, as shown in FIG. 5 can be seen.
  • the component fixing 30 is fixed by pressing in the housing 2. That is, the component fixing 30 is pressed directly into the housing projection 16 on the housing cover 5, as can be seen with reference to FIG. 8.
  • the signal sensor 13 of the first measuring component 6 is fastened on an angled printed circuit board 17.
  • the printed circuit board 17 is fixed in the housing body 4.
  • the temperature sensor 15 of the second measuring component 7 is also in electrical connection with the printed circuit board 17.
  • the third measuring component 8 comprises a transmitter 18 and a receiver 19 for optical radiation, in the present case for infrared radiation, as well as a visible between the transmitter 18 and the receiver 19, visible in Fig. 6 Measuring section 20 for the fluid.
  • the transmitter 18 and / or the receiver 19 are arranged in a projection 21, 22, which is designed in the manner of a bump-shaped bulge on the housing cover 5.
  • the projection 21, 22 is largely transparent at least in the region of the transmitter 18 and / or the receiver 19 for the optical radiation.
  • the transmitter 18 and / or the receiver 19 are mounted on a projecting into the neck 21, 22 finger 24 of another circuit board 23.
  • the printed circuit board 23 is fixed in the housing body 4.
  • a transmitter 18 a light emitting diode is provided.
  • a receiver 19 is a
  • circuit board 17, 23 there is a connection contact for the signal generated by the respective measuring component 6, 7, 8.
  • the circuit board 17 is by means of a
  • Terminal contact surrounding guide frame 25 and the circuit board 23 is fixed by means of a terminal surrounding the contact guide frame 26 in the housing body 4.
  • a plug can then be plugged onto the connection contact for signal forwarding on the guide frame 25, 26.
  • an additional electrical insulation layer 32 can be located between the housing wall 31 (see FIG. 7) of the housing 2 and the respective measuring component 6, 7, 8.
  • Insulation layer 32 may be a potting between the measuring component 6, 7, 8 and the housing 31 may be provided, wherein the potting 32 has a thickness of at least 2 mm. It makes sense that the potting 32 and the housing 31 are positively and / or cohesively joined together.
  • the temperature sensor 15 has a sheath 33 as an insulation layer or as electrical base insulation.
  • the temperature sensor 15 has an additional electrical insulation in the manner of a potting 32 and the housing 31 as further electrical insulation.
  • the base insulation 33 and / or the additional insulation 32 may consist of epoxy resin.
  • a potting 34 is likewise provided as the insulating layer, as can be seen in FIG.
  • the potting 34 is made of silicone resin. It makes sense to provide the encapsulation 34 for the measuring component 6, 7, 8 to the circuit board 17 as electrical insulation, as seen in Fig. 5.
  • the sensor 1 is mounted in the household appliance, then part of the surface 37 of the housing 2 designated in FIG. 1 is exposed to the fluid which is located in the working space of the household appliance. At least this part of the surface 37, for the sake of simplicity, however, prefers the entire surface 37 of the housing 2, is made hydrophilic. As a result, an improved wetting of the surface 37 is given by the fluid, so that the deposition of foreign bodies on the surface 37 of the housing 2 is reduced.
  • the hydrophilization of the surface 37 of the housing 2 can be effected by a plasma activation of the surface 37, in particular under an oxygen atmosphere and / or under low pressure. To produce the hydrophilization, it is also possible to fluorinate the material on the surface 37 of the housing 2.
  • Insulation layer / encapsulation / additional insulation for temperature sensors
  • Sheath / insulation layer / basic insulation of temperature sensor
  • encapsulation for the third measuring component

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft eine Messvorrichtung (1) zur Messung einer Messgröße eines Fluids, insbesondere einen Sensor für Haushaltsgeräte, wie Waschmaschinen, Geschirrspülmaschinen o. dgl, mit einem Gehäuse (2), und mit einer im Gehäuse (2) befindlichen Messkomponente zur Messung der Messgröße. Die Messvorrichtung (1) weist eine erste Messkomponente (6) zur Messung des Drucks des Fluids, eine zweite Messkomponente (7) zur Messung der Temperatur des Fluids und eine dritte Messkomponente (8) zur Messung der Trübung des Fluids auf. Die Messkomponenten (6, 7, 8) sind in dem Gehäuse (2) angeordnet.

Description

Sensor
Die Erfindung betrifft eine Messvorrichtung nach dem Oberbegriff des Patentanspruchs 1.
Derartige Messvorrichtungen werden zur Messung von Messgrößen eines Fluids in der Hausgeräte- und Haustechnikindustrie verwendet. Insbesondere sind diese
Messvorrichtungen für Haushaltsgeräte, wie Waschmaschinen, Geschirrspülmaschinen, Nass- und/oder Trockensaugern o. dgl. oder für sonstige wasserführende Teile von Hausgeräten, bestimmt.
Eine solche Messvorrichtung zur Messung einer Messgröße eines Fluids ist bekannt. Die Messvorrichtung besitzt ein Gehäuse. Im Gehäuse befindet sich eine Messkomponente zur Messung der Messgröße. Ist die Messung mehrerer Messgrößen erforderlich, so sind die entsprechenden Messvorrichtungen mit der jeweils zugehörigen Peripherie, wie
Kabelanschluss, Schnittstellen, Stecker o. dgl., im Hausgerät vorzusehen. Neben dem erhöhten Bedarf an Bauraum im Hausgerät sind hierfür auch höhere Kosten die Folge, was dem Einsatz in preiskritischen Anwendungen im Hausgerätesektor entgegensteht.
Der Erfindung liegt die Aufgabe zugrunde, die Messvorrichtung im Hinblick auf deren Funktionalität zur Messung mehrerer Messgrößen weiterzuentwickeln.
Diese Aufgabe wird bei einer gattungsgemäßen Messvorrichtung durch die
kennzeichnenden Merkmale des Anspruchs 1 gelöst. Bei der erfindungsgemäßen Messvorrichtung sind eine erste Messkomponente zur Messung des Drucks des Fluids, eine zweite Messkomponente zur Messung der Temperatur des Fluids und eine dritte Messkomponente zur Messung der Trübung des Fluids in dem einen Gehäuse angeordnet, und zwar bevorzugterweise im Gehäuse integriert angeordnet.
Insbesondere sind dabei mehrere Messgrößen des Fluids, bei denen es sich vorzugsweise um Reinigungsparameter für den Betrieb des Hausgerätes handeln kann, gleichzeitig messbar. Geschaffen ist somit ein Multisensor, bei dem ein Druck-, Trübungs- und Temperatursensor in einem Gehäuse, insbesondere zur Detektierung von Reinigungsparametern in einer Wasch- und/oder Spülmaschine, integriert ist. Vorteilhafterweise ist durch diese Integration einer Drucksensor-, einer Temperatursensor- und einer Trübungssensoreinheit in ein
Gesamtgehäuse eine Reduzierung der Schnittstellen, insbesondere bei einer Wasch- und/oder Spülmaschine, erzielt. Dabei sind alle Anforderungen, die an die Werkstoffe, die Messsysteme, den Formfaktor, die Schutzklasse o. dgl. gestellt werden, erfüllt. Außerdem ist der erfindungsgemäße Sensor so gestaltet, dass eine Variantenbildung wie folgt realisierbar ist:
Reiner Drucksensor,
Drucksensor mit integriertem Temperaturfühler (mit einem NTC- oder einem PTC- Widerstand),
Zusätzlich oder auch nur ein Trübungssensor.
Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
In zweckmäßiger Ausgestaltung kann das Gehäuse aus einem Gehäusekörper und einem Gehäusedeckel bestehen. Der Einfachheit halber können die Messkomponenten am und/oder im Gehäusekörper angeordnet sein. Zwecks einfacher Montage kann der Gehäusedeckel am Gehäusekörper verrastet befestigt sein.
In weiterer Ausgestaltung kann die erste Messkomponente eine im und/oder am Gehäuse angeordnete Membran umfassen. Zur Steigerung der Funktionssicherheit kann ein elastisches Element zur Rückstellung der Membran vorgesehen sein. In kompakter
Anordnung kann ein Signalgeber mit der Membran und/oder dem elastischen Element in Wirkverbindung stehen. In einfacher Ausgestaltung kann ein Signalaufnehmer mit dem Signalgeber, insbesondere magnetisch, zur Erzeugung der Messgröße zusammenwirken. Zwecks kompakter Ausführung kann das elastische Element in der Art einer scheibenförmigen Blattfeder ausgestaltet sein. Die Blattfeder kann eine kreisförmige Gestalt besitzen. Zwecks guter Funktionssicherheit kann die Blattfeder ein vom Zentrum zum Randbereich der Blattfeder spiralförmig verlaufendes Federelement aufweisen. Zur einfachen Montage kann der Signalgeber am elastischen Element in dessen Zentrum, insbesondere durch Verkleben, befestigt sein.
In einfacher Art und Weise kann der Signalgeber aus einem Magnet, insbesondere aus einem Permanentmagnet, bestehen. Der Signalaufnehmer kann aus einem das vom
Magneten erzeugte Magnetfeld detektierenden Positionssensor, insbesondere aus einem Hallsensor, bestehen. Vor äußeren Einflüssen geschützt können die Membran und das elastische Element sowie der Signalgeber und der Signalaufnehmer im Inneren des
Gehäuses angeordnet sein. Zweckmäßigerweise kann dann das Gehäuse, und zwar insbesondere der Gehäusedeckel, eine Öffnung zur Zuführung des Fluids zur Membran aufweisen.
In weiterer Ausgestaltung kann die zweite Messkomponente einen im und/oder am Gehäuse angeordneten Temperaturfuhler umfassen. Der Einfachheit halber kann der
Temperaturfuhler im Gehäuse befestigt sein. In kompakter Ausführung kann der
Temperaturfühler in einen Gehäuseansatz, insbesondere in der Art einer höckerförmigen Ausbauchung, am Gehäusedeckel hineinragen. In kostengünstiger Art und Weise kann als Temperaturfuhler ein NTC- Widerstand, ein PTC-Widerstand o. dgl. vorgesehen sein.
Zwecks einfacher Montage kann der Signalaufnehmer der ersten Messkomponente auf einer Leiterplatte befestigt sein. Dabei kann es sich anbieten, dass die Leiterplatte im
Gehäusekörper fixiert ist. In kompakter Anordnung kann der Temperaturfühler der zweiten Messkomponente mit der Leiterplatte in elektrischer Verbindung stehen.
In weiterer Ausgestaltung kann die dritte Messkomponente einen Sender sowie einen Empfänger für optische Strahlung, insbesondere für Infrarot- Strahlung, sowie eine zwischen dem Sender und dem Empfänger befindliche Messstrecke für das Fluid umfassen. In kompakter Anordnung kann der Sender und/oder der Empfanger in einem Ansatz am Gehäusedeckel, insbesondere in der Art einer höckerförmigen Ausbauchung, angeordnet sein. Zweckmäßigerweise kann der Ansatz wenigstens im Bereich des Senders und/oder des Empfängers für die optische Strahlung weitgehend transparent sein.
Zur einfachen Montage kann der Sender und/oder der Empfänger auf einem in den Ansatz hineinragenden Finger einer Leiterplatte befestigt sein. Dabei kann es sich anbieten, dass die Leiterplatte im Gehäusekörper fixiert ist. In einfacher Art und Weise kann als Sender eine Leuchtdiode vorgesehen sein. Desweiteren kann es sich anbieten, dass als Empfänger ein Fototransistor verwendet ist.
Zwecks einfacher elektrischer Verbindung kann sich auf der Leiterplatte ein
Anschlusskontakt für das von der jeweiligen Messkomponente erzeugte Signal befinden. In kompakter sowie betriebssicherer Art und Weise kann die Leiterplatte mittels eines den Anschlusskontakt umgebenden Führungsrahmens im Gehäusekörper fixierbar sein.
Desweiteren kann zur einfachen Montage ein Stecker auf den Anschlusskontakt zur Signalweiterleitung, insbesondere am Führungsrahmen, aufsteckbar sein.
Die Messkomponente kann eine im und/oder am Gehäuse angeordnete Membran umfassen. Da die Membran mit dem Fluid in Kontakt steht, können Verunreinigungen im Fluid sich auf der Membran ablagern, was zur Verfälschung der Messung führt. Desweiteren können diese Verunreinigungen die Membran auch schädigen, was letztendlich zum Ausfall der Messvorrichtung führen kann. Der Erfindung liegt bevorzugterweise weiterhin die Aufgabe zugrunde, die Messvorrichtung im Hinblick auf deren Betriebs- und/oder
Funktionssicherheit weiterzuentwickeln.
Diese Aufgabe wird bei einer gattungsgemäßen Messvorrichtung dadurch gelöst, dass ein die Membran überdeckender Dom am Gehäuse angeordnet ist. Dadurch ist eine Art von Kammer im Gehäuse gebildet, so dass die Membran vor direktem, mechanischem Einwirken von Fremdkörpern geschützt ist. Weiter ist am Gehäuse eine den Dom umgebende Kontur angeordnet, derart dass seitlich kommende Fremdkörper abgefangen und/oder über den innerhalb der Kontur liegenden Dom abgelenkt werden. Am Dom und/oder an der Kontur und/oder in einer Vertiefung zwischen dem Dom sowie der Kontur ist wenigstens eine Öffnung, bevorzugterweise sind am Dom einander gegenüberliegende, schmale Öffnungen, befindlich, derart dass das Fluid in die Kammer und somit zur Membran gelangt. Geschaffen ist somit eine Bauteilausgestaltung für die Messvorrichtung zur Vermeidung von
Verletzungen der Drucksensormembran, die insbesondere aus Feststoffsilikon besteht.
In einer bevorzugten Ausgestaltung mit erweiterter Funktionalität kann eine erste
Messkomponente zur Messung des Drucks des Fluids im Gehäuse angeordnet sein. Weiter kann auch eine zweite Messkomponente zur Messung der Temperatur des Fluids im
Gehäuse angeordnet sein. Schließlich kann eine dritte Messkomponente zur Messung der Trübung des Fluids in dem Gehäuse angeordnet sein.
In zweckmäßiger Ausgestaltung kann das Gehäuse aus einem Gehäusekörper und einem Gehäusedeckel bestehen. Der Einfachheit halber können die Messkomponenten am und/oder im Gehäusekörper angeordnet sein. Zwecks einfacher Montage kann der Gehäusedeckel am Gehäusekörper verrastet befestigt sein. Weiterhin kann es sich anbieten, dass der Dom und/oder die Kontur und/oder die Vertiefung zwischen dem Dom sowie der Kontur am Gehäusedeckel befindlich sind.
Zur Steigerung der Funktionssicherheit kann ein elastisches Element zur Rückstellung der Membran vorgesehen sein. In kompakter Anordnung kann ein Signalgeber mit der Membran und/oder dem elastischen Element in Wirkverbindung stehen. In einfacher Ausgestaltung kann ein Signalaufnehmer mit dem Signalgeber, insbesondere magnetisch, zur Erzeugung der Messgröße zusammenwirken.
Zwecks kompakter Ausführung kann das elastische Element in der Art einer
scheibenförmigen Blattfeder ausgestaltet sein. Die Blattfeder kann eine kreisförmige Gestalt besitzen. Zwecks guter Funktionssicherheit kann die Blattfeder ein vom Zentrum zum Randbereich der Blattfeder spiralförmig verlaufendes Federelement aufweisen. Zur einfachen Montage kann der Signalgeber am elastischen Element in dessen Zentrum, insbesondere durch Verkleben, befestigt sein. In einfacher Art und Weise kann der Signalgeber aus einem Magnet, insbesondere aus einem Permanentmagnet, bestehen. Der Signalaufnehmer kann aus einem das vom
Magneten erzeugte Magnetfeld detektierenden Positionssensor, insbesondere aus einem Hallsensor, bestehen. Vor äußeren Einflüssen geschützt können die Membran und das elastische Element sowie der Signalgeber und der Signalaufnehmer im Inneren des
Gehäuses angeordnet sein.
Zwecks einfacher Montage kann der Signalaufnehmer auf einer Leiterplatte befestigt sein. Dabei kann es sich anbieten, dass die Leiterplatte im Gehäusekörper fixiert ist. Zwecks einfacher elektrischer Verbindung kann sich auf der Leiterplatte ein Anschlusskontakt für das von der Messkomponente erzeugte Signal befinden. In kompakter sowie betriebssicherer Art und Weise kann die Leiterplatte mittels eines den Anschlusskontakt umgebenden Führungsrahmens im Gehäusekörper fixierbar sein. Desweiteren kann zur einfachen Montage ein Stecker auf den Anschlusskontakt zur Signalweiterleitung, insbesondere am Führungsrahmen, aufsteckbar sein.
Es hat sich auch herausgestellt, dass Ungenauigkeiten bei der Messung mittels der
Messkomponente auftreten können. Der Erfindung liegt bevorzugterweise weiterhin die Aufgabe zugrunde, die Messvorrichtung im Hinblick auf deren Messgenauigkeit weiterzuentwickeln.
Diese Aufgabe wird bei einer gattungsgemäßen Messvorrichtung dadurch gelöst, dass ein Bestandteil der Messkomponente in eine separate Bauteilfixierung, die insbesondere aus Kunststoff besteht, eingesetzt ist. Die Bauteilfixierung ist wiederum im Gehäuse befestigt. Zur Befestigung eignet sich dabei insbesondere das Verpressen der Bauteilfixierung im Gehäuse. Die Messkomponente kann einen im und/oder am Gehäuse angeordneten
Temperaturfühler umfassen, wobei der Temperaturfühler als Bestandteil der
Messkomponente in der Bauteilfixierung eingeklemmt sein kann. Erzielt ist bei der
Erfindung vorteilhafterweise die maßgenaue Positionierung der Messkomponente, beispielsweise eines Thermoelements, und zwar insbesondere unter Berücksichtigung der elektrischen Schutzklasse II. In einer bevorzugten Ausgestaltung mit erweiterter Funktionalität kann eine erste
Messkomponente zur Messung des Drucks des Fluids im Gehäuse angeordnet sein. Weiter kann auch eine zweite Messkomponente zur Messung der Temperatur des Fluids im
Gehäuse angeordnet sein. Schließlich kann eine dritte Messkomponente zur Messung der Trübung des Fluids in dem Gehäuse angeordnet sein.
In zweckmäßiger Ausgestaltung kann das Gehäuse aus einem Gehäusekörper und einem Gehäusedeckel bestehen. Der Einfachheit halber können die Messkomponenten am und/oder im Gehäusekörper angeordnet sein. Zwecks einfacher Montage kann der Gehäusedeckel am Gehäusekörper verrastet befestigt sein.
In kompakter Ausgestaltung kann der Temperaturfühler in einen Gehäuseansatz, der insbesondere in der Art einer höckerförmigen Ausbauchung ausgebildet ist, am
Gehäusedeckel hineinragen. In kostengünstiger Art kann als Temperaturfühler ein NTC- Widerstand, ein PTC- Widerstand o. dgl. vorgesehen sein. Schließlich kann in einfacher Art und Weise die Bauteilfixierung direkt im Gehäusedeckel, und zwar insbesondere im
Gehäuseansatz, verpresst sein.
Zwecks einfacher Montage kann der Temperaturfühler mit einer Leiterplatte in elektrischer Verbindung stehen. Dabei kann es sich anbieten, dass die Leiterplatte im Gehäusekörper fixiert ist. Zwecks einfacher elektrischer Verbindung kann sich auf der Leiterplatte ein Anschlusskontakt für das von der Messkomponente erzeugte Signal befinden. In kompakter sowie betriebssicherer Art und Weise kann die Leiterplatte mittels eines den
Anschlusskontakt umgebenden Führungsrahmens im Gehäusekörper fixierbar sein.
Desweiteren kann zur einfachen Montage ein Stecker auf den Anschlusskontakt zur Signal weiterleitung, insbesondere am Führungsrahmen, aufsteckbar sein.
Die Messvorrichtung kann ein Gehäuse besitzen, das eine Gehäusewandung aufweist. Bei der bekannten Messvorrichtung sind aufwendige Maßnahmen zur Abdichtung am Gehäuse vorgesehen, um die Messkomponente vor Beeinträchtigungen zu schützen. Der Erfindung liegt bevorzugterweise weiterhin die Aufgabe zugrunde, die Messvorrichtung im Hinblick auf deren Abdichtung weiterzuentwickeln. Diese Aufgabe wird bei einer gattungsgemäßen Messvorrichtung gemäß einer ersten
Ausbildung dadurch gelöst, dass drei elektrische Isolationsschichten zwischen der
Messkomponente und dem Fluid und/oder den weiteren elektrischen Bauteilen angeordnet sind. Insbesondere umgeben zusätzlich zur elektrisch isolierenden Gehäusewandung zwei weitere elektrische Isolationsschichten die Messkomponente, wobei in bevorzugter Weise die Isolationsschichten form- und/oder stoffschlüssig aneinander gefügt sein können. Damit ist vorteilhafterweise die elektrische Schutzklasse II für die Messvorrichtung realisiert.
Gemäß einer zweiten Ausbildung ist ein elektrisch isolierender Verguss zwischen der Messkomponente und der Gehäusewandung vorgesehen, wobei der Verguss eine Stärke von mindestens 2 mm besitzt. In bevorzugter Weise können der Verguss und die
Gehäusewandung form- und/oder stoffschlüssig aneinander gefügt sein. Geschaffen ist damit vorteilhafterweise ein Verguss für die Messvorrichtung zur Realisierung der elektrischen Schutzklasse II, insbesondere der Verguss von optischen Bauteilen eines Trübungssensors.
In einer bevorzugten Ausgestaltung mit erweiterter Funktionalität kann eine erste
Messkomponente zur Messung des Drucks des Fluids im Gehäuse angeordnet sein. Weiter kann auch eine zweite Messkomponente zur Messung der Temperatur des Fluids im
Gehäuse angeordnet sein. Schließlich kann eine dritte Messkomponente zur Messung der Trübung des Fluids in dem Gehäuse angeordnet sein.
In zweckmäßiger Ausgestaltung kann das Gehäuse aus einem Gehäusekörper und einem Gehäusedeckel bestehen. Der Einfachheit halber können die Messkomponenten am und/oder im Gehäusekörper angeordnet sein. Zwecks einfacher Montage kann der Gehäusedeckel am Gehäusekörper verrastet befestigt sein.
In weiterer Ausgestaltung kann die zweite Messkomponente einen im und/oder am Gehäuse angeordneten Temperaturfühler umfassen. In kompakter Ausführung kann der
Temperaturfühler in einen Gehäuseansatz, insbesondere in der Art einer höckerförmigen Ausbauchung, am Gehäusedeckel hineinragen. In kostengünstiger Art und Weise kann als Temperaturfühler ein NTC-Widerstand, ein PTC-Widerstand o. dgl. vorgesehen sein. In einfacher Art und Weise kann der Temperaturfühler eine Ummantelung als elektrische Basisisolierung, eine elektrische Zusatzisolierung in der Art eines Vergusses sowie die Gehäusewandung als weitere elektrische Isolierung aufweisen. Zwecks guter
Isoliereigenschaft können die Basisisolierung und/oder die Zusatzisolierung aus Epoxidharz bestehen.
In weiterer Ausgestaltung kann die dritte Messkomponente einen Sender sowie einen Empfänger für optische Strahlung, insbesondere für Infrarot-Strahlung, sowie eine zwischen dem Sender und dem Empfänger befindliche Messstrecke für das Fluid umfassen. In kompakter Anordnung kann der Sender und/oder der Empfänger in einem Ansatz am
Gehäusedeckel, insbesondere in der Art einer höckerförmigen Ausbauchung, angeordnet sein. Zweckmäßigerweise kann der Ansatz wenigstens im Bereich des Senders und/oder des Empfängers für die optische Strahlung weitgehend transparent sein.
Zur einfachen Montage kann der Sender und/oder der Empfänger auf einem in den Ansatz hineinragenden Finger einer Leiterplatte befestigt sein. Dabei kann es sich anbieten, dass die Leiterplatte im Gehäusekörper fixiert ist. In einfacher Art und Weise kann als Sender eine Leuchtdiode vorgesehen sein. Desweiteren kann es sich anbieten, dass als Empfänger ein Fototransistor verwendet ist. Der Einfachheit halber kann das Innere des Gehäuses im Bereich des Senders und/oder des Empfängers, und zwar insbesondere der Ansatz, mit einem für optische Strahlung weitgehend transparenten Verguss als elektrische Isolation versehen sein. Zwecks guter Isoliereigenschaft kann der Verguss aus Silikonharz bestehen.
Zwecks einfacher Montage kann die Messkomponente mit einer Leiterplatte in elektrischer Verbindung stehen. Zwecks einfacher elektrischer Verbindung kann sich auf der Leiterplatte ein Anschlusskontakt für das von der jeweiligen Messkomponente erzeugte Signal befinden. In kompakter sowie betriebssicherer Art und Weise kann die Leiterplatte mittels eines den Anschlusskontakt umgebenden Führungsrahmens im Gehäusekörper fixierbar sein.
Desweiteren kann zur einfachen Montage ein Stecker auf den Anschlusskontakt zur
Signalweiterleitung, insbesondere am Führungsrahmen, aufsteckbar sein. Der Einfachheit halber kann es sich anbieten, dass die Messkomponente bis zur Leiterplatte mit einem Verguss als elektrische Isolation versehen ist.
Beispielsweise kann eine solche Messvorrichtung zur Messung der Trübung des im
Arbeitsraum des Haushaltsgeräts befindlichen, als Waschflüssigkeit verwendeten Fluids dienen. Die Messvorrichtung wird derart im Haushaltsgerät eingebaut, dass das Gehäuse in den Arbeitsraum hineinragt und somit eine im Fluid befindliche und/oder dem Fluid ausgesetzte Oberfläche besitzt. Es besteht die Gefahr, dass im Fluid befindliche
Verschmutzungen sich auf dem Gehäuse bzw. auf dessen Oberfläche ablagern und dadurch die Eigenschaften der Messvorrichtung verändern. Der Erfindung liegt bevorzugterweise weiterhin die Aufgabe zugrunde, die Messvorrichtung derart weiterzuentwickeln, dass deren Beeinträchtigung durch Verschmutzungen verringert ist.
Diese Aufgabe wird bei einer gattungsgemäßen Messvorrichtung dadurch gelöst, dass wenigstens ein Teil der Oberfläche des Gehäuses, und zwar insbesondere zu dessen
Benetzung durch das Fluid, hydrophil ausgestaltet ist. Realisiert ist dadurch
vorteilhafterweise ein konstantes Benetzungsverhalten für das Fluid auf das in den
Arbeitsraum hineinragende Gehäuse der Messvorrichtung. Beispielsweise ist das
Benetzungsverhalten für Wasser auf der medienseitigen Oberfläche eines Trübungssensors konstant gehalten. Dadurch wird wiederum die Gefahr der Ablagerung von
Verschmutzungen auf dem Gehäuse verringert.
In einfacher Art und Weise kann die Hydrophilierung der Oberfläche des Gehäuses durch eine Plasmaaktivierung der Oberfläche erzeugt werden. Dabei kann es sich anbieten, dass die Plasmaaktivierung unter Sauerstoffatmosphäre und/oder unter Niederdruck
vorgenommen wird. Ebenfalls in einfacher Weise kann die Hydrophilierung auch durch eine Fluorierung des Werkstoffes für das Gehäuse, insbesondere des Werkstoffes für wenigstens einen Teil der Oberfläche und/oder für die gesamte Oberfläche des Gehäuses, erzeugt werden.
In zweckmäßiger Ausgestaltung kann das Gehäuse aus einem Gehäusekörper und einem Gehäusedeckel bestehen. Der Einfachheit halber kann die Messkomponente am und/oder im Gehäusekörper angeordnet sein. Zwecks einfacher Montage kann der Gehäusedeckel am Gehäusekörper verrastet befestigt sein.
In einer weiteren Ausgestaltung kann es sich bei der Messkomponente um eine solche zur Messung der Trübung des Fluids handeln. In einfacher und funktionssicherer Ausgestaltung kann die Messkomponente einen Sender sowie einen Empfänger für optische Strahlung, insbesondere für Infrarot-Strahlung, sowie eine zwischen dem Sender und dem Empfänger befindliche Messstrecke für das Fluid umfassen. In kompakter Anordnung kann der Sender und/oder der Empfänger in einem Ansatz am Gehäusedeckel, insbesondere in der Art einer höckerförmigen Ausbauchung, angeordnet sein. Zweckmäßigerweise kann der Ansatz wenigstens im Bereich des Senders und/oder des Empfängers für die optische Strahlung weitgehend transparent sein.
Zur einfachen Montage können der Sender und/oder der Empfänger auf einem in den Ansatz hineinragenden Finger einer Leiterplatte befestigt sein. Dabei kann es sich anbieten, dass die Leiterplatte im Gehäusekörper fixiert ist. In einfacher Art und Weise kann als Sender eine Leuchtdiode vorgesehen sein. Desweiteren kann es sich anbieten, dass als Empfänger ein Fototransistor verwendet ist.
Zwecks einfacher Montage kann die Messkomponente mit einer Leiterplatte in elektrischer Verbindung stehen. Eine einfache elektrische Verbindung kann dadurch hergestellt sein, dass sich auf der Leiterplatte ein Anschlusskontakt für das von der jeweiligen
Messkomponente erzeugte Signal befindet. In kompakter sowie betriebssicherer Art und Weise kann die Leiterplatte mittels eines den Anschlusskontakt umgebenden
Führungsrahmens im Gehäusekörper fixierbar sein. Desweiteren kann zur einfachen Montage ein Stecker auf den Anschlusskontakt zur Signalweiterleitung, insbesondere am Führungsrahmen, aufsteckbar sein.
Für besonders bevorzugte Ausgestaltungen der erfindungsgemäßen Messvorrichtung ist nachfolgendes festzustellen. Der gesamte Sensor ist so ausgelegt, dass jeweils die Schutzklasse II erfüllt wird. Dies bedeutet, dass beim Druck- und/oder Temperatursensor drei Isolationsschichten vorhanden sind, die die geforderten Normforderungen erfüllen. Gleichzeitig ist die
Trübungssensorleiterplatte entweder so ausgelegt, dass bei eindringendem Wasser ein Kurzschluss unverzüglich ausgelöst wird und somit eine galvanische Trennung im
Kundengerät ausgelöst wird. Die zweite Möglichkeit der Realisierung für die Schutzklasse II im Trübungssensorbereich wird durch eine weitere Vergussmasse realisiert, die zum einen optisch über die Lebensdauer transparent bleibt und so die Sensorkennlinie nicht beeinflusst und außerdem als 2 mm starke Basisisolierung dient. In den Bereichen, wo dies nicht möglich ist, kann auf die Leiterplatte ein Schutzlack aufgetragen werden, die dann als dritte Isolationsschicht zählt und somit erneut die Schutzklasse II erfüllt. Bereiche, die bei einer mechanischen Verletzung der Drucksensormembran Wasser aufnehmen können, werden durch bestimmte Geometrien am Gehäuse gezielt entwässert. Dies dient dazu, dass kein Wasser auf stromführende Leitungen treffen kann und in den Maschinenboden abläuft, und zwar ähnlich wie bei Kondenswasserschutzgeometrien.
Um neben der Trübung und der Temperatur des Mediums auch den Füllstand in einer Wasch- oder Spülmaschine durch einen integrierten Sensor erfassen zu können, kann der Drucksensor nicht wie bisher über eine Luftfalle indirekt den ausgeübten Druck des Wassers ermitteln, sondern muss ebenfalls direkt vom Medium ausgelenkt werden. Dies bedeutet jedoch, dass unerwünschte Schmutzpartikel und/oder Kleinteile die Sensormembran, die zur Übertragung der Auslenkung des Messsystems dient, erreichen und schädigen oder sich dort dauerhaft ablagern können. Diese Fremdkörper können beispielsweise Textilfasern, Sedimente, Büroklammern, Nadeln oder auch ein BH-Bügel sein.
Aus dieser Problemstellung ergeben sich verschiedene Faktoren, die bei einer Ausgestaltung der sich im Medium befindenden Kontur des Sensors berücksichtigt werden müssen.
- Das Medium fließt durch die Trommelbewegung des Hausgeräts in einem definierten Vektor, der sich je nach Drehrichtung gegen den Uhrzeigersinn (UZS) oder mit dem Uhrzeigersinn (UZS) von links kommend oder von rechts kommend über die im Medium befindenden Sensorkonturen hinwegbewegt. Dadurch ergeben sich ebenso nachvollziehbare Wege, auf denen sich Fremdkörper je nach Strömungsintensität bewegen. Außerdem stellt sich ein gewisser Selbstreinigungseffekt durch diese Bewegung ein bzw. es werden Schmutzpartikel wieder abgelöst.
- Durch die Sedimentablagerungen über die Lebensdauer werden kleine Öffnungen zugesetzt.
- Spitze, dünne Gegenstände können sich durch Öffnungen am Sensor der Membran annähern.
- Durch die Ausgestaltung darf keine Luft eingeschlossen werden, da diese als
weiteres Dämpfungssystem wirken kann (Kuppendom).
Zum Abfangen von seitlich kommenden Fremdkörpern ist eine umlaufende Kontur auskonzipiert, die diese Fremdkörper über einen inneren Dom ablenkt. Dieser innere Dom schützt die Membran innerhalb des Sensors vor direktem, mechanischem Einwirken von Fremdkörpern. Sie besitzt zudem gegenüberliegende, schmale Öffnungen, die es dem druckgebenden Medium erlauben, das Drucksystem zu erreichen. Da diese Schlitze es spitzen Teilen (Nadeln, Büroklammern etc.) ermöglichen in das Innere des Sensors einzudringen, muss die umlaufende Kontur so gewählt werden, dass kein möglicher Aufstellwinkel es einem Fremdkörper erlaubt, weiter vorzudringen. Die Öffnung darf zudem nicht zu schmal ausgelegt werden, da sonst Textilfasern und Waschmittel- bzw.
Schmutzsedimente diese zusetzen könnten.
Durch die Konturen wird ein Teil des Mediums eingeleitet und beruhigt, so dass es bei Kontakt mit der Membran so wenig Strömungen wie möglich erzeugt, die den Messfehler erhöhen könnten.
Um im inneren Dom keine Luftblase beim Befüllen einzuschließen, sind ringförmig an dessen Spitze Entlüftungsschlitze vorgesehen, durch die ebenfalls keine Fremdkörper eindringen können. Zur genauen Regelung eines Waschprozesses, beispielsweise in einer Waschmaschine oder einer Spülmaschine, wird unter anderem die Temperatur des Reinigungswassers gemessen. Um den Energieverbrauch zu verringern und einen optimalen Waschprozess einstellen zu können, muss die Ansprechzeit eines Temperaturfühlers unter 20 sec ausfallen. Außerdem muss die Schutzklasse II nach der Norm DIN EN 60335 erfüllt werden. Dies bedeutet, dass drei unabhängige Isolationsschichten mit einer bestimmten Mindestdurchschlagspannung zwischen Wasser und stromführenden Bauteilen bzw. Leitungen vorhanden sein müssen.
Die erfmdungsgemäße Lösung beschreibt den Kompromiss aus Mindestschichtdicken der einzelnen Isolationsschichten, eine möglichst hohe Wärmeleitfähigkeit der Einzelwerkstoffe trotz neutraler Kosten und Realisierung der geringst möglichen Fertigungstoleranz. Hierfür wird der Temperaturfühler in eine separate Bauteilfixierung aus Kunststoff eingeklemmt und diese anschließend direkt in der Deckelkontur verpresst, wodurch die Toleranzkette deutlich reduziert wird. Somit kann die von den Kunden geforderte kurze Ansprechzeit ohne hohe Standardabweichung realisiert werden. Die verwendeten Kunststoffe und die
Vergussmasse sind so ausgelegt, dass alle Normvorgaben erreicht werden.
Derzeit werden in Wasch- und/oder Spülmaschinen Trübungssensoren mit Funktionserdung verwendet. Dies bedeutet einen höheren Aufwand bei dem Kabelbaum und dem Netzteil. Da außer dem Gehäuse bei solch einem Sensor keinerlei Schutz zwischen den elektronischen Bauteilen und dem zu messenden Medium besteht, ist dies für den Personenschutz notwendig.
Die Schutzklasse II wird aber auch dann erreicht, wenn mindestens eine Wandungsstärke von 2 mm und eine ausreichende Durchschlagsfestigkeit gegeben ist und/oder drei
Isolationsschichten mit geringer Wandstärke und ausreichender Durchschlagsfestigkeit zwischen dem Medium und den elektrischen Bauteilen vorhanden sind. Solche Schichten müssen sich aber auch in der optischen Messstrecke des Sensors befinden und haben deshalb weitere Anforderungen, die ebenfalls erfüllt werden müssen.
Die chemische Industrie bietet immer bessere Varianten von Vergussmassen, die speziell für den Einsatz bei optischen Bauteilen ausgelegt sind. Dabei sind die Wärmeleitfähigkeit, die Vergussqualität, die Transparenz, die Verarbeitbarkeit, die elektrischen Anforderungen und die thermische Anforderungen entscheidend. Durch die Auswahl von mehreren
Silikonvergusssystemen kann dies ohne große Änderungen in der Sensorkennlinie und dem Sensoraufbau realisiert werden. Der Verguss besitzt im verbauten Zustand eine Stärke von 2 mm, was zur Erfüllung der Schutzklasse II ausreichend ist. Bei Trübungssensorvarianten, bei denen sich der Bauraum eingeschränkter darstellt, muss auf eine Mehrlayerlösung zurückgegriffen werden. Dabei müssen alle leitenden Bauteile des Sensors von mindestens drei Schichten umschlossen sein, nämlich von einer Basisisolierung und zwei
Schutzisolierungen. Hierbei muss keine Schicht eine Mindeststärke besitzen, sondern jede lediglich die benötigte Durchschlagsfestigkeit aufweisen.
Je nach Kombination zwischen Gehäusematerial und Vergussmasse ist ein stoffschlüssiger und/oder formschlüssiger Phasenübergang vorhanden, der nach Auflösung und Sender- /Empfänger-Kombination eine große Rolle spielen kann. Falls eine formschlüssige
Verbindung nicht den Anforderungen entspricht, kann durch eine bessere Abstimmung der Materialien oder durch eine zusätzliche Erhöhung der Oberflächenenergie bzw. -polarität eine stoffschlüssige Verbindung hergestellt werden. Diese Maßnahmen würden auch eine Phasenübergangsänderung durch unterschiedliche Ausdehnungskoeffizienten verringern, wobei in solch einem Fall durch die gezielte Verwendung von elastischen Silikonverguss deutlich bessere Ergebnisse erzielt werden können.
Zur Reduzierung der Spülgänge im Waschprozess von Wasch- und/oder Spülmaschinen werden seit mehreren Jahren Trübungssensoren eingesetzt, die die Schmutzpartikeldichte im zu messenden Medium bestimmen und dadurch den Wassereinsatz sowie die Anzahl der Spülgänge variieren. Seit einigen Jahren wird auch die Dosiermenge von Flüssigwaschmittel damit gesteuert.
Da diese Messung im Direktkontakt mit der Lauge und/oder mit Fremdkörpern steht, verschlechtert sich durch Anhaftungen von Flusen, Kalk und/oder Waschmittelrückständen die Sensorkennlinie während der Betriebsdauer signifikant. Deshalb muss im Prozess vor dem letzten Spülgang der neue Trübungswert von klarem Wasser in der Steuerung gespeichert werden. Um hierfür eine Abhilfe zu schaffen, schlägt die Erfindung vor, dass eine dauerhafte Hydrophilierung der Oberfläche des Sensors vorgenommen wird. Mit Hilfe einer solchen Hydrophilierung wird eine möglichst lange sowie eine gleichmäßige Benetzung der
Oberfläche des Sensors erreicht.
Für die Hydrophilierung können mehrere Verfahren zum Einsatz kommen, die entweder in der Fertigung direkt angewendet werden können oder als Schüttgut bei Lohnbeschichtern applizierbar sind. Somit sind die Kosten deutlich geringer und eine Umstellung in der Serie ist für den Sensor realisierbar. Zudem weist das eingesetzte Gehäusematerial die
Besonderheit auf, dass nach der Oberflächenaktivierung dieser Effekt bei Lagerung lange bestehen bleibt und sich bei Einsatz des Sensors im Medium eine dauerhafte - teils sogar eine gestiegene - Hydrophilie einstellt.
Zur Auswahl steht zum einen eine Plasmaaktivierung unter Sauerstoffatmosphäre, die direkt in der Fertigungslinie durchführbar ist. Zum anderen kann eine Aktivierung im Niederdruck vorgenommen werden, die den gleichen Effekt erzielt wie unter Atmosphäre. Jedoch sind das Aktivierungsniveau und die Aktivierungshaltbarkeit hierbei deutlich erhöht. Die Aktivierung kann außerdem im Batchverfahren durchgeführt werden.
Als weitere Möglichkeit für die Hydrophilierung bietet sich die Fluorierung des Werkstoffes für das Gehäuse an. Dabei kann eine große Anzahl Gehäuse gleichzeitig behandelt werden, da sehr große Prozesskammern bei Lohnbeschichtern vorhanden sind. Auch die
Prozessdauer ist sehr gering.
Alle diese Verfahren bieten gute Ergebnisse, wobei jedoch für jeden Gehäusewerkstoff das optimale bzw. das noch ausreichende Verfahren ausgewählt werden kann.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass eine Reduzierung der Schnittstellen im Kundengerät erreicht ist. Weiter ist eine direkte Druckmessung am Spülwasser im Hausgerät ohne die Verwendung einer Luftfalle möglich. Desweiteren wird bei der Trübungsmessung kein galvanisch trennendes Netzteil mehr benötigt. Schließlich bietet die erfindungsgemäße Messvorrichtung eine erweiterte Funktionalität und ist sehr kompakt sowie kostengünstig.
Weitere mit der Erfindung erzielte Vorteile bestehen insbesondere darin, das ein funktions- sowie betriebssicherer Drucksensor mit direktem Medienkontakt in Wasch- und/oder Spülmaschinen realisiert ist. Weiterhin sind kundenseitige Einsparungen durch die
Reduzierung der Schnittstellen mechanisch und/oder elektrisch ermöglicht.
Noch weitere mit der Erfindung erzielte Vorteile bestehen insbesondere darin, dass eine hohe Integrationsfähigkeit in bestehende Sensoren zur Einsparungen der Schnittstellen beim Kunden erreicht ist. Desweiteren ist eine Realisierung des Sensors aus Kunststoff in kostengünstiger Art ermöglicht. Schließlich ist auch eine Reduzierung des Kabelbaums in stationären Haushaltsreinigungsgroßgeräten erreicht.
Nochmals weitere mit der Erfindung erzielte Vorteile bestehen insbesondere darin, dass eine Reduzierung des Kabelbaums in der Applikation, in der die Messvorrichtung eingesetzt wird, erfolgt. Desweiteren ist auch eine Reduzierung der Netzteilkosten gegeben. Weiterhin ist Sicherheit vor einer Verfälschung der Trübungsmessung gegeben. Schließlich wird auch noch eine Verbesserung der Resistenz gegen Schock und/oder Vibration für die
Messvorrichtung erzielt. Insgesamt ist somit eine Erhöhung der Sicherheit für den Benutzer der Messvorrichtung sowie eine Verringerung der Kosten als auch eine Steigerung der Lebensdauer und/oder der Funktionssicherheit für die Messvorrichtung gegeben.
Abermals weitere mit der Erfindung erzielte Vorteile bestehen insbesondere darin, dass eine deutliche Verbesserung im Langzeitverhalten der Sensorkennlinie erreichbar ist. Außerdem ist die Reduzierung der stochastischen Schmutz- und/oder Ablagerungsverteilung auf ein Minimum gegeben. Schließlich wird auch der Waschprozess durch eine bessere
Nachkalibrierung oder auch den Wegfall einer Kalibrierung über die Lebensdauer des Sensors verbessert. Ein Ausfiihrungsbeispiel der Erfindung mit verschiedenen Weiterbildungen und
Ausgestaltungen ist in den Zeichnungen dargestellt und wird im folgenden näher beschrieben. Es zeigen
Fig. 1 eine Messvorrichtung in perspektivischer Ansicht,
Fig. 2 die Messvorrichtung aus Fig. 1 in Explosionsdarstellung,
Fig. 3 die Ansicht der Messvorrichtung von der Unterseite gemäß Richtung III in Fig. 1,
Fig. 4 die Ansicht der Messvorrichtung von der Oberseite gemäß Richtung IV in Fig. 1,
Fig. 5 einen Schnitt entlang der Line 5-5 in Fig. 3,
Fig. 6 einen Schnitt entlang der Linie 6-6 in Fig. 3,
Fig. 7 einen Schnitt entlang der Linie 7-7 in Fig. 4,
Fig. 8 einen Schnitt entlang der Linie 8-8 in Fig. 4 und
Fig. 9 ein Einzelteil der Messvorrichtung.
In Fig. 1 ist eine Messvorrichtung 1 zur Messung einer Messgröße eines Fluids zu sehen. Die Messvorrichtung 1 kann in Haushaltsgeräten, wie in Waschmaschinen, in
Geschirrspülmaschinen o. dgl, zum Einsatz kommen, und zwar als Sensor zur Messung von Messgrößen des als Waschflüssigkeit verwendeten Fluids im Arbeitsraum des
Haushaltsgeräts. So dient vorliegend der Sensor 1 zur Messung des Drucks und/oder der Trübung und/oder der Temperatur des als Waschflüssigkeit dienenden Wassers im
Arbeitsraum.
Der Sensor 1 weist ein Gehäuse 2 auf. Das Gehäuse 2 ist mittels eines O-Rings 3 als Dichtung derart im Hausgerät angebracht, dass ein Teil des Gehäuses 2 in den Arbeitsraum hineinragt und dieser Teil der Oberfläche 37 des Gehäuses 2 dort dem Fluid ausgesetzt ist. Der andere Teil des Gehäuses 2 befindet sich außerhalb des Arbeitsraums und wird mit den elektrischen Zuleitungen für den Sensor 1 verbunden. Das Gehäuse 2 besteht gemäß Fig. 2 aus einem Gehäusekörper 4 sowie einem Gehäusedeckel 5. Der Gehäusedeckel 5 ist mittels Rasthaken 9 am Gehäusekörper 4 verrastet befestigt.
Im Gehäuse 2 befindet sich die Messkomponente zur Messung der jeweiligen Messgröße. Wie der Fig. 2 entnommen werden kann, sind im Gehäuse 2 eine erste Messkomponente 6 zur Messung des Drucks des Fluids, eine zweite Messkomponente 7 zur Messung der Temperatur des Fluids sowie eine dritte Messkomponente 8 zur Messung der Trübung des Fluids integriert angeordnet. Somit sind mehrere Messgrößen des Fluids, wobei es sich vorzugsweise bei diesen Messgrößen um Reinigungsparameter für den Betrieb des
Haushaltsgeräts handelt, gleichzeitig messbar. Die Messkomponenten 6, 7, 8 sind am und/oder im Gehäusekörper 4 angeordnet.
Die erste Messkomponente 6 zur Druckmessung umfasst eine im und/oder am Gehäuse 2 angeordnete Membran 10, wie man in Fig. 2 sieht. Es ist weiterhin ein elastisches Element 1 1 zur Rückstellung der Membran 10 vorgesehen. Ein Signalgeber 12 steht mit der
Membran 10 und/oder mit dem elastischen Element 11 in Wirkverbindung. Schließlich wirkt ein Signalaufnehmer 13 mit dem Signalgeber 12 zur Erzeugung der Messgröße zusammen.
Das elastische Element 1 1 ist in der Art einer scheibenförmigen Blattfeder ausgestaltet, die als Einzelteil näher in Fig. 9 gezeigt ist. Die Blattfeder 11 besitzt eine kreisförmige Gestalt. Desweiteren weist die Blattfeder 1 1 ein vom Zentrum 36 zum Randbereich der Blattfeder 1 1 spiralförmig verlaufendes Federelement 35 auf. Der Signalgeber 12 ist gemäß Fig. 5 am elastischen Element 1 1 in dessen Zentrum 36 durch Verkleben befestigt.
Der Signalgeber 12 besteht aus einem Magnet, und zwar vorliegend aus einem
Permanentmagnet. Der Signalaufnehmer 13 wirkt mit dem Signalgeber 12 magnetisch zusammen. Hierzu besteht der Signalaufnehmer 13 aus einem das vom Magneten 12 erzeugte Magnetfeld detektierenden Positionssensor, und zwar vorliegend aus einem Hallsensor. Die Membran 10 und das elastische Element 11 sowie der Signalgeber 12 und der Signalaufnehmer 13 sind im Inneren des Gehäuses 2 angeordnet, wie man anhand der Fig. 5 erkennt.
Zum Schutz der Membran 10 vor direktem, mechanischem Einwirken von Fremdkörpern ist ein die Membran 10 überdeckender Dom 27 am Gehäuse 2 angeordnet. Dadurch ist eine Kammer 28 im Gehäuse 2 gebildet, wie der Fig. 5 zu entnehmen ist. Damit das Fluid zur Membran 10 gelangt, weist das Gehäuse 2 bzw. der Gehäusedeckel 5 in Fig. 1 sichtbare Öffnungen 14 zur Zuführung des Fluids in die Kammer 28 auf. Genauer gesagt sind am Dom 27 gegenüberliegende, schmale Öffnungen 14 befindlich, derart dass das Fluid zur Membran 10 in der Kammer 28 gelangt. Weiterhin ist gemäß Fig. 1 oder Fig. 4 am Gehäuse 2 eine den Dom 27 umgebende Kontur 29 angeordnet, derart dass im Fluid befindliche, seitlich kommende Fremdkörper abgefangen und/oder über den innerhalb der Kontur 29 liegenden Dom 27 ablenkt werden. Die Öffnungen 14 können ebenfalls an der Kontur 29 und/oder in einer Vertiefung zwischen dem Dom 27 sowie der Kontur 29 angeordnet sein. Der Dom 27 sowie die Kontur 29 und die Vertiefung zwischen dem Dom 27 und der Kontur 29 sind am Gehäusedeckel 5 befindlich.
Wie man in Fig. 2 sieht, umfasst die zweite Messkomponente 7 einen im und/oder am Gehäuse 2 angeordneten Temperaturfühler 15. Der Temperaturfühler 15 ist im Gehäuse 2 befestigt. Der Temperaturfühler 15 ragt in einen Gehäuseansatz 16, der in der Art einer höckerformigen Ausbauchung ausgestaltet ist, am Gehäusedeckel 5 hinein. Vorliegend ist als Temperaturfühler 15 ein NTC- Widerstand, ein PTC-Widerstand o. dgl. vorgesehen. Zur exakten Montage ist der Temperaturfühler 15 in eine separate Bauteilfixierung 30, die aus Kunststoff besteht, eingeklemmt, wie der Fig. 5 zu entnehmen ist. Die Bauteilfixierung 30 ist durch Verpressen im Gehäuse 2 befestigt. Und zwar ist die Bauteilfixierung 30 direkt im Gehäuseansatz 16 am Gehäusedeckel 5 verpresst, wie anhand der Fig. 8 zu sehen ist.
Der Signalaufnehmer 13 der ersten Messkomponente 6 ist auf einer abgewinkelt ausgestalteten Leiterplatte 17 befestigt. Die Leiterplatte 17 ist im Gehäusekörper 4 fixiert. Der Temperaturfühler 15 der zweiten Messkomponente 7 steht ebenfalls mit der Leiterplatte 17 in elektrischer Verbindung. Wie man ebenfalls in Fig. 2 sieht, umfasst die dritte Messkomponente 8 einen Sender 18 sowie einen Empfänger 19 für optische Strahlung, und zwar vorliegend für Infrarot- Strahlung, sowie eine zwischen dem Sender 18 und dem Empfänger 19 befindliche, in Fig. 6 sichtbare Messstrecke 20 für das Fluid. Der Sender 18 und/oder der Empfänger 19 sind in einem Ansatz 21, 22, der in der Art einer höckerförmigen Ausbauchung ausgestaltet ist, am Gehäusedeckel 5 angeordnet. Der Ansatz 21, 22 ist wenigstens im Bereich des Senders 18 und/oder des Empfängers 19 für die optische Strahlung weitgehend transparent. Der Sender 18 und/oder der Empfanger 19 sind auf einem in den Ansatz 21, 22 hineinragenden Finger 24 einer weiteren Leiterplatte 23 befestigt. Die Leiterplatte 23 ist im Gehäusekörper 4 fixiert. Als Sender 18 ist eine Leuchtdiode vorgesehen. Als Empfänger 19 ist ein
Fototransistor verwendet.
Auf der Leiterplatte 17, 23 befindet sich ein Anschlusskontakt für das von der jeweiligen Messkomponente 6, 7, 8 erzeugte Signal. Die Leiterplatte 17 ist mittels eines den
Anschlusskontakt umgebenden Führungsrahmens 25 und die Leiterplatte 23 ist mittels eines den Anschlusskontakt umgebenden Führungsrahmens 26 im Gehäusekörper 4 fixierbar. Wie man anhand der Fig. 3 erkennt kann dann ein Stecker auf den Anschlusskontakt zur Signalweiterleitung am Führungsrahmen 25, 26 aufgesteckt werden.
Zwecks elektrischer Isolation der Messkomponenten 6, 7, 8 kann eine zusätzliche elektrische Isolationsschicht 32 zwischen der Gehäusewandung 31 (siehe Fig. 7) des Gehäuses 2 und der jeweiligen Messkomponente 6, 7, 8 befindlich sein. Als
Isolationsschicht 32 kann ein Verguss zwischen der Messkomponente 6, 7, 8 und der Gehäusewandung 31 vorgesehen sein, wobei der Verguss 32 eine Stärke von mindestens 2 mm besitzt. Dabei bietet es sich an, dass der Verguss 32 und die Gehäusewandung 31 form- und/oder stoffschlüssig aneinander gefügt sind.
Es können auch drei elektrische Isolationsschichten zwischen der Messkomponente 6, 7, 8 und dem Fluid und/oder den weiteren elektrischen Bauteilen angeordnet sein, beispielsweise indem zusätzlich zur elektrisch isolierenden Gehäusewandung 31 zwei weitere
Isolationsschichten die Messkomponente 6, 7, 8 form- und/oder stoffschlüssig aneinander gefügt umgeben. Dies ist anhand des Temperaturfühlers 15 in Fig. 7 näher zu sehen. Der Temperaturfühler 15 besitzt eine Ummantelung 33 als Isolationsschicht bzw. als elektrische Basisisolierung. Weiter weist der Temperaturfühler 15 eine elektrische Zusatzisolierung in der Art eines Vergusses 32 sowie die Gehäusewandung 31 als weitere elektrische Isolierung auf. Die Basisisolierung 33 und/oder die Zusatzisolierung 32 können aus Epoxidharz bestehen.
Bei der dritten Messkomponente 8 zur Messung der Trübung des Fluids ist ebenfalls ein Verguss 34 als Isolationsschicht vorgesehen, wie in Fig. 6 zu sehen ist. Hierzu ist das Innere des Gehäuses 2 im Bereich des Senders 18 und/oder des Empfängers 19, und zwar am Ansatz 21, 22, mit einem für optische Strahlung weitgehend transparenten Verguss 34 als elektrische Isolation versehen. Der Verguss 34 besteht aus Silikonharz. Es bietet sich dabei an, den Verguss 34 für die Messkomponente 6, 7, 8 bis zur Leiterplatte 17 als elektrische Isolation vorzusehen, wie man in Fig. 5 sieht.
Ist der Sensor 1 im Hausgerät montiert, so ist ein Teil der in Fig. 1 bezeichneten Oberfläche 37 des Gehäuses 2 dem Fluid, das im Arbeitsraum des Hausgeräts befindlich ist, ausgesetzt. Zumindest dieser Teil der Oberfläche 37, der Einfachheit halber jedoch bevorzugt die gesamte Oberfläche 37 des Gehäuses 2, ist hydrophil ausgestaltet. Dadurch ist eine verbesserte Benetzung der Oberfläche 37 durch das Fluid gegeben, so dass die Ablagerung von Fremdkörpern auf der Oberfläche 37 des Gehäuses 2 verringert ist. Die Hydrophilierung der Oberfläche 37 des Gehäuses 2 kann durch eine Plasmaaktivierung der Oberfläche 37, und zwar insbesondere unter Sauerstoffatmosphäre und/oder unter Niederdruck, erfolgen. Zur Erzeugung der Hydrophilierung kann auch eine Fluorierung des Werkstoffes an der Oberfläche 37 des Gehäuses 2 vorgenommen werden.
Die Erfindung ist nicht auf das beschriebene und dargestellte Ausführungsbeispiel beschränkt. Sie umfasst vielmehr auch alle fachmännischen Weiterbildungen im Rahmen der durch die Patentansprüche definierten Erfindung. So kann ein solcher Sensor 1, insbesondere in der Art eines Multisensors, nicht nur für Hausgeräte sondern auch in sonstigen Anwendungen, beispielsweise in der Heizungstechnik, in der Labortechnik und/oder in der chemischen Verfahrenstechnik eingesetzt werden. Bezugszeichen-Liste: : Messvorrichtung / Sensor
: Gehäuse
: O-Ring
: Gehäusekörper (von Gehäuse)
: Gehäusedeckel (von Gehäuse)
: erste Messkomponente (zur Druckmessung)
: zweite Messkomponente (zur Temperraturmessung)
: dritte Messkomponente (zur Trübungsmessung)
: Rasthaken (an Gehäusedeckel)
0: Membran
1 : elastisches Element / Blattfeder
2: Signalgeber / Magnet
3 : Signalaufnehmer
4: Öffnung
5: Temperaturfühler
6: Gehäuseansatz (am Gehäusedeckel)
7: Leiterplatte (für erste und zweite Messkomponente)
8: Sender (für optische Strahlung)
9: Empfänger (für optische Strahlung)
0: Messstrecke
1,22: Ansatz (am Gehäusedeckel)
3 : Leiterplatte (für dritte Messkomponente)
4: Finger (an Leiterplatte)
5,26: Führungsrahmen
7: Dom (am Gehäuse)
8: Kammer
9: Kontur (am Dom)
0: Bauteilfixierung (für Temperaturfühler)
1 : Gehäusewandung
2: Isolationsschicht / Verguss / Zusatzisolierung (für Temperaturfühler) : Ummantelung / Isolationsschicht / Basisisolierung (von Temperaturfühler): Verguss (für die dritte Messkomponente)
: Federelement (von Blattfeder)
: Zentrum (der Blattfeder)
: Oberfläche (von Gehäuse)

Claims

P a t e n t a n s p r ü c h e :
1. Messvorrichtung zur Messung einer Messgröße eines Fluids, insbesondere Sensor für Haushaltsgeräte, wie Waschmaschinen, Geschirrspülmaschinen o. dgl., mit einem Gehäuse (2), und mit einer im Gehäuse (2) befindlichen Messkomponente zur Messung der
Messgröße, dadurch gekennzeichnet, dass eine erste Messkomponente (6) zur Messung des Drucks des Fluids, dass eine zweite Messkomponente (7) zur Messung der Temperatur des Fluids, und dass eine dritte Messkomponente (8) zur Messung der Trübung des Fluids in dem einen Gehäuse (2), bevorzugterweise integriert, angeordnet sind, insbesondere derart dass mehrere Messgrößen des Fluids, bei denen es sich vorzugsweise um
Reinigungsparameter für den Betrieb des Haushaltsgeräts handelt, gleichzeitig messbar sind.
2. Messvorrichtung zur Messung einer Messgröße eines Fluids mit einem Gehäuse (2), und mit einer im Gehäuse (2) befindlichen Messkomponente zur Messung der Messgröße, insbesondere nach Anspruch 1 , dadurch gekennzeichnet, dass die Messkomponente (6) eine im und/oder am Gehäuse (2) angeordnete Membran (10) umfasst, dass ein die Membran (10) überdeckender Dom (27) am Gehäuse (2) angeordnet ist, derart dass die Membran (10) vor direktem, mechanischem Einwirken von Fremdkörpern geschützt ist, dass am Gehäuse (2) eine den Dom (27) umgebende Kontur (29) angeordnet ist, derart dass seitlich
kommende Fremdkörper abgefangen und/oder über den innerhalb der Kontur (29) liegenden Dom (27) abgelenkt werden, und dass am Dom (27) und/oder an der Kontur (29) und/oder in einer Vertiefung zwischen dem Dom (27) sowie der Kontur (29) wenigstens eine Öffnung (14) befindlich ist, derart dass das Fluid zur Membran (10) gelangt.
3. Messvorrichtung zur Messung einer Messgröße eines Fluids mit einem Gehäuse (2), und mit einer im Gehäuse (2) befindlichen Messkomponente zur Messung der Messgröße, insbesondere nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Bestandteil der Messkomponente (7) in eine separate Bauteilfixierung (30), insbesondere aus Kunststoff bestehend, eingesetzt ist, und dass die Bauteilfixierung (30), insbesondere durch Verpressen, im Gehäuse (2) befestigt ist.
4. Messvorrichtung zur Messung einer Messgröße eines Fluids mit einem Gehäuse (2), und mit einer im Gehäuse (2) befindlichen Messkomponente zur Messung der Messgröße, insbesondere nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Gehäuse (2) eine Gehäusewandung (31) aufweist, dass drei elektrische Isolationsschichten zwischen der Messkomponente (6, 7, 8) und dem Fluid und/oder den weiteren elektrischen Bauteilen angeordnet sind, insbesondere dass zusätzlich zur elektrisch isolierenden Gehäusewandung
(31) zwei weitere elektrische Isolationsschichten (32, 33) die Messkomponente (7) umgeben, und dass vorzugsweise die Isolationsschichten form- und/oder stoffschlüssig aneinander gefügt sind.
5. Messvorrichtung zur Messung einer Messgröße eines Fluids mit einem Gehäuse (2), und mit einer im Gehäuse (2) befindlichen Messkomponente zur Messung der Messgröße, insbesondere nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Gehäuse (2) eine Gehäusewandung (31) aufweist, dass ein elektrisch isolierender Verguss (32) zwischen der Messkomponente (7) und der Gehäusewandung (31) vorgesehen ist, und dass der Verguss (32) eine Stärke von mindestens 2 mm besitzt, wobei vorzugsweise der Verguss
(32) und die Gehäusewandung (31) form- und/oder stoffschlüssig aneinander gefügt sind.
6. Messvorrichtung zur Messung einer Messgröße eines Fluids mit einem Gehäuse (2), und mit einer im Gehäuse (2) befindlichen Messkomponente zur Messung der Messgröße, insbesondere nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Gehäuse (2) eine im Fluid befindliche und/oder dem Fluid ausgesetzte Oberfläche besitzt, und dass wenigstens ein Teil der Oberfläche (37) des Gehäuses (2), insbesondere zu dessen
Benetzung durch das Fluid, hydrophil ausgestaltet ist.
7. Messvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gehäuse (2) aus einem Gehäusekörper (4) und einem Gehäusedeckel (5) besteht, dass vorzugsweise die Messkomponenten (6, 7, 8) am und/oder im Gehäusekörper (4) angeordnet sind, und dass weiter vorzugsweise der Gehäusedeckel (5) am Gehäusekörper (4) verrastet befestigt ist.
8. Messvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die erste Messkomponente (6) eine im und/oder am Gehäuse (2) angeordnete Membran (10) umfasst, dass vorzugsweise ein elastisches Element (11) zur Rückstellung der Membran (10) vorgesehen ist, dass weiter vorzugesweise ein Signalgeber (12) mit der Membran (10) und/oder dem elastischen Element (11) in Wirkverbindung steht, und dass noch weiter vorzugsweise ein Signalaufnehmer (13) mit dem Signalgeber (12), insbesondere magnetisch, zur Erzeugung der Messgröße zusammenwirkt.
9. Messvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das elastische Element (1 1) in der Art einer scheibenförmigen Blattfeder ausgestaltet ist, dass vorzugsweise die Blattfeder (1 1) eine kreisförmige Gestalt besitzt, dass weiter vorzugsweise die Blattfeder (11) ein vom Zentrum (36) zum Randbereich der Blattfeder (11) spiralförmig verlaufendes Federelement (35) aufweist, und dass noch weiter vorzugsweise der Signalgeber (12) am elastischen Element (1 1) in dessen Zentrum (36), insbesondere durch Verkleben, befestigt ist.
10. Messvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Signalgeber (12) aus einem Magnet, insbesondere aus einem Permanentmagnet, besteht, dass vorzugsweise der Signalaufnehmer (13) aus einem das vom Magneten (12) erzeugte Magnetfeld detektierenden Positionssensor, insbesondere aus einem Hallsensor, besteht, dass weiter vorzugsweise die Membran (10) und das elastische Element (1 1) sowie der Signalgeber (12) und der Signalaufnehmer (13) im Inneren des Gehäuses (2) angeordnet sind, und dass noch weiter vorzugsweise das Gehäuse (2), insbesondere der Gehäusedeckel (5), eine Öffnung (14) zur Zuführung des Fluids zur Membran (10) aufweist.
11. Messvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die zweite Messkomponente (7) einen im und/oder am Gehäuse (2) angeordneten
Temperaturfühler (15) umfasst, dass vorzugsweise der Temperaturfühler (15) im Gehäuse (2) befestigt ist, dass weiter vorzugsweise der Temperaturfühler (15) in einen Gehäuseansatz (16), insbesondere in der Art einer höckerförmigen Ausbauchung, am Gehäusedeckel (5) hineinragt, und dass noch weiter vorzugsweise als Temperaturfühler (15) ein NTC- Widerstand, ein PTC- Widerstand o. dgl. vorgesehen ist.
12. Messvorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Signalaufnehmer (13) der ersten Messkomponente (6) auf einer Leiterplatte (17) befestigt ist, dass vorzugsweise die Leiterplatte (17) im Gehäusekörper (4) fixiert ist, und dass noch weiter vorzugsweise der Temperaturfühler (15) der zweiten Messkomponente (6) mit der Leiterplatte (17) in elektrischer Verbindung steht.
13. Messvorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die dritte Messkomponente (8) einen Sender (18) sowie einen Empfänger (19) für optische Strahlung, insbesondere für Infrarot-Strahlung, sowie eine zwischen dem Sender (18) und dem Empfänger (19) befindliche Messstrecke (20) für das Fluid umfasst, dass vorzugsweise der Sender (18) und/oder der Empfänger (19) in einem Ansatz (21, 22) am Gehäusedeckel (5), insbesondere in der Art einer höckerförmigen Ausbauchung, angeordnet sind, und dass weiter vorzugsweise der Ansatz (21, 22) wenigstens im Bereich des Senders (18) und/oder des Empfängers (19) für die optische Strahlung weitgehend transparent ist.
14. Messvorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Sender (18) und/oder der Empfänger (19) auf einem in den Ansatz (21, 22)
hineinragenden Finger (24) einer Leiterplatte (23) befestigt sind, dass vorzugsweise die Leiterplatte (23) im Gehäusekörper (4) fixiert ist, dass weiter vorzugsweise als Sender (18) eine Leuchtdiode vorgesehen ist, und dass noch weiter vorzugsweise als Empfänger (19) ein Fototransistor verwendet ist.
15. Messvorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass sich auf der Leiterplatte (17, 23) ein Anschlusskontakt für das von der jeweiligen
Messkomponente (6, 7, 8) erzeugte Signal befindet, dass vorzugsweise die Leiterplatte (17, 23) mittels eines den Anschlusskontakt umgebenden Führungsrahmens (25, 26) im
Gehäusekörper (4) fixierbar ist, und dass weiter vorzugsweise ein Stecker auf den
Anschlusskontakt zur Signal weiterleitung, insbesondere am Führungsrahmen (25, 26), aufsteckbar ist.
16. Messvorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Dom (27) und/oder die Kontur (29) und/oder die Vertiefung zwischen dem Dom (27) sowie der Kontur (29) am Gehäusedeckel (5) befindlich sind.
17. Messvorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Messkomponente (7) einen im und/oder am Gehäuse (2) angeordneten Temperaturfühler (15) umfasst, dass vorzugsweise der Temperaturfühler (15) als Bestandteil der
Messkomponente (7) in der Bauteilfixierung (30) eingeklemmt ist, und dass weiter vorzugsweise die Bauteilfixierung (30) direkt im Gehäusedeckel (5), insbesondere im Gehäuseansatz (16), verpresst ist.
18. Messvorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Temperaturfühler (15) eine Ummantelung (33) als elektrische Basisisolierung, eine elektrische Zusatzisolierung (32) in der Art eines Vergusses sowie die Gehäusewandung (31) als weitere elektrische Isolierung aufweist, wobei insbesondere die Basisisolierung (33) und/oder die Zusatzisolierung (32) aus Epoxidharz bestehen, dass vorzugsweise das Innere des Gehäuses (2) im Bereich des Senders (18) und/oder des Empfängers (19), insbesondere der Ansatz (21, 22), mit einem für optische Strahlung weitgehend transparenten Verguss (34), insbesondere bestehend aus Silikonharz, als elektrische Isolation versehen ist, und dass weiter vorzugsweise die Messkomponente (6, 7, 8) bis zur Leiterplatte (17, 23) mit einem Verguss (34) als elektrische Isolation versehen ist.
19. Messvorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Hydrophilierung der Oberfläche (37) des Gehäuses (2) durch eine Plasmaaktivierung der Oberfläche (37), insbesondere unter Sauerstoffatmosphäre und/oder unter Niederdruck, und/oder durch eine Fluorierung des Werkstoffes für das Gehäuse (2), insbesondere für die Oberfläche (37) des Gehäuses (2), erzeugt ist.
PCT/EP2014/063562 2013-06-27 2014-06-26 Sensor WO2014207125A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14733622.6A EP3014234B1 (de) 2013-06-27 2014-06-26 Sensor
PL14733622T PL3014234T3 (pl) 2013-06-27 2014-06-26 Czujnik

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE102013010686.9 2013-06-27
DE102013010688 2013-06-27
DE102013010690 2013-06-27
DE102013010686 2013-06-27
DE102013010690.7 2013-06-27
DE102013010689.3 2013-06-27
DE102013010688.5 2013-06-27
DE102013010687 2013-06-27
DE102013010689 2013-06-27
DE102013010687.7 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014207125A1 true WO2014207125A1 (de) 2014-12-31

Family

ID=51022868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/063562 WO2014207125A1 (de) 2013-06-27 2014-06-26 Sensor

Country Status (4)

Country Link
EP (1) EP3014234B1 (de)
ES (1) ES2883214T3 (de)
PL (1) PL3014234T3 (de)
WO (1) WO2014207125A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202020005563U1 (de) 2020-10-05 2021-09-14 Marquardt Gmbh Messvorrichtung zur Messung wenigstens einer Messgröße eines Fluids sowie Verwendung einer Gehäuse-in-Gehäuse-Anordnung
US11225746B2 (en) 2018-08-27 2022-01-18 Ecolab Usa Inc. System and technique for extracting particulate-containing liquid samples without filtration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022128021A1 (de) * 2022-10-24 2024-04-25 Marquardt Gmbh Blattfeder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025045A1 (de) * 2007-06-02 2008-12-04 Marquardt Gmbh Sensor
WO2010108961A1 (de) * 2009-03-27 2010-09-30 Epcos Ag Sensoranordnung und verfahren zur herstellung
WO2010112632A1 (es) * 2009-03-31 2010-10-07 Zertan, S.A. Sensor combinado para medir variables en un medio líquido
DE102011119323A1 (de) * 2010-11-29 2012-05-31 Marquardt Mechatronik Gmbh Sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205236A (ja) * 1984-03-29 1985-10-16 Sharp Corp 濁度検出器
US20060055927A1 (en) * 2004-09-16 2006-03-16 Rosemount Analytical Inc. Turbidity sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025045A1 (de) * 2007-06-02 2008-12-04 Marquardt Gmbh Sensor
WO2010108961A1 (de) * 2009-03-27 2010-09-30 Epcos Ag Sensoranordnung und verfahren zur herstellung
WO2010112632A1 (es) * 2009-03-31 2010-10-07 Zertan, S.A. Sensor combinado para medir variables en un medio líquido
DE102011119323A1 (de) * 2010-11-29 2012-05-31 Marquardt Mechatronik Gmbh Sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225746B2 (en) 2018-08-27 2022-01-18 Ecolab Usa Inc. System and technique for extracting particulate-containing liquid samples without filtration
US11739460B2 (en) 2018-08-27 2023-08-29 Ecolab Usa Inc. System and technique for extracting particulate-containing liquid samples without filtration
DE202020005563U1 (de) 2020-10-05 2021-09-14 Marquardt Gmbh Messvorrichtung zur Messung wenigstens einer Messgröße eines Fluids sowie Verwendung einer Gehäuse-in-Gehäuse-Anordnung

Also Published As

Publication number Publication date
EP3014234A1 (de) 2016-05-04
ES2883214T3 (es) 2021-12-07
EP3014234B1 (de) 2021-07-07
PL3014234T3 (pl) 2021-12-13

Similar Documents

Publication Publication Date Title
EP2150792B1 (de) Sensor
EP1335060B1 (de) Trübungssensor mit Temperaturerfassung für Haushaltsgeräte
EP1690971A2 (de) Heizeinrichtung für ein Elektrogerät
EP2020895B1 (de) Sensoreinrichtung zur leitfähigkeitsmessung und verfahren zu ihrem betrieb
WO2008092941A2 (de) Kompaktes magnetisch induktives durchflussmessgerät
DE102007004889A1 (de) Kapazitiver Inkrementalgeber und Haushaltsgerät mit einem solchen
WO2016180635A1 (de) Feldgerät zum einsatz in der prozessautomatisierung
EP3014234B1 (de) Sensor
WO2016045821A1 (de) Steckergehäuse für eine sensorvorrichtung und steckermodul
DE102006041274A1 (de) Sensor zur Trübungsmessung
DE102015110092B4 (de) Feldgerät zum Einsatz in hygienischen Anwendungen in der Prozess- und Automatisierungstechnik und Verfahren zu dessen Herstellung
DE102014008825A1 (de) Sensor
EP2004031B1 (de) Sensor zur trübungs- und temperaturmessung
DE102007016215A1 (de) Sensor zur Trübungs- und Temperaturmessung
DE102014008824A1 (de) Sensor
DE102014008823A1 (de) Sensor
DE102014008821A1 (de) Sensor
EP3669153A1 (de) Sensor
DE102005047542A1 (de) Füllstandssensor
DE102009050554A1 (de) Sensor
EP3652504B1 (de) Vorrichtung mit sensoren zum aufnehmen von messgrössen eines fluids, insbesondere zum anordnen in einer fluidleitung
DE102022102893B4 (de) Sensoreinrichtung zur Erfassung wenigstens einer physikalischen Größe
DE102018127428B3 (de) Diagnosefähiger Schalter, insbesondere diagnosefähiger Mikro-Signalschalter und Verfahren zu seiner Herstellung
DE4004165C2 (de) Sensoreinrichtung
EP1714125B1 (de) Kapazitiver drucksensor mit heissgeprägten membran

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14733622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014733622

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE