WO2014206237A1 - 一种pem燃料电池堆 - Google Patents

一种pem燃料电池堆 Download PDF

Info

Publication number
WO2014206237A1
WO2014206237A1 PCT/CN2014/080282 CN2014080282W WO2014206237A1 WO 2014206237 A1 WO2014206237 A1 WO 2014206237A1 CN 2014080282 W CN2014080282 W CN 2014080282W WO 2014206237 A1 WO2014206237 A1 WO 2014206237A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow field
field plate
cathode flow
electrode assembly
membrane electrode
Prior art date
Application number
PCT/CN2014/080282
Other languages
English (en)
French (fr)
Inventor
李骁
Original Assignee
武汉众宇动力系统科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/029,762 external-priority patent/US9225025B2/en
Application filed by 武汉众宇动力系统科技有限公司 filed Critical 武汉众宇动力系统科技有限公司
Publication of WO2014206237A1 publication Critical patent/WO2014206237A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • H01M8/1006Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to the field of fuel cell technology and, in particular, to a polymer film battery pack for a proton exchange membrane (PEM) fuel cell.
  • PEM proton exchange membrane
  • a fuel cell is an energy source that converts chemical energy in a fuel into electrical energy through a chemical reaction mediated by oxygen or other oxidant. Hydrogen is the most common fuel in such batteries. Among them, the most representative example of such a fuel cell technology is a proton exchange membrane (PEM) fuel cell.
  • PEM proton exchange membrane
  • Such a fuel cell includes a membrane electrode assembly (MEA) including a polymer electrolyte membrane sandwiched between two layers of catalyst coated papers respectively as yin and yang grades; the membrane electrode assembly (MEA) is sandwiched separately A pair of flow field plates that directly transport fuel and oxidant.
  • the working principle of the fuel cell comprises the steps of: passing hydrogen fuel into the anode flow field plate on one side of the fuel cell, and then passing the oxidant into the cathode flow field plate on the other side of the fuel cell; placing the platinum catalyst on the anode side
  • the hydrogen is separated into positively charged hydrogen protons and negatively charged hydrogen electrons; the polymer electrolyte membrane can only pass the positively charged hydrogen protons into the cathode, while the negatively charged hydrogen electrons need to enter the cathode through the channels of the peripherals, and the current is generated.
  • electrons and positively charged protons combine with oxygen to form water, which is the only product discharged from the cell.
  • oxygen since oxygen is blown into the cathode flow field plate, the fuel cell can be cooled.
  • the cathode flow field plate can be exposed to air as an "open cathode structure".
  • FIG. 1 is a perspective view of a flow field plate assembly of a proton exchange membrane fuel cell in the prior art.
  • the cathode flow field plate A10 is provided with a saw-like side A1 to form a multi-channel A12 and is in contact with the membrane electrode assembly. Since the cathode flow field plates are used for membrane electrode assemblies, these channels A12 allow air to be channeled to aid in the dispersion of heat generated during the reaction. In response to higher heat tension, the amount of channelized air that causes evaporation of water through the passage A12 described above must be increased to increase the electrical resistance of the membrane electrode assembly.
  • the gasket A20 is placed on the side of the saw-like side A1 of the cathode flow field plate A10 so that the top end of the channel wall extends after being assembled with the gasket, wherein the gasket A20 is sandwiched by the cathode flow field plate A10. Between the side All and the membrane electrode assembly.
  • FIG. 2 is a closed perspective view of a cathode flow field plate set of a prior art proton exchange membrane fuel cell.
  • the figure shows the disadvantages of such proton exchange membrane fuel cells in the prior art.
  • the package A10 between the gasket A20 and the cathode flow field plate depends on the degree of extrusion between the gasket A20 and the cathode flow field plate A10.
  • the area encapsulation strength between the gasket A20 and the cathode flow field plate A10 is increased, that is, the top end of the passage wall forms a strong encapsulation area by contacting the gasket A20 and when the degree of extrusion increases.
  • the channel A12 region is the weak point (WP) region, and thus there is no way in which these regions can increase the package strength.
  • WP weak point
  • One object of the present invention is to provide a fuel cell which can prevent hydrogen leakage and incorporate a flow field plate group for a proton exchange membrane fuel cell.
  • Another object of the present invention is to provide a flow field plate set that can be used at high working pressures and to improve cooling efficiency. This performance increases the higher power at the weight ratio and the overall vibrancy of the fuel cell as a productive energy source.
  • Another object of the present invention is to provide a flow field plate set for a proton exchange membrane fuel cell to achieve that the proton exchange membrane fuel cell can be operated at a pressure greater than 0.5 bar.g without hydrogen leakage and is safer to operate.
  • Another object of the present invention is to provide a flow field plate set for a proton exchange membrane fuel cell to achieve operation of the proton exchange membrane fuel cell at a pressure greater than 0.5 bar.g, and compared to conventional fuel cells , Increase kinetics, battery uniformity, load change response, and reduce the probability of hydrogen supply shortage (serious damage to fuel cell durability).
  • Another object of the present invention is to provide a flow field plate set for a proton exchange membrane fuel cell that enhances air cooling efficiency for thinner flow field plates while reducing the weight to power ratio.
  • Another object of the present invention is to provide a flow field plate set for a proton exchange membrane fuel cell to achieve a reduced sensitivity of the film water content to the fan speed.
  • Another object of the present invention is to provide a flow field plate set for a proton exchange membrane fuel cell to achieve the novel flow field plate design that can be adapted for assembly on most conventional proton exchange membrane fuel cells.
  • Another object of the present invention is to provide a novel design of a flow field plate set for a proton exchange membrane fuel cell that is simple, convenient, and inexpensive to produce.
  • the above and other objects and advantages of the invention are to obtain an air-cooled proton exchange membrane fuel cell stack.
  • the above and other objects and advantages of the invention are to provide a fuel cell comprising a membrane electrode assembly (MEA) and a first-rate field plate assembly.
  • MEA membrane electrode assembly
  • the flow field plate set includes an anode flow field plate and a cathode flow field plate, the membrane electrode assembly being sealed between the anode and cathode flow field plates.
  • the cathode flow field plate includes a planar side and a reverse or reverse channel side, the membrane electrode assembly being sandwiched between the anode flow field plate and the planar side of the cathode flow field plate, wherein the cathode flow field plate further comprises A plurality of fluid passages formed on the passage side to flow fluid along the fluid passage to cause the membrane electrode assembly to pass through the electrochemical reaction membrane electrode assembly of the membrane electrode assembly to generate electrical energy.
  • FIG. 1 is a schematic diagram of a unit cell of a conventional proton exchange membrane fuel cell
  • FIG. 2 is a schematic view showing the weakness of a conventional proton exchange membrane fuel cell
  • FIG. 3 is an exploded view of a preferred embodiment of a proton exchange membrane fuel cell stack provided by the present invention
  • FIG. 4 is a flow chart of a preferred embodiment of a flow field plate stack of a proton exchange membrane fuel cell stack provided by the present invention
  • Figure 5 is a cross section of a preferred embodiment of a flow field plate assembly of a proton exchange membrane fuel cell stack provided by the present invention.
  • FIG. 6 is a schematic view showing a first alternative mode of a cooling channel of a preferred embodiment of a flow field plate assembly of a proton exchange membrane fuel cell stack according to the present invention
  • FIG. 7 is a second alternative schematic diagram of a cooling channel of a preferred embodiment of a flow field plate assembly of a proton exchange membrane fuel cell stack provided by the present invention. detailed description
  • FIG. 3 shows a proton exchange membrane fuel cell stack according to a preferred embodiment of the present invention.
  • the fuel cell stack includes one or more fuel cell units stacked on each other.
  • each fuel cell unit can be independently a fuel cell, including a membrane electrode assembly (MEA) 10 and a first-rate field plate assembly 20 including two conductive bipolar plates for the membrane The electrode assembly is sandwiched between them.
  • MEA membrane electrode assembly
  • first-rate field plate assembly 20 including two conductive bipolar plates for the membrane The electrode assembly is sandwiched between them.
  • the membrane electrode assembly 10 includes a polymer electrolyte membrane, and a catalyst coated on both sides of the polymer electrolyte membrane.
  • Two gas diffusion layers are respectively located on both outer sides of the membrane electrode assembly, wherein the gas diffusion layer is fixed between the conductive bipolar plates of the flow field plate group 20 to form a unit cell assembly.
  • the two conductive bipolar plates sandwiching the membrane electrode assembly 10 are an anode flow field plate 21' and a cathode flow field plate 21.
  • the fuel cell stack for use in a proton exchange membrane fuel cell in practice comprises a plurality of stacked unit fuel assemblies which may be in the hundreds depending on electrical consumption requirements.
  • a typical fuel cell stack includes a series of repeating cell stacks.
  • the membrane electrode assembly 10 is sealed and sandwiched between the flow field plates 21 and 2 ⁇ .
  • the anode flow field plate 2 includes a planar side 211'.
  • the cathode flow field plate 21 includes a planar side 211 and a reverse or reverse channel side 212, and the membrane electrode assembly 10 is sandwiched between the planar sides 211' and 211 of the flow field plates 21' and 21.
  • the cathode flow field plate 21 further includes a plurality of fluid passages 213 formed in the passage side 212 to cause fluid to flow along the fluid passages 213 to cause the membrane electrode assembly to pass through the electrochemical reaction membrane of the membrane electrode assembly.
  • the electrode assembly thus generates electrical energy.
  • the fluid is a reactive gas such as hydrogen, oxygen or air.
  • the cathode flow field plate 21 as shown in FIG. 4 includes a base body 214, wherein the base body forms the planar side 211 on the inner side of the base body, and a set of guide walls 215 are spaced apart from the base body 214 to form the cathode flow.
  • the channel of the field plate 21 Side 212.
  • the fluid passage 213 extends from one side edge to the other side edge of the base body 214.
  • the planar side 211 of the flow field plate 21 is a flat mounted surface.
  • the channel side 212 of the flow field plate 21 is a saw-like side.
  • each of the fluid passages 213 is formed between the two guide walls 215.
  • the guide wall 215 extends parallel to the other guide walls and completely and vertically outside the base 214.
  • the cross-section of the guide wall 215 is generally shaped as a rectangle, with each fluid channel 213 having a uniform width.
  • each of the guide walls 215 has a trapezoidal cross-section such that the guide wall 215 is incrementally oriented toward the base 214.
  • each of the fluid passages 213 is tapered toward the width of the base 214.
  • the cathode flow field plate 21 further includes a series of fluid passages 213 that are intermittently and evenly inserted into a plate to form the cathode flow field plates.
  • the flow field plate 21 can be constructed of other lightweight and strong conductive materials. These fluid passages 213 extend to the entire side length of the flow field plate 21 and extend into the flow field plate 21 at a predetermined depth.
  • the fluid passages 213 also form ridge-like ridges from the uncut section of the flow field plate 21, and the ridge-like projections are uniformly and uniformly distributed.
  • the cathode flow field plate 21 further includes a plurality of cooling passages 216 arranged in communication with the fluid passages 213. Accordingly, each of the cooling passages 216 is formed in the base 214 by an elongated slot to selectively communicate with the fluid passage 213. When the cooling passage 216 is formed in the base 214, the fluid passage 213 will communicate with the cooling passage 216. Preferably, half of the total number of fluid passages 213 will be in communication with the cooling passage 216 and the other half of the fluid passages 213 will not communicate with the cooling passages 216.
  • the cooling passage 216 is aligned with the fluid passage 213 through a passage formed in the base 214, wherein the planar side 211 of the cathode flow field plate 21 communicates with the passage side 212 and passes through the cooling passage 216. . Therefore, compared with the conventional cathode flow field plate of the same thickness, the heat transfer area of the cathode flow field plate 21 is actually greatly increased due to the existence of the cooling passage 216.
  • a fully penetrating groove is formed to form the cooling passage 216 at every other of the fluid passages 213.
  • the fully penetrating slot allows the cathode flow field plate to provide a better and more efficient cooling effect. It is worth mentioning that the fully penetrating groove of the fluid channel 213 located in the cathode flow field plate 21 is not limited to this preferred embodiment and can be extended to any one including a fully penetrating groove.
  • the fluid passage 213 is in the embodiment of the cathode flow field plate 21 that achieves a better cooling effect of the membrane electrode assembly 10.
  • the cooling passage 26 can be formed in every other one of the fluid passages 213 or each fluid passage. 213.
  • the number of cooling passages 216 can be selectively configured to match the fluid passage 213.
  • two or more of the cooling passages 216 may be similarly formed in each of the fluid passages 213.
  • each of the cooling passages 216' may be formed in a first portion or a second portion of the fluid passage 213, wherein the cooling passage 216' located in the first portion of the fluid passage 213 and the second portion located in the fluid passage 213 The cooling channels 216' alternate. Additionally, each of the cooling passages 216' located in the first portion of the fluid passage 213 is of equal length to the cooling passage 216' located in the second portion of the fluid passage 213.
  • each fluid passage 213 is divided into four equal portions which are formed from the first and third portions of the fluid passage 213 or from the second and fourth portions.
  • the cooling passages 216' located in the first and third portions of the fluid passage 213 alternate with the cooling passages 216' located in the second and fourth portions of the fluid passage 213. All cooling channels are 216 'equal length.
  • the thickness of the cathode flow field plate 21 can be significantly reduced due to the configuration of the cooling passage 216. As illustrated in Figures 1 and 2, if the fluid passage of a conventional stencil is designed to be 3 mm deep, then at least 4 mm thick panels must be employed to achieve mechanical strength. From the perspective of the present invention, the fluid passage 213 of the cathode flow field plate 21 is exemplified by a 3 mm depth design, and the thickness 21 of the cathode flow field plate is only required to be configured to be 3 mm due to the presence of the cooling passage 216.
  • the cooling passage 216 can be configured as part of the fluid passage 213 such that the thickness of the cathode flow field plate 21 is the same as the depth of the fluid passage 213.
  • the cathode flow field plate 21 of the present invention can be thinner than conventional slabs when the same cooling area is reached; because the cooling passage 216 of the present invention is capable of the cathode flow field plate when fluid passes through the fluid passage 213 The entire cross section is used for heat dissipation.
  • the cathode flow field plate 21 of the present invention can provide more heat dissipation regions for heat dissipation at the same thickness as conventional panels.
  • the side length of each of the fluid passages 213 is longer than the side length of each of the cooling passages 216.
  • the side length of each of the fluid passages 213 is the side length of the flow field plate 21.
  • the width of each of the fluid passages 213 is equal to much greater than the width of the cooling passages 216. As shown in Figures 4 and 5, the fully penetrating groove (cooling passage 216) and the ridge-like ridge formed from the uncut material are more easily observed.
  • the flow field plate set 20 further includes two sealing gaskets 22 to seal the yin and yang 21, 21 'two-pole flow field plates and the membrane electrode assembly 10.
  • each of the sealing gaskets 22 is sealed between the planar sides 211, 211' of the male and female flow field plates 21, 2 and the membrane electrode assembly 10.
  • one of the sealing gaskets 22 is sealed and sandwiched between the anode flow field plate 21' and the membrane electrode assembly 10, and the other sealing gasket 22 is sealed and sandwiched between the cathode flow field plate 21 and the membrane electrode assembly 10. between.
  • each of the sealing gaskets 22 is a hollow structure to achieve a sealing portion located at the periphery of the planar side 211 of the cathode flow field plate 21.
  • the sealing gasket 22 is a hollow structure to allow a fluid, such as a gas, to pass therethrough.
  • the sealing gasket 22 is also sized and shaped to match the planar side 211 of the cathode flow field plate 21.
  • the sealing gasket 22 has a rectangular shape, that is, two lateral side portions and two longitudinal side portions surround the peripheral portion of the planar side 211 of the cathode flow field plate 21.
  • each sealing gasket 22 is attached between the planar side 211 of the cathode flow field plate 21 and the membrane electrode assembly 10.
  • cooling passage 216 is not covered by the sealing gasket 22.
  • the cooling passage 216 extends within the periphery of the cathode flow field plate 21 and extends between the longitudinal sides of the sealing gasket 22.
  • Figure 3 also shows a fuel cell stack design in accordance with a preferred embodiment of the present invention, i.e., regardless of the type of sealing employed, such as an adhesive gasket, the gasket is compressed throughout.
  • the sealing gasket 22 of the present invention may be an edgeless ring or an adhesive gasket. Adhesive gaskets can barely seal under a certain pressure, but if they are not compressed, they will gradually leak even under low pressure. The 0-ring provides a strong seal at very high pressures, but requires a strong squeeze, otherwise the seal is not guaranteed at all.
  • the planar side 211 of the cathode flow field plate 21 is mounted to the membrane electrode assembly 10.
  • the proton exchange membrane fuel cell is configured to be open in the atmosphere, so that in addition to the oxidant being blown through the fluid passage 213 of the cathode flow field plate 21, the cathode structure provided with the cooling passage 216 enhances air cooling efficiency because Heat is dissipated and separated through the cooling passage 216.
  • the cathode flow field plate 21 is significantly thinner than the conventional type with the enhanced cooling effect. The benefit of a thinner and lighter fuel cell stack can actually make it more portable than prior art.
  • the cooling passage 216 is molded from the cathode flow field plate 21 to reduce the sensitivity of the film moisture content to the fan speed.
  • the cooling passage 216 is formed in every other fluid passage 213. As the gas passes through the fluid passage 213 of the cathode flow field plate 21, the gas stream will only carry heat away from the cathode flow field plate 21 through the cooling passage 216.
  • the fluid passage 213 without the cooling passage 216 will maintain the water content of the membrane electrode assembly 10 because the gas does not come into contact with the membrane electrode assembly.
  • the cathode flow field plate provided by the present invention can also provide heat and water management of the fuel cell. Accordingly, the membrane electrode assembly 10 requires a high water content to maintain a low internal resistance. When the gas is blown through the fluid passage 213, it cools only the cathode flow field plate 21 through the cooling passage 216 and does not accelerate the evaporation of water, resulting in a decrease in the water content of the membrane electrode assembly 10.
  • the gas flow is not in contact with the membrane electrode assembly 10, and the gas passage through the fluid passage passes through the fluid passage 213 without the cooling passage 216. Therefore, when the fan speed increases or slows down, only part of the airflow directly affects The water content is saturated but all airflows have a cooling effect. In other words, the battery voltage of the fuel cell becomes less sensitive to the fan speed, and a more stable output voltage is achieved when the fan control is disturbed by electrical noise.
  • the adhesive sealing gasket 22 is sealed to the planar side 21 of the anode flow field plate 21' to prevent hydrogen leakage during operation.
  • the sealing gasket 22 is provided with an adhesive for the periphery of the edge of the planar side 211 ' of the anode flow field plate 21' to achieve adhesion of the sealing gasket to the anode when attached to the anode flow field plate 21'
  • the edge of the flow field plate 2 ⁇ is around. This bonding method achieves a stronger seal than the prior art to achieve sufficient pressurization.
  • the adhesive sealing gasket 22 is also attached to the membrane electrode assembly 10 and the anode flow field plate 10 to seal the hydrogen therein.
  • the membrane electrode assembly 10 has a weak point of elimination and a reduced hydrogen leakage hazard that can be operated at higher hydrogen pressures for the listed purposes: improved kinetics, battery uniformity, load change response, and reduced "hydrogen starvation" compared to conventional fuel cells "possibility. Another additional implication of operating at high pressure is that smaller fuel cell pairs are capable of providing a larger total fuel cell stack than the prior art.
  • the battery voltage uniformity in the battery stack provided by the present invention can be obtained under a higher hydrogen pressure. It is worth mentioning that the battery voltage uniformity does not depend solely on hydrogen pressure, but higher hydrogen pressure can promote the battery voltage uniformity. In other words, the output voltage of the stack is also very stable. According to a preferred embodiment, the hydrogen pressure can be increased to greater than 0.5 bar.g, which is the most common limiting point for conventional fuel cells.
  • the materials used for the anode and cathode plates may be selected from widely used conductive metals.
  • the metal should be strong, lightweight and electrically conductive, but the material is not limited to metal.
  • Conductive composite materials containing graphite, carbon black, carbon fiber and/or nanocarbon can be used in the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池,其包括一阴极流场板、一阳极流场板和一膜电极组件(MEA),该膜电极组件夹于该阴阳两极流场板间。该阴极流场板包括一平面侧和一反向或逆向的通道侧,其中该膜电极组件夹于该阳极流场板和该阴极流场板的平面侧之间。该阴极流场板进一步包括自通道侧成型的一组流体通道以用于实现沿流体通道内流体流动以促进电化学反应穿越该膜电极组件从而产生电能。

Description

一种 PEM燃料电池堆
技术领域
本发明涉及燃料电池技术领域, 具体来说, 涉及用于质子交换薄膜 (PEM) 燃料电池 的聚合物薄膜电池组。 背景技术
燃料电池是可将燃料中的化学能通过氧气或其他氧化剂介导的化学反应转化为电能的 一种能源。 氢是此类电池中最常见的燃料。 其中, 最具代表性的此类燃料电池技术的实例 就是质子交换薄膜 (PEM) 燃料电池。 此类燃料电池包括膜电极组件 (MEA), 该膜电极组 件包括夹在分别作为阴阳级的两层催化剂涂层纸间的聚合物电解质膜;该膜电极组件 (MEA) 再被夹在分别独立的直接运送燃料和氧化剂的一对流场板间。 该燃料电池的工作原理包括 以下步骤: 将氢燃料通入燃料电池一侧的阳极流场板中, 再将氧化剂通入燃料电池另一侧 的阴极流场板中; 将铂催化剂置于阳极侧使得氢分离为正电荷氢质子和负电荷氢电子; 聚 合物电解质膜仅可使正电荷氢质子穿过后进入阴极, 而负电荷氢电子则需要通过外设的通 道进入阴极, 此时电流即产生; 在阴极侧, 电子和正电荷质子与氧结合生成水, 作为该电 池排出唯一产物。 此外, 因为氧气是被吹入阴极流场板, 故可使该燃料电池冷却。 阴极流 场板可采用暴露于空气中作为一种 "开放阴极结构"。
惯用的阴极流场板设计采用锯状或方波状结构, 空气可通过送风机或风扇吹入其中。相 较水冷却型电池堆, 空气冷却型电池堆具有更易平衡设计和更易控制策略, 可立即启用。
采用聚合物电解质薄膜的空气冷却型质子交换薄膜燃料电池的一个主要技术难点是热 量和水处理。 其中聚合物电解质薄膜需要具备高含水量以保证薄膜内在电阻低。 当气流通 过流场板通道时, 可冷却电池堆, 但同样加速了水分的蒸发导致薄膜中水含量降低。 因此, 风扇转速需要根据流量、 环境温度和相对湿度极为小心的控制 (控制策略) 以求达到平衡。 不适宜的风扇转速将导致电池堆的输出功率下降。
采用聚合物电解质薄膜的空气冷却型质子交换薄膜燃料电池的另一个限制是氢渗漏。在 惯用设计中, 锯状阴极流场板面向膜电极集合, 其包括聚合物电解质薄膜以及两侧的催化 剂层。 因此, 仅有锯齿压在垫圈之上, 该区域的其他部分即成为潜在氢渗漏区域。 该设计 通常限定了氢工作压力小于 0.5bar.g。 然而, 较高的氢压力可以促进动力学、 电池均一性、 负载变化响应和减小氢气供应不足的 (严重损害燃料电池的耐久度)发生概率 , 但高于上 述指标的压力值可能导致泄漏或垫圈爆裂。
图 1为现有技术中的质子交换薄膜燃料电池的流场板组的透视图。 阴极流场板 A10设 有一锯状侧边 All以形成一多通道 A12且与膜电极组件接触。 由于阴极流场板用于膜电极 组件, 这些通道 A12允许空气成通道可有助于反应过程中产生的热量分散。 应对较高热紧 张, 通过上述通道 A12的可导致水分蒸发的通道化空气数量必须增加, 从而提高膜电极组 件的电阻。
完成通道 A12的封装后, 将垫圈 A20放置于阴极流场板 A10锯状侧 All的一侧, 以使 通道壁的顶端通过与垫圈装配后延伸,其中垫圈 A20夹在阴极流场板 A10锯状侧 All和膜 电极组件之间。
图 2为现有技术中质子交换薄膜燃料电池的阴极流场板组闭合透视图。该图显示了现有 技术中此类质子交换薄膜燃料电池的缺点。垫圈 A20和阴极流场板间 A10的封装取决于垫圈 A20和阴极流场板 A10间的挤压程度。 考虑到质子交换薄膜燃料电池在高工作压力下工作, 垫圈 A20和阴极流场板 A10间的区域封装强度增加, 即通道壁的顶端通过接触垫圈 A20形成 强封装区域且当挤压程度增加。 由于阴极流场板 A10与垫圈 A20间的无接触这一缘由, 通道 A12区域即为弱点 (WP)区域, 且因此并没有可这些区域使封装强度增加的方式。 当阴极流 场板 A10的通道壁顶端和垫圈 A20间的封装强度增加时, 流场板 A10和垫圈 A20间的渗漏将 限制高工作压力下工作以及燃料电池的性能改进。 发明内容
本发明的目的之一是提供一种可防止氢气渗漏、结合用于质子交换薄膜燃料电池的流场 板组的燃料电池。
本发明的另一目的是提供一种可用于高工作压力下的流场板组且提高冷却效率。这一性 能提升了重量比率下的更高功率以及燃料电池作为多产能源的整体活力。
本发明的另一目的是提供一种用于质子交换薄膜燃料电池的流场板组,以实现该质子交 换薄膜燃料电池能够在压力大于 0.5bar.g不会发生氢泄漏且操作更为安全。
本发明的另一目的是提供一种用于质子交换薄膜燃料电池的流场板组,以实现该质子交 换薄膜燃料电池能够在压力大于 0.5bar.g时工作, 且相比于传统型燃料电池, 提升动力学、 电池均一性、 负载变化响应和减少氢气供应不足(严重损害燃料电池的耐久度)发生概率。 本发明的另一目的是提供一种用于质子交换薄膜燃料电池的流场板组的设计,提升空气 冷却效率, 以用于更薄的流场板而减小重量功率比。
本发明的另一目的是提供一种用于质子交换薄膜燃料电池的流场板组的设计,以实现薄 膜水含量对风扇转速的敏感性降低。
本发明的另一目的是提供一种用于质子交换薄膜燃料电池的流场板组的设计,以实现该 新型流场板设计可适用于装配在大多数传统型质子交换薄膜燃料电池上。
本发明的另一目的是提供一种用于质子交换薄膜燃料电池的流场板组的新型设计,该设 计生产简单便捷且价格低廉。
本发明的其他有益效果及其特征将在以下描述中表达,且从实例和附加权利要求中特定 指出的组合中获得。
据本发明,上述及其他的发明目的和有益效果是获得一种空气冷却型质子交换薄膜燃料 电池堆。
据本发明,上述及其他的发明目的和有益效果是获得一种燃料电池,其包括一膜电极组 件 (MEA)和一流场板组。
该流场板组包括一阳极流场板和一阴极流场板,该膜电极组件密封与该阳极和阴极流场 板之间。 该阴极流场板包括一平面侧和一反向或逆向的通道侧, 该膜电极组件夹于该阳极 流场板和阴极流场板的该平面侧之间, 其中该阴极流场板进一步包括一组成型在所述通道 侧的流体通道以使流体沿所述流体通道流动, 以促使膜电极组件发生透过所述膜电极组件 的电化学反应膜电极组件从而产生电能。
更进一步的发明目的和有益效果将表达自后续的说明和附图中。
上述及其他本发明的目的、特征和有益效果将表达自后续的详细说明、附图及权利要求 中。 附图说明
附图 1为传统质子交换薄膜燃料电池的单位电池示意图;
附图 2为传统质子交换薄膜燃料电池的弱点示意图;
附图 3为本发明提供的质子交换薄膜燃料电池堆一较佳的实施方式的爆炸图; 附图 4 为本发明提供的质子交换薄膜燃料电池堆的流场板组一较佳的实施方式的立体 图;
附图 5 为本发明提供的质子交换薄膜燃料电池堆的流场板组一较佳的实施方式的剖面 图;
附图 6 为本发明提供的质子交换薄膜燃料电池堆的流场板组一较佳的实施方式的冷却 通道的第一种可选模式示意图;
附图 7 为本发明提供的质子交换薄膜燃料电池堆的流场板组一较佳的实施方式的冷却 通道的第二种可选模式示意图。 具体实施方式
下面结合实施例及对比例对本发明作进一步详细、 完整地说明。
以下说明用于公开使得本领域技术人员可完成使用本发明。 下述优选实施方式仅作为 范例且本领域技术人员在上进行修改。 以下说明的概要可应用于其他实施方式、 供选方案、 修改例、 等效方式、 和不脱离本发明的要义和范围的其他应用。
如图 3所示为本发明提供的一较佳实施方式的质子交换薄膜燃料电池堆。 该燃料电池 堆包括一个或多个相互堆叠的燃料电池单位。 根据该较佳实施方式, 每个燃料电池单位, 均可独立成为一燃料电池, 包括一膜电极组件 (MEA)IO和一流场板组 20, 其包括两导电双 极板用于将该膜电极组件夹之其间。
该膜电极组件 10包括一聚合物电解质膜, 以及涂布于该聚合物电解质膜两侧的催化 剂。 两气体扩散层分别地位于该膜电极组件的两外侧面, 其中该气体扩散层固定于该流场 板组 20的该导电双极板之间以形成一单元电池集合。
包夹该膜电极组件 10的该两个导电双极板为一阳极流场板 21 '和一阴极流场板 21。 较佳地, 用于实践中的质子交换薄膜燃料电池的该燃料电池堆包括多个堆叠单元燃料 集合, 根据电消耗要求其数量可能为数以百计。 因此, 一典型燃料电池堆包括一系列的重 复单元电池集合。
根据较佳的实施方式, 该膜电极组件 10密封且夹于该流场板 21和 2Γ之间。 该阳极流 场板 2Γ包括一平面侧 211'。 该阴极流场板 21包括一平面侧 211和一反向或逆向的通道侧 212, 且该膜电极组件 10夹于该流场板 21 '和 21的平面侧 211 '和 211之间。 该阴极流场板 21进一步包括一组成型在所述通道侧 212的流体通道 213以使流体沿所述流体通道 213流 动, 以促使膜电极组件发生透过所述膜电极组件的电化学反应膜电极组件从而产生电能。 相应地, 该流体为反应气体, 如氢气、 氧气或空气。
如图 4所示的阴极流场板 21包括一基体 214, 其中该基体在所述基体的内侧形成所述 平面侧 211, 且一组引导墙 215间隔地自该基体 214延伸以形成该阴极流场板 21的该通道 侧 212。 该流体通道 213 由该基体 214的一侧边缘延伸至另一侧边缘。 相应地, 该流场板 21的平面侧 211为一平板装的表面。 该流场板 21的该通道侧 212为一锯状侧面。 尤其是, 每一个该流体通道 213成型在两个引导墙 215之间。 优选地, 该引导墙 215与其他引导墙 平行且完整地、 垂直地在该基体 214外侧延展。 该引导墙 215的横截面通常成型为矩形、 其中每一个流体通道 213具有均一的宽度。 择一地, 每一个引导墙 215具一梯形截面因此 该引导墙 215朝向该基体 214宽度递增。 换言之, 每一个该流体通道 213朝向该基体 214 宽度递减。
因此, 该阴极流场板 21进一步包括一系列流体通道 213, 其间隔地、 均匀地插入一板 体以形成该阴极流场板。 该流场板 21可由其他轻便且坚固的导电材料构成。 这些流体通道 213延伸至该流场板 21的整个侧边长度且按预设的深度延伸至该流场板 21内。该流体通道 213同样自未经切割的该流场板 21形成山脊状隆起部, 且这些山脊状突起部为分隔地、 均 一地的分布。
如图 4和图 5所示,该阴极流场板 21进一步包括排列的且与该流体通道 213连通的一 组冷却通道 216。相应地,每一个冷却通道 216为一狭长槽成型在该基体 214以选择性与该 流体通道 213连通。 当该冷却通道 216成型在该基体 214时, 该流体通道 213将于该冷却 通道 216连通。 优选地, 总数中一半的该流体通道 213将与该冷却通道 216连通且另一半 该流体通道 213将不与该冷却通道 216连通。
特别地,该冷却通道 216穿过成型在该基体 214的通道以间隔地该流体通道 213排列, 其中该阴极流场板 21的该平面侧 211与该通道侧 212相通以及透过该冷却通道 216。所以, 相较相同厚度下的传统型阴极流场板, 由于该冷却通道 216存在使得该阴极流场板 21的散 热区域实际上大为增加。
这归功于间隔地成型在该基体 214的一组冷却通道 216 与相应排列的一流体通道 213。 相应地, 一完全穿透型槽以形成该冷却通道 216位于每隔一个的该流体通道 213处。 该完 全穿透型槽可实现该阴极流场板提供更好更有效的冷却效应。 值得一提的是, 位于该阴极 流场板 21的该流体通道 213的完全穿透型槽并不局限于这一优选实施方式且可延伸适用于 任一的包含一完全穿透型槽插入该流体通道 213以实现该膜电极组件 10更佳的冷却效果的 阴极流场板 21的实施例中。可从本发明中获知这一更有效的冷却能实现降低风扇转速敏感 度。 值得一提的是, 伴随着冷却效应的增加以及风扇转速敏感度的降低, 当提供相同的功 率输出下, 相对于现有技术中构建的更大型的燃料电池, 该燃料电池的整个体积能够减小。
值得一提的是, 该冷却通道 26可成型在每隔一个该流体通道 213或每一个流体通道 213。 换言之, 该冷却通道 216的数量可以有选择地配合该流体通道 213配置。 此外, 两个 或更多的该冷却通道 216可同样地成型在每一个流体通道 213。
图 6为该流场板组的该冷却通道 216'第一种可选模式的示意图, 其中该冷却通道 216' 分别地成型在每一个流体通道 213。 特别是, 每一个冷却通道 216'可成型在该流体通道 213的第一部分或第二部分, 其中位于该流体通道 213的第一部分的该冷却通道 216'与位 于该流体通道 213的第二部分的该冷却通道 216 '交替。 此外, 每一个位于该流体通道 213 的第一部分的该冷却通道 216'与位于该流体通道 213的第二部分的该冷却通道 216 '等长。
图 7为该流场板组的该冷却通道 216'第二种可选模式的示意图, 其中该两个多更多的 冷却通道 216'自每一个流体通道 213分别地成型。 特别是, 每一个流体通道 213分为四个 相等的部分,该冷却通道 216 '即可自该流体通道的 213的第一和第三部分或从第二和第四 部分成型。 同样地, 位于该流体通道 213的第一和第三部分的该冷却通道 216' 与位于该 流体通道 213的第二和第四部分的该冷却通道 216 '交替。 所有冷却通道 216 '等长。
值得一提的是, 由于该冷却通道 216的构造使得该阴极流场板 21的厚度可显著降低。 如图 1和图 2中所示例, 如果传统型板的流体通道设计为 3mm深, 那么至少 4mm厚的板 必须采用以实现维持机械强度。由本发明来看, 的该阴极流场板 21的流体通道 213以 3mm 深度设计为例, 由于该冷却通道 216的存在使得该阴极流场板的厚度 21仅需配置为 3mm。 换言之, 该冷却通道 216可作为该流体通道 213的一部分配置, 因此该阴极流场板 21的厚 度与该流体通道 213 的深度相同。 换言之, 在达到相同冷却面积下本发明的该阴极流场板 21可较传统型板更薄; 因为当流体通过该流体通道 213时, 本发明的该冷却通道 216能够 将该阴极流场板的整个横截面用作散热。 如上述, 在较传统型板相同厚度下, 本发明的该 阴极流场板 21能够提供更多的用于热量消散的散热区域。
更佳地, 每一个该流体通道 213的侧长度长于每一个冷却通道 216的侧长度。 每一个 该流体通道 213的侧长度即该流场板 21的侧长度。 此外, 每一个该流体通道 213的宽度等 于多大于该冷却通道 216的宽度。 如图 4和图 5所示, 该全穿透型槽 (冷却通道 216) 以 及自未经切割的材料形成的山脊状隆起部均更易观察到。
根据较佳的实施方式, 该流场板组 20进一步包括两个密封垫圈 22将阴阳 21、 21 '两 极流场板以及膜电极组件 10相密封。 特别是, 每一个该密封垫圈 22夹于该阴阳两极流场 板 21、 2 的该平面侧 211、 211 '和膜电极组件 10间密封。 换言之, 该密封垫圈 22之一 被密封和夹于阳极流场板 21 '和膜电极组件 10之间, 且另一该密封垫圈 22被密封和夹于 该阴极流场板 21和膜电极组件 10之间。 如图 3所示, 每一个该密封垫圈 22为一空心结构以实现密封部分位于该阴极流场板 21的该平面侧 211的周边。 换言之, 该密封垫圈 22为一中空结构以实现流体, 如气体, 从 中通过。 该密封垫圈 22还设为与该阴极流场板 21的平面侧 211相匹配的尺寸和形状。 如 图 3所示, 该密封垫圈 22为一矩形, 即两横边部分和两纵边部分环绕该阴极流场板 21的 平面侧 211周边部分。优选地,每一个密封垫圈 22附着于该阴极流场板 21的该平面侧 211 和该膜电极组件 10之间。
值得一提的是, 该冷却通道 216不被该密封垫圈 22包被。 换言之, 该冷却通道 216在 阴极流场板 21的周边内延伸且在该密封垫圈 22的两纵边部分间延伸。
图 3也显示了本发明优选实施方式的燃料电池堆设计, 即无论采用何种密封方式, 例 如粘合性垫圈, 该垫圈各处处于挤压状态。 值得一提的是, 由于该膜电极组件 10与该阴阳 两极流场板 21、 21 '的平面侧 211、 211 '之间通过该密封垫圈 22密封, 形成了一密闭环 境用于氢流动, 从而密封阳极流场板 2Γ 以防止氢渗漏。 相应地, 本发明的该密封垫圈 22 可为一无边环或粘合性垫圈。 粘合性垫圈在一定压力下下可以勉强起到密封作用, 但如果 未经压缩, 即使在较低气压之下也逐渐会产生渗漏。 0 型环可在很高的气压下实现强效密 封, 但要求牢固的挤压作用, 否则完全无法保证密封。
当该流场板 21作为燃料电池的阴极流场板用时, 该阴极流场板 21的平面侧 211被安 装至该膜电极组件 10。 该质子交换薄膜燃料电池配置为大气中开放, 故除此之外氧化剂经 吹入通过该阴极流场板 21的该流体通道 213, 设有该冷却通道 216的阴极构造提升了空气 冷却效率, 因为热量通过该冷却通道 216消散和分离。 伴随增强的冷却效应能使该阴极流 场板 21相较于传统型显著更薄。更薄且轻的燃料电池堆的有益其实能够使其相较于现有技 术更具便携性。
特别地, 该冷却通道 216 自阴极流场板 21成型以降低薄膜含水量对风扇转速的敏感 度。 该冷却通道 216成型在每隔一个流体通道 213。 当气体穿过该阴极流场板 21的流体通 道 213时, 气流将仅通过该冷却通道 216从该阴极流场板 21带走热量。 无该冷却通道 216 的该流体通道 213将保持该膜电极组件 10的水含量因为气体并不与该膜电极组件接触。
此外, 本发明提供的该阴极流场板可同样提供燃料电池的热和水管理。 相应地, 该膜 电极组件 10需含水量较高以维持低内阻。 当气体吹入通过该流体通道 213时, 其经该冷却 通道 216仅冷却该阴极流场板 21并不加速水蒸发而导致该膜电极组件 10水含量减少。
值得一提的是, 气流并不与该膜电极组件 10接触, 当气流通过该流体通道时是通过无 该冷却通道 216的该流体通道 213。 因此, 当风扇转速增快或减慢时, 仅有部分气流直接影 响水含量但所有气流均有冷却效果。 换言之, 该燃料电池的电池电压相对风扇转速变得更 低敏感度, 当风扇控制被电噪声干扰时却实现一更为稳定的输出电压。
该粘合性密封垫圈 22密封于阳极流场板 21 '的平面侧 21Γ 以防止工作时氢气渗漏。 该密封垫圈 22设有一用于该阳极流场板 21 '的该平面侧 211 '的边缘四周的粘合剂, 以实 现当附着于该阳极流场板 21 '时该密封垫圈粘合于该阳极流场板 2Γ 的边缘四周。 该粘合 方法实现了一更强的密封较于现有技术以实现足够的加压。该粘合性密封垫圈 22同样附着 于该膜电极组件 10与阳极流场板 10将氢密封与内。该膜电极组件 10的弱点消除和氢渗漏 危害降低能够在较高氢压力下操作以达到所列目的: 相较传统型燃料电池改进动力学、 电 池均一性、 负载变化响应和降低 "氢饥饿"可能性。 在高压下操作的另一附加含义是更小 的燃料电池对能够提供相同功率总额相较于现有技术中更大体积的燃料电池堆。
值得一提的是, 无气体渗漏的弱点存在。 当氢压力增加至 3bar.g时 (如传统氢压力的 六倍压力), 未检测到任何氢渗漏。每个电池单元的开路电压均大于 1.0V。该电池堆能以非 常稳定性能运行超过数千计小时。 由于氢压力增加该电池电压的标准差同样也得到提升, 可达 5mV额定输出, 相较于传统型电池电压标准差为 10~12mV。
值得一提的是, 更小的标准差更为接近该电池电压。 因此, 本发明提供的电池堆中的 电池电压均一性可在采用更高氢压力下获得。 值得一提的是, 该电池电压均一性并不仅仅 取决于氢压力, 但更高氢压力可促进该电池电压均一性的获得。 换言之, 该电池堆的输出 电压同样也十分稳定。 根据优选的实施方式, 氢压力能够增至大于 0.5bar.g, 此压力值为传 统型燃料电池的最常见限制点。
归功于本发明优选的该燃料电池实施方式, 阳极板和阴极板所用的材料可选自广泛使 用的导电性金属。 该金属的特性应坚固、 轻便且导电, 但该材料并不局限于金属。 含有石 墨、 碳黑、 碳纤维和 /或纳米碳等导电性复合材料可用于本发明中。
本领域的技术人员应理解, 上述描述及附图中所示的本发明的实施例只作为举例而并 不限制本发明。
由此可见, 本发明之目的已经完整并有效的予以实现。 本发明的功能及结构原理已在 实施例中予以展示和说明, 在不背离所示原理下, 实施方式可作任意修改。 所以, 本发明 包括了基于权利要求精神及权利要求范围的所有变形实施方式。

Claims

权 利 要 求 书
1. 一种燃料电池, 其特征在于, 包括:
一膜电极组件 (MEA); 和
一流场板组, 其包括一阳极流场板和一阴极流场板, 所述膜电极组件密封于所述阳极 和阴极流场板之间, 其中所述阴极流场板包括一平面侧和一反向或逆向的通道侧从而使得 所述膜电极组件夹于所述阳极流场板和所述阴极流场板的平面侧之间, 其中所述阴极流场 板进一步包括一组成型在所述通道侧的流体通道以使流体沿所述流体通道流动, 以促使膜 电极组件发生透过所述膜电极组件的电化学反应膜电极组件从而产生电能。
2. 根据权利要求 1所述的燃料电池, 其特征在于: 所述阴极流场板包括一基体, 其中 所述基体在所述基体的内侧形成所述平面侧, 且一组引导墙相间隔地自所述基体的外侧延 伸以形成所述阴极流场板的所述通道侧, 其中每一个所述流体通道成型在两个所述引导墙 之间。
3. 根据权利要求 1所述的燃料电池,其特征在于所述阴极流场板进一步包括一组冷却 通道, 其中所述冷却通道选择性地与所述流体通道排布成行以用于当所述流体沿所述流体 通道流动时所述阴极流场板的散热所述。
4. 根据权利要求 2所述的燃料电池, 其特征在于: 所述阴极流场板进一步包括一组冷 却通道, 其中所述冷却通道选择性地与所述流体通道排布成行以用于当所述流体沿所述流 体通道流动时所述阴极流场板的散热。
5. 根据权利要求 4所述的燃料电池, 其特征在于: 所述冷却通道为成型在所述基体的 穿透型通道且与所述流体通道相排布。
6. 根据权利要求 4所述的燃料电池, 其特征在于: 所述冷却通道为成型在所述基体的 完全穿透型通道且与所述流体通道相排布。
7. 根据权利要求 5所述的燃料电池, 其特征在于: 所述冷却通道为成型在所述基体的 穿透型通道选择性地与所述流体通道相排布。
8. 根据权利要求 6所述的燃料电池, 其特征在于: 所述冷却通道相互交错排布分布在 所述基体。
9. 根据权利要求 1、 3或 5任一所述的燃料电池, 其特征在于: 所述流场板组进一步 包括两个密封垫圈, 其中所述密封垫圈将所述阳极和阴极流场板与所述膜电极组件相密封, 其中一个密封垫圈被密封和夹在所述阳极流场板和膜电极组件之间, 且另一个密封垫圈被 密封和夹在所述阴极流场板和膜电极组件之间。
10.根据权利要求 9所述的燃料电池, 其特征在于: 每个所述密封垫圈具有一密封在所 述阴极流场板的平面侧周边的空心结构。
11.根据权利要求 9所述的燃料电池, 其特征在于: 所述密封垫圈附于所述阴极流场板 的平面侧和所述膜电极组件之间。
12.—种用于具有一个膜电极组件的燃料电池的阴极流场板组, 其特征在于, 包括: 一阴极流场板, 其具有一个内侧和一个外侧, 所述阴极流场板的内侧为一平面侧, 所 述阴极流场板的平面侧面向所述膜电极组件排布, 所述阴极流场板的外侧形成一通道侧, 所述阴极流场板进一步包括一组成型在所述通道侧的流体通道以使流体沿所述流体通道流 动, 以促使所述膜电极组件发生穿过所述膜电极组件的电化学反应膜电极组件从而产生电 能膜电极组件。
13.根据权利要求 12所述的阴极流场板组, 其特征在于: 所述阴极流场板进一步包括 一组引导墙, 其中所述引导墙相间隔地自所述基体的内侧延伸以形成所述阴极流场板的所 述通道侧, 其中每一个所述流体通道成型在两个所述引导墙之间。
14.根据权利要求 12或 13所述的阴极流场板组, 其特征在于: 所述阴极流场板进一步 包括一组冷却通道, 其中所述冷却通道选择性地与所述流体通道相排布以用于当所述流体 沿所述流体通道流动时所述阴极流场板的散热。
15.根据权利要求 14所述的阴极流场板组, 其特征在于: 所述冷却通道为成型在所述 基体的穿透型通道以选择性地与所述流体通道相排布。
16.根据权利要求 14所述的阴极流场板组, 其特征在于: 所述冷却通道为均匀成型在 在所述基体的完全穿透型通道以选择性地与所述流体通道相排布。
17.根据权利要求 15所述的阴极流场板组, 其特征在于: 所述的冷却通道定位在每隔 一个的所述流体通道。
18. 根据权利要求 15所述的阴极流场板组, 其特征在于: 所述冷却通道相互交错地排 布在所述基体。
19.根据权利要求 12所述的阴极流场板组, 其特征在于: 还进一步包括一密封垫圈, 其中所述密封垫圈密封在所述阴极流场板的所述平面侧以用于密封所述膜电极组件。
20.根据权利要求 19所述的阴极流场板组, 其特征在于: 每个所述密封垫圈具有一密 封在所述阴极流场板的平面侧周边的空心结构。
PCT/CN2014/080282 2013-06-26 2014-06-19 一种pem燃料电池堆 WO2014206237A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310258411.6A CN104253277A (zh) 2013-06-26 2013-06-26 一种pem燃料电池堆
CN201310258411.6 2013-06-26
US14/029,762 2013-09-17
US14/029,762 US9225025B2 (en) 2013-03-18 2013-09-17 PEM fuel cell stack

Publications (1)

Publication Number Publication Date
WO2014206237A1 true WO2014206237A1 (zh) 2014-12-31

Family

ID=52141042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080282 WO2014206237A1 (zh) 2013-06-26 2014-06-19 一种pem燃料电池堆

Country Status (2)

Country Link
CN (1) CN104253277A (zh)
WO (1) WO2014206237A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017083968A1 (en) 2015-11-17 2017-05-26 Hydrogenics Corporation Flow fields for electrochemical cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428672B (zh) * 2015-12-15 2018-01-30 江苏氢电新能源有限公司 一种高功率密度pemfc电堆专用极板的内嵌密封方法
CN105428678A (zh) * 2015-12-15 2016-03-23 江苏绿遥燃料电池系统制造有限公司 一种高功率密度pemfc电堆用密封连接件
WO2017181533A1 (zh) * 2016-04-21 2017-10-26 武汉众宇动力系统科技有限公司 Pem燃料电池堆及其流场板组
CN105870476B (zh) * 2016-04-21 2019-06-07 武汉众宇动力系统科技有限公司 Pem燃料电池堆及其流场板组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118969A (zh) * 2007-09-28 2008-02-06 清华大学 耦合储氢单元的燃料电池
CN101436676A (zh) * 2008-11-28 2009-05-20 中国科学院上海微系统与信息技术研究所 平板式微型直接醇类燃料电池组及其制作方法
CN202363537U (zh) * 2011-12-08 2012-08-01 南京大学 一种质子交换膜燃料电池空气流场板
CN102683719A (zh) * 2012-05-14 2012-09-19 南京大学(苏州)高新技术研究院 一种燃料电池阴极专用的双极板
CN102683718A (zh) * 2012-05-14 2012-09-19 南京大学(苏州)高新技术研究院 一种用于燃料电池的双极板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118969A (zh) * 2007-09-28 2008-02-06 清华大学 耦合储氢单元的燃料电池
CN101436676A (zh) * 2008-11-28 2009-05-20 中国科学院上海微系统与信息技术研究所 平板式微型直接醇类燃料电池组及其制作方法
CN202363537U (zh) * 2011-12-08 2012-08-01 南京大学 一种质子交换膜燃料电池空气流场板
CN102683719A (zh) * 2012-05-14 2012-09-19 南京大学(苏州)高新技术研究院 一种燃料电池阴极专用的双极板
CN102683718A (zh) * 2012-05-14 2012-09-19 南京大学(苏州)高新技术研究院 一种用于燃料电池的双极板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017083968A1 (en) 2015-11-17 2017-05-26 Hydrogenics Corporation Flow fields for electrochemical cell
EP3377677A4 (en) * 2015-11-17 2019-07-31 Hydrogenics Corporation FLOW FIELDS FOR ELECTROCHEMICAL CELL
US10847813B2 (en) 2015-11-17 2020-11-24 Hydrogenics Corporation Flow fields for electrochemical cell

Also Published As

Publication number Publication date
CN104253277A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
US7875396B2 (en) Membrane humidifier for a fuel cell
JP5608713B2 (ja) 燃料電池スタック
WO2014206237A1 (zh) 一种pem燃料电池堆
US8003273B2 (en) Polymer electrolyte fuel cell and fuel cell sealing member for the same
JP2009009838A (ja) 燃料電池
JP2000100457A (ja) 燃料電池
WO2005074062A1 (ja) 高分子電解質型燃料電池
KR20130057716A (ko) 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 전해질 연료전지
US20090136807A1 (en) Mea component, and polymer electrolyte fuel cell
US10396368B2 (en) PEM fuel cell stack
US9225025B2 (en) PEM fuel cell stack
US11489173B2 (en) Fuel cell and fuel cell stack comprising same
JP4859281B2 (ja) 高分子電解質型燃料電池用膜電極接合体
CA2908255C (en) Fuel battery cell
CN203850383U (zh) 一种pem燃料电池组的阴极流场板
JP2001126743A (ja) 高分子電解質型燃料電池
JP2003297389A (ja) 高分子電解質型燃料電池
JP2019033000A (ja) 燃料電池
JPH07135007A (ja) 燃料電池
WO2017181533A1 (zh) Pem燃料电池堆及其流场板组
TWM264664U (en) Bipolar plate for air-cooled proton exchange membrane fuel cell stack
JP2001093548A (ja) 高分子電解質型燃料電池の製造方法
JP2008198511A (ja) 燃料電池
KR20090041798A (ko) 연료전지
JP2008034158A (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817072

Country of ref document: EP

Kind code of ref document: A1