WO2014205853A1 - 测量方法及设备 - Google Patents

测量方法及设备 Download PDF

Info

Publication number
WO2014205853A1
WO2014205853A1 PCT/CN2013/078520 CN2013078520W WO2014205853A1 WO 2014205853 A1 WO2014205853 A1 WO 2014205853A1 CN 2013078520 W CN2013078520 W CN 2013078520W WO 2014205853 A1 WO2014205853 A1 WO 2014205853A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing module
module
digital signal
uplink
digital
Prior art date
Application number
PCT/CN2013/078520
Other languages
English (en)
French (fr)
Inventor
刘中全
易秦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001809.XA priority Critical patent/CN104969601B/zh
Priority to PCT/CN2013/078520 priority patent/WO2014205853A1/zh
Publication of WO2014205853A1 publication Critical patent/WO2014205853A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to communication technologies, and in particular, to a measurement method and device. Background technique
  • Radio Remote Units RRUs
  • FIG. 1 is a schematic diagram of radio frequency monitoring in the prior art.
  • uplink data or downlink data of an existing base station is directed through a baseband module 31, a transmission channel 32, a receiving channel 33, and a duplexer 34.
  • the antenna 35 performs normal transmission.
  • the output of the radio frequency module 30 of the base station is provided with a directional coupler 36.
  • the engineer connects the spectrum analyzer 37 with the directional coupler 36 to obtain the downlink coupled by the directional coupler 36. signal.
  • the engineer analyzes the acquired downlink data through the spectrum analyzer 37, and monitors the Adjacent Channel power Leakage Ratio (ACLR), the error vector magnitude (Error Vector Magnitude, EVM), and the frequency offset. Indicators to achieve measurement of the downlink spectrum of the base station.
  • ACLR Adjacent Channel power Leakage Ratio
  • EVM Error Vector Magnitude
  • EVM Error Vector Magnitude
  • the present invention provides a measurement method and device, which can solve the problem that the measurement efficiency caused by the downlink spectrum measurement in the field after the measurement device must be connected to the base station and the like in the prior art is low.
  • a first aspect of the present invention provides an apparatus, where the apparatus includes: a downlink digital processing module, a downlink analog processing module, a coupler, a measurement module, and an acquisition module;
  • the device further includes: a feedback channel processing module, and/or the device further includes: an uplink analog processing module and an uplink digital processing module; among them,
  • the downlink digital processing module is configured to acquire a first downlink digital signal, perform digital processing on the first downlink digital signal, and generate a second digital signal to provide a downlink analog processing module;
  • the downlink analog processing module is configured to convert the second digital signal into a radio frequency signal, and provide the radio frequency signal to the coupler;
  • the coupler is configured to proportionally allocate the radio frequency signal to obtain a first sub-radio signal, and provide the first sub-radio signal to the feedback channel processing module or the uplink analog processing module;
  • the feedback channel processing module is configured to perform analog-to-digital conversion of the first sub-radio frequency signal into a third digital signal, and provide the third digital signal to the measurement module;
  • the uplink analog processing module is configured to perform analog-to-digital conversion of the first sub-radio signal into a fourth digital signal, and provide the fourth digital signal to the uplink digital processing module;
  • the uplink analog processing module is configured to perform digital processing on the fourth digital signal, and generate a fifth digital signal to be provided to the measurement module;
  • the measuring module is configured to acquire spectrum measurement information of the third digital signal or the fifth digital signal, and provide the information to the collecting module;
  • the collecting module is configured to display the spectrum measurement information, or send the spectrum measurement information to a centralized gateway system.
  • the method further includes: a switch; the switch is connected to the coupler, and is configured to establish that the coupler connects the measurement through the feedback channel processing module The first feedback path of the module; and/or,
  • the switch is configured to establish a second feedback path of the coupler connecting the measurement module through the uplink analog processing module and the uplink digital processing module.
  • the method further includes: a controller;
  • the controller is connected to the switch, configured to control the switch to communicate with the feedback channel processing module when the second feedback path resource is saturated; and/or, when the first feedback path resource is saturated And controlling the switch to communicate with the uplink analog processing module.
  • the measuring module or the collecting module is further configured to: The operating frequency is converted from the upstream frequency to the downstream frequency;
  • the uplink analog processing module is specifically configured to perform analog-to-digital conversion of the first sub-RF signal into a fourth digital signal based on the downlink frequency, And providing the fourth digital signal to the uplink digital processing module;
  • the uplink digital processing module is specifically configured to perform digital processing on the fourth digital signal based on the downlink frequency, and generate a fifth digital signal to provide to the measurement module.
  • the device further includes: an antenna;
  • the antenna is coupled to the coupler for transmitting the radio frequency signal; and/or,
  • the antenna is connected to the uplink analog processing module, and configured to receive an uplink signal, and provide the uplink signal to the uplink analog processing module.
  • the acquiring module is further configured to trigger the measurement module to acquire the third digital signal or the Spectrum measurement information for five digital signals.
  • the spectrum measurement information includes at least one of the following: adjacent channel power leakage ratio ACLR; error vector magnitude EVM; frequency Offset; output power.
  • the device is a base station, a small base station, a small cell, or a radio remote module RRU.
  • a second aspect of the present invention provides a measurement method comprising:
  • the measuring module acquires spectrum measurement information of the third digital signal or the fifth digital signal
  • the measuring module provides the spectrum measurement information to an acquisition module
  • the acquiring, by the measurement module, the spectrum measurement information of the third digital signal or the fifth digital signal includes: the measurement module acquiring spectrum measurement information of the third digital signal from a feedback channel processing module, and/or The measurement module acquires spectrum measurement information of the fifth digital signal from an uplink digital processing module;
  • the third digital signal is generated by analog-to-digital conversion of the first sub-RF signal by the feedback channel processing module, and the fifth digital signal is performed by the uplink digital processing module on the fourth digital signal.
  • the fourth digital signal is generated by analog-to-digital conversion of the first sub-RF signal by the uplink analog processing module; the first sub-RF signal is a proportional distribution of the RF signal by the coupler.
  • the radio frequency signal is obtained by converting a second digital signal by a downlink analog processing module, where the second digital signal is digitally processed by the downlink digital processing module to generate the first downlink digital signal. of;
  • the feedback channel processing module, the uplink analog processing module, the downlink digital processing module, the downlink digital processing module, the downlink analog processing module, the coupler, the measurement module, and the acquisition module Located in a communication device.
  • the obtaining, by the measuring module, the spectrum measurement information of the fifth digital signal from the uplink digital processing module includes:
  • the measurement module measures spectral measurement information of the fifth digital signal obtained based on the downlink frequency.
  • the measurement module converts an operating frequency of the uplink analog processing module from an uplink frequency to the downlink frequency
  • the operating frequency of the upstream digital processing module is converted from the upstream frequency to the downstream frequency.
  • the measuring module acquires spectrum measurement information of the third digital signal or the fifth digital signal Previously, it also included:
  • the measurement module receives a trigger of the collection module, and the trigger is used to instruct the measurement module to acquire spectrum measurement information of the third digital signal or the fifth digital signal.
  • the spectrum measurement information includes at least one of the following: adjacent channel power leakage ratio ACLR; error vector magnitude EVM; frequency Offset; output power.
  • the device is a base station, a small base station, a small cell, or a radio remote module RRU.
  • a device that uses the above technical solution such as a base station, a small cell (Small Cell), or an RRU, can obtain a signal that the downlink digital signal loops back through the feedback channel of the device through the measurement module inside the device, and calculates spectrum measurement information, without external measurement. Equipment, effectively improving measurement efficiency and reducing measurement costs.
  • FIG. 2 is a schematic structural diagram of a device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a device according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a measurement method according to Embodiment 3 of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 2 is a schematic structural diagram of a device according to Embodiment 1 of the present invention, where the device may be a base station, a small base station, or an RRU.
  • the device includes: a downlink digital processing module 10, a downlink analog processing module 11, a coupler 12, a measurement module 13, and an acquisition module 14; the device further includes: a feedback channel processing module 15, and/or a device Also included: an upstream analog processing module 16 and an upstream digital processing module 17.
  • the device includes: a downlink digital processing module 10, a downlink analog processing module 11, a coupler 12, a measurement module 13, and an acquisition module 14; the device further includes: a feedback channel processing module 15, and/or a device Also included: an upstream analog processing module 16 and an upstream digital processing module 17.
  • the device includes: a downlink digital processing module 10, a downlink analog processing module 11, a coupler 12, a measurement module 13, and an acquisition module 14; the device further includes: a feedback channel processing module 15, and/or a device Also included: an
  • the downlink digital processing module 10 is configured to acquire the first downlink digital signal, perform digital processing on the first downlink digital signal, and generate a second digital signal to provide to the downlink analog processing module 11.
  • the digital processing performed by the downlink digital processing module 10 on the first downlink digital signal may be a conventional digital processing performed by the device on the first downlink digital signal.
  • the first downlink digital signal may be a downlink vector digital signal output by a baseband processing module, and may also be referred to as a downlink IQ digital signal.
  • the downlink analog processing module 11 is configured to convert the second digital signal into a radio frequency signal, and the radio frequency signal The number is supplied to the coupler 12.
  • the coupler 12 is configured to proportionally allocate the radio frequency signal to obtain the first sub-radio signal, and provide the first sub-radio signal to the feedback channel processing module 15 or the uplink analog processing module 16. For example, the coupler 12 distributes the radio frequency signals into a plurality of sub-radio signals by a certain power ratio, and couples the first sub-radio signals to the feedback channel processing module 15.
  • the feedback channel processing module 15 is configured to perform analog-to-digital conversion of the first sub-radio signal into a third digital signal, and provide the third digital signal to the measurement module 13.
  • the uplink analog processing module 16 is configured to perform analog-to-digital conversion of the first sub-radio signal into a fourth digital signal, and provide the fourth digital signal to the upstream digital processing module 17.
  • the upstream digital processing module 17 is configured to digitally process the fourth digital signal to generate a fifth digital signal for providing to the measurement module 13.
  • the digital processing performed by the upstream digital processing module 17 on the fourth digital signal is a conventional digital processing performed by the device on the fourth digital signal.
  • the measurement module 13 is configured to acquire spectrum measurement information of the third digital signal or the fifth digital signal, and provide the information to the acquisition module 14. For example, the measurement module 13 periodically or real-time measures the parameters related to the spectrum measurement information of the third digital signal or the fifth digital signal, and calculates the spectrum measurement information according to the measured parameters, and then provides the spectrum measurement information to the acquisition module 14 . .
  • the acquisition module 14 is configured to display spectrum measurement information, or send the spectrum measurement information to the centralized gateway system.
  • the acquisition module 14 displays the spectrum measurement information through the display screen, and the display screen is a display screen of the device provided by the embodiment, or a display screen of other devices connected to the device provided in this embodiment.
  • the acquisition module 14 transmits the spectrum measurement information to the centralized gateway system through a network or an optical fiber.
  • the centralized gateway system can connect to each device in the network through a network connection. After receiving the spectrum measurement information sent by the collection module 14 on each device, the centralized gateway system can display the spectrum measurement information to the network maintenance personnel, so that the network maintenance personnel can understand the network situation as a whole and facilitate network maintenance.
  • the device provided in this embodiment can obtain the signal that the downlink digital signal loops back through the feedback channel inside the device through the measurement module inside the device, and calculate the spectrum measurement information, thereby effectively improving the measurement efficiency and reducing the measurement cost.
  • the downlink digital processing module 10 and the uplink digital processing module 17 are also provided.
  • the baseband processing module of the standby device is connected, the downlink digital processing module 10 acquires the first downlink digital signal from the baseband processing module, and the upstream digital processing module 17 transmits the fifth digital signal to the baseband processing module.
  • the feedback channel processing module 15 includes multiple components, for example, and may include at least one component: (1) for a device having multiple transmission channels, where the downlink data processing module, the downlink analog processing module, and the coupler And the antenna can form a transmitting channel, and each of the transmitting channels can correspond to a feedback channel processing module 15. If multiple transmitting channels correspond to one feedback channel processing module 15, the feedback channel processing module 15 can be configured with an RF switch, which is mainly used for Another transmit channel time division multiplexing feedback channel performs switching selection. Gp, the RF switch selects a transmission channel for a period of time, and by switching, the RF switch selects another transmission channel for another period of time.
  • a mixer for converting the first sub-radio signal received from the coupler into an intermediate frequency signal.
  • a filter for filtering unwanted frequency band signals in the intermediate frequency signal.
  • a variable gain amplifier for amplifying the IF signal.
  • An analog-to-digital converter for converting the IF signal modulus into a digital signal, that is, a third digital signal.
  • FIG. 3 is a schematic structural diagram of a device according to Embodiment 2 of the present invention, where the device may be a base station, a small base station, or an RRU.
  • the device may be a base station, a small base station, or an RRU.
  • the following is a description of the difference between the device provided in the second embodiment and the device provided in the first embodiment.
  • the former can be considered as an application example of the latter.
  • the device further includes: a switch 18.
  • the switch 18 is connected to the coupler 12 for establishing a first feedback path of the coupler 12 via the feedback channel processing module 15 to the measurement module 13; and/or the switch 18 is used to establish the coupler 12 through the uplink analog processing module. 16 and the upstream digital processing module 17 communicate with the second feedback path of the measurement module 13.
  • the measurement module 13 can obtain the first downlink digital signal and output the signal from the feedback channel processing module 15 and the uplink digital processing module 17 through a series of processes through one or both of the first feedback path and the second feedback path.
  • the digital signal or alternatively, obtains the first sub-radio signal output from the coupler 12.
  • the first feedback path is a path from the coupler 12 to the feedback channel processing module 15 to the measurement module 13;
  • the second feedback path is from the coupler 12 to the uplink analog processing module 16, and then to the uplink digital processing.
  • Module 17 then to the path of measurement module 13.
  • the device further includes: a controller 19.
  • the controller 19 is coupled to the switch 18 for controlling the control switch 18 to communicate with the feedback channel processing module 15 when the second feedback path resource is saturated; and/or, when the first feedback path resource is saturated, the control switch 18 and the upstream analog
  • the processing module 16 is in communication.
  • FDD frequency division duplex
  • the working frequency of the uplink analog processing module 16 and the uplink digital processing module 17 is an uplink frequency, that is, the frequency of the uplink signal received by the device, and the downlink frequency is different from the uplink frequency, so the measurement module 13 or the acquisition module 14 is also used for
  • the operating frequency of the uplink analog processing module 16 is converted from the uplink frequency to the downlink frequency
  • the operating frequency of the uplink digital processing module 17 is converted from the uplink frequency to the downlink frequency.
  • the acquisition module 14 will be described below as an example.
  • the acquisition module 14 instructs the uplink analog processing module 16 and the uplink digital processing module 17, and the uplink analog processing module 16 modifies the frequency of the local oscillator from the uplink frequency to the downlink frequency according to the indication, and the uplink digital processing module 17 localizes the local oscillator according to the indication.
  • the frequency is modified from the upstream frequency to the downstream frequency.
  • the uplink analog processing module 16 is specifically configured to perform analog-to-digital conversion of the first sub-radio signal to a fourth digital signal based on the downlink frequency, and provide the fourth digital signal to the uplink digital processing module 17.
  • the uplink digital processing module 17 is specifically configured to digitally process the fourth digital signal based on the downlink frequency, and generate a fifth digital signal to provide to the measurement module 13.
  • the measurement module 13 acquires the spectrum measurement information of the fifth digital signal obtained based on the downlink frequency processing, so as to accurately obtain the spectrum measurement information of the device downlink digital signal according to the fifth digital signal.
  • the third digital signal obtained by the measurement module 13 through the first feedback path is The fifth digital signal acquired by the measurement module 13 through the second feedback path is the same.
  • the device further includes: an antenna 20.
  • the antenna 20 is connected to the coupler 12 for transmitting a radio frequency signal; and/or the antenna 20 is connected to the uplink analog processing module 16 for receiving an uplink signal and providing the uplink signal to the uplink analog processing module 16.
  • the antenna 20 in the device is used to transmit radio frequency signals to other devices (such as terminals) or to receive uplink signals sent by other devices (such as terminals).
  • the acquiring module 14 is further configured to trigger the measurement module 13 to acquire spectrum measurement information of the third digital signal or the fifth digital signal.
  • the maintenance personnel of the network need to perform routine detection on the devices in the network.
  • the maintenance personnel can use the human-machine interaction interface of the collection module 14 to control the collection module 14 to trigger the startup of the measurement process for the spectrum measurement information.
  • the measurement module 13 After receiving the trigger sent by the acquisition module 14, the measurement is started. That is, the spectrum measurement information of the third digital signal and/or the fifth digital signal is acquired. It can be understood that, since the collection module 14 can be connected to the centralized network management system of the network, the maintenance personnel can perform unified control and information measurement on each device of the entire network through the centralized network management system, thereby effectively improving efficiency.
  • Method 1 Trigger measurement module 13 Calculate the spectrum measurement information based on the parameters related to the spectrum measurement information. For example, the measurement module 13 periodically or real-time measures the parameters related to the spectrum measurement information of the third digital signal and/or the fifth digital signal. When the acquisition module 14 triggers the measurement module 13, the measurement module 13 calculates the parameters according to the measured parameters. The spectrum measurement information is provided to the acquisition module 14.
  • Method 2 Trigger Measurement Module 13 Start measuring parameters related to spectrum measurement information.
  • the measurement module 13 does not perform any measurement operation, but starts to periodically or in real time measure the third digital signal and/or the fifth digital signal upon receiving the trigger of the acquisition module 13.
  • the parameters related to the spectrum measurement information are calculated according to the measured parameters, and are provided to the acquisition module 14.
  • Mode 3 The trigger measurement module 13 provides spectrum measurement information.
  • the measurement module 13 may have calculated the spectrum measurement information, and after the acquisition module 14 triggers the measurement module 13, the measurement module 13 provides the spectrum measurement information to the acquisition module 14.
  • the spectrum measurement information includes at least one of the following: Adjacent Channel power Leakage Ratio (ACLR); Error Vector Magnitude (EVM) ); frequency offset; output power.
  • ACLR Adjacent Channel power Leakage Ratio
  • EVM Error Vector Magnitude
  • ACLR is defined as the ratio of the average power in the target channel to the average power in an adjacent channel. Therefore, when the ACLR needs to be measured, the measurement module 13 can measure the target channel of the third digital signal or the fifth digital signal and the spectrum measurement information. The average power in and the average power in an adjacent channel, and calculate the ratio of the average power to the average power in an adjacent channel to obtain the ACLR.
  • EVM is widely used in digital communication systems to characterize the quality of signal modulation. By measuring the EVM indicator of the received signal, it is possible to detect the damage that the signal is subjected to during modulation or during transmission.
  • EVM is defined as the difference in amplitude between the reference signal and the actual transmitted signal. Therefore, when it is required to measure the EVM, the measurement module 13 can measure the amplitude and reality of the reference signal of the third digital signal or the fifth digital signal and the spectrum measurement information. The amplitude of the transmitted signal is calculated, and the difference in amplitude between the reference signal and the actual transmitted signal is calculated to obtain the EVM.
  • the measurement method provided in Embodiment 3 of the present invention as shown in FIG. The measuring method can include the following steps.
  • the execution body of the method may be the measurement module of the device in Embodiment 1 and Embodiment 2.
  • Step 110 The measurement module acquires spectrum measurement information of the third digital signal or the fifth digital signal.
  • Step 120 The measurement module provides spectrum measurement information to the collection module.
  • the acquiring, by the measurement module, the spectrum measurement information of the third digital signal or the fifth digital signal includes: the measurement module acquires spectrum measurement information of the third digital signal from the feedback channel processing module, and/or, the measurement module obtains the first digital processing module from the uplink digital processing module. Spectral measurement information of five digital signals;
  • the third digital signal is generated by the feedback channel processing module performing analog-to-digital conversion on the first sub-radio signal
  • the fifth digital signal is generated by analog-to-digital conversion of the fourth digital signal by the uplink digital processing module
  • the fourth digital The signal is generated by analog-to-digital conversion of the first sub-RF signal by the uplink analog processing module
  • the first sub-RF signal is obtained by the coupler distributing the RF signal proportionally
  • the RF signal is obtained by the downlink analog processing module.
  • the second digital signal is generated by digital processing of the first downlink digital signal obtained by the downlink digital processing module;
  • the feedback channel processing module, the uplink analog processing module, the uplink digital processing module, the downlink digital processing module, the downlink analog processing module, the coupler, the measurement module, and the acquisition module are located in a communication device.
  • the measurement module inside the device acquires the spectrum measurement information of the third digital signal or the fifth digital signal, and the measurement module provides the spectrum measurement information to the acquisition module.
  • the base station, the small base station or the RRU obtains the signal looped back by the feedback channel of the downlink digital signal through the internal measurement module of the device, and calculates the spectrum measurement information, thereby effectively improving the measurement efficiency and reducing the measurement cost.
  • the measurement module acquires the fifth digital signal from the uplink digital processing module.
  • the spectrum measurement information may include: the measurement module measures the spectrum measurement information of the fifth digital signal obtained based on the downlink frequency.
  • the uplink analog processing module performs analog-to-digital conversion of the first sub-radio signal into a fourth digital signal based on the downlink frequency, and provides the fourth digital signal to the uplink digital processing module.
  • the uplink digital processing module digitally processes the fourth digital signal based on the downlink frequency to generate a fifth digital signal for providing to the measurement module.
  • the method further includes the step 100a: the measuring module converts the operating frequency of the uplink analog processing module from the uplink frequency to the downlink frequency, and converts the working frequency of the uplink digital processing module from the uplink frequency to the downlink frequency.
  • the measurement module measures spectrum measurement information of the fifth digital signal obtained based on the downlink frequency.
  • the method further includes the step 100b: the measurement module receives a trigger of the acquisition module, where the trigger is used to instruct the measurement module to acquire spectrum measurement information of the third digital signal or the fifth digital signal.
  • the device is an FDD device, and the step 100b is performed before the step 100a.
  • the embodiment of the present invention does not limit the execution sequence of the step 110a and the step 110b, and the device implementation step 110 can be satisfied.
  • the device may complete the measurement process of step 110 by referring to the example support measurement module provided by the foregoing embodiment of the present invention.
  • the spectrum measurement information may include at least one of the following: ACLR; EVM; frequency offset; output power.
  • the device to which the method provided in this embodiment is applied may be a base station, a small base station, or an RRU.
  • the device applying the method provided in this embodiment can obtain the signal that the downlink digital signal loops back through the feedback channel of the device through the measurement module inside the device, and calculate the spectrum measurement information, thereby effectively improving the measurement efficiency and reducing the measurement cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种测量方法及设备。将测量模块设置在该设备内部,与该设备的反馈通道处理模块或者上行模拟处理模块连接,第一上行数字信号经过该设备内部的第一反馈通路中一系列模块处理后得到的第三数字信号,测量模块获取第三数字信号的频谱测量信息,或者,该设备的第一上行数字信号经该设备内部的第二反馈通路中一系列模块处理后得到的第五数字信号,测量模块获取第五数字信号的频谱测量信息,测量模块将经过上述两种方式获得频谱测量信息提供给采集模块。由采集模块显示频谱测量信息,或者,将频谱测量信息发送给集中网关系统。实现了基站、小基站或者RRU通过设备内部的测量模块获取下行数字信号并计算得到频谱测量信息,有效地提高了测量效率。

Description

测量方法及设备
技术领域
本发明涉及通信技术, 尤其涉及一种测量方法及设备。 背景技术
随着通信技术的不断发展, 如何有效地对基站、 小基站或者射频拉远模 块 (Radio Remote Unit, 简称: RRU) 的性能进行测试成为了通信行业关注 的一个重点。
图 1为现有技术的射频监控示意图, 以基站为例, 如图 1所示, 在现有 基站上行数据或者下行数据通过基带模块 31、 发射通道 32、 接收通道 33、 双工器 34, 定向天线 35进行正常的传输。 而基站的射频模块 30的输出端设 置有一定向耦合器 36, 当需要对基站进行下行频谱测量时, 工程人员通过将 频谱仪 37与该定向耦合器 36连接,获取定向耦合器 36耦合出来的下行信号。 工程人员通过频谱仪 37对获取到的下行数据进行分析, 监测邻道功率泄露 比(Adjacent Channel power Leakage Ratio , 简称: ACLR)、 误差矢量幅度 (Error Vector Magnitude, 简称: EVM)以及频率偏移等指标, 从而实现对基 站下行频谱的测量。
但是, 现有技术中, 对于基站等设备的下行频谱的测量, 需要工程人员 携带频谱仪等测量设备到达该设备地点, 将测量设备与基站等设备连接后, 进行实地测量, 效率较低。 发明内容
本发明提供一种测量方法及设备,能够解决现有技术中必须将测量设 备与基站等设备连接后进行实地下行频谱测量造成的测量效率较低的问题。
本发明的第一方面是提供一种设备, 所述设备包括: 下行数字处理模块、 下行模拟处理模块、 耦合器、 测量模块和采集模块;
所述设备还包括: 反馈通道处理模块, 和 /或, 所述设备还包括: 上行模 拟处理模块和上行数字处理模块; 其中,
所述下行数字处理模块用于获取第一下行数字信号, 并对所述第一下行 数字信号进行数字处理, 生成第二数字信号提供给下行模拟处理模块;
所述下行模拟处理模块用于将所述第二数字信号转换为射频信号, 并将 所述射频信号提供给所述耦合器;
所述耦合器用于将所述射频信号按比例分配获得第一子射频信号, 并将 所述第一子射频信号提供给所述反馈通道处理模块或者所述上行模拟处理模 块;
所述反馈通道处理模块用于将所述第一子射频信号进行模数转换为第三 数字信号, 并将所述第三数字信号提供给所述测量模块;
所述上行模拟处理模块用于将所述第一子射频信号进行模数转换为第四 数字信号, 并将所述第四数字信号提供给所述上行数字处理模块;
所述上行模拟处理模块用于对所述第四数字信号进行数字处理, 生成第 五数字信号提供给所述测量模块;
所述测量模块用于获取所述第三数字信号或者所述第五数字信号的频谱 测量信息, 并提供给所述采集模块;
所述采集模块用于显示所述频谱测量信息, 或者, 将所述频谱测量信息 发送给集中网关系统。
结合本发明第一方面, 在第一种可能的实现方式中, 还包括: 开关; 所述开关与所述耦合器相连, 用于建立所述耦合器经过所述反馈通道处 理模块连通所述测量模块的第一反馈通路; 和 /或,
所述开关用于建立所述耦合器经过所述上行模拟处理模块和上行数字处 理模块连通所述测量模块的第二反馈通路。
结合本发明第一方面的第一种可能的实现方式, 在第二种可能的实现方 式中, 还包括: 控制器;
所述控制器与所述开关相连, 用于在所述第二反馈通路资源饱和时, 控 制所述开关与所述反馈通道处理模块连通; 和 /或, 在所述第一反馈通路资源 饱和时, 控制所述开关与所述上行模拟处理模块连通。
结合本发明第一方面以及第一方面上述可能的实现方式, 在第三种可能 的实现方式中, 所述测量模块或者采集模块还用于: 将上行模拟处理模块的 工作频率由上行频率转换为下行频率;
以及, 将上行数字处理模块的工作频率由上行频率转换为下行频率; 所述上行模拟处理模块具体用于基于所述下行频率将所述第一子射频信 号进行模数转换为第四数字信号, 并将所述第四数字信号提供给所述上行数 字处理模块;
所述上行数字处理模块具体用于基于所述下行频率对所述第四数字信号 进行数字处理, 生成第五数字信号提供给所述测量模块。
结合本发明第一方面以及第一方面上述可能的实现方式, 在第四种可能 的实现方式中, 所述设备还包括: 天线;
所述天线与所述耦合器相连, 用于发射所述射频信号; 和 /或,
所述天线与所述上行模拟处理模块相连, 用于接收上行信号, 并将所述 上行信号提供给所述上行模拟处理模块。
结合本发明第一方面以及第一方面上述可能的实现方式, 在第五种可能 的实现方式中, 所述采集模块, 还用于触发所述测量模块获取所述第三数字 信号或者所述第五数字信号的频谱测量信息。
结合本发明第一方面以及第一方面上述可能的实现方式, 在第六种可能 的实现方式中, 所述频谱测量信息包含以下至少一项: 邻道功率泄露比 ACLR; 误差矢量幅度 EVM; 频率偏移; 输出功率。
结合本发明第一方面以及第一方面上述可能的实现方式, 在第七种可能 的实现方式中, 所述设备为基站、小基站 Small Cell或者射频拉远模块 RRU。
本发明的第二方面是提供一种测量方法, 包括:
测量模块获取所述第三数字信号或者所述第五数字信号的频谱测量信 息;
所述测量模块将所述频谱测量信息提供给采集模块;
其中, 所述测量模块获取所述第三数字信号或者所述第五数字信号的频 谱测量信息包括: 所述测量模块从反馈通道处理模块获取所述第三数字信号 的频谱测量信息, 和 /或, 所述测量模块从上行数字处理模块获取所述第五数 字信号的频谱测量信息;
所述第三数字信号是由反馈通道处理模块对第一子射频信号进行模数转 换后生成的, 所述第五数字信号是由上行数字处理模块对第四数字信号进行 模数转换后生成的, 所述第四数字信号是由上行模拟处理模块对第一子射频 信号进行模数转换后生成的; 所述第一子射频信号是耦合器将射频信号按比 例分配后获得的, 所述射频信号是由下行模拟处理模块将第二数字信号进行 转换后获得的, 所述第二数字信号是由下行数字处理模块对获取的第一下行 数字信号进行数字处理之后生成的;
其中, 所述反馈通道处理模块、 所述上行模拟处理模块、 所述上行数字 处理模块所述下行数字处理模块、 所述下行模拟处理模块、 所述耦合器、 所 述测量模块和所述采集模块位于一个通信设备中。
结合本发明第二方面, 在第一种可能的实现方式中, 所述测量模块从上 行数字处理模块获取所述第五数字信号的频谱测量信息包括:
所述测量模块测量获取基于下行频率得到的所述第五数字信号的频谱测 量信息。
结合本发明第二方面以及第二方面的第一种可能的实现方式, 在第二种 可能的实现方式中, 测量模块将上行模拟处理模块的工作频率由上行频率转 换为所述下行频率, 将上行数字处理模块的工作频率由所述上行频率转换为 所述下行频率。
结合本发明第二方面以及第二方面的上述各个可能的实现方式, 在第三 种可能的实现方式中, 所述测量模块获取所述第三数字信号或者所述第五数 字信号的频谱测量信息之前, 还包括:
所述测量模块收到所述采集模块的触发, 所述触发用于指示所述测量模 块获取所述第三数字信号或者所述第五数字信号的频谱测量信息。
结合本发明第二方面以及第二方面上述可能的实现方式, 在第四种可能 的实现方式中, 所述频谱测量信息包含以下至少一项: 邻道功率泄露比 ACLR; 误差矢量幅度 EVM; 频率偏移; 输出功率。
结合本发明第二方面以及第二方面上述可能的实现方式, 在第五种可能 的实现方式中, 所述设备为基站、小基站 Small Cell或者射频拉远模块 RRU。
应用上述技术方案的设备, 例如基站、 小基站 (Small Cell) 或者 RRU 可以通过设备内部的测量模块获取下行数字信号经由设备内部的反馈通道环 回的信号, 并计算得到频谱测量信息, 无需外接测量设备, 有效地提高了测 量效率, 降低了测量成本。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图做一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为现有技术的射频监控示意图;
图 2为本发明实施例一提供的设备的结构示意图;
图 3为本发明实施例二提供的设备的结构示意图;
图 4为本发明实施例三提供的测量方法的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明实施例一提供的设备的结构示意图, 该设备可以为基站、 小基站或者 RRU。 如图 2所示, 该设备包括: 下行数字处理模块 10、 下行 模拟处理模块 11、 耦合器 12、 测量模块 13和采集模块 14; 该设备还包括: 反馈通道处理模块 15, 和 /或, 设备还包括: 上行模拟处理模块 16和上行数 字处理模块 17。 以下对各模块举例说明。
下行数字处理模块 10用于获取第一下行数字信号,并对第一下行数字信 号进行数字处理, 生成第二数字信号提供给下行模拟处理模块 11。 可选地, 下行数字处理模块 10对第一下行数字信号进行的数字处理,可以为设备对第 一下行数字信号进行的常规数字处理。 其中, 第一下行数字信号可能是基带 (Base Band) 处理模块输出的下行矢量数字信号, 也可称为下行 IQ数字信 号。
下行模拟处理模块 11用于将第二数字信号转换为射频信号,并将射频信 号提供给耦合器 12。
耦合器 12用于将射频信号按比例分配获得第一子射频信号,并将第一子 射频信号提供给反馈通道处理模块 15或者上行模拟处理模块 16。 例如, 耦 合器 12通过一定功率比例, 将射频信号分配成多个子射频信号, 并将其中的 第一子射频信号耦合给反馈通道处理模块 15。
反馈通道处理模块 15 用于将第一子射频信号进行模数转换为第三数字 信号, 并将第三数字信号提供给测量模块 13。
上行模拟处理模块 16 用于将第一子射频信号进行模数转换为第四数字 信号, 并将第四数字信号提供给上行数字处理模块 17。
上行数字处理模块 17用于对第四数字信号进行数字处理,生成第五数字 信号提供给测量模块 13。 例如, 上行数字处理模块 17对第四数字信号进行 的数字处理, 为设备对第四数字信号进行的常规数字处理。
测量模块 13用于获取第三数字信号或者第五数字信号的频谱测量信息, 并提供给采集模块 14。 例如, 测量模块 13周期性或者实时测量第三数字信 号或第五数字信号与频谱测量信息相关的参数, 并根据测量得到的参数计算 得到频谱测量信息, 然后将该频谱测量信息提供给采集模块 14。
采集模块 14用于显示频谱测量信息, 或者, 将频谱测量信息发送给集中 网关系统。
可选地, 采集模块 14通过显示屏显示频谱测量信息, 该显示屏为本实施 例提供的设备的显示屏, 或者为其他与本实施例提供的设备连接的设备的显 示屏。
可选地,采集模块 14通过网络或者光纤将频谱测量信息发送给集中网关 系统。 可以理解的, 集中网关系统可以通过网络连接方式与网络中每一个设 备连接。集中网关系统接收到各个设备上的采集模块 14发送的频谱测量信息 后, 可以将该频谱测量信息综合显示给网络维护人员, 以便网络维护人员从 整体上了解网络情况, 方便对网络进行维护。
本实施例提供的设备可以通过设备内部的测量模块获取下行数字信号经 由设备内部的反馈通道环回的信号, 并计算得到频谱测量信息, 有效地提高 了测量效率, 降低了测量成本。
在本实施例中, 下行数字处理模块 10以及上行数字处理模块 17还与设 备本身的基带处理模块相连接,下行数字处理模块 10从基带处理模块获取第 一下行数字信号, 上行数字处理模块 17向基带处理模块发送第五数字信号。
可选的, 反馈通道处理模块 15包括多个部件, 例如, 可包括如下至少一 个部件: (1 ) 对于具有多个发射通道的设备时, 其中, 下行数据处理模块、 下行模拟处理模块、 耦合器和天线可构成一个发射通道, 每一个发射通道可 以对应一个反馈通道处理模块 15, 如果多个发射通道对应一个反馈通道处理 模块 15时, 该反馈通道处理模块 15可设置射频开关, 主要用于为另外一个 发射通道时分复用反馈通道进行切换选择。 gp, 在一段时间内该射频开关选 择一个发射通道, 通过切换, 在另外一段时间内该射频开关选择另外一个发 射通道。 (2)混频器, 用于把从耦合器接收到的第一子射频信号转换成中频 信号。 (3 ) 滤波器, 用于过滤中频信号中不需要的频带信号。 (4) 可变增 益放大器, 用于对中频信号进行放大。 (5 )模数转化器, 用于将中频信号模 数转化为数字信号, 即第三数字信号。
图 3为本发明实施例二提供的设备的结构示意图, 该设备可以为基站、 小基站或者 RRU。 以下重点描述实施例二提供的设备与上述实施例一提供的 设备的区别, 可以认为前者为后者的一个应用举例。
如图 3所示, 该设备还包括: 开关 18。 该开关 18与耦合器 12相连, 用 于建立耦合器 12经过反馈通道处理模块 15连通测量模块 13的第一反馈通 路; 和 /或, 开关 18用于建立所述耦合器 12经过上行模拟处理模块 16和上 行数字处理模块 17连通测量模块 13的第二反馈通路。
其中,测量模块 13可以通过上述第一反馈通路和第二反馈通路中的一个 或两个, 获取上述第一下行数字信号经过一系列处理后从反馈通道处理模块 15和上行数字处理模块 17输出的数字信号, 或者说, 获取从耦合器 12输出 的第一子射频信号。可以理解的, 上述第一反馈通路为从耦合器 12到反馈通 道处理模块 15再到测量模块 13的通路;上述第二反馈通路为从耦合器 12到 上行模拟处理模块 16, 再到上行数字处理模块 17, 再到测量模块 13的通路。
可选地, 如图 3所示, 该设备还包括: 控制器 19。 该控制器 19与开关 18相连, 用于在第二反馈通路资源饱和时, 控制开关 18与反馈通道处理模 块 15连通; 和 /或, 在第一反馈通路资源饱和时, 控制开关 18与上行模拟处 理模块 16连通。 例如, 针对频分双工 ( Frequency Division Duplex, 筒称: FDD)系统, 由于在 FDD系统中下行数字处理模块 10和下行模拟处理模块 11的工作频率 为下行频率, 即该设备发送下行信号的频率, 上行模拟处理模块 16和上行数 字处理模块 17的工作频率为上行频率, 即该设备接收的上行信号的频率, 而 该下行频率和该上行频率不同, 因此测量模块 13或者采集模块 14还用于将 上行模拟处理模块 16的工作频率由上行频率转换为下行频率, 以及, 将上行 数字处理模块 17 的工作频率由上行频率转换为下行频率。 以下以采集模块 14为例进行说明。 例如, 采集模块 14指示上行模拟处理模块 16与上行数字 处理模块 17, 上行模拟处理模块 16根据指示将其本振的频率由上行频率修 改为下行频率,上行数字处理模块 17根据指示将其本振的频率由上行频率修 改为下行频率。进一步的, 上行模拟处理模块 16具体用于基于下行频率将第 一子射频信号进行模数转换为第四数字信号, 并将第四数字信号提供给上行 数字处理模块 17。 上行数字处理模块 17具体用于基于下行频率对所述第四 数字信号进行数字处理, 生成第五数字信号提供给测量模块 13。测量模块 13 获取基于上述下行频率处理得到的第五数字信号的频谱测量信息, 从而根据 第五数字信号准确的获取的设备下行数字信号的频谱测量信息。
又如, 对于时分双工 (Time Division Duplex, 简称: TDD) 系统来说, 由于该设备的上行频率与下行频率是相同的, 因此, 测量模块 13通过第一反 馈通路获取到的第三数字信号与测量模块 13 通过第二反馈通路获取到的第 五数字信号是相同的。
可选地, 如图 3所示, 该设备还包括: 天线 20。 其中, 天线 20与耦合 器 12相连, 用于发射射频信号; 和 /或, 天线 20与上行模拟处理模块 16相 连, 用于接收上行信号, 并将上行信号提供给上行模拟处理模块 16。 例如, 设备中的天线 20用来将射频信号发送给其他设备(如终端) , 或者接收其他 设备 (如终端) 发送的上行信号。
可选地, 在上述实施例一和实施例二中, 采集模块 14还用于触发测量模 块 13获取所述第三数字信号或者所述第五数字信号的频谱测量信息。 例如, 网络的维护人员需要对网络中的设备进行例行检测, 此时, 维护人员可以利 用采集模块 14的人机互动界面控制采集模块 14触发针对频谱测量信息的测 量过程的启动, 测量模块 13接收采集模块 14发送的触发后开始进行测量, 也即获取第三数字信号和 /或第五数字信号的频谱测量信息。 可以理解的, 由 于采集模块 14可以与网络的集中网管系统连接, 因此, 维护人员可以通过集 中网管系统对整个网络的各个设备进行统一控制和信息测量, 有效地提高了 效率。
可选的, 上述采集模块 14的触发方式可以有多种, 以下举例说明。 方式 一: 触发测量模块 13 根据与频谱测量信息相关的参数计算得到频谱测量信 息。 例如, 测量模块 13 周期性或者实时测量第三数字信号和 /或第五数字信 号与频谱测量信息相关的参数, 当采集模块 14触发测量模块 13时, 测量模 块 13 根据已经测量得到的参数计算得到频谱测量信息, 并提供给采集模块 14。 方式二: 触发测量模块 13开始测量与频谱测量信息相关的参数。 例如, 在采集模块 14触发测量模块 13之前, 测量模块 13不做任何测量操作, 而是 在收到采集模块 13 的触发时, 开始周期性或者实时测量第三数字信号和 /或 第五数字信号与频谱测量信息相关的参数, 根据测量得到的参数计算得到频 谱测量信息, 并提供给采集模块 14。 方式三: 触发测量模块 13提供频谱测 量信息。 例如, 在采集模块 14触发测量模块 13之前, 测量模块 13可能已经 计算得到频谱测量信息, 则采集模块 14触发测量模块 13之后, 测量模块 13 将频谱测量信息提供给采集模块 14。
可选地, 在上述实施例一和实施例二中, 频谱测量信息包含以下至少一 项: 邻道功率泄露比 (Adjacent Channel power Leakage Ratio: ACLR); 误差矢 量幅度 (Error Vector Magnitude, 简称: EVM); 频率偏移; 输出功率。
下面以 ACLR和 EVM为例, 对测量模块 13获取第三数字信号或者所述 第五数字信号的频谱测量信息进行说明。 ACLR定义为目标信道中的平均功 率和一个相邻信道内的平均功率之比, 因此, 当需要测量 ACLR时, 测量模 块 13 可以测量第三数字信号或者第五数字信号与频谱测量信息的目标信道 中的平均功率以及一个相邻信道内的平均功率, 并计算平均功率和一个相邻 信道内的平均功率之比获取 ACLR。 EVM是广泛应用于数字通讯系统中, 用 于表征信号调制质量的指标。 通过测量接收到的信号的 EVM 指标, 可以发 现信号在调制过程中或在传输过程中受到的损伤。 EVM定义为参考信号和实 际发送信号之间的幅度差异。 因此, 当需要测量 EVM时, 测量模块 13可以 测量第三数字信号或者第五数字信号与频谱测量信息的参考信号的幅度和实 际发送信号的幅度, 并计算参考信号和实际发送信号之间的幅度差异, 从而 获取 EVM。
上述实施例一以及实施例二中的描述及举例适用于实施例三,实施例一、 实施例二和实施例三可以相结合, 部分细节在实施例三中不再详述。 以下, 如图 4所示的本发明实施例三提供的测量方法。 该测量方法可以包括如下步 骤。 可选地, 该方法的该执行主体可以为实施例一以及实施例二中设备的测 量模块。
步骤 110、 测量模块获取第三数字信号或者第五数字信号的频谱测量信 息。
步骤 120、 测量模块将频谱测量信息提供给采集模块。
其中, 测量模块获取第三数字信号或者第五数字信号的频谱测量信息包 括:测量模块从反馈通道处理模块获取第三数字信号的频谱测量信息,和 /或, 测量模块从上行数字处理模块获取第五数字信号的频谱测量信息;
第三数字信号是由反馈通道处理模块对第一子射频信号进行模数转换后 生成的, 第五数字信号是由上行数字处理模块对第四数字信号进行模数转换 后生成的, 第四数字信号是由上行模拟处理模块对第一子射频信号进行模数 转换后生成的; 第一子射频信号是耦合器将射频信号按比例分配后获得的, 射频信号是由下行模拟处理模块将第二数字信号进行转换后获得的, 第二数 字信号是由下行数字处理模块对获取的第一下行数字信号进行数字处理之后 生成的;
反馈通道处理模块、 上行模拟处理模块、 上行数字处理模块所述下行数 字处理模块、 下行模拟处理模块、 耦合器、 测量模块和采集模块位于一个通 信设备中。
本实施例提供的测量方法, 设备内部的测量模块获取第三数字信号或者 第五数字信号的频谱测量信息, 再由测量模块将频谱测量信息提供给采集模 块。实现了基站、小基站或者 RRU通过设备内部的测量模块获取下行数字信 号经由设备内部的反馈通道环回的信号, 并计算得到频谱测量信息, 有效地 提高了测量效率, 降低了测量成本。
如果该测量模块所在的设备为 FDD设备,也即该设备工作于 FDD系统, 则在步骤 110中, 对于测量模块从上行数字处理模块获取所述第五数字信号 的频谱测量信息可以包括: 测量模块测量获取基于下行频率得到的第五数字 信号的频谱测量信息。 具体的, 上行模拟处理模块基于下行频率将第一子射 频信号进行模数转换为第四数字信号, 并将第四数字信号提供给上行数字处 理模块。上行数字处理模块基于下行频率对所述第四数字信号进行数字处理, 生成第五数字信号提供给测量模块。 可选地, 在步骤 110之前, 该方法还包 括步骤 100a: 测量模块将上行模拟处理模块的工作频率由上行频率转换为下 行频率, 将上行数字处理模块的工作频率由上行频率转换为下行频率。
如果该测量模块所在的设备为 TDD设备,也即该设备工作于 TDD系统,, 则测量模块测量可获取基于下行频率得到的第五数字信号的频谱测量信息。
可选地, 在步骤 110之前, 该方法还包括步骤 100b: 测量模块收到采集 模块的触发, 该触发用于指示测量模块获取第三数字信号或者第五数字信号 的频谱测量信息。 需要说明的是, 图 4 以该设备为 FDD设备为例, 使步骤 100b在步骤 100a之前执行, 但本发明实施例并不限制步骤 110a和步骤 110b 的执行顺序, 能够满足该设备实现步骤 110即可, 例如该设备可参照本发明 上述实施例提供的举例支持测量模块完成步骤 110的测量过程。
可选地, 频谱测量信息可以包含以下至少一项: ACLR; EVM; 频率偏 移; 输出功率。
应用本实施例提供的方法的设备可以为基站、 小基站或者 RRU。
应用本实施例提供的方法的设备可以通过设备内部的测量模块获取下行 数字信号经由设备内部的反馈通道环回的信号, 并计算得到频谱测量信息, 有效地提高了测量效率, 降低了测量成本。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围

Claims

权 利 要 求 书
1、 一种设备, 其特征在于, 所述设备包括: 下行数字处理模块、 下行模 拟处理模块、 耦合器、 测量模块和采集模块;
所述设备还包括: 反馈通道处理模块, 和 /或, 所述设备还包括: 上行模 拟处理模块和上行数字处理模块;
其中,
所述下行数字处理模块用于获取第一下行数字信号, 并对所述第一下行 数字信号进行数字处理, 生成第二数字信号提供给下行模拟处理模块;
所述下行模拟处理模块用于将所述第二数字信号转换为射频信号, 并将 所述射频信号提供给所述耦合器;
所述耦合器用于将所述射频信号按比例分配获得第一子射频信号, 并将 所述第一子射频信号提供给所述反馈通道处理模块或者所述上行模拟处理模 块;
所述反馈通道处理模块用于将所述第一子射频信号进行模数转换为第三 数字信号, 并将所述第三数字信号提供给所述测量模块;
所述上行模拟处理模块用于将所述第一子射频信号进行模数转换为第四 数字信号, 并将所述第四数字信号提供给所述上行数字处理模块;
所述上行数字处理模块用于对所述第四数字信号进行数字处理, 生成第 五数字信号提供给所述测量模块;
所述测量模块用于获取所述第三数字信号或者所述第五数字信号的频谱 测量信息, 并提供给所述采集模块;
所述采集模块用于显示所述频谱测量信息, 或者, 将所述频谱测量信息 发送给集中网关系统。
2、 根据权利要求 1所述的设备, 其特征在于, 还包括: 开关; 所述开关与所述耦合器相连, 用于建立所述耦合器经过所述反馈通道处 理模块连通所述测量模块的第一反馈通路; 和 /或,
所述开关用于建立所述耦合器经过所述上行模拟处理模块和上行数字处 理模块连通所述测量模块的第二反馈通路。
3、 根据权利要求 2所述的设备, 其特征在于, 还包括: 控制器; 所述控制器与所述开关相连, 用于在所述第二反馈通路资源饱和时, 控 制所述开关与所述反馈通道处理模块连通; 和 /或, 在所述第一反馈通路资源 饱和时, 控制所述开关与所述上行模拟处理模块连通。
4、 根据权利要求 1~3任意一项所述的设备, 其特征在于, 所述测量模块 或者采集模块还用于: 将上行模拟处理模块的工作频率由上行频率转换为下 行频率, 将上行数字处理模块的工作频率由上行频率转换为下行频率;
所述上行模拟处理模块具体用于基于所述下行频率将所述第一子射频信 号进行模数转换为第四数字信号, 并将所述第四数字信号提供给所述上行数 字处理模块;
所述上行数字处理模块具体用于基于所述下行频率对所述第四数字信号 进行数字处理, 生成第五数字信号提供给所述测量模块。
5、 根据权利要求 1~4任意一项所述的设备, 其特征在于, 所述设备还包 括: 天线;
所述天线与所述耦合器相连, 用于发射所述射频信号; 和 /或,
所述天线与所述上行模拟处理模块相连, 用于接收上行信号, 并将所述 上行信号提供给所述上行模拟处理模块。
6、根据权利要求 1~5任意一项所述的设备,其特征在于,所述采集模块, 还用于触发所述测量模块获取所述第三数字信号或者所述第五数字信号的频 谱测量信息。
7、 根据权利要求 1~6任意一项所述的设备, 其特征在于, 所述频谱测量 信息包含以下至少一项: 邻道功率泄露比 ACLR; 误差矢量幅度 EVM; 频率 偏移; 输出功率。
8、 根据权利要求 1~7任意一项所述的设备, 其特征在于, 所述设备为基 站、 小基站 Small Cell或者射频拉远模块 RRU。
9、 一种测量方法, 其特征在于, 包括:
测量模块获取所述第三数字信号或者所述第五数字信号的频谱测量信 息;
所述测量模块将所述频谱测量信息提供给采集模块;
其中, 所述测量模块获取所述第三数字信号或者所述第五数字信号的频 谱测量信息包括: 所述测量模块从反馈通道处理模块获取所述第三数字信号 的频谱测量信息, 和 /或, 所述测量模块从上行数字处理模块获取所述第五数 字信号的频谱测量信息;
所述第三数字信号是由反馈通道处理模块对第一子射频信号进行模数转 换后生成的, 所述第五数字信号是由上行数字处理模块对第四数字信号进行 模数转换后生成的, 所述第四数字信号是由上行模拟处理模块对第一子射频 信号进行模数转换后生成的; 所述第一子射频信号是耦合器将射频信号按比 例分配后获得的, 所述射频信号是由下行模拟处理模块将第二数字信号进行 转换后获得的, 所述第二数字信号是由下行数字处理模块对获取的第一下行 数字信号进行数字处理之后生成的;
其中, 所述反馈通道处理模块、 所述上行模拟处理模块、 所述上行数字 处理模块所述下行数字处理模块、 所述下行模拟处理模块、 所述耦合器、 所 述测量模块和所述采集模块位于一个设备中。
10、 根据权利要求 9所述的方法, 其特征在于, 所述测量模块从上行数 字处理模块获取所述第五数字信号的频谱测量信息包括:
所述测量模块测量获取基于下行频率得到的所述第五数字信号的频谱测 量信息。
11、 根据权利要求 10所述的方法, 其特征在于, 所述方法还包括: 测量模块将上行模拟处理模块的工作频率由上行频率转换为所述下行频 率, 将上行数字处理模块的工作频率由所述上行频率转换为所述下行频率。
12、 根据权利要求 9~11任意一项所述的方法, 其特征在于, 所述测量模 块获取所述第三数字信号或者所述第五数字信号的频谱测量信息之前, 还包 括:
所述测量模块收到所述采集模块的触发, 所述触发用于指示所述测量模 块获取所述第三数字信号或者所述第五数字信号的频谱测量信息。
13、 根据权利要求 9~12任意一项所述的方法, 其特征在于, 所述频谱测 量信息包含以下至少一项: 邻道功率泄露比 ACLR; 误差矢量幅度 EVM; 频 率偏移; 输出功率。
14、 根据权利要求 1~13任意一项所述的方法, 其特征在于, 所述设备为 基站、 小基站 Small Cell或者射频拉远模块 RRU。
PCT/CN2013/078520 2013-06-29 2013-06-29 测量方法及设备 WO2014205853A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001809.XA CN104969601B (zh) 2013-06-29 2013-06-29 测量方法及设备
PCT/CN2013/078520 WO2014205853A1 (zh) 2013-06-29 2013-06-29 测量方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078520 WO2014205853A1 (zh) 2013-06-29 2013-06-29 测量方法及设备

Publications (1)

Publication Number Publication Date
WO2014205853A1 true WO2014205853A1 (zh) 2014-12-31

Family

ID=52140913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078520 WO2014205853A1 (zh) 2013-06-29 2013-06-29 测量方法及设备

Country Status (2)

Country Link
CN (1) CN104969601B (zh)
WO (1) WO2014205853A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174816A (zh) * 2006-11-01 2008-05-07 中兴通讯股份有限公司 数字预失真线性化处理装置及其功率检测方法
CN101330703A (zh) * 2007-06-18 2008-12-24 大唐移动通信设备有限公司 一种基站性能检测的方法、系统及装置
WO2012064780A1 (en) * 2010-11-08 2012-05-18 Qualcomm Incorporated Inter-frequency measurement control in a multi-carrier system
CN102624469A (zh) * 2011-01-31 2012-08-01 英特尔移动通信有限公司 通信终端,通信装置,测量信号的方法和请求测量的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253060B1 (en) * 1996-12-20 2001-06-26 Airnet Communications Corporation Method and apparatus employing wireless remote loopback capability for a wireless system repeater to provide end-to-end testing without a wireline connection
US7126928B2 (en) * 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
CN101146314B (zh) * 2007-10-22 2012-09-05 中兴通讯股份有限公司 一种时分双工通信系统的驻波比检测装置及方法
JP5564111B2 (ja) * 2010-06-22 2014-07-30 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174816A (zh) * 2006-11-01 2008-05-07 中兴通讯股份有限公司 数字预失真线性化处理装置及其功率检测方法
CN101330703A (zh) * 2007-06-18 2008-12-24 大唐移动通信设备有限公司 一种基站性能检测的方法、系统及装置
WO2012064780A1 (en) * 2010-11-08 2012-05-18 Qualcomm Incorporated Inter-frequency measurement control in a multi-carrier system
CN102624469A (zh) * 2011-01-31 2012-08-01 英特尔移动通信有限公司 通信终端,通信装置,测量信号的方法和请求测量的方法

Also Published As

Publication number Publication date
CN104969601B (zh) 2019-05-10
CN104969601A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
US10397890B2 (en) Node unit capable of measuring and compensating transmission delay and distributed antenna system including the same
EP2953283B1 (en) Method, apparatus, and radio remote unit for transmitting wireless base band data
US9882613B2 (en) Determining actual loop gain in a distributed antenna system (DAS)
CN102695184B (zh) 基站测试系统及方法
WO2011160415A1 (zh) 一种无线射频拉远单元多通道的测试装置及方法
WO2017004920A1 (zh) 无线通信设备检测方法和无线通信设备
CN106330346B (zh) 射频拉远单元及其测试方法
CN107547144B (zh) 射频测试系统
WO2013000302A1 (zh) 一种射频拉远单元测试信号生成的方法及装置
WO2011160395A1 (zh) 基站天线口底噪的测量方法、装置及系统
CN103973377B (zh) 一种基站测试方法、装置及系统
WO2012048580A1 (zh) 一种分布式网络无线射频指标实时改进的方法及装置
CN111030760B (zh) 一种驻波检测的方法及装置
CN102111768B (zh) 多频段共同组网的方法及装置
EP3242421B1 (en) Node unit capable of measuring delay and distributed antenna system comprising same
WO2015154574A1 (zh) 功放处理方法及装置
WO2014205853A1 (zh) 测量方法及设备
JP2000514255A (ja) 相互変調を測定する方法
WO2021047504A1 (zh) 光纤直放站及其无源互调信号的检测方法、系统
JP5097175B2 (ja) 無線受信装置及びその試験方法
WO2012142976A1 (zh) 检测通道质量的方法、装置及系统
KR20120124106A (ko) 이동통신용 알에프시스템의 성능분석 및 자가진단 장치
US9391729B2 (en) Method and apparatus for monitoring performance, and remote radio unit
KR101645987B1 (ko) 이동통신 시스템에서 무선 성능 진단을 위한 방법 및 장치
WO2022267789A1 (zh) Evm检测方法、发射机和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888274

Country of ref document: EP

Kind code of ref document: A1