WO2017004920A1 - 无线通信设备检测方法和无线通信设备 - Google Patents

无线通信设备检测方法和无线通信设备 Download PDF

Info

Publication number
WO2017004920A1
WO2017004920A1 PCT/CN2015/094344 CN2015094344W WO2017004920A1 WO 2017004920 A1 WO2017004920 A1 WO 2017004920A1 CN 2015094344 W CN2015094344 W CN 2015094344W WO 2017004920 A1 WO2017004920 A1 WO 2017004920A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog signal
baseband
data
wireless communication
communication device
Prior art date
Application number
PCT/CN2015/094344
Other languages
English (en)
French (fr)
Inventor
党威
成军平
白伟岐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017004920A1 publication Critical patent/WO2017004920A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of communications, and in particular to a wireless communication device detection method and a wireless communication device.
  • Radio Radio Frequency Unit RRU
  • the fault is located by means of disassembly and replacement.
  • the RRU since the RRU is generally installed on an outdoor tower or roof and has a high height, it is inconvenient to disassemble and replace.
  • the present invention provides a wireless communication device detection method and a wireless communication device, so as to at least solve the inconvenience that the RRU fault is located by the disassembly and replacement method in the related art.
  • a method for detecting a wireless communication device includes: acquiring a detection command sent by a network management system; acquiring an analog signal on a downlink of the wireless communication device through a feedback link; After the analog signal is subjected to the conversion process, the analog signal after the conversion process is transmitted to the network management system, so that the network management system draws and displays the detection result according to the analog signal after the conversion process, wherein the detection result It is used to detect whether the wireless communication device is faulty.
  • the data source of the analog signal comprises: preset data stored in a non-volatile memory of the wireless communication device according to the detection mode.
  • acquiring the analog signal on the downlink of the wireless communications device by using the feedback link includes: parsing the detection command, obtaining one or more detection modes, and acquiring configuration information of a cell. Receiving, by the downlink, the preset data that matches the one or more detection modes in the non-volatile memory, according to the configuration information, to obtain an analog signal corresponding to the preset data. And coupling, by the coupler, the analog signal from an analog signal corresponding to the preset data, and transmitting the analog signal through the feedback link.
  • performing conversion processing on the analog signal includes: converting the analog signal into an intermediate frequency analog signal; converting the intermediate frequency analog signal into a baseband signal through a digital intermediate frequency portion; and performing the baseband signal fast Fourier transform to obtain baseband data, wherein the baseband data is used to draw a spectrogram.
  • transmitting the converted analog signal to the network management system includes: storing the baseband data by using the non-volatile memory; and using the configuration information and the baseband corresponding to the configuration information Data is transmitted to the network management system.
  • a wireless communication device including: a downlink, configured to convert a baseband signal received by a baseband portion into an analog signal, and transmit the signal to an antenna; the feedback link, respectively a coupling coupler and the baseband portion configured to convert the analog signal coupled out of the coupler into baseband data; wherein the coupler is configured to couple the analog signal on the downlink into Two parts: one part is transmitted by the antenna feed, and the other part is converted into the baseband data by the feedback link, and then transmitted to the network management system through the baseband part.
  • the downlink includes: an FPGA data module, a digital-analog processing module, and the coupler, wherein the FPGA data module is connected to the baseband portion and configured to process a baseband signal.
  • the method includes at least one of the following: digital up-conversion, peak-shaping, and digital pre-distortion; and the digital-analog processing module is configured to perform digital-to-analog conversion on a signal output by the FPGA data module to obtain the analog signal.
  • the feedback link includes: the coupler, the RF electronic switch, the mixer, the digital intermediate frequency portion, the DSP processing module, and the FPGA data module, wherein the RF electronic switch And being configured to turn on the feedback link according to a detection command of the network management system;
  • the mixer is configured to mix and convert an analog signal on the feedback link into an intermediate frequency analog signal;
  • the digital intermediate frequency portion The DSP processing module is configured to perform fast Fourier transform on the baseband signal outputted by the digital intermediate frequency portion to obtain baseband data;
  • the FPGA data module is configured to convert the intermediate frequency analog signal to a baseband signal. It is arranged to transmit the baseband data to the baseband portion.
  • the wireless communication device further includes: a data storage module that connects the baseband portion and the downlink, and connects the baseband portion and the feedback link, and is configured to store data of the analog signal source.
  • a data storage module that connects the baseband portion and the downlink, and connects the baseband portion and the feedback link, and is configured to store data of the analog signal source.
  • the data storage module is further configured to store the baseband data collected by the feedback link.
  • the detection command sent by the network management system is obtained; the analog signal on the downlink of the wireless communication device is obtained through the feedback link; after the analog signal is converted, the converted analog signal is transmitted to
  • the network management system solves the inconvenient problem of locating the RRU fault by disassembling and replacing the analog signal generated by the network management system according to the converted analog signal, and realizes the remote detection of the RRU fault.
  • FIG. 1 is a flowchart of a method for detecting a wireless communication device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a wireless communication device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram 1 of an optional structure of a wireless communication device according to an embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of an optional structure of a wireless communication device according to an embodiment of the present invention.
  • FIG. 5 is a third schematic diagram of an optional structure of a wireless communication device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an RRU according to the related art
  • FIG. 7 is a schematic structural diagram of an RRU according to an alternative embodiment of the present invention.
  • FIG. 9 is a flow diagram of EVM detection in accordance with an alternate embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for detecting a wireless communication device according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 Acquire a detection command sent by the network management system.
  • Step S104 Acquire an analog signal on a downlink of the wireless communication device by using a feedback link.
  • Step S106 after converting the analog signal, transmitting the converted analog signal to the network management system, so that the network management system draws and displays the spectrogram according to the converted analog signal, wherein the spectrogram is used to detect the wireless communication device. Whether it is malfunctioning.
  • the analog signal on the downlink of the wireless communication device (for example, the RRU) is acquired through the feedback link, and the analog signal after the conversion processing is transmitted to the network management system to draw the detection result; so that the maintenance personnel can be remotely
  • the network management system determines whether the wireless communication device is faulty according to the detection result. It can be seen that through the above steps, the inconvenient problem of locating the RRU fault by the disassembly and replacement method is solved, and the remote detection of the RRU fault is realized.
  • the data source of the analog signal described above includes: preset data stored in a non-volatile memory of the wireless communication device according to the detection mode.
  • the preset data stored in the non-volatile memory is sent to the downlink for the feedback link to acquire the analog signal.
  • step S104 includes: parsing the detection command to obtain one or more detection modes; acquiring configuration information of the cell; and, according to the configuration information, setting a preset in the non-volatile memory that matches one or more detection modes.
  • the data is sent through the downlink to obtain an analog signal corresponding to the preset data; the analog signal is coupled from the analog signal corresponding to the preset data by the coupler, and the analog signal is transmitted through the feedback link.
  • converting the analog signal comprises: converting the analog signal into an intermediate frequency analog signal; converting the intermediate frequency analog signal into a baseband signal through the digital intermediate frequency portion; and performing fast Fourier transform on the baseband signal to obtain a baseband Data, where baseband data is used to plot the spectrogram.
  • the baseband data obtained after the Fourier transform may be stored in a non-volatile memory; and the stored information may also include configuration information of the acquired cell.
  • the configuration information and the baseband data corresponding to the configuration information are transmitted to the network management system.
  • the wireless communication device in the embodiment of the present invention includes: an RRU.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a wireless communication device is also provided in this embodiment, and the wireless communication device is used to implement the foregoing embodiments and optional implementations, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the wireless communication device includes a downlink 22 configured to convert a baseband signal received by a baseband portion into an analog signal and transmit the signal to an analog signal.
  • the coupling is in two parts: one part is transmitted by the antenna feed 224, and the other part is converted into baseband data by the feedback link 24, and then transmitted to the network management system through the baseband part.
  • FIG. 3 is a first schematic diagram of an optional structure of a wireless communication device according to an embodiment of the present invention.
  • the downlink 22 includes a field-programmable gate array (Field-Programmable Gate Array).
  • FPGA field-programmable gate array
  • the FPGA data module 228 is coupled to the baseband portion and configured to process the baseband signal, including at least one of the following: digital up-conversion, peak clipping, The digital pre-distortion; digital-to-analog processing module 226 is configured to perform digital-to-analog conversion on the signal output by the FPGA data module 228 to obtain an analog signal.
  • FIG. 4 is a second schematic diagram of an optional structure of a wireless communication device according to an embodiment of the present invention.
  • the feedback link 24 includes a coupler 222, a radio frequency electronic switch 242, and a mixing.
  • DSP digital signal processing
  • the mixer 24 is configured to mix and convert the analog signal on the feedback link 24 into an intermediate frequency analog signal; the digital intermediate frequency portion 246 is configured to convert the analog frequency of the intermediate frequency analog signal into a baseband signal; the DSP processing module 248, The baseband signal outputted to the digital intermediate frequency portion is fast Fourier transformed to obtain baseband data; and the FPGA data module 228 is configured to transmit the baseband data to the baseband portion.
  • FIG. 5 is a third schematic diagram of an optional structure of a wireless communication device according to an embodiment of the present invention.
  • the wireless communication device further includes: a data storage module 52, a baseband portion and a downlink 22, and The baseband portion and the feedback link 24 are connected to a data source that stores analog signals.
  • the data storage module 52 is further configured to store baseband data collected by the feedback link 24.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • the data storage module 52, the FPGA data module 228, and the DSP processing module 248 can be implemented by modifying the software code by using existing storage units, FPGAs, and DSPs in the wireless communication device, without adding new hardware devices.
  • An alternative embodiment of the present invention provides a method for spectrum self-test of a wireless communication device.
  • a remote radio unit ie, RRU
  • RRU remote radio unit
  • the internal storage is performed through the downlink, in order to overcome the inconvenience of the hardware troubleshooting caused by the method of replacing the RRU.
  • the data source is then transmitted and calculated through the feedback link, which can quickly diagnose the cause of the fault, thereby improving the efficiency of troubleshooting and reducing costs.
  • FIG. 6 is a schematic structural diagram of an RRU according to the related art
  • FIG. 7 is a schematic structural diagram of an RRU according to an alternative embodiment of the present invention, as shown in FIG. 7, wherein a digital-to-analog converter (Digital-to-Analog Converter)
  • the DAC Digital-to-Analog Converter
  • the DAC the mixer 1
  • the filter the filter
  • the power amplifier and the duplexer constitute the digital-to-analog processing module 226 shown in FIG.
  • Figure 7 is a relative to Figure 6, with the addition of a DSP processing module, a data storage module, and a DSP control module. Spectrum detection can be achieved by adding these modules.
  • the DSP data processing module, the data storage module, and the data transmission module are added to the RRU, and after the display module is added to the network management system, the optional embodiment of the present invention uses the following scheme to implement fault detection based on the spectrum display:
  • the DSP data processing module converts the time domain signal into a frequency domain signal
  • the data storage module stores the radio frequency fixed test mode data source, and can be sent through the downlink when detecting.
  • the DSP processed data collected by the feedback link is also stored. When an abnormality occurs, the data can be performed by calling the previous data. analysis;
  • a data transmission module that transmits spectral data and control information
  • Display module for spectrum display is a Display module for spectrum display.
  • the RRU running status can be monitored in real time by detecting the RRU spectrum.
  • spectrum detection can be used to determine the module in question, thereby reducing the cost of on-site detection and replacement.
  • FIG. 8 is a flowchart of spectrum detection according to an alternative embodiment of the present invention. As shown in FIG. 8, the process includes the following steps:
  • Step S801 Initiating a spectrum detection command by using a network management system (for example, an LTE network management system), and selecting multiple detection modes, for example, a spectrum type test mode specified by the protocol: Adjacent Channel Power (ACP), a Spectrum Emission Mask (SEM), etc., sends a command to a central processing unit (CPU) of the RRU for processing by a Building Baseband Unit (BBU);
  • a network management system for example, an LTE network management system
  • multiple detection modes for example, a spectrum type test mode specified by the protocol: Adjacent Channel Power (ACP), a Spectrum Emission Mask (SEM), etc.
  • ACP Adjacent Channel Power
  • SEM Spectrum Emission Mask
  • BBU Building Baseband Unit
  • Step S802 after receiving the spectrum detection command, the RRU performs data collection and processing, including steps S8021 to S8024:
  • Step S8021 the FPGA data module acquires configuration information of the cell through the CPU control module.
  • Step S8022 the output end after the duplexer couples a part of the output power through the coupler, and the analog signal is converted into an intermediate frequency analog signal by mixing;
  • Step S8023 converting the intermediate frequency analog signal into a baseband signal by using a digital intermediate frequency portion, wherein the processing of the digital intermediate frequency portion comprises: digital down conversion (DDC), analog to digital conversion (Analog-to-Digital Converter) For ADC) and decimation filtering;
  • DDC digital down conversion
  • ADC Analog-to-Digital Converter
  • decimation filtering decimation filtering
  • Step S8024 the baseband signal is subjected to Fast Fourier Transformation (FFT) by the DSP, and the calculated baseband data is stored by the data storage module, and the baseband data buffered in the data storage module is configured according to the network management.
  • FFT Fast Fourier Transformation
  • Step S803 the baseband transmits the baseband data to the operation and maintenance management (OAM) module of the network management system; in the network management system, the spectrum is drawn according to the configuration information acquired by the FPGA data module and the baseband data, and the spectrum is drawn. Display to the background operation interface. In this way, the spectrum of the RRU can be viewed from the background of the network management system, and the RRU fault can be located according to the spectrogram.
  • OAM operation and maintenance management
  • EVM detection is taken as an example for description. Since the channel quality is poor due to spectrum degradation, and the EVM is deteriorated, the wireless communication device can also be detected by EVM detection. 9 is a flow chart of EVM detection according to an alternative embodiment of the present invention. As shown in FIG. 9, the process includes the following steps:
  • step S901 the EVM detection command is initiated by the network management system (for example, the LTE network management system), and multiple detection modes, for example, ACP, SEM, etc., can be selected, and the BBU sends the command to the CPU of the RRU for processing;
  • the network management system for example, the LTE network management system
  • multiple detection modes for example, ACP, SEM, etc.
  • Step S902 after the RRU receives the EVM detection command, the FPGA data module acquires the cell configuration information by using the CPU control module.
  • Step S903 the data source matching the test pattern is sent from the data storage module according to the obtained configuration information, and the data source passes through the downlink to the coupler end;
  • Step S904 collecting forward data to the ADC through a feedback link
  • Step S905 the ADC converted data is sent to the DSP data processing module for data processing;
  • Step S906 the DSP data processing module transmits the calculation result to the network management system (for example, the LTE network management system) through the CPU and the baseband interface;
  • the network management system for example, the LTE network management system
  • step S907 the network management system displays the test result to the background interface, so that the EVM value in each test mode of the RRU can be viewed from the network management background.
  • remote fault location of the online operation RRU can be realized through the RRU spectrum self-test and the background display manner, thereby reducing the cost and time of the upper station detection and reducing the operation. Cost; in addition, it is also possible to determine whether there is a hardware problem such as stray leakage in the whole machine through the detected spectrum.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种无线通信设备检测方法和无线通信设备。其中,该方法包括:获取网管系统下发的检测命令;通过反馈链路获取无线通信设备的下行链路上的模拟信号;对模拟信号进行转换处理后,将转换处理后的模拟信号传输至网管系统,以供网管系统根据转换处理后的模拟信号绘制并显示检测结果。通过本发明,解决了通过拆卸替换方式定位射频拉远单元(RRU)故障存在的不方便的问题,实现了RRU故障的远程检测。

Description

无线通信设备检测方法和无线通信设备 技术领域
本发明涉及通信领域,具体而言,涉及一种无线通信设备检测方法和无线通信设备。
背景技术
随着无线通信系统的发展和长期演进(LTE)的不断成熟,以及第四代移动通信(4G)牌照的发放,基站系统的数量规模日趋庞大。射频拉远单元(Remote Radio frequency Unit,简称为RRU)外场故障也成为运营商和设备供应商重点关注的问题。
在RRU整机出现问题时,若不能确定是否是RRU的硬件存在问题,在相关技术中是通过拆卸替换的方式来定位故障。但是由于RRU一般安装在户外高塔或屋顶上,高度很高,因此拆卸替换很不方便。
针对相关技术中通过拆卸替换方式定位RRU故障存在的不方便的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种无线通信设备检测方法和无线通信设备,以至少解决相关技术中通过拆卸替换方式定位RRU故障存在的不方便的问题。
根据本发明实施例的一个方面,提供了一种无线通信设备检测方法,包括:获取网管系统下发的检测命令;通过反馈链路获取无线通信设备的下行链路上的模拟信号;对所述模拟信号进行转换处理后,将转换处理后的所述模拟信号传输至所述网管系统,以供所述网管系统根据转换处理后的所述模拟信号绘制并显示检测结果,其中,所述检测结果用于检测所述无线通信设备是否故障。
可选地,所述模拟信号的数据源包括:按照检测模式,存储在所述无线通信设备的非易失性存储器中的预设数据。
可选地,通过所述反馈链路获取所述无线通信设备的所述下行链路上的所述模拟信号包括:解析所述检测命令,得到一种或者多种检测模式;获取小区的配置信息;根据所述配置信息,将所述非易失性存储器中与所述一种或者多种检测模式匹配的预设数据通过所述下行链路下发,得到所述预设数据对应的模拟信号;通过耦合器从所述预设数据对应的模拟信号中耦合出所述模拟信号,并通过所述反馈链路传输所述模拟信号。
可选地,对所述模拟信号进行转换处理包括:将所述模拟信号混频变换为中频模拟信号;通过数字中频部分,将所述中频模拟信号转换为基带信号;将所述基带信号进行快速傅里叶变换,得到基带数据,其中,所述基带数据用于绘制频谱图。
可选地,将转换处理后的所述模拟信号传输至所述网管系统包括:通过所述非易失性存储器存储所述基带数据;将所述配置信息以及所述配置信息对应的所述基带数据传输至所述网管系统。
根据本发明实施例的另一个方面,还提供了一种无线通信设备,包括:下行链路,设置为将基带部分接收的基带信号变换为模拟信号,并传输至天馈;反馈链路,分别连接耦合器和所述基带部分,设置为将所述耦合器耦合出的所述模拟信号转换为基带数据;其中,所述耦合器设置为将所述下行链路上的所述模拟信号耦合成两部分:一部分通过天馈发射,另一部分通过所述反馈链路转换为所述基带数据后,通过所述基带部分传输至网管系统。
可选地,所述下行链路包括依次连接的:FPGA数据模块、数模处理模块、所述耦合器,其中,所述FPGA数据模块,连接所述基带部分,设置为对基带信号进行处理,包括以下至少之一:数字上变频、削峰、数字预失真;所述数模处理模块,设置为对FPGA数据模块输出的信号进行数模转换,以得到所述模拟信号。
可选地,所述反馈链路包括依次连接的:所述耦合器、射频电子切换开关、混频器、数字中频部分、DSP处理模块、所述FPGA数据模块,其中,所述射频电子切换开关,设置为根据网管系统的检测命令,接通所述反馈链路;所述混频器,设置为将所述反馈链路上的模拟信号混频变换为中频模拟信号;所述数字中频部分,设置为将所述中频模拟信号模数转换为基带信号;所述DSP处理模块,设置为对所述数字中频部分输出的基带信号进行快速傅里叶变换,得到基带数据;所述FPGA数据模块,设置为将所述基带数据传输至所述基带部分。
可选地,所述无线通信设备还包括:数据存储模块,连接所述基带部分和所述下行链路,以及连接所述基带部分和所述反馈链路,设置为存储所述模拟信号的数据源。
可选地,所述数据存储模块,还设置为存储反馈链路采集的所述基带数据。
通过本发明实施例,采用获取网管系统下发的检测命令;通过反馈链路获取无线通信设备的下行链路上的模拟信号;对模拟信号进行转换处理后,将转换处理后的模拟信号传输至网管系统,以供网管系统根据转换处理后的模拟信号绘制并显示频谱图的方式,解决了通过拆卸替换方式定位RRU故障存在的不方便的问题,实现了RRU故障的远程检测。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的无线通信设备检测方法的流程图;
图2是根据本发明实施例的无线通信设备的结构示意图;
图3是根据本发明实施例的无线通信设备的可选结构示意图一;
图4是根据本发明实施例的无线通信设备的可选结构示意图二;
图5是根据本发明实施例的无线通信设备的可选结构示意图三;
图6是根据相关技术的RRU的结构示意图;
图7是根据本发明可选实施例的RRU的结构示意图;
图8是根据本发明可选实施例的频谱检测的流程图;
图9是根据本发明可选实施例的EVM检测的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种无线通信设备检测方法,图1是根据本发明实施例的无线通信设备检测方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,获取网管系统下发的检测命令;
步骤S104,通过反馈链路获取无线通信设备的下行链路上的模拟信号;
步骤S106,对模拟信号进行转换处理后,将转换处理后的模拟信号传输至网管系统,以供网管系统根据转换处理后的模拟信号绘制并显示频谱图,其中,频谱图用于检测无线通信设备是否故障。
通过上述步骤,通过反馈链路获取无线通信设备(例如RRU)的下行链路上的模拟信号,并将根据转换处理后的模拟信号传输至网管系统,以绘制检测结果;使得维护人员可以在远程的网管系统根据检测结果判断该无线通信设备是否故障。可见,通过上述步骤,解决了通过拆卸替换方式定位RRU故障存在的不方便的问题,实现了RRU故障的远程检测。
可选地,上述的模拟信号的数据源包括:按照检测模式,存储在无线通信设备的非易失性存储器中的预设数据。在进行检测时,通过将该非易失性存储器中存储的预设数据下发到下行链路,以供反馈链路获取模拟信号。
可选地,步骤S104包括:解析检测命令,得到一种或者多种检测模式;获取小区的配置信息;根据配置信息,将非易失性存储器中与一种或者多种检测模式匹配的预设数据通过下行链路下发,得到预设数据对应的模拟信号;通过耦合器从预设数据对应的模拟信号中耦合出模拟信号,并通过反馈链路传输模拟信号。
可选地,对模拟信号进行转换处理包括:将模拟信号混频变换为中频模拟信号;通过数字中频部分,将中频模拟信号转换为基带信号;将基带信号进行快速傅里叶变换,得到基带 数据,其中,基带数据用于绘制频谱图。
可选地,经过傅里叶变换后得到的基带数据,可以通过非易失性存储器存储;同时存储的还可以包括获取到的小区的配置信息。在传输基带数据时,将配置信息以及配置信息对应的基带数据传输至网管系统。
可选地,本发明实施例中的无线通信设备包括:RRU。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种无线通信设备,该无线通信设备用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的无线通信设备的结构示意图,如图2所示,该无线通信设备包括:下行链路22,设置为将基带部分接收的基带信号变换为模拟信号,并传输至天馈224;反馈链路24,分别连接耦合器222和基带部分,设置为将耦合器222耦合出的模拟信号转换为基带数据;其中,耦合器222设置为将下行链路22上的模拟信号耦合成两部分:一部分通过天馈224发射,另一部分通过反馈链路24转换为基带数据后,通过基带部分传输至网管系统。
图3是根据本发明实施例的无线通信设备的可选结构示意图一,如图3所示,可选地,下行链路22包括依次连接的:现场可编程门阵列(Field-Programmable Gate Array,简称为FPGA)数据模块228、数模处理模块226、耦合器224,其中,FPGA数据模块228,连接基带部分,设置为对基带信号进行处理,包括以下至少之一:数字上变频、削峰、数字预失真;数模处理模块226,设置为对FPGA数据模块228输出的信号进行数模转换,以得到模拟信号。
图4是根据本发明实施例的无线通信设备的可选结构示意图二,如图4所示,可选地,反馈链路24包括依次连接的:耦合器222、射频电子切换开关242、混频器244、数字中频部分246、数字信号处理(Digital Signal Processing,简称为DSP)处理模块248、FPGA数据模块228,其中,射频电子切换开关242,设置为根据网管系统的检测命令,接通反馈链路24;混频器244,设置为将反馈链路24上的模拟信号混频变换为中频模拟信号;数字中频部分246,设置为将中频模拟信号模数转换为基带信号;DSP处理模块248,设置为对数字中频部分输出的基带信号进行快速傅里叶变换,得到基带数据;FPGA数据模块228,设置为将基带数据传输至基带部分。
图5是根据本发明实施例的无线通信设备的可选结构示意图三,如图5所示,可选地,无线通信设备还包括:数据存储模块52,连接基带部分和下行链路22,以及连接基带部分和反馈链路24,设置为存储模拟信号的数据源。
可选地,数据存储模块52,还设置为存储反馈链路24采集的基带数据。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
此外,上述数据存储模块52、FPGA数据模块228和DSP处理模块248可以利用无线通信设备中已有的存储单元、FPGA和DSP,通过修改软件代码的方式来实现,而可以无需新增硬件设备。
为了使本发明实施例的描述更加清楚,下面结合可选实施例进行描述和说明。
本发明可选实施例提供了一种无线通信设备频谱自检的方法,在本发明可选实施例中以远端射频单元(即RRU)为例进行描述和说明。
为了克服目前在线运营RRU出现故障时,采用更换RRU的方法造成的硬件故障排查的不便,本发明可选实施例提供的无线通信设备频谱自检的方案中,通过下行链路下发内部存储的数据源,然后再通过反馈链路传输并计算处理,可以快速的诊断出整机的故障原因,从而可以提高故障排查的效率,并降低成本。
图6是根据相关技术的RRU的结构示意图;图7是根据本发明可选实施例的RRU的结构示意图,如图7所示,其中,数模转换器(Digital-to-Analog Converter,简称为DAC)、混频器1、滤波器、功放、双工器构成了图3所示的数模处理模块226。图7相对于图6,增加了DSP处理模块、数据存储模块和DSP控制模块。通过增加的这些模块,可以实现频谱检测。
基于图7的RRU,在RRU中增加DSP数据处理模块、数据存储模块、数据传输模块,并在网管系统增加了显示模块后,本发明可选实施例采用下列方案实现基于频谱显示的故障检测:
DSP数据处理模块,完成时域信号变换为频域信号;
数据存储模块,存储射频固定测试模式数据源,在进行检测时可以通过下行链路下发;也存储反馈链路采集的DSP处理后数据,在出现异常时,可以通过调用之前的数据,进行频谱分析;
数据传输模块,传输频谱数据和控制信息;
显示模块,进行频谱显示。
通过上述方案,可以通过检测RRU频谱,实时监控RRU运行状态。在RRU出现故障时,可以通过频谱检测,判定出现问题的模块,从而减少上站检测和更换成本。
下面结合流程图对本发明可选实施例进行描述和说明。
可选实施例一
在本可选实施例中,以频谱检测为例进行说明。图8是根据本发明可选实施例的频谱检测的流程图,如图8所示,该流程包括如下步骤:
步骤S801,通过网管系统(例如:LTE网络管理系统)发起频谱检测命令,可以选择多种检测模式,例如,协议规定的频谱类测试模式:相邻信道功率(Adjacent Channel Power,简称为ACP)、频谱辐射掩模(Spectrum Emission Mask,简称为SEM)等,通过基带部分(Building Baseband Unit,简称为BBU)将命令发送到RRU的中央处理单元(CPU)进行处理;
步骤S802,RRU收到频谱检测命令后,进行数据的采集和处理,包括步骤S8021~步骤S8024:
步骤S8021,FPGA数据模块通过CPU控制模块获取小区的配置信息;
步骤S8022,双工器之后的输出端通过耦合器耦合出一部分输出功率,模拟信号通过混频变换为中频模拟信号;
步骤S8023,将中频模拟信号通过数字中频部分转换为基带信号,其中,数字中频部分的处理包括:数字下变频(Digital Down Converter,简称为DDC)、模数转换(Analog-to-Digital Converter,简称为ADC)和抽取滤波等部分;
步骤S8024,将基带信号通过DSP进行快速傅里叶变换(Fast Fourier Transformation,简称为FFT),并且将计算得到的基带数据通过数据存储模块进行存储,将数据存储模块中缓存的基带数据按照网管配置的消息将相应的基带数据上传至基带;
步骤S803,基带将基带数据传递给网管系统的操作维护管理(Operation Administration Maintenance,简称为OAM)模块;在网管系统中根据FPGA数据模块获取的配置信息和上述基带数据绘制频谱,并将绘制的频谱显示到后台操作界面。这样就可以从网管系统的后台查看到RRU的频谱图,进而根据频谱图定位RRU故障。
可选实施例二
在本可选实施例中,以误差向量幅度(Error Vector Magnitude,简称为EVM)检测为例进行说明。由于频谱恶化导致信道质量差,进而导致EVM变差,因此,通过EVM检测也可以对无线通信设备进行检测。图9是根据本发明可选实施例的EVM检测的流程图,如图9所示,该流程包括如下步骤:
步骤S901,通过网管系统(例如LTE网络管理系统)发起EVM检测命令,可以选择多种检测模式,例如,ACP、SEM等,通过BBU将命令发送到RRU的CPU进行处理;
步骤S902,RRU收到EVM检测命令后,FPGA数据模块通过CPU控制模块获取小区配置信息;
步骤S903,根据获取到的配置信息从数据存储模块下发与测试模式匹配的数据源,数据源通过下行链路至耦合器端;
步骤S904,通过反馈链路将前向数据采集到ADC处理;
步骤S905,将ADC转换后的数据,送到DSP数据处理模块,进行数据处理;
步骤S906,DSP数据处理模块将计算结果通过CPU和基带接口传输给网管系统(例如LTE网络管理系统);
步骤S907,网管系统将本次测试结果显示到后台界面,这样就可以从网管后台查看到RRU的各测试模式下的EVM值。
综上所述,通过本发明的上述实施例和可选实施例,通过RRU频谱自检和后台显示的方式,可以实现在线运营RRU的远程故障定位,减少上站检测的成本和时间,降低运营成本;此外,还可以通过检测到的频谱,判定整机是否存在杂散泄露等应硬件问题。
工业实用性:通过上述描述可知,本发明实施例解决了通过拆卸替换方式定位RRU故障存在的不方便的问题,实现了RRU故障的远程检测。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种无线通信设备检测方法,包括:
    获取网管系统下发的检测命令;
    通过反馈链路获取无线通信设备的下行链路上的模拟信号;
    对所述模拟信号进行转换处理后,将转换处理后的所述模拟信号传输至所述网管系统,以供所述网管系统根据转换处理后的所述模拟信号绘制并显示检测结果,其中,所述检测结果用于检测所述无线通信设备是否故障。
  2. 根据权利要求1所述的方法,其中,所述模拟信号的数据源包括:
    按照检测模式,存储在所述无线通信设备的非易失性存储器中的预设数据。
  3. 根据权利要求2所述的方法,其中,通过所述反馈链路获取所述无线通信设备的所述下行链路上的所述模拟信号包括:
    解析所述检测命令,得到一种或者多种检测模式;
    获取小区的配置信息;
    根据所述配置信息,将所述非易失性存储器中与所述一种或者多种检测模式匹配的预设数据通过所述下行链路下发,得到所述预设数据对应的模拟信号;
    通过耦合器从所述预设数据对应的模拟信号中耦合出所述模拟信号,并通过所述反馈链路传输所述模拟信号。
  4. 根据权利要求2所述的方法,其中,对所述模拟信号进行转换处理包括:
    将所述模拟信号混频变换为中频模拟信号;
    通过数字中频部分,将所述中频模拟信号转换为基带信号;
    将所述基带信号进行快速傅里叶变换,得到基带数据,其中,所述基带数据用于绘制所述检测结果。
  5. 根据权利要求4所述的方法,其中,将转换处理后的所述模拟信号传输至所述网管系统包括:
    通过所述非易失性存储器存储所述基带数据;
    将所述配置信息以及所述配置信息对应的所述基带数据传输至所述网管系统。
  6. 一种无线通信设备,包括:
    下行链路,设置为将基带部分接收的基带信号变换为模拟信号,并传输至天馈;
    反馈链路,分别连接耦合器和所述基带部分,设置为将所述耦合器耦合出的所述模 拟信号转换为基带数据;
    其中,所述耦合器设置为将所述下行链路上的所述模拟信号耦合成两部分:一部分通过天馈发射,另一部分通过所述反馈链路转换为所述基带数据后,通过所述基带部分传输至网管系统。
  7. 根据权利要求6所述的无线通信设备,其中,所述下行链路包括依次连接的:现场可编程门阵列FPGA数据模块、数模处理模块、所述耦合器,其中,
    所述FPGA数据模块,连接所述基带部分,设置为对基带信号进行处理,包括以下至少之一:数字上变频、削峰、数字预失真;
    所述数模处理模块,设置为对FPGA数据模块输出的信号进行数模转换,以得到所述模拟信号。
  8. 根据权利要求6所述的无线通信设备,其中,所述反馈链路包括依次连接的:所述耦合器、射频电子切换开关、混频器、数字中频部分、数字信号处理DSP处理模块、所述FPGA数据模块,其中,
    所述射频电子切换开关,设置为根据网管系统的检测命令,接通所述反馈链路;
    所述混频器,设置为将所述反馈链路上的模拟信号混频变换为中频模拟信号;
    所述数字中频部分,设置为将所述中频模拟信号模数转换为基带信号;
    所述DSP处理模块,设置为对所述数字中频部分输出的基带信号进行快速傅里叶变换,得到基带数据;
    所述FPGA数据模块,设置为将所述基带数据传输至所述基带部分。
  9. 根据权利要求6所述的无线通信设备,其中,所述无线通信设备还包括:
    数据存储模块,连接所述基带部分和所述下行链路,以及连接所述基带部分和所述反馈链路,设置为存储所述模拟信号的数据源。
  10. 根据权利要求9所述的无线通信设备,其中,
    所述数据存储模块,还设置为存储反馈链路采集的所述基带数据。
PCT/CN2015/094344 2015-07-06 2015-11-11 无线通信设备检测方法和无线通信设备 WO2017004920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510392717.X 2015-07-06
CN201510392717.XA CN106332157A (zh) 2015-07-06 2015-07-06 无线通信设备检测方法和无线通信设备

Publications (1)

Publication Number Publication Date
WO2017004920A1 true WO2017004920A1 (zh) 2017-01-12

Family

ID=57685066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094344 WO2017004920A1 (zh) 2015-07-06 2015-11-11 无线通信设备检测方法和无线通信设备

Country Status (2)

Country Link
CN (1) CN106332157A (zh)
WO (1) WO2017004920A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050495A (zh) * 2021-03-22 2021-06-29 苏州茹浩电动科技有限公司 一种基于arm与dsp的数字通讯故障监控系统
CN113376475A (zh) * 2021-05-20 2021-09-10 中广核工程有限公司 一种核电厂低压配电盘绝缘故障定位方法
CN114499570A (zh) * 2021-12-31 2022-05-13 华为技术有限公司 一种传输信息的方法,射频装置和控制装置
CN116248618A (zh) * 2023-05-08 2023-06-09 河北豪沃尔智能科技有限责任公司 信息传输装置、信息传输线路故障检测方法及设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872826B (zh) * 2017-03-02 2019-05-31 上海移远通信技术股份有限公司 用于智能无线通信模块的安全检测电路
CN113133016A (zh) * 2019-12-31 2021-07-16 中兴通讯股份有限公司 一种智能获取基带芯片数据的方法、装置、设备以及存储介质
CN115580360A (zh) * 2021-06-21 2023-01-06 中兴通讯股份有限公司 Evm检测方法、发射机和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304279A (zh) * 2008-06-30 2008-11-12 京信通信系统(中国)有限公司 射频拉远装置及基站系统
CN102164014A (zh) * 2011-04-22 2011-08-24 新邮通信设备有限公司 一种射频指标测试方法及系统
CN102572900A (zh) * 2010-12-07 2012-07-11 鼎桥通信技术有限公司 一种基站故障的检测方法
WO2012100372A1 (en) * 2011-01-27 2012-08-02 Telefonaktiebolaget L M Ericsson (Publ) Method for rru bypass in wireless communication network and rru device
CN103227683A (zh) * 2012-01-30 2013-07-31 鼎桥通信技术有限公司 一种对rru故障进行联合检测的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304279A (zh) * 2008-06-30 2008-11-12 京信通信系统(中国)有限公司 射频拉远装置及基站系统
CN102572900A (zh) * 2010-12-07 2012-07-11 鼎桥通信技术有限公司 一种基站故障的检测方法
WO2012100372A1 (en) * 2011-01-27 2012-08-02 Telefonaktiebolaget L M Ericsson (Publ) Method for rru bypass in wireless communication network and rru device
CN102164014A (zh) * 2011-04-22 2011-08-24 新邮通信设备有限公司 一种射频指标测试方法及系统
CN103227683A (zh) * 2012-01-30 2013-07-31 鼎桥通信技术有限公司 一种对rru故障进行联合检测的方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050495A (zh) * 2021-03-22 2021-06-29 苏州茹浩电动科技有限公司 一种基于arm与dsp的数字通讯故障监控系统
CN113376475A (zh) * 2021-05-20 2021-09-10 中广核工程有限公司 一种核电厂低压配电盘绝缘故障定位方法
CN114499570A (zh) * 2021-12-31 2022-05-13 华为技术有限公司 一种传输信息的方法,射频装置和控制装置
CN114499570B (zh) * 2021-12-31 2023-09-29 华为技术有限公司 一种传输信息的方法,射频装置和控制装置
CN116248618A (zh) * 2023-05-08 2023-06-09 河北豪沃尔智能科技有限责任公司 信息传输装置、信息传输线路故障检测方法及设备
CN116248618B (zh) * 2023-05-08 2023-09-08 河北豪沃尔智能科技有限责任公司 信息传输装置、信息传输线路故障检测方法及设备

Also Published As

Publication number Publication date
CN106332157A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2017004920A1 (zh) 无线通信设备检测方法和无线通信设备
CN101984563B (zh) 无线电频谱监测的方法
US10674375B2 (en) Multiple application modules (MAMs) for monitoring signals in components in wireless distribution systems, including distributed antenna systems (DASs), and related systems and methods
US9634857B2 (en) Auxiliary channel remote device management, diagnostics, and self-installation
CN101184006B (zh) 一种用于wlan设备指标的测试方法及系统
CN104756414A (zh) 自身优化分布式天线系统的系统与方法
US9264523B2 (en) Wireless device management with local and remote links
US10608758B2 (en) Simulating service changes in an application module (AM) in a wireless communications system (WCS) to simulate site walks in the wireless communications system
EP3242422B1 (en) Monitoring apparatus of distributed antenna system
WO2011160415A1 (zh) 一种无线射频拉远单元多通道的测试装置及方法
CN107947968B (zh) 网络质量投诉信息的处理方法和装置
KR102075405B1 (ko) 기지국 신호 정합 장치
CN103679356A (zh) 一种电子办公和网络维护相结合的方法和系统
CN102323797A (zh) 翻板闸门实时监控系统及其使用方法
WO2012088926A1 (zh) 无线通信系统中处理不同带宽信号传输的方法及装置
WO2017000418A1 (zh) 射频拉远单元的外场维护方法、装置、终端设备及系统
KR101237490B1 (ko) 이동통신용 알에프시스템의 성능분석 및 자가진단 장치
EP3627785A1 (en) Method of summing forward digital signal in distributed antenna system
CN110855322A (zh) 一种铁路漏泄同轴电缆故障定位监测系统及其实现方法
KR20200015998A (ko) 아날로그 광 링크 기반의 전송 성능을 모니터링하는 전송 성능 모니터링 방법 및, 방법을 수행하는 모니터링 장치
CN104735689A (zh) 移动通信网络空中接口监测系统
CN105517662A (zh) 一种信号的处理装置及方法
US11265118B2 (en) Spectrum analyzer integrated in a point-to-point outdoor unit
KR101645987B1 (ko) 이동통신 시스템에서 무선 성능 진단을 위한 방법 및 장치
CN110521278A (zh) 用于信号优势的数字das的自动配置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897574

Country of ref document: EP

Kind code of ref document: A1