WO2014205745A1 - 微波通信设备、系统及消除相跳影响的方法 - Google Patents

微波通信设备、系统及消除相跳影响的方法 Download PDF

Info

Publication number
WO2014205745A1
WO2014205745A1 PCT/CN2013/078222 CN2013078222W WO2014205745A1 WO 2014205745 A1 WO2014205745 A1 WO 2014205745A1 CN 2013078222 W CN2013078222 W CN 2013078222W WO 2014205745 A1 WO2014205745 A1 WO 2014205745A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase jump
phase
signal
frequency source
microwave communication
Prior art date
Application number
PCT/CN2013/078222
Other languages
English (en)
French (fr)
Inventor
郝欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/078222 priority Critical patent/WO2014205745A1/zh
Priority to CN201380000822.3A priority patent/CN103688501B/zh
Publication of WO2014205745A1 publication Critical patent/WO2014205745A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0016Stabilisation of local oscillators

Definitions

  • Microwave communication device system and method for eliminating phase jump effect
  • the present invention relates to the field of communications, and in particular, to a method for eliminating phase jump effects in a microwave communication device, system, and microwave communication device.
  • Qibo communication is communication using a wave of electromagnetic waves with a frequency of 300M ⁇ 3GHz.
  • Microwave communication does not require a solid medium, has a large capacity, good quality and can be transmitted to a long distance. Therefore, it is an important communication means of the national communication network, and is also generally applicable to various dedicated communication networks.
  • Phase jump refers to the jump of the phase/frequency during the temperature change of the microwave device (microwave communication device). Phase jumps can cause abrupt changes in the carrier, and errors can occur. If the phase jumps too much, it can even cause service interruption. Therefore, the phase jump problem is the most fatal flaw in microwave products/equipment.
  • the prior art generally only starts from the possibility factor of causing phase jump, and reduces the probability of phase jump by repeatedly experimenting with relevant measures, for example: 1) taking insulation measures in the frequency source part so that the temperature does not follow the ambient temperature Drastic changes; 2) Power supply filtering and loop filtering of the frequency source part avoid the use of piezoelectric effect capacitors to reduce phase jump caused by stress release; 3) Reduce the solder residue by cleaning the frequency source part.
  • relevant measures for example: 1) taking insulation measures in the frequency source part so that the temperature does not follow the ambient temperature Drastic changes; 2) Power supply filtering and loop filtering of the frequency source part avoid the use of piezoelectric effect capacitors to reduce phase jump caused by stress release; 3) Reduce the solder residue by cleaning the frequency source part.
  • the occurrence of phase jumps is random and unpredictable, and the existing schemes can only reduce or avoid factors that may cause phase jumps, and cannot monitor and process the phase jumps that have occurred from time to time. Fundamentally eliminate the impact of phase jumps.
  • the technical problem to be solved by the present invention is to provide a method for eliminating phase jump effects in a microwave communication device, a system and a microwave communication device, which can fundamentally eliminate the influence of phase jump, improve the ability of the microwave device to resist phase jump, and solve the microwave device.
  • the present invention provides a microwave communication device, including: a frequency source, wherein a local oscillator signal generated by the frequency source and a baseband data signal are upconverted to a microwave signal Or, the received microwave signal and the local oscillator signal generated by the frequency source are down-converted to a baseband data signal, and the microwave communication device further includes:
  • phase jump buffer unit configured to collect phase jump information of the frequency source
  • a configuration processing unit configured to perform phase correction on the baseband data signal according to the phase jump information to eliminate phase jump effects.
  • the configuration processing unit includes: an analog-to-digital conversion module and an inversion module; an analog-to-digital conversion module, configured to convert the set of phase jump information into a digital signal; and an inverting module, configured to The signal is inverted to obtain a compensation signal, and the compensation signal is superimposed on the baseband data signal, the waveform of the compensation signal being opposite to the phase hopping waveform of the digital signal.
  • the frequency source comprises: a voltage controlled oscillator
  • phase-hopping unit is coupled to an input of the voltage controlled oscillator.
  • the phase fluctuating unit includes: a capacitor, an amplifier, and a filter; one plate of the capacitor is connected to an input end of the voltage controlled oscillator, and the other plate is connected to an input end of the amplifier. Connected, the output of the amplifier is connected to the filter;
  • the capacitor is configured to obtain phase hopping information of the frequency source by capacitive coupling, the amplifier for amplifying the phase hopping information, and the filter for filtering out a high frequency portion of the phase hopping information.
  • the microwave communication device further includes: a mixer;
  • the compensation signal output by the inverting module is superimposed on the baseband data signal by the mixer.
  • the configuration processing unit is a digital processor.
  • the microwave communication device includes: an indoor unit
  • IDU Indoor unit
  • OTU Outdoor unit
  • the IDU includes a digital processor
  • the configuration processing unit is the digital processor in the indoor unit IDU.
  • the present invention further provides a microwave communication system, including: any of the microwave communication devices.
  • the present invention provides a method for eliminating phase jump effects in a microwave communication device, where the microwave communication device includes: a frequency source, wherein a local oscillator signal generated by the frequency source and a baseband data signal are upconverted to a microwave signal for transmission. Or, the received microwave signal and the local oscillator signal generated by the frequency source are down-converted into a baseband data signal, and the method includes:
  • Phase correction is performed on the baseband data signal according to the phase hopping information to eliminate the phase jump effect.
  • the phase correction is performed on the baseband data signal according to the phase hopping information to eliminate phase jump effects, and specifically includes:
  • the digital signal is inverted to obtain a compensation signal, and the compensation signal is superimposed on the baseband data signal, the waveform of the compensation signal being opposite to the phase hopping waveform of the digital signal.
  • the frequency source includes: a voltage controlled oscillator; and the phase jump information of the frequency source is specifically:
  • Phase hopping information of the frequency source is gathered from an input of the voltage controlled oscillator.
  • the collecting the phase hop information of the frequency source includes:
  • a filter is used to filter out high frequency portions of the phase jump information.
  • the compensation signal is superimposed on the baseband data signal by a mixer.
  • the present invention provides a method for eliminating the influence of 4 hops in a microwave communication device, a system, and a microwave communication device.
  • the phase hop information is transmitted back, and then the phase hop information of the backhaul is configured to obtain a compensation signal of the inverse waveform, and further
  • the anti-waveform compensation signal is superimposed on the baseband data signal to eliminate the influence of the phase jump.
  • the invention can monitor and process the phase jump from time to time, improve the anti-phase jump capability of the microwave device, and solve the microwave device due to phase jump. The resulting error in the communication system.
  • FIG. 1 is a structural block diagram 1 of a microwave communication device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a frequency source
  • FIG. 3 is a schematic structural diagram of a microwave communication device according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a phase jumpback 4th cancellation process according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a process of transmitting a local oscillator phase hop in a wave communication device according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a receiving local oscillator phase hopping process in a wave communication device according to a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a process of phase jump processing of a microwave communication device according to a second embodiment;
  • FIG. 9 is a schematic diagram of a process of eliminating phase error caused by phase jump backhaul in a wave communication system according to Embodiment 2 of the present invention;
  • FIG. 10 is a flowchart 1 of a method for eliminating phase jump effects in a microwave communication device according to Embodiment 3 of the present invention.
  • FIG. 1 is a second flowchart of a method for eliminating phase jump effects in a microwave communication device according to Embodiment 3 of the present invention.
  • Embodiments of the present invention provide a microwave communication device, a system, and a method for eliminating phase jump effects, which can fundamentally eliminate the influence of phase jump, improve the ability of the microwave communication device to resist phase jump, and solve the communication caused by the phase jump of the microwave communication device.
  • the system has a problem with errors.
  • An embodiment of the present invention provides a microwave communication device.
  • the device includes: a frequency source 10, and a local oscillator signal generated by the frequency source 10 and a baseband data signal are up-converted to a microwave signal for transmission, or received.
  • the microwave signal and the local oscillator signal generated by the frequency source 10 are down-converted into a baseband data signal (which can be converted by a mixer), and the microwave communication device further includes:
  • the phase jump buffer unit 20 is configured to collect phase jump information of the frequency source 10;
  • the configuration processing unit 30 is configured to perform phase correction on the baseband data signal according to the collected phase jump information to eliminate the phase jump effect.
  • the user equipment converts various information to be transmitted into a baseband signal or converts the baseband signal into original information, and the baseband signal to be transmitted cannot be directly transmitted in the wireless microwave channel, and the baseband signal must be converted into a frequency band signal.
  • the form, that is, the carrier is digitally modulated by the baseband signal to be transmitted, and the signal obtained after the modulation (ie, the baseband data signal) is an intermediate frequency signal.
  • the received microwave is down-converted into a baseband data signal and demodulated into a baseband signal.
  • the up-conversion is a process of mixing the intermediate-frequency baseband data signal with a higher-frequency local oscillator signal;
  • the down-conversion is an inverse process of up-conversion, and the principle is similar, except that the local oscillator signal and the microwave signal are taken. Different combinations.
  • the up-and down-conversion achieves a frequency conversion between the baseband data signal (intermediate frequency signal) and the microwave signal.
  • the microwave local oscillator having the largest phase jump probability is generated in the microwave link of the microwave communication device, that is, the frequency source 10, and the frequency source 10 shown in FIG. 2 is
  • the dotted frame portion is a device that generates a large phase jump probability, which is a crystal oscillator reference 1 1 (Reference Oscillator, RO), a loop filter 12 (loop filter), and a voltage controlled oscillator 13 (Voltage Control Oscilltor, VCO).
  • this embodiment returns the phase hopping analog signals generated by these devices and performs configuration processing to phase correct the baseband data signals to eliminate phase jump effects.
  • the frequency source 10 also includes a phase lock loop 14 (Phase Locking Loop, PI;).
  • the frequency source 10 in this embodiment may be a transmitting local oscillator or a receiving local oscillator.
  • the phase hopping unit 20 collects the phase hopping information of the frequency source 10 and transmits it to the configuration processing unit 30.
  • the configuration processing unit 30 performs phase correction on the baseband data signal according to the phase-to-phase hopping information, thereby fundamentally eliminating the influence of the phase hopping, improving the anti-phase hopping capability of the microwave communication device, and solving the communication system caused by the phase hopping of the microwave communication device.
  • the problem of bit errors is the reason for the microwave communication device.
  • the configuration processing unit 30 includes: an analog-to-digital conversion module 301 and an inversion module 302;
  • An analog-to-digital conversion module 301 configured to convert the set of phase jump information into a digital signal
  • the inverting module 302 is configured to perform an inversion operation on the digital signal to obtain a compensation signal, and superimpose the compensation signal on the baseband data signal, the waveform of the compensation signal being opposite to the phase jump waveform of the digital signal.
  • the phase hopping information collected from the frequency source 10 is an analog signal
  • the analog signal processing has the disadvantages of being difficult to achieve high precision, being affected by the environment, having poor reliability, and being inflexible. Therefore, in order to facilitate the phase
  • the hopping information is stored and processed, and the phase hopping information collected by the modulo conversion module 301 is first converted into a digital signal, and then input to the inverting module 302 for processing to obtain a compensation signal.
  • the digital signal input to the inverting module 302 includes phase hopping information, and the inverting module 302 performs an inverse transform operation on the input digital signal to obtain a compensation signal for phase correction of the baseband data signal, wherein the inverse transform operation is Refers to inverting the phase of the input signal by 180 degrees.
  • the inverting module 302 is a one that can perform phase inversion conversion on the signal.
  • the inverting module 302 can alternatively be a digital processor.
  • the inverting module 302 will be described in detail below with reference to the accompanying drawings: As shown in FIG. 4, it is a schematic diagram of the principle of phase correction based on the phase jump information of the backhaul to eliminate the phase jump effect.
  • the ⁇ represents the phase hopping waveform generated by the frequency source 10, and can be regarded as a digital signal outputted by the analog-to-digital conversion module 301; ⁇ represents the compensation signal output by the configuration processing unit 30, and specifically to the embodiment, The compensation signal output by the inverting module 302 is fitted (the compensation signal is a digital signal).
  • phase hopping information (corresponding to the ⁇ waveform) collected by the phase hopping unit 20 from the frequency source 10 is inversely converted by the configuration processing unit 30 (ie, the analog to digital conversion module 301 and the inverting module 302), and the output is compensated.
  • the signal (corresponding to the B waveform) is opposite to the phase hopping waveform of the phase hopping information (corresponding to the A waveform). Therefore, superimposing the compensation signal of the inverse waveform on the baseband data signal can be used to cancel the effect of the phase hop on the frequency (phase) abrupt change.
  • the net effect is that the signal in the microwave link is as if no phase jump occurred, as shown by C in Figure 4.
  • the backhaul processing may be performed only for the phase hop of the transmitting local oscillator, or may be performed only for the phase hop of the receiving local oscillator, but preferably, the transmitting local oscillator and the receiving are simultaneously considered.
  • the microwave communication device in this embodiment may be a microwave transmitting device, a microwave receiving device, or a microwave transceiver device with a microwave transceiver function.
  • the microwave communication device obtained by the embodiment of the present invention obtains a compensation signal of an inverse waveform by transmitting back phase hop information, and then performing configuration processing on the returned phase hop information, and then superimposing the compensation signal of the inverse waveform on the baseband data signal.
  • the phase jump can be monitored and processed from time to time, and the phase jump effect is fundamentally eliminated, thereby improving the anti-phase jump capability of the microwave communication device and solving the communication caused by the phase jump of the microwave communication device.
  • the problem of bit error in the system is described in order to eliminate the influence of phase jump.
  • the technical solution of the microwave communication device provided by the invention is applicable to the indoor (or outdoor) integrated machine structure, and is also applicable to the commonly used split structure.
  • the following is a description of the microwave communication device of the split structure.
  • the microwave communication device of the split structure that is, the microwave communication device
  • the transceiver is outdoors (ie, Outdoor Unit, ODU), and the modem and baseband interface are indoors (ie, indoor unit, IDU).
  • the indoor unit IDU 100 mainly demodulates and digitizes the received microwave signal to decompose the required signal; and also modulates the digital signal to be transmitted into a signal that can be transmitted.
  • the IDU 100 consists primarily of the baseband and intermediate frequency (receiving and transmitting) parts, while the ODU 200 contains the transmitter and receiver.
  • the transmitter is generally upconverted, for example, from 310MHz to 7GHz, and then filtered and amplified to the antenna feeder system.
  • the receiver receives the signal received from the antenna feeder system through a low noise amplifier (LNA) and downconverts to the intermediate frequency. (typically 70MHz), after IF AGC, it is transmitted to the IDU via cable.
  • LNA low noise amplifier
  • the antenna feeder system is generally provided with a filter and an antenna for transmitting and receiving.
  • the outdoor unit 200 in this embodiment includes a frequency source and a phase hopping unit 20, and the frequency source includes: a voltage controlled oscillator (VCO) 13, an input end of the phase hopping unit 20, and a voltage controlled oscillator. The inputs of 13 are connected.
  • VCO voltage controlled oscillator
  • the phase hopping unit 20 includes: a capacitor 21, an amplifier 22, and a filter 23.
  • One plate of the capacitor 21 is connected to the input of the voltage controlled oscillator 13, and the other plate is connected to the input of the amplifier 22.
  • the output of amplifier 22 is coupled to filter 23.
  • the capacitor 21 is used to obtain phase jump information of the frequency source 10 by capacitive coupling
  • the amplifier 22 is used to amplify the phase jump information
  • the filter 23 is used to filter out the high frequency portion of the phase jump information and input the indoor unit IDU100.
  • the indoor unit IDU100 in this embodiment includes: a configuration processing unit 30, and the configuration processing unit 30 receives the phase hop information output by the phase hopping unit 20, and performs phase analysis on the baseband data signal according to the phase hopping information. Correct to eliminate phase jump effects.
  • the indoor unit IDU100 in this embodiment includes: a digital processor (Digital Signal Processing, DSP), and the configuration processing unit 20 is a digital processor in the indoor unit IDU 100. 300.
  • DSP Digital Signal Processing
  • the configuration processing unit 20 is a digital processor in the indoor unit IDU 100. 300.
  • the phase hop information outputted by the filter 23 is transmitted back to the indoor unit 100, processed by the digital processor 300 of the indoor unit 100, and the baseband data signal is phase-corrected to eliminate the phase jump effect.
  • the digital processor 300 itself has an analog-to-digital conversion function and a function of inverting the signal, and thus, in other words, the digital processor 300 includes a modulus Conversion module 301 and inversion module 302.
  • the indoor unit IDU 100 further includes: a mixer 303; the compensation signal output by the inverting module 302 is superimposed on the baseband data signal by the mixer 303.
  • the transmitting signal outputted by the outdoor unit ODU200 will have phase jump information, and the phase hopping unit 20 collects phase jump information from the input end of the voltage controlled oscillator 13.
  • the phase jump information is transmitted to the indoor unit IDU I OO through the return channel, and the IDU I OO generates a compensation signal (completed by the inverting module 302 of the DSP 300) according to the phase jump waveform configuration process, and then obtains The compensation signal is superimposed on the baseband data signal.
  • the compensation signal can be superimposed on the baseband data signal by the mixer 303.
  • the phase jump waveform sends the useful signal and the inverted waveform of the phase jump (that is, the baseband data signal including the compensation signal) to the ODU 200 and the local oscillator signal generated by the frequency source is mixed, and then the modified local oscillator is corrected.
  • the phase jump so that the modified useful signal is transmitted to the receiving end IDU 100 through the transmitting channel of the ODU 200, the spatial transmission, and the receiving channel of the ODU 200, so that the receiving end IDU 100 can normally demodulate the useful signal without generating a communication error.
  • the useful information in the figure that is, the information to be transmitted, is included in the useful signal; the phase jump information is included in the phase jump waveform.
  • the baseband data signal and the local oscillator signal generated by the frequency source synthesize a microwave transmission signal
  • the baseband data signal in this embodiment includes a compensation signal, and the waveform of the compensation signal and the phase jump waveform generated.
  • the phase jump effect of the transmitting local oscillator is cancelled, and thus, the influence of the phase jump of the transmitting local oscillator on the final microwave transmitting signal can be reduced.
  • the receiving local oscillator (receiving frequency source) of the ODU200 If the receiving local oscillator (receiving frequency source) of the ODU200 has a phase jump, it is transmitted to the IDU 100 through the phase jump return channel.
  • the IDU I OO is configured according to the phase jump waveform configuration to generate a compensation signal opposite to the phase jump waveform, and then the obtained signal is obtained.
  • the compensation signal is superimposed on the baseband data signal. Since the phase hop that occurs when the receiving local oscillator occurs, it will affect the received useful signal. When IDU I OO demodulates the useful signal, the superimposed compensation signal cancels the frequency (phase) abrupt change caused by the receive phase hop, so that the normal signal is demodulated normally without causing communication error.
  • the microwave communication device of the split structure provided by the embodiment can perform time monitoring and processing on the phase jump, thereby substantially eliminating the phase jump effect, thereby improving the anti-phase jump capability of the microwave communication device, and solving the microwave communication device. Errors in communication systems due to phase jumps
  • the present invention further provides a microwave communication system, including: any of the microwave communication devices described in Embodiments 1 and 2.
  • the frequency (phase) abruptly generated by the phase jump that has occurred can be offset in advance, and the IDU can normally demodulate the signal, eliminating the error effect of the entire system.
  • An embodiment of the present invention provides a method for eliminating the impact of phase hopping in a microwave communication device.
  • the microwave communication device includes: a frequency source, and a local oscillator signal generated by the frequency source and a baseband data signal are combined into a microwave signal.
  • the method includes:
  • the method for canceling the phase jump effect provided by the embodiment of the present invention can perform the phase correction of the baseband data signal according to the phase jump information of the backhaul, and eliminate the influence of the phase jump, and can perform the phase jump time
  • the monitoring and processing fundamentally eliminates the influence of phase jump, thereby improving the anti-phase hopping capability of the microwave communication device, and solving the error problem of the communication system caused by the phase hopping of the microwave communication device.
  • the frequency source includes: a voltage controlled oscillator.
  • step 101 is specifically: collecting phase jump information of the frequency source from an input end of the voltage controlled oscillator.
  • step 101 collects the phase hop information of the frequency source, and the phase jump information of the frequency source can be obtained by the following steps 101 1 to 1013:
  • step 102 performs phase correction on the baseband data signal according to the phase jump information, to eliminate the phase jump effect, and specifically includes: 1021: collecting the phase into the phase Jump information is converted into a digital signal;
  • the compensation signal is superimposed on the baseband data signal by a mixer.
  • the invention provides a method for eliminating the influence of phase jump in a microwave communication device, which can obtain a compensation signal of an inverse waveform by transmitting back phase jump information, and then performing configuration processing on the returned phase jump information, thereby superimposing the compensation signal of the inverse waveform.
  • the baseband data signal is used to eliminate the influence of the phase jump, so that the phase jump can be monitored and processed from time to time, the anti-phase jump capability of the microwave communication device can be improved, and the communication system caused by the phase jump of the microwave communication device can be solved. The error problem.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种微波通信设备、系统及消除相跳影响的方法,涉及通信领域,可从根本上消除相跳的影响,提高微波通信设备抗相跳的能力,解决由于微波通信设备发生相跳导致通信系统出现误码的问题。本发明所述微波通信设备,包括:频率源,还包括:相跳釆集单元,用于釆集所述频率源的相跳信息;配置处理单元,用于根据釆集到所述相跳信息对所述基带数据信号进行相位校正,以消除相跳影响。本发明还提供一种微波通信系统,包括:本发明所述的微波通信设备。

Description

微波通信设备、 系统及消除相跳影响的方法 技术领域
本发明涉及通信领域, 尤其涉及一种微波通信设备、 系统及微 波通信设备中消除相跳影响的方法。
背景技术
啟波通信是使用频率为 300M ~ 3GHz 电磁波一 波进行的通 信。 微波通信不需要固体介质, 具有容量大、 质量好并可传至很远 的距离, 因此是国家通信网的一种重要通信手段, 也普遍适用于各 种专用通信网。
如何消除相跳影响是微波通信系统(微波系统)设计中最重要的 问题之一。 相跳指微波设备 (微波通信设备) 在温度变化过程中, 相位 /频率出现的跳变。 相跳会造成载波突变, 出现误码, 如果相位 跳变过大, 甚至会造成业务中断, 因此相跳问题是微波产品 /设备最 致命的硬伤。 现有技术一般只是从造成相跳的可能性因素出发, 通 过反复实验釆取相关措施以减小相跳发生的概率, 例如: 1 ) 在频率 源部分釆取保温措施, 使其温度不随环境温度剧烈变化; 2 ) 频率源 部分的供电滤波及环路滤波避免使用压电效应的电容, 以减少应力 释放造成的相跳; 3 ) 频率源部分通过清洗减少焊料残留等。 但相跳 的发生带有随机性和不可预知性, 而现有的这些方案只能减小或尽 量避免可能造成相跳的因素, 并不能对已发生的相跳进行时时监控 和处理, 因而无法从根本上消除相跳的影响。
发明内容
本发明所要解决的技术问题在于提供一种微波通信设备、 系统 及微波通信设备中消除相跳影响的方法, 可从根本上消除相跳的影 响, 提高微波设备抗相跳的能力, 解决微波设备由于相跳导致通信 系统出现误码的问题。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一方面, 本发明提供一种微波通信设备, 包括: 频率源, 所述 频率源产生的本振信号与基带数据信号上变频为微波信号发射出 去, 或者, 接收到的微波信号与所述频率源产生的本振信号下变频 为基带数据信号, 所述微波通信设备还包括:
相跳釆集单元, 用于釆集所述频率源的相跳信息;
配置处理单元, 用于根据釆集到所述相跳信息对所述基带数据 信号进行相位校正, 以消除相跳影响。
优选地, 所述配置处理单元包括: 模数转化模块和反相模块; 模数转化模块, 用于将釆集到所述相跳信息转化为数字信号; 反相模块,用于对所述数字信号进行反相运算以获得补偿信号, 并将所述补偿信号叠加在所述基带数据信号上, 所述补偿信号的波 形与所述数字信号的相跳波形相反。
优选地, 所述频率源包括: 压控振荡器;
所述相跳釆集单元的输入端与所述压控振荡器的输入端相连。 可选地, 所述相跳釆集单元包括: 电容、 放大器和滤波器; 所述电容的一个极板与所述压控振荡器的输入端相连, 另一极 板与所述放大器的输入端相连, 所述放大器的输出端与所述滤波器 相连;
所述电容用于通过电容耦合获得所述频率源的相跳信息, 所述 放大器用于放大所述相跳信息, 所述滤波器用于滤去所述相跳信息 中的高频部分。
进一步地, 所述的微波通信设备, 还包括: 混频器;
所述反相模块输出的补偿信号通过所述混频器, 叠加在所述基 带数据信号上。
可选地, 所述配置处理单元为数字处理器。
在一种可选地实施方式中, 所述微波通信设备包括: 室内单元
(Indoor unit, IDU)和室外单元(Outdoor Unit, ODU) , 所述室内单元
IDU包括数字处理器;
所述配置处理单元为所述室内单元 IDU中的所述数字处理器。 进一步地, 本发明还提供一种微波通信系统, 包括: 所述的任 一微波通信设备。 另一方面, 本发明提供一种微波通信设备中消除相跳影响的方 法, 所述微波通信设备包括: 频率源, 所述频率源产生的本振信号 与基带数据信号上变频为微波信号发射出去, 或者, 接收到的微波 信号与所述频率源产生的本振信号下变频为基带数据信号, 该方法 包括:
釆集所述频率源的相跳信息;
根据釆集到所述相跳信息对所述基带数据信号进行相位校正, 以消除相跳影响。
优选地, 所述根据釆集到所述相跳信息对所述基带数据信号进 行相位校正, 以消除相跳影响, 具体包括:
将釆集到所述相跳信息转化为数字信号;
对所述数字信号进行反相运算以获得补偿信号, 并将所述补偿 信号叠加在所述基带数据信号上, 所述补偿信号的波形与所述数字 信号的相跳波形相反。
优选地, 所述频率源包括: 压控振荡器; 所述釆集所述频率源 的相跳信息, 具体为:
从所述压控振荡器的输入端釆集所述频率源的相跳信息。
可选地, 所述釆集所述频率源的相跳信息, 具体包括:
通过电容耦合获得所述频率源的相跳信息;
通过放大器放大所述相跳信息;
通过滤波器用于滤去所述相跳信息中的高频部分。
可选地,所述补偿信号通过混频器叠加在所述基带数据信号上。 本发明提供一种微波通信设备、 系统和微波通信设备中消除 4目 跳影响的方法, 通过将相跳信息回传, 然后对回传的相跳信息进行 配置处理获得反波形的补偿信号, 进而将反波形的补偿信号叠加在 所述基带数据信号上, 从而消除相跳产生的影响, 本发明可以对相 跳进行时时监控和处理, 提高微波设备的抗相跳能力, 解决微波设 备由于相跳造成的通信系统出现的误码问题。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例一提供的微波通信设备的结构框图一; 图 2为一种频率源的结构示意图;
图 3为本发明实施例一提供的微波通信设备的结构框图二; 图 4为本发明实施例一中相跳回传 4氏消处理的原理示意图; 图 5为本发明实施例二提供的微波通信设备的结构示意图; 图 6为本发明实施例二中波通信设备中发射本振相跳处理示意 图 7为本发明实施例二中波通信设备中接收本振相跳处理示意 图 8为本发明实施例二中微波通信设备的相跳处理示意图; 图 9为本发明实施例二中 啟波通信系统相跳回传消除误码影响 过程的示意图;
图 10 为本发明实施例三中微波通信设备中消除相跳影响的方 法流程图一;
图 1 1 为本发明实施例三中微波通信设备中消除相跳影响的方 法流程图二。
附图标记说明
10-频率源, 20-相跳釆集单元, 30-配置处理单元,
1 1 -晶振参考, 12-环路滤波器, 13 -压控振荡器, 14-锁相环, 21 -电容, 22-放大器, 23 -滤波器, 100-室内单元,
200-室外单元, 300-数字处理器, 301 -模数转化模块,
302-反相模块, 303 -混频器。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
本发明实施例提供一种微波通信设备、 系统及消除相跳影响的 方法, 可从根本上消除相跳的影响, 提高微波通信设备抗相跳的能 力, 解决微波通信设备由于相跳导致的通信系统出现误码的问题。
实施例 1 :
本发明实施例提供一种微波通信设备, 如图 1 所示, 该设备包 括: 频率源 10 , 频率源 10 产生的本振信号与基带数据信号上变频 为微波信号发射出去, 或者, 接收到的微波信号与频率源 10产生的 本振信号下变频为基带数据信号 (可通过混频器进行变频), 所述微 波通信设备还包括:
相跳釆集单元 20 , 用于釆集频率源 10的相跳信息;
配置处理单元 30 , 用于根据釆集到相跳信息对基带数据信号进 行相位校正, 以消除相跳影响。
微波通信设备工作时, 用户设备把各种需要传输的信息变换成 基带信号或者把基带信号变换成原信息, 待发送的基带信号不能直 接在无线微波信道中传输, 必须将基带信号变换成频带信号的形式, 即用待发送的基带信号对载波进行数字调制, 调制之后得到的信号 ( 即基带数据信号) 是中频信号, 要通过微波传输, 还需要通过上 变频将其变为微波信号发射出去。 类似地, 接收到的微波经下变频 变换为基带数据信号, 再解调为基带信号。 其中, 而上变频就是将 中频的基带数据信号与一个频率较高的本振信号进行混频的过程; 下变频是上变频的逆过程, 原理类似, 只是取的是本振信号与微波 信号的不同组合而已。 简言之, 上、 下变频实现基带数据信号 ( 中 频信号) 与微波信号之间的频率变换。
本实施例中, 考虑到微波通信设备的微波链路中产生相跳概率 最大的为微波本振部分, 即频率源 10 , 以图 2 所示的频率源 10 为 例, 虚线框部分为产生相跳概率大的器件, 分别是晶振参考 1 1 ( Reference Oscillator, RO )、 环路滤波器 12 ( Loop Filter ) 以及压 控振荡器 13 ( Voltage Control Oscilltor , VCO )。 为消除相跳影响, 本实施例将这些器件产生的相跳模拟信号回传, 进行配置处理, 从 而对基带数据信号进行相位校正, 以消除相跳影响。 除此之外, 频 率源 10还包括锁相环 14 (Phase Locking Loop, PI ;)。
需要注意的是, 本实施例中的频率源 10可以是发射本振, 也可 以是接收本振。
本实施例中相跳釆集单元 20釆集频率源 10的相跳信息, 并回 传给配置处理单元 30。 配置处理单元 30 根据釆集到相跳信息对基 带数据信号进行相位校正, 从根本上消除相跳的影响, 提高微波通 信设备抗相跳的能力, 解决微波通信设备由于相跳导致的通信系统 出现误码的问题。
具体而言, 如图 3所示, 在本实施例的一种优选的实施方式中, 配置处理单元 30包括: 模数转化模块 301和反相模块 302 ;
模数转化模块 301 , 用于将釆集到所述相跳信息转化为数字信 号;
反相模块 302 , 用于对所述数字信号进行反相运算以获得补偿 信号, 并将补偿信号叠加在基带数据信号上, 所述补偿信号的波形 与所述数字信号的相跳波形相反。
本实施例中从频率源 10釆集到的相跳信息为模拟信号,模拟信 号处理具有难以做到高精度, 受环境影响较大, 可靠性差, 且不灵 活等缺点, 因此, 为便于对相跳信息进行存储及处理, 需要通过模 数转化模块 301 先将釆集到的相跳信息转化为数字信号, 再输入反 相模块 302进行处理, 获得补偿信号。
输入反相模块 302的数字信号包含相跳信息, 反相模块 302对 输入的数字信号进行反相变换运算, 从而获得用于对基带数据信号 进行相位校正的补偿信号, 其中的反相变换运算是指将输入信号的 相位反转 180度。 反相模块 302为可将信号进行相位反转变换的一 种模块。 例如可选地, 反相模块 302可为数字处理器。
下面结合附图对反相模块 302进行详细描述: 如图 4所示, 为 根据回传的相跳信息进行相位校正以消除相跳影响的原理示意图。 其中,Α代表频率源 10产生的相跳波形,可看成由模数转化模块 301 输出的数字信号拟合而成; Β代表配置处理单元 30输出的补偿信号, 具体到本实施例则是由反相模块 302 输出的补偿信号拟合而成 (补 偿信号为数字信号)。
相跳釆集单元 20从频率源 10釆集到的相跳信息(对应 Α波形 ), 经配置处理单元 30 (即模数转化模块 301 和反相模块 302 ) 进行反 相转换后, 输出的补偿信号 (对应 B波形 ) 与相跳信息的相跳波形 (对应 A波形 ) 相反, 因此, 将反波形的补偿信号叠加在基带数据 信号上, 可用来抵消相跳对频率(相位)突变的影响, 最终效果使微波 链路中的信号如同没有发生相跳一样, 如图 4中的 C所示。
需要注意的是, 本实施例可只针对发射本振发生的相跳进行回 传处理, 也可以只针对接收本振发生的相跳进行回传处理, 但优选 地, 同时考虑发射本振和接收发生的相跳。
本实施例中的微波通信设备, 可以是微波发送设备, 也可以是 微波接收设备, 还可以是微波收发功能一体的微波收发设备。
本发明实施例提供的微波通信设备, 通过将相跳信息回传, 然 后对回传的相跳信息进行配置处理获得反波形的补偿信号, 进而将 反波形的补偿信号叠加在所述基带数据信号上, 来消除相跳产生的 影响, 可对相跳进行时时监控和处理, 从根本上消除了相跳影响, 从而提高微波通信设备的抗相跳能力, 解决微波通信设备由于相跳 造成的通信系统出现的误码问题。
实施例 2
本发明提供的微波通信设备的技术方案, 既适用于室内 (或室 外) 一体机结构, 也适用于目前常用的分体式结构, 下面以分体式 结构的微波通信设备为例进行说明。
如图 5所示, 分体式结构的微波通信设备, 即微波通信设备的 收发信机在室外 ( 即室外单元 200, Outdoor Unit, ODU ), 调制解 调和基带接口在室内 (即室内单元 100, Indoor Unit, IDU )。
室内单元 IDU 100主要是把接收到的微波信号进行解调和数字 化处理, 分解出需要的信号; 同时也把需要传输的数字信号调制成 可以发射的信号。 IDU 100 主要包含基带和中频 (收和发) 部分, ODU 200 则包含发信机和收信机。 发信机一般由上变频比如把 310MHz变到 7GHz, 再经过滤波、 放大后到天馈系统; 收信机则将 从天馈系统收到的信号经过低噪声放大器(LNA), 下变频到中频(一 般为 70MHz), 中频自动增益控制(IF AGC)后, 再通过电缆传输到 IDU。 所述的天馈系统一般设置有收发的滤波器和天线。
其中, 本实施例所述室外单元 200 包括频率源和相跳釆集单元 20, 所述频率源包括: 压控振荡器 ( VCO ) 13, 相跳釆集单元 20的 输入端与压控振荡器 13 的输入端相连。
具体而言, 相跳釆集单元 20 包括: 电容 21、 放大器 22和滤波 器 23, 电容 21 的一个极板与压控振荡器 13的输入端相连, 另一极 板与放大器 22的输入端相连,放大器 22的输出端与滤波器 23相连。 其中, 电容 21 用于通过电容耦合获得频率源 10 的相跳信息, 放大 器 22用于放大所述相跳信息, 滤波器 23 用于滤去相跳信息中的高 频部分, 输入室内单元 IDU100。 本实施例中的室内单元 IDU100 包 括: 配置处理单元 30, 配置处理单元 30接收相跳釆集单元 20输出 的相跳信息, 并根据釆集到所述相跳信息对所述基带数据信号进行 相位校正, 以消除相跳影响。
参照图 6所示, 另一种具体实施方式中, 本实施例中的室内单 元 IDU100包括: 数字处理器 300 ( Digital Signal Processing, DSP ), 配置处理单元 20为室内单元 IDU 100 中的数字处理器 300。 具体地, 滤波器 23输出的相跳信息回传给室内单元 100 , 由室内单元 100的 数字处理器 300 进行处理, 对基带数据信号进行相位校正, 以消除 相跳影响。 可选地, 数字处理器 300 本身具有模数转化功能和对信 号进行反相处理的功能, 因此, 换言之, 数字处理器 300 包括模数 转化模块 301和反相模块 302。
室内单元 IDU 100还包括: 混频器 303 ; 反相模块 302输出的补 偿信号通过混频器 303 , 叠加在基带数据信号上。
下面结合附图 6〜8详细叙述在 ODIH啟波本振(频率源)产生相跳 时, 本实施例所述微波通信设备消除误码影响的工作过程。
如果发射本振(发射频率源)发生相跳, 那么室外单元 ODU200 输出的发射信号就会带有相跳信息, 相跳釆集单元 20从压控振荡器 13 的输入端釆集相跳信息, 通过回传通道将相跳信息传给室内单元 IDU I OO , IDU I OO根据相跳波形配置处理, 产生与相跳波形相反的补 偿信号 ( 由 DSP300的反相模块 302 完成 ), 再将获得的补偿信号叠 加在基带数据信号上。 其中, 补偿信号可通过混频器 303 叠加在基 带数据信号上。
然后, 相跳波形将有用信号和相跳的反波形 ( 即包含有补偿信 号的基带数据信号) 发送到 ODU 200与频率源产生的本振信号本振 信号经过混频后, 修正消除发射本振的相跳, 这样经过 ODU 200的 发射通道、 空间传输以及 ODU 200的接收通道, 将修正后的有用信 号传送到接收端 IDU 100 , 使得接收端 IDU 100可以正常解调有用 信号不致产生通信误码。 以上所述参照图 7、 图 8 所示, 图中的有 用信息, 即待传输信息, 包含在有用信号内; 相跳信息包含在相跳 波形内。
简单来说, 在 ODU200 内, 基带数据信号与频率源产生的本振 信号合成微波发射信号, 而本实施例中的基带数据信号因包含有补 偿信号, 且补偿信号的波形与发生的相跳波形相反, 从而抵消发射 本振的相跳影响, 因而, 可降低发射本振的相跳对最终微波发射信 号的影响。
如果 ODU200的接收本振 (接收频率源 ) 发生相跳, 通过相跳 回传通道传给 IDU 100 , IDU I OO 根据相跳波形配置处理, 产生与相 跳波形相反的补偿信号, 再将获得的补偿信号叠加在基带数据信号 上。 由于接收本振发生的相跳会对接收的有用信号产生影响, IDU I OO在解调有用信号时, 叠加的补偿信号会抵消接收相跳产生的 频率(相位)突变, 从而正常解调有用信号不致产生通信误码。
本实施例提供的一种分体式结构的微波通信设备, 可对可相跳 进行时时监控和处理, 从根本上消除了相跳影响, 从而提高微波通 信设备的抗相跳能力, 解决微波通信设备由于相跳造成的通信系统 出现的误码问题
进一步地, 如图 9所示, 本发明还提供一种微波通信系统, 包 括: 实施例 1 和 2所述的任一微波通信设备。 能够预先抵消已发生 的相跳产生的频率(相位)突变, IDU可以正常解调信号, 消除整个系 统因此产生的误码影响。
实施例 3
本发明实施例提供一种微波通信设备中消除相跳影响的方法, 如图 10所示, 所述微波通信设备包括: 频率源, 所述频率源产生的 本振信号与基带数据信号合成微波信号, 该方法包括:
101、 釆集所述频率源的相跳信息;
102、根据釆集到所述相跳信息对所述基带数据信号进行相位校 正, 以消除相跳影响。
本发明实施例提供的消除相跳影响的方法, 通过将相跳信息回 传, 然后根据回传的相跳信息对基带数据信号进行相位校正, 消除 相跳产生的影响, 可对相跳进行时时监控和处理, 从根本上消除了 相跳影响, 从而提高微波通信设备的抗相跳能力, 解决微波通信设 备由于相跳造成的通信系统出现的误码问题。
所述频率源包括: 压控振荡器, 优选地, 步骤 101 具体为: 从 压控振荡器的输入端釆集频率源的相跳信息。
具体而言, 参照图 1 1 所示, 步骤 101釆集频率源的相跳信息, 可以通过下述 101 1〜1013步骤来获得频率源的相跳信息:
101 1、 通过电容耦合获得所述频率源的相跳信息;
1012、 通过放大器放大所述相跳信息;
1013、 通过滤波器用于滤去所述相跳信息中的高频部分。 优选地, 同样参照图 1 1所示, 步骤 102根据釆集到所述相跳信 息对所述基带数据信号进行相位校正, 以消除相跳影响, 具体包括: 1021、 将釆集到所述相跳信息转化为数字信号;
1022、 对所述数字信号进行反相运算以获得补偿信号, 并将所 述补偿信号叠加在所述基带数据信号上, 所述补偿信号的波形与所 述数字信号的相跳波形相反。
其中, 可选地, 补偿信号通过混频器叠加在基带数据信号上。 本发明提供一种微波通信设备中消除相跳影响的方法, 通过将 相跳信息回传, 然后对回传的相跳信息进行配置处理获得反波形的 补偿信号, 进而将反波形的补偿信号叠加在所述基带数据信号上, 来消除相跳产生的影响, 从而对可相跳进行时时监控和处理, 可提 高微波通信设备的抗相跳能力, 解决微波通信设备由于相跳造成的 通信系统出现的误码问题。
本发明实施例所述的技术特征, 在不冲突的情况下, 可任意相 互组合使用。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地 了解到本发明可借助软件加必需的通用硬件的方式来实现, 当然也 可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的 理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分 可以以软件产品的形式体现出来, 该计算机软件产品存储在可读取 的存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用 以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设 备等) 执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种微波通信设备, 包括: 频率源, 所述频率源产生的本振 信号与基带数据信号上变频为微波信号发射出去, 或者, 接收到的微 波信号与所述频率源产生的本振信号下变频为基带数据信号, 其特征 在于, 所述微波通信设备还包括:
相跳釆集单元, 用于釆集所述频率源的相跳信息;
配置处理单元,用于根据釆集到所述相跳信息对所述基带数据信 号进行相位校正, 以消除相跳影响。
2、 根据权利要求 1 所述微波通信设备, 其特征在于, 所述配置 处理单元包括: 模数转化模块和反相模块;
所述模数转化模块, 用于将釆集到所述相跳信息转化为数字信 号;
所述反相模块,用于对所述数字信号进行反相运算以获得补偿信 号, 并将所述补偿信号叠加在所述基带数据信号上, 所述补偿信号的 波形与所述数字信号的相跳波形相反。
3、 根据权利要求 1 或 2所述的微波通信设备, 其特征在于, 所 述频率源包括: 压控振荡器;
所述相跳釆集单元的输入端与所述压控振荡器的输入端相连。
4、 根据权利要求 3所述的微波通信设备, 其特征在于, 所述相 跳釆集单元包括: 电容、 放大器和滤波器;
所述电容的一个极板与所述压控振荡器的输入端相连,另一极板 与所述放大器的输入端相连, 所述放大器的输出端与所述滤波器相 连;
所述电容用于通过电容耦合获得所述频率源的相跳信息,所述放 大器用于放大所述相跳信息, 所述滤波器用于滤去所述相跳信息中的 高频部分。
5、 根据权利要求 2 - 4任一权利要求所述的微波通信设备, 其特 征在于, 还包括: 混频器;
所述反相模块输出的补偿信号通过所述混频器,叠加在所述基带 数据信号上。
6、 根据权利要求 1或 2所述的微波通信设备, 其特征在于, 所述配置处理单元为数字处理器。
7、 根据权利要求 1 或 2所述的微波通信设备, 其特征在于, 所 述微波通信设备包括: 室内单元 I DU和室外单元 0DU , 所述室内单元 I DU包括数字处理器;
所述配置处理单元为所述室内单元 I DU中的所述数字处理器。
8、 一种微波通信系统, 其特征在于, 包括: 权利要求 1 - 7任一 项所述的微波通信设备。
9、 一种微波通信设备中消除相跳影响的方法, 所述微波通信设 备包括: 频率源, 所述频率源产生的本振信号与基带数据信号上变频 为微波信号发射出去, 或者, 接收到的微波信号与所述频率源产生的 本振信号下变频为基带数据信号; 其特征在于, 该方法包括:
釆集所述频率源的相跳信息;
根据釆集到所述相跳信息对所述基带数据信号进行相位校正,以 消除相跳影响。
1 0、 根据权利要求 9所述的方法, 其特征在于, 所述根据釆集到 所述相跳信息对所述基带数据信号进行相位校正, 以消除相跳影响, 具体包括:
将釆集到所述相跳信息转化为数字信号;
对所述数字信号进行反相运算以获得补偿信号,并将所述补偿信 号叠加在所述基带数据信号上, 所述补偿信号的波形与所述数字信号 的相跳波形相反。
1 1、 根据权利要求 9或 1 0所述的方法, 其特征在于, 所述频率 源包括: 压控振荡器; 所述釆集所述频率源的相跳信息, 具体为: 从所述压控振荡器的输入端釆集所述频率源的相跳信息。
1 2、 根据权利要求 1 1 所述的方法, 其特征在于, 所述釆集所述 频率源的相跳信息, 具体包括:
通过电容耦合获得所述频率源的相跳信息; 通过放大器放大所述相跳信息;
通过滤波器用于滤去所述相跳信息中的高频部分。
13、根据权利要求 10-12任一权利要求所述的方法,其特征在于, 所述补偿信号通过混频器叠加在所述基带数据信号上。
PCT/CN2013/078222 2013-06-27 2013-06-27 微波通信设备、系统及消除相跳影响的方法 WO2014205745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/078222 WO2014205745A1 (zh) 2013-06-27 2013-06-27 微波通信设备、系统及消除相跳影响的方法
CN201380000822.3A CN103688501B (zh) 2013-06-27 2013-06-27 微波通信设备、系统及消除相跳影响的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078222 WO2014205745A1 (zh) 2013-06-27 2013-06-27 微波通信设备、系统及消除相跳影响的方法

Publications (1)

Publication Number Publication Date
WO2014205745A1 true WO2014205745A1 (zh) 2014-12-31

Family

ID=50323338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078222 WO2014205745A1 (zh) 2013-06-27 2013-06-27 微波通信设备、系统及消除相跳影响的方法

Country Status (2)

Country Link
CN (1) CN103688501B (zh)
WO (1) WO2014205745A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301890B (zh) * 2016-07-28 2019-08-30 武汉虹信通信技术有限责任公司 一种微波设备告警同步方法
CN108964735B (zh) * 2018-07-17 2022-05-10 深圳市金溢科技股份有限公司 一种etc相控阵波束赋形系统、方法及路侧装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201114059Y (zh) * 2007-09-28 2008-09-10 中国电子科技集团公司第五十四研究所 宽带小步进频率合成器
CN101888364A (zh) * 2010-07-16 2010-11-17 华为技术有限公司 载波同步处理的方法和装置
US20130135985A1 (en) * 2011-11-30 2013-05-30 Broadcom Corporation Split Microwave Backhaul Architecture with Smart Outdoor Unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843129B (zh) * 2012-08-31 2015-01-21 华为技术有限公司 锁相环、微波调制解调器及相跳抑制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201114059Y (zh) * 2007-09-28 2008-09-10 中国电子科技集团公司第五十四研究所 宽带小步进频率合成器
CN101888364A (zh) * 2010-07-16 2010-11-17 华为技术有限公司 载波同步处理的方法和装置
US20130135985A1 (en) * 2011-11-30 2013-05-30 Broadcom Corporation Split Microwave Backhaul Architecture with Smart Outdoor Unit

Also Published As

Publication number Publication date
CN103688501B (zh) 2016-09-28
CN103688501A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
US10142142B2 (en) Phase noise suppression
US7773665B2 (en) Apparatus and method for corresponding frequency synchronization in on-channel repeater
WO2000019621A1 (fr) Recepteur a conversion directe d'harmonique paire, et emetteur-recepteur comprenant ce recepteur
WO2015196425A1 (zh) 一种干扰消除的装置和方法
JP5908568B2 (ja) スプール減衰デバイス、システム、および方法
WO2015139266A1 (zh) 用于自干扰消除的装置和方法
TW201208457A (en) Hybrid radio architecture for repeaters using RF cancellation reference
JP2001053640A (ja) 無線通信装置および無線通信方法
US20100062707A1 (en) Frequency conversion device, method and system
KR20140146655A (ko) 통신 정정을 위한 장치 및 방법
WO2019127859A1 (zh) 一种支持全频段的分布式天线系统远端单元及实现方法
US20100265116A1 (en) Anti jamming system
WO2014205745A1 (zh) 微波通信设备、系统及消除相跳影响的方法
CN110932739B (zh) 一种降低通信和雷达激励信号误差干扰的系统及方法
WO2011054156A1 (zh) 一种微波信号的校正方法、装置和系统
JP4681332B2 (ja) 送受信システム及び受信装置
US20130337760A1 (en) Radio-frequency Receiver Device of Wireless Communication System
WO2021184371A1 (zh) 一种接收装置、发射装置及信号处理方法
KR20140098605A (ko) 주파수 오차를 보정하기 위한 장치 및 방법
JP5705088B2 (ja) 伝送システム、基地局装置、端局装置および伝送方法
WO2023208025A1 (zh) 通信方法及通信装置
CN216625734U (zh) 一种适配服务器的模拟通信系统
CN113014277A (zh) 一种降低通信和雷达激励信号误差干扰的系统及方法
JP2018082289A (ja) 無線通信装置、干渉抑制回路および干渉抑制方法
JP2005295594A (ja) ミリ波帯無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888088

Country of ref document: EP

Kind code of ref document: A1