WO2014205589A1 - Un fertilizante útil para mejorar suelos degradados y su proceso de elaboración - Google Patents

Un fertilizante útil para mejorar suelos degradados y su proceso de elaboración Download PDF

Info

Publication number
WO2014205589A1
WO2014205589A1 PCT/CL2014/000029 CL2014000029W WO2014205589A1 WO 2014205589 A1 WO2014205589 A1 WO 2014205589A1 CL 2014000029 W CL2014000029 W CL 2014000029W WO 2014205589 A1 WO2014205589 A1 WO 2014205589A1
Authority
WO
WIPO (PCT)
Prior art keywords
fertilizer
soil
sludge
concentration
weight
Prior art date
Application number
PCT/CL2014/000029
Other languages
English (en)
French (fr)
Inventor
Carla Andrea PÉREZ QUILODRÁN
Ximena del Pilar MATUS ELGUETA
José Tomás LARRAÍN CORREA
Original Assignee
Universidad de Concepción
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Concepción filed Critical Universidad de Concepción
Publication of WO2014205589A1 publication Critical patent/WO2014205589A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D3/00Calcareous fertilisers
    • C05D3/02Calcareous fertilisers from limestone, calcium carbonate, calcium hydrate, slaked lime, calcium oxide, waste calcium products
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements

Definitions

  • the technology is oriented to the agricultural area, more specifically, it corresponds to a fertilizer useful to improve degraded soils, which allows the cultivation of different plant species.
  • Chile has an annual installed capacity of more than 1,000,000 tons of paper and about 400,000 tons of cardstock, which allows it to supply part of the internal and external demand.
  • An inevitable problem that paper companies must face is waste management, since they generate large amounts of sludge by treating their liquid effluents, and ash, by generating steam through biomass boilers.
  • the generated sludge is fed to the biomass boilers to produce steam, but this solution is not very helpful because of its high moisture content.
  • the ashes are arranged in internal or external sanitary landfills, a fact that entails an additional cost for their transportation and disposal, which is becoming increasingly high due to the variability in the price of oil and the growing environmental concern. Therefore, it is necessary to develop technologies that use these wastes, in order to offer a solution to the environmental and economic problem that they entail. It is known that ashes and sludge are not toxic to plants and contain a wide variety of nutrients useful for plant growth, such as phosphorus, nitrogen, potassium, zinc, boron, among others; therefore, this waste can help improve the soils for afforestation or agriculture.
  • soil degradation is a problem of global interest that affects sustainable development, productivity, quality of life and human development in the rural sector.
  • composition of a fertilizer comprises: (a) a phosphate-based material, (b) at least one micronutrient and a secondary nutrient, (c) and a fibrous material (paper or cellulose sludge) that allows granular strength to be increased, preventing wear and dust formation during storage, transport and handling.
  • WO2010130276 A1 "Method and device for producing solid-like, biodegradable fertilizer or soil-loosening agents from municipal and / or industrial sludge”. This technology safeguards a method to produce a biodegradable solid fertilizer from sludge from municipal waste, the food industry and / or the paper industry, in addition to the addition of alkaline substances.
  • the fertilizer manufacturing method comprises the following steps: (1) the sludge is dried and continuously stirred; (2) the sludge obtained in (1) is fed to a continuous mixer, in addition to the sludge from a cellulose; (3) calcium oxide is added to the mixture; (4) before the exothermic reaction begins by the addition of calcium oxide, the mixture is transferred to another mixer, where the mixing process continues and the mixture is dehydrated; (5) trace elements are added to the dehydrated mixture; (6) and then the mixture with trace elements is dried and pulverized.
  • the patent application protects an organic fertilizer to produce high quality rice.
  • the fertilizer is composed of organic compounds, silicic acid, lime, magnesium and three major nutrients.
  • the manufacturing method comprises the following stages: (1) mix 40-60% cellulose sludge with 40-60% fly ash; (2) mix 60-70% dry residual gypsum with 30-40% amino acids; (3) mix the content of stage (1) with the content of stage (2), in a 50:50 volume ratio; (4) granulate the mixture, and dry over 15-20%.
  • the present invention corresponds to a fertilizer useful for improving degraded soils, so that it allows the cultivation of different plant species, and their elaboration process.
  • Said fertilizer is composed of fly ash from biomass combustion, secondary sludge from the paper and plaster industry. This innovation is distinguished from commercial fertilizers due to the following:
  • Lignin is a complex molecule that composes the plant cell wall and, in its sulfated form or as lignosulfonate, is able to donate electrons to a metal allowing its union, so the metal cannot be absorbed by plants as it remains " trapped "in the lignosulfate molecule;
  • the fertilizer is in the form of a pellet, allows the compaction of the mixture that composes it and, therefore, prevents the dispersion of nutrients in the stages of transfer of the fertilizer from the place of purchase and sale to the place of storage, and from this one to the ground. Also, the pellet-shaped fertilizer, once placed on the ground, is able to deliver nutrients gradually over time, thus preventing its leaching.
  • Process to make the fertilizer includes the following stages: a.
  • Sludge stabilization by means of aerobic fermentation, the sludge from paper mills (compound containing lignin as a chelating agent) is stabilized, for which they are placed in batteries in a semi-closed place for 15 - 45 days, and are turned periodically (2 - 3 times a week) with a revolving machine for compost. During this period, the humidity of the sludge should not exceed 60%. b.
  • the sludge used to make the fertilizer has the following macromolecular composition:
  • the product obtained is suitable for all types of crops, since it is harmless and improves the quality of soils, especially due to the contribution of calcium and sulfur, leaving them suitable for subsequent plant growth; It also contains lignin, a substance that acts as a chelating agent, preventing plants from absorbing excess heavy metals, when they are found in large concentrations in the soil.
  • This fertilizer can be used with good results in any plant species, since in toxicity tests with radish seeds in degraded soil, which are the seeds most sensitive to any external agent, it has positive effects. On the other hand, this fertilizer allows the recovery of low cost soils, which is economically unfeasible using commercial fertilizers.
  • Sludge stabilization on the one hand, 17 kg of fly ash from an industrial biomass combustion boiler were dried in an oven at 105 ° C overnight; and on the other hand, 6 kg of secondary sludges from a paper company were dried, outdoors for a month, with periodic flipping 2-3 times per week.
  • the formation matrix was 6 mm in diameter with a compression channel of 33 mm;
  • - TXP20 100 g of soil plus 0.84 g of fertilizer, where the mixture corresponds to a soil with fertilizer dose of 20 ton / ha.
  • - TXP40 100 g of soil plus 1.68 g of fertilizer, where the mixture corresponds to a soil with fertilizer dose of 40 ton / ha.
  • GI Germination Index
  • Figure 1 shows the root lengths of the germinated seeds on plates with samples of: (a) soil alone and (b) soil mixture with fertilizer, for the different doses used.
  • the seeds normally germinated in each sample, even some showed a greater root development than the control, such as those germinated in soil sample and fertilizer with doses of 10 ton / ha (TXP10). But it was the seeds germinated in soil and fertilizer samples with a dose of 40 ton / ha (TXP40), which had a shorter root length.
  • the experimental procedure consisted of the following:
  • the fertilizer showed an increase after 30 days of incubation, both in the soil alone and in the mixtures of soil and fertilizers. However, after this period, concentrations began to decrease due to the action of microorganisms that demand this element.
  • the normal concentration of mineralized nitrogen in a soil corresponds to 20 mg / kg, therefore, the use of this fertilizer must be supplemented with substances that add nitrogen to the soil, for the development of a crop.
  • the soil pH showed an increase between the soil alone and the soil mixtures with fertilizer; the greatest increase was in the soil with the highest dose of fertilizer (the pH increased by 0.27 points). This increase is attributed to the concentration of sulfur and calcium provided by the fertilizer. Therefore, the fertilizer helps neutralize the pH of acid soils.
  • the fertilizer is an important source of sulfur, since it allowed a 42-fold increase in the concentration of mineralized sulfur present in the soil (see Table 4). Therefore, this product is useful for improving sulfur deficient soils and for growing species that demand high concentrations of this nutrient.
  • Table 4 After 60 days of incubation, as can be seen in Table 4, the fertilizer only achieved an increase of 0.14 mg / kg of organic matter for the highest dose; in soils with lower doses of fertilizer, a similar increase in the concentration of organic matter was observed. In all soil samples, a decrease in the concentration of organic matter is observed during the analysis period, due to the action of microorganisms present in the soil.
  • the fertilizer managed to double the concentration of calcium ions after 60 days, in soil samples with the highest doses of fertilizer; in the other samples, an increase in calcium concentrations is observed proportional to the dose of fertilizer added (see Table 5). In this way, a soil deficient in calcium could be converted into a soil with normal calcium concentrations, that is, between 4-8 cmol / kg.
  • the fertilizer with the presence of chelating agents managed to reduce by half the concentration of iron present in degraded soil. This is observed in Table 6 when comparing iron concentrations in the soil only with those in the soil with the highest dose of fertilizers at 60 days of incubation.
  • iron is a micronutrient that contributes to the development of some plant species, the concentration of iron in a normal soil varies between 2.5 - 4.0 mg / kg, so that the fertilizer helped regulate the concentration of this nutrient .
  • the fertilizer managed to reduce the concentration of copper present in the degraded soil (see Table 7), which is due to the presence of the chelating agent in the fertilizer.
  • the concentration of copper in a normal soil is between 0.2-0.5 mg / kg.
  • the fertilizer managed to reduce the concentration of manganese present in the soil as shown in Table 7.
  • the concentration of manganese in a normal soil varies between 0.6-1.0 mg / kg.
  • the fertilizer allowed to increase the concentration of boron in the degraded soil when it was applied in its highest doses. In this way, the fertilizer helped the soil to approach the boron concentrations of a normal soil, which vary between 0.5-1.0 mg / kg (see Table 7); higher concentrations could cause toxicity in plants.
  • the fertilizer is not toxic to plants throughout the evaluated range and managed to significantly improve (with 95% confidence) a degraded soil of the Alfisol type from the point of view of mineralized phosphorus concentrations , mineralized sulfur, mineralized potassium, calcium ions, zinc ions and boron. From the point of view of soil properties, the fertilizer managed to increase the pH. In addition, the chelating effect of the fertilizer was verified by observing a significant decrease in iron, copper and manganese concentrations in the soil with fertilizer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

Un fertilizante útil para mejorar suelos degradados, especialmente en contenido de azufre y calcio, el cual está compuesto por: (a) 40 - 60 % en peso de cenizas volantes de combustión de biomasa, (b) 10 - 30% en peso de lodos secundarios de la industria del papel, y (c) entre 10 - 50 % en peso de yeso; donde el lodo secundario aporta lignina, la cual actúa como agente quelante.

Description

UN FERTILIZANTE ÚTIL PARA MEJORAR SUELOS DEGRADADOS Y SU
PROCESO DE ELABORACIÓN
Sector Técnico
La tecnología está orientada al área agrícola, más específicamente, corresponde a un fertilizante útil para mejorar suelos degradados, con lo cual se permite el cultivo de diferentes especies vegetales.
Técnica Anterior
Chile tiene una capacidad instalada anual mayor a 1.000.000 toneladas de papel y cerca de 400.000 toneladas de cartulinas, lo que permite abastecer parte de la demanda interna como externa. Un problema inevitable que deben enfrentar las empresas papeleras es el manejo de residuos, ya que generan grandes cantidades de lodos al tratar sus efluentes líquidos, y de cenizas, al generar vapor mediante calderas de biomasa.
Comúnmente, los lodos generados se alimentan a las calderas de biomasa para producir vapor, pero esta solución no es muy provechosa por su alto contenido de humedad. Por otro lado, las cenizas se disponen en rellenos sanitarios internos o externos, hecho que conlleva un costo adicional por su transporte y disposición, el que se hace cada día más elevado por la variabilidad del precio del petróleo y la creciente preocupación medioambiental. Por tanto, se hace necesario el desarrollo de tecnologías que utilicen estos residuos, con el fin de ofrecer una solución al problema medioambiental y económico que estos conllevan. Se sabe que las cenizas y los lodos no son tóxicos para las plantas y contienen una amplia variedad de nutrientes útiles para el crecimiento vegetal, como fósforo, nitrógeno, potasio, zinc, boro, entre otros; por lo tanto, estos residuos pueden ayudar a mejorar los suelos para la forestación o agricultura.
Por otra parte, la degradación de los suelos es un problema de interés mundial que afecta el desarrollo sustentable, la productividad, la calidad de vida y el desarrollo humano del sector rural. La falta de nutrientes como el fósforo, la
i acidez del suelo, falta de materia orgánica, entre otros factores, hacen que el suelo no se encuentre apto para el cultivo de especies vegetales.
Algunas tecnologías existentes actualmente, que han tendido a resolver en parte estas problemáticas, se detallan a continuación:
1.- Solicitud de patente WO 2012/129487 A2: "Fertilizer composition incorporating fibrous material forenhanced particle integrity". Esta innovación protege una composición de un fertilizante y un método para su producción. La composición del fertilizante comprende: (a) un material en base a fosfato, (b) al menos un micronutriente y un nutriente secundario, (c) y un material fibroso (lodos de papelera o de celulosa) que permiten aumentar la fuerza granular, previniendo el desgaste y la formación de polvo durante el almacenamiento, transporte y manejo.
2. - WO2010130276 A1: "Method and device for producing solid-like, biodegradable fertilizer or soil-loosening agents from municipal and/or industrial sludge". Esta tecnología resguarda un método para producir un fertilizante sólido biodegradable a partir de lodos provenientes de residuos municipales, de la industria de alimentos y/o de la industria del papel, además de la adición de sustancias alcalinas. El método de elaboración del fertilizante comprende las siguientes etapas: (1) el lodo se seca y se agita continuamente; (2) el lodo obtenido en (1) se alimenta a un mezclador continuo, además del lodo proveniente de una celulosa; (3) se adiciona óxido de calcio a la mezcla; (4) antes de que comience la reacción exotérmica por la adición de óxido de calcio, la mezcla se traspasa a otro mezclador, donde continúa el proceso de mezclado y la mezcla se deshidrata; (5) se adicionan oligoelementos a la mezcla deshidratada; (6) y luego la mezcla con oligoelementos se seca y se pulveriza.
3. - KR20120084937; 'Premium rice yield following environmental friendly organic fertilizer production and it manufacturing process". La solicitud de patente resguarda un fertilizante orgánico para producir arroz de alta calidad. El fertilizante se compone de compuestos orgánicos, ácido silícico, cal, magnesio y tres nutrientes mayores. El método de fabricación comprende las siguientes etapas: (1) mezclar 40 - 60% de lodo de celulosa con 40 - 60% de cenizas volantes; (2) mezclar 60 - 70% de yeso residual seco con 30 - 40% de aminoácidos; (3) mezclar el contenido de la etapa (1) con el contenido de la etapa (2), en una proporción 50:50 en volumen; (4) granular la mezcla, y secar por sobre 15 - 20%.
Divulgación de la Invención
La presente invención corresponde a un fertilizante útil para mejorar suelos degradados, de manera que permite el cultivo de diferentes especies vegetales, y su proceso de elaboración. Dicho fertilizante está compuesto por cenizas volantes de combustión de biomasa, lodos secundarios de la industria del papel y yeso. Esta innovación se distingue de los fertilizantes comerciales debido a lo siguiente:
- contiene nutrientes del tipo nitrógeno, azufre, fósforo, potasio, calcio, magnesio, sodio, zinc, hierro, manganeso, boro y cobre, en cantidades suficientes para convertir un suelo degradado en un suelo apto para cultivar, problema que no resulta viable resolver con fertilizantes comerciales, por los altos costos económicos que esto significa;
- contiene lignina, proveniente del lodo secundario de la producción de papel, como agente quelante. Este compuesto evita la absorción de metales pesados por parte de las plantas, impidiendo los efectos de toxicidad que éstos pueden producir. La lignina es una molécula compleja que compone la pared celular vegetal y, en su forma sulfatada o como lignosulfonato, es capaz de donar electrones a un metal permitiendo su unión, de esta forma el metal no puede ser absorbido por las plantas ya que queda "atrapado" en la molécula de lignosulfato;
- está elaborado a partir de cenizas de biomasa y lodos secundarios de papeleras. Este tipo de cenizas estimulan el metabolismo de los microorganismos presentes en el suelo, que a su vez preparan los nutrientes, dejándolos disponibles para las plantas (Perkiómáki J., 2004);
- es una fuente importante de azufre y calcio para los cultivos, pues ayuda a aumentar la concentración de azufre en el suelo en a lo menos 40 veces, y en 2 veces en el caso de la concentración de calcio. La mezcla de cenizas volantes, lodos y yeso que compone este fertilizante, permite la formación de iones calcio (Ca+2) e iones sulfato (SC , fácilmente absorbibles por las plantas. El azufre y el calcio son considerados macronutrientes secundarios para el metabolismo vegetal, tan importantes como el fósforo y el nitrógeno en la elaboración de aminoácidos. Estos elementos, presentes principalmente en los tallos y hojas de los frutales, se pierden cuando se queman los rastrojos de la agricultura para preservar la relación C/N en el suelo, y también por la erosión ocasionada por el agua en el suelo. Deficiencias de estos elementos en el suelo, pueden llevar a producir cultivos frutales pobres en pulpa, afectar el crecimiento del sistema radical de los cultivos e, incluso, provocar enfermedades como la blossomendrot en tomates, y Bitterpit en manzanos; y
se aplica en forma sólida, como pellet, lo que permite mejorar su manejabilidad, transporte y las propiedades de fluidez del suelo. El hecho que el fertilizante se encuentre en forma de pellet, permite la compactación de la mezcla que lo compone y, por tanto, evita la dispersión de los nutrientes en las etapas de traslado del fertilizante del lugar de compra y venta al lugar de almacenamiento, y de éste al suelo. Así también, el fertilizante en forma de pellet, una vez puesto en el suelo, es capaz de entregar los nutrientes en forma gradual en el tiempo, evitándose así, su lixiviación. roceso para elaborar el fertilizante comprende las siguientes etapas: a. Estabilización de lodos: mediante fermentación aeróbica se estabilizan los lodos de papeleras (compuesto que contiene lignina como agente quelante), para lo cual se disponen en pilas dentro de un lugar semi- cerrado durante 15 - 45 días, y se voltean periódicamente (2 - 3 veces por semana) con una máquina revolvedora para compost. Durante este período, la humedad de los lodos no debe ser superior al 60 %. b. Mezclado de los componentes: en un mezclador continuo se alimentan los lodos estabilizados a una concentración entre 10 - 30% en peso, cenizas volantes de combustión de biomasa entre 40 - 60 % en peso y yeso entre 10 - 50 % en peso, hasta obtener una mezcla homogénea (con un tiempo de residencia de 1 - 2 h considerando 4 toneladas de materia prima alimentada); y
c. Pelletización: la mezcla homogénea se alimenta a una pelletizadora para la compactación del material fertilizante. Las concentraciones de metales pesados presentes en el fertilizante se encuentran bajo lo exigido por la norma NCh2880.Of2003 "Compost - Clasificación y requisitos". Dicho fertilizante presenta las siguientes concentraciones de nutrientes:
Tabla 1. Concentración de nutrientes en el fertilizante
Figure imgf000006_0001
Por otra parte, los lodos usados para la elaboración del fertilizante, presentan la siguiente composición macromolecular:
Tabla 2.Composición macromolecular de los lodos secundarios
Figure imgf000006_0002
El producto obtenido es apto para todo tipo de cultivo, ya que es inocuo y mejora la calidad de suelos, sobre todo por el aporte de calcio y azufre, dejándolos aptos para el posterior crecimiento vegetal; además, contiene lignina, sustancia que actúa como agente quelante, evitando que las plantas absorban metales pesados en exceso, cuando éstos se encuentran en grandes concentraciones en el suelo. Este fertilizante puede ser utilizado con buenos resultados en cualquier especie vegetal, ya que en ensayos de toxicidad con semillas de rabanito en suelo degradado, que son las semillas más sensibles a cualquier agente externo, presenta efectos positivos. Por otra parte, este fertilizante permite la recuperación de suelos a bajo costo, lo que resulta inviable económicamente utilizando fertilizantes comerciales.
Ejemplo de aplicación Para verificar la viabilidad del proceso de elaboración del fertilizante, se preparó una muestra de 30 kg mediante el siguiente procedimiento:
a. Estabilización de lodos: se secaron, por una parte, 17 kg de cenizas volantes provenientes de una caldera industrial de combustión de biomasa, en una estufa a 105 °C durante una noche; y por otra parte, se secaron 6 kg de lodos secundarios provenientes de una empresa papelera, al aire libre durante un mes, con volteo periódico 2 - 3 veces por semana.
b. Mezclado de los componentes: el mezclado de los componentes se realizó en una betonera agregando17 kg de cenizas, 6 kg de lodos y 7 kg de yeso.
c. Pelletización: la mezcla se pelletizó, para lo cual se utilizó una prensa de rodillo de matriz plana marca KAHL de 350 kg/h de capacidad nominal, bajo las siguientes condiciones de operación:
- la materia prima se alimentó manualmente;
- la matriz de formación tenía 6 mm de diámetro con un canal de compresión de 33 mm;
- la distancia de corte de las cuchillas era de 2,5 cm; - no se adicionó agua a la prensa; y
- se utilizó una proporción de agua/mezcla de 400 ml_ de agua por cada kg de mezcla.
Para comprobar la funcionalidad de estos pellets como fertilizante mejorador de suelos degradados, se analizaron de acuerdo a: (1) efectos de toxicidad en semillas de rabanito, y (2) capacidad de entregar nutrientes al suelo (mineralización), disponibles para ser absorbidos por las plantas. A continuación, se describen ambos análisis. 1. Análisis de toxicidad
Para analizar el efecto de toxicidad que el fertilizante elaborado tiene sobre las plantas, se comparó la germinación de semillas de rabanito en un suelo degradado del tipo Alfisol de la serie Cauquenes sin fertilizante y la germinación en un suelo del mismo tipo con fertilizante, bajo las mismas condiciones ambientales. El uso de las semillas de rabanito en este tipo de análisis, permite determinar el efecto de toxicidad que el fertilizante tendría en otros tipos de semillas, ya que las de rabanito son una de las más sensibles a las condiciones del suelo y del ambiente.
Basándose en la metodología descrita por EPA (1994), Sobrero y Ronco (2004) y según método de Zucconi et al. (1981), se desarrolló el siguiente experimento:
• Se prepararon 4 mezclas de suelo y fertilizante, de acuerdo a la siguiente nomenclatura y composición:
- TXS0: 00 g de suelo sólo, muestra utilizada como testigo.
- TXP10: 100 g de suelo más 0,42 g de fertilizante, donde la mezcla corresponde a un suelo con dosis de fertilizante de 10 ton/ha.
- TXP20: 100 g de suelo más 0,84 g de fertilizante, donde la mezcla corresponde a un suelo con dosis de fertilizante de 20 ton/ha. - TXP40: 100 g de suelo más 1 ,68 g de fertilizante, donde la mezcla corresponde a un suelo con dosis de fertilizante de 40 ton/ha.
• Cada mezcla, almacenada previamente en bolsas de polietileno, se incubó durante 15 días, a 20 °C y a una humedad de 60 - 70 %.
• Luego, por cada tipo de mezcla, se prepararon 3 placas Petri con 4 mi¬ de extracto de mezcla sobre papel filtro, en su interior. En cada placa se plantaron 20 semillas de rabanito y se incubaron por 120 h a 120 °C.
• En paralelo se incubaron, bajo las mismas condiciones, dos placas Petri: una con agua destilada y 20 semillas de rabanito, y otra con solución salina de Zn(ll) 0,01 M y 20 semillas de rabanito. La primera se utilizó como control negativo, y la segunda como positivo.
Para medir el nivel de toxicidad, se utilizó el indicador usado por Tiquia (1996). Este indicador, conocido como índice de Germinación (IG), relaciona el promedio de semillas germinadas, y su largo radicular, en una placa con muestra, con el promedio de semillas germinadas, y su largo radicular en la placa usada como control negativo. Se expresa como porcentaje, donde valores inferiores a 60 % indican efectos de toxicidad en la planta. Todos los resultados obtenidos se sometieron a un análisis de varianza ANDEVA (con P<0,05).
En la Figura 1 , se muestran las longitudes radiculares de las semillas germinadas en placas con muestras de: (a) suelo solo y (b) mezcla de suelo con fertilizante, para las distintas dosis usadas. Las semillas germinaron normalmente en cada muestra, incluso algunas mostraron un desarrollo radicular mayor a las del testigo, como las germinadas en muestra de suelo y fertilizante con dosis de 10 ton/ha (TXP10). Pero fueron las semillas germinadas en muestra de suelo y fertilizante con dosis de 40 ton/ha (TXP40), las que presentaron menor longitud radicular.
En otros ensayos, se germinaron semillas de rabanito en muestras de suelo y lodos, y en muestras de suelo y cenizas, por separado usando las mismas dosis: las semillas germinadas en muestras de suelo y cenizas, presentaron las menores longitudes radiculares. Por lo tanto, las cenizas usadas en grandes cantidades podrían tener efecto de toxicidad en las plantas.
En la Figura 2, se muestran los valores del índice de Toxicidad (IG) calculado para: (a) semillas germinadas en muestra de suelo solo y (b) semillas germinadas en muestra de mezcla de suelo y fertilizante, para las distintas dosis usadas. Bajo el criterio de toxicidad usado por Tiquia (1996), ninguna de las semillas germinadas presentó un efecto de toxicidad, ya que todas presentaron un IG mayor a 60 %. Por otro lado, se verifica lo expresado anteriormente para la mezcla de suelo y fertilizantes con mayor dosis, ya que fue la que tuvo semillas con los menores valores de IG.
2. Análisis de mineralización
Por medio de este análisis se midieron las concentraciones de nutrientes - en la forma química susceptible de ser absorbido por las plantas - en suelo sin fertilizante y en suelo con fertilizante. Se utilizó el mismo tipo de suelo usado para los ensayos de toxicidad. Los nutrientes considerados fueron: nitrógeno, fósforo, potasio, calcio, magnesio, sodio, zinc, cobre, manganeso, hierro, aluminio, azufre y boro; además, se midió la cantidad de materia orgánica y el pH del suelo con y sin fertilizante.
El procedimiento experimental consistió en lo siguiente:
• Se prepararon 4 mezclas diferentes (analizadas por triplicado), de acuerdo a la siguiente nomenclatura y composición:
- MT: 200 g de suelo solo, muestra utilizada como testigo.
- MP10R: 200 g de suelo más 0,84 g de fertilizante, correspondiente a una mezcla de un suelo con dosis de fertilizante de 10 ton/ha.
- MP20R: 200 g de suelo más 1 ,68 g de fertilizante, correspondiente a una mezcla de un suelo con dosis de fertilizante de 20 ton/ha.
- MP40R: 200 g de suelo más 3,36 g de fertilizante, correspondiente a una mezcla de un suelo con dosis de fertilizante de 40 ton/ha. Cada mezcla, almacenada previamente en envases plásticos, se incubó durante 60 días, a 25 °C y humedad de 1/3 de atmósfera (contenido de agua que tiene un suelo cuando se aplica una presión de 0,33 atmósferas). Desde el día 0 hasta el día 60, cada 15 días, se tomaron muestras de cada mezcla. A cada muestra se le midió:
- la cantidad de materia orgánica, mediante técnica de digestión de humedad,
- el pH,
- concentración de nitrógeno (N-N03) por digestión Kjeldahl,
- concentración de fósforo (P) mediante colorimetría,
- concentración de potasio (K+) mediante espectrofotometría de absorción y emisión atómica,
- concentración de iones calcio (Ca+2), magnesio (Mg+2), sodio (Na+), zinc (Zn+2), cobre (Cu+), manganeso (Mn+2), hierro (Fe+2), y aluminio (Α 3), mediante espectrofotometría de absorción y emisión atómica,
- concentración de azufre (SO4") por turbidimetría, y
- concentración de boro (BO"3) mediante colorimetría. Finalmente, con los datos obtenidos para cada muestra se realizó un análisis de varianza ANOVA y un análisis de comparación de medias, con prueba LSD con un 95% de confianza.
En las Tablas 3 a 7, se presentan los resultados del análisis de mineralización. De estos resultados, se concluye lo siguiente: el fertilizante ayudó a aumentar la concentración de fósforo mineralizado en el suelo degradado tipo Alfisol, alcanzando la mayor concentración para la mezcla de suelo y fertilizante con la dosis de 40 ton/ha (ver Tabla 3). En las mezclas de suelo y dosis menores de fertilizante, se observa un incremento directamente proporcional en la concentración de fósforo. A pesar de lo anterior, el suelo con fertilizante presenta un déficit en fósforo, al compararlo con un suelo normal, el cual tiene una concentración de 8 mg/kg (Vidal, 2007). Para el caso de la concentración de nitrógeno mineralizado, el fertilizante presentó un aumento luego de 30 días de incubación, tanto en el suelo solo como en las mezclas de suelo y fertilizantes. No obstante, pasado este periodo, las concentraciones comenzaron a disminuir por la acción de microorganismos que demandan este elemento. La concentración normal de nitrógeno mineralizado en un suelo corresponde a 20 mg/kg, por lo tanto, el uso de este fertilizante debe ser complementado con sustancias que agreguen nitrógeno al suelo, para el desarrollo de un cultivo.
Luego de 60 días de incubación, el pH del suelo mostró un aumento entre el suelo solo y las mezclas de suelo con fertilizante; el mayor aumento se presentó en el suelo con la mayor dosis de fertilizante (el pH aumentó en 0,27 puntos). Este aumento se atribuye a la concentración de azufre y calcio aportada por el fertilizante. Por lo tanto, el fertilizante contribuye a neutralizar el pH de suelos ácidos.
Tabla 3. Análisis de Fósforo y Nitrógeno mineralizado, y pH
Parámetro Fósforo (mg/kg) Nitrógeno (mg/kg) pH
Día 15 30 45 60 15 30 45 60 15 30 45 60
Tratamiento
MT 1 ,54 3,72 3,6 4,43 7,07 13,96 9,62 10,37 6,14 5,87 5,79 5,84
MP10R 4,15 4,99 4,94 5,09 8,54 10,83 10,37 10,34 5,99 6,08 5,9 5,76
MP20R 4,64 5,96 5,5 5,81 10,69 11 ,91 10,62 12,38 6,13 6,13 6,04 5,87
MP40R 5,73 7,35 7,66 7,25 11 ,48 11 ,88 11 ,22 9,8 6,32 6,3 6,21 6,11 cv% 4,52 5,78 9,58 4,25 12,21 14,15 9,34 9,02 0,45 0,345 1 ,24 2,21
DMS 0,35 0,52 0,88 0,43 2,03 3,15 1 ,63 1 ,6 0,048 0,036 0,128 0,224
El fertilizante es una fuente importante de azufre, ya que permitió un aumento en 42 veces la concentración de azufre mineralizado presente en el suelo (ver Tabla 4). Por lo tanto, este producto es útil para mejorar suelos deficientes en azufre y para cultivar especies que demanden altas concentraciones de este nutriente. Al cabo de 60 días de incubación, como se puede apreciar en la Tabla 4, el fertilizante solo logró un aumento de 0,14 mg/kg de materia orgánica para la dosis más alta; en los suelos con dosis menores de fertilizante, se observó un aumento similar en la concentración de materia orgánica. En todas las muestras de suelo, se observa una disminución en la concentración de materia orgánica durante el período de análisis, debido a la acción de los microorganismos presentes en el suelo.
En relación al aporte de potasio mineralizado, se alcanzó al cabo de los 60 días de incubación, un aumento de 1 ,6 veces la concentración de potasio en la muestra con la mayor dosis de fertilizante; en las otras muestras de suelo, el aumento de la concentración de potasio fue proporcional a la cantidad adicionada de fertilizante (ver Tabla 4). Por lo tanto, este fertilizante logró convertir el suelo en un suelo con concentraciones normales de potasio mineralizado, considerando que un suelo normal tiene 0,5 cmol/kg de potasio mineralizado.
Tabla 4. Análisis de Azufre, Materia Orgánica y Potasio
Figure imgf000013_0001
El fertilizante logró duplicar la concentración de iones de calcio al cabo de 60 días, en muestras de suelo con las mayores dosis de fertilizante; en las demás muestras, se observa un aumento en las concentraciones de calcio de manera proporcional a la dosis de fertilizante agregado (ver Tabla 5). De esta manera, se pudo convertir un suelo deficiente en calcio, en un suelo con concentraciones normales de calcio, es decir, entre 4 - 8 cmol/kg.
El aporte de magnesio al suelo sólo se ve reflejado a los 60 días de incubación entre el suelo con las dosis más altas de fertilizante y el suelo solo, observándose un aumento de 0,42 cmol/kg en la concentración de magnesio, tal como se puede apreciar en la Tabla 5. En las otras muestras, con dosis menores de fertilizante, no se observó un aporte significativo de magnesio al suelo. Independientemente, el suelo tipo Alfisol presenta concentraciones adecuadas de magnesio, ya que un suelo considerado normal (no degradado) tiene más de 0,8 cmol/kg.
Por otra parte, no se vio reflejado un aporte de sodio en el suelo en todas las muestras evaluadas con fertilizante. Independientemente, todas las muestras de suelo y fertilizante presentaron una concentración de sodio menor a la crítica (0,5 cmol/kg), lo que enfatiza el hecho que el fertilizante no es una sustancia tóxica para las plantas.
Tabla 5. Análisis de Calcio, Magnesio y Sodio
Parámetro Calcio (cmol/kg) Magnesio (cmol/kg) Sodio (cmol/kg)
Día 15 30 45 60 15 30 45 60 15 30 45 60
Tratamiento
MT 3,85 4,55 3,81 3,86 2,12 2,01 2,06 1 ,77 0,09 0,08 0,06 0,08
MP10R 5,63 4,84 4,86 4,5 2,05 1 ,92 2,02 1 ,86 0,1 0,12 0,08 0,09
MP20R 6,52 6,03 6,04 6,23 2,09 2,05 2,12 1 ,78 0,12 0,09 0,09 0,1
MP40R 8,55 7,29 7,72 8,1 2,19 2,07 2,15 2,19 0,13 0,1 0,1 0,12 cv% 5,95 3,79 4,42 5,23 3,16 2,09 2,08 4,8 29,54 25,77 6,66 8,72
DMS 0,71 0,442 0,484 0,59 0,115 0,074 0,075 0,15 0,055 0,046 0,01 0,015
En la Tabla 6 se puede ver que no existió un aporte significativo de aluminio por parte del fertilizante, lo cual es positivo ya que la concentración crítica de aluminio en un suelo es de 0,5 cmol/kg. Una concentración superior de aluminio genera efectos de toxicidad en las plantas. Para el caso del zinc se logró duplicar la concentración con la dosis más alta de fertilizante ensayada, luego de los 60 días de incubación, tal como se aprecia en la Tabla 6. En las otras muestras de suelo, con dosis menores de fertilizante, también se observa un aumento en la concentración de zinc, proporcional a la cantidad de fertilizante usada. Debido a lo anterior, se comprueba que el fertilizante fue capaz de entregar al suelo la cantidad necesaria de zinc para alcanzar los niveles normales de este nutriente (un suelo normal tiene entre 0,5 - 1 ,0 mg/kg de zinc).
El fertilizante con presencia de agentes quelantes, logró disminuir a la mitad la concentración de hierro presente en un suelo degradado. Esto se observa en la Tabla 6 al comparar las concentraciones de hierro en el suelo solo con las del suelo con la dosis más alta de fertilizantes a los 60 días de incubación. Si bien el hierro es un micronutriente que contribuye al desarrollo de algunas especies vegetales, la concentración de hierro en un suelo normal varía entre 2,5 - 4,0 mg/kg, de modo que el fertilizante ayudó a regular la concentración de este nutriente.
Tabla 6. Análisis de Aluminio, Zinc y Hierro
Parámetro Aluminio (cmol/kg) Zinc (mg/kg) Hierro (mg/kg)
Día 15 30 45 60 15 30 45 60 15 30 45 60
Tratamiento
MT 0,01 0,01 0,01 0,01 0,65 0,3 0,43 0,39 18,66 19,32 33,73 30,13
MP10R 0,01 0,01 0,01 0,01 0,81 1 ,08 0,56 0,52 19,12 40 23,6 20,4
MP20R 0,01 0,01 0,01 0,01 1 ,08 0,94 0,76 0,63 18,3 37,87 18,53 17,8
MP40R 0,01 0,01 0,01 0,01 1 ,49 1 ,31 0,93 0,97 17,24 36,2 15,07 15,27
CV % 8,87 34,23 22,06 5,45 1 ,9 13,06 20,04 8,21 DMS 0,154 0,568 1 ,36 0,059 0,581 5,66 6,79 2,69
Al igual que en el caso del hierro, el fertilizante logró disminuir la concentración de cobre presente en el suelo degradado (ver Tabla 7) lo que se debe a la presencia del agente quelante en el fertilizante. La concentración de cobre en un suelo normal se encuentra entre 0,2 - 0,5 mg/kg. Del mismo modo, el fertilizante logró disminuir la concentración de manganeso presente en el suelo, tal como se muestra en la Tabla 7. La concentración de manganeso en un suelo normal varía entre 0,6 - 1 ,0 mg/kg.
El fertilizante permitió aumentar la concentración de boro en el suelo degradado cuando fue aplicado en sus dosis más altas. De esta forma, el fertilizante ayudó al suelo a acercarse a las concentraciones de boro de un suelo normal, las que varían entre 0,5 - 1 ,0 mg/kg (ver Tabla 7); concentraciones superiores podrían causar toxicidad en las plantas.
Tabla 7. Análisis de Cobre, Magnesio y Boro
Parámetro Cobre (mg/kg) Manganeso (mg/kg) Boro (mg/kg)
Día 15 30 45 60 15 30 45 60 15 30 45 60
Tratamiento
MT 0,81 0,86 1 ,27 0,99 50,79 52,52 60 76,4 0,09 0,13 0,13 0,34
MP10R 0,9 1 ,04 1 ,4 0,79 47,42 59,53 50,67 59 0,1 0,07 0,08 0,32
MP20R 0,91 1 ,11 1 ,4 0,74 43,36 51 ,4 42,53 49,2 0,16 0,19 0,12 0,33
MP40R 0,89 1 ,19 1 ,28 0,75 39,09 47,73 39,2 44 0,17 0,12 0,13 0,39 cv% 3,18 7,43 5,14 7,18 4,1 4,12 4 4,83 10,22 38,57 27,11 8,02
DMS 0,047 0,116 0,113 0,1 3,05 3,63 3,3 4,38 0,17 0,107 0,058 0,049
Finalmente, se pudo comprobar que el fertilizante no es tóxico para las plantas en todo el rango evaluado y logró mejorar de modo significativo (con un 95% de confianza) un suelo degradado del tipo Alfisol desde el punto de vista de las concentraciones de fósforo mineralizado, azufre mineralizado, potasio mineralizado, iones calcio, iones zinc y boro. Desde el punto de vista de las propiedades del suelo, el fertilizante logró aumentar el pH. Además, se comprobó el efecto quelante del fertilizante al observar una disminución significativa en las concentraciones de hierro, cobre y manganeso en el suelo con fertilizante.

Claims

Reivindicaciones
1.- Un fertilizante útil para mejorar suelos degradados CARACTERIZADO porque está compuesto por: a. 40-60 % en peso de cenizas volantes de combustión de biomasa, b. 10-30% en peso de lodos secundarios de la industria del papel, y c. 10-50 % en peso de yeso;
donde el lodo secundario aporta lignina, la cual actúa como agente quelante.
2.- Un fertilizante útil para mejorar suelos degradados según reivindicación 1 CARACTERIZADO porque los lodos secundarios tienen la siguiente composición macromolecular: 17 - 20 % p/p de celulosa; 13 - 16 % p/p de hemicelulosa y 39 - 43 % p/p de lignina.
3.- Un fertilizante útil para mejorar suelos degradados según reivindicación 1 CARACTERIZADO porque es un mejorador de suelos y comprende la siguiente concentración de nutrientes: 5 - 7 g/kg de nitrógeno; 6 - 9 g/kg de fósforo; 18 - 21 g/kg de potasio; 250 - 260 g/kg de carbono; 3 - 5 g/kg de azufre, 19 - 21 g/kg; 6 - 8 g/kg de magnesio; 1 - 4 g/kg de sodio; 10 - 13 g/kg de hierro, y 7 - 9 g/kg de manganeso.
4.- Un proceso para elaborar un fertilizante útil para mejorar suelos degradados CARACTERIZADO porque comprende las siguientes etapas: a. estabilización de lodos: mediante fermentación aeróbica se estabilizan los lodos de papeleras en un lugar semi-cerrado durante 15 - 45 días, y se voltean periódicamente manteniendo una humedad de los lodos inferior al 60 %;
b. mezclado de los componentes: en un mezclador continuo se alimentan los lodos estabilizados a una concentración entre 10 - 30% en peso, cenizas volantes de combustión de biomasa entre 40 - 60 % en peso y yeso entre 10 - 50 % en peso, hasta obtener una mezcla homogénea, con un tiempo de residencia de 1 - 2 h; y
Pelletización: la mezcla homogénea se alimenta a una pelletizadora para la compactación del material fertilizante.
PCT/CL2014/000029 2013-06-27 2014-06-19 Un fertilizante útil para mejorar suelos degradados y su proceso de elaboración WO2014205589A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL1902-2013 2013-06-27
CL2013001902A CL2013001902A1 (es) 2013-06-27 2013-06-27 Un fertilizante util para mejorar suelos degradados compuesto de cenizas volantes de combustion de biomasa , lodos secundarios de industria del papel y yeso, donde el lodo secundario aporta lignina, la cual actua como agente quelante; y proceso de elaboracion.

Publications (1)

Publication Number Publication Date
WO2014205589A1 true WO2014205589A1 (es) 2014-12-31

Family

ID=52014905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000029 WO2014205589A1 (es) 2013-06-27 2014-06-19 Un fertilizante útil para mejorar suelos degradados y su proceso de elaboración

Country Status (2)

Country Link
CL (1) CL2013001902A1 (es)
WO (1) WO2014205589A1 (es)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725154A (zh) * 2015-03-06 2015-06-24 马鞍山市全润农业科技有限公司 一种凯特杏专用有机肥料及其制备方法
CN104725159A (zh) * 2015-03-06 2015-06-24 马鞍山市全润农业科技有限公司 一种有机的美浓香瓜专用肥料及其制备方法
CN104909853A (zh) * 2015-06-16 2015-09-16 天津海泰市政绿化有限公司 一种微生物催化剂及应用该催化剂制备的无菌发酵有机肥
CN104909957A (zh) * 2015-05-27 2015-09-16 程茂房 一种绿色富硒荠菜栽培专用肥
CN104926431A (zh) * 2015-05-22 2015-09-23 马鞍山市怡和园农业发展有限公司 绿色富硒芹菜栽培专用肥及栽培方法
CN105036924A (zh) * 2015-07-24 2015-11-11 中南民族大学 一种以茶叶废弃物为主要原料的食用菌培养基
CN105061111A (zh) * 2015-08-06 2015-11-18 丁德凤 一种复合微生物肥料
CN105110830A (zh) * 2015-09-24 2015-12-02 张杰武 一种餐厨垃圾好氧堆肥的方法
CN105152792A (zh) * 2015-10-21 2015-12-16 天津芦阳化肥股份有限公司 一种水稻专用生态复合肥料及其制备方法
CN105152788A (zh) * 2015-10-15 2015-12-16 天津芦阳化肥股份有限公司 一种棉花专用生态复合肥料及其制备方法
CN105152791A (zh) * 2015-10-21 2015-12-16 天津芦阳化肥股份有限公司 一种棉花专用腐植酸螯合缓释肥料及其制备方法
CN105152816A (zh) * 2015-10-21 2015-12-16 天津芦阳化肥股份有限公司 一种大豆专用腐植酸螯合缓释肥料及其制备方法
CN105237295A (zh) * 2015-09-21 2016-01-13 天津芦阳化肥股份有限公司 一种腐植酸螯合缓释小麦专用肥料及其制备方法
CN105272590A (zh) * 2015-10-21 2016-01-27 天津芦阳化肥股份有限公司 一种玉米专用腐植酸螯合缓释肥料及其制备方法
CN105272518A (zh) * 2015-09-21 2016-01-27 天津芦阳化肥股份有限公司 一种腐植酸螯合缓释水稻专用肥料及其制备方法
CN115960611A (zh) * 2022-12-29 2023-04-14 北京建工环境修复股份有限公司 一种污染土壤修复剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136165A1 (en) * 2001-08-08 2003-07-24 Logan Terry J. Method for disinfecting and stabilizing organic wastes with mineral by-products
ES2238169A1 (es) * 2003-12-16 2005-08-16 Universidad Politecnica De Madrid Material formado por lodos de destintado de la industria papelera y su utilizacion como acondicionador de suelos y como sustrato seco semillado.
WO2007068248A2 (en) * 2005-12-12 2007-06-21 Manurox Aps Method and facility for manufacturing a natural fertilizer
KR20120084937A (ko) * 2011-01-21 2012-07-31 주식회사 도울리컴 친환경 유기농 양질쌀 생산용 비료와 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136165A1 (en) * 2001-08-08 2003-07-24 Logan Terry J. Method for disinfecting and stabilizing organic wastes with mineral by-products
ES2238169A1 (es) * 2003-12-16 2005-08-16 Universidad Politecnica De Madrid Material formado por lodos de destintado de la industria papelera y su utilizacion como acondicionador de suelos y como sustrato seco semillado.
WO2007068248A2 (en) * 2005-12-12 2007-06-21 Manurox Aps Method and facility for manufacturing a natural fertilizer
KR20120084937A (ko) * 2011-01-21 2012-07-31 주식회사 도울리컴 친환경 유기농 양질쌀 생산용 비료와 그 제조 방법

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725154A (zh) * 2015-03-06 2015-06-24 马鞍山市全润农业科技有限公司 一种凯特杏专用有机肥料及其制备方法
CN104725159A (zh) * 2015-03-06 2015-06-24 马鞍山市全润农业科技有限公司 一种有机的美浓香瓜专用肥料及其制备方法
CN104926431A (zh) * 2015-05-22 2015-09-23 马鞍山市怡和园农业发展有限公司 绿色富硒芹菜栽培专用肥及栽培方法
CN104909957A (zh) * 2015-05-27 2015-09-16 程茂房 一种绿色富硒荠菜栽培专用肥
CN104909853A (zh) * 2015-06-16 2015-09-16 天津海泰市政绿化有限公司 一种微生物催化剂及应用该催化剂制备的无菌发酵有机肥
CN105036924A (zh) * 2015-07-24 2015-11-11 中南民族大学 一种以茶叶废弃物为主要原料的食用菌培养基
CN105061111A (zh) * 2015-08-06 2015-11-18 丁德凤 一种复合微生物肥料
CN105237295A (zh) * 2015-09-21 2016-01-13 天津芦阳化肥股份有限公司 一种腐植酸螯合缓释小麦专用肥料及其制备方法
CN105272518A (zh) * 2015-09-21 2016-01-27 天津芦阳化肥股份有限公司 一种腐植酸螯合缓释水稻专用肥料及其制备方法
CN105110830A (zh) * 2015-09-24 2015-12-02 张杰武 一种餐厨垃圾好氧堆肥的方法
CN105152788A (zh) * 2015-10-15 2015-12-16 天津芦阳化肥股份有限公司 一种棉花专用生态复合肥料及其制备方法
CN105152792A (zh) * 2015-10-21 2015-12-16 天津芦阳化肥股份有限公司 一种水稻专用生态复合肥料及其制备方法
CN105152791A (zh) * 2015-10-21 2015-12-16 天津芦阳化肥股份有限公司 一种棉花专用腐植酸螯合缓释肥料及其制备方法
CN105152816A (zh) * 2015-10-21 2015-12-16 天津芦阳化肥股份有限公司 一种大豆专用腐植酸螯合缓释肥料及其制备方法
CN105272590A (zh) * 2015-10-21 2016-01-27 天津芦阳化肥股份有限公司 一种玉米专用腐植酸螯合缓释肥料及其制备方法
CN115960611A (zh) * 2022-12-29 2023-04-14 北京建工环境修复股份有限公司 一种污染土壤修复剂及其制备方法和应用
CN115960611B (zh) * 2022-12-29 2023-10-31 北京建工环境修复股份有限公司 一种污染土壤修复剂及其制备方法和应用

Also Published As

Publication number Publication date
CL2013001902A1 (es) 2014-03-14

Similar Documents

Publication Publication Date Title
WO2014205589A1 (es) Un fertilizante útil para mejorar suelos degradados y su proceso de elaboración
Steiner et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil
Mittra et al. Fly ash—a potential source of soil amendment and a component of integrated plant nutrient supply system
Babla et al. Value-added products as soil conditioners for sustainable agriculture
Panda et al. Impact of fly ash on soil properties and productivity
Ahmad et al. Effect of compost enriched with N and L-tryptophan on soil and maize
Zhang et al. Replacement of mineral fertilizers with anaerobically digested pig slurry in paddy fields: assessment of plant growth and grain quality
Shi et al. Effects of biomass ash, bone meal, and alkaline slag applied alone and combined on soil acidity and wheat growth
Chontal et al. Nutrient content of fermented fertilizers and its efficacy in combination with hydrogel in Zea mays L.
Nunes et al. Interfaces between biodegradable organic matrices coating and MAP fertilizer for improve use efficiency
CN104387189A (zh) 一种生物有机肥料
Vaish et al. Explicating the fertilizer potential of anaerobic digestate: Effect on soil nutrient profile and growth of Solanum melongena L.
Dhaliwal et al. Differential response of manures in transformation of DTPA and total zinc and iron in rice transplanted on light textured soils of Punjab
Yadav et al. Effect of continuous application of organic and inorganic sources of nutrients on chemical properties of soil
CN101555179A (zh) 一种抗虫有机肥及其制备方法
Mahmoud et al. Effects of phosphogypsum and biochar addition on soil physical properties and nutrients uptake by maize yield in Vertic Torrifluvents
Adelekan et al. Comparative effects of undigested and anaerobically digested poultry manure on the growth and yield of maize (Zea mays, L)
Ciesielczuk et al. Homemade slow-action fertilizers, as an economic solution for organic food production
Gibczyńska et al. Effects of limestone, ash from biomass and compost use on chemical properties of soil
Bodor et al. Phytotoxicity evaluation of nutrient-fortified pomegranate peel powders prepared from food waste and their feasibility as biofertilizers
Leno et al. Humification evaluation and carbon recalcitrance of a rapid thermochemical digestate fertiliser from degradable solid waste for climate change mitigation in the tropics
Quintern Organic waste free pulpmill through vermicomposting-The Kinleith way
RU2350586C2 (ru) Способ производства сидерально-сапропелевого удобрения
Przygocka-Cyna et al. Effect of bio-fertilizer amendment on agrochemical properties of soil cropped with vegetables
RU2803800C1 (ru) Способ получения гранулированного органического удобрения для повышения плодородия почвы при возделывании сельскохозяйственных культур

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14816732

Country of ref document: EP

Kind code of ref document: A1