WO2014201852A1 - 一种可将纯净水制成电解水的简易高效电解方法与装置 - Google Patents

一种可将纯净水制成电解水的简易高效电解方法与装置 Download PDF

Info

Publication number
WO2014201852A1
WO2014201852A1 PCT/CN2014/000585 CN2014000585W WO2014201852A1 WO 2014201852 A1 WO2014201852 A1 WO 2014201852A1 CN 2014000585 W CN2014000585 W CN 2014000585W WO 2014201852 A1 WO2014201852 A1 WO 2014201852A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrolysis
electrode
shaped
gap
Prior art date
Application number
PCT/CN2014/000585
Other languages
English (en)
French (fr)
Inventor
罗民雄
黎明
Original Assignee
Luo Minxiong
Li Ming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luo Minxiong, Li Ming filed Critical Luo Minxiong
Priority to US14/900,165 priority Critical patent/US10421673B2/en
Publication of WO2014201852A1 publication Critical patent/WO2014201852A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/04Regulation of the inter-electrode distance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46123Movable electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a simple and high-efficiency electrolysis method and device capable of making purified water into electrolyzed water, and belongs to the technical field of functional water without electrolytic separation. Background technique
  • Functional water is defined by the Japan Functional Water Association as "an aqueous solution that uses a manual process to obtain a reproducible and useful function.”
  • electrolyzed water is the most thoroughly recognized by people from a scientific point of view, and is the only water recognized by the Ministry of Health and Welfare of Japan (the Ministry of Health of the People's Republic of China) to have practical effects on human health. China's Ministry of Health officially approved the production and sales of electrolyzed water machines as early as the 1990s.
  • the present invention belongs to the field of electrolytic water production by electrolysis, and the negative potential reducing water and hydrogen-rich water produced by the electrolytic method are two major varieties of electrolyzed water, and are the main objects of the present invention.
  • the functional water or reduced water device produced by electrolysis in the market is mainly divided into two types: a diaphragm and a non-diaphragm.
  • the diaphragmless electrolyzed water device is the development direction of the electrolysis method for producing a reducing water device.
  • pure water including distilled water or the like is considered to be too low in electroconductivity to generate electrolysis current, and it is impossible to produce functional water or negative potential reductive water by electrolysis. It has not yet appeared to find a real solution to the technical problem that the purified water is more efficiently electrolyzed into functional water or negative potential reducing water by searching for existing patents or devices related to diaphragm and non-diaphragm electrolyzed water.
  • the invention provides a simple electrolysis method and device capable of efficiently making purified water, including distilled water, into electrolyzed water, and belongs to the technology of electrolyzing water without separator.
  • the invention can also produce a negative potential weakly acidic reducing water, which can be used for anti-oxidation beauty skin care; the invention can also be applied to other electrolyzed water such as hydrogen-rich water. Or related fields such as water treatment, which is beneficial to human health, and has significant energy saving and environmental protection effects.
  • the method of the invention is based on three important new findings of the applicant:
  • the first new discovery is that the electrolyzed water or reduced water produced by electrolyzed water is the functional activity energy or the reduction activity energy of the power source electric energy converted into water.
  • the main focus of this specification is to reduce the activity energy and make negative potential reducing water as an example. Description.
  • the main indicators for measuring the activity of reducing activity are: active hydrogen content, the unit of measurement is ppb/L or ppm/L; the oxidation-reduction potential of water is 0RP, the unit of measurement is mv voltage, and the negative potential of 0RP is also referred to as negative potential.
  • the water's reducing active energy ie water, has a strong antioxidant-reduction property.
  • Applicants refer to the hydrogen content and the 0RP negative value collectively as the reduced water index or negative hydrogen reduction.
  • Water indicator A certain electrolysis current intensity and electrification time are necessary conditions for the conversion of electric energy into active energy to obtain a higher return water index.
  • the distance between the electrolysis current and the anode and cathode is In contrast, proportional to the effective electrolytic area of the plates, this perception is critical for the electrolysis of pure water and distilled water with very low conductivity.
  • the purified water of the market includes distilled water, the conductivity is not absolutely zero, that is, it always contains trace impurities other than water molecules. Some of these impurities will be electrolyzed to release electrons and increase the conductivity of water. If it is repeatedly electrolyzed, it will release more electrons, thus increasing the electrolysis current.
  • the actual test shows that: the gap distance between the anode and cathode is smaller, which will be more favorable for the electrolysis of such trace impurities, and the electrolysis current increases more significantly.
  • Trace impurities are referred to as impurities;
  • pure water includes impurities in distilled water, and free electrons and ion particles are generated by electrolysis, which not only has the effect of generating and increasing the electrolysis current, but also produces more hydroquinone, which is hydrogen, especially hydrogen.
  • hydroquinone which is hydrogen, especially hydrogen.
  • the water molecule 0 is electrolyzed to generate ⁇ + and 0 ⁇ - , 0 ⁇ - and then electrolyzed to produce oxygen 0, ⁇ , electron e- and the like, and the impurities are electrolyzed to release a large amount of self-deuterium electrons -, will increase the chances of H + + ⁇ ⁇ 11 and 11 + e - to generate H -, thereby increasing the water hydrogen content, H - increase will make the water release electrons ability, that is, the antioxidant reduction properties, showing the water 0RP value From positive to negative.
  • the applicants collectively referred to the above three new findings as "the principle of water impurity electrolysis to produce reduced water", referred to as the principle of water impurity electrolysis, which reveals the essence and key of understanding the water method to produce reduced water.
  • the impurities in the water during the electrolysis of non-pure water into reduced water are also used to produce electrolysis current, especially the indicator of reducing water. Nor is it known to people.
  • the method for solving the pure water solution of the present invention is as follows: First, the distance between the electrolyzed anode and cathode plates is as close as possible, and the second is to make the anode and cathode plates equivalently electrolyzed. As much as possible Reasonably enlarged, obtaining the largest possible electrolysis current under certain electrolysis voltages such as safety voltage and related conditions. Of course, the gap between the two plates is close to the liquidity which does not affect the electrolysis process, because the reasonable fluidity of water has Conducive to the small amount of impurities in the water is repeatedly electrolyzed, adding more free electrons and electrolysis current.
  • the electrolytic power supply voltage can also increase the electrolysis current, but the actual application will be restricted by various reasons.
  • the actual measurement shows that: in the drinking cup container, under the certain practical area and reasonable structure of the anode and cathode plates, the distance between the two plates is narrowed to 0. 5 ⁇ 0. 1 mm, the purified water of the commercially available distilled water includes about 60 ⁇ 200 mA, even larger, can produce pure reduced water with high reduction water index in a few minutes.
  • the spacing or equivalent spacing of the two plates of the existing electrolyzed water device is more than 10 mm, or even larger.
  • the two plates exhibit a large equivalent impedance, and the electrolysis current is close to zero or only mAh, even if it is energized for a long time, the electrolysis effect is not good.
  • the reduced water index will become poor due to the anode and cathode.
  • the activated carbon itself can release a small amount of impurities, which is difficult to be ionized and generated from electrons under a safe voltage, and it is more difficult to produce a higher reduced water index.
  • the present invention can ionize a small amount of impurities inherently released by the activated carbon at a safe voltage or even a voltage of several volts to generate free electrons.
  • Table 1 lists the preparation of electrolytic pure water under the condition of two kinds of the same electric 3 ⁇ 4 gap and the presence or absence of activated carbon. Measured data of reduced water.
  • the invention is based on the design scheme based on the impurity electrolysis principle discovered by the applicant, which can better solve the problem that the purified water comprises the distillation of distilled water to make the negative potential reducing water.
  • the gap distance between the two electrode plates is as small as possible to reduce the impedance between the electrodes.
  • the current limit value depends on the combination of water quality and the specific electrolytic structure and water quality of the invention, and the electrolysis of the anode and cathode plates Whether the water and the water outside the gap are good or not has a great influence on the level of the reduced water. For this reason, the applicant will elaborate on the "fourth new discovery".
  • the invention focuses on the method of electrolyzing pure water impurities to release electrons and particle carriers to realize the production of reduced water, and reveals the design direction of the technical scheme of electrolyzing source water with low conductivity into reduced water: it can reduce the two poles as much as possible The plate gap and the effective electrolysis area are increased. Pure water can be efficiently electrolyzed into high-activity negative potential pure reducing water without any additives at all; The gap between the two can be as small as 0. 1mm or less. It is of great significance to improve the efficiency of electrolyzed water to achieve energy saving and environmental protection.
  • the actual detection and scientific analysis of the experimental device fully prove that the present invention has at least the following major advantages compared with the existing electrophoretic water machine dog.
  • the first advantage is that the energy saving of the invention is 70% ⁇ 90%, the volume is reduced by 60% ⁇ 90%, and the water saving is 20% ⁇ 30% .
  • the invention can produce negative at low cost.
  • the potential is purely reduced water, which is a technical result that has not been seen so far.
  • the existing electrolyzed water machine must add an additive such as an electrolysis promoter to electrolyze the purified water produced by the filtration, so that it is impossible to produce a negative potential pure reducing water.
  • the invention can produce alkaline or acidic reduced water, and can also produce reduced water which is similar to the raw water and has a reduced water index and an alkaline index, and is suitable for drinking by most people.
  • the existing electrolyzed water machine can only produce alkaline reduced water, and the reduced water index is closely related to the alkaline index, and when the higher reducing water index is selected, the Z water will exhibit a strong alkaline pH of over 9. Not suitable for some people to drink:
  • This hair ⁇ can also significantly improve the electrolysis efficiency of non-pure water, can be used to make environmentally friendly disinfection, washing 3 ⁇ 4 hydrogen-rich water and other functions And practical device for the benefit of human health and environmental protection.
  • the structure of the anode and cathode plates should be as favorable as possible for the reasonable fluidity of the water between the plates during electrolysis, so that more impurities are electrolyzed into the plates, which is generated and improved. It is essential that the invention be transformed into a cost-effective high-efficiency electrolyzed water utility. Taking the "two-pole plate area is moderately symmetrical or unequal" electrolytic structure, it can meet the higher index requirements of reducing water, and can reduce the cost of loading 5 s .
  • the product should be as beneficial as possible to the electrolysis of water molecules between the plates. The generated ion group and the bubbles formed therefrom rapidly diffuse from the edge of the plate to the water above the electrode.
  • the area of the plate on the upper side should be smaller than the area of the plate on the T side, but it should not be too A, because the effective electrolytic area of the two plates is limited by the smaller area of the plate, its too small will lead to a decrease in the electrolysis current and affect the increase of the negative value of 0RP, resulting in a loss of experiment.
  • the upper and lower 3 ⁇ 4 plate structure> or 3 ⁇ 4 Multi-A small area upper plate structure so that the pole: 3 ⁇ 4 solution of water molecules and hydrogen oxygen can be diffused from the edge of the small surface active plate in the upper plate or the side water, so that it is in the plate gap.
  • the flow of water molecules in the ion stream is formed, which is beneficial to the improvement of the electrolysis effect of more water molecules and impurities by the 3 ⁇ 4 solution.
  • the edge of the upper plate is curved to increase the side length, and is more advantageous for dry separation. Group with bubbles facing out':! Increasing the efficiency of the 3 ⁇ 4 solution; conversely, if the area of the upper and lower floors is large and small, the gap between the two plates will be blocked by the upper plate after forming the edge of the hydrogen-oxygen diffusion plate, and it will not rise upwards.
  • Plate gap ion group and gas diffusion, ion groups generated by electrolysis of water molecules in the interplate gap are not easy to flow and remain lingering Under the circumstance, the chance of recombining into water molecules is greatly increased, and the reduction of ions makes the chance of forming oxygen hydrogen, especially negative hydrogen, correspondingly reduced, thereby greatly reducing the electrolysis efficiency, and the reduced water index will be significantly worse than the plate area;
  • the effective area of the two-electrode plates is symmetrical and the edges are overlapped, which is not conducive to the diffusion and diffusion of the ion groups and bubbles in the two-pole gap.
  • the reduced water index will be lower than the small and large structure on the plate area.
  • the area of the plate is small and large, and the upper plate is used as the cathode and the lower plate is the anode to obtain the higher reducing water index.
  • the reason is: The larger and lower anode can attract more electrons e -, H -, 0H -, and more 01 ⁇ is electrolyzed to 0, H - or 11, e at the intersection of the anode plate and the lower edge of the upper plate. -, all increase the chance of generating H-, plus it is also conducive to H, e_ lateral diffusion and positive ion up-diffusion, improve ion mobility, so it can effectively improve the reduced water index.
  • the cathode is below and larger, there is no such advantage, so the reduced water index is poor.
  • the vertical plate method is more conducive to the fluidity of the electrolyzed water, because the vertical or upper and lower slopes of the plates are more favorable for the floating of the bubbles generated by the ionization of water molecules. Elevation increases the mobility of water and obtains a higher return water index.
  • the area of the cathode or the anode the area is larger and smaller, depending on the shape of the electrode and the actual area and structure, or the efficiency of electrolytically producing reduced water is higher when the anode area is larger than the cathode area, or vice versa.
  • the asymmetry of the two-pole plate makes the electrolysis of water molecules in the anode and cathode regions asymmetrical, which reduces the chance of H- or H ions recombining into water molecules 0 or more relative to symmetric electrolysis.
  • the probability of H combined with the electrons released by the impurity is H-, so the reduced water index will be significantly improved.
  • the following table 2 compares the reduced water index of the three electrolyzers with different electrode area structures.
  • the structure 1 is that the anode area is significantly larger than the cathode area and The structure of the cathode above the anode, the structure 2 is the structure of the large area anode above the small area cathode, and the structure 3 is the structure with the same area of the cathode and cathode.
  • Table 2 Comparison table of reduced water indicators of three electrolyzers with different electrode area structures
  • the main object of the present invention is to solve the unsolved problem of electrolyzed water technology: pure water, including distilled water, is made to be rich in negative hydrogen and low in 0RP. water.
  • pure water including distilled water
  • 0RP low in 0RP. water.
  • [1 or H- have been considered by some relevant experts to be active hydrogen for the body's antioxidants, or for active hydrogen or H or H - but each is responsible for the 0RP that is essential for reducing water. It has been difficult to determine where the value comes from.
  • the electrons carried by negative hydrogen ions are more easily released by the external electric field than the electrons contained in 11 electrons, so it is affected by 3 ⁇ 4 or 11 ORP is more sensitive to negative factors, particularly H-electrons easily released after ingestion or human cells, such as oxygen radicals into the composite H 2 0 + 0, harm into H ratio is more desirable to eliminate the free body Base of antioxidants. Therefore, the present invention focuses on the production of reduced water having a higher negative hydrogen ion content and a correspondingly higher 0RP negative value. Table 3 shows the reduced water index data produced by one of the experimental devices of the present invention.
  • Table III A Reduced water index data produced by one of the experimental devices of the present invention
  • Table 3B Table 3: Data of reduced water index over time after the end of electrolysis work
  • the negative hydrogen content of 3R? has a homogenous change or growth or decrease.
  • the obvious rule that the negative value of 0RP is proportional to the hydrogen content proves that the hydrogen content is 0RP negative.
  • the hydrogen content may be 3 ⁇ 4 or H or H—or the sum of the three or the two, what is the relationship between each of them and the negative value of 0RP?
  • the applicant confirmed through experimental analysis that the main cause of the negative value of 0RP is negative hydrogen, not H or H.
  • the measured hydrogen content in the table is measured by the existing hydrogen-dissolving table. This value may include hydrogen and negative hydrogen H-.
  • the electrolytic pure water reduction device of the present invention The main reason for the formation of 0RP negative value in the reduction water is that it must be negative hydrogen hydrazine-content. Therefore, the variation of hydrogen content in Table 3 can be approximated as the change law of negative hydrogen content.
  • the invention increases the hydrogen content of the reduced water and 0RP. Negative value as the main target.
  • 0H - is a negative factor of 0R, A please do not agree with this, because after the electrolysis of the bundle, 0RP negative value attenuation and PH value change and Guan, and J Adopting too hair Obviously, the electrolysis of water and water technology is not the same as the design of the plan.
  • the invention has to be paid for practical use. It is also necessary to pay attention to the solution to solve the problem of reducing the residual chlorine content of the raw water, and so on.
  • the invention is compatible with the installation of the device for the purpose of opening the water from the tap water or cooling the water and drinking water or mineral water.
  • Spring water, etc. is not purely pure and pure drinking water.
  • the original water and water will be higher and higher.
  • the principle of quality but, due to the poor quality relationship between the original raw water and water quality, it may be possible to produce the problem of increasing the amount of chlorine and chlorine remaining in the original water. It is necessary to adopt the appropriate design of the electric electrode pole structure design plan or to remove the residual chlorine and chlorine measures to solve the problem. .
  • the basic basic technical skills of the program One kind of cocoa will be pure pure water and steam distillation water simple, easy, high efficiency and efficient electrolytic electrolytic solution into a negative negative potential and restore the original water
  • the square method and the mounting device are characterized in that: the package comprises an electric electrolytic decompression power source, and an electrolysis electrolysis electrode connected to the electrolysis power source.
  • the group of components is working as an electrolysis electrolytic electrode assembly, and the components are impregnated with bubbles in the water that is to be electrolyzed by electrolysis; the cathode of the electrolysis and electrolysis electrode assembly
  • There is a gap between the gaps and the distance between the gaps is greater than the range of O0mmrara and less than 1100mmmm, and the gap is reasonable according to the reasonable balance.
  • the principle of miniaturization and originalization is designed to be designed. It must be less than 00.. IImmrara;; Electrolytic de-electrolytic electrode assembly components are occupied by a certain fixed space. Nene ss its gap between the cathodes of the yin and yang The surface area of the gap is designed according to the principle of rationalization and rationalization; the gap between the cathode and the cathode of the anode and the cathode is smaller and smaller. The crevice surface area is designed to be larger and larger. The purpose of the design is to make the 11 3 ⁇ 43 ⁇ 4 solution to the Jia Jia in a certain 3 ⁇ 43 ⁇ 4 solution to the electric voltage and water quality.
  • the electric electrode pole bee hole 3 ⁇ 43 ⁇ 4 pairs are paired, and the sleeve is inserted into the opposite hole hole, and the comb comb tooth surface surface and the peak
  • the gap between the surface of the hole and the hole surface is left between the gaps of the surface of the hole and the yin and yin, and the space between the electrodes of the yin and yin and the yin and yang is effective, and the area of the crevice surface is about the same.
  • the equivalent effective surface area product of the gap between the electrode and the opposite surface of the electrode is added to the equivalent surface area of all the comb teeth and the hole gap of the bee honeycomb hole. The sum of them.
  • the cocoa control 3 ⁇ 43 ⁇ 4 solution electric power source installation is mounted on the lid cover in the lid cover, and the installation is installed with a downward downward entrance to solve
  • the 3 ⁇ 43 ⁇ 4 decomposing pole plate assembly component in the container, the assembly of the three-three-AA electric electrode assembly of the group of components is continuously immersed in the water in the inner container of the container ⁇ Solution of the pole plate:
  • the assembly of the group consists of a rust-rust steel-steel round cylindrical tubular shape of the electric electrode, wrapped in a ⁇ 2 steel cylinder
  • ⁇ structure in order to facilitate the flow of water inside and outside the cylinder flow, the circular cylinder passes through the conductive wire and Connected to one of the negative and negative poles of the output of the
  • the round cake, the active carbon charcoal round cake has a gap between the circumferential surface of the round and the inner circumference of the inner circle, and the active carbon is activated.
  • the electrode of the electrode is connected to the two or two connected to the source of the cocoa controllable power supply through the conductive wire; the active lower surface of the active carbon is mounted with the third of the poles
  • the three-belt comb-toothed conductive electrode plate has a number of 3 ⁇ 43 ⁇ 4 shapes of the comb and a distribution of the wall electrode-shaped electric electrode pole bee hole pair Should, and, and enter into the opposite hole ⁇ ,, the face surface of the comb tooth surface and the surface surface of the bee honeycomb nest ⁇ ⁇ gap]] round cake shape like live charcoal
  • the table table ⁇ and the comb-toothed pole pole 3 ⁇ 43 ⁇ 4 upper surface surface ⁇ have a gap between the five five, the comb comb teeth 3 ⁇ 43 ⁇ 4 board has a shape of the hole has a favorable two-two plus Strengthen
  • ⁇ Comb teeth electric electrode plate pass The conductive wire is connected to the three or three of the cocoa source, and the surface of the bottom surface and the surface of the inner surface of the bottom of the cathode of the cathode are left with a gap.
  • Three or three ; one of the gaps between the three or three AA electrode poles, one of the two, the third of which asks the gap distance to be greater than 3 ⁇ 43 ⁇ 4 greater than, and less than 11 OOiirrrara ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  • the basic technical solution of the invention is used to realize the electrolysis of flowing water into negative potential reducing water.
  • the invention comprises a tubular passage, a controllable electrolysis power supply, and an electrolytic plate assembly installed in the passage.
  • the assembly is the same as the electrolytic plate assembly according to one of the technical solutions of the present invention, allowing water to flow from one end of the tubular passage through the electrolytic plate.
  • the component, flowing from the other end, is made of one of the controllable power output, the second and the cathode controllable electrode assembly, and the purified water and the distilled water and other drinking water are respectively made alkaline alkaline weakly alkaline or weakly alkaline weak Alkaline or acidic negative potential to reduce water or reduced water similar to the pH of raw water.
  • the third technical solution similar to one of the technical solutions, the only difference is that the structure of the electro-electrode assembly is the same.
  • One of the electrodes of the solution assembly of the solution is N E and closely arranged;
  • the second structure of the electrode is The horizontally inverted E is closely arranged in a shape, and the E-shaped electrode and the inverted E-shaped electrode form a plurality of Z-shaped intersecting gaps in a concave-convex manner, and the gap distance is greater than 0 mm and less than 10 mm, and the gap is reasonably minimized.
  • Principle design if necessary, can be less than 0. 1mm;
  • the specific structure of the 3 ⁇ 4 solution plate assembly in the technical solution of the present invention is not limited to the above.
  • the technical dog program one, two, and listed: all the small interrogation gap and the larger inter-electrode gap area for effective water lifting and its miscellaneous electrolysis , to the production of reduced water or related standard dehydration electrode structure are within the scope of the present invention.
  • Figure 2 is an embodiment of the invention: Simple effective electrolytic device capable of making pure water into electrolyzed water
  • Figure 2 is a simple and efficient electrolytic installation of the inventive embodiment 3 which can make pure water into electrolyzed water.
  • W 4 is a simple and efficient electrolysis device capable of making purified water into electrolyzed water according to Embodiment 4 of the present invention.
  • W 7 is too hairy 3 ⁇ 4 real 1 ⁇ 2 7
  • the pure water is made into an electrolyzed water effect device.
  • the invention is designed to be used for a water container.
  • Figure 1 includes a water container 14 and a lid 13 thereof.
  • the plate assembly is wrapped by the electrode stainless steel cylindrical cathode 1 , the upper surface of which is open, and the bottom of the plane has a mesh circular hole 15 to facilitate the flow of water inside and outside of the 1 , and the wire is connected to the negative electrode 15 of one of the 12 outputs; 1 inside ⁇ 3 ⁇ 4 or a horizontally mounted one diameter with: . ⁇ with ⁇ honeycomb pj cake electrode? ⁇ , 2 circumferential surface with 1 ⁇ ⁇ . i, 2-way wire and controllable transmission ⁇ ' ⁇ 6 ;; 2 below
  • the comb-shaped conductive plate is installed. The number, shape and distribution correspond to the 2 honeycomb holes, and are inserted into the corresponding holes.
  • the comb tooth surface and the honeycomb hole surface leave the gap 22, 2 the lower surface and the comb tooth
  • There is a gap 8 on the upper surface of the plate 2 and the comb-shaped plate 2 has a mesh opening, which is beneficial to enhance the fluidity of water and ions.
  • the total effective area of the gap between the 2 and 3 electrodes is equivalent to the equivalent area of N 22 plus The upper gap 8 effective area; 3 is connected to the controllable power output 17 through the wire, 3 the bottom surface has a gap 9 with the inner surface of the bottom; the gap distance of the electrode gaps 7, 8, 9, 22 is greater than 0 let less than 10 mm Within the gap, the gap should be designed according to the principle of reasonable miniaturization.
  • the electrode assembly can control the pure water. Distilled water and other common drinking water are respectively made into a weakly alkaline or alkaline weakly alkaline or acidic negative potential reducing water. 1 fixedly connected to the negative output terminal 15 of the 12 electrolytic power supply, the specific working process and principle are explained as follows:
  • Example 1 Control Mode 1 was used to produce a weakly basic reduced water having a higher basicity.
  • the control features are: 12 port 17 is connected to 15, 12 is outputting positive voltage from port 16 to 2; pure water including distilled water and trace impurities are mainly electrolyzed in gaps 7 and 8 and N 22, 2 as having a maximum equivalent ratio
  • the anode of the surface area plays a good role in adsorbing negative chloride ions, and at the same time, the electrons generated by the ionization of trace impurities released in the water are beneficial to increase the electrolysis current and increase the chance of H-e-H, and obtain a higher reduction water index.
  • water molecules 0 are ionized or recombined into 0H-, H + , 0, H, H-. 0 2 , plasma or substance. Since 0 2 , the gas can continuously rise from the upper open source.
  • the water flow and the ion current flow in each gap in 1 , and the water and impurities in the container repeatedly flow through 7, 8, and N 22 for electrolysis, which is beneficial to the improvement of electrolysis efficiency.
  • Example 1 Control Mode 2 was used to prepare weakly basic reduced water.
  • the control features are : 12 output positive voltage to port 2 through port 16, lower output positive voltage than control mode 1, and output higher positive voltage from 17 to 3, mainly in 7 and 9 pairs of water and impurities, 12 2
  • the applied positive voltage is lower than the first method, which weakens the adsorption force of 2 pairs of 0 ⁇ - and ⁇ -, so it is weaker than the control mode 1.
  • 9 The enthalpy generated by the water and impurity solution process - Compensated for 2 weakening of the 3 ⁇ 43 ⁇ 4 loss of the attached force, thus producing a weakly basic reduced water with a higher reduced water index.
  • the table shows the index of pure water or alkaline negative potential reducing water in this example under three control modes.
  • Table 4 The three kinds of control methods of this embodiment use purified water to make measured data of reduced water.
  • Example 1 Structural compatibility
  • the non-pure water was made into a negative potential reducing water, and the principle and process were similar to those described above.
  • Table 5 lists the indexes of the present embodiment for making drinking water into reduced water.
  • Table 5 The measured data of the three types of control methods of the present embodiment
  • the structure of this embodiment is shown in Fig. 2. It is another embodiment in which the flowing water is electrolyzed into a negative potential reducing water by applying the basic technical scheme of the present invention.
  • the invention comprises a section of tubular passage 25, a controllable electrolysis power supply 12, and an electrolytic plate assembly 18 mounted in the passage 25, which assembly is identical to the electrolytic plate assembly of the first embodiment of the present invention, except that: 22 the length of the gap 40 times longer than 22 of Example 1; let water flow from the inlet port 26 of 25 into the flow through 18, through the electrolytic electrode gaps 7, 8, 9, especially through the N 22 gaps, repeated electrolytic treatment, from 25 water
  • the port 27 flows out, and the control modes 1, 2, and 3 are formed by different voltage combinations of the controllable power output 16, 17, and 15.
  • the control electrode assembly can make the purified water, including the distilled water and other drinking water, into negative potentials having different pH values. Restore water.
  • the reduced water index of this example is shown in Table 6.
  • Table 6 The three kinds of control methods of this embodiment use purified water to make measured data of reduced water.
  • FIG. 3 The structure of this embodiment is as shown in FIG. 3, and its function is similar to that of Embodiment 2. It is another embodiment in which the flowing water is electrolyzed into a negative potential reducing water by applying the basic technical scheme of the present invention. Including a section of tubular passage 25, controllable electrolysis power supply 12, And an electrolytic plate assembly 18 mounted in the passage 25, the assembly is composed of three electrodes, and is immersed in water in the container during operation.
  • Electrode plate assembly electrode 1 is U-tube shape, 1 is open on the top, 1 has a mesh-shaped circular hole 15 at the bottom of the plane, which facilitates the flow of water inside 1; 1 is connected to the output port 15 through the wire 4;
  • the structure of the electrode 2 is N levels
  • the inverted E is closely arranged in a shape, the electrode 3 has a structure of N E and closely arranged, and the reverse E-shaped electrode 2 and the E-shaped electrode 3 form a plurality of Z-shaped intersecting gaps 8 in a concave-convex manner, 2 outer peripheral surface and 1
  • a gap 7 is left between the inner peripheral surfaces, and 2 is connected to the 12-output port 16 through a wire;
  • 3 a gap 9 is left between the outer peripheral surface and the inner peripheral surface, and 3 is connected to the output end 17 through the wire; 7, 8, and 9 gap distance
  • the gap distance is in the range of more than 0 mm and less than 10 mm, the gap is designed according to the principle of reasonable miniaturization, and if
  • control electrode assembly will be purified water including distilled water and Drinking each made of a different negative potential PH value reduced water.
  • the specific process and its principle are similar to the control modes 1, 2, and 3 of Embodiment 1.
  • the reduced water index of this embodiment is shown in Table 7. Table 7: The measured index data of the purified water made of purified water in the three control modes of the present embodiment
  • Embodiment 1 The structure of this embodiment is as shown in FIG. 4, and it can be seen that the difference from Embodiment 1 is that the electrolyzed water mechanisms 12 and 18 are made into a portable movable electrolyzed water device, and 18 can be conveniently placed in water in any container. 12 work under control.
  • the working principle and process of this embodiment are similar to those of the first embodiment.
  • the 18 of the embodiment is placed in a container and immersed in water of a general container such as a water cup or a bowl, so that the drinking water of the container can be made into the pH as in the first embodiment.
  • the reduced water index of this embodiment is shown in Table 8.
  • Table 8 This embodiment 3 kinds of control methods to make purified water into measured data of reduced water
  • Embodiment 1 The structure of this embodiment is as shown in FIG. 5, and the difference from Embodiment 1 is that: 12 is installed at the bottom of the container; the electrode adopts a relatively simple structure, 2 is a pie electrode, 3 is a conductive plate, and 8 is a gap between 2 and 3, and Example 1 is less than N 22 gaps.
  • This embodiment is generally applicable to a water-filled container in which metal is a metal or a non-metal.
  • the working principle and process of this embodiment are the same as those in the first embodiment, except that the roles of N 22 are missing.
  • the reduced water index of this embodiment is shown in Table 9.
  • Table 9 In this embodiment, three kinds of control methods are used to make purified water into measured data of reduced water.
  • the structure of this embodiment is as shown in FIG. 6.
  • the difference from the embodiment 5 is only that: the cylindrical cathode 1 of the embodiment 5 is replaced by the water container 14, and the structure is simplified.
  • the embodiment is suitable for 14 as a conductive material such as metal.
  • the working principle and process of the water container of this embodiment are the same as those of the first embodiment, except that the roles of N 22 are missing.
  • the reduced water index of this embodiment is shown in Table 10.
  • Table 10 In this embodiment, three kinds of control methods are used to make purified water into measured data of reduced water.
  • FIG. 7 The structure of this embodiment is shown in FIG. 7. It can be seen that the difference from the embodiment 6 is that the control mode of the controllable electrolysis power source and the electrode structure of the electrolysis electrode assembly are simplified, 2 is not connected to 12, 12 is connected via port 15, 1, and 3 is connected. The electrolysis voltage is output, and the negative potential reduction water of different pH values is prepared by using the interaction of the distances of 7, 8, and 9 and their electrolysis areas.
  • This embodiment is only one control mode, and its control features are: 12 output positive voltage of electrolysis power supply from port 17 to 3, 12 port 15 will connect 1 to the negative pole of the power supply, water and its trace impurities are electrolyzed in the gaps 7, 8, and 9. .
  • the effect of 2 is the same as that of the control mode 2 of Embodiment 1, except that the positive voltage value of 2 is not obtained from 16 of the 12 output port as in Embodiment 1, but depends on the voltage division of the voltage of 8 and 7 pairs of 12 ports 17 applied to 3. Therefore, the effect of the gap 8 pitch control 2 can affect the 13 ⁇ 4 value of the reduced water, and the change of the 12 port 17 output positive voltage value and its duration can also play a similar role, thereby producing the corresponding pH value of the reduced water.
  • the specific process and principle and the embodiment 1 control mode 2 similar.
  • the reduced water index of this example is shown in Table 11.
  • Table 11 The measured index data of the purified water made of purified water in the three control modes of the present embodiment Electrolytic water working time control mode 1 Control mode 2 Control mode 3 Reduced water index ORP (mv) - 431 - 402 -192

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种可将纯净水制成电解水的简易高效电解装置,包括可控电解电源(1),与可控电解电源(1)连接的电解极板组件(18),工作时电解极板组件(18)浸泡在欲电解的水中;电解极板组件(18)的阴阳电极之间留有间隙,间隙距离在大于0mm、小于10m之间,间隙按合理较小化原则设计,必要时小于0.1mm;电解极板组件(18)在所占一定空间内,其阴阳电极之间间隙的面积按合理较大化原则设计。还公开了一种可将纯净水制成电解水的简易电解方法。

Description

一种可将纯净水制成电解水的简易高效电解方法与装置 技术领域
本发明涉及一种可将纯净水制成电解水的简易高效电解方法与装置, 属于无隔离膜 电解制取功能水技术领域。 背景技术
功能水被日本功能水协会定义为 "用人工处理方法获得某种可再现且有用的功能的 水溶液 "。在各种各样所谓功能水当中,电解水是被人们从科学的角度上认知得最透彻的, 也是唯一被日本厚生省 (円本国家卫生部) 所承认对人体健康具有实际功效的水。 中国 卫生部早在上世纪 90年代已经正式批准电解水机生产销售。本发明属于电解法制作电解 水领域, 电解法制作的负电位还原水与富氢水是电解水的两大主要品种, 是本发明的主 要目标。 负电位还原水与富氢水对人类健康的意义是科学家研究长寿地区水源时早已认 知的。 科学家发现:各国长寿村源水的共同特性是含氢及氧化还原电位即 0RP为负值, 被 称为负电位还原水, 惯称还原水, 后又有人简称功能水。 这种特性是其他地区源水未见 的。 在一般河水湖水以及自来水与市销纯净水、 蒸馏水、 矿泉水等饮用水中, 是不含氢 的, 0RP约为 +150mv〜500mv, 没有还原性。 近年, 在经过大量科研成果及临床验证的基 础上,基于含氢水可有效祛除氧自由基机理的 "还原水医疗养生"热潮方兴未艾。
目前,市面上可见的电解法制取功能水或还原水装置主要分为有隔膜与无隔膜两种, 其中无隔膜电解水装置是电解法制作还原水装置的发展方向。 但是, 纯净水包括蒸镏水 等被认为因电导率太低, 不能产生电解电流, 不可能以电解方法制作功能水或负电位还 原水。 经检索现有的有隔膜与无隔膜电解水相关专利或装置, 将纯净水较高效电解制作 为功能水或负电位还原水这一技术难题的真正解决方法尚未见出现。 鉴于纯净水为人们 广泛大量地饮用, 而且近似于纯净水那样极低电导率的源水广泛存在, 解决将纯净水制 成还原水的电解技术难题已是发展人类电解水事业之急需。 申请人为解决此难题, 进行 了长期研究探索, 终于从理论与实践两个方面取得了关键性的突破。 发明内容
本发明提出一种可将纯净水包括蒸馏水高效制成电解水的简易电解方法与装置, 属 于无隔离膜电解水技术。
为何习惯上认为纯净水包括蒸馏水不能用电解法制成电解功能水? 申请人发现其 原因主要在于习惯认为纯净水电导率近似为零, 以现有电解方法与装置而言, 电解纯净 水包括蒸镏水的电流太低乃至近似为零, 故不能电解。 申请人提出一种新的简易电解方 法与装置, 可在不人为添加任何添加剂情况下提高现市售纯净水包括蒸馏水的导电率, 形成电解电流循环递增, 从而实现纯净水包括蒸馏水的电解, 高效制作出电解水, 并且 是较高负电位的纯净还原水, 可供人饮疗养生; 本发明还可制作负电位弱酸性还原水, 可用于抗氧化美容护肤; 本发明尚可应用于制作富氢水等其他电解水或水处理等相关领 域, 即有利于人类健康, 而且具有显著的节能环保功效。
本发明方法基于申请人以下三个重要新发现:
第一个新发现, 用电解水方法制作电解水或者还原水的实质是电源电能转换为水的 功能活性能或者还原活性能, 本说明书重点以还原活性能及制作负电位还原水为例作相 关说明。 衡量还原活性能的主要指标有: 活性氢含量, 计量单位为 ppb/L或 ppm/L; 水 的氧化还原电位即 0RP, 计量单位为 mv电压, 0RP负电位又简称负电位。 一般而言, 若 水有较高的活性氢含量与负电位,则水的还原活性能量即水的抗氧化还原性较强,申请人 将氢含量与 0RP负值统称为还原水指标或负氢还原水指标。 一定的电解电流强度及通电 时间是电能转换为活性能即获得较高还原水指标的必要条件。 在电解水装置 , 电解阴 阳极之间距离愈近, 阴阳极面积愈大, 同一种水呈现的阻抗愈小即在同样电解电压下电 解电流愈大, 换言之, 电解电流与阴阳极之间距离成反比, 与极板有效电解面积成正比, 这一认知对电导率极低的纯净水与蒸馏水实现电解而言是至关重要的。
第二个新发现, 现市售纯净水包括蒸馏水电导率并非绝对为零, 即总含有除水分子 外的微量杂质, 这些微量杂质中部分杂质若被电解会释放电子, 增加水的电导率, 若被 反复电解会释放更多电子, 从而增加电解电流, 实际检测表明: 阴阳极之间的间隙距离 较小, 会更有利于此类微量杂质被电解, 电解电流增加更显著, 申请人将此类微量杂质 一概简称为杂质;
第三个新发现, 纯净水包括蒸馏水中存在杂质, 经电解产生自由电子与离子微粒, 其不仅具有产生与递增电解电流的作用, 而且是产生还原水指标即产生更多氢 Η、 氢气 尤其是产生负氢离子 Η—的关键。其原理如下: 在电解水装置中, 水分子 0被电解可产 生 Η+与 0Η— , 0Η—再被电解产生氧 0、 Η、 电子 e-等物质, 而杂质被电解释放大量自 ώ电 子 e -, 会增加 H++ ^→11及11+ e-生成 H—的机会, 从而增加水含氢量, H—增加会使水释放 电子能力亦即抗氧化还原特性增强, 表现为水 0RP值由正变负。 还有不容忽视的一点: 杂质被电解产生的某些离子微粒是负氢离子 If得以稳定存在的重要条件, ΟίΓ被电解后所 产生的 Η或 Η—以杂质离子微粒为载体是可能存在相当时间的 以杂质离子微粒为载体的 Η 因而有更多机会与自由电子结合成为 if , 日本专家白畑及太円成男对此种或类似现象已 有认识, 这是电解水具有较高还原水指标的主要原因。 申请人将上述三个新发现统称为 "水杂质电解制作还原水原理", 简称水杂质电解原理, 该原理揭示了 解水方法制作还 原水的本质与关键。 其实, 在将非纯净水电解制成还原水过程中 水中的杂质被电解同 样起到产生电解电流尤其是产生还原水指标的作用, 只是非纯净水杂质多 > 充当无名英 雄, 未引起人们充分关注亦未为人们深知而已。
基于上述三个新发现即水杂质电解原理, 本发明对纯净水¾解方法的特征是: 一是 令电解阴阳极板之间距离尽可能合理地较为接近, 二是令阴阳极板等效电解面积尽可能 合理地较为扩大,在一定电解电压如安全电压以及有关条件下获得尽可能大的电解电流, 当然两极板间隙接近以不影响电解过程必需的水的流动性为限, 因为水的合理流动性有 利于水中微量杂质被反复电解, 增加更多自由电子及电解电流。 当然提高电解电源电压 也可以增加电解电流, 但实际应用会受到各种原因制约。 实测表明: 在饮水杯容器中, 在阴阳极板一定的实用面积及合理结构下, 两极板间距缩窄至 0. 5〜0. 1 mm时, 市售纯 净水包括蒸馏水电解电流大约可达 60〜200 mA , 甚至更大, 在数分钟内便可制作出还原 水指标较高的纯净还原水。反之,现有电解水装置两极板间距或等效间距多为 1 0mm以上, 甚至更大, 在电解纯净水包括蒸馏水时, 两极板间呈现出较大等效阻抗, 电解电流接近 零或仅数毫安, 即使长时间通电, 电解效果亦不佳。 有文献认为: 现有电解水装置电解 时水中有活性炭会释放离子, 有助于提高电流与还原水指标, 实际检测表明: 这不过是 活性炭污染或残留杂质暂时性作用引起的错觉而已, 当用纯净水多制作若干次或者用纯 净水彻底清洗活性炭后, 这些杂质污染或残留杂质会大为减少, 电解电流便会下降到几 毫安以下, 还原水指标会变得很差, 原因在于阴阳极板间隙较大例如间隙大于 2mrr或更 大时,对活性炭自身固有可释出微量杂质是难以在较安全电压下被电离≠生自 电子的, 更难以产生较高还原水指标。 而本发明则可以在较安全电压下乃至数伏特电压下电离活 性炭固有释出的微量杂质而产生自由电子, 表一列出了在两种 同电 ¾间隙及有无活性 炭状况下电解纯净水制作还原水的实测数据。
不同电极间隙与有无活性炭结构的还原水指标实测数据
Figure imgf000005_0001
电解工作时间 3分钟, 常温, 原水: 0RP=+237mv, 氢含量二0, PH=5. 5
可见本发明基于申请人发现的基于杂质电解原理的设计方案可较好解决纯净水包括 蒸馏水电解制成负电位还原水的难题。
在本发明纯净 ^包括蒸馏水电解方法中, 电解电流为何会形成递增循环从而获得较 强电解效果呢? 最为重要的原因在于: 两电极板间隙距离尽可能小从而减少了电极间阻 抗, 纯净水中微量杂质在极扳窄小间隙的某局部强电流作用下容易被电解, 释放出大量 电子, 从而产生较大初始电解电流, 因此可将较多水分子 0电解为 CH—与 H+, 进而在阳 极将 0H—电解为 0与 e , 再增加电解电流; 而电解电流的增加又会促使更多杂质与水 分子被电解, 进一步促使电流增加, 如此反复导致电解电流逐歩增^直至受限值。 电流 受限值取决于水质与 发明具体电解结构以及水质等综合因素, 阴阳极板间隙 ^的电解 水与间隙外水的流动性是否良好对还原水指标高低有较大影响,对此, 申请人在后文 "第 四个新发现" 中予以详述。
本发明重在将纯净水杂质电解而释出电子与微粒载体以实现制作还原水的方法, 揭 示了将电导率低的源水电解制成还原水技术方案的设计方向: 可以通过尽可能减少两极 板间隙及增大其有效电解面积, 在完全不添加任何添加剂情况下, 可将纯净水包括蒸镏 水高效电解制成高活性能负电位纯净还原水; 尽可能合理减少不同极性极板之间的间隙, 必要时可小至 0. 1mm或者更小, 对于提高电解水的效能实现节能环保有显著意义。 实验 装置的实际检测与科学分析充分证明本发明与现有电解水机技犬相比至少具有下列较大 优势 ·。 第一优势, 在两种装置性价比可比情况下, 本发明节能 70%〜90%, 体积缩小 60%〜 90% , 可节水 20%〜30% ; 第二优势, 本发明可以低成本制作负电位纯净还原水, 这是迄 今为止所未见的技术成果, 而现有电解水机必需添加电解促进剂等添加剂方可电解经过 滤产生的纯净水, 因此不可能制作出负电位纯净还原水, 而且还存在添加剂安全风险; 第三, 本发明可以制作碱性或酸性还原水, 还可以制作碱性与原水相近的、 还原水指标 与碱性指标无关的还原水, 适合绝大多数人群饮用, 而现有电解水机只能制作碱性还原 水, 而且还原水指标与碱性指标密切相关不可分离, 在选择较高还原水指标时. Z水会呈 现 P H值超过 9的较强碱性, 不大适合某些人群饮用: 第 优势, 本发^同样可以显著 提高非纯净水电解效率, 可应用于制作环保型消毒、 洗涤 ¾富氢水等功能水及其实用装 置, 造福人类健康环保事业。
申请人在水杂质电解原理基础上另有两个新发现, 对本发明技术方案设计有重要指 导意义:
第四个新发现, 在本发明中, 阴阳极板结构应尽可 有利于电解时极板间水的合理 流动性, 以使更多杂质进入极板间被电解, 产生并提高还 这对 太发明转化 为性价比高的高效电解水实用装置至关重要。 采取 "两极板面积适度 对称或不相等" 电解结构, 既可以满足还原水较高指标要求, 又能降低装 5s成本.. 而积^对 设计应尽 可能有利于极板间水分子被电解产生的离子群及其形成的气泡从极板边缘迅速扩散至电 极上面水中 因此, 在采取上下极板结构时, 处于上面的极板面积应比 T面的极板面积 适当小些, 但不宜太 A, 因为两极板有效电解面积受较小面积 板面 所局限, 其过 小会导致电解电流减少从而影响 0RP负值的提高, 造成得不偿失 实验表明: 采用上小 下大 ¾板结构 > 或者 ¾取多 A小面积上极板结构, 使得极 : ¾解水分子 生的离子群及 氢气氧气可从小面积极板边缘在下极板电场力作用 T向上或侧面水域升逸扩散, 这样便 在极板间隙中形成水分子离子流的流动, 有利于更多水分子与杂质被¾解 从面提高电 解效 , 上极板边缘为曲线可令边长增加, 更有利干离 群与气泡朝外逸 ':! 提高¾解 效率; 反之, 若上下楼板面积上大下小, 两极板间隙由形成 氢气氧气扩散 极板边 缘后会受到上极板 部 遮挡, 不能顺势向上升逸:. ^会 板边缘而影响 极板 隙离子群及气体扩散, 极板间隙中水分子电解产生的离子群在不易流动而潴留情 况下, 重新复合为水分子的机会大幅增加, 离子减少使得形成氧气氢气尤其负氢的机会 相应大幅减少, 从而大幅降低电解效率, 还原水指标会较极板面积上小下大显著变差; 两极板电解有效面积对称且边缘重叠, 也不大利于两极间隙离子群与气泡升逸扩散, 还 原水指标会逊于极板面积上小下大结构。 申请人发现: 极板面积上小下大还要配合以上 极板为阴极、 下极板为阳极才能获得较高还原水指标。 原因在于: 较大而居下的阳极能 吸引更多电子 e -、 H―、 0H―, 而在阳极板与上极板下边缘交汇处将更多 01Γ电解为 0、 H— 或11、 e -, 均使得产生 H—的机会增加, 加上还有利于 H、 e_横向扩散以及正离子向上扩散, 提高离子流动性, 故可有效提高还原水指标。 反之, 阴极居下且较大, 则没有上述优势, 故还原水指标较差。 若将极板水平或垂直安装两种安装方式作比较, 垂直极板方式更有 利于电解水流动性, 因极板的垂直或上小下大略倾斜的间隙更有利于水分子电离所生气 泡上浮逸升而增加水的流动性, 获得较高还原水指标。 至于阴极或阳板面积孰大孰小, 要视电极形状与实际面积及结构而定, 或在阳极面积大于阴极面积时电解制作还原水效 率较高, 或反之。 这取决于以下原理: 两极板面积不对称使得阴阳极区域发生的水分子 电解状况不对称, 相对于对称电解而言, 减少了 H—或 H离子重新复合为水分子 0或 的机会, 从而增加 H与杂质所释电子结合为 H—的机率, 因此还原水指标会显著提高, 下 列表二为电极面积结构不同的三种电解装置还原水指标比较数据, 结构 1 为阳极面积显 著大于阴极面积而且阴极在阳极上面的结构, 结构 2为大面积阳极在小面积阴极上面的 结构, 结构 3为阴阳极面积相同的结构.
表二: 电极面积结构不同的三种电解装置还原水指标比较表
Figure imgf000007_0001
注: 除小面积电极面积差异外, 三种电解装置其他条件相同; 电解工作时间 3分钟, 常 温, 原水: ORP=+176mv, 氢含量 =0, PH=5. 5
可见, 检测结果与上述分析结果一致。
第五个新发现, 电解制作还原水的 0RP负值应主要是由负氢含量所产生。 因此, 本 发明与现有相关技术的重要区别之一, 是本发明的主要目标定位于解决电解水技术悬而 未决的难题: 将纯净水包括蒸馏水制成富含负氢、 0RP负值较高的还原水。 或 [1或 H— 都曾被某些有关专家认为是有助人体抗氧化的活性氢, 对活性氢究竟是 或 H或 H—却各 执一词, 因而对还原水至关重要的 0RP负值从何而来也就一直难有定论。 Π本专家及川 胤昭与内藤真礼生在 2008年发表《氢的革命一一负氢离子的神奇疗效与临床验证》 书, 论证了负氢离子经人胃肠吸收后具有清除氧自由基及促进新陈代谢 ¾双重功效, 该书中 仅间接提及负氢与 0RP负值的关系, 日本电解还原水专家白畑在 《活性氢》 演讲中阐述 了 H与电子可因同存于金属微粒载体而结合, 具有消除氧自 基的功能。 负氢离子 所 携电子较 或11所含电子更为容易被外电场吸引而释放, 所以比较 ¾或11而言, 是影响 ORP负值更为敏感因素, H—在摄入人体细胞后尤为容易释放电子或与氧自由基如 0+复合成 H20, 化害为利, 是比 与 H更为理想的消除人体自由基的抗氧化物质。 故本发明着重于 制作负氢离子含量较高、 0RP 负值也相应较高的还原水。 表三为本发明实验装置之一所 制作的还原水指标数据。
表三 A: 本发明实验装置之一所制作的还原水指标数据
Figure imgf000008_0001
表三 B : 表三 A装置电解工作结束后还原水指标隨时间变化数据
Figure imgf000008_0002
注: 电解工作时间 3分钟, 常温, 原水: ORP=+176mv, 氢含量 =0
可见在电解活化过程与电解后活化能量消减过程, 3R?负 含氢量均呈现同歩变 化或增长或消减, 0RP 负值与含氢量成正比的明显规律证明了氢含量是产生 0RP 负值的 主要原因, 但氢含量可能为 ¾或 H或 H—或三者或其中二者之和, 们各自与 0RP负值究 竟是何关系呢?申请人通过实验分析确认:产生 0RP负值的主要原因是负氢,而非 或 H。 虽然目前尚无水的负氢含量检测仪表, 表中含氢量实测数据为现有溶氢表所测, 该数值 可能包含了氢气 、 与负氢 H―。
请人通过排除分析法确认负氢含量与 0RP的因果关系: 首½ ; 因为 含量并不影 响 0I 值, 与 0RP负值无因果关系, 故可以排除; 第二, 为容易发生 H- — H2复合反 应, 故以 H状态在水 *存在时间一般较短, 即便对 CRP值有影 是短暂的 故亦可 以排除 申请人所作实验淸楚表明: H+H— 产生氢气泡的现象在¾ 过程结束时数秒后 便结束, 证明了此时水所含 H迅速减少使 气泡无以为继 更明显的是: 与电解结束后 H不能在水 长时间保持, 相反的是: 还原水 0RP 负值却是可以^:时间保持的; 在合适 密闭容器中 0RP负值 "^稳定保持数十天以上, 申请人观察到还原水在儲存 15天后 0RP负 值仍然维持甚至于更高的事实, 原因在于: 申请人刻意通过特¾ ¾解方法强化还原水活 性能, 获得了高活性 ^的 ':) RP 负值。 即便还原水接触空气 O^F 负值 ¾可能保持长达数 小时, 这与水 H很 减 现象是相悖的。 显而易见 在¾ ^法制作的还原水中, Η 含 量与 :) 负值并无显著关联性及因果关系。 据上述实 ¾与分 ¾;? .. 请人确认: 本发明电 解纯净还原水装置 制还原水中形成 0RP负值的主要原因硗认必然是负氢 Η—含量。 故表 三的氢含量变化规律可以近似看作负氢含量变化规律。 大发明^ 步提高还原水含氢量 与 0RP负值作为主要 标。 有一种看法认为 0H—是影 0R 负值的因素, A请人对此 不予认同, 因为电解丁 ^ 束后, 0RP负值衰减与 PH值变化并 关 忭, 而 J 采用太发 明明电电解解水水技技术术不不同同设设计计方方案案可可以以分分别别制制作作出出 00RRPP负负值值相相同同的的碱碱性性水水与与酸酸性性水水,, 足足以以证证明明 00RRPP负负值值与与 PPHH值值亦亦即即与与 00HH——含含量量并并无无因因果果关关系系。。
本本发发明明要要付付诸诸实实用用还还要要注注意意解解决决好好还还原原水水余余氯氯等等限限制制性性物物质质含含量量问问题题,, 尤尤其其是是本本发发 明明装装置置若若兼兼容容用用于于将将自自来来水水开开水水或或凉凉开开水水及及直直饮饮水水或或矿矿泉泉水水等等非非纯纯净净饮饮用用水水制制作作为为还还原原 水水时时,, 还还原原水水指指标标会会更更高高,, 符符合合上上述述电电解解杂杂质质原原理理,, 但但由由于于原原水水品品质质参参差差关关系系,, 可可能能出出 现现还还原原水水余余氯氯含含量量增增加加问问题题,, 需需采采取取适适当当的的电电极极结结构构设设计计方方案案或或去去除除余余氯氯措措施施加加以以解解决决。。 在在电电解解水水过过程程中中采采用用活活性性炭炭等等某某些些吸吸附附性性较较强强的的合合适适材材料料吸吸收收水水中中佘佘氯氯及及某某些些重重金金属属离离 子子是是解解决决余余氯氯等等问问题题的的较较好好方方案案。。
基基本本技技术术方方案案:: 一一种种可可将将纯纯净净水水与与蒸蒸馏馏水水简简易易高高效效电电解解制制成成负负电电位位还还原原水水的的方方法法与与 装装置置,, 其其特特征征是是:: 包包括括电电解解电电源源,, 与与电电解解电电源源连连接接的的电电解解电电极极组组件件 工工作作时时电电解解电电极极组组 件件浸浸泡泡在在欲欲电电解解的的水水中中;; 电电解解电电极极组组件件的的阴阴阳阳电电极极之之间间留留有有间间隙隙,, 间间隙隙距距离离在在大大于于 O0mmrara、、 小小于于 1100mmmm范范围围之之内内,, 间间隙隙按按合合理理较较小小化化原原则则设设计计,, 必必要要时时可可以以小小于于 00.. IImmrara;; 电电解解电电极极组组 件件在在所所占占一一定定空空间间内内 ss 其其阴阴阳阳电电极极之之间间间间隙隙的的面面积积按按合合理理较较大大化化原原则则设设计计;; 阴阴阳阳电电极极之之 间间间间隙隙距距离离设设计计较较小小化化与与间间隙隙面面积积设设计计较较大大化化的的目目的的在在工工:: 使使11 ¾¾解解装装賈賈在在一一定定 ¾¾解解电电压压 与与水水质质及及环环境境条条件件下下 对对水水中中杂杂质质及及水水分分子子具具有有较较强强 作作 .. 产产生生较较多多^^ ii 」」¾¾子子,, 获获 得得较较大大电电解解¾¾流流 可可¾¾的的较较佳佳方方案案之之一一是是:: 阳阳极极与与阴阴极极分分别别'' ¾¾成成峰峰窝窝状状屯屯极极及及与与之之可可对对 应应插插接接的的梳梳子子状状电电极极 梳梳^^电电极极梳梳齿齿与与蜂蜂窝窝状状电电极极蜂蜂 孔孔¾¾太太对对 ,, 并并套套入入对对 孔孔中中,, 梳梳齿齿表表面面与与峰峰窝窝孔孔表表面面留留 间间隙隙,, 阴阴阳阳电电极极间间的的有有效效间间隙隙面面积积约约等等 蜂蜂窝窝状状「「 极极与与梳梳状状 电电极极对对接接面面的的间间隙隙等等效效面面积积加加上上所所有有梳梳齿齿与与蜂蜂窝窝孔孔问问隙隙等等效效面面积积之之和和。。
技技 ^^方方案案之之一一:: 以以盛盛水水容容器器形形式式应应用用本本发发明明募募本本¾¾犬犬方方案案;; 括括水水容容器器及及其其盖盖子子,, 可可控控 ¾¾解解电电源源安安装装在在盖盖子子内内 所所述述盖盖子子上上安安装装有有向向下下 入入 解解容容器器内内的的¾¾解解极极板板组组件件,, 该该组组件件 三三 AA电电极极组组合合 工工作作时时浸浸泡泡在在容容器器内内水水中中 ^^解解极极板板..组组件件由由电电极极之之一一 锈锈 钢钢圆圆筒筒形形阴阴核核所所包包裹裹 ^^钢钢圆圆筒筒上上面面敞敞口口,, 平平面面底底部部 孔孔;; ^^构构,, 以以便便于于 筒筒内内外外水水 流流流流动动 圆圆筒筒通通过过导导线线与与可可控控电电源源输输出出之之一一负负极极连连接接;; 阴阴¾¾圆圆筒筒内内 部部或或靠靠上上邦邦水水平平安安 装装一一个个直直径径与与圆圆筒筒相相配配合合的的电电极极之之二二蜂蜂窝窝状状活活性性炭炭或或其其 ^^合合 ¾¾材材料料圆圆饼饼,, 活活性性炭炭圆圆饼饼周周 面面与与 简简内内圆圆周周面面问问 ¾¾有有间间隙隙之之一一,, 活活性性炭炭电电极极通通过过导导线线与与可可控控 ¾¾源输输出出之之二二连连接接;; 活活 性性炭炭 极极下下面面安安装装有有 Ώ ¾极极之之三三带带梳梳齿齿导导电电极极板板,, 其其梳梳^^的的数数 ¾¾状状及及分分布布^^条条窝窝状状电电 极极蜂蜂 孔孔对对应应,, 并并¾¾入入对对 孔孔^^,, 梳梳齿齿表表面面与与蜂蜂窝窝 表表面面 ^^隙隙之之 ]] 圆圆饼饼状状活活 炭炭 下下表表^^与与梳梳齿齿极极 ¾¾上上表表面面 ^^有有间间隙隙之之五五,, 梳梳齿齿¾¾板板有有 状状孔孔 有有利利二二加加强强水水与与离离 流流动动 性性,, 蜂蜂窝窝状状 极极与与梳梳状状 11¾¾极极之之间间间间隙隙之之二二的的有有效效西西积积大大约约 于于;; ff冇冇^^与与 ^^「「 隙隙 的的等等 效效面面积积加加上上间间隙隙五五有有效效面面^^ 梳梳齿齿电电极极板板通通过过导导线线与与可可 源源^^ 之之三三连连接接,, 其其底底表表面面 与与阴阴极极圆圆筒筒底底内内表表面面留留有有间间隙隙之之三三 ;; 三三 AA电电极极的的间间隙隙之之一一 ·· 之之二二,, 之之三三的的问问隙隙距距离离¾¾大大 于于 、、 小小于于 11 OOiirrrara ΆΆ围围之之内内 必必要要时时可可以以小小于于 00.. .. ::11:: ΓΓ可可††¾¾ ¾¾源源输输 之之 .. 之之二二及及 负负极极可可控控制制电电 ¾¾组组件件将将纯纯净净水水与与?? 馏馏水水及及其其他他普普通通饮饮 别别 11 ¾¾性性偏偏高高的的弱弱碱碱性性或或
Figure imgf000009_0001
技术方案之二: 应用本发明基本技术方案实现将流水电解制成负电位还原水。 包括 一段管状通道, 可控电解电源, 以及安装在通道中的电解极板组件, 该组件与本发明技 术方案之一所述的电解极板组件相同, 让水从管状通道一端流入经过电解极板组件, 从 另外一端流出, 通过可控电源输出之一、 之二及阴极可控制电极组件将纯净水与蒸馏水 及其他饮用水分别制成碱性偏高的弱碱性或碱性偏低的弱碱性或酸性负电位还原水或者 与原水 PH值相近的还原水。
技术方案之三: 与技术方案之一类似, 区别仅在于电解极板组件结构有所 同, 本 方案 ¾解极板组件的电极之一结构为 N个 E并排紧贴形状; 电极之二结构为 个水平反 转的 E并排紧贴形状, E形状电极与反 E形状电极按凹凸对插方式形成多个 Z形相通间 隙, 间隙距离在大于 0mm、 小于 10mm范围之内, 间隙按合理较小化原则设计, 必要时可 以小亍 0. 1mm;。
本发明技术方案中的 ¾解极板组件具体结构不限于上 .技犬方案一、 二、 所列: 凡是 较小极问间隙与较大极间间隙面积以有效提 水及其杂 电解 3流, 到制作还 原水或相关 标的 解水电极结构均属本发明方 ½范围。 附图说明
一面通过附图对本发明作进一步阐释。
1是 发明实施例】 可将纯净水制成电解水的 f 易高效电解装置
图 2是本发明实施例:?可将纯净水制成电解水的简易髙效电解装置
图 2是太发明实施例 3可将纯净水制成电解水的简易高效电解装 s
W 4是本发明实施例 4可将纯净水制成电解水的简易高效电解装置
是木发 ^实 ¾ | 5可将纯净水制成电解水的 t 易 效电解装置
?"' e. ^f^ ^ ^ 可将纯净水制成电解 z ί. f¾w
W 7是太发¾实½ 7 将纯净水制成电解水 害效 装賈 具体^施方式 发明 技犬 用于盛水容器而设计, 图 1所 ^, 包括盛水容器 14及其盖 子 13 , 可¾ ¾解电源;:: 安装在盖子 13内, 13上安装有: 下 入屯解容器内的电解极板 组件 18, 该组件由 3个电极组合而成, 工作时浸泡在容器内水中 电解极板组件由电极 不锈^圆筒形阴极 1所包裹, 1上面敞口, 平面底部有网状圆孔 15, 以便于 1 内外水流 流动, 〗 ¾过导线 与 12输出之一电源负极 15连接; 1内^ ¾或靠上部水平安装一个直 径与 : .· 配合^蜂窝 pj饼电极 ?■, 2圆周面与 1 ^ ^ . i, 2通 导线与 可控 输^ ' 〗6谇接; 2下面安装有梳齿导电 板. 数 、 形状及分布与 2 蜂窝孔对应, 并套入对应孔中, 梳齿表面与蜂窝孔表而留冇 隙 22, 2下表面与梳齿极 板 2上表面留有间隙 8, 梳齿极板 2有网状开孔, 有利于加强水与离子流动性, 2与 3电 极之间间隙总有效面积大约相当于 N个 22的等效面积加上间隙 8有效面积; 3通过导线 与可控电源输出 17连接, 3底表面与 1底内表面留有间隙 9 ; 电极间隙 7、 8、 9、 22的 间隙距离在大于 0讓、 小于 10mm范围之内, 间隙按合理较小化原则设计, 必要时可以小 于 0. 1mm; ; 通过可控电源输出 16、 17、 15不同电压组合形成控制方式 1、 2、 3, 可控制 电极组件将纯净水与蒸馏水及其他普通饮用水分别制成碱性偏高的弱碱性或碱性偏低的 弱碱性或酸性负电位还原水。 1固定接于 12电解电源负极输出端 15, 具体工作过程与原 理分别阐释如下:
实施例 1控制方式 1用于制作碱性较高的弱碱性还原水。 控制特点为: 12的端口 17 接通 15, 12从端口 16向 2输出正电压; 纯净水包括蒸馏水及微量杂质主要在间隙 7与 8及 N个 22被电解, 2作为具有极大等效比表面积的阳极起着吸附负氯离子的良好作用, 同时 2释放在水中的微量杂质被电离所产生的电子有利于增加电解电流并增加 H- e— H—的机会, 获得更高还原水指标。 在电解过程中水分子 0被电离或又复合为 0H―、 H+、 0、 H、 H―. 02、 等离子或物质, 由于 02、 气体可以从 1上部敞口源源不断直接升出, 在 1 内各间隙产生水流及离子流快速流动, 容器中的水与杂质反复流经 7、 8、 N个 22进行电 解, 有利于电解效率的提高。 另外, 由于 2对 H—与 0H—等负离子具有强吸附作用, 电解强 度愈大, H—与 0H—等负离子愈多, 2所吸附的 H—与 01T等负离子愈多, 与此同时, 更多 H+ 则与 子 -合成 H2升逸出水面, 阳极等效面积大于阴极等效面积的作用得以体现, 故电 解结束后水 OK—含量比较 Η+会更高, 即还原水碱性更强、 ΡΗ值更高, 水中的 Η—较高, 制作出较高还原水指 的碱性较强的弱碱性还原水。
实施例 1控制方式 2用于制作弱碱性还原水。 控制特点为 : 12通过端口 16向 2输 出正电压, 较控制方式 1输出正电压要低, 同时从 17向 3输出较高正电压, 主要在 7与 9对水及杂质的进行电解, 12在 2所施正电压比第一种方式要低, 减弱了 2对 0Η-与 Η- 的吸附力度, 因而还 ^水碱性比控制方式 1 要弱. 9对水及杂质 解过程所产生的 Η—补 偿了 2 附力减弱 ¾¾失的 Η―, 从而制作出较高还原水指标的弱碱性还原水。
m 1控制方式 3用于制作酸性还原水, 12通过端口 ] 6将 2接通输出电压负极, 即与 接通. 12通过端口 17向 3输出正电压, 在 9、 N个「'2及 8对水及杂质进行电解, 2接于电解电源负极, 对 IT等正离子具有强吸附力, 减少 H+ = ¾的机会, 与此同时 水中 0H—被 9电解为 0与 H—的机会较高, 因为 9间隙较窄, 在采用较低安全电压电源供电 情况" ^, 一般选择在大于零至小于 1mm范围,较多的(^及较少的 ¾沿 1内边缘经 7升逸, 形成水与离子流及杂质快速流动, 有利于 9产生的 H—扩散出去 随着这一过程反复进行:. 水中的 H+含量会比 0H—含量愈高, 因而还原水 PH值会愈低, 从 制作出较高还原水指标 的酸性还原水。
表西列出了本 例在 3种控制方式下将纯净水制成碱性或豫性负电位还原水的指 标。 表四: 本实施例的 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000012_0001
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+167mv, 氢含量 =0, PH=5. 5
实施例 1 结构兼容将非纯净水制作成为负电位还原水, 原理及过程与上述类似。 表 五列出了本实施例将直饮水制成还原水的指标。
表五: 本实施例的 3种控制方式将直饮水制成还原水的实测指标数据
Figure imgf000012_0002
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+286mv, 氢含量 =0, PH=7. 5 实施例 2
本实施例结构如图 2所示, 是应用本发明基本技术方案将流水电解制成负电位还原 水的又一实施方案。 包括一段管状通道 25, 可控电解电源 12, 以及安装在通道 25中的 电解极板组件 18, 该组件与本发明实施例 1所述的电解极板组件相同, 区别仅在于: 22 间隙的长度比实施例 1的 22长 M倍; 让水从 25的进水端口 26流入流经 18, 经过电解 电极间隙 7、 8、 9, 尤其是通过 N个 22间隙中被反复电解处理, 从 25出水端口 27流出, 通过可控电源输出 16、 17、 15不同电压组合形成控制方式 1、 2、 3, 可控制电极组件将 纯净水包括蒸熘水及其他饮用水分别制成 PH值不同的负电位还原水。本实施例还原水指 标见于表六。
表六: 本实施例的 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000012_0003
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+242mv, 氢含量 =0, PH=5. 5 实施例 3
本实施例结构如图 3所示, 功能与实施例 2类似, 是应用本发明基本技术方案将流 水电解制成负电位还原水的又一实施方案。 包括一段管状通道 25, 可控电解电源 12, 以 及安装在通道 25中的电解极板组件 18, 该组件由 3个电极组合而成, 工作时浸泡在容 器内水中。 电解极板组件电极 1为 U筒形状, 1上面敞口, 1平面底部有网状圆孔 15, 便于 1内水流流动, 1通过导线 4与 12输出端口 15连接; 电极 2结构为 N个水平反转 的 E并排紧贴形状, 电极 3结构为 N个 E并排紧贴形状, 反 E形状电极 2与 E形状电极 3按凹凸对插方式形成多个 Z形相通间隙 8, 2外周面与 1内周面间留有间隙 7, 2通过 导线与 12输出端口 16连接; 3外周面与 1 内周面间留有间隙 9, 3通过导线与 12输出 端 17连接; 7、 8、 9间隙距离在间隙距离在大于 0mm、 小于 10mm范围之内, 间隙按合理 较小化原则设计,必要时可以小于 0. lmm;;工作时,让水从 25的进水口 26流入流经 18, 经过电解电极间隙 7、 8、 9, 尤其是通过多个 Z形间隙 8中被反复电解处理, 从 25出水 口 27流出, 通过可控电源端口 16、 17、 15输出不同电压组合形成控制方式 1、 2、 3, 可控制电极组件将纯净水包括蒸馏水及其他饮用水分别制成 PH值不同的负电位还原水。 具体过程及其原理与实施例 1控制方式 1、 2、 3相似。 本实施例还原水指标见于表七。 表七: 本实施例 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000013_0001
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+263mv, 氢含量 =0, PH=5. 5 实施例 4
本实施例结构如图 4所示, 可见与实施例 1 的区别仅在于将其电解水机构即 12与 18制作成一个便携式可移动电解水装置, 18可方便地放置于任意容器内水中, 在 12控 制下工作。 本实施例工作原理与过程类似实施例 1, 将本实施例的 18置于容器内浸泡在 一般容器如水杯或碗盆的水中, 便可以象实施例 1那样将容器所盛饮用水制成酸碱度不 同并具有较高还原水指标的还原水。 本实施例还原水指标见于表八。
表八: 本实施例 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000013_0002
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+251mv, 氢含量 =0, PH=5. 5 实施例 5
本实施例结构如图 5所示, 与实施例 1的区别在于: 12安装在容器底部; 电极采用 较简单结构, 2为饼形电极, 3为导电平板, 8为 2与 3之间隙, 与实例 1相比少了 N个 22间隙。 本实施例普遍适合于 1为金属或非金属的盛水容器, 本实施例工作原理与过程 与实施例 1相同, 只是缺少了 N个 22的作用。 本实施例还原水指标见于表九。
表九: 本实施例 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000014_0001
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+242mv, 氢含量 =0, PH=5. 5 实施例 6
本实施例结构如图 6所示, 与实施例 5的区别仅在于: 实施例 5圆筒形阴极 1以盛 水容器 14所代替, 结构简化, 本实施例适合于 14为导电材料如金属等的盛水容器, 本 实施例工作原理与过程与实施例 1相同, 只是缺少了 N个 22的作用。 本实施例还原水指 标见于表十。
表十: 本实施例 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000014_0002
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+231mv, 氢含量 =0, PH=5. 5 实施例 7
本实施例结构如图 7所示, 可见与实施例 6的区别在于: 可控电解电源的控制方式 与电解电极组件的电极结构简化, 2不接 12, 12经端口 15接 1、 17接 3输出电解电压, 并利用 7、 8、 9距离及其电解面积的相互配合制成不同 PH值负电位还原水。 本实施例仅 此一种控制方式, 其控制特点为: 12从端口 17向 3输出电解电源正电压, 12端口 15将 1接电源负极, 水及其微量杂质在间隙 7、 8、 9被电解。 2的作用与实施例 1控制方式 2 相同, 区别在于 2的正电压值不如实施例 1从 12输出端口的 16获取, 而是取决于 8与 7对 12端口 17加载于 3的电压之分压, 故可用间隙 8间距控制 2的作用影响还原水 1¾ 值指标, 改变 12端口 17输出正电压数值及其持续时间也可起到相似作用, 从而制作出 相应 PH值的还原水。 具体过程与原理与实施例 1控制方式 2类同。 本实施例还原水指标 见于表十一。
表十一: 本实施例 3种控制方式将纯净水制成还原水的实测指标数据 电解水工作时间 控制方式 1 控制方式 2 控制方式 3 还原水指标 ORP (mv) - 431 - 402 -192
氢含量 (ppb) 443 430 218 ra值 9.6 8.4 6.0 解工作时间 3分钟, 常温, 原水: 0RP=+238mv, 氢含量 =0, PH=5.5

Claims

权 利 要 求 书
1、 一种可将纯净水制成电解水的简易高效电解方法与装置, 其特征是: 包括电解电 源, 与电解电源连接的电解电极组件, 工作时电解电极组件浸泡在欲电解的水中; 电解 电极组件的不同电压的近邻电极之间留有间隙, 间隙距离在大于 0inm、 小于 10mm范围之 内, 间隙按合理较小化原则设计, 必要时可以小于 0. 1mm; 电解电极组件在所占一定空 间内, 其不同电压的近邻电极之间间隙的面积按合理较大化原则设计; 不同电压的近邻 电极之间间隙距离设计较小化与间隙面积设计较大化的目的在于: 使电解装置在一定电 解电压与水质及环境条件下, 对水中杂质及水分子具有较强电解作用, 产生较多自由电 子, 获得较大电解电流; 本方法与装置对杂质稀少的纯净水可取得较好电解效果, 还可 兼容将电导率比纯净水高的水制成电解水。
2、根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解方法与装置, 其电解电极组件特征是: 电解电极组件中不同电压的近邻电极分别做成蜂窝饼形状及与 之可对应插接的梳子板形状,蜂窝饼形状电极可以做成为 N个具有电连接的蜂窝管形状, 梳子板形状电极可以做成为 N个具有电连接的梳子形状, N=l〜任意值; 梳子板形状电极 的梳齿固定在板形上或以其他方式固定; 梳子板形状电极的梳齿可插入对应蜂窝饼形状 电极蜂窝孔中; 蜂窝饼形状电极与梳齿形状电极相对表面之间留有间隙; 蜂窝饼形状电 极与梳齿形状电极之间间隙距离均在大于 0mm、 小于 10mm的范围之内, 必要时可以小于 0. lmm。
3、根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解方法与装置, 其电解电极组件特征是: 不同电压的电极之一结构为 N个 E形极板并排紧贴形状, 不同 电压的电极之二结构为 N个水平反转的 E形极板并排紧贴形状, N=l〜任意值, E形状电 极与反 E形状电极按凹凸对插方式形成多个 Z形相通间隙, E形状电极与反 E形状电极 之间间隙距离均在大于 0mm、 小于 10匪的范围之内, 必要时可以小于 0. lmm。
4、 根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解方法与装置, 其电解电极组件特征是: 电解电极组件中可采取不同电压的近邻电极的面积不相等设计 提高电解效率, 不同电压的近邻电极面积不相等既可以是阳极面积大于阴极面积, 也可 以相反, 不同电压的近邻电极之间间隙距离均在大于 0mm、 小于 10mm的范围之内, 必要 时可以小于 0. lmm。
5、根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解方法与装置, 其电解电极组件特征是: 电解电极组件由一个筒形或槽形或 U形电极所包裹, 筒形或槽 形或 U形电极有供筒内外水流流动的通道, 筒形或槽形或 U形电极通过导线与电解电源 输出端口 1连接, 作为电解电极 1 ; 筒形或槽形或 U形电极内部安装有饼形或板形电极, 作为电解电极 2 , 电极 2外周面与筒形或槽形或 U形电极内周面之间留有间隙 1, 电极 2 通过导线与电解电源输出端口 2连接; 电极 2与电极 1相背的另一面对面装有电解电极 3, 电极 2与相对的电极 3之间留有间隙 2, 电极 3极板通过导线与电解电源输出端口 3 连接 电极 3极板与近邻的筒形或槽形或 U形电极平面端口的相对表面之间留有间隙 3; 三个电极的间隙 1、 2、 3的距离在大于 0mm、 小于 10醒之间, 必要时可以小于 0. 1隱: 电解电极组件工作状态由电解电源输出端口 1、 2、 3控制;
所述电解电极组件可分别或同时作以下改变:
1 ) 电极 2、 电极 3或电极 3、 电极 2可分别改变为蜂窝饼形状电极及与之可对应插 接的梳子板形状电极, 梳子板形状电极的梳齿固定在板形上或采用相对位置固定结构, 梳齿可插入对应蜂窝孔中, 蜂窝饼形状电极与梳齿电极相对表面之间留有间隙, 该间隙 距离在大于 0ram、 小于 10mm之间, 必要时可以小于 0. lmm;
2 )断开电极 2或电极 3与电解电源输出端口 2或 3的连接, 仅通过电解电源输出端 口 1、 3或 1、 2控制电解电极组件工作;
3 )在将电解电极组件固定安装在盛水容器内工作的情况下, 若盛水容器为金属或导 电材料, 电解电极组件的筒形或槽形或 U形电极可由盛水容器代替, 区别仅在于: 代替 筒形或槽形或 U形电极的盛水容器底部没有供电解水流通的通道;
4 )用板形电极代替筒形或槽形或 U形电极, 相当于筒形或槽形或 U形电极简化为仅 有与电极 3相对的筒端口板, 间隙 1近似于不存在;
5 ) 在 2 ) 基础上将电极 2紧贴电极 3, 即间隙 2=0mm, 仅通过电解电源输出端口 1、 3或 1、 2控制电解电极组件工作;
所述电解电极组件在保持不同电压的近邻电极间隙距离在大于 0mm、小于 10mm之间、 必要时可以小于 0. lmm的条件下, 不限于以上强化或者简化功能的结构调整改变。
6、 根据权利要求 1所述的一种将纯净水制成电解水的简易高效电解方法与装置, 其特征是: 包括一段管状通道, 安装在管状通道中的电解电极组件, 以及给电解电极组 件供电的电解电源, 工作时让纯净水或其他饮用水从管状通道一端口流入, 流经电解电 极组件不同电压的近邻极之间的间隙, 该间隙距离在大于 0瞧、 小于 10謹之间, 必要时 可以小于 O. lmn 当水从管状通道另一端口流出便可达到电解水目的, 当管状通道适合 做电极时, 可作为电解电极组件的电解电极使用。
7、 根据权利要求 1 所述的一种可将纯净水制成电解水的简易高效电解方法与装 置, 其特征是: 可制作成便携式可移动电解水装置, 包括电解电源, 与电解电源连接的 电解电极组件, 工作时电解电极组件浸泡在欲电解的任意容器水中, 用电解电源控制电 解电极组件制作电解水; 电解电极组件的不同电压的近邻极间隙距离在大于 0mm、 小于 10mm之间, 必要时可以小于 0. lmm。
PCT/CN2014/000585 2013-06-20 2014-06-16 一种可将纯净水制成电解水的简易高效电解方法与装置 WO2014201852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/900,165 US10421673B2 (en) 2013-06-20 2014-06-16 Simple and efficient electrolysis method and device for making electrolyzed water from pure water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310256411.2 2013-06-20
CN201310256411.2A CN104229946B (zh) 2013-06-20 2013-06-20 一种可将纯净水制成电解水的简易电解方法

Publications (1)

Publication Number Publication Date
WO2014201852A1 true WO2014201852A1 (zh) 2014-12-24

Family

ID=52103888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000585 WO2014201852A1 (zh) 2013-06-20 2014-06-16 一种可将纯净水制成电解水的简易高效电解方法与装置

Country Status (3)

Country Link
US (1) US10421673B2 (zh)
CN (1) CN104229946B (zh)
WO (1) WO2014201852A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535630A (zh) * 2014-12-31 2015-04-22 沁园集团股份有限公司 饮水设备的水质测量系统
CN104609515A (zh) * 2015-02-26 2015-05-13 罗民雄 一种便利使用的可便携多用途无膜电解水装置
CN104609514A (zh) * 2015-02-26 2015-05-13 罗民雄 一种电极为孔柱式结构的新型电解水装置
CN104591467A (zh) * 2015-02-26 2015-05-06 罗民雄 一种发生电解水蒸汽的装置
CN104709975A (zh) * 2015-02-26 2015-06-17 罗民雄 一种发生电解水雾化气的装置
CN104633912A (zh) * 2015-02-26 2015-05-20 罗民雄 一种可输出电解水的储水式电热水器
CN104628092A (zh) * 2015-02-26 2015-05-20 罗民雄 一种可控制电解水酸碱性的无膜电解水新方法
CN104609513A (zh) * 2015-02-26 2015-05-13 罗民雄 一种显著提高电解效率的无膜电解水新方法
CN104649374A (zh) 2015-02-26 2015-05-27 罗民雄 一种多功能的无膜电解开水机
CN104709976A (zh) * 2015-02-26 2015-06-17 罗民雄 一种制作美容水的无膜电解水装置
CN104709974A (zh) * 2015-02-26 2015-06-17 罗民雄 一种采用两组电解电极组件控制电解水性能的新方法
CN104649375A (zh) * 2015-03-09 2015-05-27 罗民雄 一种主要为陶瓷材料的电解水装置用的电极
CN104843837A (zh) * 2015-05-25 2015-08-19 郭浩 给水消毒净化器
CN105060413A (zh) * 2015-08-07 2015-11-18 罗民雄 一种用于电解水装置的可装入影响水质的材料的透孔电极
CN105060415A (zh) * 2015-08-09 2015-11-18 罗民雄 改变无膜电解水装置电解水泡沫状态的一种工艺结构
US10457575B2 (en) * 2015-12-09 2019-10-29 Fuji Keiki Co., Ltd. Hydrogen water generator
CN105439254A (zh) * 2015-12-21 2016-03-30 南京沁尔心环保科技有限公司 一种电解水容器
CN105883980B (zh) * 2016-04-06 2019-12-03 佛山市海狮凯尔科技有限公司 一种富氢水生成装置及方法
CN106430453B (zh) * 2016-12-15 2023-08-11 中建水务(深圳)有限公司 电解水杯
CA2975932A1 (en) 2017-08-10 2019-02-10 Innovative Potential Inc. Electrolytic reactor
IT201800010675A1 (it) * 2018-11-29 2020-05-29 Multim S R L Metodi e dispositivi per utilizzare la propagazione delle cariche elettriche tramite urti tra le molecole d’acqua in una cella elettrolitica contenente acqua e composti ionici
CN111320238A (zh) * 2018-12-14 2020-06-23 罗民雄 用稳定电解电流获得预定电解水负氢含量指标的方法
CN112551835B (zh) * 2020-11-18 2022-12-09 北京市畜牧总站 一种畜牧养殖粪便电解处理装置及其使用方法
CN114180679A (zh) * 2021-11-15 2022-03-15 昆山泰瑞克智能科技有限公司 一种电解纯水效率高的电解水模块
CN117888128A (zh) * 2022-10-08 2024-04-16 林信涌 具备悬吊式电解模组的氢气产生机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246272A (ja) * 1993-02-24 1994-09-06 Toto Ltd 無隔膜型の連続式イオンリッチ水生成装置
US6428689B1 (en) * 1999-01-27 2002-08-06 Sanyo Electric Co., Ltd. Water purifying and dispensing apparatus, and method of purifying chlorine-containing water
CN201923864U (zh) * 2010-10-29 2011-08-10 肖志邦 还原水无隔膜电解装置
CN102603036A (zh) * 2012-03-23 2012-07-25 烟台市马可波罗电子科技有限公司 一种制造氢水的装置
CN203668073U (zh) * 2013-06-20 2014-06-25 罗民雄 一种可将纯净水制成电解水的简易高效电解装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2283648Y (zh) * 1996-11-22 1998-06-10 上海福登食品有限公司 净化和极化水的装置
TWI439568B (zh) * 2006-11-20 2014-06-01 Univ California 用於電解與電合成的閘控電極
CN101945659A (zh) * 2008-02-19 2011-01-12 国立大学法人旭川医科大学 肾上腺髓质素产生增强剂
CN102020341A (zh) * 2010-10-29 2011-04-20 肖志邦 还原水无隔膜电解装置
JP6411741B2 (ja) * 2013-05-20 2018-10-24 国立大学法人 熊本大学 電解処理方法及び電解処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246272A (ja) * 1993-02-24 1994-09-06 Toto Ltd 無隔膜型の連続式イオンリッチ水生成装置
US6428689B1 (en) * 1999-01-27 2002-08-06 Sanyo Electric Co., Ltd. Water purifying and dispensing apparatus, and method of purifying chlorine-containing water
CN201923864U (zh) * 2010-10-29 2011-08-10 肖志邦 还原水无隔膜电解装置
CN102603036A (zh) * 2012-03-23 2012-07-25 烟台市马可波罗电子科技有限公司 一种制造氢水的装置
CN203668073U (zh) * 2013-06-20 2014-06-25 罗民雄 一种可将纯净水制成电解水的简易高效电解装置

Also Published As

Publication number Publication date
CN104229946A (zh) 2014-12-24
US20160236955A1 (en) 2016-08-18
CN104229946B (zh) 2017-02-08
US10421673B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2014201852A1 (zh) 一种可将纯净水制成电解水的简易高效电解方法与装置
WO2014201851A1 (zh) 一种可将纯净水制成电解水的简易高效电解装置
WO2016134621A1 (zh) 一种显著提高电解效率的无膜电解水新方法
WO2016134616A1 (zh) 一种制作美容水的无膜电解水装置
WO2016134618A1 (zh) 一种可控制电解水酸碱性的无膜电解水新方法
WO2016134619A1 (zh) 一种采用两组电解电极组件控制电解水性能的新方法
RU2602234C2 (ru) Электролизная ванна для кислой воды и способ использования кислой воды
TW318868B (zh)
WO2016134612A1 (zh) 一种可输出电解水的储水式电热水器
WO2016134613A1 (zh) 一种多功能的无膜电解开水机
CN2828014Y (zh) 一种电化学反应器
WO2016134620A1 (zh) 一种电极为孔柱式结构的新型电解水装置
WO2016134617A1 (zh) 一种便利使用的可便携多用途无膜电解水装置
WO2016141768A1 (zh) 一种主要为陶瓷材料的电解水装置用的电极
WO2016134615A1 (zh) 一种发生电解水蒸汽的装置
CN104257201A (zh) 一种便携式富氢水杯
WO2016134614A1 (zh) 一种发生电解水雾化气的装置
CN204273997U (zh) 便携式富氢水杯
CN105060413A (zh) 一种用于电解水装置的可装入影响水质的材料的透孔电极
CN102092821A (zh) 高性能活性碳纤维在电絮凝法处理工业废水中的应用方法
JP5282201B2 (ja) 電気分解水生成器
CN102358637B (zh) 一种电化学强化多功能材料吸附除氟系统
TW201321310A (zh) 產生殺生物劑之方法
CN209554846U (zh) 纯净水电解装置及电解桶装饮水机
CN205457837U (zh) 一种具有净化功能的富氢水杯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14900165

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14813573

Country of ref document: EP

Kind code of ref document: A1