WO2014201851A1 - 一种可将纯净水制成电解水的简易高效电解装置 - Google Patents

一种可将纯净水制成电解水的简易高效电解装置 Download PDF

Info

Publication number
WO2014201851A1
WO2014201851A1 PCT/CN2014/000584 CN2014000584W WO2014201851A1 WO 2014201851 A1 WO2014201851 A1 WO 2014201851A1 CN 2014000584 W CN2014000584 W CN 2014000584W WO 2014201851 A1 WO2014201851 A1 WO 2014201851A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrolysis
electrode
gap
electrode assembly
Prior art date
Application number
PCT/CN2014/000584
Other languages
English (en)
French (fr)
Inventor
罗民雄
黎明
Original Assignee
Luo Minxiong
Li Ming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luo Minxiong, Li Ming filed Critical Luo Minxiong
Publication of WO2014201851A1 publication Critical patent/WO2014201851A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/04Regulation of the inter-electrode distance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the utility model relates to a simple and high-efficiency electrolysis device which can make pure water into electrolyzed water, and belongs to the technical field of functional water without electrolysis of separator. Background technique
  • Functional water is defined by the Japan Functional Water Association as "an aqueous solution that uses a manual process to obtain a reproducible and useful function.”
  • electrolyzed water is the most thoroughly recognized by people from a scientific point of view, and is the only water recognized by the Ministry of Health and Welfare of Japan (R National Health Ministry) to have practical effects on human health. China's Ministry of Health has officially approved the production and sales of electrolyzed water machines as early as the 1990s.
  • the utility model belongs to the field of electrolytic water produced by electrolysis, and the negative potential reducing water produced by the electrolysis method is the main type of electrolyzed water, and is the main target of the utility model.
  • the functional water or reduced water device produced by electrolysis in the market is mainly divided into two types: a diaphragm and a non-diaphragm.
  • the diaphragmless electrolyzed water device is the development direction of the electrolysis method for producing a reducing water device.
  • pure water including distilled water or the like is considered to be too low in electroconductivity to generate electrolysis current, and it is impossible to produce functional water or negative potential reductive water by electrolysis. It has not yet appeared that the existing patents or devices related to the separation of membranes and membrane-free electrolyzed water, and the high-efficiency electrolysis of pure water into functional water or negative-potential reduction water have not been seen.
  • the wood utility model proposes a simple electrolysis device which can efficiently make purified water, including distilled water, into electrolyzed water, and belongs to the technology of electrolyzed water without isolation membrane.
  • Electrolyzed water and is pure to a higher negative potential
  • the net reduced water can be used for human health treatment; the utility model can also produce negative potential weak acid reducing water, which can be used for anti-oxidation beauty skin care; the utility model can be applied to other related fields such as electrolyzed water or water treatment.
  • the method of the utility model is based on the following three important new discoveries of the applicant - the first new discovery, the electrolyzed water or the reduced water by the electrolyzed water method is the functional water activity energy or the reducing activity energy of the power source electric energy converted into water, the present specification
  • the focus is on reducing activity and making negative potential reducing water as an example.
  • the main indicators for measuring the activity of reducing activity are: active hydrogen content, the unit of measurement is ppb/L or ppm/L; the oxidation-reduction potential of water is 0RP, the unit of measurement is mv voltage, and the negative potential of 0RP is also referred to as negative potential.
  • the water's reducing active energy ie water
  • the applicant combines the hydrogen content with the negative value of 0RP as the reduced water index.
  • a certain electrolysis current intensity and energization time are necessary conditions for the conversion of electric energy into active energy to obtain a higher reduced water index.
  • the distance between the electrolysis current and the anode and cathode is In contrast, proportional to the effective electrolytic area of the plates, this perception is critical for the electrolysis of very pure pure water and distilled water to achieve electrolysis.
  • the purified water of the market includes distilled water, the conductivity is not absolutely zero, that is, it always contains trace impurities other than water molecules. Some of these impurities will be electrolyzed to release electrons and increase the conductivity of water. If it is repeatedly electrolyzed, it will release more electrons, thus increasing the electrolysis current.
  • the actual test shows that: the small gap distance between the anode and cathode will be more favorable for the electrolysis of such trace impurities, and the electrolysis current increases more significantly. Trace impurities are referred to as impurities.
  • pure water includes impurities in distilled water, and generates free electrons and ion particles by electrolysis, which not only has the effect of generating and increasing the electrolysis current, but also produces more hydrogen H, hydrogen, especially The key to generating negative hydrogen ions If.
  • the principle is as follows: In the electrolyzed water device, the water molecule H 2 0 is electrolyzed to produce H + and OH—0H—and then electrolyzed to generate oxygen 0, H, electron e-, etc., and the impurities are electrolyzed to release a large amount of free electrons e, It will increase the chances of H + + e- ⁇ H and H+ e- to generate H—, thus increasing the hydrogen content of water.
  • H-increasing will increase the ability of water to release electrons, that is, the oxidation-reduction property, which is represented by the positive value of water 0RP. Change negative. There is one point that cannot be ignored: Some ionic particles produced by the electrolysis of impurities are important conditions for the stable existence of negative hydrogen ions H. 0H—H or K produced by electrolysis is possible with the carrier particles of impurity ions. For a considerable period of time, H with impurity ion particles as a carrier has more opportunities to combine with free electrons to become H-, Japanese experts Bai Yu and Ota Satoshi have demonstrated this or similar phenomena, which is a higher reduction of electrolyzed water. The main reason for the water indicator.
  • the principle of water impurity electrolysis to produce reduced water referred to as the principle of water impurity electrolysis, which reveals the key and key to making reduced water by electrolyzed water method.
  • the impurities in the water are also electrolyzed to produce the electrolysis current, especially the indicator of reducing water, but the impurities are not pure water, acting as an unsung hero. People pay full attention to it and they are not well known.
  • the characteristics of the purified water electrolysis method of the utility model are as follows: First, the distance between the electrolyzed anode and cathode plates is as close as possible, and the second is to make the equivalent electrolysis area of the anode and cathode plates as much as possible Large, get the largest possible electrolytic current under a certain '3 ⁇ 4 solution, such as safe voltage and related conditions, of course, the gap between the two plates It is limited to the fluidity of water that is not necessary for the electrolysis process, because the reasonable fluidity of water is beneficial to the repeated electrolysis of trace impurities in the water, adding more free electrons and electrolysis current.
  • the electrolytic power supply voltage can also increase the electrolysis current, but the actual application will be restricted by various reasons.
  • the actual measurement shows that: in the drinking cup container, in a certain practical area and a reasonable structure of the anode and cathode plates, the distance between the two plates is narrowed to 0. l ⁇ 0. 5mm, the commercially available purified water includes the electrolyzed current of the distilled water is about up to 200 ⁇ 60mA, even larger, can produce pure reduced water with high reduction water index in a few minutes.
  • the spacing or equivalent spacing of the two plates of the existing electrolyzed water device is at least 3 earned, even reaching 10 or more.
  • the two plates exhibit a large equivalent impedance, and the electrolysis current is close. Zero or only a few milliamps, even if the power is applied for a long time, the electrolysis effect is not good.
  • the water quality index becomes poor due to the anode and cathode.
  • the plate gap is large, for example, when the gap is larger than 2 mm or more, it is difficult to release a small amount of impurities in the activated carbon itself, and it is difficult to be ionized to generate free electrons at a safe voltage, and the utility model can be used at a safe voltage or even a few volts.
  • the trace impurities released by the activated carbon are ionized to produce self-twisting electrons : ;
  • Table 1 lists the measured data of the purified water produced by electrolyzing pure water in the presence of two different electrode gaps and the presence or absence of activated carbon.
  • the gap distance between the two electrode plates is as small as possible to reduce the impedance between the electrodes, and the initial electrolysis 'flow is large, and more water molecules 3 ⁇ 40 can be electrolyzed into 0H- and H + , and then 0H-electrolyzed to 0 at the anode.
  • H+ e - produces a solution current; on the other hand, more importantly: a small amount of impurities in pure water in the narrow gap of the local strong current action - F is easily electrolyzed, releasing a large amount of electrons, so that the electrolysis current increases; The increase in the above electrolysis current causes more water molecules and impurities to be electrolyzed, further increasing the current, and thus repeatedly causing the electrolysis current to gradually increase until.
  • the 3 ⁇ 4 flow limitation value depends on the water quality and the specific electrolysis structure and water quality of the utility model, and the yin and yang 3 ⁇ 4 plate; whether the fluidity of the electrolyzed water in the gap and the water outside the gap is good, the influence on the level of the reduced water is particularly large, Therefore, the applicant will be detailed in the "fourth new discovery" later.
  • the utility model focuses on the method of electrolyzing pure water impurities to release electrons and particle carriers to realize the process of producing reduced water, and reveals a technical design scheme for electrolyzing source water having low conductivity into reduced water: on the one hand, Reduce the gap between the two plates and increase the effective electrolysis area. When no material is added at all, the purified water, including distilled water, can be efficiently made into a negative potential pure reducing water; on the other hand, the hydrogen content of the reduced water can also be seen.
  • the higher design requirement of 0RP negative value take appropriate measures to strengthen the electrolytic energy, such as placing small pieces of high-quality activated carbon or similar functional materials in the electrolytic cell, which can improve the taste of water and release it completely harmless in water.
  • the structure of the anode and cathode plates should be as favorable as possible to the reasonable mobility of the water between the plates during electrolysis > to allow more impurities to enter the plates to be electrolyzed, to produce and improve the reduced water
  • the index which is essential for the utility model, is a cost-effective and efficient electrolysis water utility device. Taking the "two-pole plate area moderately asymmetrical or non-phase" electrolytic structure can not only meet the higher index requirements of reducing water, but also reduce the cost of the device.
  • the asymmetric design of the area can help the ion groups generated by the electrolysis of water molecules between the plates and the bubbles formed by them to rapidly diffuse from the edge of the plate: ⁇ 3 ⁇ 4 in the water above the school. Therefore, when adopting the upper and lower plate structure, the area of the upper plate should be larger than that of the lower plate: S is smaller, but not too small, because the effective electrolytic area of the two plates is limited by the area of the smaller area electrode. Too small will cause the electrolysis current to decrease, which will affect the increase of the negative value of 0RP, which will not be worth the loss.
  • the experiment shows that: ⁇ : small large plate structure, or adopting a plurality of small-area upper plate structures, so that the oxygen and oxygen generated by the electrolyzed water molecules can be moved from the edge of the small-face active plate to the electric force of the lower plate.
  • Partial occlusion can not rise upwards, the bubbles will stay in the small plate edge 1 ⁇ 2 ⁇ 3 ⁇ 4 plate gap ion group and gas diffusion, the ion group generated by the electrolysis of water molecules in the plate gap is not easy to flow : recombination
  • the chances of water molecules are greatly increased, and the reduction of ions makes the formation of oxygen, especially hydrogen, especially the negative hydrogen opportunity, which greatly reduces the electrolysis efficiency.
  • the reduced water index will be smaller than the plate area. ⁇
  • the area of the plate is small and large It is necessary to match the above plate as the cathode and the lower plate as the anode to obtain the higher reduction water index.
  • the larger and lower anode can attract more electrons e, H-, 0H-, and at the intersection of the anode plate and the lower edge of the upper plate, more 0H - electrolysis is 0, H - or 11, e -, all increase the chance of generating H-, plus it is also conducive to H, e_ lateral diffusion and positive ion up-diffusion, improve ion mobility, so it can effectively improve the reduced water index.
  • the cathode is below and larger, there is no such advantage, so the reduced water index is poor. If the two plates are installed horizontally or vertically, the vertical 3 ⁇ 43 ⁇ 4 mode is more conducive to the fluidity of the electrolyzed water, because the vertical or upper and lower slightly inclined gaps of the plates are more conducive to the floating of water molecules from the generated bubbles. Increase the fluidity of water and obtain higher water reduction index.
  • the electrode structure in which the area of the anode and cathode plates is asymmetrical and the bubbles generated by the electrolysis are promoted is essential for improving the efficiency of the reduced water.
  • the area of the cathode or the anode is larger and smaller, depending on the shape of the electrode and the actual area and structure, or the efficiency of electrolytically producing reduced water is higher when the anode area is larger than the cathode area, or vice versa.
  • Table 2 shows the comparison data of the reduction water indexes of the three electrolyzers with different electrode area structures - Structure 1 is that the anode area is significantly larger than the cathode area. Moreover, the structure of the cathode above the anode, the structure 2 is large: the structure of the anode above the small-area cathode, and the structure 3 is the structure with the same area of the cathode and cathode.
  • test results are consistent with the above analysis results.
  • the main object of the present invention is to solve the problem of electrolytic water technology: pure water, including distilled water, is rich in negative hydrogen and 0RP negative. High reduced water.
  • Table 3 is the actual Reduced water indicator data made with one of the new experimental devices.
  • Table 3A Reduced water index data produced by one of the experimental devices of the present invention
  • Table 3B Table 3 shows the change of the measured value of the reduced water with time after the end of the electrolysis work
  • both 0RP negative and hydrogen content show the same enthalpy change or increase or decrease.
  • the obvious rule that the 0RP negative value is proportional to the hydrogen content proves that the hydrogen content is 0RP negative.
  • the main cause of the value, but the hydrogen content may be either H or H - or three or a sum of the two, what is the relationship between each of them and the negative value of 0RP?
  • is the negative hydrogen content detection instrument of the water
  • the measured hydrogen content in the table is measured by the existing hydrogen dissolution table, and the value may include SI gas ⁇ 2 , hydroquinone and negative hydrogen ⁇ .
  • H does not ⁇ : ⁇ Time remains the opposite, the negative value of reducing water 0RP can be maintained for a long time, in a suitable closed container: ⁇ ⁇ 'negative can be stable' for more than ten days, the applicant observed that the reduced water is stored After 15 days, the negative value of 0RP still maintains even higher.
  • the reason is: The applicant deliberately strengthens the activity of the reduced water by special electrolysis method, and obtains a negative value of 0 ⁇ of the performance. Even if the reduced water is in contact with the air, the negative value of 0RP may remain for several hours. This ⁇ ;: :. Obviously, in the reduced water produced by electrolysis, the content of strontium is related to 0RP negative correlation and causality.
  • the electrolysis of the present invention is pure 3 ⁇ 4 3 ⁇ 43 ⁇ 4.
  • the main reason for the negative value of 0RP in water is non-negative hydrogen H-content. Therefore, the variation of hydrogen content in Table 3 can be approximated as the law of variation of negative hydrogen content.
  • the utility model will synchronously increase the hydrogen content of the reduced water and the 0RP ⁇ as the main design target.
  • 01 ⁇ is a factor affecting the negative value of 0RP.
  • Applicants do not think that the negative decay of 0RP is not related to the change of enthalpy after the end of electrolysis work, and there is acidic water in the same 0RP negative water. It is sufficient to prove that there is no causal relationship between the 0RP negative value and the ⁇ value, that is, the 0 ⁇ -content.
  • the use of a special material module with strong adsorption such as activated carbon as the design anode of the utility model has the good effect of reducing water residual chlorine and some heavy metal ions, and the device produced by the utility model can be generally used for pure water and distillation and non- A better choice for pure drinking water.
  • a device capable of easily and efficiently electrolyzing pure water and distilled water into negative potential reducing water characterized by: comprising a controllable electrolysis power source, an anode connected to the positive electrode of the electrolysis power source, and a cathode connected to the negative electrode of the electrolysis power source When working, the anode and the anode are immersed in the water to be electrolyzed; there is a gap between the anode and the cathode, and the gap range is: greater than 0 mm
  • the 2 ⁇ .! ⁇ pole is designed as a small gap to increase the current. It acts on water molecules, especially trace impurities in water, to produce more free electrons. In a certain space, the effective electrolysis area of the gap between the anode and the cathode is exhausted. It may be larger than 3 ⁇ 4.
  • one of the preferable solutions is: anode and cathode respectively
  • the honeycomb shape and the shape of the comb which can be butted against it, the number, shape and distribution of the comb-shaped comb teeth and the honeycomb shape "3 ⁇ 4n3 ⁇ 4 n and fit into the corresponding holes, the gap between the comb tooth surface and the honeycomb hole surface, the yin and yang electrodes
  • Dog side 3 ⁇ 4 The basic technical solution of the utility model is applied in the form of a water container, comprising a water container and a cover ⁇ mounted in the cover, and the cover is provided with an electrolytic plate group r extending downward into the electrolytic container.
  • the electrodes are combined and immersed in water in the container during operation.
  • the electrolytic plate assembly is wrapped by one of the electrodes, the stainless steel cylinder is open on the top, and the bottom of the plane is a mesh structure, so that the inner circle of the cylinder is connected to one of the negative terminals of the controllable power supply through the wire.
  • the middle or upper part of the cathode cylinder is horizontally 3 ⁇ 4 ⁇ - one: ⁇ two honeycomb-shaped activated carbon round cakes with the matching of the round ⁇ , the circumference of the activated carbon round cake and the inner circumference of the cylinder r " c 'H t- , .
  • the activated carbon electrode is connected to the output of the controllable power source through the wire;
  • the second tooth guide plate of the activated carbon electrode has the number, shape and distribution of the comb teeth corresponding to the honeycomb electrode honeycomb hole: the comb tooth surface and the honeycomb hole surface
  • the lower surface of the round cake-like activated carbon has a gap with the comb tooth table, and the comb tooth plate has a mesh hole, which is beneficial to enhance the fluidity of water and ions, and the gap of the honeycomb electric 3 ⁇ 4 comb-like
  • the effective area is approximately equivalent to the equivalent area of all four teeth and hole gaps plus
  • the comb electrode plate is connected to the output of the controllable power supply through the wire, and the bottom surface and the cathode cylinder r "'; one of the gaps of the three electrodes, two, three The distance is greater than 0 and less than 1. 5mm ";
  • the second and the negative controllable electrode assembly will purify the purified water with distilled water and other weakly alkaline or alkaline weakly alkaline or acidic negative potential reducing water.
  • controllable electrolysis power supply and electrolytic plate assembly installed in the channel, the component and the real
  • water is allowed to flow from one end of the tubular passage through the electrolytic plate assembly, and flows out from the other end, and the electrode assembly can be controlled by one of the controllable power supply outputs and the cathode. Pure water, distilled water and other drinking water are respectively made into a weakly alkaline or alkaline weakly alkaline or acidic negative potential reducing water.
  • the third technical solution Similar to one of the technical solutions, the only difference is that the electrolytic plate assembly is different.
  • the structure of one pole of the electrolytic plate assembly of the solution is N E and the shape is closely arranged, and the two structures of the electrode are N horizontally opposite.
  • the E-shaped electrode and the anti-E-shaped electrode form a plurality of Z-shaped intersecting gaps in a concave-convection manner, and the gap distance is within a range of more than Omm and less than 2 drawings.
  • the specific structure of the electrolytic plate assembly in the technical solution of the present invention is not limited to the above technical solutions one, two, and three, j, is to use a small inter-electrode gap and a large inter-electrode gap area to effectively improve the electrolysis of water and its impurities.
  • the current, the electrolyzed water electrode structure that reaches the production water or related targets are within the scope of the present invention. Attachment
  • 1 is a utility model embodiment 1 a simple and efficient electrolysis device capable of making purified water into electrolyzed water
  • ⁇ ' is a simple and efficient electrolyzer that can make pure water into electrolyzed water with the new embodiment 2.
  • I; 3 is a simple high-efficiency electrolysis device capable of making purified water into electrolyzed water according to the embodiment of the present invention.
  • W ' is a simple and efficient electrolysis device capable of making purified water into electrolyzed water according to the embodiment of the present invention.
  • Example 7 A simple and efficient electrolysis device that can make purified water into electrolyzed water.
  • the basic technical solution of the deletion-type design is applied to the water container, as shown in Fig. 1, including the water container 14 and its: 3.
  • the power supply 12 can be installed in the cover 13, and the downward mounting is carried out on the 13
  • the assembly consists of 3 electrodes combined and immersed in water in the container during operation.
  • Electrolytic plate assembly ⁇ The cylindrical cathode 1 is wrapped, 1 is open at the top, and has a mesh-shaped circular hole 15 at the bottom of the plane to facilitate the flow of water inside and outside 1 ; 1 is connected to one of the power supply negative poles 15 through the wires 4 and 12; 1 is installed horizontally in the middle or upper part Straight ⁇ and!
  • the total effective area of the gap is approximately equivalent to the equivalent area of 22 and the effective area of the gap 8;
  • Control source output 17 is connected, 3 bottom surface and 1 bottom inner surface are left with gap 9;
  • electrode gap 7, 8 The distance between 9, 22 is greater than 0 awake and less than 1. 5 awake; through the controllable power output 16, 17, 15 different voltage combinations to form control mode 1, 2, 3, the control electrode assembly will be pure water and distilled water and Other common drinking waters are made of weakly alkaline or low alkaline weakly alkaline or acidic negative potential reducing water.
  • 1 fixedly connected to the negative output terminal 15 of the 12 electrolytic power supply the specific working process and principle are explained as follows:
  • Example 1 Control Mode 1 was used to produce a weakly basic reduced water having a higher basicity.
  • the control features are: 12 port 17 is turned on; 5 12 is outputting positive voltage from port 16 to 2; pure water including distilled water and trace impurities are mainly electrolyzed in gaps 7 and 8 and 22, 2 as having a maximum equivalent specific surface area
  • the anode plays a good role in adsorbing negative chloride ions, and at the same time, the electrons generated by the ionization of trace impurities released in water are beneficial to increase the electrolysis current and increase the chance of H+e- ⁇ H-, and obtain higher reduction water index.
  • Control method 2 is used to make weakly alkaline reduced water.
  • the control features are: 12 through port 16 to 2 transmission control mode 1 output positive voltage is low, and from 17 to 3 output higher positive voltage, mainly in 7 and 9 pairs of water and impurities for electrolysis, 12 in 2
  • the positive voltage is lower than the first method, which weakens the suction force of 2 pairs of 0H- and If, so the reduction water is more alkaline than the control mode 1, and the H-complement WT force generated by the electrolysis process of 9 pairs of water and impurities The weakened and lost H-, resulting in a weakly basic reduced water with a higher reduced water index.
  • the probability of H- is higher, because the 9 gap is narrower, generally selected from greater than zero to less than 0. 6 ⁇
  • the ⁇ + content in the water will be more than 0 ⁇ - content The higher, because
  • Example 1 Structural compatibility The non-pure water was made into a negative potential reducing water, and the principle and process were similar to those described above.
  • Table 5, column A, is an indicator of the use of direct drinking water to make reduced water in the embodiment.
  • the three control methods of the table embodiment are the measured data of the reduced drinking water produced by the direct drinking water.
  • Fig. 2 It is another embodiment of applying the basic technical scheme of the utility model to reduce the flow of water into a negative potential.
  • the length of the gap is M times longer than 22 of Embodiment 1; let water flow from the inlet port 26 of 25 into the flow through 18, after, ". ⁇ :] the gaps 7, 8, 9, especially through the N 22 gaps
  • This implementation: / c is in Table 6.
  • Table 6 Three kinds of control methods of the example: The measured data of purified water is made into purified water.
  • Electrolytic plate assembly 18 of 25, the assembly is composed of 3 electrodes, and is immersed in the capacity when working.
  • the electrode 1 of the plate assembly is U-tube shape, 1 is open at the top, and 1 is flat at the bottom of the plane.
  • the circular hole 15, the d 3 ⁇ 4. is connected to the output port 15 of the 12 through the wire 4;
  • the structure of the electrode 2 is N horizontal inversion ' -f
  • the structure of the pole 3 is N E and the shape is closely arranged, and the anti-E shape electrode 2 and the shape of the electrodes E 3 ⁇ ':;
  • control methods are used to make purified water into measured data of reduced water.
  • the structure of this embodiment is as shown in FIG. 4, and it can be seen that the difference from the first embodiment is that the electrolyzed water mechanism, that is, 12 and 13 copper is used as a portable movable electrolyzed water device, and 18 can be conveniently placed in water in any container.
  • the electrolyzed water mechanism that is, 12 and 13 copper is used as a portable movable electrolyzed water device, and 18 can be conveniently placed in water in any container.
  • the working principle and process of the small 3 ⁇ 4 example are similar to the first embodiment.
  • the 18 of the present embodiment is placed in a container and immersed in water of a general ⁇ :: ⁇ d: f or a bowl, so that the container can be drunk as in the first embodiment. Water is made of different pH and: ⁇ Reduced water index of reduced water.
  • the reduced water index of this embodiment is shown in Table 8.
  • Table 8 This implementation ⁇ 3 kinds of control methods to make purified water into measured data of reduced water
  • the structure of this embodiment is as shown in FIG. 6 , and is different from the embodiment 5 only in that: the cylindrical cathode 1 of the embodiment 5 is replaced by a water-filled capacitor 4, and the structure is simplified.
  • the embodiment is suitable for the case where 14 is a conductive material such as metal.
  • the water container, the first embodiment and the 'process' are the same as the first embodiment, except that the N 22 functions are missing.
  • the reduced water index of this embodiment is shown as ⁇ ⁇ 1 .
  • Table 10 4 ⁇ Examples 3 kinds of control methods to make purified water into measured data of reduced water
  • the structure of /, ⁇ 3 ⁇ 4 is as shown in Fig. 7. It can be seen that the difference from the embodiment 6 is that the control mode of the controllable electrolysis power source and the electrode structure of the module are simplified, 2 is not connected to 12, 12 is connected via port 15, 1, and 3 is connected. The output electrolysis voltage, the distance of .3, 3 and its electrolysis area are combined to produce different pH negative potential reducing water.
  • This embodiment is only one type of control: its control features are: 12 from the port 17 to 3 output electrolytic power positive voltage, 12 port 15 will be 1 ⁇ ⁇ , water and its trace impurities are electrolyzed in the gap 7, 8, 9 .
  • the effect of 2 is the same as that of the embodiment 1 control mode 2 ⁇ , , : ; , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种可将纯净水制成电解水的简易高效电解装置,其特征是:包括可控电解电源,与可控电解电源连接的电解电极组件,工作时电解电极组件浸泡在欲电解的水中;电解电极组件的阴阳电极之间留有间隙,间隙距离在大于0mm、小于2mm范围之内,间隙按合理较小化原则设计;电解电极组件在所占一定空间内,其阴阳电极之间间隙的面积按合理较大化原则设计;阴阳电极之间间隙距离设计较小化与间隙面积设计较大化的目的在于:使电解装置在一定电解电压与水质及环境条件下,对水分子尤其是对水中微量杂质具有较强电离作用,产生较多自由电子,获得较大电解电流;本装置可兼容将电导率从很低至很高的水制成电解水。

Description

一种可将纯净水制成电解水的简易高效电解装置 技术领域
本实用新型涉及一种可将纯净水制成电解水的简易高效电解装置, 属于无隔离膜电 解制取功能水技术领域。 背景技术
功能水被日本功能水协会定义为 "用人工处理方法获得某种可再现且有用的功能的 水溶液 "。在各种各样所谓功能水当中,电解水是被人们从科学的角度上认知得最透彻的, 也是唯一被日本厚生省 (R本国家卫生部) 所承认对人体健康具有实际功效的水。 中国 卫生部早在水世纪 90年代已经正式批准电解水机生产销售。本实用新型属于电解法制作 电解水领域, 电解法制作的负电位还原水是电解水的最主要品种, 是本实用新型的主要 目标。 负电位还原水对人类健康的意义是科学家研究长寿地区水源时早已认知的。 科学 家发现:各国长寿村源水的共同特性是含氢及氧化还原电位即 0RP为负值,被称为负电位 还原水, 惯称还原水, 后又有人简称功能水。 这种特性是其他地区源水未见的。 在一般 河水湖水以及自来水与市销纯净水、 蒸馏水、 矿泉水等饮用水中, 是不含氢的, 0RP 约 为 + 150mv〜500mv, 没有还原性。 近年, 在经过大量科研成果及临床验证的基础上,基于 含氢水可有效祛除氧自由基机理的 "还原水医疗养生"热潮方兴未艾。
目前,市面上可见的电解法制取功能水或还原水装置主要分为有隔膜与无隔膜两种, 其中无隔膜电解水装置是电解法制作还原水装置的发展方向。 但是, 纯净水包括蒸馏水 等被认为因电导率太低, 不能产生电解电流, 不可能以电解方法制作功能水或负电位还 原水。 经检索现有有隔膜与无隔膜电解水相关专利或装置, 将纯净水较高效电解制作为 功能水或负电位还原水这一技术难题的真正解决方法尚未见出现。 鉴于纯净水为人们广 泛大量地饮用, 而且近似于纯净水那样极低电导率的源水广泛存在, 解决将纯净水制成 还原水的电解技术难题已是发展人类电解水事业之急需。 申请人为解决此难题, 进行了 长期研究探索, 终于从理论与实践两个方面取得了关键性的突破。 发明内容
木实用新型提出一种可将纯净水包括蒸馏水高效制成电解水的简易电解装置, 属于 无隔离膜电解水技术。
为何习惯上认为纯净水包括蒸馏水不能用电解法制成电解功能水? 申请人发现其 原因主要在于习惯认为纯净水电导率近似为零, 以现有电解方法与装置而言, 电解纯净 水包括蒸馏水的电流近似为零, 故不能电解。 申请人提出一种新的简易电解装置, 可在 不人为添加任何物质情况下提高现市售纯净水包括蒸馏水的导电率, 形成电解电流循环 递增, 从而实现纯净水包括蒸馏水的电解, 高效制作出电解水, 并且是较高负电位的纯 净还原水, 可供人饮疗养生; 本实用新型还可制作负电位弱酸性还原水, 可用于抗氧化 美容护肤; 本实用新型尚可应用于制作其他电解水或水处理等相关领域。
本实用新型方法基于申请人以下三个重要新发现- 第一个新发现, 用电解水方法制作电解水或者还原水的实质是电源电能转换为水的 功能水活性能或者还原活性能, 本说明书重点以还原活性能及制作负电位还原水为例作 相关说明。 衡量还原活性能的主要指标有: 活性氢含量, 计量单位为 ppb/L或 ppm/L ; 水的氧化还原电位即 0RP, 计量单位为 mv电压, 0RP负电位又简称负电位。 一般而言, 若水有较高的活性氢含量与负电位,则水的还原活性能量即水的抗氧化还原性较强,申请 人将氢含量与 0RP负值合称为还原水指标。 一定的电解电流强度及通电时间是电能转换 为活性能即获得较高还原水指标的必要条件。 在电解水装置中, 电解阴阳极之间距离愈 近, 阴阳极面积愈大, 同一种水呈现的阻抗愈小即在同样电解电压下电解电流愈大, 换 言之 电解电流与阴阳极之间距离成反比, 与极板有效电解面积成正比, 这一认知对电 导 极低的纯净水与蒸馏水实现电解而言是至关重要的。
第二个新发现, 现市售纯净水包括蒸馏水电导率并非绝对为零, 即总含有除水分子 外的微量杂质, 这些微量杂质中部分杂质若被电解会释放电子, 增加水的电导率, 若被 反复电解会释放更多电子, 从而增加电解电流, 实际检测表明: 阴阳极之间的间隙距离 较小 会更有利于此类微量杂质被电解, 电解电流增加更显著, 申请人将此类微量杂质 一概简称为杂质。
第三 A新发现, 纯净水包括蒸馏水中存在杂质, 经电解产生自由电子与离子微粒, 其不仅具有产生与递增电解电流的作用, 而且是产生还原水指标即产生更多氢 H、 氢气 尤其是产生负氢离子 If的关键。其原理如下: 在电解水装置中, 水分子 H20被电解产生 H+与 OH— 0H—再被电解产生氧 0、 H、 电子 e-等物质, 而杂质被电解释放大量自由电子 e , 会增加 H++ e-→H及 H+ e-生成 H—的机会, 从而增加水含氢量, H—增加会使水释放电子能 力亦即抗氧化还原特性增强, 表现为水 0RP值由正变负。 还有不容忽视的一点: 杂质被 电解产生的某些离子微粒是负氢离子 H—得以稳定存在的重要条件, 0H—被电解后所产生的 H或 K—以杂质离子微粒为载体是可能存在相当时间的, 以杂质离子微粒为载体的 H因而 有更多机会与自由电子结合成为 H―, 日本专家白畑及太田成男对此种或类似现象已有论 证, 这是电解水具有较高还原水指标的主要原因。 申请人将上述三个新发现统称为 "水 杂质电解制作还原水原理", 简称水杂质电解原理, 该原理揭示了电解水方法制作还原水 的太, 与关键。 其实, 在将非纯净水电解制成还原水过程中, 水中的杂质被电解同样起 到产生电解电流尤其是产生还原水指标的作用, 只是非纯净水杂质多, 充当无名英雄, 未弓 i起人们充分关注亦未为人们深知而已。
基于上述三个新发现即水杂质电解原理, 本实用新型对纯净水电解方法的特征是: 一是今电解阴阳极板之间距离尽可能接近, 二是令阴阳极板等效电解面积尽可能大, 在 一定' ¾解¾压如安全电压以及有关条件下获得尽可能大的电解电流, 当然两极板间隙接 近以不影响电解过程必需的水的流动性为限, 因为水的合理流动性有利于水中微量杂质 被反复电解, 增加更多自由电子及电解电流。 当然提高电解电源电压也可以增加电解电 流, 但实际应用会受到各种原因制约。 实测表明: 在饮水杯容器中, 在阴阳极板一定的 实用面积及合理结构下, 两极板间距缩窄至 0. l〜0. 5mm时, 市售纯净水包括蒸熘水电解 电流大约可达 200〜60mA, 甚至更大, 在数分钟内便可制作出还原水指标较高的纯净还 原水。 反之, 现有电解水装置两极板间距或等效间距至少为 3賺以上, 甚至达到 10讓或 更大, 在电解纯净水包括蒸馏水时, 两极板间呈现出较大等效阻抗, 电解电流接近零或 仅数毫安, 即使长时间通电, 电解效果亦不佳。 有看法认为: 现有电解水装置电解时水 中有活性炭会释放离子, 有助于提高电流与还原水指标, 实际检测表明: 这不过是活性 炭污染或残留杂质暂时性作用引起的错觉而己, 当用纯净水多制作若干次或者用纯净水 彻底清洗活性炭后, 这些杂质污染或残留杂质会大为减少, 电解电流便会下降到几毫安 以下: 还 水指标变得很差, 原因在于阴阳极板间隙较大例如间隙大于 2mm或更大时, 对活性炭自身固有可释出微量杂质是难以在较安全电压下被电离产生自由电子的, 而本 实用 型则可以在较安全电压下乃至数伏特电压下电离活性炭固有释出的微量杂质而产 生自 ΰ电子 :; 表一列出了在两种不同电极间隙及有无活性炭状况下电解纯净水制作还原 水的 测数据。
表一: 不同电极间隙与有无活性炭结构的还原水指标实测数据
Figure imgf000005_0001
注: ¾解工作时间 3分钟, 常温, 原水: 0RP=+237mv, 氢含量 =0, PH=5. 5
可见本实用新型基于申请人发现的杂质电解原理的设计方案可较好解决纯净水包括 蒸馏水电解制成负电位还原水的难题。
在本实用新型纯净水包括蒸馏水电解方法中, 电解电流为何会形成递增循环从而获 得较强电解效果呢? 一方面是两电极板间隙距离尽可能小从而减少了电极间阻抗, 初始 电解' 流较大,可将较多水分子 ¾0电解为 0H—与 H+,进而在阳极将 0H—电解为 0与 H+ e -, 产生 解电流; 另一方面, 更为重要的是: 纯净水中微量杂质在极板窄小间隙的局部强 电流作用— F容易被电解, 释放出大量电子, 从而使电解电流增加; 上述电解电流的增加 又会促使更多水分子与杂质被电解, 进一步增加电流, 如此反复导致电解电流逐步增加 直至 。 ¾流受限值取决于水质与本实用新型具体电解结构以及水质等综合因素, 阴阳 ¾板 ;隙中的电解水与间隙外水的流动性是否良好对还原水指标高低影响尤大, 对 此, 申请人在后文 "第四个新发现" 中予以详述。
本实用新型重在将纯净水杂质电解而释出电子与微粒载体实现制作还原水方法, 揭 示了将电导率低的源水电解制成还原水的技术方案设计方向: 一方面, 可以通过尽可能 减少两极板间隙及增大其有效电解面积, 在完全不添加任何物料情况下, 可将纯净水包 括蒸馏水高效制成负电位纯净还原水; 另一方面, 还可视对还原水含氢量与 0RP负值的 较高设计要求, 采取强化电解能量的适当措施, 例如在电解槽中置入小块高品质活性炭 或类似功能材料, 既可改善水质口感, 又因会在水中释放完全无害的微量杂质从而增加 杂质被 ¾解释放的电子与微粒载体, 达到增加电解电流与提高还原水指标的作用, 而且 不影响纯净水包括蒸馏水纯净及安全品质; 第三, 在确保安全卫生前提下, 还可视强化 还原水养生保健综合功能设计要求, 人为地添入适合电解环境的微量物质, 如人体需要 的某些微量元素等, 通常与此同时可增加纯净水杂质含量, 有利于提高还原水指标, 此 项措施可简称 "添加杂质电解水法"。 应该注意的是: 此法会改变纯净水纯净度, 存在较 大安全性风险, 宜慎用之。 综合利用第一、 二种方法是设计安全性实用性电解制作纯净 还原水装 S的首选。
请人在水杂质电解原理基础上另有两个新发现, 对本实用新型技术方案设计有重 要指导; f义:
ί^ Ρ ^发现, 在本实用新型中, 阴阳极板结构应尽可能有利于电解时极板间水的 合理 ^动性 > 以使更多杂质进入极板间被电解, 产生并提高还原水指标, 这对于本实用 新型 化 性价比高的高效电解水实用装置至关重要。 采取 "两极板面积适度不对称或 不相 " 电解结构, 既可以满足还原水较高指标要求, 又能降低装置成本。 面积不对称 设计 ^能有利于极板间水分子被电解产生的离子群及其形成的气泡从极板边缘迅速 扩散 :^ ¾校上面水中。 因此, 在采取上下极板结构时, 处于上面的极板面积应比下面的 极板 积: S当小些, 但不宜太小, 因为两极板有效电解面积受较小面积电极板面积所局 限, 过小会导致电解电流减少从而影响 0RP负值的提高, 造成得不偿失。 实验表明: 采用. Λ:小 大极板结构, 或者采取多个小面积上极板结构, 使得极间电解水分子产生的 离 及 气氧气可从小面积极板边缘在下极板电场力作用下向上或侧面水域升逸扩 散' ¾样便在极板间隙中形成水分子离子流的流动, 有利于更多水分子与杂质被电解, 从而¾高¾解效率, 上极板边缘为曲线可令边长增加, 更有利于离子群与气泡朝外逸出 并提 辉效率: 反之, 若上下极板面积上大下小, 两极板间隙中形成的氢气氧气扩散 核边缘后会受到上极板宽出部分遮挡, 不能顺势向上升逸, 气泡会滞留在小极板 边½^¾ 极板间隙离子群及气体扩散, 极板间隙中水分子电解产生的离子群在不易流 动面 况下 : 重新复合为水分子的机会大幅增加, 离子减少使得形成氧气氢气尤其 负氢 机会相应大幅减少, 从而大幅降低电解效率, 还原水指标会较极板面积上小下大 显著 ^差, 两极板电解有效面积对称且边缘重叠, 也不大利于两极间隙离子群与气泡升 逸扩 还 ^水^标会逊于极板面积上小下大结构。 申请人发现: 极板面积上小下大还 要配合以上极板为阴极、 下极板为阳极才能获得较高还原水指标。 原因在于: 较大而居 下的阳极能吸引更多电子 e 、 H―、 0H―, 而在阳极板与上极板下边缘交汇处将更多 0H—电 解为 0、 H—或11、 e-, 均使得产生 H—的机会增加, 加上还有利于 H、 e_横向扩散以及正离 子向上扩散, 提高离子流动性, 故可有效提高还原水指标。 反之, 阴极居下且较大, 则 没有上述优势, 故还原水指标较差。 若将极板水平或垂直安装两种安装方式作比较, 垂 直¾¾方式更有利于电解水流动性, 因极板的垂直或上小下大略倾斜的间隙更有利于水 分子 离所生气泡上浮逸升而增加水的流动性, 获得较高还原水指标。 综上所述, 阴阳 极板面积不对称并有利电解所产生气泡升逸的电极结构对于提高还原水效率至关重要。 至于阴极或阳板面积孰大孰小, 要视电极形状与实际面积及结构而定, 或在阳极面积大 于阴极面积时电解制作还原水效率较高, 或反之。 这取决于以下原理: 两极板面积不对 称 阴 极区域发生的水分子电解状况不对称, 相对于对称电解而言, 减少了 H—或 H 离 ^ 新复合为水分子 H20或 的机会, 从而增加 H与杂质所释电子结合为 H—的机率, 因 还原水指标会显著提高, 下列表二为电极面积结构不同的三种电解装置还原水指标 比较数据- 结构 1 为阳极面积显著大于阴极面积而且阴极在阳极上面的结构, 结构 2为 大: , 阳极在小面积阴极上面的结构, 结构 3为阴阳极面积相同的结构.
Figure imgf000007_0001
注: 小^积电极面积差异外, 三种电解装置其他条件相同; 电解工作时间 3分钟, 常温, W,:i : - 176rnv, 氢含量 =0, PH=5. 5
^ ., 检测结果与上述分析结果一致。
ΐ小 发现, 电解制作还原水的 0RP负值应主要是由负氢含量所产生。 因此, 本 ^用 型与现有相关技术的重要区别之一, 是本实用新型的主要目标定位于解决电解水 技术 决的难题: 将纯净水包括蒸馏水制成富含负氢、 0RP 负值较高的还原水。
' 被某些有关专家认为是有助人体抗氧化的活性氢, 对活性氢究竟是 或 11 或 一 , 因而对还原水至关重要的 0RP负值从何而来也就一直难有定论。 曰本 专家 mU :与内藤真礼生在 2008年发表《氢的革命一一负氢离子的神奇疗效与临床验 证》 ' - 论证了负氢离子经人胃肠吸收后具有清除氧自由基及促进新陈代谢的双重功 ¾^ ;: Λί ^仅间桉提及负氢与 0RP负值的关系, 日本电解还原水专家白畑在 《活性氢》 ^- ' ^ 'ί与电 可因同存于金属微粒载体而结合, 具有消除氧自由基的功能。 负 : ';7) 〖 子较 Η:或 Η所含电子更为容易被外电场吸引而释放, 所以比较 或 Η而 ί.' :'Ά Ρ 负值更为敏感因素, Η—在摄入人体细胞后尤为容易释放电子或与氧自由 基 Π +复合: ¾ ¾(), 化宵为利, 是比 ¾与 Η更为理想的消除人体自由基的抗氧化物质。故 太实. ' ^Ϊ^: 重^ !作负氢离子含量较高、 0RP 负值也相应较高的还原水。 表三为本实 用新型实验装置之一所制作的还原水指标数据。
表三 A: 本实用新型实验装置之一所制作的还原水指标数据
Figure imgf000008_0001
表三 B: 表三 A装置电解工作结束后还原水指标随时间变化数据
Figure imgf000008_0002
注: 电解工作时间 3分钟, 常温, 原水: 0RP=+176mv, 氢含量 =0
可见在电解活化过程与电解后活化能量消减过程, 0RP负值与含氢量均呈现同歩变 化或增 或消减, 0RP负值与含氢量成正比的明显规律证明了氢含量是产生 0RP负值的 主要 因, 但氢含量可能为 或 H或 H—或三者或其中二者之和, 它们各自与 0RP负值究 竟是何关系呢?申请人通过实验分析确认:产生 0RP负值的主要原因是负氢,而非 或11。 虽然 ίΓίϊίί尚元水的负氢含量检测仪表, 表中含氢量实测数据为现有溶氢表所测, 该数值 可能包含了 SI气 Η2、 氢 Η与负氢 Η―。
^ ΪΛ通过排涂分析法确认负氢含量与 0RP的因果关系: 首先, 因为 含量并不影 响 与 ORP负值无因果关系, 故可以排除; 第二, H因为容易发生 H+H— 复合反 应, 故以 H状态在水中存在时间一般较短, 即便对 0RP值有影响, 也是短暂的, 故亦可 以 i 请人所作实验清楚表明: H+H— 产生氢气泡的现象在电解过程结束时数秒后 便 . 证明了此时水所含 H迅速减少使 气泡无以为继。 更明显的是: 与电解结束后
H不 ^:^ 时间保持相反, 还原水 0RP负值却是可以长时间保持的, 在合适密闭容 器中 : Κ Γ'负俊可稳定' 持数十天以上, 申请人观察到还原水在儲存 15天后 0RP负值仍然 维持甚至于更高的事实, 原因在于: 申请人刻意通过特殊电解方法强化还原水活性能, 获 ^^性能的 0ρρ负值。 即便还原水接触空气, 0RP负值也可能保持长达数小时, 这 ^;: :.中 Η很快减少现象是相悖的。 显而易见, 在电解法制作的还原水中, Η含量与 0RP 负信 7^ 关联性及因果关系。 据上述实验与分析, 申请人确认: 本实用新型电解纯 净¾ ¾¾所 还: 水中形成 0RP负值的主要原因是非负氢 H—含量莫属。 故表三的氢 含量变化规律可以近似看作负氢含量变化规律。 本实用新型将同步提高还原水含氢量与 0RP ί , 作¾主要设计目标。 有一种看法认为 01Γ是影响 0RP负值的因素, 申请人对此不 予认 为电解工作结束后, 0RP负值衰减与 ΡΗ值变化并无关联性, 而且在同一 0RP 负 性水又有酸性水, 均足以证明 0RP负值与 ΡΗ值亦即与 0Η—含量并无因果关 系, .
太实月新¾要付诸实用还要注意解决好还原水余氯等限制性物质含量问题, 尤其是 本实用新型装置若兼容用于将自来水开水或凉开水及直饮水或矿泉水等非纯净饮用水制 作为还原水时, 还原水指标会更高, 符合上述电解杂质原理, 但由于原水品质参差关系, 可能出现还原水余氯含量增加问题, 需采取适当的电极结构设计方案或去除余氯措施加 以解决。 在电解水过程中釆用活性炭等材料吸收水中余氯是解决余氯问题的较好方案。 采用活性炭等吸附性强的专用材料模块作为本实用新型设计方案的电解阳极具有消减水 余氯及其些重金属离子的良好效果, 是本实用新型所产生的装置可以通用于纯净水与 蒸馏 及非纯净饮用水的较佳选择。
基 技术万案: 一种可将纯净水与蒸馏水简易高效电解制成负电位还原水的装置, 其特征是: 包括可控电解电源, 与电解电源正极连接的阳极, 与电解电源负极连接的阴 极, 工作时阴阳极浸泡在欲电解的水中; 阴阳极之间留有间隙, 间隙范围为: 大于 0mm
2π.!·η 极之间设计为小间隙目的是增加电流, 对水分子尤其是水中微量杂质 产: 作用, 以产生较多自由电子; 在一定空间内, 阴阳极间间隙的有效电解面 积尽可能¾计较大. 以求在同一电解电压与水质条件下获得较大电解电流及较大有效电 解 : 为获得阴阳扱间隙较大有效电解面积, 可取的较佳方案之一是: 阳极与阴极分 别做成蜂窝 形状及与之可对接的梳子形状, 梳状电极梳齿的数量、 形状及分布与蜂窝 状「 ¾n¾ n 并套入对应孔中, 梳齿表面与蜂窝孔表面留有间隙, 阴阳电极间的 有½^ ^¾ 于蜂窝电极平面与梳状电极平面间隙等效面积加上所有梳齿与蜂窝孔 1 隙 之 。
犬方 ¾ —: 以盛水容器形式应用本实用新型基本技术方案, 包括水容器及其盖 π 安装在盖子内, 所述盖子上安装有向下伸入电解容器内的电解极板组 r . 电极组合而成, 工作时浸泡在容器内水中。 电解极板组件由电极之一 不 ^^^^ :所包裹, 不锈钢圆筒上面敞口, 平面底部为网孔结构, 以便于圆筒内 夕 圆简通过导线与可控电源输出之一负极连接; 阴极圆筒内中部或靠上部水 平¾^ - 个:^ 与圆^相配合的电极之二蜂窝状活性炭圆饼, 活性炭圆饼周面与圆筒内 周 r「 c 'H t- ,. 活性炭电极通过导线与可控电源输出之二连接; 活性炭电极下 ^安^ 之二 齿导电极板, 其梳齿的数量、 形状及分布与蜂窝状电极蜂窝孔对 应: 梳齿表面与蜂窝孔表面留有间隙之四, 圆饼状活性炭下表面与梳 齿 表 有间隙之五, 梳齿极板有网状孔, 有利于加强水与离子流动性, 蜂窝状 电¾ 梳状 之间 隙之二的有效面积大约相当于所有齿与孔间隙四的等效面积加上
^ : :. ^ ^ - F. 梳齿电极板通过导线与可控电源输出之三连接, 其底表面与阴极圆筒 r "' 之 ;三个电极的间隙之一、之二、之三的距离在大于 0 与小于 1. 5mm 「;
Figure imgf000009_0001
之二及负极可控制电极组件将纯净水与蒸馄水及其他普 ^ - ' ^ 碱性偏高的弱碱性或碱性偏低的弱碱性或酸性负电位还原水。
': ': 方 : 二: ^用本实用新型基本技术方案实现将流水电解制成负电位还原水。
- "-' '^^V , 可控电解电源, 以及安装在通道中的电解极板组件, 该组件与本实 用新型技术方案之一所述的电解极板组件相同, 让水从管状通道一端流入经过电解极板 组件, 从另外一端流出, 通过可控电源输出之一、 之二及阴极可控制电极组件将纯净水 与蒸馏水及其他饮用水分别制成碱性偏高的弱碱性或碱性偏低的弱碱性或酸性负电位还 原水。
技术方案之三: 与技术方案之一类似, 区别仅在于电解极板组件不同, 本方案电解 极板组件的 极之一结构为 N个 E并排紧贴形状, 电极之二结构为 N个水平反转的 E并 排紧贴形状, E形状电极与反 E形状电极按凹凸对插方式形成多个 Z形相通间隙, 间隙 距离在大于 Omm、 小于 2画的范围之内。
本实用新型技术方案中的电解极板组件具体结构不限于上述技术方案一、 二、 三所 列, j、是用较小极间间隙与较大极间间隙面积以有效提高水及其杂质电解电流, 达到制 作 水或相关目标的电解水电极结构均属本实用新型范围。 附 ¾明
靣通过附图对本实用新型作进一步阐释。
1是 实用新型实施例 1可将纯净水制成电解水的简易高效电解装置
Γ ':是 用新型实施例 2可将纯净水制成电解水的简易高效电解装置
I; 3是本实用新型实施例 3可将纯净水制成电解水的简易高效电解装置
W '是本实用新型实施例 4可将纯净水制成电解水的简易高效电解装置
W · 太实用新型实施例 5可将纯净水制成电解水的简易高效电解装置
^ 实尸 型实施例 6可将纯净水制成电解水的简易高效电解装置
: : 实施例 7可将纯净水制成电解水的简易高效电解装置 具';
;删 - 型基本技术方案应用于盛水容器而设计, 如图 1所示, 包括盛水容器 14及 其 :3 . 可¾ ¾解电源 12安装在盖子 13内, 13上安装有向下伸入电解容器内的电解 极杈 件: - 8 ; 该组件由 3个电极组合而成, 工作时浸泡在容器内水中。 电解极板组件 ώ
Figure imgf000010_0001
筒形阴极 1所包裹, 1上面敞口, 平面底部有网状圆孔 15, 以便于 1内外 水流; 1通过导线 4与 12输出之一电源负极 15连接; 1内中部或靠上部水平安装一 个直^与 ! 配合的蜂窝状活性炭圆饼电极 2 , 2圆周面与 1 内圆周面间留有间隙 7, 2 通^ ; 线^可控电源输出端 16连接; 2下面安装有梳齿导电极板, 其梳齿的数量、 形状 及 ; Λί- 2蜂窝孔对应, 并套入对应孔中, 梳齿表面与蜂窝孔表面留有间隙 22, 2下表 面 板 2 上表面留有间隙 8, 梳齿极板 2有网状开孔, 有利于加强水与离子流动 f , 2 1 1 ti ¾之. ^ !¾]隙总有效面积大约相当于 Ν个 22的等效面积加上间隙 8有效面积; 3通 ^控 源输出 17连接, 3底表面与 1底内表面留有间隙 9 ; 电极间隙 7、 8、 9、 22的距离在大于 0醒与小于 1. 5醒之间; 通过可控电源输出 16、 17、 15不同电压组 合形成控制方式 1、 2、 3, 可控制电极组件将纯净水与蒸馏水及其他普通饮用水分别制 成碱性偏高的弱碱性或碱性偏低的弱碱性或酸性负电位还原水。 1固定接于 12电解电源 负极输出端 15 , 具体工作过程与原理分别阐释如下:
实施例 1控制方式 1用于制作碱性较高的弱碱性还原水。控制特点为: 12的端口 17 接通 ; 5 12从端口 16向 2输出正电压; 纯净水包括蒸馏水及微量杂质主要在间隙 7与 8及 22被电解, 2作为具有极大等效比表面积的阳极起着吸附负氯离子的良好作用, 同时 2释放在水中的微量杂质被电离所产生的电子有利于增加电解电流并增加 H+ e-→ H—的机会, 获得更高还原水指标。在电解过程中水分子 H20被电离或又复合为 0H―、 H+、 0、 H、 02、. 等离子或物质, 由于 02、 气体可以从 1上部敞口源源不断直接升出, 在 1 内各「': ¾产生水流及离子流快速流动, 容器中的水与杂质反复流经 7、 8、 N个 22进行电 解. ^利子 ¾解效率的提髙。 另外, 由于 2对 H—与 01Γ等负离子具有强吸附作用, 电解强 度愈大, H—与 01Γ等负离子愈多, 2所吸附的 H—与 0H—等负离子愈多, 与此同时, 更多 H+ 则与 ί子 e -合成 ¾升逸出水面, 阳极等效面积大于阴极等效面积的作用得以体现, 故电 解结爽 水 Φ 0H—含量比较 H+会更高, 即还原水碱性更强、 ra值更高, 水中的 H—较高, 余 ^ ,'Τ,近二零: 从而制作出较高还原水指标的碱性较强的弱碱性还原水。
' ^m : 控^方式 2用于制作弱碱性还原水。 控制特点为: 12通过端口 16向 2输 较控制方式 1输出正电压要低, 同时从 17向 3输出较高正电压, 主要在 7与 9对水及杂质的进行电解, 12在 2所施正电压比第一种方式要低, 减弱了 2对 0H—与 If 的吸 力度, 因而还原水碱性比控制方式 1要弱, 9对水及杂质电解过程所产生的 H—补 WT ^力减弱而损失的 H―, 从而制作出较高还原水指标的弱碱性还原水。
- '"':,; : ' ^ :!方式 3用于制作酸性还原水, 12通过端口 16将 2接通输出电压负极, a . mi过端口 17向 3输出正电压, 在 9、 N个 22及 8对水及杂质进行电解, ? ti 解电 极, 对 H+等正离子具有强吸附力, 减少 H++ e-= H2的机会, 与此同时, 水中 ')Η— ¾ 9 ϋ 为?与 H—的机会较高,因为 9间隙较窄,一般选择在大于零至小于 0. 6誦
^ 及较少的 沿 1内边缘经 7升逸, 形成水与离子流及杂质快速流动, 有 利工 Λ 的 -扩散出去, 随着这一过程反复进行, 水中的 Η+含量会比 0Η—含量愈高, 因
:; ΪΤ会愈低, 从而制作出较高还原水指标的酸性还原水。
¾^^ ;:Β了 实施例在 3种控制方式下将纯净水制成碱性或酸性负电位还原水的指 ;旌 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000011_0001
注: 解工作时间 3分钟, 常温, 原水: 0RP=+167mv, 氢含量 =0, PH=5.5
实施例 1 结构兼容将非纯净水制作成为负电位还原水, 原理及过程与上述类似。 表 五列 A了太实施例将直饮水制成还原水的指标。
表 实施例的 3种控制方式将直饮水制成还原水的实测指标数据
Figure imgf000012_0001
注: 二作时〕¾ 3分钟, 常温, 原水: 0RP=+286mv, 氢含量 =0, PH=7.5
::实施例结构如图 2所示, 是应用本实用新型基本技术方案将流水电解制成负电位 还原 的又一实施方案。 包括一段管状通道 25, 可控电解电源 12, 以及安装在通道 25 中的 ': :¾¾:¾件 18, 该组件与本实用新型实施例 1所述的电解极板组件相同, 区别仅 在 : 2 隙的长度比实施例 1的 22长 M倍; 让水从 25的进水端口 26流入流经 18, 经过 , 」.^: ]隙 7、 8、 9, 尤其是通过 N个 22间隙中被反复电解处理, 从 25出水端 口 27液 , 通过可 电源输出 16、 17、 15不同电压组合形成控制方式 1、 2、 3, 可控 制 ¾组件将纯净水包括蒸馏水及其他饮用水分别制成 PH值不同的负电位还原水。本实 施 : / c 于表六。
表六 施例的 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000012_0002
ί二'. ': 二'「::时, 3分钟, 常温, 原水: 0RP=+242mv, 氢含量 =0, PH=5.5
旌例结构如 3所示, 功能与实施例 2类似, 是应用本实用新型基本技术方案 将 :.' 」, ^: 负电£还原水的又一实施方案。包括一段管状通道 25,可控电解电源 12,
25中的电解极板组件 18, 该组件由 3个电极组合而成, 工作时浸泡在 容¾: ,' 解极板组件电极 1为 U筒形状, 1上面敞口, 1平面底部有网状圆孔 15, 便 d ¾. : 通过导线 4与 12输出端口 15连接; 电极 2结构为 N个水平反转 ' -f , ^极 3结构为 N个 E并排紧贴形状, 反 E形状电极 2与 E形状电极 3 ί' :; 式形 C多个 Ζ形相通间隙 8, 2外周面与 1 内周面间留有间隙 7, 2通过
-E t; :i 2 'i: Π 13连接; 3外周面与 1 内周面间留有间隙 9, 3通过导线与 12输出 端 17连接; 7、 8、 9间隙距离在大于 0匪、 小于 2腿的范围之内; 工作时, 让水从 25的 进水口 26流入流经 18, 经过电解电极间隙 7、 8、 9, 尤其是通过多个 Z形间隙 8中被反 复电解处理, 从 25出水口 27流出, 通过可控电源端口 16、 17、 15输出不同电压组合形 成控制方式 1、 2、 3, 可控制电极组件将纯净水包括蒸馏水及其他饮用水分别制成 PH值 不同的负电位还原水。 具体过程及其原理与实施例 1控制方式 1、 2、 3相似。 本实施例 还原水指标见于表七。
本实施例 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000013_0001
工' ίΐ '时间 3分钟, 常温, 原水: 0RP=+263mv, 氢含量 =0, PH=5. 5 删 -4
本实施例结构如图 4所示, 可见与实施例 1 的区别仅在于将其电解水机构即 12与 13铜作^一个便携式可移动电解水装置, 18可方便地放置于任意容器内水中, 在 12控 二^。 小 ¾例工作原理与过程类似实施例 1, 将本实施例的 18置于容器内浸泡在 一般^::^ d : f或碗盆的水中, 便可以象实施例 1那样将容器所盛饮用水制成酸碱度不 同并 : ^还原水指标的还原水。 本实施例还原水指标见于表八。
表八: 本实施洌 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000013_0002
注: 解二 '时间 2分钟, 常温, 原水: 0RP=+251mv, 氢含量 =0, PH=5. 5 '构如图 5所示, 与实施例 1的区别在于: 12安装在容器底部; 电极采用 较 u'i; , ^为饼形活性炭, 3为导电平板, 8为 2与 3之间隙, 与实例 1相比少了 N 个 22 K M, 本实施例普遍适合于 1为金属或非金属的盛水容器, 本实施例工作原理与过 程与 : ^ ' . , 只是缺少了 N个 22的作用。 本实施例还原水指标见于表九。
'tm:■»种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000013_0003
^工作时间 3分钟, 常温, 原水: 0RP=+242mv, 氢含量 =0, PH=5. 5
¾施例 6
本实施例结构如图 6所示, 与实施例 5的区别仅在于: 实施例 5圆筒形阴极 1以盛 水容 —4所代替, 结构简化, 本实施例适合于 14为导电材料如金属等的盛水容器, 本 实施 1丄 与'过程与实施例 1相同, 只是缺少了 N个 22的作用。 本实施例还原水指 标见 Γ τ一。
表十: 4 ^施例 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000014_0001
注- 丄 时间 3分钟, 常温, 原水: 0RP=+231mv, 氢含量二 0, PH:5. 5
: Ui (
/、 ^^ ¾构如图 7所示, 可见与实施例 6的区别在于: 可控电解电源的控制方式 与 组件的电极结构简化, 2不接 12, 12经端口 15接 1、 17接 3输出电解电压, 利 、 .3、 3距离及其电解面积的相互配合制成不同 PH值负电位还原水。 本实施例仅 此一种控 万式: 其控制特点为: 12从端口 17向 3输出电解电源正电压, 12端口 15将 1 ^ ΛΜ , 水及其微量杂质在间隙 7、 8、 9被电解。 2的作用与实施例 1控制方式 2 相 Π ,,:;,..: :-■,·' 2的 电压值不如实施例 1从 12输出端口的 16获取, 而是取决于 8与
7 : 2 i 1.7加载于 3的电压之分压, 故可用间隙 8间距控制 2的作用影响还原水 ra 交 12端口 17输出正电压数值及其持续时间也可起到相似作用, 从而制作出 相应 ί:Η使 还原水。 具体过程与原理与实施例 1控制方式 2类同。本实施例还原水指标 见: :: ' .,
- 一 3种控制方式将纯净水制成还原水的实测指标数据
Figure imgf000014_0002
注 3 钟, 常温, 原水: 0RP=+238mv, 氢含量 =0, PH=5. 5

Claims

WO 2014/201851 权 利 要 求 书 PCT/CN2014/000584
1、一种可将纯净氷制成电解水的简易高效电解装置,其特征是:包括可控电解电源, 与可控电解电源连接的电解电极组件, 工作时电解电极组件浸泡在欲电解的水中; 电解 电极组件的阴阳电极之间留有间隙, 间隙距离在大于 0醒、 小于 2謹 范围之内, 间隙按 合理较小化原则设计; 电解电极组件在所占一定空间内, 其阴阳电极之间间隙的面积按 合理较大化原则设计。
2、 根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解装置, 其电 解电极组件特征是: 电解电极组件中的不同极性电极分别做成蜂窝饼形状及与之可对应 插接的梳子板形状; 梳子板形状电极的梳齿固定在平板上, 该平板可开网状孔以利水流 流过; 梳子板形状电极梳齿可插入对应蜂窝形状电极蜂窝孔中, 梳齿表面与蜂窝孔表面 之间留有间隙; 蜂窝形状电极与梳齿形状电极相对表面之间留有间隙; 阴阳电极之间间 隙距离均在大于 0醒、 小于 2mm的范围之内。
3、 根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解装置, 其电 解电极组件特征是: 电极之一结构为 N个 E并排紧贴形状, 电极之二结构为 N个水平反 转的 E并排紧贴形状, E形状电极与反 E形状电极按凹凸对插方式形成多个 Z形相通间 隙, 间隙距离在大于 0薩、 小于 2醒的范围之内。
4、 根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解装置, 其电解 电极组件特征是: 电解电极组件中可采取阴阳极面积不相等设计提高电解效率, 阴阳极 面积不相等既可以是阳极面积大于阴极面积, 也可以相反, 间隙距离在大于 Omm、 小于 2mm的范围之内。
5、 根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解装置, 其电 解电极组件特征是: 电解电极组件由一个筒形电极所包裹, 筒形电极的上部筒口敞开, 筒底部为平面网孔结构, 以便于筒内外水流的交互流动, 筒形电极通过导线与可控电源 输出端口 1 连接, 作为电解电极 1 ; 筒形电极内中部或靠上部水平安装一个直径与筒形 电极形状相配合的活性炭或类似材料饼形电极, 作为电解电极 2, 活性炭或类似材料饼 形电极外周面与筒形电极内周面之间留有间隙 1, 活性炭或类似材料电极通过导线与可 控电源输出端口 2连接; 活性炭或类似材料电极下面装有极板, 作为电解电极 3, 饼状 活性炭或类似材料下表面与电极 3极板上表面留有间隙, 电极 3极板有网状孔, 利于水 与离子流动, 电极 3极板通过导线与可控电源输出端口 3连接, 电极 3极板底表面与筒 形电极筒底内表面留有间隙 3 ; 三个电极的间隙 1、 2、 3的距离在大于 0mm、 小于 2mm之 间; 电解电极组件工作状态由可控电源输出端口 1、 2、 3控制;
所述电解电极组件可分别或同时作以下改变:
1 )饼状活性炭或类似材料与电极 3极板可改变为蜂窝饼形状及与之可对应插接的梳 子板形状, 梳子板形状电极的梳齿固定在平板上, 梳齿可插入对应蜂窝孔中, 梳齿表面 与蜂窝孔表面之间留有间隙; 蜂窝状电极与梳齿电极相对表面之间留有间隙: 蜂窝饼形 状电极与梳子板形状电极之间间隙的距离在大于 0讓、 小于 2讓之间;
2 )断开活性炭或类似材料与可控电源输出端口 2的连接, 仅通过可控电源输出端口 WO 2014/201851 权 利 要 求 书 PCT/CN2014/000584
1、 3控制电解电极组件工作;
3 )在将电解电极组件固定安装在盛水容器内工作的情况下, 若盛水容器为金属或导 电材料时, 电解电极组件的筒形电极可由盛水容器代替, 区别仅在于: 代替筒形电极的 盛水容器底部不开网孔;
4 )用平板电极取代筒形电极,相当于筒形电极简化为仅有筒底板, 间隙 1不再存在;
5 ) 在 2 ) 基础上将电极 2紧贴电极 3, 即间隙 2=0醒;
所述电解电极组件在保持阴阳电极间隙距离在大于 0腿、 小于 2mm之间条件下, 不 限于以上强化或者简化功能的结构调整改变。
6、 根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解装置, 其特 征是: 包括一段管状通道, 可控电解电源, 以及安装在管状通道中的电解电极组件, 工 作时让纯净水或其他饮用水从管状通道入口流入, 流经受控于可控电解电源的电解电极 组件的阴阳极之间的间隙, 该间隙距离在大于 0讓、 小于 2讓之间; 从管状通道流出口 流出便可达到目的。
7、 根据权利要求 1所述的一种可将纯净水制成电解水的简易高效电解装置, 其特 征是: 可制作成便携式可移动电解水装置, 包括可控电解电源, 与可控电解电源连接的 电解电极组件, 工作时电解电极组件浸泡在欲电解的任意容器水中, 用可控电解电源控 制电解电极组件制作电解水; 电解电极组件的阴阳极间隙距离在大于 0mni、 小于 2mm之 间。
PCT/CN2014/000584 2013-06-20 2014-06-16 一种可将纯净水制成电解水的简易高效电解装置 WO2014201851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320368638.1U CN203668073U (zh) 2013-06-20 2013-06-20 一种可将纯净水制成电解水的简易高效电解装置
CN201320368638.1 2013-06-20

Publications (1)

Publication Number Publication Date
WO2014201851A1 true WO2014201851A1 (zh) 2014-12-24

Family

ID=50964389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000584 WO2014201851A1 (zh) 2013-06-20 2014-06-16 一种可将纯净水制成电解水的简易高效电解装置

Country Status (2)

Country Link
CN (1) CN203668073U (zh)
WO (1) WO2014201851A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229946B (zh) * 2013-06-20 2017-02-08 罗民雄 一种可将纯净水制成电解水的简易电解方法
CN104257201A (zh) * 2014-09-16 2015-01-07 厦门市福隆源电子科技有限公司 一种便携式富氢水杯
CN104609514A (zh) * 2015-02-26 2015-05-13 罗民雄 一种电极为孔柱式结构的新型电解水装置
CN104628092A (zh) * 2015-02-26 2015-05-20 罗民雄 一种可控制电解水酸碱性的无膜电解水新方法
CN104591467A (zh) * 2015-02-26 2015-05-06 罗民雄 一种发生电解水蒸汽的装置
CN104709975A (zh) * 2015-02-26 2015-06-17 罗民雄 一种发生电解水雾化气的装置
CN104709974A (zh) * 2015-02-26 2015-06-17 罗民雄 一种采用两组电解电极组件控制电解水性能的新方法
CN104609515A (zh) * 2015-02-26 2015-05-13 罗民雄 一种便利使用的可便携多用途无膜电解水装置
CN104609513A (zh) * 2015-02-26 2015-05-13 罗民雄 一种显著提高电解效率的无膜电解水新方法
CN104649374A (zh) 2015-02-26 2015-05-27 罗民雄 一种多功能的无膜电解开水机
CN104709976A (zh) * 2015-02-26 2015-06-17 罗民雄 一种制作美容水的无膜电解水装置
CN104962947A (zh) * 2015-07-13 2015-10-07 罗民雄 由n个套筒式电极组构成的电极组件
CN105060414A (zh) * 2015-08-09 2015-11-18 罗民雄 改变电解水装置水流流速从而改变电解水品质的方法
CN110453243A (zh) * 2018-05-08 2019-11-15 罗民雄 一种通用电解液体电极模块化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246272A (ja) * 1993-02-24 1994-09-06 Toto Ltd 無隔膜型の連続式イオンリッチ水生成装置
US6428689B1 (en) * 1999-01-27 2002-08-06 Sanyo Electric Co., Ltd. Water purifying and dispensing apparatus, and method of purifying chlorine-containing water
CN201923864U (zh) * 2010-10-29 2011-08-10 肖志邦 还原水无隔膜电解装置
CN102603036A (zh) * 2012-03-23 2012-07-25 烟台市马可波罗电子科技有限公司 一种制造氢水的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246272A (ja) * 1993-02-24 1994-09-06 Toto Ltd 無隔膜型の連続式イオンリッチ水生成装置
US6428689B1 (en) * 1999-01-27 2002-08-06 Sanyo Electric Co., Ltd. Water purifying and dispensing apparatus, and method of purifying chlorine-containing water
CN201923864U (zh) * 2010-10-29 2011-08-10 肖志邦 还原水无隔膜电解装置
CN102603036A (zh) * 2012-03-23 2012-07-25 烟台市马可波罗电子科技有限公司 一种制造氢水的装置

Also Published As

Publication number Publication date
CN203668073U (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2014201851A1 (zh) 一种可将纯净水制成电解水的简易高效电解装置
WO2014201852A1 (zh) 一种可将纯净水制成电解水的简易高效电解方法与装置
WO2016134621A1 (zh) 一种显著提高电解效率的无膜电解水新方法
JP4392354B2 (ja) 高電界電解セル
RU2602234C2 (ru) Электролизная ванна для кислой воды и способ использования кислой воды
JP5640266B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
WO2016134619A1 (zh) 一种采用两组电解电极组件控制电解水性能的新方法
WO2016134618A1 (zh) 一种可控制电解水酸碱性的无膜电解水新方法
WO2016134616A1 (zh) 一种制作美容水的无膜电解水装置
WO2016141768A1 (zh) 一种主要为陶瓷材料的电解水装置用的电极
CN104257201A (zh) 一种便携式富氢水杯
CN204273997U (zh) 便携式富氢水杯
CN2828014Y (zh) 一种电化学反应器
WO2016134617A1 (zh) 一种便利使用的可便携多用途无膜电解水装置
CN204752287U (zh) 一种显著提高电解效率的无膜电解水新装置
CN204675867U (zh) 一种便利使用的可便携多用途无膜电解水装置
JP5282201B2 (ja) 電気分解水生成器
CN202201742U (zh) 一种中性富氢水电解装置
CN206467013U (zh) 一种新型电解离子水生成装置
CN204245801U (zh) 一种便携式富氢水杯
TW201321310A (zh) 產生殺生物劑之方法
CN209554846U (zh) 纯净水电解装置及电解桶装饮水机
CN205241298U (zh) 低功耗富氢水电解商务水机
CN205457837U (zh) 一种具有净化功能的富氢水杯
CN201198454Y (zh) 掺硼金刚石电极电解离子水生成器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814313

Country of ref document: EP

Kind code of ref document: A1