WO2014201784A1 - Amoled驱动电路、驱动方法和显示装置 - Google Patents

Amoled驱动电路、驱动方法和显示装置 Download PDF

Info

Publication number
WO2014201784A1
WO2014201784A1 PCT/CN2013/085040 CN2013085040W WO2014201784A1 WO 2014201784 A1 WO2014201784 A1 WO 2014201784A1 CN 2013085040 W CN2013085040 W CN 2013085040W WO 2014201784 A1 WO2014201784 A1 WO 2014201784A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
tube
unit
node
emitting device
Prior art date
Application number
PCT/CN2013/085040
Other languages
English (en)
French (fr)
Inventor
谭文
祁小敬
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/234,953 priority Critical patent/US9524668B2/en
Publication of WO2014201784A1 publication Critical patent/WO2014201784A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects

Definitions

  • the present invention belongs to the field of display technologies, and specifically relates to an AMOLED driving circuit, a driving method, and a display device. Background technique
  • active matrix organic light emitting diode panel Active matrix organic light emitting diode panel
  • AMOLED Matrix Organic Li ght Emittting Diode
  • OLED Organic Light-Emitting Diode
  • OLED pixel circuit driving methods can be divided into voltage driving mode (voltage type) and current driving mode (current type).
  • voltage type AMOLED if the threshold voltages of driving transistors between different pixel units are different, then between different pixel units Drive current that drives 0LED illumination. ⁇ ⁇ There is a difference. If the threshold voltage V TH of the driving transistor of the pixel drifts with time, it may cause the driving current I driving the OLED to emit light to be different, resulting in image sticking. And because the 0LED operating voltage is different due to the non-uniformity of the 0LED device, it will also cause the driving current /. Ii3 ⁇ 4 difference.
  • the current-mode AMOLED directly adds a drive current from the outside to determine the voltage across the storage capacitor, thereby generating a drive current that drives the OLED illumination. Ii3 ⁇ 4 .
  • / Qi ⁇ is equal to / ⁇ ⁇ , and must be a small current in the operating current range of the OLED. Therefore, / ⁇ ⁇ is also small, the storage capacitor has a large capacitance, and the charging speed is slow, especially in the low gray level, the charging time is very long, and it is not suitable for the high-resolution, high-refresh frequency AMOLED display. Summary of the invention
  • the invention provides an AM0LED driving circuit, a driving method and a display device, which can effectively solve the problem that the charging speed of the capacitor of the AM0 LED driving circuit is slow and the charging time is long, so that the AM0 LED driving circuit is suitable for the AM0 LED under high resolution and high refresh frequency. display.
  • the AM0 LED driving circuit comprises: a control unit, a charging unit, a driving unit and a light emitting device;
  • the control unit is connected to the data line and the control line, and the control unit is connected to the driving unit by using the first node, the second node and the third node;
  • the charging unit is connected to the driving unit through a first node, and the charging unit is further connected to the first power source;
  • the driving unit is connected to one end of the light emitting device, the driving unit is further connected to the first power source; the other end of the light emitting device is connected to the second power source;
  • control unit controls a current from the data line to charge the charging unit via the driving unit in response to the first control signal
  • control unit controls the charging unit to provide a driving voltage for the driving unit through the first node in response to the second control signal, such that The driving unit is driven by the driving voltage to drive the light emitting device to emit light.
  • control unit includes: a first switch tube, a second switch tube, and a third switch tube;
  • a gate of the first switch tube, a gate of the second switch tube, and a gate of the third switch tube are connected to the control line, and the first pole of the first switch tube and the first a first pole of the second switch tube is connected to the data line, and a second pole of the first switch tube and a first pole of the third switch tube are connected to the second node;
  • the second pole of the third switch tube is connected to the third node; and the second pole of the second switch tube is connected to the first node.
  • the driving unit includes: a first driving tube, a second driving tube, and a third driving tube;
  • a gate of the first driving tube, a gate of the second driving tube, and a gate of the third driving tube are connected to the first node;
  • a first pole of the first driving tube is connected to the second node
  • a first pole of the third driving tube is connected to the one end of the light emitting device
  • a first pole of the second driving tube The second pole of the third driving tube is connected to the third node, and the second pole of the first driving tube and the second pole of the second driving tube are connected to the first power source.
  • the first extreme drain, the second extreme source is optionally, the first extreme drain, the second extreme source.
  • the charging unit includes a storage capacitor, one end of the storage capacitor is connected to the first node, and the other end of the storage capacitor is connected to the first power source.
  • the light emitting device is an organic electroluminescent device 0LED.
  • the first driving tube, the second driving tube, the third driving tube, the first switching tube, the second switching tube, and the third switching tube are N-type thin film transistors Or P-type thin film transistor.
  • the second driving tube operates in a linear region
  • the third driving tube operates in a saturation region
  • a coefficient, a current coefficient of the second driving tube, a current coefficient of the third driving tube, / ⁇ ⁇ is a data current supplied by the data line, /.
  • ⁇ ⁇ is the drive current flowing through the light emitting device.
  • the present invention provides a driving method of an AMOLED driving circuit, wherein the driving method is based on an AMOLED driving circuit, and the AMOLED driving circuit includes a control unit, a charging unit, a driving unit, and a light emitting device;
  • the method includes: when a first control signal flows through a control line, the control unit controls a current from the data line to respond to the charging list via the driving unit in response to the first control signal Charging; and
  • the control unit controls the charging unit to supply a voltage to the driving unit in response to the second control signal when the second control signal flows through the control line, such that the driving unit drives the light emitting device to emit light.
  • control unit includes a first switch tube, a second switch tube, and a third switch tube;
  • drive unit includes a first drive tube, a second drive tube, and a third drive tube;
  • the charging unit includes a storage capacitor; the controlling unit controlling the driving unit to charge the charging unit specifically includes:
  • the first switch tube, the second switch tube, and the third switch tube are turned on under the control of a control line, and the first drive tube and the second drive tube are turned on, the third drive The tube is turned off to cause the data line to charge the storage capacitor in parallel through the first drive tube and the second drive tube.
  • control unit includes a first switch tube, a second switch tube, and a third switch tube;
  • drive unit includes a first drive tube, a second drive tube, and a third drive tube;
  • charging unit includes a storage unit a capacitor; the charging unit is configured to provide a voltage to the driving unit, and the driving unit driving the light emitting device to emit light specifically includes:
  • the first switch tube, the second switch tube, and the third switch tube are turned off under the control of the control line, and the storage capacitor is provided for the second drive tube and the third drive tube
  • the gate voltage, the second driving tube and the third driving tube drive the light emitting device to emit light in series.
  • the present invention provides a display device including the AMOLED drive circuit described above.
  • the invention provides an AMOLED driving circuit, a driving method and a display device.
  • the AMOLED driving circuit comprises: a control unit, a charging unit, a driving unit and a light emitting device; the control unit is connected with the data line and the control line, and the control unit passes the first node, The second node and the third node are connected to the driving unit; the charging unit is connected to the driving unit through the first node, the charging unit is connected to the first power source, the driving unit is connected to one end of the light emitting device, and the driving unit is further connected to the first power source to emit light The other end of the device is connected to a second power source.
  • control unit controls the current from the data line to charge the charging unit via the driving unit in response to the first control signal when the first control signal flows through the line.
  • control unit controls the charging unit to provide a driving voltage to the driving unit through the first node in response to the second control signal, such that the The driving unit is driven by the driving voltage to drive the light emitting device to emit light.
  • the ratio between the data current of the data line and the drive current of the light-emitting device is adjustable, so that the ratio between the two currents can be increased, that is, by the adjustment drive
  • the current coefficient of each driving tube in the unit increases the ratio of the data current of the data line to the driving current of the light emitting device, thereby increasing the current for charging the charging unit, which can effectively solve the slow charging speed of the capacitor by the AM0 LED driving circuit and
  • the long charging time makes the AM0LED driver circuit suitable for AM0LED display at high resolution and high refresh rate.
  • FIG. 1 is a schematic structural diagram of an AM0LED driving circuit according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of an input voltage of an AM0 LED driving circuit in Embodiment 1
  • FIG. 3 is an equivalent circuit diagram of a charging phase of an AM0 LED driving circuit in Embodiment 1.
  • 4 is an equivalent circuit diagram of a discharge phase of the AMOLED driving circuit in the first embodiment
  • FIG. 5 is a schematic structural diagram of an AM0LED driving circuit according to Embodiment 2 of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of an AM0LED driving circuit according to Embodiment 1 of the present invention
  • the AM0LED driving circuit includes: a control unit, a charging unit, a driving unit, and a light emitting device D1.
  • the control unit is connected to the data line and the control line, and the control unit is connected to the driving unit through the first node 1, the second node 2 and the third node 3;
  • the charging unit is connected to the driving unit through the first node 1, the charging unit and the A power source VSS is connected, and the driving unit is connected to the first power source VSS, the driving unit is connected to one end of the light emitting device D1, and the other end of the light emitting device D1 is connected to the second power source VDD.
  • the control unit controls the current from the data line to charge the charging unit via the driving unit in response to the first control signal when a first control signal flows through the control line.
  • the control unit controls the charging unit to provide a driving voltage to the driving unit through the first node in response to the second control signal, such that the The driving unit is driven by the driving voltage to drive the light emitting device to emit light.
  • the control unit includes: a first switch tube T4, a second switch tube ⁇ 5, and a third switch tube ⁇ 6.
  • the gate of the first switching transistor 4, the gate of the second switching transistor 5, and the gate of the third switching transistor 6 are connected to the control line, the drain of the first switching transistor 4 and the drain of the second switching transistor 5 and data a line connection, a source of the first switching transistor 4 and a drain of the third switching transistor 6 are connected to the second node 2; a source of the third switching transistor 6 is connected to the third node 3; a source of the second switching transistor 5 Connected to the first node 1.
  • the driving unit includes: a first driving tube T1, a second driving tube ⁇ 2, and a third driving tube ⁇ 3.
  • the gate of the first driving tube T1 and the gate of the second driving tube ⁇ 2 are connected to the first node 1, and the source of the first driving tube T1 and the source of the second driving tube ⁇ 2 are connected to the first power source ⁇ ;
  • the drain of the first driving transistor T1 is connected to the second node 2; the source of the third driving transistor 3 and the drain of the second driving transistor 2 are connected to the third node 3; the gate of the third driving transistor 3 and the first The node 1 is connected, and the drain of the third driving transistor 3 is connected to the one end of the light emitting device D1.
  • the charging unit includes a storage capacitor Cl, and one end of the storage capacitor C1 is connected to the first node 1, and the other end of the storage capacitor C1 is connected to the first power source. .
  • the voltage supplied by the second power source is f
  • the voltage supplied by the first power source is the reference voltage V ss
  • the voltage supplied by the second power source may be higher than the reference voltage, wherein ⁇ may be a high level, and accordingly, as a reference voltage Is low.
  • the voltage supplied by the data line is ⁇
  • the voltage supplied by the control line is e .
  • FIG. 2 is a schematic diagram of the input voltage of the AM0LED driving circuit of FIG. 1.
  • the a stage represents the charging phase of the AMOLED driving circuit
  • the b phase represents the discharging phase (or the illuminating phase) of the AMOLED driving circuit
  • FIG. 3 is FIG.
  • FIG. 4 is an equivalent circuit diagram of the discharging phase of the AM0LED driving circuit of FIG.
  • the charging phase of the AM0 LED driving circuit in FIG. The equivalent circuit diagram is shown in Figure 3.
  • the data current provided by the data line charges the capacitor C1.
  • the voltage supplied by the control line is a low level (second control signal)
  • the first switching transistor T4, the second switching transistor ⁇ 5, and the third switching transistor ⁇ 6 are both turned off, and the capacitor C1 provides a driving voltage, so that the light emitting device D1 emits light. .
  • the first driving transistor T1 and the second driving transistor ⁇ 2 are turned on,delt is the gate voltage of the third driving transistor ,3, and V G T2 is the second driving tube.
  • the third driving tube T3 is turned off, wherein, the first driving tube T1
  • the current coefficient is the current coefficient of the second driving tube T2
  • / ⁇ is the data current supplied by the data line
  • s is the gate voltage of the first driving tube T1 and the second driving tube T2
  • the first driving tube T1 The threshold voltages of the second driving transistor 2 and the third driving transistor 3 are equal to V m .
  • the second drive tube T2 and the third drive tube T3 are connected in series,
  • the second drive tube T2 operates in the linear region, and the third drive tube ⁇ 3 operates in the saturation region.
  • Ii3 ⁇ 4 is the driving current flowing through the light emitting device D1
  • I DS T1 is the source leakage current flowing through the second driving tube T2
  • obtain is the source leakage current flowing through the third driving tube T3;
  • I DS — T2 K 1 iV GS — V m ) 'V DS — r2 — — K 1 — V DS — ri 2 , where v DS — T2 is the: source-drain voltage of the driving tube T2; lDS_T3 ⁇ ) 2 , where
  • the current coefficient of the first driving tube ⁇ 1 is the current coefficient of the second driving tube T2, the current coefficient of the third driving tube T3, the data current supplied for the data line, and I is the driving current flowing through the light emitting device.
  • V G s_T, + V DS T2 V GS , therefore, during the above derivation, V GS , is cancelled out, ie with /.
  • the ratio of i fl depends on the current coefficient of the first drive tube T1, the current coefficient 2 of the second drive tube T2, and the value of the current coefficient of the third drive tube.
  • I. Equal to I DATA due to /. I3 ⁇ 4 is smaller, / ⁇ ⁇ is also smaller, so there is a technical problem that the charging speed is slow and the charging time is long. .
  • the b phase that is, the discharge phase of the AM0LED driving circuit, at which time the light emitting device emits light, the voltage supplied by the control line is low, and the fourth switching transistor T4, the fifth switching transistor 5, and the sixth switching transistor ⁇ 6 is turned off.
  • the equivalent circuit diagram of the discharge phase of the AM0LED driver circuit in Figure 1 is shown in Figure 4. According to the above ratio of data current to drive current
  • the i fl has a large ratio, and while ensuring that the driving current operates within the operating current range of the light-emitting device D1, a larger data current 3 ⁇ 4 can be obtained, thereby accelerating the charging speed of the capacitor C1.
  • the AMOLED driving circuit includes: a control unit, a charging unit, and a driving The control unit is connected to the data line and the control line, and the control unit is connected to the driving unit through the first node, the second node and the third node; the charging unit is connected to the driving unit through the first node, and the charging unit is further connected a first power connection, the driving unit is connected to one end of the light emitting device, the driving unit is further connected to the first power source; the other end of the light emitting device is connected to the second power source; when the first control signal flows through the control line, the control The unit controls the current from the data line to charge the charging unit via the driving unit in response to the first control signal; when a second control signal flows through the control line, the control unit is responsive to The second control signal controls the charging unit to provide a driving voltage for the driving unit through the first node, so that the driving unit is driven by the driving voltage to drive the light emitting device to emit light.
  • the ratio of the data current of the data line to the driving current of the light emitting device is increased by adjusting the current coefficient of each driving tube in the driving unit, thereby increasing the current for charging the charging unit. Therefore, the problem that the AM0 LED pixel has a slow charging speed due to a small charging current can be effectively solved, so that the AM0LED display can be applied to a high resolution and a high refresh frequency environment.
  • FIG. 5 is a schematic diagram of an AMOLED driving circuit according to Embodiment 2 of the present invention.
  • the driving circuit includes: the AMOLED driving circuit includes: a control unit, a charging unit, a driving unit, and a light emitting device D1.
  • the control unit includes: a first switch tube T4, a second switch tube ⁇ 5, and a third switch tube ;6;
  • the charging unit includes a storage capacitor C1;
  • the driving unit includes: a first drive tube T1, a second drive tube ⁇ 2, and a third Drive tube ⁇ 3.
  • the control unit is connected to the data line and the control line, and the control unit is connected to the driving unit through the first node 1, the second node 2 and the third node 3;
  • the charging unit is connected to the driving unit through the first node 1, the charging unit and the A power source is connected, the driving unit is connected to one end of the light emitting device D1, the driving unit is also connected to the first power source, and the other end of the light emitting device D1 is connected to the second power source.
  • the control unit When a first control signal flows through the control line, the control unit controls a current from the data line to charge the charging unit via the driving unit in response to the first control signal; The control unit is when the second control signal flows through the control line
  • the charging unit is controlled to supply a driving voltage to the driving unit through the first node in response to the second control signal, such that the driving unit is driven by the driving voltage to drive the light emitting device to emit light.
  • the light emitting device D1 is an organic light emitting diode 0LED.
  • the first driving tube T l , the second driving tube 2 , the third driving tube 3 , the first switching tube 4 , the second switching tube 5 , and the third switching tube 6 are ⁇ -type thin film transistors, and the first pole serves as a source, The two poles act as the drain.
  • the control unit includes: a first switch tube ⁇ 4, a second switch tube ⁇ 5, and a third switch tube ⁇ 6.
  • the gate of the first switching transistor 4, the gate of the second switching transistor 5, and the gate of the third switching transistor 6 are connected to the control line, the source of the first switching transistor 4 and the source and data of the second switching transistor 5 a line connection, a drain of the first switch transistor 4 and a source of the third switch transistor 6 are connected to the second node 2; a drain of the third switch transistor 6 is connected to the third node 3; a drain of the second switch transistor 5 Connected to the first node 1.
  • the driving unit includes: a first driving tube T1, a second driving tube ⁇ 2, and a third driving tube ⁇ 3.
  • the gate of the first driving transistor T1 and the gate of the second driving transistor ⁇ 2 are connected to the first node 1, and the drain of the first driving transistor T1 and the drain of the second driving transistor ⁇ 2 are connected to the first power source; a source of the driving tube T1 is connected to the second node 2; a drain of the third driving tube T3 and a source of the second driving tube T2 are connected to the third node 3; a gate of the third driving tube T3 and the first node 1 is connected, and the source of the third driving tube T3 is connected to one end of the light emitting device D1.
  • the charging unit includes a storage capacitor C1, one end of the storage capacitor C1 is connected to the first node 1, and the other end of the storage capacitor C1 is connected to the first power source ⁇ .
  • the third driving transistor 3 is connected to one end of the light emitting device D1, and the other end of the light emitting device D1 is connected to the second power source.
  • the voltage supplied by the second power source is the reference voltage ⁇
  • the voltage supplied by the first power source is the reference voltage ⁇
  • the voltage supplied by the first power source may be higher than the reference voltage ⁇ , wherein f may be a high level, and accordingly, the reference voltage may be a low level.
  • the voltage supplied by the data line is ⁇ ⁇
  • the voltage supplied by the control line is .
  • the first control signal is a low level
  • the second control signal is a high level ⁇ w .
  • the difference between the AMOLED driving circuit in the first embodiment and the second embodiment is that the thin film transistors in the second embodiment are P-type thin film transistors, and the voltage supplied by the first power source is f ⁇ , and the voltage supplied by the second power source is a reference. Voltage, the voltage supplied by the first power source can be higher than the reference voltage. Where ⁇ can be a high level, and accordingly, as a reference voltage, it can be a low level. In addition, the first control signal is a low level ⁇ , and the second control signal is a high level e ⁇ .
  • the AMOLED driving circuit provided in this embodiment includes: a control unit, a charging unit, a driving unit and a light emitting device, which can effectively solve the problem that the charging speed of the AM0 LED pixel is slow due to a small charging current, so that the AM0 LED display can be applied to high resolution and High refresh frequency environment.
  • the AM0LED driving circuit provided in the first embodiment and the second embodiment is mainly used to drive the AMOLEDo.
  • the AM0LED driving circuit provided in the first embodiment and the second embodiment is applicable not only to the polysilicon thin film transistor but also to other transistors.
  • the respective transistors used as the first driving transistor T1, the second driving transistor 2, the third driving transistor 3, the first switching transistor 4, the second switching transistor 5, and the third switching transistor 6 are used.
  • the first pole and the second pole are exchangeable as a source or a drain.
  • the first pole can serve as a source, and accordingly
  • the second pole acts as a drain; or the first pole acts as a drain, and accordingly, the second pole acts as a source.
  • the third embodiment of the present invention provides a driving method, which may be based on an AM0 LED driving circuit, where the AM0 LED driving circuit includes a control unit, a charging unit, a driving unit, and an illuminator.
  • the driving method includes:
  • Step 101 When a first control signal flows through the control line, the control unit responds to The first control signal controls current from the data line to charge the charging unit via the drive unit.
  • control unit includes a first switch tube, a second switch tube, and a third switch tube
  • drive unit includes a first drive tube, a second drive tube, and a third drive tube
  • charging unit includes a storage capacitor.
  • the controlling unit controlling the driving unit to charge the charging unit specifically includes: the first switching tube, the second switching tube, and the third switching tube are turned on under the control of the first control signal of the control line, the first driving tube and The second driving tube is turned on, and the third driving tube is turned off, so that the data line is charged in parallel to the storage capacitor through the first driving tube and the second driving tube.
  • Step 102 When a second control signal flows through the control line, the control unit controls the charging unit to supply a voltage to the driving unit in response to the second control signal, so that the driving unit drives the light emitting device Glowing.
  • the control unit includes a first switch tube, a second switch tube, and a third switch tube;
  • the drive unit includes a first drive tube, a second drive tube, and a third drive tube;
  • the charging unit includes a storage capacitor.
  • the charging unit provides a voltage to the driving unit, and the driving unit drives the light emitting device to emit light.
  • the first switching tube, the second switching tube, and the third switching tube are turned off under the control of the second control signal of the control line, and the storage capacitor is the second.
  • the driving tube and the third driving tube provide a gate voltage, and the second driving tube and the third driving tube drive the light emitting device to emit light in series.
  • the driving method of the third embodiment can be implemented based on the AMOLED driving circuit in the first embodiment or the second embodiment.
  • the specific implementation refer to the first embodiment or the second embodiment.
  • the specific implementation manner of the step 102 can refer to the discharging phase of the AMOLED driving circuit in the first embodiment or the second embodiment, respectively. Let me repeat.
  • the third embodiment provides an AM0LED driving method.
  • the AM0LED driving method is based on an AM0 LED driving circuit.
  • the AM0 LED driving circuit includes: a control unit, a charging unit, a driving unit and a light emitting device, and the control unit is responsive to the first control signal of the control line. Controlling the current from the data line to charge the charging unit via the driving unit; the control unit controls the charging unit to supply the driving unit with the driving voltage in response to the second control signal of the control line, such that the driving unit is driven by the driving voltage to drive the light emitting device to emit light.
  • the current coefficient of each transistor in the driving unit increases the current for charging the charging unit, so that the problem that the charging speed of the capacitor by the AM0LED driving circuit is slow and the charging time is long can be effectively solved, so that the AM0LED driving circuit is suitable for high resolution and AM0LED display at high refresh rate.
  • the fourth embodiment of the present invention provides a display device, which uses the AM0 LED driving circuit in the first embodiment or the second embodiment.
  • a display device which uses the AM0 LED driving circuit in the first embodiment or the second embodiment.
  • the specific implementation refer to the first embodiment or the second embodiment, which is not described in detail herein.
  • the present embodiment provides a display device that uses an AM0LED driving circuit.
  • the AM0LED driving circuit includes: a control unit, a charging unit, a driving unit, and a light emitting device, which can effectively solve the slow charging speed of the AM0 LED pixel due to the small charging current. Problem, making
  • the AM0LED display can be used in high resolution and high refresh frequency environments. It is to be understood that the above embodiments are merely exemplary embodiments employed to explain the principles of the invention, but the invention is not limited thereto. Various modifications and improvements can be made by those skilled in the art without departing from the spirit and scope of the invention, and such modifications and improvements are also considered to be within the scope of the invention.

Abstract

本发明提供了一种AMOLED驱动电路、驱动方法和显示装置,该AMOLED驱动电路包括:控制单元、充电单元、驱动单元和发光器件;控制单元与数据线和控制线连接,控制单元通过第一节点、第二节点和第三节点与驱动单元连接;充电单元通过第一节点与驱动单元连接,充电单元与第一电源连接,驱动单元与发光器件的一端连接,驱动单元还与第一电源连接,发光器件的另一端与第二电源连接。当所述控制线中流过第一控制信号时,所述控制单元响应于所述第一控制信号而控制来自所述数据线的电流经由所述驱动单元对所述充电单元进行充电;当所述控制线中流过第二控制信号时,所述控制单元响应于所述第二控制信号而控制所述充电单元以通过所述第一节点为所述驱动单元提供驱动电压,使得所述驱动单元被所述驱动电压驱动后驱动所述发光器件发光。可以有效解决AMOLED驱动电路对电容器的充电速度慢且充电时间长的问题,使得AMOLED驱动电路适用于高分辨率和高刷新频率下的AMOLED显示。

Description

AMOLED驱动电路、 驱动方法和显示装
技术领域
本发明属于显示技术领域, 具体涉及 AMOLED驱动电路、驱动方法 和显示装置。 背景技术
随着液晶显示技术的发展,有源矩阵有机发光二极管面板(Act ive
Matrix Organic Li ght Emi tting Diode,简称: AMOLED ) 的应用越来 越重要。 AMOLED 的发光器件为有机发光二极管 ( Organic Light-Emi tting Diode,以下简称 OLED ) 。
OLED像素电路驱动方式可分为电压驱动方式 (电压型) 和电流驱 动方式 (电流型) , 对于电压型 AMOLED, 如果不同像素单元之间的驱 动晶体管的阈值电压 不同,则不同像素单元之间的驱动 0LED发光的 驱动电流 /。^ ^存在差异。 如果像素的驱动晶体管的阈值电压 VTH随时间 发生漂移, 则可能造成驱动 0LED发光的驱动电流 I醫先后电流不同, 导致残影。 且由于 0LED器件非均匀性引起 0LED工作电压不同, 也会 导致驱动电流 /。ii¾差异。
电流型 AMOLED直接由外部加入驱动电流 ,从而决定存储电容 器上的电压, 从而产生驱动 0LED发光的驱动电流 /。ii¾。 在传统的电流 型 AMOLED像素结构中, /Qi ^等于 /ΰ Ώ, 而 必须在 OLED的工作电流 范围内, 为较小电流。 因此, /ΰ ^也较小, 存储电容器电容的大, 充 电速度较慢, 特别在低灰阶下, 充电时间很长, 不适用于高分辨率, 高刷新频率的 AMOLED显示。 发明内容
本发明提供一种 AM0LED驱动电路、 驱动方法和显示装置, 可以有 效解决 AM0LED驱动电路对电容器的充电速度慢且充电时间长的问题, 使得 AM0LED驱动电路适用于高分辨率和高刷新频率下的 AM0LED显示。
为解决本发明技术问题提供了一种 AM0LED驱动电路, 该 AM0LED 驱动电路包括: 控制单元、 充电单元、 驱动单元和发光器件;
所述控制单元与数据线和控制线连接, 所述控制单元通过第一节 点、 第二节点和第三节点与所述驱动单元连接;
所述充电单元通过第一节点与所述驱动单元连接, 所述充电单元 还与第一电源连接;
所述驱动单元与所述发光器件的一端连接, 所述驱动单元还与第 一电源连接; 所述发光器件的另一端与第二电源连接;
其中, 当所述控制线中流过第一控制信号时, 所述控制单元响应 于所述第一控制信号而控制来自所述数据线的电流经由所述驱动单元 对所述充电单元进行充电; 以及
其中, 当所述控制线中流过第二控制信号时, 所述控制单元响应 于所述第二控制信号而控制所述充电单元以通过所述第一节点为所述 驱动单元提供驱动电压, 使得所述驱动单元被所述驱动电压驱动后驱 动所述发光器件发光。
可选地, 所述控制单元包括: 第一开关管、 第二开关管和第三开 关管;
所述第一开关管的栅极、 所述第二开关管的栅极和所述第三开关 管的栅极与所述控制线连接, 所述第一开关管的第一极和所述第二开 关管的第一极与所述数据线连接, 所述第一开关管的第二极和所述第 三开关管的第一极与所述第二节点连接;
所述第三开关管的第二极与第三节点连接; 以及所述第二开关管 的第二极与第一节点连接。 可选地, 所述驱动单元包括: 第一驱动管、 第二驱动管和第三驱 动管;
所述第一驱动管的栅极、 所述第二驱动管的栅极和所述第三驱动 管的栅极与所述第一节点连接;
所述第一驱动管的第一极与所述第二节点连接, 所述第三驱动管 的第一极与所述发光器件的所述一端连接, 所述第二驱动管的第一极 和所述第三驱动管的第二极与所述第三节点连接, 所述第一驱动管的 第二极和第二驱动管的第二极与所述第一电源连接。
可选地, 所述第一极为漏极, 所述第二极为源极。
可选地, 所述充电单元包括存储电容器, 所述存储电容器的一端 连接第一节点, 所述存储电容器的另一端连接所述第一电源。
可选地, 所述发光器件为有机电致发光器件 0LED。
可选地, 所述第一驱动管、 所述第二驱动管、 所述第三驱动管、 所述第一开关管、 所述第二开关管和所述第三开关管为 N 型薄膜晶体 管或 P型薄膜晶体管。
可选地, 在所述发光器件的发光阶段, 所述第二驱动管工作在线 性区, 所述第三驱动管工作在饱和区。
可选地, 所述数据线的数据电流与所述发光器件的驱动电流的比 值为 / = ( ιΐΆί ιΐ ά , 其中, 为所述第一驱动管的电流
/ 1 OLED Κ2 · Κ3
系数, 为所述第二驱动管的电流系数, 为所述第三驱动管的电流 系数, /ΰ ^为所述数据线提供的数据电流, /。^ ^为流过所述发光器 件的驱动电流。
为实现上述目的, 本发明提供一种 AMOLED驱动电路的驱动方法, 其特征在于, 所述驱动方法基于 AMOLED驱动电路,该 AMOLED驱动电路 包括控制单元、 充电单元、 驱动单元和发光器件; 所述驱动方法包括: 当控制线中流过第一控制信号时, 所述控制单元响应于所述第一 控制信号而控制来自数据线的电流以经由所述驱动单元对所述充电单 元进行充电; 以及
当控制线中流过第二控制信号时, 所述控制单元响应于所述第二 控制信号而控制所述充电单元为所述驱动单元提供电压, 使得所述驱 动单元驱动所述发光器件发光。
可选地, 其特征在于, 所述控制单元包括第一开关管、 第二开关 管和第三开关管; 所述驱动单元包括第一驱动管、 第二驱动管和第三 驱动管; 所述充电单元包括存储电容器; 所述控制单元控制所述驱动 单元对所述充电单元进行充电具体包括:
所述第一开关管、 所述第二开关管、 所述第三开关管在控制线的 控制下导通, 所述第一驱动管和所述第二驱动管导通, 所述第三驱动 管关断, 以使数据线通过所述第一驱动管和所述第二驱动管并联向存 储电容器充电。
可选地, 所述控制单元包括第一开关管、 第二开关管和第三开关 管; 所述驱动单元包括第一驱动管、 第二驱动管和第三驱动管; 所述 充电单元包括存储电容器; 所述充电单元为所述驱动单元提供电压、 所述驱动单元驱动所述发光器件发光具体包括:
所述第一开关管、 所述第二开关管、 所述第三开关管在所述控制 线的控制下关断, 所述存储电容器为所述第二驱动管和所述第三驱动 管提供栅极电压, 所述第二驱动管和所述第三驱动管串联驱动发光器 件发光。
为实现上述目的, 本发明提供一种显示装置, 该显示装置包括上 述的 AMOLED驱动电路。
本发明提供的一种 AMOLED 驱动电路、 驱动方法和显示装置, AMOLED驱动电路包括: 控制单元、 充电单元、 驱动单元和发光器件; 控制单元与数据线和控制线连接, 控制单元通过第一节点、 第二节点 和第三节点与驱动单元连接; 充电单元通过第一节点与驱动单元连接, 充电单元与第一电源连接, 驱动单元与发光器件的一端连接, 驱动单 元还与第一电源连接, 发光器件的另一端与第二电源连接。 当所述控 制线中流过第一控制信号时, 所述控制单元响应于所述第一控制信号 而控制来自所述数据线的电流经由所述驱动单元对所述充电单元进行 充电。 当所述控制线中流过第二控制信号时, 所述控制单元响应于所 述第二控制信号而控制所述充电单元以通过所述第一节点为所述驱动 单元提供驱动电压, 使得所述驱动单元被所述驱动电压驱动后驱动所 述发光器件发光。
通过根据本发明的上述电路结构配置, 数据线的数据电流与发光 器件的驱动电流之间的比值是可调节的, 从而可以增大的两个电流之 间的比值, 也就是说, 通过调节驱动单元中的各驱动管的电流系数来增 大数据线的数据电流与发光器件的驱动电流的比值, 从而增大对充电单 元充电的电流, 其可以有效解决 AM0LED驱动电路对电容器的充电速度 慢且充电时间长的问题, 使得 AM0LED驱动电路适用于高分辨率和高刷 新频率下的 AM0LED显示。 附图说明
图 1为本发明实施例一提供的一种 AM0LED驱动电路结构示意图; 图 2为实施例一中 AM0LED驱动电路输入电压的示意图; 图 3为实施例一中 AM0LED驱动电路充电阶段的等效电路示意图; 图 4为实施例一中 AM0LED驱动电路放电阶段的等效电路示意图; 以及
图 5为本发明实施例二提供的一种 AM0LED驱动电路结构示意图。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结合附 图对本发明提供的 AM0LED驱动电路、 驱动方法和显示装置作进一步详 细描述。
图 1 为本发明实施例一提供的一种 AM0LED驱动电路的结构示意 图, 如图 1所示, 该 AM0LED驱动电路包括: 控制单元、 充电单元、 驱 动单元和发光器件 Dl。 其中, 控制单元与数据线和控制线连接, 控制 单元通过第一节点 1、第二节点 2和第三节点 3与驱动单元连接; 充电 单元通过第一节点 1与驱动单元连接, 充电单元与第一电源 VSS连接, 且驱动单元与第一电源 VSS连接,驱动单元与发光器件 D1的一端连接, 发光器件 D1的另一端与第二电源 VDD连接。 当所述控制线中流过第一 控制信号时, 所述控制单元响应于所述第一控制信号而控制来自所述 数据线的电流经由所述驱动单元对所述充电单元进行充电。 当所述控 制线中流过第二控制信号时, 所述控制单元响应于所述第二控制信号 而控制所述充电单元以通过所述第一节点为所述驱动单元提供驱动电 压, 使得所述驱动单元被所述驱动电压驱动后驱动所述发光器件发光。
具体地, 控制单元包括: 第一开关管 T4、 第二开关管 Τ5和第三开 关管 Τ6。 第一开关管 Τ4的栅极、 第二开关管 Τ5的栅极和第三开关管 Τ6的栅极与控制线连接, 第一开关管 Τ4的漏极和第二开关管 Τ5的漏 极与数据线连接, 第一开关管 Τ4 的源极和第三开关管 Τ6的漏极与第 二节点 2连接; 第三开关管 Τ6的源极与第三节点 3连接; 第二开关管 Τ5的源极与第一节点 1连接。
具体地, 驱动单元包括: 第一驱动管 Tl、 第二驱动管 Τ2和第三驱动 管 Τ3。 其中, 第一驱动管 T1 的栅极和第二驱动管 Τ2 的栅极与第一节 点 1连接,第一驱动管 T1的源极和第二驱动管 Τ2的源极与第一电源^ 连接; 第一驱动管 T1 的漏极与第二节点 2连接; 第三驱动管 Τ3的源 极和第二驱动管 Τ2 的漏极与第三节点 3连接; 第三驱动管 Τ3 的栅极 与第一节点 1连接, 第三驱动管 Τ3的漏极与发光器件 D1 的所述一端 连接。
具体地, 充电单元包括存储电容器 Cl, 存储电容器 C1 的一端连 接第一节点 1, 存储电容器 C1的另一端连接第一电源 。 。
本实施例中, 第一驱动管 Tl、 第二驱动管 Τ2、 第三驱动管 Τ3、 第一 开关管 T4、第二开关管 Τ5和第三开关管 Τ6为 Ν型薄膜晶体管时,第三驱 动管 Τ3的漏极与发光器件 D1的一端连接, 发光器件 D1的另一端与第二 电源连接。 第二电源提供的电压为 f , 第一电源提供的电压为参考电压 Vss , 第二电源提供的电压可以高于参考电压, 其中, ΰ可以为高电平, 相应地, 作为参考电压的 可以为低电平。 数据线提供的电压为^ ^, 控制线提供的电压为 e
下面结合图 2至图 4所示, 对本实施例中 AM0LED驱动电路的工作过 程进行详细描述。 图 2为图 1中 AM0LED驱动电路输入电压的示意图, 如 图 2所示, a阶段代表 AM0LED驱动电路的充电阶段, b阶段代表 AM0LED 驱动电路的放电阶段(或发光阶段) , 图 3为图 1中 AM0LED驱动电路充 电阶段的等效电路示意图, 图 4为图 1中 AM0LED驱动电路放电阶段的等 效电路示意图。 当控制线提供的电压 为高电平(第一控制信号) 时, 第一开关管 T4、 第二开关管 Τ5和第三开关管 Τ6均导通, 此时, 图 1中 AM0LED驱动电路充电阶段的等效电路示意图如图 3所示, 数据线提供的 数据电流 ^对电容器 C1进行充电。当控制线提供的电压 为低电平 (第二控制信号) 时, 第一开关管 T4、 第二开关管 Τ5和第三开关管 Τ6 均关断, 电容器 C1提供驱动电压, 使得发光器件 D1发光。
充电阶段, 即 AM0LED驱动电路的充电阶段, 参见图 3, 第一驱动 管 T 1和第二驱动管 Τ2导通, „为第三驱动管 Τ3的栅极电压, VG T2 为第二驱动管 T2的栅极电压、 T2为第二驱动管 Τ2的漏极电压, 为第三驱动管 Τ3的源极电压, VGT3 = VG T2 = VDT2 = VS T3, 此时,第三驱 动管 T3关断, 其中, 为第一驱动管 T1
Figure imgf000009_0001
的电流系数, 为第二驱动管 T2的电流系数, /^^为数据线提供的数 据电流, s为第一驱动管 T1和第二驱动管 T2的栅极电压, 第一驱动管 T l、 第二驱动管 Τ2、 第三驱动管 Τ3的阈值电压相等, 为 Vm
放电阶段, 参见图 4, 第二驱动管 T2和第三驱动管 T3串联导通, 其 中第二驱动管 T2 工作在线性区, 第三驱动管 Τ3 工作在饱和区。
ΙθΙΕΟ = Ι08_Τ2 = Ιϋ8_Τ, '其中 。ii¾为流过发光器件 D 1的驱动电流, I DS T1为 流过第二驱动管 T2的源漏电流, „为流过第三驱动管 T3的源漏电 流;
此时, IDST2=K1iVGS—Vm)'VDSr2—--K1-VDSri 2,其中, vDST2为第: 驱动管 T2的源漏电压; lDS_T3 ^)2,其中,
Figure imgf000010_0001
为第三驱动管 T3的电流系数;
Figure imgf000010_0002
因为, VGS_T + VDST2 V -V
^GS DS— T1 v GS v GS_T3 所以, ID ' ^TH ) ' ) _ ^2 '
Figure imgf000010_0003
ΚΊ 2
2 -[2.(VGS ^TH ' ^GS ^GS · ^GS T3 + ^GS T3 · ^TH )― ^GS ^GS Γ3 · ^GS + ^GS Γ3 )] + IV GS— T2 -V v TH -V y GS— T32
Figure imgf000010_0004
- K2 K2+Kl(V _y 、2H (V
(Κ,+Κ,) 2 GS m) K, 2 GS-T3 TH
^2 _ j K2 j
1 DATA T, 1 DS— Ti
K +K2 "Λ1Λ K,
. κ2 κ2
从而, I DS—T2 I DATA '· I DS
κ,+κ2
K2 K2
IQLED I DATA - I DS—
κλ2 K3
由于, IQ I —T2 ~ I —T3 r K2
1 O一LED ~ T, T, 1 DATA
K3 κ, +κ2
I _ {κχ) - {κ2 + κ,)
Ί, OLED K2 · K3
其中, 为第一驱动管 Τ1的电流系数, 为第二驱动管 T2的电流 系数, 为第三驱动管 T3的电流系数, 为数据线提供的数据电流, I 为流过发光器件的驱动电流。
由上述公式的推导过程可知, 由于第二驱动管 T2、第三驱动管 Τ3和 发光器件 D1相互串联, 流过第二驱动管 Τ2的源漏电流与流过第三驱动管 Τ3 的源漏电流和流过发光器件 D1 的驱动 电流相等, 即 I0LED = IDS_T2 = IDS_T3, 第一驱动管 T1和第二驱动管 T2的公共栅极电压等 于第三驱动管 T3 的栅源电压与第二驱动管 T2 的源漏电压之和, 即
VGs_T, + VDS T2 = VGS , 因此, 在上述推导过程中, VGS、 被抵消掉, 即 跟 /。i fl的比值取决于第一驱动管 T1的电流系数 、第二驱动管 T2的电流 系数 2和第三驱动管的电流系数 的值。然而, 在传统的电流型 AM0LED 像素结构中, I。 等于 IDATA, 由于 /。较小, /β ^也较小, 因此存在充 电速度较慢、 充电时间很长的技术问题。 。
如图 2中所示的 b阶段, 即 AM0LED驱动电路的放电阶段, 此时发光 器件发光, 控制线提供的电压 为低电平, 第四开关管 T4、 第五开关 管 Τ5和第六开关管 Τ6均关断, 此时, 图 1中 AM0LED驱动电路放电阶段 的等效电路示意图如图 4 所示。 根据上述数据电流与驱动电流的比值为
=ίΞι1^ιΗΞιΐ Α , 由该公式可知, 通过选择 、 和 的
/ 1 OLED Κ2 · Κ3
值, 可以使得/ ^与 /。i fl有大的比值, 在保证驱动电流工作在发光器件 D1的工作电流范围内的同时, 可以有较大的数据电流 ¾, 从而加快对电 容器 C1的充电速度。
本实施例提供的 AM0LED驱动电路包括: 控制单元、 充电单元、 驱 动单元和发光器件; 控制单元与数据线和控制线连接, 控制单元通过 第一节点、 第二节点和第三节点与驱动单元连接; 充电单元通过第一 节点与驱动单元连接, 充电单元还与第一电源连接, 驱动单元与发光 器件的一端连接, 驱动单元还与第一电源连接; 发光器件的另一端与 第二电源连接; 当所述控制线中流过第一控制信号时, 所述控制单元 响应于所述第一控制信号而控制来自所述数据线的电流经由所述驱动 单元对所述充电单元进行充电; 当所述控制线中流过第二控制信号时, 所述控制单元响应于所述第二控制信号而控制所述充电单元以通过所 述第一节点为所述驱动单元提供驱动电压, 使得所述驱动单元被所述 驱动电压驱动后驱动所述发光器件发光。
在根据本发明实施例的驱动电路结构中, 通过调节驱动单元中的各 驱动管的电流系数来增大数据线的数据电流与发光器件的驱动电流的 比值, 从而增大对充电单元充电的电流, 因此可以有效解决 AM0LED像素 因为充电电流小产生的充电速度慢的问题, 使得 AM0LED显示可以适用于 高分辨率和高刷新频率环境。
图 5为本发明实施例二提供的一种 AM0LED驱动电路, 如图 5所示, 该驱动电路包括: 该 AM0LED驱动电路包括: 控制单元、 充电单元、 驱 动单元和发光器件 Dl。 具体地, 控制单元包括: 第一开关管 T4、 第二开 关管 Τ5和第三开关管 Τ6; 充电单元包括存储电容器 C1 ; 驱动单元包括: 第一驱动管 Tl、 第二驱动管 Τ2和第三驱动管 Τ3。 其中, 控制单元与数 据线和控制线连接, 控制单元通过第一节点 1、第二节点 2和第三节点 3与驱动单元连接; 充电单元通过第一节点 1与驱动单元连接, 充电单 元与第一电源^ 连接, 驱动单元与发光器件 D1 的一端连接, 驱动单 元还与第一电源 连接, 发光器件 D1 的另一端与第二电源 连接。 当所述控制线中流过第一控制信号时, 所述控制单元响应于所述第一 控制信号而控制来自所述数据线的电流经由所述驱动单元对所述充电 单元进行充电; 当所述控制线中流过第二控制信号时, 所述控制单元 响应于所述第二控制信号而控制所述充电单元以通过所述第一节点为 所述驱动单元提供驱动电压, 使得所述驱动单元被所述驱动电压驱动 后驱动所述发光器件发光。
本实施例中, 发光器件 D1 为有机发光二极管 0LED。 第一驱动管 T l、 第二驱动管 Τ2、 第三驱动管 Τ3、 第一开关管 Τ4、 第二开关管 Τ5 和第三开关管 Τ6为 Ρ型薄膜晶体管, 第一极作为源极, 第二极作为漏 极。
具体地, 控制单元包括: 第一开关管 Τ4、 第二开关管 Τ5和第三开 关管 Τ6。 第一开关管 Τ4的栅极、 第二开关管 Τ5的栅极和第三开关管 Τ6的栅极与控制线连接, 第一开关管 Τ4的源极和第二开关管 Τ5的源 极与数据线连接, 第一开关管 Τ4 的漏极和第三开关管 Τ6的源极与第 二节点 2连接; 第三开关管 Τ6的漏极与第三节点 3连接; 第二开关管 Τ5的漏极与第一节点 1连接。
具体地, 驱动单元包括: 第一驱动管 Tl、 第二驱动管 Τ2和第三驱动 管 Τ3。 其中, 第一驱动管 T1 的栅极和第二驱动管 Τ2 的栅极与第一节 点 1连接,第一驱动管 T1的漏极和第二驱动管 Τ2的漏极与第一电源 连接; 第一驱动管 T1 的源极与第二节点 2连接; 第三驱动管 T3的漏 极和第二驱动管 T2 的源极与第三节点 3连接; 第三驱动管 T3 的栅极 与第一节点 1连接, 第三驱动管 T3的源极与发光器件 D1的一端连接。
具体地, 充电单元包括存储电容器 Cl, 存储电容器 C1 的一端连 接第一节点 1, 存储电容器 C1的另一端连接第一电源 β
本实施例中, 第一驱动管 Tl、 第二驱动管 Τ2、 第三驱动管 Τ3、 第一 开关管 Τ4、第二开关管 Τ5和第三开关管 Τ6为 Ρ型薄膜晶体管时,第三驱 动管 Τ3的漏极与发光器件 D1的一端连接, 发光器件 D1的另一端与第二 电源连接。 第二电源提供的电压为参考电压^, 第一电源提供的电压为
VDD, 第一电源提供的电压可以高于参考电压^, 其中, f 可以为高电 平,相应地,作为参考电压的 可以为低电平。数据线提供的电压为^ ^, 控制线提供的电压为 。另外, 第一控制信号为低电平 , 第二控制 信号为高电平 ^w
本实施例的 AM0LED驱动电路在充电阶段和放电阶段的工作原理请参 见实施例一中 AM0LED驱动电路的充电阶段和放电阶段的工作原理, 此处 不再一一赘述。
实施例一和实施例二的中的 AM0LED驱动电路的区别在于, 实施例二 中的薄膜晶体管均为 P型薄膜晶体管, 而且第一电源提供的电压为 f^, 第二电源提供的电压为参考电压 , 第一电源提供的电压可高于参考电 压。其中, ^可以为高电平, 相应地, 作为参考电压的 可以为低电平。 另外, 第一控制信号为低电平 ^, 第二控制信号为高电平 e^。
本实施例提供的 AM0LED驱动电路包括: 控制单元、 充电单元、 驱 动单元和发光器件, 其可以有效解决 AM0LED像素因为充电电流小产生的 充电速度慢的问题, 使得 AM0LED显示可以适用于高分辨率和高刷新频率 环境。
上述实施例一和实施例二提供的 AM0LED 驱动电路主要用于驱动 AMOLEDo 在实际应用中, 上述实施例一和实施例二提供的 AM0LED驱动电 路, 不仅适用于多晶硅薄膜晶体管, 还适用于其他晶体管。
需要说明的是, 本发明中, 在用作第一驱动管 Tl、 第二驱动管 Τ2、 第三驱动管 Τ3、 第一开关管 Τ4、 第二开关管 Τ5和第三开关管 Τ6的各个 晶体管中, 第一极和第二极作为源极还是漏极是可交换的。 例如, 由于在 所述各晶体管中第一极和第二极的结构是相同的, 因此在实际应用时, 根 据该晶体管在电路中的位置和作用, 第一极可作为源极, 则相应地, 第二 极作为漏极; 或者, 第一极可作为漏极, 则相应地, 第二极作为源极。
本发明实施例三提供一种驱动方法, 该驱动方法可基于 AM0LED驱动 电路, 该 AM0LED驱动电路包括控制单元、 充电单元、 驱动单元和发光器 件, 该驱动方法包括:
步骤 101, 当控制线中流过第一控制信号时, 所述控制单元响应于 所述第一控制信号而控制来自数据线的电流以经由所述驱动单元对所 述充电单元进行充电。
具体地, 控制单元包括第一开关管、 第二开关管和第三开关管; 驱动单元包括第一驱动管、 第二驱动管和第三驱动管; 充电单元包括 存储电容器。 控制单元控制所述驱动单元对所述充电单元进行充电具 体包括: 第一开关管、 第二开关管、第三开关管在控制线的第一控制信 号的控制下导通, 第一驱动管和第二驱动管导通, 第三驱动管关断, 以使数据线通过第一驱动管和第二驱动管并联向存储电容器充电。
步骤 102, 当控制线中流过第二控制信号时, 所述控制单元响应于 所述第二控制信号而控制所述充电单元为所述驱动单元提供电压, 使 得所述驱动单元驱动所述发光器件发光。
具体地, 控制单元包括第一开关管、 第二开关管和第三开关管; 驱动单元包括第一驱动管、 第二驱动管和第三驱动管; 充电单元包括 存储电容器。 充电单元为驱动单元提供电压、 驱动单元驱动发光器件 发光具体包括: 第一开关管、 第二开关管、 第三开关管在控制线的第 二控制信号的控制下关断, 存储电容器为第二驱动管和第三驱动管提 供栅极电压, 第二驱动管和第三驱动管串联驱动发光器件发光。
本实施例三的驱动方法可基于上述实施例一或实施例二中的 AM0LED 驱动电路实现, 其具体实施方式请参见上述实施例一或实施例二, 所述步 骤 101 的具体实施方式可分别参见实施例一或实施例二中的所述 AM0LED 驱动电路的充电阶段, 所述步骤 102的具体实施方式可分别参见实施例一 或实施例二中的所述 AM0LED驱动电路的放电阶段, 此处不再赘述。
本实施例三提供了一种 AM0LED驱动方法, 该 AM0LED驱动方法基于 AM0LED驱动电路, AM0LED驱动电路包括: 控制单元、 充电单元、 驱动单 元和发光器件, 控制单元响应于控制线的第一控制信号而控制来自数 据线的电流经由驱动单元对充电单元进行充电; 控制单元响应于控制 线的第二控制信号而控制充电单元为驱动单元提供驱动电压, 使得驱 动单元被驱动电压驱动后驱动发光器件发光。 在该驱动电路中, 通过调 节驱动单元中的各晶体管的电流系数来增大对充电单元充电的电流, 从而 可以有效解决 AM0LED驱动电路对电容器的充电速度慢且充电时间长的 问题,使得 AM0LED驱动电路适用于高分辨率和高刷新频率下的 AM0LED 显示。
本发明实施例四提供一种显示装置, 采用上述实施例一或实施例 二中的 AM0LED 驱动电路,其具体实施方式请参见上述实施例一或实施 例二, 此处不再具体描述。
本实施例提供了一种显示装置, 其采用 AM0LED驱动电路, 该 AM0LED 驱动电路包括: 控制单元、 充电单元、 驱动单元和发光器件, 其可以有 效解决 AM0LED 像素因为充电电流小产生的充电速度慢的问题, 使得
AM0LED显示可以适用于高分辨率和高刷新频率环境。可以理解的是, 以上 实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式, 然而本 发明并不局限于此。 对于本领域内的普通技术人员而言, 在不脱离本发明 的精神和实质的情况下, 可以做出各种变型和改进, 这些变型和改进也视 为本发明的保护范围。

Claims

1. 一种 AMOLED驱动电路,其特征在于, 包括: 控制单元、 充电单 元、 驱动单元和发光器件;
所述控制单元与数据线和控制线连接, 所述控制单元通过第一节 点、 第二节点和第三节点与所述驱动单元连接;
所述充电单元通过第一节点与所述驱动单元连接, 所述充电单元 还与第一电源连接;
所述驱动单元与所述发光器件的一端连接, 所述驱动单元还与第 一电源连接;
所述发光器件的另一端与第二电源连接;
其中, 当所述控制线中流过第一控制信号时, 所述控制单元响应 于所述第一控制信号而控制来自所述数据线的电流经由所述驱动单元 对所述充电单元进行充电; 以及
其中, 当所述控制线中流过第二控制信号时, 所述控制单元响应 于所述第二控制信号而控制所述充电单元以通过所述第一节点为所述 驱动单元提供驱动电压, 使得所述驱动单元被所述驱动电压驱动后驱 动所述发光器件发光。
2. 根据权利要求 1所述的 AMOLED驱动电路, 其特征在于, 所述 控制单元包括: 第一开关管、 第二开关管和第三开关管;
所述第一开关管的栅极、 所述第二开关管的栅极和所述第三开关 管的栅极与所述控制线连接, 所述第一开关管的第一极和所述第二开 关管的第一极与所述数据线连接, 所述第一开关管的第二极和所述第 三开关管的第一极与所述第二节点连接;
所述第三开关管的第二极与第三节点连接; 以及
所述第二开关管的第二极与第一节点连接。
3. 根据权利要求 1所述的 AMOLED驱动电路, 其特征在于, 所述 驱动单元包括: 第一驱动管、 第二驱动管和第三驱动管;
所述第一驱动管的栅极、 所述第二驱动管的栅极和所述第三驱动 管的栅极与所述第一节点连接;
所述第一驱动管的第一极与所述第二节点连接, 所述第三驱动管 的第一极与所述发光器件的所述一端连接, 所述第二驱动管的第一极 和所述第三驱动管的第二极与所述第三节点连接, 所述第一驱动管的 第二极和第二驱动管的第二极与所述第一电源连接。
4. 根据权利要求 2所述的 AMOLED驱动电路, 其特征在于, 所述 驱动单元包括: 第一驱动管、 第二驱动管和第三驱动管;
所述第一驱动管的栅极、 所述第二驱动管的栅极和所述第三驱动 管的栅极与所述第一节点连接;
所述第一驱动管的第一极与所述第二节点连接, 所述第三驱动管 的第一极与所述发光器件的所述一端连接, 所述第二驱动管的第一极 和所述第三驱动管的第二极与所述第三节点连接, 所述第一驱动管的 第二极和第二驱动管的第二极与所述第一电源连接。
5. 根据权利要求 2至 4中任一项所述的 AMOLED驱动电路, 其特 征在于, 所述第一极为漏极, 所述第二极为源极。
6. 根据权利要求 1至 4中任一项所述的 AMOLED驱动电路, 其特 征在于, 所述充电单元包括存储电容器, 所述存储电容器的一端连接 所述第一节点, 所述存储电容器的另一端连接所述第一电源。
7. 根据权利要求 1至 4中任一项所述的 AMOLED驱动电路, 征在于, 所述发光器件为有机发光二极管 0LED。
8. 根据权利要求 2所述的 AMOLED驱动电路, 其特征在于, 所述 第一开关管、所述第二开关管和所述第三开关管为 N型薄膜晶体管或 P 型薄膜晶体管。
9. 根据权利要求 3或 4所述的 AMOLED驱动电路, 其特征在于, 所述第一驱动管、 所述第二驱动管和所述第三驱动管为 N 型薄膜晶体 管或 P型薄膜晶体管。
10. 根据权利要求 3或 4所述的 AMOLED驱动电路, 其特征在于, 在所述发光器件的发光阶段, 所述第二驱动管工作在线性区, 所述第 三驱动管工作在饱和区。
1 1. 根据权利要求 3或 4所述的 AMOLED驱动电路, 其特征在于, 所述数据线的数据电流与所述发光器件的驱动电流的比值为
I 1 DATA {κ2 +κ,).{κ2 +κ,) ^ 为所述第一驱动管的电流系数, 为所述第二驱动管的电流系数, 为所述第三驱动管的电流系数, /n ^为所述数据线提供的数据电流, / Fn为流过所述发光器件的驱动电 流,
12. 一种 AMOLED驱动电路的驱动方法, 其特征在于, 所述驱动方 法基于 AMOLED驱动电路,该 AMOLED驱动电路包括控制单元、充电单元、 驱动单元和发光器件; 所述驱动方法包括:
当控制线中流过第一控制信号时, 所述控制单元响应于所述第一 控制信号而控制来自数据线的电流以经由所述驱动单元对所述充电单 元进行充电; 以及
当控制线中流过第二控制信号时, 所述控制单元响应于所述第二 控制信号而控制所述充电单元为所述驱动单元提供电压, 使得所述驱 动单元驱动所述发光器件发光。
13. 根据权利要求 12所述的 AM0LED驱动电路的驱动方法, 其特 征在于, 所述控制单元包括第一开关管、 第二开关管和第三开关管; 所述驱动单元包括第一驱动管、 第二驱动管和第三驱动管; 所述充电 单元包括存储电容器; 所述控制单元控制所述驱动单元对所述充电单 元进行充电包括:
所述第一开关管、 所述第二开关管、 所述第三开关管在控制线的 控制下导通, 所述第一驱动管和所述第二驱动管导通, 所述第三驱动 管关断, 以使数据线通过所述第一驱动管和所述第二驱动管并联向存 储电容器充电。
14. 根据权利要求 12或 13所述的 AM0LED驱动电路的驱动方法, 其特征在于, 所述控制单元包括第一开关管、 第二开关管和第三开关 管; 所述驱动单元包括第一驱动管、 第二驱动管和第三驱动管; 所述 充电单元包括存储电容器; 所述充电单元为所述驱动单元提供电压、 所述驱动单元驱动所述发光器件发光包括:
所述第一开关管、 所述第二开关管、 所述第三开关管在所述控制 线的控制下关断, 所述存储电容器为所述第二驱动管和所述第三驱动 管提供栅极电压, 所述第二驱动管和所述第三驱动管串联驱动发光器 件发光。
15. —种显示装置, 其特征在于, 包括权利要求 1至 1 1中任一项 所述的 AM0LED驱动电路。
PCT/CN2013/085040 2013-06-18 2013-10-11 Amoled驱动电路、驱动方法和显示装置 WO2014201784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/234,953 US9524668B2 (en) 2013-06-18 2013-10-11 AMOLED driving circuit and driving method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310240815.2A CN103325338B (zh) 2013-06-18 2013-06-18 一种amoled驱动电路、驱动方法和显示装置
CN201310240815.2 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014201784A1 true WO2014201784A1 (zh) 2014-12-24

Family

ID=49194045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085040 WO2014201784A1 (zh) 2013-06-18 2013-10-11 Amoled驱动电路、驱动方法和显示装置

Country Status (3)

Country Link
US (1) US9524668B2 (zh)
CN (1) CN103325338B (zh)
WO (1) WO2014201784A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069083B2 (en) * 2007-08-08 2011-11-29 Yahoo! Inc. Pay-per-action system for selling advertisements
CN103325338B (zh) 2013-06-18 2015-06-24 京东方科技集团股份有限公司 一种amoled驱动电路、驱动方法和显示装置
CN104575393B (zh) * 2015-02-03 2017-02-01 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN106027013B (zh) * 2016-06-23 2020-05-12 昂宝电子(上海)有限公司 用于模拟功率开关的控制装置和控制方法
CN107507566B (zh) * 2017-10-13 2019-09-10 京东方科技集团股份有限公司 像素驱动电路、显示装置和驱动方法
CN109872690B (zh) * 2019-03-27 2020-09-08 武汉华星光电半导体显示技术有限公司 显示面板
US11317280B2 (en) 2019-07-24 2022-04-26 Bank Of America Corporation Real-time authentication using a mobile device on a high generation cellular network
WO2021084683A1 (ja) * 2019-10-31 2021-05-06 シャープ株式会社 表示装置、画素回路、および、その駆動方法
CN111341245B (zh) * 2020-04-15 2022-10-04 昆山国显光电有限公司 像素驱动电路、显示面板及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139552A (ja) * 2007-12-05 2009-06-25 Canon Inc 発光素子の駆動回路及びそれを備えるディスプレイ並びに発光素子の駆動方法
CN102708798A (zh) * 2012-04-28 2012-10-03 京东方科技集团股份有限公司 一种像素单元驱动电路、驱动方法、像素单元和显示装置
CN102708787A (zh) * 2011-08-25 2012-10-03 京东方科技集团股份有限公司 Amoled像素单元驱动电路和方法、像素单元以及显示装置
CN103325338A (zh) * 2013-06-18 2013-09-25 京东方科技集团股份有限公司 一种amoled驱动电路、驱动方法和显示装置
CN203338718U (zh) * 2013-06-18 2013-12-11 京东方科技集团股份有限公司 一种amoled驱动电路和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257743B (zh) * 2001-08-29 2011-05-25 株式会社半导体能源研究所 发光器件及这种发光器件的驱动方法
US7573444B2 (en) * 2004-12-24 2009-08-11 Samsung Mobile Display Co., Ltd. Light emitting display
KR101137849B1 (ko) * 2005-06-28 2012-04-20 엘지디스플레이 주식회사 발광 표시장치
KR101202040B1 (ko) * 2006-06-30 2012-11-16 엘지디스플레이 주식회사 유기발광다이오드 표시소자 및 그 구동방법
CN102708786B (zh) * 2011-08-25 2014-12-10 京东方科技集团股份有限公司 Amoled像素单元驱动电路和方法、像素单元以及显示装置
KR102089052B1 (ko) * 2013-05-30 2020-03-16 삼성디스플레이 주식회사 유기전계발광 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139552A (ja) * 2007-12-05 2009-06-25 Canon Inc 発光素子の駆動回路及びそれを備えるディスプレイ並びに発光素子の駆動方法
CN102708787A (zh) * 2011-08-25 2012-10-03 京东方科技集团股份有限公司 Amoled像素单元驱动电路和方法、像素单元以及显示装置
CN102708798A (zh) * 2012-04-28 2012-10-03 京东方科技集团股份有限公司 一种像素单元驱动电路、驱动方法、像素单元和显示装置
CN103325338A (zh) * 2013-06-18 2013-09-25 京东方科技集团股份有限公司 一种amoled驱动电路、驱动方法和显示装置
CN203338718U (zh) * 2013-06-18 2013-12-11 京东方科技集团股份有限公司 一种amoled驱动电路和显示装置

Also Published As

Publication number Publication date
US20150015463A1 (en) 2015-01-15
CN103325338A (zh) 2013-09-25
US9524668B2 (en) 2016-12-20
CN103325338B (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2014201784A1 (zh) Amoled驱动电路、驱动方法和显示装置
JP6158477B2 (ja) 画素ユニット回路、画素アレイ、パネル、パネル駆動方法
CN106782319B (zh) 一种像素电路、像素驱动方法、显示装置
WO2018210051A1 (zh) 像素驱动电路及像素驱动方法、显示装置
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2016070477A1 (zh) 有机发光显示器像素驱动电路
WO2018054350A1 (zh) 像素电路及其驱动方法、阵列基板以及显示装置
WO2013064028A1 (zh) 一种像素单元驱动电路及其驱动方法、显示装置
WO2015180352A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016165529A1 (zh) 像素电路及其驱动方法、显示装置
WO2013078931A1 (zh) 像素单元驱动电路和方法、像素单元以及显示装置
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
WO2014153820A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015000245A1 (zh) 像素电路及其驱动方法、显示面板及显示装置
WO2013139127A1 (zh) Amoled驱动电路、amoled驱动方法和amoled显示装置
WO2015003434A1 (zh) 发光二极管像素单元电路、其驱动方法及显示面板
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2015024338A1 (zh) 一种像素电路及其驱动方法、阵列基板和显示装置
WO2013127189A1 (zh) 像素单元驱动电路、像素单元驱动方法以及像素单元
WO2015000249A1 (zh) 像素电路、显示面板及显示装置
WO2015096390A1 (zh) 像素驱动电路、阵列基板、显示装置和像素驱动方法
WO2018223694A1 (zh) 有机发光显示面板的补偿方法及相关装置
WO2015062322A1 (zh) 交流驱动的像素电路、驱动方法及显示装置
WO2014190621A1 (zh) 一种触摸显示驱动电路、方法和显示装置
WO2013159523A1 (zh) 像素单元驱动电路、驱动方法、像素单元和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14234953

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13887265

Country of ref document: EP

Kind code of ref document: A1