WO2014201588A1 - 调节植栽介质温度的方法及植栽床 - Google Patents

调节植栽介质温度的方法及植栽床 Download PDF

Info

Publication number
WO2014201588A1
WO2014201588A1 PCT/CN2013/000722 CN2013000722W WO2014201588A1 WO 2014201588 A1 WO2014201588 A1 WO 2014201588A1 CN 2013000722 W CN2013000722 W CN 2013000722W WO 2014201588 A1 WO2014201588 A1 WO 2014201588A1
Authority
WO
WIPO (PCT)
Prior art keywords
planting
heat exchange
bed
medium
temperature
Prior art date
Application number
PCT/CN2013/000722
Other languages
English (en)
French (fr)
Inventor
陈贵光
Original Assignee
向阳农业生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 向阳农业生技股份有限公司 filed Critical 向阳农业生技股份有限公司
Priority to PCT/CN2013/000722 priority Critical patent/WO2014201588A1/zh
Priority to JP2016600038U priority patent/JP3208265U/ja
Publication of WO2014201588A1 publication Critical patent/WO2014201588A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the invention relates to the technical field of cultivating plants, in particular to a method for adjusting the temperature of a planting medium and a plant bed. Background technique
  • planting media such as soil or stone
  • Etc. Filled in the vessel, planted the rootstock of the plant on the planting medium, and then watered successively and received sunlight for photosynthesis to promote plant growth.
  • water or nutrient solution should be supplied to the roots of the plants.
  • water or nutrient solution is poured onto the planting medium, and through the storage and transformation of the planting medium, it helps to create an environment conducive to the absorption of nutrients in the roots of the plants.
  • the temperature of the planting medium generally suitable for plant root growth is between 12 ° C and 28 ° C.
  • the temperature of the planting medium may vary slightly depending on the plant species to be planted; Because the ambient temperature of the planting site will have a great temperature difference due to different surface locations in the southern and northern hemispheres and changes in climate, it is generally only possible to rely on the greenhouse for heat preservation or heat dissipation according to the current stage technology. In order to adjust the ambient temperature in the shed to make the plants conducive to growth, but can not effectively control the temperature of the planting medium which is beneficial to the growth of the roots of the plants.
  • the leaves of the plant are different from the weatherability of the roots.
  • the leaves of plants can withstand temperatures up to 40 ° C, but the closer to 40 ° C, the roots of plants may gradually wither or ulcerate.
  • using greenhouses to plant plants on the surface of the cold zone below 0 °C even though the greenhouse can be used to produce limited heat preservation, it is still difficult to control the temperature of the planting medium which is beneficial to the growth of plant roots, resulting in the effectiveness of planting plants. not ideal. Summary of the invention
  • the object of the present invention is to solve the problem that the temperature of the planting medium is difficult to control by adopting the technical principle of grounding planting and heat exchange.
  • the present invention provides a method for adjusting the temperature of a planting medium, the technical means comprising: laying a planting bed off the ground, filling the planting medium to contact the planting bed from the ground, and The planting bed is adjusted to adjust the temperature of the planting medium.
  • the plant bed can adjust the temperature of the planting medium via conduction of the heat exchange plate, adjust the temperature of the planting medium via convection of the heat exchange fluid, or/and heat radiation through the illuminating assembly To adjust the temperature of the planting medium.
  • the above-mentioned technical means can contribute to the following: Ensure that the plant bed is separated from the surface, reduce the plant's pests and diseases, and easily control the temperature of the planting medium off the ground to promote the absorption of nutrients in the roots of the plants.
  • the present invention also provides a method for adjusting the temperature of a planting medium, the technical means comprising: laying a temperature-regulating plant bed off the ground, using a heat exchange plate to form a top layer away from above the bed surface of the plant bed
  • the planting area and the heat exchange area of the bottom layer are filled with planting medium in the planting area and planted, and the heat exchange fluid is diverted in the heat exchange area; wherein the heat exchange fluid adjusts the temperature of the plant medium through the heat exchange plate .
  • the above technical means can contribute to: ensuring separation of the plant bed from the surface, reducing plant pests and diseases, and easily controlling the temperature of the planting medium off the ground, while utilizing the heat transfer characteristics of the heat exchange plate to facilitate the adjustment of the heat exchange fluid.
  • the temperature of the diversion, and thus the temperature of the planting medium is relatively adjusted to promote the absorption of oxygen in the roots of the plants.
  • the foregoing method of the present invention further includes:
  • the plant bed is covered with an insulating layer interval heat exchange zone in contact with outside air. Therefore, it is advantageous to maintain the temperature of the heat transfer fluid in the heat exchange zone.
  • the cross section of the heat exchange plate is a wave shape, and comprises a plurality of concave planting ditch and convex groove which are spaced apart from each other, and the concave planting ditch provides a planting area for filling the planting area and planting the plant, the convex shape
  • the trench provides a heat exchange zone to direct the heat exchange fluid to regulate the temperature of the planting medium.
  • the heat exchange fluid is a fluid having a low temperature or a high temperature relative to the planting medium. Therefore, it is advantageous for the double end faces of a heat exchange plate to respectively fill the planting medium and the heat transfer fluid, so that the cooling or heating type temperature conduction between the plant medium and the heat exchange fluid can be easily performed.
  • the heat exchange fluid is one of water and gas.
  • the refrigerator is provided with a cooling heat exchange fluid to lower the heat exchange fluid relative to the planting medium.
  • a heater is provided to warm the heat exchange fluid to heat the heat exchange fluid relative to the planting medium.
  • the invention also provides a planting bed, according to the above method and the above-mentioned performance, the technical means of the plant bed comprises: a platform, a corner frame distributed around the circumference, and a bed formed by the corner frame to form the ground a heat exchange plate having a wave-shaped cross section and fixed on the bed surface of the plant bed to correspond to the space between the bed surfaces; a grounding planting area formed on the top layer of the heat exchange plate, the grounding plant The planting area is filled with the planting medium for planting the plant; and a heat exchange zone is formed between the heat exchange plate and the bed surface of the plant bed, and serves as the bottom layer of the heat exchange plate; wherein the heat exchange zone has a flow guiding
  • the heat exchange fluid adjusts the temperature of the planting medium via a
  • the above-mentioned bed surface can be replaced with a table top in practice, and the heat exchange plate can be replaced with a heat exchange planting vessel, and the heat exchange planting vessel is formed with a U-groove section. a zone, and a cavity type heat exchange zone formed by the bottom of the grounded planting zone, wherein the plurality of heat exchange planting vessels are disposed on the gantry via the bottom contact surface of the cavity type heat exchange zone;
  • the planting area is filled with the planting medium for planting the plant, and the heat exchange fluid is diverted in the heat exchange zone to achieve the same effect of adjusting the temperature of the planting medium.
  • the plant bed further comprises:
  • the table top is a multi-layer table top.
  • the mesa is formed such that one of a flat surface, a triangular shape, and a ladder type is in contact with the bottom of the heat exchange zone. Accordingly, when the countertop is a multi-layer, triangular or ladder type countertop, the arable area of the plant can be expanded.
  • heat exchange planting vessel may include the following two types:
  • the heat exchange plant vessel comprises a top heat exchange trough plate and a bottom bed plate, the ground planting zone is formed in the top heat exchange trough plate, and the heat exchange zone is formed between the heat exchange trough plate and the bottom bed plate And the heat exchange zone contacts the mesa via the bottom of the bottom bed.
  • the top heat exchange trough plate and the bottom bed plate are integrally formed and formed by combining with the module.
  • the bottom bed plate is covered with a thermal insulation layer and the heat exchange zone is in contact with outside air.
  • the top heat exchange groove plate comprises a double end wall plate and a central bottom plate extending between the double end wall plates, the planting medium is filled between the double end wall plate and the center bottom plate, and the double end wall plate and The central floor provides heat exchange fluid contact.
  • the bottom of the central bottom plate is formed with a pipe connecting the grounded planting area.
  • the bottom of the central bottom plate is formed with a bottom groove connecting the grounding planting area, and the pipe is formed at the bottom of the bottom groove to communicate with the grounding planting area.
  • the planting medium filled in the planting area from the ground is one of the planting soil and the planting stone, and a base component is arranged in the bottom tank to divide the planting medium into the pipeline.
  • the base component may be a sponge or a non-woven fabric
  • the pipeline provides drainage of the planting medium, introduces a negative pressure to adjust the water content of the planting medium, or introduces air to increase the oxygen content of the planting medium or introduces steam to sterilize the planting medium.
  • the formation of the pipe is excluded, and a bottom groove connecting the grounded planting area is formed directly at the bottom of the center floor, and the base assembly is placed.
  • the heat exchange plant vessel is composed of a plurality of heat exchange tubes to form the u-channel type ground-free planting area, and the heat exchange area is formed in the heat exchange tube, and the heat exchange fluid is exchanged through the heat exchange
  • the tube wall of the tube adjusts the temperature of the planting medium.
  • Figure 1 is a flow chart of the steps of the present invention
  • Figure 2 is a cross-sectional view showing an example 1 of the planting bed of the present invention
  • Figure 3 is a cross-sectional view showing an example 2 of the planting bed of the present invention.
  • Figure 4 is a cross-sectional view showing the third example of the plant bed of the present invention.
  • Figure 5 is a cross-sectional view showing an example 4 of the planting bed of the present invention.
  • Figure 6 is a cross-sectional view showing the fifth example of the plant bed of the present invention.
  • Figure 7 is an enlarged cross-sectional view showing an example 1 of the heat exchange planting vessel of Figures 3 to 6;
  • Figure 8 is a cross-sectional view showing an additional example 1 of the center chassis shown in Figure 7;
  • Figure 9 is a cross-sectional view showing an additional example 2 of the center chassis shown in Figure 7;
  • Figure 10 is a cross-sectional view showing an additional example of the top heat exchange groove plate shown in Figure 7;
  • Figure 11 is a cross-sectional view showing an additional example of the pipe groove shown in Figure 10;
  • Figure 12 is an enlarged cross-sectional view showing an example 2 of the heat exchange planting vessel of Figures 3 to 6.
  • FIG. 1 is a schematic diagram showing the steps of the present invention
  • FIG. 2 is a first embodiment of the planting bed of the present invention. Cutaway view.
  • the present invention is intended to construct a planting bed as shown in Fig. 2 and to adjust the temperature of the planting medium.
  • steps S1 to S3 as shown in Fig. 1 can be performed as follows:
  • Step S Build a plant bed.
  • a temperature-regulating planting bed 1 is laid off from the ground to plant the plant 2 from the ground.
  • the structure of the planting bed 1 may include a table 1 1 and a heat exchange plate 15; the frame 1 1 has a corner frame 13 distributed around and a bed surface 14 which is supported by the angle frame 13 to form a ground surface;
  • the plate 15 has a wave-shaped cross section, and the heat exchange plate 15 is fixed above the bed surface 14 of the plant bed 1 to be spaced apart from the bed surface 14.
  • Step S2 Build a planting area and a heat exchange area.
  • the purpose of constructing the planting area 20 is to bring the filling planting medium 23 out of the ground to contact the planting bed 1, and to adjust the temperature of the planting medium 23 through the planting bed 1; wherein, the cloth of the heat exchange zone 30
  • the planting bed 1 may be substantially present on the plant bed 1 or present on the plant bed 1 to provide a surface layer in contact with the planting medium 23 to adjust the temperature of the planting medium 23 through the plant bed 1.
  • the heat exchange plate 15 is disposed above the bed surface 14 to form an off-site planting area 20 and a heat exchange area 30; further, the heat exchange plate 15 It is disposed above the bed surface 14 of the plant bed 1 and between the heat exchange plate 15 and the bed surface, and also includes an end wall formed by the heat exchange plate 15 formed around the bed surface 14 for spacing to form a top layer.
  • the grounded planting area 20 and a bottom heat exchange area 30 in other words, the grounded planting area 20 is formed on the top layer of the heat exchange plate 15, and the heat exchange area 30 is formed on the heat exchange plate 15 and the planting bed 1 Between the bed faces 14, the heat exchange zone 30 serves as the bottom layer of the heat exchange plate 15.
  • the bed surface 14 is covered with the heat insulating layer 140, and the heat exchange region 30 is in contact with the outside air.
  • the heat exchange plate 15 may be formed into a wave shape by using a metal plate having good heat conduction efficiency, and the wave shape includes heat
  • the plate body of the exchange plate 15 is formed with a plurality of concave planting grooves 150 and convex grooves 151 which are spaced apart from each other; the concave planting grooves 150 have an upward opening, so that the planting grooves 150 which are open upward can be filled
  • the medium 23 is planted to become the ground planting area 20, and the plant 2 is planted on the planting medium 23; the convex groove 151 has a downward opening, so that between the grooves 151 and the bed 14 opening downward
  • a heat exchange zone 30 that flows inside the flow-through heat exchange fluid 31 is formed.
  • Step S3 Adjust the temperature of the planting medium.
  • the heat exchange fluid 31 may be water or gas
  • the planting medium 23 may be a cultivated soil or stone capable of providing nutrients to the roots of the plant. Due to the variability of the ambient temperature on the surface, there is a temperature difference between the heat exchange fluid 31 and the planting medium 23 which affects different mass densities or conductivity coefficients.
  • the ambient temperature of the tropical surface will cause a temperature difference between the heat exchange fluid 31 and the planting medium 23; in contrast, when the planting bed 1 is located at the surface of the cold zone
  • the ambient temperature of the cold zone also causes a temperature difference between the heat exchange fluid 31 and the planting medium 23, so that the heat exchange fluid 31 becomes a fluid having a low temperature or a high temperature relative to the planting medium 23.
  • the present invention can configure the refrigerator 32 in the heat exchange zone 30 to cool the heat exchange fluid 31 to a predetermined operating temperature.
  • the refrigerator 32 can also be replaced with a heat exchanger to heat the heat exchange fluid 31 to reach the operating temperature.
  • two or more flow guiding holes 33 may be disposed on the end wall of the heat exchange zone 30 for guiding the heat exchange fluid 31 to maintain a circulating flow state; and the flow guiding holes 33 may also heat
  • the exchange fluid 31 is passed through a refrigerator located outside the heat exchange zone 30 to reduce the operating temperature of the heat exchange fluid 31.
  • the refrigerator may also be replaced with a heat exchanger for heating the operating temperature of the heat exchange fluid 31.
  • the heat exchange fluid 31 and the planting medium 23 can simultaneously contact the heat exchange plate 15 by the heat transfer characteristics of the heat exchange plate 15, and the heat exchange fluid 31 and the plant can be adjusted via the heat exchange plate 15.
  • the temperature difference between the media 23 is such as to produce the effect of adjusting the temperature of the planting medium 23.
  • the temperature at which the root portion 22 of the plant 2 absorbs nutrients is generally Between 12 ° C and 28 ° C, therefore, when the ambient temperature of the planting site or the greenhouse temperature in the greenhouse is much higher than 28 ⁇ or far below 12 ° C, the temperature affecting the planting medium 23 will also deviate from 12 In the range of °C to 28 ° C, at this time, by the above method of the present invention, the heat exchange fluid 31 and the planting medium 23 can be adjusted via the heat exchange plate 15 by cooling or heating the operating temperature of the heat exchange fluid 31. The temperature difference between the planting medium 23 is adjusted to within 12° (: 28 ⁇ ) to promote the absorption of oxygen by the roots 22 of the plant 2.
  • FIG. 3 in order to disclose a cross-sectional view of the second embodiment of the planting bed of the present invention, the description is different from that of FIG.
  • the implementation structure of a planting bed 100 is different in that the bed surface 14 covered with the heat insulating layer 140 is replaced with a surface 160 not covered with the heat insulating layer, and the heat exchange plate 15 is replaced with a heat.
  • Exchange the plant vessel 400 among them:
  • the planting bed 100 comprises a plurality of heat exchange planting vessels 400 arranged on a table 1 10; the platform 1 10 has a corner frame 130 distributed around and a table 160 which is supported by the corner frame 130 to form a ground.
  • the table top 160 may be arranged in a horizontal manner by a plurality of racks 1 1 1 fixed to the gantry 1 10, so that the table top 160 is formed into a flat shape, and each heat exchange planting vessel is arranged.
  • the 400 can be placed horizontally with the table 160.
  • the table top shown in FIG. 3 can be substantially formed into a multi-layered table by an additional arrangement of the racks on the gantry 1 10 . 160, 163.
  • FIG. 5 and FIG. 6 are respectively sectional views showing Example 4 and Example 5 of the plant bed of the present invention, illustrating that the mesas 160 and 163 in FIGS. 3 and 4 can be configured as a single layer or a multi-layer.
  • the table top 161 can also be configured in a triangular shape by using a plurality of racks 112, and a plurality of frame slots arranged in a triangular high and low spacing. 1 15 to accommodate the heat exchange plant vessel 400; and in FIG.
  • the table top 162 can also be configured in a ladder shape by using a plurality of racks 1 13 to provide a plurality of distributions at the line height and low interval of the ladder.
  • the frame slot 1 16 accommodates the heat exchange plant vessel 400.
  • the triangular shaped mesas 161 constructed in FIG. 5 and the ladder-shaped mesas 162 formed in FIG. 6 are more capable of expanding the arable area of the grounded plant than the planar mesa 160 of FIG. And still maintain a good angle of acceptance.
  • the triangular countertop 161 and the ladder-shaped mesa 162 should also include equivalent arc-shaped, arch-shaped or wave-shaped mesa-type transformations, which are all contemplated by the present invention.
  • FIG. 7 an enlarged cross-sectional view of an example 1 of the heat exchange planting vessel 400 of FIG. 3 to FIG. 6 is illustrated, illustrating that the heat exchange planting vessel 400 is formed with a grounded planting area 200 having a U-shaped cross section. And a cavity type heat exchange zone 300 formed by the bottom of the grounded planting area 200; thereby, the plurality of heat exchange planting vessels 400 can be contacted to the table 160, 161 via the bottom of the cavity type heat exchange zone 300. And 162 and 163 are disposed on the gantry to facilitate filling the planting medium 230 with the planting medium 230 and planting the plant 2, and guiding the heat exchange fluid 310 in the heat exchange zone 300 to adjust the temperature of the planting medium 230.
  • the heat exchange plant vessel 400 includes a top heat exchange groove plate 410 and a bottom bed plate 420.
  • the ground planting area 200 is formed in each of the top heat exchange groove plates 410.
  • the heat exchange zone 300 is formed between each of the heat exchange groove plates 410 and the bottom bed plate 420 to achieve the same effect of adjusting the temperature of the planting medium 230.
  • the heat exchange zone 300 is in contact with the mesas 160, 161, 162, 163 via the bottom of the bottom bed 420.
  • the top heat exchange groove plate 410 and the bottom layer bed plate 420 may be integrally formed by using a metal material, or the top heat exchange groove plate 410 and the bottom layer bed plate 420 may also be card-molded to each other.
  • a module such as a buckle is combined into a heat exchange plant vessel 400.
  • at least the top heat exchange groove plate 410 and the bottom bed plate 420 are integrally formed at least the top heat exchange groove plate 410 must be made of a metal material having good heat conduction efficiency, and the bottom plate 420 is also made of metal.
  • a heat insulating layer 421 may be coated to contact the outside air in the heat exchange zone 300.
  • the insulating layer 421 can be made of thermal insulation cotton, Polylon or other equivalent material.
  • the above-mentioned top heat exchange groove plate 410 is formed by a double-ended wall plate 41 1 and a central bottom plate 412 extending between the double-end wall plates 41 1 , and the planting medium 230 is filled in the double-end wall plate.
  • the U-shaped groove chamber between the 411 and the center bottom plate 412, and the opposite end walls of the double end wall plate 41 1 and the center bottom plate 412 provide heat exchange fluid 310 contact.
  • the lowest recessed position centered at the center bottom plate 412 is formed with a pipe 414 that communicates with the grounded planting area 200.
  • the cross section of the pipe 414 can be It is circular, and a plurality of through holes 415 are formed at the top end of the duct 414 to communicate with the grounding planting area 200.
  • the pipe 414 can be used for draining the planting medium 230; or, the negative pressure (vacuum pressure) is introduced into the pipe 414 to force the water content of the planting medium to be adjusted; in addition, the pipe 414 can also guide The air enters the grounding planting area 200 to increase the oxygen content of the planting medium 230, thereby promoting the absorption of nutrients by the roots 22 of the plant 2; further, after the plants grown on the planting medium 230 have been harvested, the pipe 414 is further The vapor can be directed into the ex situ planting area 200 to sterilize the planting medium 230 (e.g., planting soil).
  • the planting medium 230 e.g., planting soil
  • the bottom portion of the center bottom plate 412 is formed with a bottom groove 416 that communicates with the ground planting area 200.
  • the conduit 414 shown in FIG. 8 is formed at the bottom of the bottom slot 416 and communicates with the grounded planting zone 200 via a plurality of through holes 415 that first communicate with the bottom slot 416. Accordingly, when the planting medium 230 filled in the ground planting area 200 is a planting soil or a planting stone, a sponge or a non-woven fabric can be placed in the bottom groove 416 as a base component 417 for spacing and preventing planting.
  • the medium 230 falls into the conduit 414, and the base assembly 417, such as a sponge or the like, has sufficient clearance to provide negative pressure, water or positive pressure air within the conduit 414 to penetrate into the planting medium 230.
  • the bottom of the central floor 412 can also exclude the arrangement of the conduit 414, and directly form the bottom slot 416 as shown in Figure 2 to position the base member 417 for preserving the moisture content of the planting medium 230.
  • a cross-sectional view showing an additional example of the top heat exchange slot plate of FIG. 7 illustrates that the wall surface of the top heat exchange slot plate 418 is integrally formed with a plurality of upper segments 413, and more specifically, The dissection piece 413 is formed on the double-end wall plate 41 1 and the center bottom plate 412, so that the dissection piece 413 can be extended.
  • the heat exchange fluid 310 is contacted into the heat exchange zone 300 to enhance the ability to adjust the temperature of the planting medium.
  • the heat exchange planting vessel 400 may be further formed with a tube groove 419 on both sides, and the tube groove 419 is relatively higher than the ground planting area 200.
  • the tube groove 419 can be used to embed a liquid supply tube 500 (or an air supply tube, as shown in FIG. 10) to drip a liquid or a nutrient solution or the like to the plant medium 230.
  • the liquid supply tube 500 may be replaced with the injection tube 510 shown in FIG. 11 , and a liquid such as water or nutrient solution may be sprayed on the surface layer of the planting medium 230 to infiltrate into the plant medium 230 for the plant root portion 22 . absorb.
  • the heat exchange planting vessel 450 may be composed of a plurality of heat exchange tubes 451. a U-groove type grounding planting zone 200, and a heat exchange zone 300 is formed in the heat exchange tube 451; accordingly, the heat exchange fluid guided in the heat exchange zone 300 is via the heat exchange pipe
  • the wall of the 451 is used to adjust the temperature of the planting medium 230.
  • the heat exchange tube 451 can be made of a metal material having good thermal conductivity, and the enclosure can be achieved by welding or other equivalent fixing means.
  • the heat exchange plate 15, the heat exchange groove plate 410, and the heat exchange tube 451 of the present invention are all provided with heat transfer capability to provide the planting medium 23, 230 in contact with the heat exchange fluids 31, 310 for heat exchange, but In the absence of the heat exchange fluid 31, 310 or the heat convection is not obvious, the heat exchange plate 15 and the heat exchange groove plate 410 described above may also be exposed to the atmosphere to provide the planting medium 23, 230 in contact with the ambient temperature for heat exchange. Therefore, whether in conduction or convection, it can be applied to the present invention to adjust the temperature of the planting medium 23, 230.
  • the present invention can also arrange a light-emitting assembly such as a bulb around the plant bed 1 filled with the planting medium 23, 230, and adjust the temperature of the planting medium 23, 230 by using the heat radiation generated by the light-emitting assembly. , are all areas of application of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Greenhouses (AREA)
  • Cultivation Of Plants (AREA)

Abstract

本发明提供了一种调节植栽介质温度的方法,包含离地布建一植栽床,充填植栽介质离地接触植栽床,并透过植栽床调节植栽介质的温度,本发明还包含一种植栽床,可促进植物的根部在植栽介质中吸收氧分。

Description

调节植栽介质温度的方法及植栽床 技术领域
本发明涉及培育植物的技术领域, 特别涉及一种调节植栽介质温度的方法及 植栽床。 背景技术
为了提升有机农业的植物栽种质量, 传统所见的蔬菜、 水果等植物的栽种方 式, 已由农地耕种演进至温室播种, 进一步的说, 为了减少病虫害, 利用温室内 离地种植蔬菜、 水果或花卉等也成为一种常见的方法。
传统常见的离地植栽方式, 是利用层架搭建起一承台, 并于承台上摆放多个 盆状的器皿,犹如在花盆种花一样,先将植栽介质 (例如土或石等)充填于器皿内, 再于植栽介质上植栽植物的根苗, 随后逐次的供水浇灌并接受阳光照射进行光合 作用, 以促进植物生长。
由于植物的生长是透过植埋于植栽介质内的根部进行耗氧呼吸以便吸收养 分的, 同时植物的叶部专责进行光合作用, 因此不论是水或营养液等应该供给植 物的根部吸收。 特别的, 将水或营养液等浇灌于植栽介质上, 透过植栽介质的蓄 存及转化, 有助于营造出有利于植物根部吸收养分的环境。
且知, 一般适于植物根部生长的植栽介质温度是介于 12°C〜28°C之间, 当然 所述植栽介质温度会因所栽种的植物种类的不同而存有细微差异; 但是, 由于植 栽地点的环境温度会因南、 北半球的地表位置的不同以及气候的变化等因素而存 在极大的温差, 因此依现阶段技术而言, 一般只能依靠温室来进行保温或散热, 以便调节棚内的环境温度而使植物利于生长, 但却无法有效的控制有利植物根部 生长的植栽介质温度。
换句话说, 植物的叶部与根部的耐候性不同。 一般而言, 在热带或亚热带的 地表上, 植物的叶部大约可承受 40°C以内的高温, 但越接近 40°C时可能导致植 物的根部逐渐地枯萎或溃烂。 相对的, 在 0°C以下的寒带地表上利用温室来栽种 植物, 纵使能利用温室来产生有限的保温作用, 但仍难以控制有利于植物根部生 长的植栽介质温度, 导致培育植物的成效并不理想。 发明内容
鉴于地表上可供种植的环境温度存在多变性, 本发明的目的在于采用离地植 栽及热交换的技术原理, 解决植栽介质的温度难以掌控的问题。
为能达成上述目的并解决问题, 本发明提供了一种调节植栽介质温度的方法, 其技术手段包括: 离地布建一植栽床, 充填植栽介质离地接触植栽床, 并透过植 栽床调节植栽介质的温度。
在进一步实施中, 所述植栽床可经由热交换板的传导来调节植栽介质的温度、 经由热交换流体的对流来调节植栽介质的温度、或 /及经由释光组件的热幅射来调 节植栽介质的温度。
上述技术手段可贡献的效能在于: 确保植栽床与地表分离, 可减少植物遭遇 病虫害, 并且易于离地控制植栽介质的温度, 以促进植物的根部吸收养分。
除上述以外,本发明还提供一种调节植栽介质温度的方法,其技术手段包括: 离地布建一调温式植栽床, 使用热交换板于植栽床的床面上方间隔形成顶层的离 地植栽区及底层的热交换区, 充填植栽介质于离地植栽区并栽种植物, 导流热交 换流体于热交换区; 其中, 热交换流体经由热交换板调节植栽介质的温度。
上述技术手段可贡献的效能在于: 确保植栽床与地表分离, 可减少植物遭遇 病虫害, 并且易于离地控制植栽介质的温度, 同时利用热交换板的热传导特性, 以便于调整热交换流体的导流温度, 进而相对地调节植栽介质的温度, 以促进植 物根部吸收氧分。
在实施上, 本发明上述方法, 还包含:
所述植栽床披覆有保温层间隔热交换区与外界空气接触。 因此, 有利于保持 热交换区内热交换流体的导流温度。
所热交换板的断面为浪形, 包含形成若干条相互间隔分布的凹状植栽沟及凸 状沟槽, 该凹状植栽沟提供离地植栽区充填植栽介质并栽种植物, 该凸状沟槽提 供热交换区导流热交换流体调节植栽介质的温度。 其中, 热交换流体为相对植栽 介质低温或高温的流体。 因此, 有利于一热交换板的双端面分别充填植栽介质及 导流热交换流体, 使植栽介质与热交换流体之间的致冷或致热式的温度传导能容 易的被施行。
其中, 所述热交换流体为水、 气体的其中之一。 其中提供致冷器冷却热交换 流体, 使热交换流体相对植栽介质低温。 或者提供加热器加温热交换流体, 使热 交换流体相对植栽介质高温。 本发明还提供一种植栽床, 据以实施上述方法并实现上述效能, 该植栽床的 技术手段包括: 一架台, 具分布于四周的角架, 及由角架撑置形成离地的床面; 一热交换板, 其断面呈浪形, 并固设于植栽床的床面上方而与床面间隔对应; 一 离地植栽区, 形成于热交换板的顶层, 该离地植栽区充填有栽种植物用的植栽介 质; 及一热交换区, 形成于热交换板与植栽床的床面之间, 并作为热交换板的底 层; 其中, 热交换区内导流有热交换流体经由热交换板调节植栽介质的温度。
上述的床面, 在实施上可替换成台面, 且上述热交换板, 在实施上可替换成 一热交换植栽器皿, 该热交换植栽器皿形成有断面呈 U槽型的一离地植栽区, 及 由离地植栽区的底部间隔形成的一槽穴型的热交换区, 多个热交换植栽器皿经由 槽穴型热交换区的底部接触台面而配置于架台上; 其中, 离地植栽区充填有栽种 植物用的植栽介质, 热交换区内导流有热交换流体, 以达到调节植栽介质温度的 相同功效。
此外, 在进一步实施中, 该植栽床还包括:
所述台面为多层式台面。 或者, 所述台面形成为平面、 三角型与梯型的其中 之一供热交换区的底部接触。 依此, 当台面为多层式、 三角型或梯型的台面时, 可拓展离地植栽的可耕种面积。
其中, 热交换植栽器皿的进一步实施方式可包括下列两种:
其一: 热交换植栽器皿包含一顶层热交换槽板及一底层床板, 离地植栽区是 形成于顶层热交换槽板内, 热交换区是形成于热交换槽板与底层床板之间, 且热 交换区是经由底层床板的底部接触台面。 其中:
所述顶层热交换槽板及底层床板是一体延制形成与模块结合形成的其中之 一。 所述底层床板披覆有保温层间隔热交换区与外界空气接触。 所述顶层热交换 槽板包含由双端壁板及延制于双端壁板之间的中心底板围绕形成, 植栽介质充填 于双端壁板与中心底板之间,且双端壁板及中心底板提供热交换流体接触。其中, 中心底板的底部形成有连通离地植栽区的管道。 更进一步的, 所述中心底板的底 部形成有连通离地植栽区的底槽, 管道是形成于底槽的底部而与离地植栽区相连 通。 其中离地植栽区充填的植栽介质为植栽土、 植栽石的其中之一, 底槽内并摆 放一基底组件间隔植栽介质落入管道。 其中基底组件可为海绵或不织布, 管道提 供植栽介质排水、 导入负压调节植栽介质含水量或导入空气增加植栽介质含氧量 或导入蒸气对植栽介质杀菌之用。 或者, 排除所述管道的形成, 而直接于中心底 板的底部形成有连通离地植栽区的底槽, 并摆放所述基底组件。 其二: 热交换植栽器皿是由多条热交换管围组成所述的 u槽型离地植栽区, 且热交换区是形成于所述热交换管内, 热交换流体经由所述热交换管的管壁调节 植栽介质的温度。
以上所述的技术手段及其产生技术效果的具体实施细节, 请参照下列实施例 及图式加以说明。 附图说明
图 1是本发明的步骤程序图;
图 2是本发明植栽床实例一的剖示图;
图 3是本发明植栽床实例二的剖示图;
图 4是本发明植栽床实例三的剖示图;
图 5是本发明植栽床实例四的剖示图;
图 6是本发明植栽床实例五的剖示图;
图 7是图 3至图 6中热交换植栽器皿实例一的放大剖示图;
图 8是图 7所示中心底板的附加实例一的剖示图;
图 9是图 7所示中心底板的附加实例二的剖示图;
图 10是图 7所示顶层热交换槽板的附加实例的剖示图;
图 11是图 10所示管槽的附加实例剖示图;
图 12是图 3至图 6中热交换植栽器皿实例二的放大剖示图。
附图标记说明
I、 100 植栽床
I I、 110 架台
I I I、 112、 113 架杆 115、 116 框槽
13、 130 角架 14 床面
140、 421 保温层 15 热交换板 150 植栽沟
151 沟槽
160、 161、 162、 163 台面
植物
0、 200 植栽区
1 叶部
2 根部
3、 230 植栽介质 0、 300 热交换区 1、 310 热交换流体 2 致冷器
3 导流孔
00、 450 热交换植栽器皿 10、 418 热交换槽板 1 1 壁板
12 中心底板
13 歧片
14 管道
15 通孔
16 底槽
17 海绵 (或不织布) 19 管槽
20 保温床板 500 供液管 510 喷注管
60、 600、 610、 620 地表植栽区 SI至 S3 主实施例的步骤说明
具体实施方式
为能具体实施本发明调节植栽介质温度的方法, 首先, 请合并参阅图 1及图 2; 其中, 图 1为揭露本发明的步骤程序图, 图 2为揭露本发明植栽床实例一的 剖示图。 本发明欲布建如图 2所示的植栽床, 并施予调节植栽介质的温度, 在一 较佳实施例中, 可执行如图 1所示的步骤 S1至 S3, 说明如下:
步骤 S 布建植栽床。
本发明为了减少植物遭遇病虫害, 并且避免植栽介质直接接触地表而难于控 制温度的问题, 特别的, 离地布建一调温式植栽床 1来离地栽种植物 2。 该植栽 床 1的结构, 可包含一架台 1 1及一热交换板 15 ; 该架台 1 1具有四周分布的角架 13以及由角架 13撑置形成离地的床面 14; 该热交换板 15的断面呈浪形, 并将热 交换板 15固定于植栽床 1的床面 14上方而与床面 14相互间隔对应。
步骤 S2: 布建植栽区及热交换区。
实质上,布建植栽区 20的目的是为了使充填植栽介质 23离地接触植栽床 1, 并通过植栽床 1来调节植栽介质 23的温度; 其中, 热交换区 30的布建, 可实质 存在于植栽床 1上, 或存在于植栽床 1提供植栽介质 23接触的表层, 以便通过植 栽床 1来调节植栽介质 23的温度。
在图 2所示植栽床 1的基础架构下, 该热交换板 15得以在床面 14上方布建 形成一离地植栽区 20及一热交换区 30; 进一步的说, 热交换板 15是设置于植栽 床 1的床面 14上方, 且热交换板 15与床面之间, 也包含形成于床面 14四周由热 交换板 15建构形成的端墙, 用以间隔形成一顶层的离地植栽区 20及一底层的热 交换区 30; 换句话说, 离地植栽区 20形成于热交换板 15的顶层, 且热交换区 30形成于热交换板 15与植栽床 1的床面 14之间, 使热交换区 30作为热交换板 15的底层。
在上述中, 床面 14披覆有保温层 140间隔热交换区 30与外界空气接触。 此 外, 热交换板 15可选用热传导效率良好的金属板制成浪形, 所述浪形包含使热 交换板 15的板体形成若干条相互间隔分布的凹状植栽沟 150及凸状沟槽 151 ;该 凹状植栽沟 150具有朝上的开口,使朝上开口的各植栽沟 150能充填植栽介质 23 而成为离地植栽区 20, 并于植栽介质 23上栽种植物 2 ; 该凸状沟槽 151具有朝 下的开口, 使朝下开口的各沟槽 151与床面 14之间形成为导流热交换流体 31在 内流动的热交换区 30。
步骤 S3 : 调节植栽介质温度。
上述热交换流体 31可为水或气体, 且植栽介质 23可为能提供植物根部 22 养分的培植土或石。 由于地表上环境温度的多变性, 会影响不同质密度或传导系 数的热交换流体 31与植栽介质 23之间存在温差, 例如布建植栽床 1的地点是坐 落于热带地表时, 不论植栽床 1是否布建于温室内, 热带地表的环境温度即会使 热交换流体 31与植栽介质 23之间存在温差; 相对的, 当植栽床 1的布建地点是 坐落于寒带地表时, 寒带地表的环境温度也会使热交换流体 31与植栽介质 23之 间存在温差, 使得热交换流体 31成为相对植栽介质 23低温或高温的流体。 但无 论热交换流体 31与植栽介质 23之间是否存在温差,本发明可于热交换区 30内配 置致冷器 32来冷却热交换流体 31达到既定的工作温度。其中, 该致冷器 32也可 替换成是一致热器来以加热热交换流体 31达到工作温度。
在另一实施中, 热交换区 30的端壁上可设置两个以上的导流孔 33, 用以导 流热交换流体 31保持循环的流动状态;且所述导流孔 33也可以将热交换流体 31 导流通过一坐落于热交换区 30外部的致冷器, 用以降低热交换流体 31的工作温 度。其中, 该致冷器也可替换成是致热器, 用以加热热交换流体 31的工作温度。
此外, 本发明还通过上述热交换板 15所具备的热传导特性, 使热交换流体 31与植栽介质 23能同时接触热交换板 15,进而经由热交换板 15来调节热交换流 体 31与植栽介质 23之间的温差, 以产生调节植栽介质 23温度的效用。
由于栽种于植栽介质 23上的植物 2, 具有显露于外的叶部 21及植埋于植栽 介质 23内的根部 22,且知一般最利于植物 2的根部 22吸收养分的温度是介于 12°C 〜28°C之间, 因此, 当植栽地点的环境温度或温室的棚内温度远高于 28Γ或远低 于 12°C时, 将连带影响植栽介质 23的温度也偏离 12°C~28°C的范围, 此时, 利 用本发明上述方法, 便可经由冷却或加热热交换流体 31 的工作温度, 并经由热 交换板 15来调节热交换流体 31与植栽介质 23之间的温差, 进而将植栽介质 23 的温度调节至 12° (:〜 28Ό的范围之内, 以促进植物 2的根部 22吸收氧分。
续请参阅图 3, 为揭露本发明植栽床实例二的剖示图, 说明有别于图 2的另 一植栽床 100的实施结构,其差异在于:将覆设有保温层 140的所述床面 14替换 成没有覆设保温层的一台面 160,并且将所述的热交换板 15替换成一热交换植栽 器皿 400。 其中:
植栽床 100包含于一架台 1 10上配置多个热交换植栽器皿 400所组成; 该架 台 1 10具有四周分布的角架 130以及由角架 130撑置形成离地的台面 160。在图 3 所示实施例中, 该台面 160可由固定于架台 1 10上多条架杆 1 1 1采用水平方式排 列而成, 使台面 160布建形成为平面状, 且各热交换植栽器皿 400皆能接触台面 160而水平配置。
请参阅图 4,为揭露本发明植栽床实例三的剖示图,说明图 3中所示的台面, 实质上可经由架台 1 10上架杆的附加配置,而实施形成为多层式的台面 160、163。
请合并参阅图 5及图 6,分别为揭露本发明植栽床实例四及实例五的剖示图, 说明图 3及图 4中的台面 160、 163除了可配置成单层或多层式的平面状来摆置热 交换植栽器皿 400之外, 在图 5中, 该台面 161还可利用多条架杆 112配置成三 角状, 且提供多个呈三角型高、 低位间隔排列的框槽 1 15来容置热交换植栽器皿 400; 且在图 6中, 该台面 162还可利用多条架杆 1 13配置成梯型, 用以提供多个 分布于梯在线高、 低间隔排列的框槽 1 16来容置热交换植栽器皿 400。 其中, 图 5中建构形成的三角型台面 161与图 6中建构形成的梯型台面 162, 相较于图 3 中的平面状台面 160而言, 更能拓展离地植栽的可耕种面积, 且仍能保有良好的 受阳角度。此外,所述三角型台面 161及梯型台面 162也应当囊括了等效的弧型、 拱型或波浪型等台面型体的变换, 皆属本发明所思及的应用范畴。
再请参阅图 7, 为揭露图 3至图 6中热交换植栽器皿 400实例一的放大剖示 图, 说明热交换植栽器皿 400形成有断面呈 U槽型的离地植栽区 200, 以及由离 地植栽区 200的底部间隔形成的槽穴型热交换区 300; 依此可将多个热交换植栽 器皿 400经由槽穴型热交换区 300的底部来接触该台面 160、 161、 162、 163而配 置于架台上, 以便于离地植栽区 200内充填植栽介质 230并栽种植物 2, 并于热 交换区 300内导流热交换流体 310调节植栽介质 230的温度。
进一步的说, 在图 7所示实施中, 热交换植栽器皿 400包含有一顶层热交换 槽板 410及一底层床板 420,离地植栽区 200是形成于每一个顶层热交换槽板 410 内, 热交换区 300是形成于每一个热交换槽板 410与底层床板 420之间, 以达到 施予调节植栽介质 230温度的相同功效。此外,热交换区 300是经由底层床板 420 的底部接触台面 160、 161、 162、 163。 更进一步的说, 所述顶层热交换槽板 410及底层床板 420可以采用金属材料 一体延制形成, 或者所述顶层热交换槽板 410与底层床板 420也可以是采用分模 件而以相互卡扣等模块方式结合成热交换植栽器皿 400。 再进一步的说, 无论顶 层热交换槽板 410与底层床板 420是否为一体延制形成, 至少该顶层热交换槽板 410必须采用热传导效率良好的金属材料制成, 且当底层床板 420也是使用金属 材料制成时, 可披覆一保温层 421间隔热交换区 300与外界空气接触。 该保温层 421可为保温棉、 保利龙或其它等效材料制成。
另一方面, 上述的顶层热交换槽板 410包含由双端壁板 41 1及延制于双端壁 板 41 1之间的中心底板 412围绕形成, 植栽介质 230是充填于双端壁板 411与中 心底板 412之间的 U型槽室内, 且双端壁板 41 1及中心底板 412的相对端壁提供 热交换流体 310接触。
请参阅图 8, 为揭露图 7中该中心底板的附加实例一的剖示图, 说明中心底 板 412居中的最低陷位置形成有连通离地植栽区 200的管道 414, 该管道 414的 断面可呈圆形,且管道 414顶端形成有多个通孔 415连通离地植栽区 200。依此, 该管道 414可供植栽介质 230排水之用; 或者, 导引负压 (真空压)进入管道 414 内强制性的压调节植栽介质含水量; 此外, 该管道 414还可导引空气进入离地植 栽区 200, 以增加植栽介质 230含氧量, 进而促进植物 2的根部 22吸收养分; 再 者, 当植栽介质 230上所种植的植物已收成之后, 该管道 414还可导引蒸气进入 离地植栽区 200, 以便对植栽介质 230(例如植栽土)进行杀菌。
请参阅图 9, 为揭露图 7中该中心底板的附加实例二的剖示图, 说明中心底 板 412的底部,特别是居中最低陷位置,形成有连通离地植栽区 200的底槽 416, 图 8中所示的管道 414是形成于底槽 416的底部, 而经由多个通孔 415先连通底 槽 416再与离地植栽区 200相连通。依此,当离地植栽区 200充填的植栽介质 230 为植栽土或植栽石时, 底槽 416内可供摆放海绵或不织布等作为基底组件 417, 用以间隔并防止植栽介质 230落入管道 414内,且例如海绵等制成的基底组件 417 具有足够的空隙提供管道 414内的负压、水或正压空气穿透至植栽介质 230之中。 除此之外, 中心底板 412的底部亦可排除管道 414的设置, 而直接形成如图 2所 述的底槽 416来摆放基底组件 417, 用以保存植栽介质 230的含水量。
接着请参阅图 10, 为揭露图 7中的顶层热交换槽板附加实例的剖示图, 说明 顶层热交换槽板 418的壁面一体延制形成有上若干歧片 413, 更具体的说, 所述 歧片 413是延制形成于双端壁板 41 1及中心底板 412上, 而使所述歧片 413能伸 入热交换区 300内接触热交换流体 310, 而提升调节植栽介质温度的能力。
此外,在图 7至图 10的实例中, 热交换植栽器皿 400双侧还可以分别延制形 成有管槽 419, 所述管槽 419相对高于离地植栽区 200。 该管槽 419内可供嵌组 供液管 500(或称供气管, 如图 10所示)而对植栽介质 230滴灌水或营养液等液体 或供应空气。 或者, 该供液管 500也可替换为图 1 1所示的喷注管 510, 而在植栽 介质 230的表层上方喷注水或营养液等液体, 以便渗入植栽介质 230内供植物根 部 22吸收。
接着请参阅图 12,为揭露图 3至图 6所示热交换植栽器皿实例二的放大剖示 图, 说明上述的热交换植栽器皿 450还可以是由多条热交换管 451围组成所述的 U槽型离地植栽区 200, 且热交换区 300是形成于所述热交换管 451内; 依此, 导流于热交换区 300内的热交换流体是经由所述热交换管 451的管壁来调节植栽 介质 230的温度。其中,所述的热交换管 451可选用热传导性佳的金属材料制成, 且所述围组可以是以焊接或其它等效的固定手段而达成。
由上述可知, 本发明上述的热交换板 15、 热交换槽板 410及热交换管 451皆 具备有热传导能力来提供植栽介质 23、 230与热交换流体 31、 310接触而进行热 交换, 但在没有热交换流体 31、 310或热对流不明显的情况下, 上述的热交换板 15及热交换槽板 410也可以裸露在大气中而提供植栽介质 23、 230与环境温度接 触进行热交换, 因此不论是以传导或对流方式, 皆可应用于本发明中来调节植栽 介质 23、 230的温度。 此外, 本发明还可以于充填有植栽介质 23、 230的植栽床 1 四周布设例如是灯泡等释光组件, 利用释光组件所产生的热幅射来调节植栽介 质 23、 230的温度, 皆属本发明的应用范畴。
必须附带说明的是, 在图 2至图 6所示实例中, 由于采用了离地方式布建植 栽床 1、 100,使得四周角架 13、 130框围形成有以床面 14为顶的地表植栽区 60、 600、 610、 620, 以利于地表植栽区 60、 600、 610、 620 内栽种植物, 充分利用 可耕种的植栽空间。
以上实施例仅为表达了本发明的较佳实施方式, 但并不能因此而理解为对本 发明专利范围的限制。 应当指出的是, 对于本发明所属技术领域中具有通常知识 者而言, 在不脱离本发明构思的前提下, 还可以做出复数变形和改进, 这些都属 于本发明的保护范围。因此,本发明应以申请专利范围中限定的请求项内容为准。

Claims

权利要求
1.一种调节植栽介质温度的方法, 包括: 离地布建一植栽床, 充填植栽介质 离地接触植栽床, 并通过植栽床调节植栽介质的温度。
2.如权利要求 1所述调节植栽介质温度的方法, 其中植栽床经由热交换板的 传导来调节植栽介质的温度。
3.如权利要求 1或 2所述调节植栽介质温度的方法, 其中植栽床经由热交换 流体的对流来调节植栽介质的温度。
4.如权利要求 1、 2或 3所述调节植栽介质温度的方法, 其中植栽床经由释 光组件的热幅射来调节植栽介质的温度。
5.一种调节植栽介质温度的方法, 包括: 离地布建一调温式植栽床, 使用热 交换板于植栽床的床面上方间隔形成顶层的离地植栽区及底层的热交换区, 充填 植栽介质于离地植栽区并栽种植物, 导流热交换流体于热交换区; 其中, 热交换 流体经由热交换板调节植栽介质的温度。
6.如权利要求 5所述调节植栽介质温度的方法, 其中植栽床披覆有保温层间 隔热交换区与外界空气接触。
7.如权利要求 5所述调节植栽介质温度的方法,其中热交换板的断面为浪形, 包含形成若干条相互间隔分布的凹状植栽沟及凸状沟槽, 该凹状植栽沟提供离地 植栽区充填植栽介质并栽种植物, 该凸状沟槽提供热交换区导流热交换流体调节 植栽介质的温度。
8.如权利要求 5或 7所述调节植栽介质温度的方法, 其中热交换流体为相对 植栽介质低温或高温的流体。
9.如权利要求 8所述调节植栽介质温度的方法, 其中热交换流体为水、 气体 的其中之一。
10.如权利要求 8所述布建植栽床调节植栽介质温度的方法, 其中包含提供 致冷器冷却热交换流体, 使热交换流体相对植栽介质低温。
11.如权利要求 8所述调节植栽介质温度的方法, 其中包含提供加热器加温 热交换流体, 使热交换流体相对植栽介质高温。
12.一种植栽床, 包括:
一架台, 具分布于四周的角架, 及由角架撑置形成离地的床面;
一热交换板,其断面呈浪形,并固设于植栽床的床面上方而与床面间隔对应; 一离地植栽区, 形成于热交换板的顶层, 该离地植栽区充填有栽种植物用的 植栽介质; 及
一热交换区,形成于热交换板与植栽床的床面之间,并作为热交换板的底层; 其中, 热交换区内导流有热交换流体经由热交换板调节植栽介质的温度。
13.如权利要求 12所述的植栽床, 其中床面披覆有保温层间隔热交换区与外 界空气接触。
14.如权利要求 12所述的植栽床, 其中热交换板的断面呈浪形, 包含若干条 相互间隔分布的凹状植栽沟及凸状沟槽, 植栽介质充填于凹状植栽沟内而建构形 成栽种植物的离地植栽区, 热交换流体导流于凸状沟槽内而建构形成热交换区。
15.如权利要求 12或 14所述的植栽床, 其中热交换流体为相对植栽介质低 温或高温的流体。
16.如权利要求 15所述的植栽床, 其中热交换流体为水、 气体的其中之一。
17.如权利要求 15所述的植栽床, 其中热交换区内配置有致冷器冷却热交换 流体。
18.如权利要求 15所述的植栽床, 其中热交换区内配置有加热器加温热交换 流体。
19.如权利要求 12所述的植栽床,其中四周角架框围形成有以床面为顶的地 表植栽区。
20.一种植栽床, 包括:
一架台, 具分布于四周的角架, 及由角架撑置形成离地的台面;
一热交换植栽器皿, 形成有断面呈 U槽型的一离地植栽区, 及由离地植栽区 的底部间隔形成的一槽穴型的热交换区, 多个热交换植栽器皿经由槽穴型热交换 区的底部接触台面而配置于架台上;
其中, 离地植栽区充填有栽种植物用的植栽介质, 热交换区内导流有热交换 流体调节植栽介质的温度。
21.如权利要求 20所述的植栽床, 其中该台面为多层式台面。
22.如权利要求 20所述的植栽床, 其中台面系形成为平面、 三角型与梯型的 其中之一供热交换区的底部接触。
23.如权利要求 20所述的植栽床, 其中热交换植栽器皿包含一顶层热交换槽 板及一底层床板, 离地植栽区是形成于顶层热交换槽板内, 热交换区是形成于热 交换槽板与底层床板之间, 且热交换区是经由底层床板的底部接触台面。
24.如权利要求 23所述的植栽床, 其中顶层热交换槽板及底层床板是一体延 制形成与模块结合形成的其中之一。
25.如权利要求 23或 24所述的植栽床, 其中底层床板披覆有保温层间隔热 交换区与外界空气接触。
26.如权利要求 23所述的植栽床, 其中顶层热交换槽板包含由双端壁板及延 制于双端壁板之间的中心底板围绕形成, 植栽介质充填于双端壁板与中心底板之 间, 且双端壁板及中心底板提供热交换流体接触。
27.如权利要求 26所述的植栽床, 其中中心底板的底部形成有连通离地植栽 区的管道。
28.如权利要求 27所述的植栽床, 其中中心底板的底部形成有连通离地植栽 区的底槽, 管道是形成于底槽的底部而与离地植栽区相连通。
29.如权利要求 27所述的植栽床,其中离地植栽区充填的植栽介质为植栽土、 植栽石的其中之一, 底槽内并摆放一基底组件间隔植栽介质落入管道。
30.如权利要求 27、 28或 29所述的植栽床, 其中管道提供植栽介质排水、 导入负压调节植栽介质含水量、 导入空气增加植栽介质含氧量或导入蒸气对植栽 介质杀菌之用。
31.如权利要求 27所述的植栽床,其中中心底板的底部形成有连通离地植栽 区的底槽, 离地植栽区充填的植栽介质为植栽土、 植栽石的其中之一, 底槽内并 摆放一基底组件。
32.如权利要求 26所述的植栽床,其中双端壁板及中心底板上延制形成有若 干歧片, 所述歧片伸入热交换区内接触热交换流体。
33.如权利要求 20所述的植栽床,其中相对高于离地植栽区的热交换植栽器 皿双侧分别形成有管槽。
34.如权利要求 33所述的植栽床, 其中管槽内嵌组供液管对植栽介质滴灌液 体。
35.如权利要求 33所述的植栽床, 其中管槽内嵌组供气管对植栽介质供应空 气。
36.如权利要求 20所述的植栽床, 其中热交换植栽器皿是由多条热交换管围 组成所述的 U槽型离地植栽区, 且热交换区是形成于所述热交换管内, 热交换流 体经由所述热交换管的管壁调节植栽介质的温度。
37.如权利要求 20、 23或 36所述的植栽床, 其中热交换流体为相对植栽介 质低温或高温的流体。
38.如权利要求 37所述的植栽床, 其中热交换流体为水、 气体的其中之一。
39.如权利要求 37所述的植栽床, 其中热交换区内配置有致冷器冷却热交换 流体。
40.如权利要求 37所述的植栽床, 其中热交换区内配置有加热器加温热交换 流体。
41.如权利要求 20所述的植栽床,其中四周角架框围形成有以床面为顶的地 表植栽区。
PCT/CN2013/000722 2013-06-21 2013-06-21 调节植栽介质温度的方法及植栽床 WO2014201588A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/000722 WO2014201588A1 (zh) 2013-06-21 2013-06-21 调节植栽介质温度的方法及植栽床
JP2016600038U JP3208265U (ja) 2013-06-21 2013-06-21 植栽媒体温度を調節する方法及び植栽床

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000722 WO2014201588A1 (zh) 2013-06-21 2013-06-21 调节植栽介质温度的方法及植栽床

Publications (1)

Publication Number Publication Date
WO2014201588A1 true WO2014201588A1 (zh) 2014-12-24

Family

ID=52103767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000722 WO2014201588A1 (zh) 2013-06-21 2013-06-21 调节植栽介质温度的方法及植栽床

Country Status (2)

Country Link
JP (1) JP3208265U (zh)
WO (1) WO2014201588A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2031962B1 (en) * 2022-05-23 2023-11-28 Christiaens Group B V Heat exchanger for temperature control of a substrate for cultivating horticultural products, substrate drawer, and rack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225238A (ja) * 1997-02-13 1998-08-25 Shikoku Sogo Kenkyusho:Kk 植物栽培装置
CN1220818A (zh) * 1997-12-24 1999-06-30 福冈丸本株式会社 高架种植装置
JP2011160688A (ja) * 2010-02-08 2011-08-25 Komoro Nunobiki Strawberry Farm Co Ltd 植物栽培ベッドの培地温度管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225238A (ja) * 1997-02-13 1998-08-25 Shikoku Sogo Kenkyusho:Kk 植物栽培装置
CN1220818A (zh) * 1997-12-24 1999-06-30 福冈丸本株式会社 高架种植装置
JP2011160688A (ja) * 2010-02-08 2011-08-25 Komoro Nunobiki Strawberry Farm Co Ltd 植物栽培ベッドの培地温度管理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2031962B1 (en) * 2022-05-23 2023-11-28 Christiaens Group B V Heat exchanger for temperature control of a substrate for cultivating horticultural products, substrate drawer, and rack
WO2023229459A1 (en) * 2022-05-23 2023-11-30 Christiaens Group B.V. Heat exchanger for temperature control of a substrate for cultivating horticultural products, substrate drawer, and rack

Also Published As

Publication number Publication date
JP3208265U (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
KR101723457B1 (ko) 재배 장치
EP0040620A1 (en) DEVICE FOR GREENHOUSES OR VEGETABLES FOR IMPROVING PLANT GROWTH OR SEEDING SEEDS.
WO2016190017A1 (ja) 人工水耕栽培装置
CN210491868U (zh) 葡萄苗木高温育苗用设施大棚
CN204409166U (zh) 一种栽培草莓种植槽
CN206978194U (zh) 一种具有防止种子腐烂功能的培育箱
TWI510184B (zh) Method of Adjusting Temperature of Planting Medium and Planting Bed
WO2014201588A1 (zh) 调节植栽介质温度的方法及植栽床
TWM463495U (zh) 植栽床
CN107371905A (zh) 一种具有防止种子腐烂功能的培育箱
TWI558312B (zh) Adjusting the temperature of the medium planting bed planting
CN203675738U (zh) 大棚内斜坡式铁皮石斛秧苗栽培架
TWM471141U (zh) 植栽床
JP5200212B2 (ja) 植物栽培温度調整装置
JP4350155B2 (ja) 高設栽培装置及び高設栽培方法
JPS5816849B2 (ja) スイコウサイバイブラント
JPH01235525A (ja) 水耕栽培方法およびその方法で使用する栽培ベッドおよび栽培ポット
CN207219529U (zh) 白及保温育苗床
CN204796346U (zh) 一种可拆卸式水稻育苗房
TW200803721A (en) Super sprouting enhancing system and super cultivation enhancing system
JP7089670B2 (ja) 育苗装置およびその使用方法
JPH01225422A (ja) 完全制御型植物工場の建屋
JPH0516933Y2 (zh)
JPH0441822Y2 (zh)
JP2007275001A (ja) 植物栽培土の温度調節用シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016600038

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887484

Country of ref document: EP

Kind code of ref document: A1