WO2014199857A1 - 水中移動体 - Google Patents

水中移動体 Download PDF

Info

Publication number
WO2014199857A1
WO2014199857A1 PCT/JP2014/064626 JP2014064626W WO2014199857A1 WO 2014199857 A1 WO2014199857 A1 WO 2014199857A1 JP 2014064626 W JP2014064626 W JP 2014064626W WO 2014199857 A1 WO2014199857 A1 WO 2014199857A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
main body
underwater
unit
information
Prior art date
Application number
PCT/JP2014/064626
Other languages
English (en)
French (fr)
Inventor
中川 敏彦
雅明 市川
有恒 川辺
弘晃 小笹
芳幸 和田
賢輔 平田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to AU2014279255A priority Critical patent/AU2014279255B2/en
Priority to EP14810877.2A priority patent/EP3009341A4/en
Publication of WO2014199857A1 publication Critical patent/WO2014199857A1/ja
Priority to US14/962,433 priority patent/US20160090160A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/04Superstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/04Fixations or other anchoring arrangements
    • B63B22/06Fixations or other anchoring arrangements with means to cause the buoy to surface in response to a transmitted signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/18Buoys having means to control attitude or position, e.g. reaction surfaces or tether
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B2022/006Buoys specially adapted for measuring or watch purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/04Adaptation for subterranean or subaqueous use

Definitions

  • the present invention relates to an underwater moving body, and more particularly, to an underwater moving body capable of traveling between the water and the water surface.
  • the hydrosphere (ocean, lakes, rivers) occupies about 70% of the earth's surface, and its heat capacity is said to be about 1000 times that of the atmosphere.
  • water temperature of the vast ocean is greatly changed, it has a great influence on the atmospheric conditions, causing a great change in the weather and climate around the world (for example, the El Nino phenomenon). Therefore, it is necessary to investigate marine information including water temperature in order to grasp fluctuations in marine information. It is also necessary to conduct tidal current observation, seafloor crustal deformation observation, seafloor active fault survey, continental shelf survey, etc. for navigational safety, disaster prevention / environmental conservation, marine interest conservation.
  • underwater vehicles such as buoys that can be submerged in the water, underwater vehicles and underwater gliders that can be self-propelled underwater, and underwater towers that can be towed underwater.
  • These underwater vehicles generally include an antenna for transmitting the collected marine information to the ground base station (see, for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 discloses an autonomous unmanned submersible underwater vehicle equipped with a GPS (Global Positioning System) positioning antenna at the bow of a main body formed in a pressure-resistant shell structure. Further, Patent Document 2 discloses a glide type underwater vehicle in which a radio antenna and a GPS antenna are arranged in the front-rear direction at the rear part of the main body, and the underwater vehicle has the antenna in an inverted state. It is configured to communicate on the surface of the water.
  • GPS Global Positioning System
  • the antenna In an underwater vehicle in which an antenna is arranged on the upper surface of the main body as described in Patent Document 1, the antenna is generally fixed so that the antenna stands upright on the water surface due to the balance of the center of gravity of the main body. And fluid resistance during navigation is often neglected. Further, since the antenna is fixed to the main body, there is a problem that the posture is easily collapsed by an external force such as a mooring cable, a towing cable, and a wave, and the direction of the antenna is unstable.
  • the present invention was devised in view of the above-described problems, and an object thereof is to provide an underwater vehicle that has a simple structure and low fluid resistance and can stabilize the attitude of an antenna during communication.
  • a data acquisition unit for acquiring the hydrosphere information and a specific gravity adjustment for adjusting a position in water
  • a main body part disposed at the tail part of the main body part and an antenna part having an antenna main body for transmitting the acquired hydrosphere information.
  • the antenna part moves the antenna main body up and down.
  • An underwater moving body is provided, which is configured to be held rotatably in a direction.
  • the antenna unit is configured to hold the antenna main body so as to be rotatable in the vertical direction, the water flow is observed in all scenes such as observation, levitation, and descent.
  • the antenna body can be rotated according to the flow of the fluid, and the fluid resistance can be reduced.
  • the antenna body when floating near the water surface for communication, the antenna body can be moved relative to the antenna body even if the posture of the underwater moving body fluctuates due to external forces such as waves or mooring line tension. Can stabilize the posture.
  • FIG. 4B is a sectional view taken along line BB in FIG. 4A. It is a side view which shows the underwater moving body which concerns on 3rd embodiment of this invention. It is a side view which shows the underwater moving body which concerns on 4th embodiment of this invention. It is a side view which shows the underwater moving body which concerns on 5th embodiment of this invention.
  • FIG. 1A and FIG. 1B are views showing the underwater vehicle according to the first embodiment of the present invention
  • FIG. 1A is a side view
  • FIG. 1B is a top view
  • FIG. 2 is a diagram illustrating an observation state of the underwater moving body
  • 3A to 3C are views showing the operation of the underwater moving body, in which FIG. 3A shows a floating state, FIG. 3B shows a communication state, and FIG. 3C shows a lowered state.
  • the underwater vehicle 1 is an underwater vehicle that can acquire hydrosphere information and can travel between the water and the water surface as shown in FIGS. 1A and 1B.
  • the main body part 2 provided with the data acquisition part 21 for acquiring information and the specific gravity adjustment part 22 for adjusting the position in water, and the hydrosphere information acquired while being arranged at the tail part of the main body part 2 are transmitted.
  • the antenna unit 3 includes an antenna body 31, and the antenna unit 3 is configured to hold the antenna body 31 so as to be rotatable in the vertical direction.
  • the underwater vehicle 1 is, for example, a buoy, an underwater vehicle, an underwater glider, an underwater towed vehicle, etc. that are arranged in the hydrosphere of the ocean, lakes, rivers, etc., and can travel between the water and the water surface, It is an underwater device that is configured to float and sink.
  • the underwater vehicle 1 acquires data (hydrosphere information) such as the current position, water temperature, salinity concentration, water pressure, magnetic force, and radiation concentration in the arranged hydrosphere.
  • data such as the current position, water temperature, salinity concentration, water pressure, magnetic force, and radiation concentration in the arranged hydrosphere.
  • the main body 2 has, for example, a substantially cylindrical housing, and the frontal portion has a tapered shape to reduce fluid resistance.
  • a specific gravity adjusting unit 22, a control unit 23, a storage battery (not shown), and the like are stored in the main body unit 2.
  • a data acquisition unit 21, a stabilizer blade 24, an antenna unit 3, and the like are disposed outside the main body unit 2.
  • the data acquisition unit 21 includes, for example, a CTD sensor (electrical conductivity: Conductivity, temperature: Depth: sensor for measuring depth), pressure sensor, magnetic sensor, radiation measuring instrument, sonar that acquires basic information such as salinity Etc. It is comprised by the sensor and apparatus for various measurement and observation. These sensors and devices are appropriately selected according to the type of ocean information desired to be acquired in the ocean where observation or measurement is performed.
  • the data acquisition unit 21 is arranged at the lower part of the main body part 2, but the present invention is not limited to this arrangement, and may be arranged at the upper part, the side surface part, the rear part, etc. Good.
  • the specific gravity adjusting unit 22 includes, for example, an inflatable and inflatable bag 22a, a cover 22b that covers the outer periphery of the bag 22a, an oil pump 22c that is disposed in the main body 2, and a hydraulic fluid that is poured into the bag 22a (for example, And an oil tank 22d for storing silicon oil).
  • the air bag 22a is made of a soft material (for example, resin) having resistance to seawater.
  • the cover 22b is a component that suppresses breakage of the air bag 22a, and a plurality of openings (not shown) are formed on the outer peripheral surface. Therefore, the inside of the cover 22b is filled with seawater.
  • the oil pump 22c when the oil pump 22c is operated to drain the hydraulic fluid from the air bag 22a to the oil tank 22d, the air bag 22a contracts within the cover 22b, and seawater flows into the cover 22b.
  • the apparent volume of the underwater vehicle 1 can be reduced, the specific gravity of the underwater vehicle 1 is increased, the buoyancy is reduced, and the underwater vehicle 1 can be lowered.
  • the control unit 23 performs processing such as operation of sensors and devices constituting the data acquisition unit 21, storage of data acquired by the data acquisition unit 21, operation of the oil pump 22c, communication (data transmission / reception) by the antenna unit 3, and the like. .
  • the storage unit (memory) connected to the control unit 23 stores operation schedules of the sensors of the data acquisition unit 21, the ups and downs schedule of the underwater moving body 1, and the like.
  • the control unit 23 performs a predetermined operation necessary for measurement and ups and downs.
  • the antenna unit 3 is a communication device that transmits the marine information acquired by the data acquisition unit 21 to a main device such as a ground base station or an observation ship.
  • the antenna unit 3 may communicate directly with the antenna of the main apparatus, or may communicate with the main apparatus via a communication satellite.
  • the antenna unit 3 includes, for example, a pair of support members 32 and 32 disposed rearward from the main body 2, a rotation shaft 33 rotatably connected to the support members 32 and 32, and a rotation shaft 33.
  • the antenna body 31 is erected on the peripheral surface, and the weight member 34 is disposed on the opposite side of the rotation shaft 33 with respect to the antenna body 31.
  • the communication cable 35 connected to the antenna main body 31 is guided to the control unit 23 in the main body 2 through the antenna main body 31, the rotation shaft 33 and the support member 32.
  • the pair of support members 32 and 32 are fixed substantially horizontally and substantially parallel to the rear end surface of the main body 2, and a rotation shaft 33 is spanned around the tip of the support members 32 and 32 so as to be rotatable.
  • the antenna body 31 and the weight member 34 are connected to the peripheral surface of the rotation shaft 33 so as to be arranged substantially linearly on each straight line.
  • the weight member 34 is disposed at a fixed distance from the rotation shaft 33 via the support portion 34a, and maintains the balance of the antenna body 31 in water.
  • the weight member 34 when no load is applied to the antenna unit 3, the weight member 34 is positioned below by gravity and the antenna body 31 is held in a substantially vertical state. Further, when fluid resistance is generated in the antenna unit 3 due to the ocean current or the ups and downs of the underwater mobile body 1, the antenna body 31 rotates about the rotation shaft 33 in the direction of the arrow in the figure.
  • FIG. 2 shows an example of a marine information collection system using the underwater vehicle 1.
  • a marine information collecting system includes, for example, an anchor 4 disposed on the seabed, an intermediate buoy 5 connected to the anchor 4 and floating in the sea, a mooring line 6 having one end connected to the intermediate buoy 5, And an underwater moving body 1 connected to the other end.
  • Anchor 4 is a part for securing underwater vehicle 1 to the seabed.
  • the intermediate buoy 5 is a component that forms the starting point of the underwater moving body 1.
  • the intermediate buoy 5 is connected to the anchor 4 by a mooring line 51.
  • the mooring line 6 is a component that connects the intermediate buoy 5 and the underwater vehicle 1.
  • the length of the mooring line 6 depends on conditions such as the depth of the underwater standby position of the underwater moving body 1, the speed of the ocean current at which the underwater moving body 1 is disposed, and the magnitude of resistance of the mooring line 6 to the ocean current. Is set to be able to ascend and reach the sea surface.
  • the mooring line 6 is connected to a position ahead of the center part of the entire length of the underwater mobile body 1 and behind the tip part. By connecting the mooring cable 6 to such a position, the underwater moving body 1 can be easily supported so as to be substantially parallel to the traveling direction of the ocean current.
  • the underwater vehicle 1 In the observation state shown in FIG. 2, the underwater vehicle 1 is held in a state of being submerged in the sea, and is located downstream of the intermediate buoy 5 by the ocean current. At this time, since the underwater vehicle 1 is disposed in the ocean current in the direction indicated by the arrow in the figure, the antenna body 31 is pushed by the ocean current and tilted downstream.
  • the antenna body 31 is shown tilted substantially horizontally, in actuality, it is about 45 from the vertical direction shown in FIG. 1A due to the speed of the ocean current and the vertical swing of the underwater mobile body 1. Tilt within the range of ⁇ 135 degrees.
  • the antenna body 31 needs to be exposed on the sea surface in order to transmit the data to the ground side. Therefore, the underwater vehicle 1 is levitated from the observation state shown in FIG.
  • the oil pump 22c may be operated to inject the working fluid from the oil tank 22d into the floating bag 22a. At this time, as shown in FIG. 3A, the fluid flows through the antenna unit 3 from the upper side to the lower side, so that the antenna body 31 tilts downward.
  • the antenna body 31 when the antenna body 31 is exposed on the sea surface, the antenna body 31 starts communication with a communication satellite or the like, and transmits the acquired marine information to the ground base station. At this time, since the underwater mobile body 1 has floated in the vicinity of the sea surface, it will swing up and down due to waves and the tension of the mooring cable 6. However, since the antenna main body 31 is connected to the main body 2 through the rotation shaft 33, the antenna main body 31 is configured to be relatively movable with respect to the main body 2 and the posture of the antenna main body 31 is set in a substantially vertical direction. Can be held, and communication can be performed in a stable posture.
  • the oil pump 22c may be operated to drain the working fluid from the air bag 22a to the oil tank 22d.
  • the fluid flows through the antenna unit 3 from below to above, so that the antenna main body 31 tilts upward.
  • the antenna body 31 Since the antenna body 31 needs to rotate at least in accordance with the lowered state shown in FIG. 3C from the floating state shown in FIG. 3A, it is preferable that the antenna body 31 is configured to be rotatable at least 180 degrees or more. .
  • the antenna unit 3 is configured to hold the antenna body 31 so as to be rotatable in the vertical direction. In every scene, the antenna body 31 can be rotated according to the flow of the water flow, and the fluid resistance can be reduced.
  • the antenna body 31 when floating near the water surface for communication, the antenna body 31 can be relatively moved even when the posture of the underwater moving body 1 fluctuates due to external forces such as waves and the tension of the mooring cable 6. The posture of the antenna body 31 can be stabilized.
  • FIGS. 4A to 4E are views showing an underwater vehicle according to another embodiment of the present invention
  • FIG. 4A is a top view of the second embodiment
  • FIG. 4B is a view taken along line BB in FIG. 4A
  • 4C is a side view of the third embodiment
  • FIG. 4D is a side view of the fourth embodiment
  • FIG. 4E is a side view of the fifth embodiment.
  • symbol is attached
  • the structure of the specific gravity adjustment part 22 is simplified.
  • the underwater vehicle 1 according to the second embodiment shown in FIGS. 4A and 4B is obtained by changing the arrangement of the communication cable 35 of the antenna body 31.
  • the communication cable 35 passes through the inside of the antenna main body 31 and is drawn out from the peripheral surface of the rotating shaft 33 to the control unit 23 in the main body 2.
  • the communication cable 35 may be temporarily exposed to the external space between the antenna main body 31 and the main body 2.
  • the weight member 34 since the weight member 34 may pass between the support members 32 and 32 of the antenna part 3, it is preferable to loosen so that the movement of the weight member 34 is not inhibited.
  • the underwater vehicle 1 according to the third embodiment shown in FIG. 4C has a buffer material 7 disposed on the outer periphery of the tail part of the main body 2.
  • a buffer material 7 disposed on the outer periphery of the tail part of the main body 2.
  • the underwater vehicle 1 according to the fourth embodiment shown in FIG. 4D has a buffer material 7 arranged on the outer periphery of the antenna body 31. Such a configuration can also prevent the antenna body 31 from being damaged.
  • the underwater vehicle 1 according to the fifth embodiment shown in FIG. 4E is configured such that the antenna body 31 can be rotated 360 degrees.
  • the length of the support member 32 may be longer than the length of the antenna body 31.
  • the underwater vehicle 1 is used in a marine information collection system for fixed point observation.
  • the present invention is not limited to such a configuration, and the underwater vehicle 1 is a non-tethered buoy. It may be an underwater vehicle, an underwater glider, or an underwater towed vehicle.
  • a data acquisition unit for acquiring the hydrosphere information and a position in water are adjusted.
  • the main body is configured to be pivotable in the vertical direction.
  • the antenna unit includes a pair of support members disposed rearwardly from the main body unit, and a circuit rotatably connected to the support member.
  • the communication cable connected to the antenna main body is guided to the main body portion through the inside of the antenna main body, the rotation shaft, and the support member. ing.
  • the antenna body is configured to be rotatable at least 180 degrees or more.

Abstract

水圏情報を取得するとともに水中と水面との間を往来可能な水中移動体であって、水圏情報を取得するためのデータ取得部(21)及び水中での位置を調整するための比重調整部(22)を備えた本体部(2)と、本体部(2)の後尾部に配置されるとともに取得した水圏情報を伝送するアンテナ本体(31)を備えたアンテナ部(3)と、を有し、アンテナ部(3)は、アンテナ本体(31)を上下方向に回動可能に保持するように構成されている。

Description

水中移動体
 本発明は、水中移動体に関し、特に、水中と水面との間を往来可能な水中移動体に関する。
 水圏(海洋、湖沼、河川)は、地球表面の約70%を占めており、その熱容量は大気の約1000倍といわれている。特に、最も広大な海洋の水温が大きく変化した場合には、大気の状態に大きな影響を及ぼし、世界各地の天候や気候に大きな変化をもたらすこととなる(例えば、エルニーニョ現象等)。そこで、海洋情報の変動を把握するために、水温を含む海洋情報を調査する必要がある。また、航海安全、防災・環境保全、海洋権益保全等のために、潮流観測、海底地殻変動観測、海底活断層調査、大陸棚調査等を行う必要もある。
 これらの海洋調査では、水中に潜水可能なブイ、水中を自走可能な水中航走体や水中グライダー、水中で曳航可能な水中曳航体等の水中移動体が使用されることが多い。これらの水中移動体は、一般に、収集した海洋情報を地上基地局に伝送するためのアンテナを備えている(例えば、特許文献1、特許文献2等参照)。
 特許文献1には、耐圧殻構造に形成された本体の船首部にGPS(Global Positioning System:衛星航法)測位用アンテナを備えた自律型無人潜水式水中航走体が開示されている。また、特許文献2には、本体の後尾部に無線アンテナ及びGPSアンテナが前後方向に配置されたグライド型水中航走体が開示されており、かかる水中航走体は、逆立ちした状態でアンテナを水面上に突き出して通信するように構成されている。
特開平10-86894号公報 特開2006-232070号公報
 特許文献1に記載されたような、本体の上面にアンテナが配置された水中航走体では、一般に、本体の重心バランスによりアンテナが水面上で直立するように固定されており、アンテナによる潜水中や航行中における流体抵抗は軽視されていることが多い。また、アンテナが本体に固定されていることから、係留索、曳航索、波浪等の外力によって姿勢が崩れやすく、アンテナの向きが不安定であるという問題もあった。
 特許文献2に記載された水中航走体では、潜水中や航行中における流体抵抗が小さくなるようにアンテナを固定しているものの、そのままではアンテナを水面上に露出させることができず、本体の姿勢制御をする必要がある。しかしながら、水中航走体の姿勢制御には、重心バランスを調整する機構やプロペラ等の推力を付与する機構が必要となり、構造が複雑になったり、重量が重くなったり、電力消費量が多くなったりしてしまう問題があった。
 本発明は、上述した問題点に鑑み創案されたものであり、簡便な構造で流体抵抗が小さく、かつ、通信中におけるアンテナの姿勢を安定させることができる、水中移動体を提供することを目的とする。
 本発明によれば、水圏情報を取得するとともに水中と水面との間を往来可能な水中移動体において、前記水圏情報を取得するためのデータ取得部及び水中での位置を調整するための比重調整部を備えた本体部と、該本体部の後尾部に配置されるとともに取得した前記水圏情報を伝送するアンテナ本体を備えたアンテナ部と、を有し、前記アンテナ部は、前記アンテナ本体を上下方向に回動可能に保持するように構成されている、ことを特徴とする水中移動体が提供される。
 上述した本発明の水中移動体によれば、アンテナ部がアンテナ本体を上下方向に回動可能に保持するように構成されていることから、観測中、浮上中、降下中等のあらゆる場面において、水流の流れに応じてアンテナ本体を回動させることができ、流体抵抗を低減することができる。また、通信するために水面近傍に浮上した場合に、波浪や係留索の張力等の外力によって水中移動体の姿勢が変動した場合であっても、アンテナ本体を相対移動させることができ、アンテナ本体の姿勢を安定させることができる。
本発明の第一実施形態に係る水中移動体を示す側面図である。 本発明の第一実施形態に係る水中移動体を示す上面図である。 水中移動体の観測状態を示す図である。 水中移動体の浮上状態を示す図である。 水中移動体の通信状態を示す図である。 水中移動体の降下状態を示す図である。 本発明の第二実施形態に係る水中移動体を示す上面図である。 図4AにおけるB-B矢視断面図である。 本発明の第三実施形態に係る水中移動体を示す側面図である。 本発明の第四実施形態に係る水中移動体を示す側面図である。 本発明の第五実施形態に係る水中移動体を示す側面図である。
 以下、本発明の実施形態について図1A~図4Eを用いて説明する。ここで、図1A、図1Bは本発明の第一実施形態に係る水中移動体を示す図であり、図1Aは側面図、図1Bは上面図、である。図2は、水中移動体の観測状態を示す図である。図3Aから図3Cは水中移動体の動作を示す図であり、図3Aは浮上状態、図3Bは通信状態、図3Cは降下状態、を示している。
 本発明の第一実施形態に係る水中移動体1は、図1A及び図1Bに示したように、水圏情報を取得するとともに水中と水面との間を往来可能な水中移動体であって、水圏情報を取得するためのデータ取得部21及び水中での位置を調整するための比重調整部22を備えた本体部2と、本体部2の後尾部に配置されるとともに取得した水圏情報を伝送するアンテナ本体31を備えたアンテナ部3と、を有し、アンテナ部3は、アンテナ本体31を上下方向に回動可能に保持するように構成されている。
 水中移動体1は、例えば、海洋、湖沼、河川等の水圏に配置される、ブイ、水中航走体、水中グライダー、水中曳航体等であって、水中と水面との間を往来可能、すなわち、浮沈可能に構成された水中機器である。かかる水中移動体1は、配置された水圏における、現在位置、水温、塩分濃度、水圧、磁力、放射線濃度等のデータ(水圏情報)を取得する。以下、水中移動体1を海洋に配置して、海洋情報(水圏情報)を取得する場合について説明する。
 本体部2は、例えば、略円筒形状の筐体を有しており、前頭部は流体抵抗を低減するために先細った形状を有している。本体部2の内部には、比重調整部22、制御部23、蓄電池(図示せず)等が格納されている。また、本体部2の外部には、データ取得部21、安定翼24、アンテナ部3等が配置されている。
 データ取得部21は、例えば、塩分濃度等の基礎情報を取得するCTDセンサ(電気伝導度:Conductivity、温度:Temperature、深度:Depthを計測するセンサ)、圧力センサ、磁気センサ、放射線測定器、ソナー等、種々の計測・観測用のセンサや装置により構成される。これらのセンサ及び装置は、観測又は計測を行う海洋において取得したい海洋情報の種類に応じて適宜選択される。なお、図1Aでは、データ取得部21を本体部2の下部に配置しているが、かかる配置に限定されるものではなく、本体部2の上部、側面部、後尾部等に配置してもよい。
 比重調整部22は、例えば、膨縮可能な浮袋22aと、浮袋22aの外周を覆うカバー22bと、本体部2内に配置されるオイルポンプ22cと、浮袋22aに注排される作動液(例えば、シリコンオイル)を収容するオイルタンク22dと、を有している。浮袋22aは、海水に対して耐性を有する柔らかい素材(例えば、樹脂等)により構成される。カバー22bは、浮袋22aの破損を抑制する部品であり、外周面に複数の開口部(図示せず)が形成されている。したがって、カバー22b内は海水で満たされた状態になっている。
 オイルポンプ22cを作動させて、オイルタンク22dから浮袋22aに作動液を注液すると、浮袋22aはカバー22b内で膨張し、カバー22b内の海水が海中に押し出される。その結果、水中移動体1の見かけ上の体積を増大させることができ、水中移動体1の比重が低下して浮力が増大し、水中移動体1を浮上させることができる。
 また、オイルポンプ22cを作動させて、浮袋22aからオイルタンク22dに作動液を排液すると、浮袋22aはカバー22b内で収縮し、カバー22b内に海水が流入する。その結果、水中移動体1の見かけ上の体積を減少させることができ、水中移動体1の比重が上昇して浮力が低下し、水中移動体1を降下させることができる。
 制御部23は、データ取得部21を構成するセンサや装置の作動、データ取得部21により取得されたデータの記憶、オイルポンプ22cの作動、アンテナ部3による通信(データ送受信)等の処理を行う。具体的には、制御部23に接続された記憶部(メモリ)には、データ取得部21の各センサ等の操作スケジュールや水中移動体1の浮沈スケジュール等が保存されており、これらのスケジュールに従って制御部23が計測や浮沈に必要な所定の操作を行う。
 アンテナ部3は、データ取得部21により取得した海洋情報を地上基地局や観測船等の主装置にデータ伝送する通信機器である。アンテナ部3は、主装置のアンテナと直接的に交信してもよいし、通信衛星を介して主装置と交信するようにしてもよい。
 アンテナ部3は、例えば、本体部2から後方に向けて配置された一対の支持部材32、32と、支持部材32、32に回動可能に接続された回動軸33と、回動軸33の周面に立設されたアンテナ本体31と、アンテナ本体31に対して回動軸33の反対側に配置された錘部材34と、を有する。また、アンテナ本体31に接続された通信ケーブル35は、アンテナ本体31、回動軸33及び支持部材32の内部を通って本体部2内の制御部23に導かれている。通信ケーブル35をアンテナ部3の内部に通すことによって、アンテナ本体31が大きく回転した場合であっても、通信ケーブル35とアンテナ本体31との干渉や絡まりを抑制することができる。
 一対の支持部材32、32は、本体部2の後端面に略水平かつ略平行に固定されており、その先端に回動軸33が掛け渡されて回動可能に配置されている。回動軸33の周面には、アンテナ本体31及び錘部材34が略垂直にそれぞれ直線上に配置されるように接続されている。錘部材34は、支持部34aを介して回動軸33から一定の距離に配置され、アンテナ本体31の水中におけるバランスを保持する。
 図1Aに示したように、アンテナ部3に何の負荷もかかっていない場合には、重力によって錘部材34が下方に位置し、アンテナ本体31が略鉛直に立った状態に保持される。また、アンテナ部3に海流や水中移動体1の浮沈によって、流体抵抗が生じた場合には、アンテナ本体31は回動軸33を中心に図の矢印方向に回動することとなる。
 ここで、図2は、水中移動体1を用いた海洋情報収集システムの一例を示している。かかる海洋情報収集システムは、例えば、海底に配置されるアンカー4と、アンカー4に接続され海中に浮遊する中間ブイ5と、中間ブイ5に一端が接続された係留索6と、係留索6の他端に接続された水中移動体1と、を有している。
 アンカー4は、水中移動体1を海底に繋ぎ留めておくための部品である。中間ブイ5は、水中移動体1の浮沈の起点を構成する部品である。中間ブイ5は、係留索51によりアンカー4と接続されている。係留索6は、中間ブイ5と水中移動体1とを接続する部品である。係留索6の長さは、水中移動体1の海中待機位置の深度、水中移動体1が配置される海流の速度、係留索6の海流に対する抵抗の大きさ等の条件により、水中移動体1が浮上して海面に到達することができるように設定される。
 また、係留索6は、水中移動体1の全長の中央部よりも前方かつ先端部よりも後方の位置に接続される。かかる位置に係留索6を接続することにより、水中移動体1を海流の進行方向に対して略平行となるように支持し易くすることができる。
 図2に示した観測状態では、水中移動体1は海中に沈降した状態に保持されており、海流によって中間ブイ5の下流側に位置している。このとき、水中移動体1は、図の矢印で示した方向の海流中に配置されていることから、アンテナ本体31は海流に押されて下流側に傾倒される。なお、ここでは、アンテナ本体31が略水平に傾倒した状態を図示したが、実際には、海流の速度や水中移動体1の上下方向の揺動により、図1Aに示した鉛直方向から約45~135度の範囲内で傾倒することとなる。
 水中移動体1が所定の海洋情報を取得すると、そのデータを地上側に送信するために、アンテナ本体31を海面上に露出させる必要がある。したがって、水中移動体1は、図2に示した観測状態から浮上される。水中移動体1を浮上させる場合は、オイルポンプ22cを作動させて、オイルタンク22dから浮袋22aに作動液を注液すればよい。このとき、図3Aに示したように、アンテナ部3には上方から下方に向けて流体が流れることとなるため、アンテナ本体31は、下方に向かって傾倒することとなる。
 図3Bに示したように、アンテナ本体31が海面上に露出すると、アンテナ本体31は通信衛星等と通信を開始し、取得した海洋情報を地上基地局に送信する。このとき、水中移動体1は海面に付近に浮上していることから、波浪や係留索6の張力によって上下に揺動することとなる。しかしながら、アンテナ本体31は、回動軸33を介して本体部2に接続されていることから、本体部2に対して相対移動可能に構成されており、アンテナ本体31の姿勢を略鉛直方向に保持することができ、安定した姿勢で通信を行うことができる。
 次に、再び観測状態に戻るためには、水中移動体1を降下させる必要がある。水中移動体1を降下させる場合は、オイルポンプ22cを作動させて、浮袋22aからオイルタンク22dに作動液を排液すればよい。このとき、図3Cに示したように、アンテナ部3には下方から上方に向けて流体が流れることとなるため、アンテナ本体31は、上方に向かって傾倒することとなる。
 アンテナ本体31は、少なくとも、図3Aに示した浮上状態から図3Cに示した降下状態に対応して回動する必要があることから、少なくとも180度以上回動可能に構成されていることが好ましい。
 上述した本実施形態に係る水中移動体1によれば、アンテナ部3がアンテナ本体31を上下方向に回動可能に保持するように構成されていることから、観測中、浮上中、降下中等のあらゆる場面において、水流の流れに応じてアンテナ本体31を回動させることができ、流体抵抗を低減することができる。
 また、通信するために水面近傍に浮上した場合に、波浪や係留索6の張力等の外力によって水中移動体1の姿勢が変動した場合であっても、アンテナ本体31を相対移動させることができ、アンテナ本体31の姿勢を安定させることができる。
 次に、水中移動体1の他の実施形態について、図4を参照しつつ説明する。ここで、図4Aから図4Eは、本発明の他の実施形態に係る水中移動体を示す図であり、図4Aは第二実施形態の上面図、図4Bは図4AにおけるB-B矢視断面図、図4Cは第三実施形態の側面図、図4Dは第四実施形態の側面図、図4Eは第五実施形態の側面図、を示している。なお、上述した第一実施形態と同じ構成部品については、同じ符号を付して重複した説明を省略する。また、各図において、比重調整部22の構成を簡略化している。
 図4A及び図4Bに示した第二実施形態に係る水中移動体1は、アンテナ本体31の通信ケーブル35の配置を変更したものである。具体的には、通信ケーブル35は、アンテナ本体31の内部を通って回動軸33の周面から外部に引き出されて本体部2内の制御部23に導かれている。このように、通信ケーブル35は、アンテナ本体31と本体部2との間で一時的に外部空間に露出されていてもよい。なお、アンテナ部3の支持部材32、32の間には、錘部材34が通過する可能性があることから、錘部材34の移動を阻害しないように、弛ませておくことが好ましい。
 図4Cに示した第三実施形態に係る水中移動体1は、本体部2の後尾部の外周に緩衝材7を配置したものである。アンテナ本体31の長さが長い場合には、アンテナ本体31が回動した際に本体部2と接触する可能性がある。そこで、本体部2の後尾部の外周に緩衝材7を配置することにより、アンテナ本体31の破損を抑制することができる。
 図4Dに示した第四実施形態に係る水中移動体1は、緩衝材7をアンテナ本体31の外周に配置したものである。かかる構成によっても、アンテナ本体31の破損を抑制することができる。
 図4Eに示した第五実施形態に係る水中移動体1は、アンテナ本体31を360度回動できるように構成したものである。具体的には、支持部材32の長さをアンテナ本体31の長さよりも長くすればよい。かかる構成により、アンテナ本体31を本体部2と接触させることなく、回動軸33の周りに一回転させることができ、アンテナ本体31の破損を抑制することができる。
 上述した実施形態では、水中移動体1を定点観測用の海洋情報収集システムに使用した場合について説明したが、かかる構成に限定されるものではなく、水中移動体1は、非係留のブイであってもよいし、水中航走体や水中グライダーであってもよいし、水中曳航体であってもよい。
 本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
(本発明の態様)
 本発明の第1の態様は、水圏情報を取得するとともに水中と水面との間を往来可能な水中移動体において、前記水圏情報を取得するためのデータ取得部及び水中での位置を調整するための比重調整部を備えた本体部と、該本体部の後尾部に配置されるとともに取得した前記水圏情報を伝送するアンテナ本体を備えたアンテナ部と、を有し、前記アンテナ部は、前記アンテナ本体を上下方向に回動可能に保持するように構成されている。
 本発明の第2の態様は、前記第1の態様において、前記アンテナ部は、前記本体部から後方に向けて配置された一対の支持部材と、該支持部材に回動可能に接続された回動軸と、該回動軸の周面に立設された前記アンテナ本体と、該アンテナ本体に対して前記回動軸の反対側に配置された錘部材と、を有する。
 本発明の第3の態様は、前記第2の態様において、前記アンテナ本体に接続された通信ケーブルは、前記アンテナ本体、前記回動軸及び前記支持部材の内部を通って前記本体部に導かれている。
 本発明の第4の態様は、前記第1から3の何れかの態様において、前記アンテナ本体は、少なくとも180度以上回動可能に構成されている。
  1 水中移動体
  2 本体部
  3 アンテナ部
 22 比重調整部
 31 アンテナ本体
 32 支持部材
 33 回動軸
 34 錘部材
 35 通信ケーブル

Claims (4)

  1.  水圏情報を取得するとともに水中と水面との間を往来可能な水中移動体において、
     前記水圏情報を取得するためのデータ取得部及び水中での位置を調整するための比重調整部を備えた本体部と、
     該本体部の後尾部に配置されるとともに取得した前記水圏情報を伝送するアンテナ本体を備えたアンテナ部と、を有し、
     前記アンテナ部は、前記アンテナ本体を上下方向に回動可能に保持するように構成されている、ことを特徴とする水中移動体。
  2.  前記アンテナ部は、前記本体部から後方に向けて配置された一対の支持部材と、該支持部材に回動可能に接続された回動軸と、該回動軸の周面に立設された前記アンテナ本体と、該アンテナ本体に対して前記回動軸の反対側に配置された錘部材と、を有することを特徴とする請求項1に記載の水中移動体。
  3.  前記アンテナ本体に接続された通信ケーブルは、前記アンテナ本体、前記回動軸及び前記支持部材の内部を通って前記本体部に導かれている、ことを特徴とする請求項2に記載の水中移動体。
  4.  前記アンテナ本体は、少なくとも180度以上回動可能に構成されている、ことを特徴とする請求項1~3の何れか一項に記載の水中移動体。
PCT/JP2014/064626 2013-06-11 2014-06-02 水中移動体 WO2014199857A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2014279255A AU2014279255B2 (en) 2013-06-11 2014-06-02 Underwater mobile body
EP14810877.2A EP3009341A4 (en) 2013-06-11 2014-06-02 Underwater mobile body
US14/962,433 US20160090160A1 (en) 2013-06-11 2015-12-08 Underwater mobile body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013122668A JP2014240216A (ja) 2013-06-11 2013-06-11 水中移動体
JP2013-122668 2013-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/962,433 Continuation US20160090160A1 (en) 2013-06-11 2015-12-08 Underwater mobile body

Publications (1)

Publication Number Publication Date
WO2014199857A1 true WO2014199857A1 (ja) 2014-12-18

Family

ID=52022155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064626 WO2014199857A1 (ja) 2013-06-11 2014-06-02 水中移動体

Country Status (5)

Country Link
US (1) US20160090160A1 (ja)
EP (1) EP3009341A4 (ja)
JP (1) JP2014240216A (ja)
AU (1) AU2014279255B2 (ja)
WO (1) WO2014199857A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522782A (ja) * 2015-08-03 2018-08-16 アピアム インコーポレイティド 水中ドローン

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170031023A1 (en) * 2015-07-29 2017-02-02 Olexandr Ivanov Forward Scanning Sonar System and Method with Angled Fan Beams
JP6933357B2 (ja) * 2017-02-21 2021-09-08 国立研究開発法人海洋研究開発機構 水中移動体及びその内部設備移動方法
US11338892B2 (en) * 2019-11-14 2022-05-24 Textron Innovations Inc. Autonomous seabased resupply system
TWI724725B (zh) * 2019-12-31 2021-04-11 禾瑞亞科技股份有限公司 偵測元件是否處在導電液體當中的方法、電子裝置與其中央處理器模組
CN111746722A (zh) * 2020-07-10 2020-10-09 国家海洋技术中心 一种核应急浮潜标放射性监测系统及监测方法
GB202100725D0 (en) * 2021-01-20 2021-03-03 Reaman Engineering Ltd Subsea monitoring apparatus
NO20210235A1 (en) * 2021-02-23 2022-08-24 Ocean Access As System and method for transmitting subsea parameters
CN114291240B (zh) * 2021-12-16 2022-06-21 中山大学 一种柔性尾翼结构及水下航行器
CN115432148B (zh) * 2022-09-07 2023-06-20 中国船舶科学研究中心 一种深海坐底支杆自动扶正装置及操作方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197552A (en) * 1964-02-06 1965-07-27 Henry J Flair Flexible base assembly
US3229295A (en) * 1962-08-29 1966-01-11 Manson Lab Inc Antenna base apparatus with hydrodynamically actuated locking means
US3896447A (en) * 1974-04-22 1975-07-22 Itt Erection and retraction mechanism for a foldable antenna and its mast
JPS51163837U (ja) * 1975-06-20 1976-12-27
WO1994008843A1 (fr) * 1992-10-19 1994-04-28 Thomson-Csf Vehicule sous-marin porteur de moyens de detection
US5379034A (en) * 1993-06-15 1995-01-03 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method of radio communication from a submerged underwater vehicle
JPH0865026A (ja) * 1994-08-25 1996-03-08 Ricoh Co Ltd 回転可倒式アンテナの給電線
JPH0918212A (ja) * 1995-06-30 1997-01-17 Dx Antenna Co Ltd アンテナ装置
JPH1086894A (ja) 1996-09-17 1998-04-07 Mitsubishi Heavy Ind Ltd 水中航走体の昇降操縦方法とその装置
JP2006232070A (ja) 2005-02-24 2006-09-07 Mitsui Eng & Shipbuild Co Ltd グライド型水中航走体の姿勢制御方法、無線連絡方法及びグライド型水中航走体
WO2013012568A1 (en) * 2011-07-15 2013-01-24 Irobot Corporation Sea glider
KR101293828B1 (ko) * 2012-09-21 2013-08-07 주식회사 한화 무인잠수정용 안테나

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3417523A (en) * 1967-04-25 1968-12-24 Navy Usa Folding antenna mount
US5646366A (en) * 1996-08-22 1997-07-08 The United States Of America As Represented By The Secretary Of The Navy Underwater defense system
US20090020063A1 (en) * 2007-07-18 2009-01-22 Anthony A Ruffa Propelled Tow Body
DK3244485T3 (da) * 2009-06-12 2019-12-09 Rolls Royce Marine North America Inc Bugseret antennesystem og fremgangsmåde
US8104420B2 (en) * 2009-07-17 2012-01-31 Adaptive Methods, Inc. Tethered tow body, communications apparatus and system
US20120289103A1 (en) * 2010-09-24 2012-11-15 Edison Thurman Hudson Unmanned Underwater Vehicle

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229295A (en) * 1962-08-29 1966-01-11 Manson Lab Inc Antenna base apparatus with hydrodynamically actuated locking means
US3197552A (en) * 1964-02-06 1965-07-27 Henry J Flair Flexible base assembly
US3896447A (en) * 1974-04-22 1975-07-22 Itt Erection and retraction mechanism for a foldable antenna and its mast
JPS51163837U (ja) * 1975-06-20 1976-12-27
WO1994008843A1 (fr) * 1992-10-19 1994-04-28 Thomson-Csf Vehicule sous-marin porteur de moyens de detection
US5379034A (en) * 1993-06-15 1995-01-03 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method of radio communication from a submerged underwater vehicle
JPH0865026A (ja) * 1994-08-25 1996-03-08 Ricoh Co Ltd 回転可倒式アンテナの給電線
JPH0918212A (ja) * 1995-06-30 1997-01-17 Dx Antenna Co Ltd アンテナ装置
JPH1086894A (ja) 1996-09-17 1998-04-07 Mitsubishi Heavy Ind Ltd 水中航走体の昇降操縦方法とその装置
JP2006232070A (ja) 2005-02-24 2006-09-07 Mitsui Eng & Shipbuild Co Ltd グライド型水中航走体の姿勢制御方法、無線連絡方法及びグライド型水中航走体
WO2013012568A1 (en) * 2011-07-15 2013-01-24 Irobot Corporation Sea glider
KR101293828B1 (ko) * 2012-09-21 2013-08-07 주식회사 한화 무인잠수정용 안테나

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3009341A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522782A (ja) * 2015-08-03 2018-08-16 アピアム インコーポレイティド 水中ドローン

Also Published As

Publication number Publication date
EP3009341A1 (en) 2016-04-20
AU2014279255A1 (en) 2015-12-24
EP3009341A4 (en) 2017-01-18
AU2014279255B2 (en) 2016-09-15
JP2014240216A (ja) 2014-12-25
US20160090160A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
WO2014199857A1 (ja) 水中移動体
US11731748B2 (en) Autonomous ocean data collection
US9321529B1 (en) Hybrid mobile buoy for persistent surface and underwater exploration
US7874886B2 (en) Communication float
JP6523568B2 (ja) 水中ドローン
Manley et al. The wave glider: A new concept for deploying ocean instrumentation
US10322782B1 (en) Combined autonomous underwater vehicle and buoy device
WO2014185519A1 (ja) 水中移動体
JP2008120304A (ja) 水中航走体及び水中航走体の移動方法
JP2018069881A (ja) 浮沈式観測ブイ
Jung et al. A study on unmanned surface vehicle combined with remotely operated vehicle system
US20090095208A1 (en) Water drift compensation method and device
EP3501966A1 (en) An unmanned marine surface vessel
JP4237098B2 (ja) 海中探査ブイおよびそのアンテナ取付保持方法
JP7466830B2 (ja) 水中移動体
Pyo et al. Development of AUV (MI) for strong ocean current and zero-visibility condition
CA2629951C (en) Communication float
Corredor et al. Platforms for coastal ocean observing
JP6191035B2 (ja) 投げ込み式波浪計測ブイ
JP2019189059A (ja) 洋上移動体の姿勢制御システム並びに該姿勢制御システムを有するブイ
KR102580716B1 (ko) 로봇 부이
Lee et al. Preliminary study of long endurance moorless non-drifting buoy
Lee et al. Recent R&D activities on underwater vehicles in Korea for ocean exploration and observation
JP2020158063A (ja) 浮体の姿勢制御による音響通信方法及び音響通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014810877

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014279255

Country of ref document: AU

Date of ref document: 20140602

Kind code of ref document: A