WO2014199610A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2014199610A1
WO2014199610A1 PCT/JP2014/003032 JP2014003032W WO2014199610A1 WO 2014199610 A1 WO2014199610 A1 WO 2014199610A1 JP 2014003032 W JP2014003032 W JP 2014003032W WO 2014199610 A1 WO2014199610 A1 WO 2014199610A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
frame
transmission
data
Prior art date
Application number
PCT/JP2014/003032
Other languages
English (en)
French (fr)
Inventor
誠隆 入江
ヤオ ハン ガイアス ウィー
マイケル ホン チェン シム
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US14/427,955 priority Critical patent/US9565677B2/en
Priority to JP2015522533A priority patent/JP6248287B2/ja
Publication of WO2014199610A1 publication Critical patent/WO2014199610A1/ja
Priority to US15/388,539 priority patent/US9794951B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Definitions

  • the present disclosure relates to a wireless communication device that switches a beam pattern of an antenna in wireless communication.
  • wireless communication that realizes high-speed data transmission
  • a wireless LAN Local Area
  • IEEE The Institute of Electrical and Electronics Engineers, Inc.
  • 802.11 for example, IEEE802.11a or IEEE802.11b. Network
  • Digital devices including wireless communication devices that can use a wireless LAN have become widespread as digital devices become more sophisticated.
  • Digital devices can transmit large amounts of data (for example, HD (High Density) video data) to other digital devices by directly communicating with each other without using an access point, for example.
  • HD High Density
  • millimeter wave communication uses a wider band than wireless LAN communication, high-speed wireless communication of, for example, 1 [Gbps] or more is possible when the communication allowable range of millimeter wave communication is used effectively.
  • the millimeter wave band of 60 [GHz] has a short wavelength and strong straightness, and thus is easily affected by changes in the propagation environment (communication environment) of the radio wave.
  • a wireless communication device that transmits data is referred to as a data transmission wireless communication device
  • a wireless communication device that receives data is referred to as a data reception wireless communication device
  • the data transmission wireless communication device includes a wireless transmission unit and a wireless reception unit
  • the data reception wireless communication device includes a wireless transmission unit and a wireless reception unit.
  • beam forming is used to set, for example, a beam pattern along the directivity of either the transmission antenna or the reception antenna, or a beam pattern along the directivity of both the transmission antenna and the reception antenna.
  • the beam pattern of the antenna is set for a single communication partner, or is set to be appropriate for a plurality of communication partners, although not optimal.
  • the amount of signal attenuation is taken into account, and the transmission antenna and the reception antenna may be used separately, and different beam patterns are set for the transmission antenna and the reception antenna.
  • the receiving antenna is set to be omnidirectional, and the transmitting antenna is set to a beam pattern in which a main beam is formed in a specific direction.
  • Patent Document 1 is known as a prior art for determining an antenna beam pattern in millimeter wave communication.
  • each time a data transmission wireless communication device transmits a transmission frame the data transmission wireless communication device starts a timer and counts the number of transmission frames (data frame).
  • the transmission antenna receives the transmission antenna when the count value of the timer or the number of retransmissions of the transmission frame reaches a certain value.
  • the beam pattern is changed to another beam pattern.
  • the inventor has studied a wireless communication device that switches the beam pattern of an antenna in wireless communication.
  • the data transmission wireless communication device changes the beam pattern of the transmission antenna under certain conditions, so that the transmission frame is received by the data reception wireless communication device.
  • the wireless communication apparatus has a problem that it may be changed even if the beam pattern of the transmission antenna is not required.
  • This disclosure provides a wireless communication apparatus that avoids unnecessary changes in the beam pattern of an antenna and suppresses deterioration in communication quality in order to solve the above-described conventional problems.
  • the present disclosure relates to a reception unit that receives a first transmission frame transmitted from a communication partner at a reception antenna, and a first unit that indicates reception of the first transmission frame based on the first transmission frame received at the reception antenna.
  • a response frame generator for generating one response frame, a transmitter for transmitting the generated first response frame from a transmission antenna, and determining whether the same first transmission frame has been retransmitted from the communication partner
  • a wireless communication apparatus comprising: a determination unit; and an antenna control unit that changes a beam pattern of the transmission antenna when the same first transmission frame is retransmitted from the communication partner.
  • a diagram showing a non-directional beam pattern (B) a diagram showing a pseudo-omni-directional beam pattern, (C) a plurality of (for example, three) directivities, and a main beam in any direction (D)
  • a beam pattern having directivity in a specific direction is set for the transmission antenna of the data transmission wireless communication device, and the reception antenna of the data reception wireless communication device is pseudo-omnidirectional Illustration of communication example when the beam pattern is set 1 is a block diagram showing an example of an internal basic configuration of a wireless communication apparatus according to each embodiment 2A is a block diagram illustrating an example of an internal configuration of a wireless communication device that uses a retransmission bit determination unit as an example of a determination unit in the wireless communication device illustrated in FIG. 2, and FIG.
  • FIG. 2B is a block diagram of the determination unit in the wireless communication device illustrated in FIG. A block diagram showing an example of an internal configuration of a wireless communication apparatus using an SN determination unit as an example
  • A A flowchart for explaining an example of a procedure for setting a beam pattern of a transmission antenna of an Ack frame for a MAC frame (for example, a data frame) received by the data reception wireless communication device of the first embodiment
  • B a first 6 is a flowchart for explaining another example of the setting procedure of the beam pattern of the transmitting antenna of the Ack frame for the MAC frame (for example, the data frame) received by the data receiving wireless communication apparatus of the embodiment.
  • 4 is a sequence diagram illustrating an example of signaling in which the sequence number SN is changed by reaching the upper limit of the number of retransmissions in the data transmission wireless communication device and the data reception wireless communication device of the embodiment
  • FIG. 4 is a sequence diagram illustrating another example of signaling in which the sequence number SN is changed by reaching the upper limit of the number of retransmissions in the data transmission wireless communication device and the data reception wireless communication device of the first embodiment.
  • A Explanatory drawing which shows the example which transmission of the data frame from the data transmission radio
  • B Data reception after the beam pattern was determined
  • FIG. 4 is an explanatory diagram showing an example of successful transmission of an Ack frame from a wireless communication device for data transmission to a wireless communication device for data transmission;
  • FIG. 6 is an explanatory diagram showing an example of successful data frame transmission;
  • F a data receiving radio communication device after the data receiving radio communication device is rotated and the beam pattern of the transmitting antenna is changed; Explanatory drawing which shows the example which transmission of the Ack frame to succeeded FIG.
  • 8A is a flowchart for explaining an example of an operation procedure in which a data reception wireless communication apparatus according to the first embodiment transmits a data frame using a beam pattern of a transmission antenna for transmitting an Ack frame.
  • 4 is a sequence diagram illustrating an example of signaling in which a data reception wireless communication apparatus illustrated in (A) transmits a data frame using a beam pattern of a transmission antenna for transmitting an Ack frame.
  • 9 is a flowchart for explaining an example of a setting procedure of a beam pattern of a transmission antenna for transmitting an Ack frame for a data frame received by a data reception wireless communication device according to the first modification of the first embodiment.
  • FIG. 9 is a sequence diagram illustrating an example of signaling related to transmission of an aggregation data frame in the data transmission wireless communication device and the data reception wireless communication device according to the second embodiment.
  • FIG. 7 is a flowchart for explaining an example of a setting procedure of a beam pattern of a transmission antenna for transmitting an Ack frame corresponding to a MAC frame received by a data reception wireless communication device according to the third modification of the first embodiment.
  • A The figure which shows an example of the format of the conventional MAC frame
  • B The figure which shows an example of the format of the conventional sequence control field
  • C The figure which shows an example of the format of the conventional frame control field
  • D The figure which shows an example of the format of the conventional Ack frame
  • A Sequence diagram showing the concept of signaling of a single data frame between a conventional data transmission radio communication apparatus and a data reception radio communication apparatus
  • B conventional data transmission radio communication apparatus and data reception Diagram showing an example of signaling of a single data frame with the wireless communication apparatus for communication
  • A A diagram showing an example of a conventional A-MPDU frame format
  • B a diagram showing an example of a conventional A-MPDU subframe format
  • C a diagram showing an example of a diagram showing an
  • FIG. 6 is a sequence diagram showing an example of signaling of a transmission aggregation frame with a communication device.
  • C Another example of signaling of a transmission aggregation frame between a conventional data transmission wireless communication device and a data reception wireless communication device.
  • A A flowchart for explaining an example of a procedure for setting a beam pattern of a transmission antenna of a CTS frame with respect to a MAC frame (for example, an RTS frame) received by a data reception wireless communication device according to Modification 4 of the first embodiment.
  • the data transmission wireless communication device includes a wireless transmission unit and a wireless reception unit
  • the data reception wireless communication device includes a wireless transmission unit and a wireless reception unit.
  • the data transmission wireless communication device and the data reception wireless communication device have the same configuration, and will be described assuming, for example, direct communication.
  • FIG. 18A is an explanatory diagram of a transmission cycle TR including a setting period PH1 and a communication period PH2 for setting an antenna beam pattern in conventional millimeter wave communication.
  • FIG. 18B is an explanatory diagram of timing at which deterioration of the communication environment occurs in the transmission period TR including the setting period PH1 and the communication period PH2 for setting the antenna beam pattern in the conventional millimeter wave communication.
  • the transmission cycle TR shown in FIG. 18A includes a setting period PH1 (Antenna ⁇ Training Phase) for setting an antenna beam pattern in millimeter wave communication and an actual communication (data transaction) period PH2 (Communication Phase). Including.
  • the time width of the transmission period TR may be the same or different for each transmission cycle TR.
  • the data transmission radio communication apparatus sets beam patterns of a plurality of antennas having different directivities, and transmits a directivity verification frame including information related to the antenna beam patterns to the data reception radio communication apparatus of the communication partner. Send to.
  • the data reception wireless communication device After receiving the directivity verification frame, the data reception wireless communication device returns a response frame including information regarding the antenna used in the communication period PH2 to the data transmission wireless communication device. To do.
  • the data transmission wireless communication device sets the beam pattern of the transmission antenna related to the communication to the data reception wireless communication device based on the response frame returned from the data reception wireless communication device. Thereby, in the setting period PH1, the beam pattern of the transmission antenna for the communication partner of the data transmission wireless communication apparatus is set.
  • the communication period PH2 is shortened according to the length of the set period PH1 compared to the transmission period in which the set period PH1 is not set. Since the time width of the transmission cycle TR is unchanged, when the set period PH1 is increased, the communication period PH2 is shortened, and the usable band is reduced in the communication period PH2.
  • the wireless communication device for data transmission reduces the number of times of setting the beam pattern of the transmission antenna and selects an appropriate antenna beam pattern during communication.
  • Patent Document 1 when the Ack frame does not reach the data transmission wireless communication device, the following two causes can be considered as the cause of the data transmission wireless communication device retransmitting the data frame.
  • the first cause is a case where the data reception wireless communication apparatus has not returned the Ack frame because the data frame did not reach the data reception wireless communication apparatus.
  • the second cause is a case where the data frame has arrived at the data receiving wireless communication apparatus, but the Ack frame returned from the data receiving wireless communication apparatus has not arrived at the data transmitting wireless communication apparatus.
  • Patent Document 1 when the cause of the retransmission of the data frame by the data transmission wireless communication device is the second cause described above, the beam pattern of the transmission antenna of the data transmission wireless communication device was appropriate. Nevertheless, the data transmission radio communication apparatus changes the beam pattern of the transmission antenna to another beam pattern and retransmits the data frame. For this reason, since the data transmission radio communication device makes unnecessary changes to the beam pattern of the transmission antenna, the communication quality between the data transmission radio communication device and the data reception radio communication device as the communication partner is deteriorated. There was a problem.
  • the device is abbreviated as a data reception wireless communication device (see, for example, FIG. 15A or FIG. 17A).
  • FIG. 14A shows an example of a conventional MAC frame format.
  • FIG. 14B is a diagram illustrating an example of a format of a conventional sequence control field.
  • FIG. 14C is a diagram illustrating an example of a format of a conventional frame control field.
  • FIG. 14D is a diagram illustrating an example of a conventional Ack frame format.
  • the wireless communication apparatus transmits and receives a MAC frame (for example, a data frame, for example, a data frame) having a format illustrated in FIG.
  • the MAC frame shown in FIG. 14A includes frame control (Frame Control), duration / ID, address (Address) 1, address 2, address 3, sequence control (Sequence Control), address 4, and QoS (Quality). of Service) control, HT (High Throughput) control, frame body (Frame Body), and FCS (Frame Check Sequence) fields.
  • frame control Frame Control
  • Duration / ID address
  • Address Address
  • Sequence Control Sequence Control
  • HT High Throughput
  • frame body Frame Body
  • FCS Flash Sequence
  • the sequence control field shown in FIG. 14B includes a fragment number (Fragment Number) field and a sequence number (Sequence Number) field.
  • the sequence number represents the identification number or transmission order of the MAC frame shown in FIG. 14A. For example, when the sequence number field is 12 bits, it is an integer value from 0 to 4095.
  • the frame control field shown in FIG. 14C includes protocol version (Protocol Version), type (Type), subtype (Subtype), To DS (Destribution Service), From DS, More Frag, retry (Retry), and power management. (Power Management), More Data, Protected Frame, and Order fields are included.
  • the retry field stores a retry bit indicating whether or not the MAC frame is retransmitted as shown in FIG. 14A. For example, if the retry bit is 1, it indicates a retransmitted MAC frame. Represents a newly transmitted MAC frame.
  • the Ack frame shown in FIG. 14 (D) includes fields of frame control (FrameationControl), duration (Duration), RA (Receiver Address, receiving station address), and FCS.
  • frame control FraeationControl
  • Duration Duration
  • RA Receiveiver Address
  • FCS FCS
  • MAC Header MAC header
  • CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
  • SPCA Service Period Channel Access
  • the wireless communication device for data transmission Dv11 performs carrier sense before transmitting a data frame, and starts transmitting a data frame when no carrier is detected at a predetermined specified time.
  • the data transmission wireless communication device Dv11 and the data reception wireless communication device Dv12 perform a series of data frame transmissions and Ack frame responses over a certain period of time called TXOP (Transmission Opportunity) that is started by transmission of data frames. (See FIG. 15A).
  • TXOP Transmission Opportunity
  • the data transmission wireless communication device Dv1 determines the transmission to the data reception wireless communication device Dv2 by carrier sense, and then, for example, transmissions that are set and held in the setting period PH1 shown in FIG.
  • the data frame is transmitted to the data reception wireless communication device Dv2 using the beam pattern of the antenna.
  • the data reception wireless communication device Dv2 it is difficult for the data reception wireless communication device Dv2 to know in advance the time at which the data transmission wireless communication device Dv1 transmits the data frame.
  • the data reception wireless communication device Dv2 since another data frame may be transmitted from another data transmission wireless communication device to the data reception wireless communication device Dv2 at the same time, the data reception wireless communication device Dv2 performs the data transmission wireless communication.
  • the beam pattern of the receiving antenna is set over a wide range so that data frames transmitted from the device Dv1 and other wireless communication devices for data transmission can be received (see FIG. 1A or FIG. 1B).
  • FIG. 15A is a sequence diagram showing the concept of signaling a single data frame between the conventional data transmission wireless communication device Dv11 and the data reception wireless communication device Dv12.
  • the data reception wireless communication device Dv12 correctly receives the data frame transmitted by the data transmission wireless communication device Dv11, the data reception wireless communication device Dv12 transmits an Ack frame as a response frame for data transmission within a predetermined period called max ack delay. Responds to the wireless communication device Dv11.
  • the data transmission wireless communication device Dv11 determines that the data frame transmitted by the data transmission wireless communication device Dv11 is correctly received by the data reception wireless communication device Dv12, and does not receive the Ack frame. Thus, it is determined that the data frame transmitted by the data transmission wireless communication device Dv11 has not been correctly received by the data reception wireless communication device Dv12.
  • the data transmission wireless communication device Dv11 determines transmission of the next data frame, increments the sequence number (SN) assigned to each data frame, and sets the retry bit to 0.
  • the sequence number is managed in association with the address of the data transmission wireless communication device Dv11, the address of the data reception wireless communication device Dv12, and TID (Traffic Identifier).
  • the wireless communication device for data transmission Dv11 does not receive the Ack frame, it retransmits the same data frame. However, the sequence number of the data frame to be retransmitted is not changed, and the retry bit is set to 1 (see FIG. 15B).
  • FIG. 15B is a sequence diagram showing an example of signaling of a single data frame between the conventional data transmission wireless communication device Dv11 and the data reception wireless communication device Dv12. If the data transmission wireless communication device Dv11 does not correctly receive the Ack frame corresponding to the transmitted data frame, for example, the data transmission wireless communication device Dv11 holds a data frame in which the sequence number is 1 and the retry bit is set to 1. Retransmit to device Dv12.
  • the data transmission wireless communication device Dv11 does not correctly receive the Ack frame again after transmitting the data frame having the sequence number set to 1 and the retry bit set to 1 to the data reception wireless communication device Dv12. In this case, the data frame is retransmitted. Further, the data transmission wireless communication device Dv11 counts the number of retransmissions, and does not perform retransmissions exceeding a predetermined upper limit number. Further, when it is determined that the transmission of the data frame to be retransmitted is successful, the data transmission wireless communication device Dv11 resets the counter of the number of retransmissions.
  • FIG. 16A is a diagram showing an example of a conventional A-MPDU frame format.
  • FIG. 16B is a diagram illustrating an example of a conventional A-MPDU subframe format.
  • FIG. 16C is a diagram illustrating an example of a format of a conventional block Ack frame.
  • the wireless communication apparatus according to the second embodiment transmits and receives an aggregation frame (Aggregation frame, A-MPDU: Aggregate medium access control protocol data unit, for example) shown in FIG.
  • Aggregation frame A-MPDU: Aggregate medium access control protocol data unit, for example
  • the aggregation frame shown in FIG. 16A includes each field of a plurality of A-MPDU subframes (A-MPDU subframes).
  • the A-MPDU subframe shown in FIG. 16B includes MPDUMdelimiter as delimiter information of the A-MPDU subframe, the MPDU similar to the MAC frame shown in FIG. 14A, and adjustment padding fields. .
  • the block Ack frame shown in FIG. 16C represents frame control (Frame Control), duration (Duration) / ID, RA (Receiver Address) indicating the reception destination address of the block Ack frame, and the transmission destination address of the block Ack frame.
  • Each field includes TA (Transmission Address), BA control (Block Ack Control), BA information (Block Ack Information), and FCS.
  • MAC Header MAC Header is configured by fields other than BA control, BA information, and FCS.
  • MAC frames having a plurality of sequence numbers are once transmitted by the transmission of the aggregation frame (A-MPDU) shown in FIG. 16A and the response of the block Ack frame indicating the reception of the aggregation frame.
  • a method of transmitting and receiving data is also known.
  • the data reception wireless communication device Dv12 correctly receives (Ack) or does not correctly receive a plurality of data frames (MPDU) concatenated as aggregation frames by returning a block Ack frame (Nack (No Acknowledge). )) At a time (see FIG. 17A).
  • FIG. 17A is a sequence diagram showing the concept of transmission aggregation frame signaling between a conventional data transmission wireless communication device and a data reception wireless communication device.
  • the data reception wireless communication device Dv12 correctly receives a data frame (MPDU) with a sequence number of all or part of the aggregation frames transmitted by the data transmission wireless communication device Dv11, the data reception wireless communication device Dv12 has a predetermined value called max ack delay.
  • the block Ack frame as a response frame is responded to the data transmission wireless communication device Dv11 within the period.
  • the data transmission wireless communication device Dv11 receives the block Ack frame, so that data frames (MPDUs) of part or all of the sequence numbers of the aggregation frames transmitted by the data transmission wireless communication device Dv11 are data reception wireless. It is determined that the communication device Dv12 has correctly received it, and the block Ack frame is not received, so that it is determined that the aggregation frame transmitted by the data transmission wireless communication device Dv11 has not been correctly received by the data reception wireless communication device Dv12.
  • the data transmission wireless communication device Dv11 When the data transmission wireless communication device Dv11 is able to receive the block Ack frame, the data transmission wireless communication device Dv11 analyzes the content of the block Ack frame, analyzes the sequence number of the correctly received data frame (MPDU), and the data frame that is not correctly received. The sequence number of (MPDU) is determined. According to the determination result, the data transmission wireless communication device Dv11 receives an aggregation frame including a sequence number of a data frame (MPDU) that has not been correctly received and a sequence number of a data frame (MPDU) to be newly transmitted. (See FIG. 17C).
  • the data transmission wireless communication device Dv11 when the data transmission wireless communication device Dv11 does not receive the block Ack frame, it retransmits the same aggregation frame (see FIG. 17B).
  • FIG. 17B is a sequence diagram illustrating an example of signaling of a transmission aggregation frame between a conventional wireless communication device for data transmission and a wireless communication device for data reception.
  • FIG. 17C is a sequence diagram showing another example of signaling of a transmission aggregation frame between a conventional data transmission wireless communication device and a data reception wireless communication device.
  • the wireless communication device of each embodiment performs wireless communication with a wireless communication device of a communication partner using, for example, a millimeter wave (for example, 60 [GHz]) defined in the IEEE 802.11ad communication standard.
  • a wireless communication device that transmits data in each embodiment hereinafter abbreviated as “data transmission wireless communication device”
  • a wireless communication device that receives data in each embodiment hereinafter, referred to as “data transmission wireless communication device”.
  • “Abbreviated as“ data receiving wireless communication device ”) has the same configuration and will be described on the assumption of direct communication, for example.
  • the data transmission wireless communication device includes a wireless transmission unit and a wireless reception unit
  • the data reception wireless communication device includes a wireless transmission unit and a wireless reception unit.
  • FIG. 1A shows a non-directional beam pattern PA1.
  • FIG. 1B is a diagram showing a pseudo-omnidirectional beam pattern PA2.
  • FIG. 1C is a diagram showing a beam pattern PA3 having a plurality of (for example, three) directivities and having a main beam formed in any direction.
  • a beam pattern PA3 having directivity in a specific direction is set for the transmission antenna of the data transmission wireless communication device Dv1
  • the reception antenna of the data reception wireless communication device Dv2 is a pseudo-omnidirectional beam. It is explanatory drawing of the example of communication when the pattern PA2 is set.
  • the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 change the beam pattern of each transmission antenna or reception antenna to an omni beam pattern PA. (See FIG. 1A) or a quasi-omni beam pattern PA2.
  • the directivity of the beam pattern having the maximum half-value width of the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2 is referred to as pseudo-omni-direction (quasi-omni). Therefore, the pseudo-omnidirectional beam pattern PA2 has a shorter frame reach or reception distance but a larger half-value width than the beam pattern PA3 having directivity in a specific direction shown in FIG.
  • the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 form a beam pattern of each transmission antenna or reception antenna and form a main beam in a specific direction. It is also possible to set the beam pattern PA3 (see FIG. 1C).
  • the transmission antenna of the data transmission wireless communication device Dv1 is set to a beam pattern PA3 in which a main beam is formed in a specific direction, and the reception antenna of the data reception wireless communication device Dv2 is pseudo-nothing.
  • the directivity beam pattern PA2 is set, the MAC frame or the aggregation frame transmitted by the data transmission wireless communication device Dv1 is received by the data reception wireless communication device Dv2.
  • the data transmission wireless communication device Dv1 transmits the MAC frame shown in FIG. 14A, and the data reception wireless communication device Dv2 responds with an Ack frame indicating that the MAC frame has been received. A case will be described.
  • FIG. 2 is a block diagram illustrating an example of an internal basic configuration of the wireless communication device 1 of each embodiment.
  • the wireless communication device 1 illustrated in FIG. 2 receives a MAC frame transmitted from, for example, another wireless communication device that is a communication partner (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2), and receives the MAC frame.
  • a communication partner for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2
  • This is a configuration that assumes a data reception wireless communication device that responds with an Ack frame indicating reception of.
  • the wireless communication device 1 illustrated in FIG. 2 includes a wireless reception unit 11 to which a reception antenna ARX is connected, a response necessity determination unit 12, a response frame generation unit 13, and a transmission antenna ATX.
  • a wireless transmission unit 14, a determination unit 15, and an antenna control unit 16 are included.
  • the reception antenna ARX has a communication period PH2 (see FIG. 18A) with another wireless communication device (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2) that is a communication partner before starting.
  • the beam pattern is set. That is, the receiving antenna ARX is set and held with a beam pattern having a predetermined directivity by the beamforming technique in accordance with the antenna control signal output from the antenna control unit 16.
  • the reception antenna ARX uses a held beam pattern to transmit a MAC frame (for example, a data frame) or an Ack frame transmitted by another wireless communication device (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2). Is output to the wireless reception unit 11.
  • a MAC frame for example, a data frame
  • an Ack frame transmitted by another wireless communication device (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2). Is output to the wireless reception unit 11.
  • the reception antenna ARX corresponds to the antenna control signal output by the antenna control unit 16 during the communication period PH2 with another wireless communication device (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2).
  • another wireless communication device for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2.
  • the transmission antenna ATX is communicated with another wireless communication device that is a communication partner (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2) before the communication period PH2 (see FIG. 18A) starts.
  • the beam pattern is set. That is, the transmission antenna ATX is set and held with a beam pattern having a predetermined directivity by the beamforming technique according to the antenna control signal output from the antenna control unit 16.
  • the transmission antenna ATX uses a held beam pattern to transmit a MAC frame (for example, a data frame) or an Ack frame transmitted by another wireless communication device (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2). Send.
  • a MAC frame for example, a data frame
  • an Ack frame transmitted by another wireless communication device
  • the transmission antenna ATX corresponds to the antenna control signal output by the antenna control unit 16 during the communication period PH2 with another wireless communication device (for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2).
  • another wireless communication device for example, the data transmission wireless communication device Dv1 or the data reception wireless communication device Dv2.
  • the radio reception unit 11 converts the MAC frame or Ack frame signal in the carrier frequency band received by the reception antenna ARX into a baseband signal and demodulates it.
  • the wireless reception unit 11 receives the demodulated MAC frame destination address (see, for example, the address 1 (Address1) field shown in FIG. 14A) or the Ack frame receiving station address (eg, RA (shown in FIG. 14D)). If the field (Receiver Address) matches the MAC address of the local station, it is determined that the frame is addressed to the local station.
  • the wireless reception unit 11 After determining that the MAC frame or Ack frame is addressed to the own station, the wireless reception unit 11 determines whether the value calculated based on the content of the MAC frame or Ack frame matches the FCS value. judge. When the wireless reception unit 11 determines that the value calculated based on the contents of the MAC frame or the Ack frame and the FCS (for example, CRC32 (Cyclic Redundancy Code 32)) match, It is determined that it has been received.
  • the FCS for example, CRC32 (Cyclic Redundancy Code 32)
  • the wireless reception unit 11 After determining that the MAC frame or the Ack frame has been correctly received, the wireless reception unit 11 outputs the MAC frame or the Ack frame to the response necessity determination unit 12 and the determination unit 15.
  • the wireless reception unit 11 receives the MAC frame or the Ack frame, but is not the MAC frame or the Ack frame addressed to itself, or the value calculated based on the contents of the MAC frame or the Ack frame and the value of the FCS Are determined not to match, it is determined that the MAC frame or the Ack frame has not been received correctly.
  • the wireless reception unit 11 discards the MAC frame or the Ack frame and waits for the next reception.
  • the response necessity determination unit 12 is a frame type of the MAC frame demodulated by the wireless reception unit 11 (see, for example, the type or subtype field shown in FIG. 14A), or a response type (for example, FIG. 14 (A), refer to the QoS control field) to determine whether an Ack frame response indicating reception of the MAC frame is necessary.
  • the response necessity determination unit 12 outputs the MAC frame demodulated by the wireless reception unit 11 to an upper layer (not shown) of the wireless communication device 1, and the response frame generation unit 13 displays the determination result of whether or not an Ack frame response is required. To the determination unit 15 and the antenna control unit 16. When the response necessity determination unit 12 determines that the response of the Ack frame is unnecessary, the wireless communication device 1 does not respond with the Ack frame indicating reception of the MAC frame.
  • the response frame generation unit 13 generates an Ack frame indicating reception of the MAC frame and outputs it to the wireless transmission unit 14 when the response necessity determination unit 12 determines that an Ack frame response is required.
  • the wireless transmission unit 14 converts the Ack frame generated by the response frame generation unit 13 into a signal of a predetermined carrier frequency band and transmits the signal from the transmission antenna ATX.
  • the wireless transmission unit 14 responds with an Ack frame after elapse of a predetermined time (for example, SIFS: Short : Inter Frame Space in IEEE 802.11) from the time when the MAC frame is received by the receiving antenna ARX. Thereby, the wireless communication apparatus 1 can report to the communication partner that the MAC frame transmitted from the communication partner has been correctly received.
  • SIFS Short : Inter Frame Space in IEEE 802.11
  • the determination unit 15 uses the same MAC address from the communication partner of the wireless communication device 1 based on the MAC frame demodulated by the wireless reception unit 11. It is determined whether or not the frame has been retransmitted.
  • the determination unit 15 is configured using, for example, the retransmission bit determination unit 15A of the wireless communication device 1A illustrated in FIG. 3A or the SN determination unit 15B of the wireless communication device 1B illustrated in FIG.
  • FIG. 3A is a block diagram illustrating an example of the internal configuration of the wireless communication device 1A using the retransmission bit determination unit 15A as an example of the determination unit 15 in the wireless communication device 1 illustrated in FIG.
  • FIG. 3B is a block diagram illustrating an example of an internal configuration of the wireless communication device 1B using the SN determination unit 15B as an example of the determination unit 15 in the wireless communication device 1 illustrated in FIG.
  • the retransmission bit determination unit 15A in the wireless communication device 1A has a retry bit in the retry field of the MAC frame demodulated by the wireless reception unit 11 (for example, the retry shown in FIG. 14A), indicating 1 or new transmission. It is determined whether it is 0, and the determination result is output to the transmission antenna control unit 16T of the antenna control unit 15.
  • the beam patterns of the transmission antenna ATX of the data transmission wireless communication device Dv1 and the transmission antenna ARX of the data reception wireless communication device Dv2 are: It can be determined that the beam pattern set in the setting period PH1 is effective.
  • the MAC frame is 1 from the data transmission wireless communication device Dv1 which is the communication partner.
  • the data reception wireless communication device Dv2 has retransmitted more than once and returned an Ack frame indicating correct reception of the MAC frame, but the returned Ack frame has been correctly received by the data transmission wireless communication device Dv1 which is the communication partner. There will be no.
  • the beam pattern is set in the setting period PH1, and the beam pattern of the transmission antenna ATX of the data reception wireless communication device Dv2 used for returning the Ack frame and the beam pattern of the reception antenna ARX of the data transmission wireless communication device Dv1 Is not considered appropriate.
  • the SN determination unit 15B in the wireless communication device 1B includes the sequence number of the sequence control field of the MAC frame demodulated by the wireless reception unit 11, and the sequence number of the sequence control field of the MAC frame previously received and demodulated by the wireless reception unit 11. And the determination result is output to the transmission antenna control unit 16T of the antenna control unit 16.
  • the data reception wireless communication device Dv2 duplicates the same MAC frame.
  • the same MAC frame has been retransmitted from the data transmission wireless communication device Dv1 that is received, that is, the communication partner.
  • the beam pattern set in the setting period PH1 is effective for the beam pattern of the transmission antenna ATX of the data transmission wireless communication device Dv1 and the transmission antenna ARX of the data reception wireless communication device Dv2.
  • the beam pattern is set in the setting period PH1, and the beam patterns of the transmission antenna ATX of the data reception wireless communication device Dv2 and the reception antenna ARX of the data transmission wireless communication device Dv1 used for returning the Ack frame are Inappropriate.
  • the SN determination unit 15B sets the sequence number as the destination address (see, for example, address 1 shown in FIG. 14A) or the receiving station address (see, for example, RA as shown in FIG. 14D), and the logical link identifier. Management is performed in association with all or some of the pairs with the indicated TID (Traffic Identifier).
  • the SN determination unit 15B stores the sequence number of the MAC frame previously received by the wireless communication device 1B.
  • the sequence number of the previously received MAC frame stored by the SN determination unit 15B is abbreviated as “storage SN”, and the MAC frame received by the receiving antenna ARX. Is abbreviated as “reception SN”.
  • the antenna control unit 16 includes a transmission antenna control unit 16T and a reception antenna control unit 16R. 2 will be described as including the transmission antenna control unit 16T and the reception antenna control unit 16R illustrated in FIG. 3A or 3B. However, the antenna control unit 16 may be a transmission antenna. You may control the beam pattern of ATX and the receiving antenna ARX.
  • the transmission antenna control unit 16T sets and holds the beam pattern of the transmission antenna ATX in the setting period PH1 before the communication period PH2 (see FIG. 18A) with the communication partner starts.
  • the transmission antenna control unit 16T determines that the retransmission bit determination unit 15A determines that the retry bit in the retry field of the MAC frame is 1, that is, if the same MAC frame has been transmitted or retransmitted before.
  • the beam pattern of the transmitting antenna ATX used for the response of the Ack frame is changed.
  • the transmission antenna control unit 16T determines that the initial transmission of a new MAC frame has been received, the transmission antenna control unit 16T enters the set period PH1. The beam pattern of the transmission antenna ATX used for the response of the set Ack frame is held.
  • the transmission antenna control unit 16T holds the beam pattern of the transmission antenna ATX set in the set period PH1 when the response necessity determination unit 12 determines that the response of the Ack frame is unnecessary.
  • the reception antenna control unit 16R sets and holds the beam pattern of the reception antenna ARX in the setting period PH1 before the communication period PH2 (see FIG. 18A) with the communication partner starts. Although details will be described later, the reception antenna control unit 16R changes or holds the beam pattern of the reception antenna ARX according to the determination result of the response necessity determination unit 12, the retransmission bit determination unit 15A, or the SN determination unit 15B. May be.
  • FIG. 4A is a flowchart for explaining an example of a procedure for setting the beam pattern of the transmission antenna ATX of the Ack frame with respect to the MAC frame (for example, data frame) received by the data reception wireless communication device Dv2 of the first embodiment. is there.
  • FIG. 4B illustrates another example of the setting procedure of the beam pattern of the transmission antenna ATX of the Ack frame for the MAC frame (for example, the data frame) received by the data reception wireless communication device Dv2 according to the first embodiment. It is a flowchart.
  • FIG. 4A explains that the wireless communication device 1A (data reception wireless communication device Dv2) shown in FIG. 3A has correctly received a MAC frame (for example, a data frame), and FIG. It is assumed that the wireless communication device 1B (data receiving wireless communication device Dv2) shown in FIG. 3B has correctly received a MAC frame (for example, a data frame) (P1).
  • the response necessity determination unit 12 determines whether an Ack frame response indicating correct reception of the MAC frame is necessary based on the frame type or response type of the MAC frame demodulated by the wireless reception unit 11. (P2).
  • the response necessity determination unit 12 outputs the determination result to the response frame generation unit 13, the retransmission bit determination unit 15A, and the transmission antenna control unit 16T.
  • the transmission antenna control unit 16T holds the beam pattern of the transmission antenna ATX (P3) when the response necessity determination unit 12 determines that the response of the Ack frame is unnecessary (P2, NO).
  • the response frame generation unit 13 When the response necessity determination unit 12 determines that a response of the Ack frame is necessary (P2, YES), the response frame generation unit 13 generates an Ack frame indicating reception of the MAC frame and generates a wireless transmission unit 14 Output to.
  • the retransmission bit determination unit 15A determines the retry bit in the retry field of the MAC frame demodulated by the wireless reception unit 11 Is 1 indicating retransmission or 0 indicating new transmission (P4). Retransmission bit determination unit 15A outputs the determination result to transmission antenna control unit 16T.
  • the transmission antenna control unit 16T uses the beam pattern of the transmission antenna ATX used for the response of the Ack frame. Is held (P5).
  • the wireless transmission unit 14 transmits the Ack frame generated by the response frame generation unit 13 to the communication partner using the beam pattern of the transmission antenna ATX held in Step P5 (P6).
  • the transmission antenna control unit 16T sets the transmission antenna ATX used for the response of the Ack frame.
  • the beam pattern is changed (P7).
  • the wireless transmission unit 14 transmits the Ack frame generated by the response frame generation unit 13 to the communication partner using the beam pattern of the transmission antenna ATX after the change in Step P7 (P8).
  • the operation of the wireless communication device 1A after step P3, step P6, or step P8 returns to step P1.
  • the SN determination unit 15B has the same storage SN and reception SN when the response necessity determination unit 12 determines that an Ack frame response is required (P2, YES). (P4A).
  • the SN determination unit 15B stores the received SN regardless of the determination result of step P4A (P9, P10).
  • the transmission antenna control unit 16T holds the beam pattern of the transmission antenna ATX used for the response of the Ack frame when the SN determination unit 15B determines that the storage SN and the reception SN do not match (P5). ).
  • the wireless communication device 1B determines that the beam pattern of the transmission antenna ATX used for the response of the previous Ack frame is appropriate, and the beam pattern of the transmission antenna ATX does not need to be changed.
  • the transmission antenna control unit 16T changes the beam pattern of the transmission antenna ATX used for the response of the Ack frame when the SN determination unit 15B determines that the storage SN and the reception SN match. (P7).
  • the wireless communication device 1B determines that the beam pattern of the transmission antenna ATX used for the response of the previous Ack frame is inappropriate and the beam pattern of the transmission antenna ATX needs to be changed.
  • FIG. 5A, FIG. 5B, FIG. 6A, and FIG. 6B for an example of signaling when the wireless communication apparatuses of the present embodiment directly perform wireless communication. I will explain.
  • FIGS. 5B, 6A, and 6B the same operations as those illustrated in FIG. 5A are denoted by the same reference numerals, and description thereof is omitted or simplified. The contents will be described.
  • FIG. 5A is a sequence diagram illustrating an example of signaling in which the sequence number SN is changed by receiving an Ack frame in the data transmission wireless communication device and the data reception wireless communication device of the first embodiment.
  • FIG. 5B is a sequence diagram illustrating an example of signaling in which the sequence number SN is changed by reaching the upper limit of the number of retransmissions in the data transmission wireless communication device and the data reception wireless communication device of the first embodiment. .
  • FIG. 6A is a sequence diagram illustrating another example of signaling in which the sequence number SN is changed by receiving an Ack frame in the data transmission wireless communication device and the data reception wireless communication device according to the first embodiment. is there.
  • FIG. 6B is a sequence diagram illustrating another example of signaling in which the sequence number SN is changed by reaching the upper limit of the number of retransmissions in the data transmission wireless communication device and the data reception wireless communication device of the first embodiment. It is.
  • a wireless communication device that transmits data according to the present embodiment is described as a data transmission wireless communication device Dv1
  • a wireless communication device that receives data according to the present embodiment is described as a data reception wireless communication device Dv2.
  • FIGS. 6A and 6B show operations of the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 having the configuration of the wireless communication device 1A shown in FIG. 3 (A). The operations of the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 having the configuration of the wireless communication device 1B shown in FIGS. 6A and 6B are shown.
  • the data reception wireless communication device Dv2 correctly receives the MAC frame (for example, data frame) transmitted from the data transmission wireless communication device Dv1, and transmits the Ack frame using the beam pattern (for example, PtA) of the transmission antenna ATX. Transmit to the trusted wireless communication device Dv1 (S1). However, in step S1, the Ack frame does not reach the data transmission wireless communication device Dv1 (S1).
  • the data reception wireless communication device Dv2 correctly receives the data frame retransmitted from the data transmission wireless communication device Dv1, changes the beam pattern of the transmission antenna ATX from, for example, the beam pattern PtA to the beam pattern PtB, and changes the Ack frame.
  • the data is transmitted to the wireless communication device Dv1 for data transmission (S2).
  • the data reception wireless communication device Dv2 correctly receives the data frame transmitted from the data transmission wireless communication device Dv1 in step S4, and uses the beam pattern PtB of the transmission antenna ATX after the change in step S2 to generate the Ack frame.
  • the data is transmitted to the wireless communication device for data transmission Dv1 (S4).
  • the Ack frame transmitted in step S4 is the data transmission wireless if the communication environment between the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 and the beam pattern of each antenna are appropriate.
  • the communication device Dv1 receives the signal correctly.
  • the data reception wireless communication device Dv2 correctly receives the data frame retransmitted from the data transmission wireless communication device Dv1, changes the beam pattern of the transmission antenna ATX from, for example, the beam pattern PtA to the beam pattern PtB, and changes the Ack frame.
  • the data is transmitted to the data transmission wireless communication device Dv1 (S5).
  • the Ack frame does not reach the data transmission wireless communication device Dv1 (S5).
  • step S6 the data reception wireless communication device Dv2 changes the beam pattern of the transmission antenna ATX from, for example, the beam pattern PtB to the beam pattern PtC, and transmits the Ack frame to the data transmission wireless communication device Dv1 (S6). ). However, in step S6, the Ack frame does not reach the data transmission wireless communication device Dv1 (S6).
  • the Ack frame is transmitted to the data transmission wireless communication device Dv1 using the beam pattern PtC set in (S8). However, in step S8, the Ack frame does not reach the data transmission wireless communication device Dv1 (S8).
  • step S8 the data reception wireless communication device Dv2 transmits an Ack frame using the same beam pattern PtC as that in step S6 as the beam pattern of the transmission antenna ATX. This is because the determination in step S7 by the data transmission wireless communication device Dv1 is unknown to the data reception wireless communication device Dv2, and therefore the data reception wireless communication device Dv2 changes the sequence number to 2 in step S8. It is difficult to determine whether the cause is due to the arrival of the Ack frame or the achievement of the upper limit of the number of retransmissions in step S7.
  • step S8 the data reception wireless communication apparatus Dv2 uses the same beam pattern as that used in step S6 to transmit the Ack frame in step S8, so whether or not the transmission by the beam pattern PtC arrives again.
  • the procedure to try By this procedure, an unnecessary period can be shortened by trying all beam patterns in step S8.
  • the data reception wireless communication device Dv2 correctly receives the data frame retransmitted from the data transmission wireless communication device Dv1, changes the beam pattern of the transmission antenna ATX from, for example, the beam pattern PtC to the beam pattern PtD, and changes the Ack frame.
  • the data is transmitted to the data transmission wireless communication device Dv1 (S9).
  • the Ack frame transmitted in step S9 is the data transmission wireless if the communication environment between the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 and the beam pattern of each antenna are appropriate.
  • the communication device Dv1 receives the signal correctly.
  • 6A and 6B differs from the sequence diagrams in FIGS. 5A and 5B in that the data reception wireless communication device Dv2 has the same data frame. This is a method for determining whether or not it has been retransmitted, and since the contents other than the determination method are the same, description thereof will be omitted.
  • the data reception wireless communication device Dv2 correctly receives the data frame transmitted from the data transmission wireless communication device Dv1, and requires a response of the Ack frame. If it is determined that the storage SN and the reception SN are not the same, the Ack frame is transmitted using the beam pattern of the set transmission antenna ATX.
  • FIGS. 7A, 7B, 7C, and 7D an example of the beam pattern of each antenna when the wireless communication apparatuses of the present embodiment directly wirelessly communicate with each other is illustrated in FIGS. 7A, 7B, 7C, and 7D. ) And FIG. 7 (E) and FIG. 7 (F).
  • FIG. 7A is an explanatory diagram showing an example of successful transmission of a data frame from the data transmission wireless communication device Dv1 to the data reception wireless communication device Dv2 after the beam pattern is determined.
  • FIG. 7B is an explanatory diagram illustrating an example in which the Ack frame is successfully transmitted from the data reception wireless communication device Dv2 to the data transmission wireless communication device Dv1 after the beam pattern is determined.
  • FIG. 7C is an explanatory diagram showing an example in which the data frame is successfully transmitted from the data transmission wireless communication device Dv1 to the data reception wireless communication device Dv2 after the data reception wireless communication device Dv2 rotates.
  • FIG. 7D is an explanatory diagram illustrating an example in which transmission of an Ack frame fails from the data reception wireless communication device Dv2 to the data transmission wireless communication device Dv1 after the data reception wireless communication device Dv2 rotates.
  • FIG. 7E is an explanatory diagram showing an example of successful transmission of a data frame from the data transmission wireless communication device Dv1 to the data reception wireless communication device Dv2 after the data reception wireless communication device Dv2 rotates.
  • FIG. 7F shows an Ack frame from the data reception wireless communication device Dv2 to the data transmission wireless communication device Dv1 after the data reception wireless communication device Dv2 rotates and the beam pattern of the transmission antenna ATX is changed. It is explanatory drawing which shows the example in which transmission of was successful.
  • the beam pattern of the transmission antenna ATX of the data transmission wireless communication device Dv1 is indicated by a thick solid line, and the reception antenna of the data reception wireless communication device Dv2 is shown.
  • the ARX beam pattern is indicated by a thick dotted line.
  • FIG. 7B, FIG. 7D, and FIG. 7F the beam pattern of the reception antenna ARX of the data transmission wireless communication device Dv1 is indicated by a thick dotted line, and the transmission antenna of the data reception wireless communication device Dv2 is shown.
  • the beam pattern of ATX is shown by a thick solid line.
  • the combination of the beam pattern of the transmission antenna ATX of the data transmission wireless communication device Dv1 and the beam pattern of the reception antenna ARX of the data reception wireless communication device Dv2 is partially overlapped. To do. For this reason, in FIG. 7A, the data frame transmitted by the data transmission wireless communication device Dv1 is received by the data reception wireless communication device Dv2. Further, in FIG. 7B, the combination of the beam pattern of the reception antenna ARX of the data transmission wireless communication device Dv1 and the beam pattern of the transmission antenna ATX of the data reception wireless communication device Dv2 partially overlaps. Therefore, the Ack frame transmitted by the data reception wireless communication device Dv2 is received by the data transmission wireless communication device Dv1.
  • the combination of the beam pattern of the reception antenna ARX of the data transmission wireless communication device Dv1 and the beam pattern of the transmission antenna ATX of the data reception wireless communication device Dv2 do not overlap. Therefore, the Ack frame transmitted by the data reception wireless communication device Dv2 is not received by the data transmission wireless communication device Dv1, and the data reception wireless communication device Dv2 uses the beam pattern of the transmission antenna ATX used for transmitting the Ack frame. change.
  • FIG. 7E the state where the data reception wireless communication device Dv2 is rotated will be described in the same manner as in FIGS. 7 (C) and 7 (D).
  • FIG. 7E the combination of the beam pattern of the transmission antenna ATX of the data transmission wireless communication device Dv1 and the beam pattern of the reception antenna ARX of the data reception wireless communication device Dv2 partially overlaps.
  • the data frame transmitted by the data transmission wireless communication device Dv1 is received by the data reception wireless communication device Dv2.
  • the wireless communication device 1 when the wireless communication device 1 according to the present embodiment correctly receives a MAC frame (for example, a data frame) transmitted from a communication partner and determines that an Ack frame response indicating a response of the MAC frame is necessary. Determines whether the same MAC frame has been retransmitted from the communication partner by comparing the contents of the retry bit of the MAC frame or comparing the stored SN and the received SN.
  • a MAC frame for example, a data frame
  • the wireless communication device 1 determines that the beam pattern of the transmission antenna ATX used for transmitting the previously transmitted Ack frame is not appropriate, and transmits the transmission antenna. Change the ATX beam pattern. The wireless communication device 1 transmits an Ack frame using the changed beam pattern.
  • the wireless communication device 1 does not change the beam pattern of the transmission antenna ATX used for transmitting the Ack frame unless the same MAC frame is retransmitted from the communication partner, and is transmitted when the same MAC frame is retransmitted. Since the beam pattern of the antenna ATX is changed, unnecessary change of the beam pattern of the transmission antenna ATX can be avoided. Therefore, since the wireless communication apparatus 1 can recover the communication path at an early stage, it is possible to suppress deterioration of the communication environment (communication quality) with the communication partner. That is, since the wireless communication device 1 can reduce the unnecessary occupation time of the communication band, it can improve the effective throughput and further reduce the power consumption and the time required for connection to the communication partner.
  • the wireless communication device 1 can determine whether the same MAC frame has been retransmitted from the communication partner based on the sequence number of the MAC frame. For example, the MAC frame has a format that does not include a retry bit. Whether or not the MAC frame is retransmitted can be determined corresponding to Note that if the wireless communication device 1 has the same source address and receives a MAC frame that indicates retransmission for a plurality of times within a certain time, the previously transmitted Ack frame has not arrived. It may be determined that
  • the wireless communication device 1 sets the retry bit of the MAC frame transmitted from the communication partner in the communication period PH2 after a predetermined period has elapsed since the set period PH1 shown in FIG. Even when 0, the beam pattern of the transmitting antenna ATX used for transmitting the Ack frame may be changed.
  • the wireless communication apparatus 1 can recover the communication path with the communication partner at an early stage by changing the beam pattern of the transmission antenna ATX used for transmitting the Ack frame.
  • the predetermined fixed period is a time for the wireless communication apparatus 1 to increment the MAC frame sequence number by one, for example.
  • the wireless communication apparatus 1 accurately performs a quick sequence number increment process due to the arrival of the Ack frame at the communication partner and a sequence number increment process after a predetermined time has elapsed after the retransmission of the MAC frame due to the non-arrival of the Ack frame. Therefore, retransmission of the same MAC frame can be determined with high accuracy, and the beam pattern of the transmission antenna ATX can be appropriately changed.
  • the wireless communication device 1 when the retry bit of the MAC frame (for example, data frame) transmitted from the communication partner by the wireless communication device 1 is 0 or the sequence number changes, the wireless communication device 1 It is considered that the beam pattern of the transmission antenna ATX used for frame transmission was appropriate at the time of transmission of the Ack frame.
  • the wireless communication apparatus 1 may use the beam pattern of the transmission antenna ATX at the time of transmitting the Ack frame (FIG. 8A and FIG. 8). (See FIG. 8B).
  • the time from the transmission of the Ack frame to the transmission of the MAC frame depends on the communication environment, it is expected to be about several tens of ⁇ s to several tens of ms, and the set period PH1 shown in FIG. The period is sufficiently shorter than (for example, several tens ms to several hundred ms).
  • FIG. 8A is a flowchart illustrating an example of an operation procedure in which the data reception wireless communication device Dv2 according to the first embodiment transmits a data frame using the beam pattern of the transmission antenna ATX for transmitting an Ack frame. It is.
  • FIG. 8B is a sequence diagram illustrating an example of signaling in which the data reception wireless communication device Dv2 illustrated in FIG. 8A transmits a data frame using the beam pattern of the transmission antenna ATX for transmitting an Ack frame. It is. Note that in FIG. 8A, description of the same operation as that illustrated in FIG. 4B is omitted or simplified by using the same reference numerals, and different contents will be described.
  • the wireless transmission unit 14 transmits a MAC frame (for example, a data frame) to the communication partner using the beam pattern of the transmission antenna ATX held in step P5 (P11). .
  • a MAC frame for example, a data frame
  • the data reception wireless communication device Dv2 uses the beam pattern of the transmission antenna ATX used in step S4 for the data transmission wireless communication device Dv2. It transmits to Dv1 (S10).
  • the wireless communication device 1 data reception wireless communication device Dv2 responds with an Ack frame indicating reception of the MAC frame transmitted from the communication partner, and transmits the beam pattern of the transmission antenna ATX for transmitting the data frame. Therefore, the setting period PH1 for the data receiving wireless communication device Dv2 to transmit the MAC frame can be omitted, and the procedure and time for setting the setting period PH1 can be omitted. Therefore, effective throughput can be improved.
  • the cause that the retry bit of the MAC frame has changed from 1 to 0 or the sequence number has changed is that the data transmission wireless communication device Dv1 has It is not distinguished whether the Ack frame has been correctly received or the number of retransmissions of the MAC frame retransmitted by the data transmission wireless communication device Dv1 has reached a predetermined number of retransmissions.
  • the first modification when it is determined that the data reception wireless communication device Dv2 corresponds to one of the following four cases, for example, the MAC It is determined that the retry bit of the frame has changed from 1 to 0 or that the sequence number has changed because the number of retransmissions of the MAC frame has reached a predetermined upper limit. In other words, the data reception wireless communication device Dv2 changes without holding the beam pattern of the transmission antenna ATX used for transmitting the Ack frame (see FIG. 9).
  • the data reception wireless communication device Dv2 receives the same number of retransmissions of the same MAC frame until receiving a notification from the data transmission wireless communication device Dv1 that the number of retransmissions has reached a predetermined upper limit number. Count.
  • the data reception wireless communication device Dv2 matches the counted number of reception times with the upper limit number of retransmissions, and further, for example, when the retry bit of the MAC frame changes from 1 to 0, or when the sequence number changes, It is determined that the cause is that the number of retransmissions of the frame has reached a predetermined upper limit.
  • the data reception wireless communication device Dv2 is transmitted from the data transmission wireless communication device Dv1 until receiving a notification from the data transmission wireless communication device Dv1 that the number of retransmissions has reached a predetermined upper limit number.
  • the data reception wireless communication device Dv2 matches the acquired number of retransmissions with the upper limit number of retransmissions, and further, for example, when the retry bit of the MAC frame changes from 1 to 0, or when the sequence number changes, It is determined that the cause is that the number of retransmissions reaches the predetermined upper limit.
  • the data reception wireless communication device Dv2 acquires information on the remaining number of times that can be retransmitted included in the MAC frame transmitted from the data transmission wireless communication device Dv1.
  • the data reception wireless communication device Dv2 when the acquired remaining number of retransmissions is 0, and the retry bit of the MAC frame is changed from 1 to 0, or when the sequence number is changed, the number of retransmissions of the MAC frame Is determined to be caused by reaching a predetermined upper limit number of times.
  • the data reception wireless communication device Dv2 detects a flag indicating the final retransmission from the MAC frame transmitted from the data transmission wireless communication device Dv1, and further, for example, the retry bit of the MAC frame is set.
  • the number changes from 1 to 0, or when the sequence number changes it is determined that the cause of the number of retransmissions of the MAC frame has reached a predetermined upper limit number.
  • FIG. 9 is a flowchart for explaining an example of a procedure for setting the beam pattern of the transmission antenna ATX of the Ack frame for the data frame received by the data reception wireless communication device Dv2 according to the first modification of the first embodiment. Note that in FIG. 9, the same operations as those illustrated in FIG. 8A are denoted by the same reference numerals, and description thereof is omitted or simplified, and different contents are described.
  • the SN determination unit 15B determines that the cause of the change in the sequence number of the MAC frame (for example, the data frame) received in step P1 is the number of retransmissions of the MAC frame based on the first to fourth cases described above. It is determined whether or not the predetermined number of times has been reached (S12).
  • the transmission antenna control unit 16T It is determined whether or not the number of retransmissions of the frame has reached a predetermined upper limit. If it is determined that the upper limit has been reached (S12, YES), the beam pattern of the transmission antenna ATX used for the response of the Ack frame is changed. (P7).
  • the wireless transmission unit 14 transmits the Ack frame generated by the response frame generation unit 13 to the communication partner using the beam pattern of the transmission antenna ATX after the change in Step P7 (P8).
  • the transmission antenna control unit 16T determines that the cause of the change in the sequence number of the MAC frame (for example, the data frame) is not because the SN determination unit 15B has reached the predetermined number of retransmissions of the MAC frame. (P12, NO), the beam pattern of the transmitting antenna ATX used for the response of the Ack frame is held (P5).
  • the wireless transmission unit 14 transmits the Ack frame generated by the response frame generation unit 13 to the communication partner (data transmission wireless communication device Dv1) using the beam pattern of the transmission antenna ATX held in Step P5 (P6).
  • the data reception wireless communication device Dv2 transmits the MAC frame (for example, the data frame) to the communication partner (data transmission wireless communication device Dv1) using the beam pattern of the transmission antenna ATX held in Step P5 (P11). ).
  • the wireless communication device 1 of the first modification can reduce the number of transmissions of the Ack frame by determining the cause of the change in the sequence number in the data reception wireless communication device Dv2, thereby reducing the number of transmissions of the Ack frame.
  • the beam pattern of the transmitting antenna ATX suitable for transmitting Ack frames can be set in a short time.
  • the retry bit of the MAC frame (for example, data frame) transmitted from the communication partner (data transmission wireless communication device Dv1) by the wireless communication device 1 (data reception wireless communication device Dv2) is 0.
  • the beam pattern of the transmission antenna ATX used by the wireless communication device 1 (data reception wireless communication device Dv2) for transmitting the Ack frame is considered appropriate at the time of transmitting the Ack frame. It is done.
  • the data reception wireless communication device Dv2 uses the same beam pattern as the beam pattern of the transmission antenna ATX at the time of transmitting the Ack frame, It is used as a beam pattern of the receiving antenna ARX (see FIG. 10).
  • the wireless communication device for data transmission Dv1 and the wireless communication device for data reception Dv2 change the beam pattern of the reception antenna ARX to be omnidirectional (omni) or pseudo-omnidirectional (quasi-omni). Often set to beam pattern.
  • the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 do not need to receive the MAC frame transmitted from the third station.
  • the beam pattern of the receiving antenna ARX may not be set to a beam pattern that is omnidirectional (omni) or pseudo-omnidirectional (quasi-omni).
  • the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 can specify the transmission source of the received MAC frame.
  • the beam pattern need not be set to an omnidirectional or quasi-omni beam pattern.
  • FIG. 10 is a diagram illustrating a transmission antenna beam pattern for transmitting an Ack frame corresponding to a data frame received by the data reception wireless communication device Dv2 in Modification 2 of the first embodiment, and reception for receiving the next data frame. It is a flowchart explaining an example of the setting procedure of the beam pattern of an antenna. Note that in FIG. 10, the same operations as those illustrated in FIG. 8A are denoted by the same reference numerals, and description thereof is omitted or simplified, and different contents are described.
  • the reception antenna control unit 16R of the data reception wireless communication device Dv2 receives the beam of the reception antenna ARX to receive the MAC frame transmitted from the communication partner (data transmission wireless communication device Dv1).
  • the same beam pattern as that of the transmitting antenna ATX is used (P14).
  • the wireless communication device 1 data reception wireless communication device Dv2 of the second modification is not set to omnidirectional (omni) or pseudo-omnidirectional (quasi-omni) as the beam pattern of the reception antenna ARX.
  • omni omnidirectional
  • pseudo-omnidirectional pseudo-omnidirectional
  • the wireless communication device 1 (data reception wireless communication device Dv2) of the second modification holds or changes the beam pattern of the transmission antenna ATX used for transmitting the Ack frame, and then sets the set period PH1 in the next transmission cycle TR. Then, for example, the setting of the beam pattern of the receiving antenna ARX can be omitted, and the same beam pattern as that of the transmitting antenna ATX can be set.
  • the wireless communication device 1 of the second modification can suppress the use of a communication path (communication band) necessary for setting the beam pattern of the receiving antenna ARX in the set period PH1 in the next transmission cycle TR.
  • Bandwidth can be used effectively and power consumption can be reduced.
  • the data transmission wireless communication device Dv1 transmits the aggregation frame shown in FIG. 16A
  • the data reception wireless communication device Dv2 transmits part or all of the MAC frames (MPDU) in the aggregation frame.
  • MPDU MAC frames
  • the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 of the present embodiment have the same configuration as the wireless communication device 1A shown in FIG. 3A or the wireless communication device 1B shown in FIG. Have
  • FIG. 11 is a sequence diagram illustrating an example of signaling related to transmission of an aggregation data frame in the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 according to the second embodiment.
  • the data transmission wireless communication device Dv1 transmits an aggregation frame including a plurality of MAC frames (MPDU) to the data reception wireless communication device Dv2 (S21).
  • the beam of the transmission antenna ATX A block Ack frame is transmitted to the data transmission wireless communication device Dv1 using a pattern (for example, Pt2) (S21).
  • Pt2 a pattern for example, Pt2
  • the block Ack frame does not reach the data transmission wireless communication device Dv1 (S21).
  • the data transmission wireless communication device Dv1 Since the data transmission wireless communication device Dv1 does not receive the block Ack frame corresponding to the aggregation frame transmitted in step S21, it retransmits the same aggregation frame as the aggregation frame transmitted in step S21 (S22).
  • the data reception wireless communication device Dv2 correctly receives the aggregation frame with the same sequence number retransmitted from the data transmission wireless communication device Dv1, and further determines that a response of the block Ack frame is necessary.
  • a beam pattern (for example, Pt2) is changed (S22). That is, when the data reception wireless communication device Dv2 determines that the initial transmission or retransmission of the aggregation frame including the MAC frame (MPDU) all having the same sequence number has occurred before, the beam pattern of the transmission antenna ATX is If it is not appropriate, the beam pattern of the transmitting antenna ATX used for the response of the block Ack frame is changed.
  • the data reception wireless communication device Dv2 transmits the block Ack frame to the data transmission wireless communication device Dv1 using the beam pattern (for example, Pt1) of the changed transmission antenna ATX (S22).
  • the block Ack frame transmitted in step S22 is appropriate for the communication environment between the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 and the beam pattern of each antenna.
  • the data transmission wireless communication device Dv1 receives the data correctly.
  • the data reception wireless communication device Dv2 does not initially transmit or retransmit an aggregation frame including a MAC frame (MPDU) all having the same sequence number, that is, some of the aggregation frames are new. If it is determined that the beam pattern of the transmission antenna ATX used for the response of the block Ack frame is not changed, the beam pattern is retained without being changed.
  • MPDU MAC frame
  • FIG. 12 is a flowchart illustrating an example of a setting procedure of a beam pattern of a transmission antenna for transmitting a block Ack frame corresponding to an aggregation data frame received by the data reception wireless communication device Dv2 according to the second embodiment. .
  • the wireless reception unit 11 determines whether or not all MAC frames (MPDUs) out of the correctly received aggregation frames have been correctly received (P22).
  • the response necessity determination unit 12 determines the frame type or response type of each MPDU of the aggregation frame demodulated by the wireless reception unit 11.
  • P23 it is determined whether a response of the block Ack frame indicating reception of the aggregation frame is necessary (P23).
  • the response necessity determination unit 12 outputs the determination result to the response frame generation unit 13, the SN determination unit 15B, and the transmission antenna control unit 16T.
  • the transmission antenna control unit 16T holds the beam pattern of the transmission antenna ATX (P24).
  • the response frame generation unit 13 When the response necessity determination unit 12 determines that the response of the block Ack frame is necessary (P23, YES), the response frame generation unit 13 generates a block Ack frame indicating reception of the aggregation frame and wirelessly transmits it. To the unit 14.
  • the SN determination unit 15B determines whether the stored SN pattern and the received SN pattern are the same when the response necessity determination unit 12 determines that a response of the block Ack frame is required (P23, YES). Determine (P25). The SN determination unit 15B stores the received SN pattern regardless of the determination result of step P25 (P26, P29).
  • a sequence number set (pattern) of MAC frames (MPDUs) correctly received among previously received aggregation frames stored in the SN determination unit 15B is expressed as “ The abbreviation “stored SN pattern” is used, and a set (pattern) of sequence numbers of MAC frames (MPDUs) correctly received among the aggregation frames received this time at the receiving antenna ARX is abbreviated as “received SN pattern”.
  • the transmission antenna control unit 16T holds the beam pattern of the transmission antenna ATX used for the response of the block Ack frame because the SN determination unit 15B determines that the stored SN pattern and the received SN pattern do not match ( P27).
  • the wireless communication device 1B has received an aggregation frame including a MAC frame (MPDU) to which a new sequence number is assigned. Therefore, it is considered that the beam pattern of the transmission antenna ATX used for the response of the previous block Ack frame is appropriate, and the beam pattern of the transmission antenna ATX does not need to be changed.
  • MPDU MAC frame
  • the wireless transmission unit 14 transmits the block Ack frame generated by the response frame generation unit 13 to the communication partner (data transmission wireless communication device Dv1) using the beam pattern of the transmission antenna ATX held in Step P27 ( P28).
  • the transmission antenna control unit 16T determines that the stored SN pattern matches the received SN pattern because the SN determination unit 15B matches the beam pattern of the transmission antenna ATX used for the response of the block Ack frame. Change (P30).
  • the wireless communication device 1B has retransmitted the aggregation including the MAC frame (MPDU) to which the same sequence number is assigned and has received the retransmitted aggregation frame. Become. Therefore, it is considered that the beam pattern of the transmission antenna ATX used for the response of the previous block Ack frame is inappropriate, and the beam pattern of the transmission antenna ATX needs to be changed.
  • MPDU MAC frame
  • the wireless transmission unit 14 transmits the block Ack frame generated by the response frame generation unit 13 to the communication partner (data transmission wireless communication device Dv1) using the beam pattern of the transmission antenna ATX after the change in Step P30 ( P31).
  • the response necessity determination unit 12 determines the aggregation frame demodulated by the wireless reception unit 11, that is, Based on the frame type or response type of some correctly received MAC frames (MPDU), it is determined whether or not a response of a block Ack frame indicating reception of the aggregation frame is necessary (P32).
  • the response necessity determination unit 12 outputs the determination result to the response frame generation unit 13, the SN determination unit 15B, and the transmission antenna control unit 16T.
  • the transmission antenna control unit 16T holds the beam pattern of the transmission antenna ATX (P33).
  • the response frame generation unit 13 When the response necessity determination unit 12 determines that the response of the block Ack frame is necessary (P32, YES), the response frame generation unit 13 generates a block Ack frame indicating reception of the aggregation frame and wirelessly transmits it. To the unit 14.
  • the SN determination unit 15B when the response necessity determination unit 12 determines that the response of the block Ack frame is necessary (P32, YES), the stored SN pattern and some of the MAC frames (MPDU) correctly received It is determined whether or not the received SN pattern is the same (P34).
  • the SN determination unit 15B stores the received SN pattern regardless of the determination result of step P25 (P35, P38).
  • the transmission antenna control unit 16T determines that the stored SN pattern does not match the received SN pattern of some MAC frames (MPDUs) correctly received by the SN determination unit 15B, and therefore the response of the block Ack frame
  • the beam pattern of the transmitting antenna ATX used for the above is held (P36).
  • the wireless communication device 1B uses the aggregation frame including the MAC frame (MPDU) to which the new sequence number is assigned. It will be received. Therefore, it is considered that the beam pattern of the transmission antenna ATX used for the response of the previous block Ack frame is appropriate, and the beam pattern of the transmission antenna ATX does not need to be changed.
  • the wireless transmission unit 14 transmits the block Ack frame generated by the response frame generation unit 13 to the communication partner using the beam pattern of the transmission antenna ATX held in Step P36 (P37).
  • the transmission antenna control unit 16T has determined that the SN determination unit 15B matches the stored SN pattern and the received SN pattern of some MAC frames (MPDUs) correctly received, so that the block Ack
  • the beam pattern of the transmitting antenna ATX used for the frame response is changed (P39).
  • the wireless communication device 1B Since the stored SN pattern matches the received SN pattern of some correctly received MAC frames (MPDUs), the wireless communication device 1B performs aggregation including the MAC frame (MPDU) to which the same sequence number is assigned. The retransmitted aggregation frame has been received. Therefore, it is considered that the beam pattern of the transmission antenna ATX used for the response of the previous block Ack frame is inappropriate, and the beam pattern of the transmission antenna ATX needs to be changed.
  • the wireless transmission unit 14 transmits the block Ack frame generated by the response frame generation unit 13 to the communication partner using the beam pattern of the transmission antenna ATX after the change in Step P39 (P40).
  • step P28 The operation of the wireless communication device 1A after step P28, step P31, step P37, or step P40 returns to step P21.
  • the wireless communication device 1 correctly receives a part or all of the MAC frames (MPDU) among the aggregation frames transmitted from the communication partner, and the response of the block Ack frame indicating the response of the aggregation frame is received. If it is determined that it is necessary, it is determined whether or not the same aggregation frame has been retransmitted from the communication partner by comparing the stored SN pattern with the received SN pattern.
  • MPDU MAC frames
  • the wireless communication device 1 If it is determined that the same aggregation frame has been retransmitted from the communication partner, the wireless communication device 1 assumes that the beam pattern of the transmission antenna ATX used for transmitting the previously transmitted block Ack frame is not appropriate, and that the transmission antenna ATX Change the beam pattern. The wireless communication device 1 transmits a block Ack frame using the changed beam pattern.
  • the wireless communication device 1 does not change the beam pattern of the transmission antenna ATX used for transmission of the block Ack frame and retransmits the same aggregation frame unless the same aggregation frame is retransmitted from the communication partner. Since the beam pattern of the transmission antenna ATX is changed, unnecessary change of the beam pattern of the transmission antenna ATX can be avoided.
  • the wireless communication apparatus 1 can avoid the unnecessary change in the beam pattern of the transmission antenna ATX, and can omit the preparation period for setting the setting period PH1 and the setting period PH1, and thus can quickly restore the communication path. Degradation of the communication environment (communication quality) with the communication partner can be suppressed. That is, since the wireless communication device 1 can reduce unnecessary occupation time (for example, the setting period PH1 and the preparation period for setting the setting period PH1) of the communication band, the effective throughput can be improved, and further, the power consumption and the communication partner can be improved. The time required to connect to can be reduced.
  • not all the MAC frames (MPDUs) among the aggregation frames are received. For example, when three MAC frames are concatenated, a total of eight reception combinations are possible. . For this reason, in step P21 shown in FIG. 12, when the wireless communication device 1B receives a MAC frame that is equal to or greater than a predetermined threshold among the aggregation frames, the wireless communication device 1B determines that it has received an aggregation frame including a part of the MAC frames. Also good.
  • the wireless communication device 1B when the wireless communication device 1B receives a MAC frame less than a predetermined threshold among the aggregation frames and receives no other frames, it is difficult to compare the stored SN pattern with the received SN pattern. It is determined that the aggregation frame has not been received. As a result, the wireless communication device 1B can process the comparison between the stored SN pattern and the received SN pattern with high accuracy after correctly receiving the aggregation frame, avoid erroneous determination of retransmission of the aggregation frame, and increase the antenna beam pattern. Can be set to accuracy.
  • the wireless communication device 1 transmits an Ack frame or a block Ack frame using the same frequency as the frequency used by the communication partner for transmitting the MAC frame (for example, a data frame). You may transmit an Ack frame or a block Ack frame using the frequency different from the frequency which the other party used for transmission of a MAC frame (for example, data frame).
  • the communication partner of the wireless communication device 1 transmits a data frame using directional band (for example, millimeter wave), but transmits a data frame using un-directional band (for example, microwave). You may send it.
  • directional band for example, millimeter wave
  • un-directional band for example, microwave
  • the wireless communication for data transmission is performed according to the retry bit, the sequence number, and the sequence number pattern.
  • the state of the communication path between the device Dv1 and the data reception wireless communication device Dv2 can be accurately determined. For example, in a communication environment in which the beam pattern of the transmission antenna ATX or the reception antenna ARX is held, it is considered that the communication quality between the data transmission wireless communication device Dv1 and the data reception wireless communication device Dv2 is high.
  • the wireless communication device 1 reduces, for example, transmission power (see FIG. 13), reduces the gain of the reception antenna ARX, and performs MCS (Modulation and Coding Scheme) or code. It is also possible to increase the conversion rate, increase the frame length of the MAC frame, or increase the number of connected MAC frames in the aggregation frame. As a result, the wireless communication device 1 can effectively use the wireless band, and the power consumption of the wireless communication device 1 can be reduced.
  • transmission power see FIG. 13
  • MCS Modulation and Coding Scheme
  • the wireless communication device 1 increases, for example, transmission power (see FIG. 13), increases the gain of the reception antenna ARX, and decreases MCS (Modulation and Coding scheme). Then, the frame length of the MAC frame may be reduced, the number of MAC frames connected in the aggregation frame may be reduced, or the used carrier frequency may be changed to another carrier frequency.
  • transmission power see FIG. 13
  • MCS Modulation and Coding scheme
  • the wireless communication device 1 estimates a frequency band with high communication quality by scanning the frequency band according to the deterioration of communication quality. Thereby, since the wireless communication device 1 can avoid retransmission of unnecessary MAC frames or aggregation frames, the wireless communication device 1 can effectively use the wireless band, and the power consumption of the wireless communication device 1 can be reduced.
  • FIG. 13 illustrates an example of a procedure for setting the beam pattern of the transmission antenna ATX for transmitting the Ack frame corresponding to the MAC frame received by the data reception wireless communication device Dv2 according to the third modification of the first embodiment. It is a flowchart. Note that in FIG. 13, the same operations as those illustrated in FIG. 4A are denoted by the same reference numerals, and description thereof is omitted or simplified, and different contents are described.
  • the wireless transmission unit 14 reduces the transmission power of the Ack frame generated by the response frame generation unit 13 (P15), and uses the beam pattern of the transmission antenna ATX held in Step P5. To the communication partner (P6).
  • the wireless transmission unit 14 increases the transmission power of the Ack frame generated by the response frame generation unit 13 (P16), and performs communication using the beam pattern of the transmission antenna ATX after the change in step P7. Transmit to the other party (P8).
  • MAC frame transmission and Ack frame response transmission are described as examples.
  • a combination of transmission and response transmission is, for example, RTS ( Request To Send), CTS (Clear To Send), SSW (Sector Sweep), SSW-FB (Sector Sweep-Feedback) and SSW-Ack (Sector Sweep-Ack), Association Request / Ack, Association Response / Ack
  • RTS Request To Send
  • CTS Clear To Send
  • SSW ctor Sweep
  • SSW-FB Vector Sweep-Feedback
  • SSW-Ack Sector Sweep-Ack
  • FIG. 19A illustrates a setting procedure of a beam pattern of a transmission antenna of a response frame (for example, a CTS frame) to a MAC frame (for example, an RTS frame) received by the data reception wireless communication device according to the fourth modification of the first embodiment.
  • FIG. 19B is a flowchart illustrating an example of the change of the frame type by the reception of the CTS frame in the data transmission wireless communication device and the data reception wireless communication device according to the fourth modification of the first embodiment. It is a sequence diagram which shows an example of the signaling performed.
  • FIG. 19 is a flowchart and a sequence diagram when data and Ack in FIGS. 4A and 5A are replaced with frames.
  • P2 of FIG. 4 (A) whether or not the response transmission of the Ack frame is required is confirmed, but in FIG. 19 (A), whether or not the response transmission of the frame is necessary is confirmed.
  • P4 of FIG. 4A the retry bit of the data frame is confirmed.
  • FIG. 19A it is confirmed whether the previous received frame type is different from the current received frame type. That is, YES in P4R is a determination in S4R in FIG. 19B described later, and NO in P4R is a determination in S2R in FIG. 19B.
  • P6R is a response transmission of the S4R Ack frame in FIG. 19
  • P8R is a response transmission of the S2R CTS frame in FIG.
  • FIG. 19B is a sequence diagram for the transmission and reception of data and Ack after the transmission and reception of RTS and CTS. Since the RTS does not include the sequence number and the retry bit, the data reception wireless communication device Dv2 does not determine the retransmission of the RTS, but receives the second RTS, so the beam pattern is used in the second CTS transmission. Is changed (S2R). That is, since it corresponds to NO of P4R in FIG. 19A, the beam pattern is changed.
  • the wireless communication device Dv1 for data transmission changes the transmission frame type from RTS to data by receiving the CTS, and transmits data including sequence number and retry bit information (S3R).
  • the data receiving wireless communication device Dv2 since the data receiving wireless communication device Dv2 receives the data after transmitting the CTS, it determines that the CTS has been received by the data transmitting wireless communication device Dv1, and returns Ack without changing the beam pattern. (S4R). That is, since this corresponds to YES in P4R in FIG. 19A, the beam pattern is not changed.
  • response transmission is not limited to transmitting an Ack frame, and a Reverse-Direction system that includes a data frame and an Ack frame may be used.
  • the data reception wireless communication device Dv2 when changing the beam pattern of the transmission antenna ATX, includes a beam pattern and a beam adjacent to the current beam pattern from among a plurality of switchable beam patterns. You may set to either the beam pattern according to the identification number provided for every pattern, or the beam pattern selected at random.
  • the data reception wireless communication device Dv2 changes the beam pattern of the transmission antenna ATX when a MAC frame or an aggregation frame is continuously received a plurality of times exceeding a predetermined threshold. You may do it. Thereby, the data reception wireless communication device Dv2 can avoid an unnecessary change in the beam pattern of the transmission antenna ATX due to non-arrival of the Ack frame or the block Ack frame due to, for example, an instantaneous change in the communication environment.
  • the present disclosure is useful as a wireless communication apparatus that avoids unnecessary changes in the beam pattern of the antenna and suppresses deterioration in communication quality.
  • Wireless communication device 1, 1A, 1B Wireless communication device 11 Wireless reception unit 12 Response necessity determination unit 13 Response frame generation unit 14 Radio transmission unit 15 Antenna control unit 15R Reception antenna control unit 15T Transmission antenna control unit 16 Determination unit 16A Retransmission bit determination unit 16B SN determination unit ARX reception antenna ATX transmission antenna Dv1 data transmission radio communication device Dv2 data reception radio communication device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 通信相手から送信された第1送信フレームを受信アンテナにおいて受信する受信部と、受信アンテナにおいて受信された第1送信フレームを基に、第1送信フレームの受信を示す第1応答フレームを生成する応答フレーム生成部と、生成された第1応答フレームを送信アンテナから送信する送信部と、通信相手から同一の第1送信フレームが再送されたか否かを判定する判定部と、通信相手から同一の第1送信フレームが再送された場合に、送信アンテナのビームパターンを変更するアンテナ制御部と、を備える、無線通信装置を提供する。

Description

無線通信装置
 本開示は、無線通信におけるアンテナのビームパターンを切り換える無線通信装置に関する。
 高速なデータ伝送を実現する無線通信として、例えばIEEE(The Institute of Electrical and Electronics Engineers, Inc.)802.11(例えばIEEE802.11a又はIEEE802.11b)の通信規格に規定される無線LAN(Local Area Network)が知られている。
 昨今、デジタル機器の高機能化に伴って、無線LANを使用可能な無線通信装置を含むデジタル機器が普及している。デジタル機器は、例えばアクセスポイントを介さずに無線通信装置同士を直接通信させることで、他のデジタル機器に対して、大容量のデータ(例えばHD(High Density)映像データ)伝送が可能である。
 無線通信装置同士を直接通信させる通信方法として、例えば60[GHz]のミリ波を用いた無線通信が注目されている。ミリ波通信は無線LAN通信と比較して広い帯域を用いるので、ミリ波通信の通信許容範囲を有効に利用した場合、例えば1[Gbps]以上の高速無線通信が可能である。しかし、60[GHz]のミリ波帯域の電波は、波長が短く、直進性が強いため、電波の伝搬環境(通信環境)の変化による影響を受け易い。
 例えばデータを送信する無線通信装置とデータを受信する無線通信装置との間に人間が横切る若しくは障害物が存在する場合、又はいずれかの無線通信装置を把持する人間の手が揺れ若しくは手が回転する場合、通信環境が変化し、通信品質が劣化する。なお、以後、データを送信する無線通信装置は、データ送信用無線通信装置と記載し、データを受信する無線通信装置はデータ受信用無線通信装置と記載する。また、データ送信用無線通信装置は、無線送信部及び無線受信部を含む構成であり、データ受信用無線通信装置は、無線送信部及び無線受信部を含む構成である。
 従って、ミリ波通信では、ビームフォーミングを用いて、例えば送信アンテナ、受信アンテナのいずれかの指向性に沿ったビームパターン、又は、送信アンテナ及び受信アンテナの両方の指向性に沿ったビームパターンを設定する。アンテナのビームパターンは、単一の通信相手に対して設定され、又は最適ではないが複数の通信相手に対して適切となるように設定される。
 ミリ波帯域を用いて無線通信する無線通信装置では、信号の減衰量が考慮され、送信アンテナと受信アンテナとが別々に用いられることがあり、送信アンテナと受信アンテナとにおいて異なるビームパターンが設定されることがある。例えば、受信アンテナは無指向性に設定され、送信アンテナは特定の方向に主ビームを形成したビームパターンが設定される。
 また、ミリ波通信における通信プロトコルでは、送信アンテナ又は受信アンテナのビームパターンを決定するためのプロセス(手続き)がある。ミリ波通信においてアンテナのビームパターンを決定するための先行技術として、例えば特許文献1が知られている。
 特許文献1では、データ送信用無線通信装置は、送信フレームを送信する度に、タイマを起動させて送信フレーム(データフレーム)の送信回数(再送回数)をカウントする。データ送信用無線通信装置は、データ受信用無線通信装置からAckフレームの応答が返送されずにデータフレームを再送する場合、タイマのカウント値又は送信フレームの再送回数が一定値に達すると、送信アンテナのビームパターンを他のビームパターンに変更する。
米国特許第7652624号明細書
 本発明者は、無線通信におけるアンテナのビームパターンを切り換える無線通信装置について検討した。しかし、上述した特許文献1では、データ送信用無線通信装置が一定の条件下において送信アンテナのビームパターンを変更するので、送信フレームがデータ受信用無線通信装置において受信されているが、データ送信用無線通信装置は、送信アンテナのビームパターンの変更が不要であっても変更される場合があるという課題がある。
 本開示は、上述した従来の課題を解決するために、アンテナのビームパターンの不要な変更を回避し、通信品質の劣化を抑制する無線通信装置を提供する。
 本開示は、通信相手から送信された第1送信フレームを受信アンテナにおいて受信する受信部と、前記受信アンテナにおいて受信された前記第1送信フレームを基に、前記第1送信フレームの受信を示す第1応答フレームを生成する応答フレーム生成部と、生成された前記第1応答フレームを送信アンテナから送信する送信部と、前記通信相手から同一の前記第1送信フレームが再送されたか否かを判定する判定部と、前記通信相手から同一の前記第1送信フレームが再送された場合に、前記送信アンテナのビームパターンを変更するアンテナ制御部と、を備える無線通信装置である。
 本開示によれば、アンテナのビームパターンの不要な変更を回避し、通信品質の劣化を抑制できる。
(A)無指向性のビームパターンを示す図、(B)疑似無指向性のビームパターンを示す図、(C)複数(例えば3つ)の指向性を有し、いずれかの方向に主ビームを形成したビームパターンを示す図、(D)データ送信用無線通信装置の送信アンテナは特定方向の指向性を有したビームパターンが設定され、データ受信用無線通信装置の受信アンテナは疑似無指向性のビームパターンが設定された場合の通信例の説明図 各実施形態の無線通信装置の内部基本構成の一例を示すブロック図 (A)図2に示す無線通信装置において判定部の一例として再送ビット判定部を用いた無線通信装置の内部構成の一例を示すブロック図、(B)図2に示す無線通信装置において判定部の一例としてSN判定部を用いた無線通信装置の内部構成の一例を示すブロック図 (A)第1の実施形態のデータ受信用無線通信装置が受信したMACフレーム(例えばデータフレーム)に対するAckフレームの送信アンテナのビームパターンの設定手順の一例を説明するフローチャート、(B)第1の実施形態のデータ受信用無線通信装置が受信したMACフレーム(例えばデータフレーム)に対するAckフレームの送信アンテナのビームパターンの設定手順の他の一例を説明するフローチャート (A)第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、Ackフレームの受信によってシーケンス番号SNが変更されるシグナリングの一例を示すシーケンス図、(B)第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、再送回数の上限到達によってシーケンス番号SNが変更されるシグナリングの一例を示すシーケンス図 (A)第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、Ackフレームの受信によってシーケンス番号SNが変更されるシグナリングの他の一例を示すシーケンス図、(B)第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、再送回数の上限到達によってシーケンス番号SNが変更されるシグナリングの他の一例を示すシーケンス図 (A)ビームパターンが決定された後にデータ送信用無線通信装置からデータ受信用無線通信装置へのデータフレームの送信が成功した例を示す説明図、(B)ビームパターンが決定された後にデータ受信用無線通信装置からデータ送信用無線通信装置へのAckフレームの送信が成功した例を示す説明図、(C)データ受信用無線通信装置が回転した後にデータ送信用無線通信装置からデータ受信用無線通信装置へのデータフレームの送信が成功した例を示す説明図、(D)データ受信用無線通信装置が回転した後にデータ受信用無線通信装置からデータ送信用無線通信装置にAckフレームの送信が失敗した例を示す説明図、(E)データ受信用無線通信装置が回転した後にデータ送信用無線通信装置からデータ受信用無線通信装置へのデータフレームの送信が成功した例を示す説明図、(F)データ受信用無線通信装置が回転し、かつ、送信アンテナのビームパターンが変更された後にデータ受信用無線通信装置からデータ送信用無線通信装置へのAckフレームの送信が成功した例を示す説明図 (A)第1の実施形態のデータ受信用無線通信装置がAckフレームを送信するための送信アンテナのビームパターンを用いてデータフレームを送信する動作手順の一例を説明するフローチャート、(B)図8(A)に示すデータ受信用無線通信装置がAckフレームを送信するための送信アンテナのビームパターンを用いてデータフレームを送信するシグナリングの一例を示すシーケンス図 第1の実施形態の変形例1におけるデータ受信用無線通信装置が受信したデータフレームに対するAckフレームを送信するための送信アンテナのビームパターンの設定手順の一例を説明するフローチャート 第1の実施形態の変形例2におけるデータ受信用無線通信装置が受信したデータフレームに対するAckフレームを送信するための送信アンテナのビームパターン及び次回のデータフレームを受信するための受信アンテナのビームパターンの設定手順の一例を説明するフローチャート 第2の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、アグリゲーションデータフレームの送信に関するシグナリングの一例を示すシーケンス図 第2の実施形態のデータ受信用無線通信装置が受信したアグリゲーションデータフレームに対応するブロックAckフレームを送信するための送信アンテナのビームパターンの設定手順の一例を説明するフローチャート 第1の実施形態の変形例3におけるデータ受信用無線通信装置が受信したMACフレームに対応するAckフレームを送信するための送信アンテナのビームパターンの設定手順の一例を説明するフローチャート (A)従来のMACフレームのフォーマットの一例を示す図、(B)従来のシーケンス制御フィールドのフォーマットの一例を示す図、(C)従来のフレーム制御フィールドのフォーマットの一例を示す図、(D)従来のAckフレームのフォーマットの一例を示す図 (A)従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における単一のデータフレームのシグナリングの概念を示すシーケンス図、(B)従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における単一のデータフレームのシグナリングの一例を示すシーケンス図 (A)従来のA-MPDUフレームのフォーマットの一例を示す図、(B)従来のA-MPDUサブフレームのフォーマットの一例を示す図、(C)従来のブロックAckフレームのフォーマットの一例を示す図 (A)従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における送信アグリゲーションフレームのシグナリングの概念を示すシーケンス図、(B)従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における送信アグリゲーションフレームのシグナリングの一例を示すシーケンス図、(C)従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における送信アグリゲーションフレームのシグナリングの他の一例を示すシーケンス図 (A)従来のミリ波通信におけるアンテナのビームパターンを設定するための設定期間と通信期間とを含む送信周期の説明図、(B)従来のミリ波通信におけるアンテナのビームパターンを設定するための設定期間と通信期間とを含む送信周期において通信環境の劣化が発生するタイミングの説明図 (A)第1の実施形態の変形例4におけるデータ受信用無線通信装置が受信したMACフレーム(例えばRTSフレーム)に対するCTSフレームの送信アンテナのビームパターンの設定手順の一例を説明するフローチャート、(B)第1の実施形態の変形例4のデータ送信用無線通信装置及びデータ受信用無線通信装置における、CTSフレームの受信によってフレーム種別が変更されるシグナリングの一例を示すシーケンス図
 (各実施形態の内容に至る経緯)
 先ず、本開示に係る無線通信装置の各実施形態を説明する前に、各実施形態の内容に至る経緯として、上述した特許文献1及び特許文献1における課題について説明する。なお、データ送信用無線通信装置は、無線送信部及び無線受信部を含む構成であり、データ受信用無線通信装置は、無線送信部及び無線受信部を含む構成である。また、データ送信用無線通信装置とデータ受信用無線通信装置とは、同様の構成を有し、例えば直接通信する場合を想定して説明する。
 ミリ波通信を用いた通信プロトコル(例えばIEEE802.11ad)では、送信アンテナ又は受信アンテナのビームパターンを決定するためのプロセス(手続き)がある(図18(A)参照)。図18(A)は、従来のミリ波通信におけるアンテナのビームパターンを設定するための設定期間PH1と通信期間PH2とを含む送信周期TRの説明図である。図18(B)は、従来のミリ波通信におけるアンテナのビームパターンを設定するための設定期間PH1と通信期間PH2とを含む送信周期TRにおいて通信環境の劣化が発生するタイミングの説明図である。
 図18(A)に示す送信周期TRは、ミリ波通信におけるアンテナのビームパターンを設定するための設定期間PH1(Antenna Training Phase)と、実際の通信(データトランザクション)期間PH2(Communication Phase)とを含む。送信期間TRの時間幅は、送信周期TR毎に、同一でも良いし、異なっても良い。
 設定期間PH1では、データ送信用無線通信装置は、指向性の異なる複数のアンテナのビームパターンを設定し、アンテナのビームパターンに関する情報を含む指向性検証用フレームを通信相手のデータ受信用無線通信装置に送信する。データ受信用無線通信装置は、指向性検証用フレームを受信した後、どのアンテナのビームパターンが適切であって、通信期間PH2において用いるアンテナに関する情報を含む応答フレームをデータ送信用無線通信装置に返送する。
 データ送信用無線通信装置は、データ受信用無線通信装置から返送された応答フレームを基に、データ受信用無線通信装置への通信に関する送信アンテナのビームパターンを設定する。これにより、設定期間PH1では、データ送信用無線通信装置の通信相手に対する送信アンテナのビームパターンが設定される。
 しかし、図18(A)に示す送信周期TRは、設定期間PH1が設定されていない送信周期と比べて、設定期間PH1の長さに応じて、通信期間PH2が短くなる。送信周期TRの時間幅は不変であるため、設定期間PH1が長くなると、通信期間PH2が短くなり、通信期間PH2において使用可能な帯域が少なくなる。
 また、ミリ波の特性上、設定期間PH1後の通信期間PH2の開始から時間(Duration)が経過し、通信環境の変化が発生した場合には(図18(B)参照)、残りの通信期間PH2において、設定期間PH1と同様に、データ送信用無線通信装置の通信相手に対する送信アンテナのビームパターンを再度設定する必要があるという課題がある。
 特許文献1では、上述した課題に対応して、データ送信用無線通信装置は、送信アンテナのビームパターンの設定回数を減らし、通信時に適切なアンテナのビームパターンを選択している。
 しかし、特許文献1において、Ackフレームがデータ送信用無線通信装置に到達していない場合に、データ送信用無線通信装置がデータフレームを再送する原因には、次の2通りの原因が考えられる。第1の原因は、データフレームがデータ受信用無線通信装置に届かなかったので、データ受信用無線通信装置がAckフレームを返送していない場合である。第2の原因は、データフレームはデータ受信用無線通信装置に届いたが、データ受信用無線通信装置から返送されたAckフレームがデータ送信用無線通信装置に届かなかった場合である。
 従って、特許文献1では、データ送信用無線通信装置がデータフレームを再送する原因が上述した第2の原因である場合には、データ送信用無線通信装置の送信アンテナのビームパターンは適切であったにも拘わらず、データ送信用無線通信装置は、送信アンテナのビームパターンを他のビームパターンに変更してデータフレームを再送することになる。このため、データ送信用無線通信装置は送信アンテナのビームパターンの不要な変更を行うので、データ送信用無線通信装置と通信相手としてのデータ受信用無線通信装置との間の通信品質が劣化するという課題があった。
 そこで、以下の各実施形態では、アンテナのビームパターンの不要な変更を回避し、通信品質の劣化を抑制する無線通信装置の例を説明する。
 次に、本開示に係る無線通信装置の各実施形態を説明する前に、各実施形態の内容の前提となる技術知識について、図14~図17を参照して説明する。図14~図17の説明では、説明を簡単にするために、2つの無線通信装置が直接通信する場合を想定し、送信側の無線通信装置をデータ送信用無線通信装置、受信側の無線通信装置をデータ受信用無線通信装置と略記する(例えば図15(A)又は図17(A)参照)。
 図14(A)は、従来のMACフレームのフォーマットの一例を示す図である。図14(B)は、従来のシーケンス制御フィールドのフォーマットの一例を示す図である。図14(C)は、従来のフレーム制御フィールドのフォーマットの一例を示す図である。図14(D)は、従来のAckフレームのフォーマットの一例を示す図である。以下の第1の実施形態の無線通信装置は、例えば図14(A)に示すフォーマットのMACフレーム(例えばデータフレーム、Data frame)を送受信する。
 図14(A)に示すMACフレームは、フレーム制御(Frame Control)、デュレーション(Duration)/ID、アドレス(Address)1、アドレス2、アドレス3、シーケンス制御(Sequence Control)、アドレス4、Qos(Quality of Service)制御、HT(High Throughput)制御、フレームボディ(Frame Body)及びFCS(Frame Check Sequence)の各フィールドを含む。MACフレームにおいて、フレームボディ及びFCS以外の各フィールドによりMACヘッダ(MAC Header)が構成される。
 図14(B)に示すシーケンス制御フィールドは、フラグメント番号(Fragment Number)及びシーケンス番号(Sequence Number)の各フィールドを含む。シーケンス番号は、図14(A)に示すMACフレームの識別番号又は送信順序を表し、例えばシーケンス番号のフィールドが12ビットである場合には0~4095のいずれかの整数値である。
 図14(C)に示すフレーム制御フィールドは、プロトコルバージョン(Protocol Version)、タイプ(Type)、サブタイプ(Subtype)、To DS(Destribution Service)、From DS、More Frag、リトライ(Retry)、パワー管理(Power Management)、More Data、Protected Frame及びOrderの各フィールドを含む。リトライフィールドは、図14(A)に示すMACフレームの再送の有無を表すリトライビットが格納され、例えばリトライビットが1であれば再送されたMACフレームであることを表し、リトライビットが0であれば新規に送信されたMACフレームであることを表す。
 図14(D)に示すAckフレームは、フレーム制御(Frame Control)、デュレーション(Duration)、RA(Receiver Address、受信局アドレス)及びFCSの各フィールドを含む。Ackフレームにおいて、FCS以外の各フィールドによりMACヘッダ(MAC Header)が構成される。
 高速なデータ伝送を実現する無線通信の規格(例えばIEEE802.11)では、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)又は無線基地局における無線帯域の割当による集中制御を用いた時分割多重通信(SPCA:Service Period Channel Access)の通信が規定されている。
 例えばCSMA/CAでは、データ送信用無線通信装置Dv11は、データフレームを送信する前にキャリアセンスを行い、所定の規定時間にキャリアを検出しない場合にデータフレームの送信を開始する。データ送信用無線通信装置Dv11及びデータ受信用無線通信装置Dv12は、データフレームの送信によって開始されるTXOP(Transmission Opportunity)と呼ばれる一定の期間にわたり、一連のデータフレームの送信及びAckフレームの応答が行われる(図15(A)参照)。
 CSMA/CAでは、データ送信用無線通信装置Dv1は、キャリアセンスによってデータ受信用無線通信装置Dv2への送信を決定した後に、例えば図18(A)に示す設定期間PH1において設定及び保持された送信アンテナのビームパターンを用いて、データフレームをデータ受信用無線通信装置Dv2に送信する。
 しかし、データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1がデータフレームを送信する時刻を予め知ることが困難である。また、同じ時刻に他のデータ送信用無線通信装置からデータ受信用無線通信装置Dv2に別のデータフレームが送信される可能性もあるので、データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1及び他のデータ送信用無線通信装置から送信されるデータフレームを受信できるように、受信アンテナのビームパターンを広範囲に設定する(図1(A)又は図1(B)参照)。
 図15(A)は、従来のデータ送信用無線通信装置Dv11とデータ受信用無線通信装置Dv12との間における単一のデータフレームのシグナリングの概念を示すシーケンス図である。データ受信用無線通信装置Dv12は、データ送信用無線通信装置Dv11が送信したデータフレームを正しく受信した場合には、max ack delayと呼ばれる所定の期間内に、応答フレームとしてのAckフレームをデータ送信用無線通信装置Dv11に応答する。
 データ送信用無線通信装置Dv11は、Ackフレームを受信することで、データ送信用無線通信装置Dv11が送信したデータフレームがデータ受信用無線通信装置Dv12において正しく受信されたと判定し、Ackフレームを受信しないことで、データ送信用無線通信装置Dv11が送信したデータフレームがデータ受信用無線通信装置Dv12において正しく受信されなかったと判定する。
 データ送信用無線通信装置Dv11は、Ackフレームを受信した場合には、次のデータフレームの送信を決定し、各データフレームに割り当てられるシーケンス番号(SN)を1つインクリメントし、リトライビットを0とするデータフレームを生成する。なお、シーケンス番号は、データ送信用無線通信装置Dv11のアドレス、データ受信用無線通信装置Dv12のアドレス及びTID(Traffic Identifier)に対応付けて管理される。
 一方、データ送信用無線通信装置Dv11は、Ackフレームを受信しない場合には、同じデータフレームを再送する。但し、再送されるデータフレームのシーケンス番号を変更されず、リトライビットは1に設定される(図15(B)参照)。
 図15(B)は、従来のデータ送信用無線通信装置Dv11とデータ受信用無線通信装置Dv12との間における単一のデータフレームのシグナリングの一例を示すシーケンス図である。データ送信用無線通信装置Dv11は、送信したデータフレームに対応するAckフレームを正しく受信しない場合には、例えばシーケンス番号を1に保持し、リトライビットを1に設定したデータフレームをデータ受信用無線通信装置Dv12に再送する。
 なお、データ送信用無線通信装置Dv11は、シーケンス番号を1に保持し、リトライビットを1に設定したデータフレームをデータ受信用無線通信装置Dv12に送信した後、再度、Ackフレームを正しく受信しなし場合には、データフレームを再送する。また、データ送信用無線通信装置Dv11は、再送回数をカウントし、所定の上限回数を超えた再送は行わない。また、データ送信用無線通信装置Dv11は、再送対象のデータフレームの送信が成功したと判定した場合に再送回数のカウンタをリセットする。
 図16(A)は、従来のA-MPDUフレームのフォーマットの一例を示す図である。図16(B)は、従来のA-MPDUサブフレームのフォーマットの一例を示す図である。図16(C)は、従来のブロックAckフレームのフォーマットの一例を示す図である。以下の第2の実施形態の無線通信装置は、例えば図16(A)に示すフォーマットのアグリゲーションフレーム(Aggregation frame、A-MPDU:Aggregate Medium Access Control Protocol Data Unit)を送受信する。
 図16(A)に示すアグリゲーションフレームは、複数のA-MPDUサブフレーム(A-MPDU sub frame)の各フィールドを含む。図16(B)に示すA-MPDUサブフレームは、A-MPDUサブフレームの区切り情報としてのMPDU delimiter、図14(A)に示すMACフレームと同様のMPDU及び調整用のPaddingの各フィールドを含む。
 図16(C)に示すブロックAckフレームは、フレーム制御(Frame Control)、デュレーション(Duration)/ID、ブロックAckフレームの受信先アドレスを表すRA(Receiver Address)、ブロックAckフレームの送信先アドレスを表すTA(Transmission Address)、BA制御(Block Ack Control)、BA情報(Block Ack Information)及びFCSの各フィールドを含む。ブロックAckフレームにおいて、BA制御、BA情報及びFCS以外の各フィールドによりMACヘッダ(MAC Header)が構成される。
 また、伝送効率の向上を目的として、図16(A)に示すアグリゲーションフレーム(A-MPDU)の送信、及びアグリゲーションフレームの受信を示すブロックAckフレームの応答によって、複数のシーケンス番号のMACフレームを一度に送受信する方式も知られている。データ受信用無線通信装置Dv12は、ブロックAckフレームの返送により、アグリゲーションフレームとして連結された複数のデータフレーム(MPDU)に対して、正しく受信したこと(Ack)又は正しく受信しないこと(Nack(No Acknowledge))を一度に応答できる(図17(A)参照)。
 図17(A)は、従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における送信アグリゲーションフレームのシグナリングの概念を示すシーケンス図である。データ受信用無線通信装置Dv12は、データ送信用無線通信装置Dv11が送信したアグリゲーションフレームのうち一部又は全てのシーケンス番号のデータフレーム(MPDU)を正しく受信した場合には、max ack delayと呼ばれる所定の期間内に、応答フレームとしてのブロックAckフレームをデータ送信用無線通信装置Dv11に応答する。
 データ送信用無線通信装置Dv11は、ブロックAckフレームを受信することで、データ送信用無線通信装置Dv11が送信したアグリゲーションフレームのうち一部又は全てのシーケンス番号のデータフレーム(MPDU)がデータ受信用無線通信装置Dv12において正しく受信されたと判定し、ブロックAckフレームを受信しないことで、データ送信用無線通信装置Dv11が送信したアグリゲーションフレームがデータ受信用無線通信装置Dv12において正しく受信されなかったと判定する。
 データ送信用無線通信装置Dv11は、ブロックAckフレームを受信できた場合には、ブロックAckフレームの内容を解析し、正しく受信されたデータフレーム(MPDU)のシーケンス番号と、正しく受信されなかったデータフレーム(MPDU)のシーケンス番号とを判定する。データ送信用無線通信装置Dv11は、判定結果に応じて、正しく受信されなかったデータフレーム(MPDU)のシーケンス番号と、新規の送信対象となるデータフレーム(MPDU)のシーケンス番号とを含むアグリゲーションフレームを生成する(図17(C)参照)。
 一方、データ送信用無線通信装置Dv11は、ブロックAckフレームを受信しない場合には、同じアグリゲーションフレームを再送する(図17(B)参照)。
 図17(B)は、従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における送信アグリゲーションフレームのシグナリングの一例を示すシーケンス図である。図17(C)は、従来のデータ送信用無線通信装置とデータ受信用無線通信装置との間における送信アグリゲーションフレームのシグナリングの他の一例を示すシーケンス図である。
 次に、本開示に係る無線通信装置の各実施形態について、図面を参照して説明する。各実施形態の無線通信装置は、例えばIEEE802.11adの通信規格において規定されているミリ波(例えば60[GHz])を用いて、通信相手の無線通信装置と無線通信する。また、以下の各実施形態では、各実施形態におけるデータを送信する無線通信装置(以下、「データ送信用無線通信装置」と略記する)と各実施形態におけるデータを受信する無線通信装置(以下、「データ受信用無線通信装置」と略記する)とは、同様の構成を有し、例えば直接通信する場合を想定して説明する。また、データ送信用無線通信装置は、無線送信部及び無線受信部を含む構成であり、データ受信用無線通信装置は、無線送信部及び無線受信部を含む構成である。
 (アンテナのビームパターン)
 先ず、各実施形態の無線通信装置の送信アンテナ又は受信アンテナのビームパターンの形成について、図1(A)~図1(D)を参照して説明する。
 図1(A)は、無指向性のビームパターンPA1を示す図である。図1(B)は、疑似無指向性のビームパターンPA2を示す図である。図1(C)は、複数(例えば3つ)の指向性を有し、いずれかの方向に主ビームを形成したビームパターンPA3を示す図である。図1(D)は、データ送信用無線通信装置Dv1の送信アンテナは特定方向の指向性を有したビームパターンPA3が設定され、データ受信用無線通信装置Dv2の受信アンテナは疑似無指向性のビームパターンPA2が設定された場合の通信例の説明図である。
 データ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2は、MACフレーム又はアグリゲーションフレームを送信又は受信する場合に、各送信アンテナ又は受信アンテナのビームパターンを無指向性(omni)のビームパターンPA(図1(A)参照)、又は疑似無指向性(quasi-omni)のビームパターンPA2に設定する。
 以下、データ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2の最大の半値幅を有するビームパターンの指向性を、疑似無指向性(quasi-omni)と記載する。従って、疑似無指向性のビームパターンPA2では、図1(C)に示す特定方向の指向性を有したビームパターンPA3に比べて、フレームの到達距離又は受信距離は短いが、半値幅は大きい。
 また、データ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2は、MACフレーム又はアグリゲーションフレームを送信又は受信する場合に、各送信アンテナ又は受信アンテナのビームパターンを、特定方向に主ビームを形成したビームパターンPA3に設定することもできる(図1(C)参照)。
 例えば図1(D)のように、データ送信用無線通信装置Dv1の送信アンテナが特定方向に主ビームが形成されたビームパターンPA3に設定され、データ受信用無線通信装置Dv2の受信アンテナが疑似無指向性のビームパターンPA2に設定されている場合、データ送信用無線通信装置Dv1が送信したMACフレーム又はアグリゲーションフレームはデータ受信用無線通信装置Dv2において受信される。
 (第1の実施形態)
 第1の実施形態では、例えばデータ送信用無線通信装置Dv1が図14(A)に示すMACフレームを送信し、データ受信用無線通信装置Dv2がMACフレームを受信したことを示すAckフレームを応答する場合を想定して説明する。
 図2は、各実施形態の無線通信装置1の内部基本構成の一例を示すブロック図である。図2に示す無線通信装置1は、例えば通信相手である他の無線通信装置(例えばデータ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2)から送信されたMACフレームを受信し、MACフレームの受信を示すAckフレームを応答するデータ受信用無線通信装置を想定した構成である。
 具体的には、図2に示す無線通信装置1は、受信アンテナARXが接続された無線受信部11と、応答要否判定部12と、応答フレーム生成部13と、送信アンテナATXが接続された無線送信部14と、判定部15と、アンテナ制御部16とを含む。
 受信アンテナARXは、通信相手である他の無線通信装置(例えばデータ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2)との通信期間PH2(図18(A)参照)が開始する前に、図18(A)に示す設定期間PH1において、ビームパターンが設定される。即ち、受信アンテナARXは、アンテナ制御部16が出力したアンテナ制御信号に応じて、ビームフォーミング技術によって、所定の指向性を有したビームパターンが設定されて保持される。
 受信アンテナARXは、保持されたビームパターンを用いて、他の無線通信装置(例えばデータ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2)が送信したMACフレーム(例えばデータフレーム)又はAckフレームを受信して無線受信部11に出力する。
 また、受信アンテナARXは、他の無線通信装置(例えばデータ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2)との通信期間PH2においても、アンテナ制御部16が出力したアンテナ制御信号に応じて、ビームフォーミング技術によって、ビームパターンが変更されて保持される。
 送信アンテナATXは、通信相手である他の無線通信装置(例えばデータ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2)との通信期間PH2(図18(A)参照)が開始する前に、図18(A)に示す設定期間PH1において、ビームパターンが設定される。即ち、送信アンテナATXは、アンテナ制御部16が出力したアンテナ制御信号に応じて、ビームフォーミング技術によって、所定の指向性を有したビームパターンが設定されて保持される。
 送信アンテナATXは、保持されたビームパターンを用いて、他の無線通信装置(例えばデータ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2)が送信したMACフレーム(例えばデータフレーム)又はAckフレームを送信する。
 また、送信アンテナATXは、他の無線通信装置(例えばデータ送信用無線通信装置Dv1又はデータ受信用無線通信装置Dv2)との通信期間PH2においても、アンテナ制御部16が出力したアンテナ制御信号に応じて、ビームフォーミング技術によって、ビームパターンが変更されて保持される。
 無線受信部11は、受信アンテナARXにおいて受信されたキャリア周波数帯域のMACフレーム又はAckフレームの信号をベースバンド信号に変換して復調する。無線受信部11は、復調されたMACフレームの宛先アドレス(例えば図14(A)に示すアドレス1(Address1)のフィールド参照)又はAckフレームの受信局アドレス(例えば図14(D)に示すRA(Receiver Address)のフィールド参照)が自局のMACアドレスと一致した場合に、自局宛てのフレームであると判定する。
 無線受信部11は、MACフレーム又はAckフレームが自局宛てのフレームであると判定した後、MACフレーム又はAckフレームの内容を基にして演算した値とFCSの値とが一致するか否かを判定する。無線受信部11は、MACフレーム又はAckフレームの内容を基にして演算した値とFCS(例えCRC32(Cyclic Redundancy Code 32))の値とが一致すると判定した場合に、MACフレーム又はAckフレームを正しく受信したと判定する。
 無線受信部11は、MACフレーム又はAckフレームを正しく受信したと判定した後、MACフレーム又はAckフレームを応答要否判定部12及び判定部15に出力する。
 また、無線受信部11は、MACフレーム又はAckフレームを受信したが自局宛てのMACフレーム又はAckフレームではない、或いはMACフレーム又はAckフレームの内容を基にして演算した値とFCSとの値とが不一致であると判定した場合には、MACフレーム又はAckフレームを正しく受信していないと判定する。無線受信部11は、MACフレーム又はAckフレームを廃棄して次の受信まで待機する。
 応答要否判定部12は、無線受信部11が復調したMACフレームのフレーム種別(例えば図14(A)に示すタイプ(Type)又はサブタイプ(Subtype)のフィールド参照)、又は応答種別(例えば図14(A)に示すQoS制御のフィールド参照)を基に、MACフレームの受信を示すAckフレームの応答の要否を判定する。
 応答要否判定部12は、無線受信部11が復調したMACフレームを無線通信装置1の上位レイヤ(不図示)に出力し、Ackフレームの応答の要否の判定結果を、応答フレーム生成部13、判定部15及びアンテナ制御部16に出力する。なお、応答要否判定部12がAckフレームの応答が不要であると判定した場合には、無線通信装置1は、MACフレームの受信を示すAckフレームを応答しない。
 応答フレーム生成部13は、応答要否判定部12がAckフレームの応答が必要であると判定した場合に、MACフレームの受信を示すAckフレームを生成して無線送信部14に出力する。
 無線送信部14は、応答フレーム生成部13により生成されたAckフレームを所定のキャリア周波数帯域の信号に変換して送信アンテナATXから送信する。なお、無線送信部14は、MACフレームが受信アンテナARXにおいて受信された時点から、所定の規定された時間(例えばIEEE802.11ではSIFS:Short Inter Frame Space)の経過後に、Ackフレームを応答する。これにより、無線通信装置1は、通信相手から送信されたMACフレームを正しく受信したことを通信相手に報告できる。
 判定部15は、応答要否判定部12がAckフレームの応答が必要であると判定した場合に、無線受信部11が復調したMACフレームを基に、無線通信装置1の通信相手から同一のMACフレームが再送されたか否かを判定する。判定部15は、例えば図3(A)に示す無線通信装置1Aの再送ビット判定部15A、又は図3(B)に示す無線通信装置1BのSN判定部15Bを用いて構成される。
 図3(A)は、図2に示す無線通信装置1において判定部15の一例として再送ビット判定部15Aを用いた無線通信装置1Aの内部構成の一例を示すブロック図である。図3(B)は、図2に示す無線通信装置1において判定部15の一例としてSN判定部15Bを用いた無線通信装置1Bの内部構成の一例を示すブロック図である。
 無線通信装置1Aにおける再送ビット判定部15Aは、無線受信部11が復調したMACフレームのリトライフィールド(例えば図14(A)に示すリトライ)内のリトライビットが、再送を示す1、又は新規送信を示す0であるかを判定し、判定結果をアンテナ制御部15の送信アンテナ制御部16Tに出力する。
 ここで、データ受信用無線通信装置Dv2がMACフレームを正しく受信しているため、データ送信用無線通信装置Dv1の送信アンテナATXとデータ受信用無線通信装置Dv2の送信アンテナARXとのビームパターンは、設定期間PH1において設定したビームパターンが有効であると判断できる。
 これに対して、受信したMACフレームのリトライビットが1であるため、データ受信用無線通信装置Dv2がMACフレームを正しく受信する以前に通信相手であるデータ送信用無線通信装置Dv1からMACフレームが1回以上再送され、データ受信用無線通信装置Dv2はMACフレームの正しい受信を示すAckフレームを返送したが、返送されたAckフレームが通信相手であるデータ送信用無線通信装置Dv1には正しく受信されていないことになる。
 この場合、設定期間PH1において設定したビームパターンであり、Ackフレームの返送に用いたデータ受信用無線通信装置Dv2の送信アンテナATXのビームパターンとデータ送信用無線通信装置Dv1の受信アンテナARXのビームパターンは、適切でないと考えられる。
 無線通信装置1BにおけるSN判定部15Bは、無線受信部11が復調したMACフレームのシーケンス制御フィールドのシーケンス番号と、以前に無線受信部11が受信して復調したMACフレームのシーケンス制御フィールドのシーケンス番号と同一であるか否かを判定し、判定結果をアンテナ制御部16の送信アンテナ制御部16Tに出力する。
 即ち、同一のシーケンス番号のMACフレームが、有限個のシーケンス番号のカウントが1周する前に複数回受信されている場合には、データ受信用無線通信装置Dv2が同一のMACフレームを重複して受信した、即ち、通信相手であるデータ送信用無線通信装置Dv1から同一のMACフレームが再送されたことになる。
 このため、データ送信用無線通信装置Dv1の送信アンテナATXとデータ受信用無線通信装置Dv2の送信アンテナARXとのビームパターンは、設定期間PH1において設定したビームパターンが有効であると判断できる。
 これに対して、設定期間PH1において設定したビームパターンであり、Ackフレームの返送に用いたデータ受信用無線通信装置Dv2の送信アンテナATXとデータ送信用無線通信装置Dv1の受信アンテナARXのビームパターンは適切ではないと考えられる。
 なお、SN判定部15Bは、シーケンス番号を、宛先アドレス(例えば図14(A)に示すアドレス1参照)又は受信局アドレス(例えば図14(D)に示すRA参照)と、論理リンクの識別子を示すTID(Traffic Identifier)との全て又は一部のペア毎に対応付けて管理する。
 また、SN判定部15Bは、無線通信装置1Bが以前に受信したMACフレームのシーケンス番号を記憶する。以下、本実施形態の説明を簡単にするために、SN判定部15Bが記憶する、以前に受信されたMACフレームのシーケンス番号を「記憶SN」と略記し、受信アンテナARXにおいて受信されたMACフレームのシーケンス番号を「受信SN」と略記する。
 アンテナ制御部16は、送信アンテナ制御部16T及び受信アンテナ制御部16Rを含む。なお、図2に示すアンテナ制御部16は、図3(A)又は図3(B)に示す送信アンテナ制御部16T及び受信アンテナ制御部16Rを含むとして説明するが、アンテナ制御部16が送信アンテナATX及び受信アンテナARXのビームパターンを制御しても良い。
 送信アンテナ制御部16Tは、通信相手との通信期間PH2(図18(A)参照)が開始する前に、設定期間PH1において、送信アンテナATXのビームパターンを設定して保持する。
 送信アンテナ制御部16Tは、再送ビット判定部15AがMACフレームのリトライフィールド内のリトライビットが1であると判定、即ち、同一のMACフレームの初送又は再送が以前にあったと判定した場合には、Ackフレームの応答に用いる送信アンテナATXのビームパターンを変更する。
 送信アンテナ制御部16Tは、再送ビット判定部15AがMACフレームのリトライフィールド内のリトライビットが0である判定、即ち、新たなMACフレームの初送を受けた判定した場合には、設定期間PH1に設定されたAckフレームの応答に用いる送信アンテナATXのビームパターンを保持する。
 送信アンテナ制御部16Tは、応答要否判定部12がAckフレームの応答が不要であると判定した場合に、設定期間PH1に設定された送信アンテナATXのビームパターンを保持する。
 受信アンテナ制御部16Rは、通信相手との通信期間PH2(図18(A)参照)が開始する前に、設定期間PH1において、受信アンテナARXのビームパターンを設定して保持する。なお、詳細は後述するが、受信アンテナ制御部16Rは、応答要否判定部12、再送ビット判定部15A又はSN判定部15Bの判定結果に応じて、受信アンテナARXのビームパターンを変更又は保持しても良い。
 次に、本実施形態の無線通信装置1がMACフレームを受信してからAckフレームを送信するまでの動作手順について、図4(A)及び図4(B)を参照して説明する。
 図4(A)は、第1の実施形態のデータ受信用無線通信装置Dv2が受信したMACフレーム(例えばデータフレーム)に対するAckフレームの送信アンテナATXのビームパターンの設定手順の一例を説明するフローチャートである。図4(B)は、第1の実施形態のデータ受信用無線通信装置Dv2が受信したMACフレーム(例えばデータフレーム)に対するAckフレームの送信アンテナATXのビームパターンの設定手順の他の一例を説明するフローチャートである。
 なお、図4(A)では図3(A)に示す無線通信装置1A(データ受信用無線通信装置Dv2)がMACフレーム(例えばデータフレーム)を正しく受信したとして説明し、図4(B)では図3(B)に示す無線通信装置1B(データ受信用無線通信装置Dv2)がMACフレーム(例えばデータフレーム)を正しく受信したとして説明する(P1)。
 図4(A)において、応答要否判定部12は、無線受信部11が復調したMACフレームのフレーム種別又は応答種別を基に、MACフレームの正しい受信を示すAckフレームの応答の要否を判定する(P2)。応答要否判定部12は、判定結果を、応答フレーム生成部13、再送ビット判定部15A及び送信アンテナ制御部16Tに出力する。
 送信アンテナ制御部16Tは、応答要否判定部12がAckフレームの応答が不要であると判定した場合には(P2、NO)、送信アンテナATXのビームパターンを保持する(P3)。
 応答フレーム生成部13は、応答要否判定部12がAckフレームの応答が必要であると判定した場合には(P2、YES)、MACフレームの受信を示すAckフレームを生成して無線送信部14に出力する。
 再送ビット判定部15Aは、応答要否判定部12がAckフレームの応答が必要であると判定した場合には(P2、YES)、無線受信部11が復調したMACフレームのリトライフィールド内のリトライビットが再送を示す1、又は新規送信を示す0であるかを判定する(P4)。再送ビット判定部15Aは、判定結果を送信アンテナ制御部16Tに出力する。
 送信アンテナ制御部16Tは、再送ビット判定部15AがMACフレームのリトライフィールド内のリトライビットが0であると判定した場合には(P4、YES)、Ackフレームの応答に用いる送信アンテナATXのビームパターンを保持する(P5)。
 無線送信部14は、応答フレーム生成部13により生成されたAckフレームを、ステップP5において保持された送信アンテナATXのビームパターンを用いて通信相手に送信する(P6)。
 一方、送信アンテナ制御部16Tは、再送ビット判定部15TがMACフレームのリトライフィールド内のリトライビットが1であると判定した場合には(P4、NO)、Ackフレームの応答に用いる送信アンテナATXのビームパターンを変更する(P7)。
 無線送信部14は、応答フレーム生成部13により生成されたAckフレームを、ステップP7における変更後の送信アンテナATXのビームパターンを用いて通信相手に送信する(P8)。なお、ステップP3、ステップP6又はステップP8の後の無線通信装置1Aの動作は、ステップP1に戻る。
 次に、図4(B)を参照して、無線通信装置1BがMACフレームを受信してからAckフレームを応答するまでの動作手順を説明するが、図4(A)に示す各動作と同一の動作には同一のステップ番号を付与して説明を省略又は簡略化し、異なる内容について説明する。
 図4(B)において、SN判定部15Bは、応答要否判定部12がAckフレームの応答が必要であると判定した場合には(P2、YES)、記憶SNと受信SNとが同一であるか否かを判定する(P4A)。SN判定部15Bは、ステップP4Aの判定結果に拘わらず、受信SNを記憶する(P9,P10)。
 ステップP9の後、送信アンテナ制御部16Tは、SN判定部15Bが記憶SNと受信SNとが不一致であると判定した場合に、Ackフレームの応答に用いる送信アンテナATXのビームパターンを保持する(P5)。
 記憶SNと受信SNとが不一致であれば、無線通信装置1Bは、新たなシーケンス番号が付与されたMACフレームを受信したことになる。従って、無線通信装置1Bは、前回のAckフレームの応答に用いた送信アンテナATXのビームパターンが適切であり、送信アンテナATXのビームパターンは変更の必要が無いと判断する。
 一方、ステップP9の後、送信アンテナ制御部16Tは、SN判定部15Bが記憶SNと受信SNとが一致していると判定した場合に、Ackフレームの応答に用いる送信アンテナATXのビームパターンを変更する(P7)。
 記憶SNと受信SNとが一致であれば、無線通信装置1Bは、同一のシーケンス番号が付与されたMACフレームを受信したことになる。従って、無線通信装置1Bは、前回のAckフレームの応答に用いた送信アンテナATXのビームパターンが不適切であり、送信アンテナATXのビームパターンは変更の必要があると判断する。
 次に、本実施形態の無線通信装置同士が直接に無線通信する場合のシグナリングの一例について、図5(A)、図5(B)、図6(A)及び図6(B)を参照して説明する。図5(B)、図6(A)及び図6(B)の説明では、図5(A)に示す各動作と同一の動作については同一の符号を用いて説明を省略又は簡略化し、異なる内容について説明する。
 図5(A)は、第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、Ackフレームの受信によってシーケンス番号SNが変更されるシグナリングの一例を示すシーケンス図である。図5(B)は、第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、再送回数の上限到達によってシーケンス番号SNが変更されるシグナリングの一例を示すシーケンス図である。
 図6(A)は、第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、Ackフレームの受信によってシーケンス番号SNが変更されるシグナリングの他の一例を示すシーケンス図である。図6(B)は、第1の実施形態のデータ送信用無線通信装置及びデータ受信用無線通信装置における、再送回数の上限到達によってシーケンス番号SNが変更されるシグナリングの他の一例を示すシーケンス図である。
 以下のシーケンス図では、本実施形態のデータを送信する無線通信装置をデータ送信用無線通信装置Dv1、本実施形態のデータを受信する無線通信装置をデータ受信用無線通信装置Dv2として説明する。
 また、図5(A)及び図5(B)は、図3(A)に示す無線通信装置1Aの構成を有するデータ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2の動作を示し、図6(A)及び図6(B)に示す無線通信装置1Bの構成を有するデータ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2の動作を示す。
 図5(A)において、データ送信用無線通信装置Dv1は、「シーケンス番号=1、リトライビット=0」のデータフレームをデータ受信用無線通信装置Dv2に送信する(S1)。データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から送信されたMACフレーム(例えばデータフレーム)を正しく受信し、送信アンテナATXのビームパターン(例えばPtA)を用いてAckフレームをデータ送信用無線通信装置Dv1に送信する(S1)。しかし、ステップS1では、Ackフレームはデータ送信用無線通信装置Dv1に到達しない(S1)。
 データ送信用無線通信装置Dv1は、リトライビットを0から1に変更し、「シーケンス番号=1、リトライビット=1」のデータフレームを再送する(S2)。データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から再送されたデータフレームを正しく受信し、送信アンテナATXのビームパターンを、例えばビームパターンPtAからビームパターンPtBに変更してAckフレームをデータ送信用無線通信装置Dv1に送信する(S2)。
 ステップS2においてデータ受信用無線通信装置Dv2から送信されたAckフレームがデータ送信用無線通信装置Dv1に到達した、即ちデータ送信用無線通信装置Dv1において正しく受信されたため、データ送信用無線通信装置Dv1は、例えばシーケンス番号を1つインクリメントし(S3)、「シーケンス番号=2、リトライビット=0」のデータフレームを生成してデータ受信用無線通信装置Dv2に送信する(S4)。
 データ受信用無線通信装置Dv2は、ステップS4においてデータ送信用無線通信装置Dv1から送信されたデータフレームを正しく受信し、ステップS2における変更後の送信アンテナATXのビームパターンPtBを用いて、Ackフレームをデータ送信用無線通信装置Dv1に送信する(S4)。
 なお、ステップS4において送信されたAckフレームは、データ送信用無線通信装置Dv1とデータ受信用無線通信装置Dv2との間の通信環境と各アンテナのビームパターンとが適切であれば、データ送信用無線通信装置Dv1において正しく受信される。
 図5(B)において、データ送信用無線通信装置Dv1は、「シーケンス番号=1、リトライビット=1」のデータフレームを再送する(S5)。データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から再送されたデータフレームを正しく受信し、送信アンテナATXのビームパターンを、例えばビームパターンPtAからビームパターンPtBに変更してAckフレームをデータ送信用無線通信装置Dv1に送信する(S5)。しかし、ステップS5では、Ackフレームはデータ送信用無線通信装置Dv1に到達しない(S5)。
 ステップS6でも同様に、データ受信用無線通信装置Dv2は、送信アンテナATXのビームパターンを、例えばビームパターンPtBからビームパターンPtCに変更してAckフレームをデータ送信用無線通信装置Dv1に送信する(S6)。しかし、ステップS6では、Ackフレームは、データ送信用無線通信装置Dv1に到達しない(S6)。
 データ送信用無線通信装置Dv1は、データフレームの再送回数が所定の再送回数の上限に到達したと判定した場合に、実際には「シーケンス番号=1」のデータフレームはデータ受信用無線通信装置Dv2において正しく受信されているが、「シーケンス番号=1」のデータフレームの再送を中止し、シーケンス番号を1つインクリメントしてシーケンス番号を変更し(S7)、「シーケンス番号=2、リトライビット=0」のデータフレームをデータ受信用無線通信装置Dv2に送信する(S8)。
 データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から送信された「シーケンス番号=2、リトライビット=0」のデータフレームを正しく受信し、送信アンテナATXのビームパターンを、例えばステップS6において設定されたビームパターンPtCを用いてAckフレームをデータ送信用無線通信装置Dv1に送信する(S8)。しかし、ステップS8では、Ackフレームはデータ送信用無線通信装置Dv1に到達しない(S8)。
 なお、ステップS8において、データ受信用無線通信装置Dv2は、送信アンテナATXのビームパターンを、ステップS6と同じビームパターンPtCを用いてAckフレームを送信している。これは、データ送信用無線通信装置Dv1によるステップS7の判断が、データ受信用無線通信装置Dv2にとっては未知であるため、ステップS8において、データ受信用無線通信装置Dv2は、シーケンス番号が2に変更された原因が、Ackフレームの到達によるものであるか、ステップS7による再送回数の上限達成によるものであるかを、判断することは困難である。
 このため、データ受信用無線通信装置Dv2は、ステップS8において、Ackフレームの送信に用いてビームパターンはステップS6と同じビームパターンを用いることで、再度、ビームパターンPtCによる送信が到達するか否かを試す手順とした。この手順によって、ステップS8において、全てのビームパターンを試すことによる不要な期間の短縮を図ることができる。
 データ送信用無線通信装置Dv1は、リトライビットを0から1に変更し、「シーケンス番号=2、リトライビット=1」のデータフレームを再送する(S9)。データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から再送されたデータフレームを正しく受信し、送信アンテナATXのビームパターンを、例えばビームパターンPtCからビームパターンPtDに変更してAckフレームをデータ送信用無線通信装置Dv1に送信する(S9)。なお、ステップS9において送信されたAckフレームは、データ送信用無線通信装置Dv1とデータ受信用無線通信装置Dv2との間の通信環境と各アンテナのビームパターンとが適切であれば、データ送信用無線通信装置Dv1において正しく受信される。
 図6(A)及び図6(B)の各シーケンス図において、図5(A)及び図5(B)の各シーケンス図と異なるのは、データ受信用無線通信装置Dv2が同一のデータフレームが再送されたか否かを判定するための方法であり、判定方法以外の内容は同一であるため、説明を省略する。
 即ち、図6(A)及び図6(B)では、データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から送信されたデータフレームを正しく受信し、Ackフレームの応答が必要であると判定した場合には、記憶SNと受信SNとが同一でないと判定した場合に、設定された送信アンテナATXのビームパターンを用いてAckフレームを送信する。
 次に、本実施形態の無線通信装置同士が直接に無線通信する場合の各アンテナのビームパターンの一例について、図7(A)、図7(B)、図7(C)、図7(D)、図7(E)及び図7(F)を参照して説明する。
 図7(A)は、ビームパターンが決定された後にデータ送信用無線通信装置Dv1からデータ受信用無線通信装置Dv2へのデータフレームの送信が成功した例を示す説明図である。図7(B)は、ビームパターンが決定された後にデータ受信用無線通信装置Dv2からデータ送信用無線通信装置Dv1へのAckフレームの送信が成功した例を示す説明図である。
 図7(C)は、データ受信用無線通信装置Dv2が回転した後にデータ送信用無線通信装置Dv1からデータ受信用無線通信装置Dv2へのデータフレームの送信が成功した例を示す説明図である。図7(D)は、データ受信用無線通信装置Dv2が回転した後にデータ受信用無線通信装置Dv2からデータ送信用無線通信装置Dv1にAckフレームの送信が失敗した例を示す説明図である。
 図7(E)は、データ受信用無線通信装置Dv2が回転した後にデータ送信用無線通信装置Dv1からデータ受信用無線通信装置Dv2へのデータフレームの送信が成功した例を示す説明図である。図7(F)は、データ受信用無線通信装置Dv2が回転し、かつ、送信アンテナATXのビームパターンが変更された後にデータ受信用無線通信装置Dv2からデータ送信用無線通信装置Dv1へのAckフレームの送信が成功した例を示す説明図である。
 図7(A)、図7(C)及び図7(E)では、データ送信用無線通信装置Dv1の送信アンテナATXのビームパターンを太い実線にて示し、データ受信用無線通信装置Dv2の受信アンテナARXのビームパターンを太い点線にて示す。図7(B)、図7(D)及び図7(F)では、データ送信用無線通信装置Dv1の受信アンテナARXのビームパターンを太い点線にて示し、データ受信用無線通信装置Dv2の送信アンテナATXのビームパターンを太い実線にて示す。
 図7(A)及び図7(B)では、データ送信用無線通信装置Dv1の送信アンテナATXのビームパターンとデータ受信用無線通信装置Dv2の受信アンテナARXのビームパターンとの組み合わせは一部において重複する。このため、図7(A)では、データ送信用無線通信装置Dv1が送信したデータフレームはデータ受信用無線通信装置Dv2において受信される。また、図7(B)では、データ送信用無線通信装置Dv1の受信アンテナARXのビームパターンとデータ受信用無線通信装置Dv2の送信アンテナATXのビームパターンとの組み合わせが一部において重複する。このため、データ受信用無線通信装置Dv2が送信したAckフレームはデータ送信用無線通信装置Dv1において受信される。
 図7(C)及び図7(D)では、データ受信用無線通信装置Dv2が回転したために、データ受信用無線通信装置Dv2の受信アンテナARXのビームパターンと送信アンテナATXのビームパターンとの重複状態が変化する。図7(C)では、データ送信用無線通信装置Dv1の送信アンテナATXのビームパターンとデータ受信用無線通信装置Dv2の受信アンテナARXのビームパターンとの組み合わせが一部において重複する。このため、データ送信用無線通信装置Dv1が送信したデータフレームはデータ受信用無線通信装置Dv2において受信される。
 しかし、図7(D)では、データ送信用無線通信装置Dv1の受信アンテナARXのビームパターンとデータ受信用無線通信装置Dv2の送信アンテナATXのビームパターンとの組み合わせは重複しない。このため、データ受信用無線通信装置Dv2が送信したAckフレームはデータ送信用無線通信装置Dv1において受信されず、データ受信用無線通信装置Dv2は、Ackフレームの送信に用いる送信アンテナATXのビームパターンを変更する。
 図7(E)及び図7(F)では、図7(C)及び図7(D)と同様にデータ受信用無線通信装置Dv2が回転した状態について説明する。図7(E)では、データ送信用無線通信装置Dv1の送信アンテナATXのビームパターンとデータ受信用無線通信装置Dv2の受信アンテナARXのビームパターンとの組み合わせが一部において重複する。データ送信用無線通信装置Dv1が送信したデータフレームはデータ受信用無線通信装置Dv2において受信される。
 図7(F)では、図7(D)におけるビームパターンを変更したため、データ送信用無線通信装置Dv1の受信アンテナARXのビームパターンとデータ受信用無線通信装置Dv2の送信アンテナATXのビームパターンとの組み合わせは一部において重複する。このため、データ受信用無線通信装置Dv2は、変更された送信アンテナATXのビームパターンを用いてAckフレームを送信した場合、データ受信用無線通信装置Dv2が送信したAckフレームはデータ送信用無線通信装置Dv1において受信される。
 以上により、本実施形態の無線通信装置1は、通信相手から送信されたMACフレーム(例えばデータフレーム)を正しく受信し、MACフレームの応答を示すAckフレームの応答が必要であると判定した場合には、MACフレームのリトライビットの内容、又は記憶SNと受信SNとの比較によって、通信相手から同一のMACフレームが再送されたか否かを判定する。
 無線通信装置1は、通信相手から同一のMACフレームが再送されたと判定した場合には、前回送信したAckフレームの送信に用いた送信アンテナATXのビームパターンが適切ではなかったと判断して、送信アンテナATXのビームパターンを変更する。無線通信装置1は、変更後のビームパターンを用いて、Ackフレームを送信する。
 これにより、無線通信装置1は、通信相手から同一のMACフレームが再送されなければ、Ackフレームの送信に用いる送信アンテナATXのビームパターンを変更せず、同一のMACフレームが再送された場合に送信アンテナATXのビームパターンを変更するので、送信アンテナATXのビームパターンの不要な変更を回避できる。従って、無線通信装置1は、早期に通信路を回復できるので、通信相手との間の通信環境(通信品質)の劣化を抑制できる。即ち、無線通信装置1は、通信帯域の不要な占有時間を減少できるので、実効スループットを向上でき、更に消費電力及び通信相手への接続に要する時間を低減できる。
 また本実施形態では、無線通信装置1は、MACフレームのシーケンス番号を基にして通信相手から同一のMACフレームが再送されたか否かを判定できるので、例えばリトライビットが含まれないフォーマットのMACフレームに対応してMACフレームの再送の有無を判定できる。なお、無線通信装置1は、同一の送信元アドレスを有し、再送であることを示すMACフレームを一定時間内に複数回以上受信した場合には、以前に送信したAckフレームが不到達であったと判定しても良い。
 また、無線通信装置1は、例えば図18(A)に示す設定期間PH1が完了してから所定の一定期間が経過した後の通信期間PH2において、通信相手から送信されたMACフレームのリトライビットが0でも、Ackフレームの送信に用いる送信アンテナATXのビームパターンを変更しても良い。
 例えば図18(A)に示す設定期間PH1が完了してから所定の一定期間が経過した後の通信期間PH2では、通信期間PH2の開始時の通信環境から劣化している場合がある。従って、無線通信装置1は、Ackフレームの送信に用いる送信アンテナATXのビームパターンを変更することで、通信相手との間の通信路を早期に回復できる。
 なお、所定の一定期間は、例えば無線通信装置1がMACフレームのシーケンス番号を1つインクリメントする時間である。これにより、無線通信装置1は、通信相手におけるAckフレームの到達によるシーケンス番号の素早いインクリメント処理と、Ackフレームの不到達によるMACフレームの再送後から一定時間経過後のシーケンス番号のインクリメント処理とを的確に判別できるので、同一のMACフレームの再送を高精度に判定でき、更に、送信アンテナATXのビームパターンを適切に変更できる。
 次に、本実施形態において、無線通信装置1が通信相手から送信されたMACフレーム(例えばデータフレーム)のリトライビットが0である、又はシーケンス番号が変化した場合には、無線通信装置1がAckフレームの送信に用いた送信アンテナATXのビームパターンは、Ackフレームの送信時では適切であったと考えられる。
 従って、無線通信装置1は、Ackフレームの送信後にMACフレーム(例えばデータフレーム)を送信する場合に、Ackフレームの送信時の送信アンテナATXのビームパターンを用いても良い(図8(A)及び図8(B)参照)。Ackフレームの送信からMACフレーム(例えばデータフレーム)の送信までの時間は、通信環境にも依存するが、概ね数十μs~数十ms程度と見込まれ、図18(A)に示す設定期間PH1(例えば数十ms~数百ms)に比べて十分に短い期間である。
 図8(A)は、第1の実施形態のデータ受信用無線通信装置Dv2がAckフレームを送信するための送信アンテナATXのビームパターンを用いてデータフレームを送信する動作手順の一例を説明するフローチャートである。図8(B)は、図8(A)に示すデータ受信用無線通信装置Dv2がAckフレームを送信するための送信アンテナATXのビームパターンを用いてデータフレームを送信するシグナリングの一例を示すシーケンス図である。なお、図8(A)では、図4(B)に示す各動作と同一の動作については同一の符号を用いて説明を省略又は簡略化し、異なる内容について説明する。
 図8(A)において、ステップP6の後、無線送信部14は、MACフレーム(例えばデータフレーム)を、ステップP5において保持された送信アンテナATXのビームパターンを用いて通信相手に送信する(P11)。
 図8(B)において、ステップS4の後、データ受信用無線通信装置Dv2は、MACフレーム(例えばデータフレーム)を、ステップS4において用いた送信アンテナATXのビームパターンを用いてデータ送信用無線通信装置Dv1に送信する(S10)。
 これにより、無線通信装置1(データ受信用無線通信装置Dv2)は、通信相手から送信されたMACフレームの受信を示すAckフレームを応答する間に、データフレームの送信用の送信アンテナATXのビームパターンを実質的に設定できるので、データ受信用無線通信装置Dv2がMACフレームを送信するための設定期間PH1を省略することができる、また、設定期間PH1の設定にかかる手順、時間を省略することができるため、実効スループットを向上できる。
 (第1の実施形態の変形例1)
 第1の実施形態では、データ受信用無線通信装置Dv2において、例えばMACフレームのリトライビットが1から0に変化したこと、或いはシーケンス番号が変化したことの原因が、データ送信用無線通信装置Dv1がAckフレームを正しく受信したこと、又はデータ送信用無線通信装置Dv1が再送したMACフレームの再送回数が所定の再送回数が上限に到達したことのいずれであるかが区別されていない。
 第1の実施形態の変形例1(以下、「本変形例1」という)では、データ受信用無線通信装置Dv2は、次の4通りのケースのいずれかに該当すると判定した場合に、例えばMACフレームのリトライビットが1から0に変化したこと、或いはシーケンス番号が変化した原因を、MACフレームの再送回数が所定の上限回数に到達したからであると判定する。即ち、データ受信用無線通信装置Dv2は、Ackフレームの送信に用いる送信アンテナATXのビームパターンを保持せずに変更する(図9参照)。
 第1のケースでは、データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から再送回数が所定の上限回数に到達した旨の通知を受けるまで、再送された同一のMACフレームの受信回数をカウントする。
 データ受信用無線通信装置Dv2は、カウントされた受信回数と再送の上限回数とが一致し、更に、例えばMACフレームのリトライビットが1から0に変化した場合、或いはシーケンス番号が変化した場合、MACフレームの再送回数が所定の上限回数に到達したことが原因であると判定する。
 第2のケースでは、データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から再送回数が所定の上限回数に到達した旨の通知を受けるまで、データ送信用無線通信装置Dv1から送信されたMACフレームに含まれる再送回数の情報を取得する。データ受信用無線通信装置Dv2は、取得した再送回数と再送の上限回数とが一致し、更に、例えばMACフレームのリトライビットが1から0に変化した場合、或いはシーケンス番号が変化した場合、MACフレームの再送回数が所定の上限回数に到達したことが原因であると判定する。
 第3のケースでは、データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から送信されたMACフレームに含まれる再送できる残り回数の情報を取得する。データ受信用無線通信装置Dv2は、取得した再送できる残り回数が0になり、更に、例えばMACフレームのリトライビットが1から0に変化した場合、或いはシーケンス番号が変化した場合、MACフレームの再送回数が所定の上限回数に到達したことが原因であると判定する。
 第4のケースでは、データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から送信されたMACフレームから最終再送であることを示すフラグを検出し、更に、例えばMACフレームのリトライビットが1から0に変化した場合、或いはシーケンス番号が変化した場合、MACフレームの再送回数が所定の上限回数に到達した原因であると判定する。
 図9は、第1の実施形態の変形例1におけるデータ受信用無線通信装置Dv2が受信したデータフレームに対するAckフレームの送信アンテナATXのビームパターンの設定手順の一例を説明するフローチャートである。なお、図9では、図8(A)に示す各動作と同一の動作については同一の符号を用いて説明を省略又は簡略化し、異なる内容について説明する。
 図9において、SN判定部15Bは、上述した第1~第4のケースを基に、ステップP1において受信されたMACフレーム(例えばデータフレーム)のシーケンス番号が変化した要因が、MACフレームの再送回数が所定の上限回数に到達したからであるか否かを判定する(S12)。
 送信アンテナ制御部16Tは、MACフレーム(例えばデータフレーム)のシーケンス番号が変化した要因について、SN判定部15Bが、上記の第1のケースから第4のケースのいずれかに該当する場合に、MACフレームの再送回数が所定の上限回数に到達したか否かを判定し、上限回数に到達したと判断した場合には(S12、YES)、Ackフレームの応答に用いる送信アンテナATXのビームパターンを変更する(P7)。
 無線送信部14は、応答フレーム生成部13により生成されたAckフレームを、ステップP7における変更後の送信アンテナATXのビームパターンを用いて通信相手に送信する(P8)。
 一方、送信アンテナ制御部16Tは、MACフレーム(例えばデータフレーム)のシーケンス番号が変化した要因について、SN判定部15BがMACフレームの再送回数が所定の再送上限回数に到達したためではないと判定した場合には(P12、NO)、Ackフレームの応答に用いる送信アンテナATXのビームパターンを保持する(P5)。
 無線送信部14は、応答フレーム生成部13により生成されたAckフレームを、ステップP5において保持された送信アンテナATXのビームパターンを用いて通信相手(データ送信用無線通信装置Dv1)に送信し(P6)、データ受信用無線通信装置Dv2がMACフレーム(例えばデータフレーム)を、ステップP5において保持された送信アンテナATXのビームパターンを用いて通信相手(データ送信用無線通信装置Dv1)に送信する(P11)。
 以上により、本変形例1の無線通信装置1は、データ受信用無線通信装置Dv2において、シーケンス番号が変化した要因について判断する構成とすることで、Ackフレームの送信回数を低減でき、通信相手へのAckフレームの送信に適切な送信アンテナATXのビームパターンを短期間に設定できる。
 (第1の実施形態の変形例2)
 第1の実施形態において、無線通信装置1(データ受信用無線通信装置Dv2)が通信相手(データ送信用無線通信装置Dv1)から送信されたMACフレーム(例えばデータフレーム)のリトライビットが0である場合、又はシーケンス番号が変化した場合、無線通信装置1(データ受信用無線通信装置Dv2)がAckフレームの送信に用いた送信アンテナATXのビームパターンは、Ackフレームの送信時では適切であったと考えられる。
 第1の実施形態の変形例2(以下、「本変形例2」という)では、データ受信用無線通信装置Dv2は、Ackフレームの送信時の送信アンテナATXのビームパターンと同一のビームパターンを、受信アンテナARXのビームパターンとして用いる(図10参照)。
 データ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2は、例えばMACフレームの受信時では、受信アンテナARXのビームパターンを、無指向性(omni)又は疑似無指向性(quasi-omni)のビームパターンに設定することが多い。
 例えば、CSMA/CAにおけるTXOP(Transmission Opportunity)の期間では、データ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2は、第3の局から送信されたMACフレームを受信する必要がないので、受信アンテナARXのビームパターンを、無指向性(omni)又は疑似無指向性(quasi-omni)のビームパターンに設定しなくても良い。
 また、SPCA通信におけるSP(Service Period)の期間でも、データ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2は、受信するMACフレームの送信元を特定できるので、受信アンテナARXのビームパターンを、無指向性(omni)又は疑似無指向性(quasi-omni)のビームパターンに設定しなくても良い。
 図10は、第1の実施形態の変形例2におけるデータ受信用無線通信装置Dv2が受信したデータフレームに対するAckフレームを送信するための送信アンテナのビームパターン及び次回のデータフレームを受信するための受信アンテナのビームパターンの設定手順の一例を説明するフローチャートである。なお、図10では、図8(A)に示す各動作と同一の動作については同一の符号を用いて説明を省略又は簡略化し、異なる内容について説明する。
 図10において、ステップP6の後、データ受信用無線通信装置Dv2の受信アンテナ制御部16Rは、通信相手(データ送信用無線通信装置Dv1)から送信されるMACフレームを受信するため受信アンテナARXのビームパターンとして、送信アンテナATXのビームパターンと同じビームパターンを用いる(P14)。
 以上により、本変形例2の無線通信装置1(データ受信用無線通信装置Dv2)は、受信アンテナARXのビームパターンとして無指向性(omni)又は疑似無指向性(quasi-omni)に設定せずに、特定方向に主ビームを形成すれば良いので、通信帯域を有効に用い、消費電力を低減できる。
 更に、本変形例2の無線通信装置1(データ受信用無線通信装置Dv2)は、Ackフレームの送信に用いる送信アンテナATXのビームパターンを保持又は変更した後、次の送信周期TRにおける設定期間PH1では、例えば受信アンテナARXのビームパターンの設定を省略し、送信アンテナATXのビームパターンと同じビームパターンを設定することができる。
 これにより、本変形例2の無線通信装置1は、次の送信周期TRにおける設定期間PH1では、受信アンテナARXのビームパターンの設定に必要な通信路(通信帯域)の使用を抑制できるので、通信帯域を有効に用い、消費電力を低減できる。
 (第2の実施形態)
 第2の実施形態では、例えばデータ送信用無線通信装置Dv1が図16(A)に示すアグリゲーションフレームを送信し、データ受信用無線通信装置Dv2がアグリゲーションフレームのうち一部又は全てのMACフレーム(MPDU)を受信したことを示すブロックAckフレームを応答する場合について説明する。なお、本実施形態のデータ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2は、図3(A)に示す無線通信装置1A又は図3(B)に示す無線通信装置1Bと同様の構成を有する。
 先ず、本実施形態のデータ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2間の直接の無線通信の動作概要について、図11を参照して説明する。図11は、第2の実施形態のデータ送信用無線通信装置Dv1及びデータ受信用無線通信装置Dv2における、アグリゲーションデータフレームの送信に関するシグナリングの一例を示すシーケンス図である。
 図11(A)において、データ送信用無線通信装置Dv1は、複数のMACフレーム(MPDU)を含むアグリゲーションフレームをデータ受信用無線通信装置Dv2に送信する(S21)。アグリゲーションフレームは、例えば「シーケンス番号=1」のMACフレームと、「シーケンス番号=2」のMACフレームと、「シーケンス番号=3」のMACフレームとが連結された構成である。
 データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から送信されたアグリゲーションフレームを正しく受信し、更に、ブロックAckフレームの応答が必要であると判定した場合には、送信アンテナATXのビームパターン(例えばPt2)を用いてブロックAckフレームをデータ送信用無線通信装置Dv1に送信する(S21)。しかし、図11では、ブロックAckフレームがデータ送信用無線通信装置Dv1に到達しない(S21)。
 データ送信用無線通信装置Dv1は、ステップS21において送信したアグリゲーションフレームに対応するブロックAckフレームを受信しないため、ステップS21において送信したアグリゲーションフレームと同一のアグリゲーションフレームを再送する(S22)。
 データ受信用無線通信装置Dv2は、データ送信用無線通信装置Dv1から再送された同じシーケンス番号のアグリゲーションフレームを正しく受信し、更に、ブロックAckフレームの応答が必要であると判定したため、送信アンテナATXのビームパターン(例えばPt2)を変更する(S22)。即ち、データ受信用無線通信装置Dv2は、全て同一のシーケンス番号を有するMACフレーム(MPDU)を含むアグリゲーションフレームの初送又は再送が以前にあったと判定した場合には、送信アンテナATXのビームパターンは適切ではないとして、ブロックAckフレームの応答に用いる送信アンテナATXのビームパターンを変更する。
 従って、データ受信用無線通信装置Dv2は、変更後の送信アンテナATXのビームパターン(例えばPt1)を用いて、ブロックAckフレームをデータ送信用無線通信装置Dv1に送信する(S22)。なお、図11では、ステップS22において送信されたブロックAckフレームは、データ送信用無線通信装置Dv1とデータ受信用無線通信装置Dv2との間の通信環境と各アンテナのビームパターンとが適切であるため、データ送信用無線通信装置Dv1において正しく受信される。
 なお、データ受信用無線通信装置Dv2は、全て同一のシーケンス番号を有するMACフレーム(MPDU)を含むアグリゲーションフレームの初送又は再送はない、即ちアグリゲーションフレームのうち一部のMACフレーム(MPDU)は新規に送信されたと判定した場合には、ブロックAckフレームの応答に用いる送信アンテナATXのビームパターンを変更せずに保持する。
 次に、本実施形態の無線通信装置1がアグリゲーションフレームを受信してからブロックAckフレームを送信するまでの動作手順について、図12を参照して説明する。図12は、第2の実施形態のデータ受信用無線通信装置Dv2が受信したアグリゲーションデータフレームに対応するブロックAckフレームを送信するための送信アンテナのビームパターンの設定手順の一例を説明するフローチャートである。
 なお、図12では、図3(B)に示す無線通信装置1Bがアグリゲーションフレームのうち少なくとも1つのMACフレーム(MPDU)を正しく受信したとして説明する(P21)。
 図12において、無線受信部11は、正しく受信したアグリゲーションフレームのうち全てのMACフレーム(MPDU)を正しく受信していたか否かを判定する(P22)。全てのMACフレーム(MPDU)が正しく受信されたと判定された場合(P22、YES)、応答要否判定部12は、無線受信部11が復調したアグリゲーションフレームの各MPDUのフレーム種別又は応答種別を基に、アグリゲーションフレームの受信を示すブロックAckフレームの応答の要否を判定する(P23)。応答要否判定部12は、判定結果を、応答フレーム生成部13、SN判定部15B及び送信アンテナ制御部16Tに出力する。
 送信アンテナ制御部16Tは、応答要否判定部12がブロックAckフレームの応答が不要であると判定した場合には(P23、NO)、送信アンテナATXのビームパターンを保持する(P24)。
 応答フレーム生成部13は、応答要否判定部12がブロックAckフレームの応答が必要であると判定した場合には(P23、YES)、アグリゲーションフレームの受信を示すブロックAckフレームを生成して無線送信部14に出力する。
 SN判定部15Bは、応答要否判定部12がブロックAckフレームの応答が必要であると判定した場合には(P23、YES)、記憶SNパターンと受信SNパターンとが同一であるか否かを判定する(P25)。SN判定部15Bは、ステップP25の判定結果に拘わらず、受信SNパターンを記憶する(P26,P29)。
 なお、本実施形態の説明を簡単にするために、SN判定部15Bが記憶する、以前に受信されたアグリゲーションフレームのうち正しく受信されたMACフレーム(MPDU)のシーケンス番号の組(パターン)を「記憶SNパターン」と略記し、受信アンテナARXにおいて今回受信されたアグリゲーションフレームのうち正しく受信されたMACフレーム(MPDU)のシーケンス番号の組(パターン)を「受信SNパターン」と略記する。
 ステップP26の後、送信アンテナ制御部16Tは、SN判定部15Bが記憶SNパターンと受信SNパターンとが不一致であると判定したため、ブロックAckフレームの応答に用いる送信アンテナATXのビームパターンを保持する(P27)。
 記憶SNパターンと受信SNパターンとが不一致であれば、無線通信装置1Bは、新たなシーケンス番号が付与されたMACフレーム(MPDU)を含むアグリゲーションフレームを受信したことになる。従って、前回のブロックAckフレームの応答に用いた送信アンテナATXのビームパターンが適切であり、送信アンテナATXのビームパターンは変更の必要が無いと考えられる。
 無線送信部14は、応答フレーム生成部13により生成されたブロックAckフレームを、ステップP27において保持された送信アンテナATXのビームパターンを用いて通信相手(データ送信用無線通信装置Dv1)に送信する(P28)。
 一方、ステップP29の後、送信アンテナ制御部16Tは、SN判定部15Bが記憶SNパターンと受信SNパターンとが一致していると判定したため、ブロックAckフレームの応答に用いる送信アンテナATXのビームパターンを変更する(P30)。
 記憶SNパターンと受信SNパターンとが一致であれば、無線通信装置1Bは、同一のシーケンス番号が付与されたMACフレーム(MPDU)を含むアグリゲーションが再送され、再送されたアグリゲーションフレームを受信したことになる。従って、前回のブロックAckフレームの応答に用いた送信アンテナATXのビームパターンが不適切であり、送信アンテナATXのビームパターンは変更の必要があると考えられる。
 無線送信部14は、応答フレーム生成部13により生成されたブロックAckフレームを、ステップP30における変更後の送信アンテナATXのビームパターンを用いて通信相手(データ送信用無線通信装置Dv1)に送信する(P31)。
 また、無線受信部11が、全てのMACフレーム(MPDU)が正しく受信されなかったと判定した場合(P22、NO)、応答要否判定部12は、無線受信部11が復調したアグリゲーションフレーム、即ち、正しく受信した一部のMACフレーム(MPDU)のフレーム種別又は応答種別を基に、アグリゲーションフレームの受信を示すブロックAckフレームの応答の要否を判定する(P32)。応答要否判定部12は、判定結果を、応答フレーム生成部13、SN判定部15B及び送信アンテナ制御部16Tに出力する。
 送信アンテナ制御部16Tは、応答要否判定部12がブロックAckフレームの応答が不要であると判定した場合には(P32、NO)、送信アンテナATXのビームパターンを保持する(P33)。
 応答フレーム生成部13は、応答要否判定部12がブロックAckフレームの応答が必要であると判定した場合には(P32、YES)、アグリゲーションフレームの受信を示すブロックAckフレームを生成して無線送信部14に出力する。
 SN判定部15Bは、応答要否判定部12がブロックAckフレームの応答が必要であると判定した場合には(P32、YES)、記憶SNパターンと正しく受信した一部のMACフレーム(MPDU)の受信SNパターンとが同一であるか否かを判定する(P34)。SN判定部15Bは、ステップP25の判定結果に拘わらず、受信SNパターンを記憶する(P35,P38)。
 ステップP35の後、送信アンテナ制御部16Tは、SN判定部15Bが記憶SNパターンと正しく受信した一部のMACフレーム(MPDU)の受信SNパターンとが不一致であると判定したため、ブロックAckフレームの応答に用いる送信アンテナATXのビームパターンを保持する(P36)。
 記憶SNパターンと正しく受信した一部のMACフレーム(MPDU)の受信SNパターンとが不一致であるため、無線通信装置1Bは、新たなシーケンス番号が付与されたMACフレーム(MPDU)を含むアグリゲーションフレームを受信したことになる。従って、前回のブロックAckフレームの応答に用いた送信アンテナATXのビームパターンが適切であり、送信アンテナATXのビームパターンは変更の必要が無いと考えられる。
 無線送信部14は、応答フレーム生成部13により生成されたブロックAckフレームを、ステップP36において保持された送信アンテナATXのビームパターンを用いて通信相手に送信する(P37)。
 一方、ステップP38の後、送信アンテナ制御部16Tは、SN判定部15Bが記憶SNパターンと正しく受信した一部のMACフレーム(MPDU)の受信SNパターンとが一致していると判定したため、ブロックAckフレームの応答に用いる送信アンテナATXのビームパターンを変更する(P39)。
 記憶SNパターンと正しく受信した一部のMACフレーム(MPDU)の受信SNパターンとが一致しているため、無線通信装置1Bは、同一のシーケンス番号が付与されたMACフレーム(MPDU)を含むアグリゲーションが再送され、再送されたアグリゲーションフレームを受信したことになる。従って、前回のブロックAckフレームの応答に用いた送信アンテナATXのビームパターンが不適切であり、送信アンテナATXのビームパターンは変更の必要があると考えられる。
 無線送信部14は、応答フレーム生成部13により生成されたブロックAckフレームを、ステップP39における変更後の送信アンテナATXのビームパターンを用いて通信相手に送信する(P40)。
 なお、ステップP28、ステップP31、ステップP37又はステップP40の後の無線通信装置1Aの動作は、ステップP21に戻る。
 以上により、本実施形態の無線通信装置1は、通信相手から送信されたアグリゲーションフレームのうち一部又は全てのMACフレーム(MPDU)を正しく受信し、アグリゲーションフレームの応答を示すブロックAckフレームの応答が必要であると判定した場合には、記憶SNパターンと受信SNパターンとの比較によって、通信相手から同一のアグリゲーションフレームが再送されたか否かを判定する。
 無線通信装置1は、通信相手から同一のアグリゲーションフレームが再送されたと判定した場合には、前回送信したブロックAckフレームの送信に用いた送信アンテナATXのビームパターンが適切ではなかったとして、送信アンテナATXのビームパターンを変更する。無線通信装置1は、変更後のビームパターンを用いて、ブロックAckフレームを送信する。
 これにより、無線通信装置1は、通信相手から同一のアグリゲーションフレームが再送されなければ、ブロックAckフレームの送信に用いる送信アンテナATXのビームパターンを変更せず、同一のアグリゲーションフレームが再送された場合に送信アンテナATXのビームパターンを変更するので、送信アンテナATXのビームパターンの不要な変更を回避できる。
 従って、無線通信装置1は、送信アンテナATXのビームパターンの不要な変更を回避することで、設定期間PH1及び設定期間PH1を設定するための準備期間を省略できるため、早期に通信路を回復でき、通信相手との間の通信環境(通信品質)の劣化を抑制できる。即ち、無線通信装置1は、通信帯域の不要な占有時間(例えば、設定期間PH1及び設定期間PH1を設定するための準備期間)を減少できるので、実効スループットを向上でき、更に消費電力及び通信相手への接続に要する時間を低減できる。
 なお、本実施形態において、アグリゲーションフレームのうち全てのMACフレーム(MPDU)が受信されるとは限らず、例えば3個のMACフレームが連結している場合、合計8通りの受信の組み合わせが考えられる。このため、図12に示すステップP21では、無線通信装置1Bは、アグリゲーションフレームのうち所定の閾値以上のMACフレームを受信した場合に、一部のMACフレームを含むアグリゲーションフレームを受信したと判定しても良い。
 従って、無線通信装置1Bは、アグリゲーションフレームのうち所定の閾値未満のMACフレームを受信し、その他フレームを受信しなかった場合には、記憶SNパターンと受信SNパターンとの比較が困難となるとして、アグリゲーションフレームを受信しなかったと判定する。これにより、無線通信装置1Bは、アグリゲーションフレームを正しく受信した後に、記憶SNパターンと受信SNパターンと比較を高精度に処理でき、アグリゲーションフレームの再送の誤判定を回避でき、アンテナのビームパターンを高精度に設定できる。
 以上、図面を参照して各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 なお、上述した各実施形態において、無線通信装置1は、通信相手がMACフレーム(例えばデータフレーム)の送信に用いた周波数と同一の周波数を用いて、Ackフレーム又はブロックAckフレームを送信するが、通信相手がMACフレーム(例えばデータフレーム)の送信に用いた周波数と異なる周波数を用いて、Ackフレーム又はブロックAckフレームを送信しても良い。
 なお、上述した各実施形態では、無線通信装置1の通信相手は、directional band(例えばミリ波)を用いてデータフレームを送信するが、un-directional band(例えばマイクロ波)を用いてデータフレームを送信しても良い。
 (第1の実施形態の変形例3)
 なお、第1又は第2の実施形態では、データ受信用無線通信装置Dv2が正しく受信したMACフレーム又はアグリゲーションフレームにおいて、リトライビットと、シーケンス番号と、シーケンス番号のパターンとによって、データ送信用無線通信装置Dv1とデータ受信用無線通信装置Dv2との間の通信路の状況が的確に判別できる。例えば送信アンテナATX又は受信アンテナARXのビームパターンが保持される通信環境では、データ送信用無線通信装置Dv1とデータ受信用無線通信装置Dv2との間の通信品質が高いと考えられる。
 第1の実施形態の変形例3として、無線通信装置1は、例えば送信電力を低減し(図13参照)、受信アンテナARXのゲインを低減し、MCS(Modulation and Coding Scheme:変調度)又は符号化率を増加し、MACフレームのフレーム長を増加し、又は、アグリゲーションフレームにおけるMACフレームの連結数を増加しても良い。これにより、無線通信装置1は、無線帯域を有効に用いることができ、無線通信装置1の消費電力を低減できる。
 また、例えば送信アンテナATX又は受信アンテナARXのビームパターンが変更される通信環境では、データ送信用無線通信装置Dv1とデータ受信用無線通信装置Dv2との間の通信品質が劣化していると考えられる。
 第1の実施形態の変形例3として、無線通信装置1は、例えば送信電力を増加し(図13参照)、受信アンテナARXのゲインを増加し、MCS(Modulation and Coding Scheme:変調度)を減少し、MACフレームのフレーム長を減少し、アグリゲーションフレームにおけるMACフレームの連結数を減少し、又は使用キャリア周波数を他のキャリア周波数に変更しても良い。
 例えば無線通信装置1は、通信品質の劣化に応じて、周波数帯域をスキャンすることで通信品質の高い周波数帯域を推定する。これにより、無線通信装置1は、不要なMACフレーム又はアグリゲーションフレームの再送を回避できるので無線帯域を有効に用いることができ、無線通信装置1の消費電力を低減できる。
 図13は、第1の実施形態の変形例3におけるデータ受信用無線通信装置Dv2が受信したMACフレームに対応するAckフレームを送信するための送信アンテナATXのビームパターンの設定手順の一例を説明するフローチャートである。なお、図13では、図4(A)に示す各動作と同一の動作については同一の符号を用いて説明を省略又は簡略化し、異なる内容について説明する。
 図13において、ステップP5の後、無線送信部14は、応答フレーム生成部13により生成されたAckフレームの送信電力を低減し(P15)、ステップP5において保持された送信アンテナATXのビームパターンを用いて通信相手に送信する(P6)。
 また、ステップP7の後、無線送信部14は、応答フレーム生成部13により生成されたAckフレームの送信電力を増加し(P16)、ステップP7における変更後の送信アンテナATXのビームパターンを用いて通信相手に送信する(P8)。
 (第1の実施形態の変形例4)
 なお、上述した各実施形態では、MACフレームの送信及びAckフレームの応答送信、アグリゲーションフレームの送信及びブロックAckフレームの応答送信を例示して説明したが、送信及び応答送信の組み合わせは、例えばRTS(Request To Send)の送信及びCTS(Clear To Send)、SSW(Sector Sweep)、SSW-FB(Sector Sweep-Feedback)及びSSW-Ack(Sector Sweep-Ack)、Association Request/Ack、Association Response/Ackの各組み合わせでも良い。
 図19(A)は、第1の実施形態の変形例4におけるデータ受信用無線通信装置が受信したMACフレーム(例えばRTSフレーム)に対する応答フレーム(例えばCTSフレーム)の送信アンテナのビームパターンの設定手順の一例を説明するフローチャートであり、図19(B)は、第1の実施形態の変形例4のデータ送信用無線通信装置及びデータ受信用無線通信装置における、CTSフレームの受信によってフレーム種別が変更されるシグナリングの一例を示すシーケンス図である。
 図19は、図4(A)、図5(A)のdata、Ackをフレームに置き換えた場合のフローチャート及びシーケンス図である。
 図4(A)のP2では、Ackフレームの応答送信の要否について確認したが、図19(A)では、フレームの応答送信の要否について確認している。図4(A)のP4においては、データフレームのリトライビットについて確認したが、図19(A)では、先の受信フレーム種別と今回の受信フレーム種別とは別か否かについて確認する。つまり、P4RのYESは、後述する図19(B)のS4Rでの判断となり、P4RのNOは、図19(B)のS2Rでの判断となる。
 また、図4(A)のP6,P8において、Ackフレームを応答返信していたが、図19(A)のP6R、P8Rでは、受信フレーム種別に対応するフレームの応答送信を行う。つまり、P6Rでは、図19のS4RのAckフレームの応答送信になり、P8Rでは、図19のS2RのCTSフレームの応答送信になる。
 次に、図19(B)はRTS、CTSの送受信の後に、データ、Ackの送受信についてのシーケンス図である。RTSには、シーケンス番号、リトライビットが含まれていないため、データ受信用無線通信装置Dv2は、RTSの再送は判断しないが、2回目のRTSを受信したため、2回目のCTSの送信ではビームパターンを変更する(S2R)。つまり、図19(A)のP4RのNOに相当するため、ビームパターンを変更する。
 次に、データ送信用無線通信装置Dv1は、CTSを受信することで送信フレーム種別をRTSからデータに変更し、シーケンス番号、リトライビットの情報を含むデータを送信する(S3R)。
 次に、データ受信用無線通信装置Dv2は、CTSを送信した後にデータを受信するため、CTSがデータ送信用無線通信装置Dv1に受信されたと判断し、ビームパターンを変更しないで、Ackを返送する(S4R)。つまり、図19(A)のP4RのYESに相当するため、ビームパターンを変更しない。
 また、応答送信ではAckフレームを送信する場合に限らず、データフレームとAckフレームとを含めて送信するReverse Direction方式を用いても良い。
 なお、上述した各実施形態において、データ受信用無線通信装置Dv2は、送信アンテナATXのビームパターンを変更する場合、切り換え可能な複数のビームパターンの中から現時点のビームパターンに隣接するビームパターン、ビームパターン毎に付与された識別番号に応じたビームパターン、又はランダムに選択されたビームパターンのいずれかに設定しても良い。
 なお、上述した各実施形態において、データ受信用無線通信装置Dv2は、MACフレーム又はアグリゲーションフレームが所定の閾値を超えて複数回、連続して受信された場合に、送信アンテナATXのビームパターンを変更しても良い。これにより、データ受信用無線通信装置Dv2は、例えば通信環境の瞬間的な変動によってAckフレーム又はブロックAckフレームの不到達を起因とした送信アンテナATXのビームパターンの不要な変更を回避できる。
 本出願は、2013年6月14日出願の日本特許出願(特願2013-126060)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、アンテナのビームパターンの不要な変更を回避し、通信品質の劣化を抑制する無線通信装置として有用である。
1,1A,1B 無線通信装置
11 無線受信部
12 応答要否判定部
13 応答フレーム生成部
14 無線送信部
15 アンテナ制御部
15R 受信アンテナ制御部
15T 送信アンテナ制御部
16 判定部
16A 再送ビット判定部
16B SN判定部
ARX 受信アンテナ
ATX 送信アンテナ
Dv1 データ送信用無線通信装置
Dv2 データ受信用無線通信装置

Claims (7)

  1.  通信相手から送信された第1送信フレームを受信アンテナにおいて受信する受信部と、
     前記受信アンテナにおいて受信された前記第1送信フレームを基に、前記第1送信フレームの受信を示す第1応答フレームを生成する応答フレーム生成部と、
     生成された前記第1応答フレームを送信アンテナから送信する送信部と、
     前記通信相手から同一の前記第1送信フレームが再送されたか否かを判定する判定部と、
     前記通信相手から同一の前記第1送信フレームが再送された場合に、前記送信アンテナのビームパターンを変更するアンテナ制御部と、を備える、
     無線通信装置。
  2.  請求項1に記載の無線通信装置であって、
     前記第1送信フレームは、前記第1送信フレームの再送の有無を示す再送ビット情報を含み、
     前記判定部は、受信された前記第1送信フレームの前記再送ビット情報が前記第1送信フレームの再送を示す場合に、
    前記通信相手から同一の前記第1送信フレームが再送されたと判定する、
     無線通信装置。
  3.  請求項1に記載の無線通信装置であって、
     前記第1送信フレームは、前記第1送信フレームの識別情報を示す識別番号情報を含み、
     前記判定部は、受信された前記第1送信フレームの前記識別番号情報が同一である場合に、前記通信相手から同一の前記第1送信フレームが再送されたと判定する、
     無線通信装置。
  4.  請求項1に記載の無線通信装置であって、
     前記アンテナ制御部は、前記第1送信フレームの受信を示す前記第1応答フレームの送信後に、前記通信相手から異なる第2送信フレームが送信された場合に、前記送信アンテナのビームパターンを保持し、
     前記送信部は、保持された前記送信アンテナのビームパターンを用いて、新たな送信フレームを前記通信相手に送信する、
     無線通信装置。
  5.  請求項1に記載の無線通信装置であって、
     前記判定部は、前記第1送信フレームの受信を示す前記第1応答フレームの送信後に、前記通信相手から異なる第2送信フレームが送信された場合に、前記第1送信フレームの再送回数が所定の上限回数に達したか否かを判定し、
     前記アンテナ制御部は、前記第1送信フレームの再送回数が前記所定の上限回数に達したと判定された場合に、前記第2送信フレームの受信を示す第2応答フレームの送信に用いる前記送信アンテナのビームパターンを変更する、
     無線通信装置。
  6.  請求項1に記載の無線通信装置であって、
     前記アンテナ制御部は、前記第1送信フレームの受信を示す前記第1応答フレームの送信後に、前記通信相手から異なる第2送信フレームが送信された場合に、前記送信アンテナのビームパターンを保持し、保持された前記送信アンテナのビームパターンと同じビームパターンを前記受信アンテナに設定する、
     無線通信装置。
  7.  請求項1に記載の無線通信装置であって、
     前記通信相手から送信された第1送信フレームは、異なる識別番号情報を有する複数のデータフレームを含み、
     前記送信部は、前記通信相手から送信された第1送信フレームのうち、前記受信アンテナにおいて受信された一部又は全ての識別番号情報を有する各データフレームの受信を示す応答フレームを、前記第1応答フレームとして前記通信相手に送信する、
     無線通信装置。
PCT/JP2014/003032 2013-06-14 2014-06-06 無線通信装置 WO2014199610A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/427,955 US9565677B2 (en) 2013-06-14 2014-06-06 Wireless communication device
JP2015522533A JP6248287B2 (ja) 2013-06-14 2014-06-06 無線通信装置
US15/388,539 US9794951B2 (en) 2013-06-14 2016-12-22 Wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013126060 2013-06-14
JP2013-126060 2013-06-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/427,955 A-371-Of-International US9565677B2 (en) 2013-06-14 2014-06-06 Wireless communication device
US15/388,539 Continuation US9794951B2 (en) 2013-06-14 2016-12-22 Wireless communication device

Publications (1)

Publication Number Publication Date
WO2014199610A1 true WO2014199610A1 (ja) 2014-12-18

Family

ID=52021926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003032 WO2014199610A1 (ja) 2013-06-14 2014-06-06 無線通信装置

Country Status (3)

Country Link
US (2) US9565677B2 (ja)
JP (1) JP6248287B2 (ja)
WO (1) WO2014199610A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172841A1 (en) * 2015-04-28 2016-11-03 Mediatek Inc. A spatial diversity scheme in communication systems of beamforming

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225061B2 (en) * 2014-06-19 2019-03-05 Lg Electronics Inc. Method and apparatus for receiving frame
EP3335494A4 (en) 2015-08-11 2018-08-01 Telefonaktiebolaget LM Ericsson (PUBL) Recovery from beam failure
CN110351880A (zh) * 2018-04-04 2019-10-18 夏普株式会社 用户设备以及波束故障恢复方法
US11469783B2 (en) * 2019-05-14 2022-10-11 Cypress Semiconductor Corporation Apparatus, systems, and methods for selecting a wireless device antenna for communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244041A (ja) * 2002-02-18 2003-08-29 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム
WO2010023890A1 (ja) * 2008-08-28 2010-03-04 パナソニック株式会社 無線伝送装置、無線伝送方法、プログラム、及び集積回路
JP2010263297A (ja) * 2009-04-30 2010-11-18 Ntt Docomo Inc 無線中継局

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107382A (ja) * 1994-10-05 1996-04-23 Tec Corp 無線通信システム
US9408220B2 (en) * 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7853839B2 (en) * 2006-04-04 2010-12-14 Qualcomm Incorporated Method and apparatus for verifying the correctness of FTAP data packets received on the FLO waveform
JP4374015B2 (ja) * 2006-11-30 2009-12-02 株式会社東芝 データ送信装置、データ受信装置及びデータ通信システム
US7652624B2 (en) 2007-03-06 2010-01-26 Intel Corporation Millimeter-wave communication stations with directional antennas and methods for fast link recovery
US8948069B2 (en) 2009-01-09 2015-02-03 Qualcomm Incorporated Methods and systems for improving response message transmission reliability
JP2010252049A (ja) * 2009-04-15 2010-11-04 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US8249046B2 (en) * 2009-06-03 2012-08-21 Qualcomm Incorporated Interference management with MIMO in a peer-to-peer network
JP5521803B2 (ja) * 2010-06-10 2014-06-18 ソニー株式会社 通信装置、通信方法、及び、通信システム
JP5557712B2 (ja) * 2010-12-03 2014-07-23 株式会社日立製作所 アンテナ送信電力制御を行う無線基地局装置
WO2012140850A1 (ja) * 2011-04-15 2012-10-18 パナソニック株式会社 中継装置、受信装置、送信装置、及び中継方法
EP2745426B1 (en) * 2011-08-16 2020-02-05 Samsung Electronics Co., Ltd. Apparatus and method for supporting multi-antenna transmission in beamformed wireless communication system
KR101797051B1 (ko) * 2011-10-18 2017-11-13 삼성전자 주식회사 근거리 무선 통신망에서 광역 무선 통신망으로의 핸드오버 방법 및 장치
US9318805B2 (en) * 2012-08-21 2016-04-19 Qualcomm Incorporated Updating a beam pattern table
JP5942706B2 (ja) * 2012-08-29 2016-06-29 富士通株式会社 監視装置,監視プログラム,監視方法
US9300602B2 (en) * 2012-11-02 2016-03-29 Qualcomm Incorporated Method, device, and apparatus for error detection and correction in wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244041A (ja) * 2002-02-18 2003-08-29 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム
WO2010023890A1 (ja) * 2008-08-28 2010-03-04 パナソニック株式会社 無線伝送装置、無線伝送方法、プログラム、及び集積回路
JP2010263297A (ja) * 2009-04-30 2010-11-18 Ntt Docomo Inc 無線中継局

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172841A1 (en) * 2015-04-28 2016-11-03 Mediatek Inc. A spatial diversity scheme in communication systems of beamforming
US10009072B2 (en) 2015-04-28 2018-06-26 Mediatek Inc. Spatial diversity scheme in communication systems of beamforming

Also Published As

Publication number Publication date
US20170105226A1 (en) 2017-04-13
US20150223222A1 (en) 2015-08-06
US9565677B2 (en) 2017-02-07
US9794951B2 (en) 2017-10-17
JP6248287B2 (ja) 2017-12-20
JPWO2014199610A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
US11259204B2 (en) Method and system for improving responsiveness in exchanging frames in a wireless local area network
EP1924009B1 (en) Relay apparatus for relaying a data packet to be transmitted from a first partner transceiver to a second partner transceiver
WO2021042686A1 (zh) 数据重传、数据接收响应方法及装置、存储介质
US7733866B2 (en) Packet concatenation in wireless networks
US10033485B2 (en) Managing acknowledgement messages from multiple destinations for multi user MIMO transmissions
US8300563B2 (en) Aggregated transmission in WLAN systems with FEC MPDUs
US20220046699A1 (en) Communication techniques
JP6248287B2 (ja) 無線通信装置
JP2022512956A (ja) 高度なharq設計を用いてwlanを強化するための方法
WO2006031587A2 (en) Reducing latency when transmitting acknowledgements in mesh networks
JP2005102228A (ja) 無線通信システムにおけるレート・フォールバック方法および装置
WO2016131194A1 (zh) 数据处理的方法及装置
KR20050004284A (ko) 애드-혹 통신망에서의 자동반복요구(arq)매체접근제어(mac) 및 그 사용 방법
US20210409161A1 (en) Multiple access point operation of a wireless network
Wang et al. Supporting MAC layer multicast in IEEE 802.11 n: Issues and solutions
JP2021150777A (ja) 通信装置、通信装置の制御方法、およびプログラム
WO2021089033A1 (zh) 发送反馈信息的方法和装置
WO2020100734A1 (ja) 無線lan通信装置および無線lan通信方法
KR101338476B1 (ko) 무선 네트워크에서 멀티캐스트 송신을 위한 방법 및 장치
US20230247702A1 (en) Emlmr link indication for enhanced mult-link multi-radio operations and txop protection in quick recovery for mlo
US20220173872A1 (en) Apparatus and method for block acknowledgement within reduced duration
TW202345652A (zh) 用於多鏈路設備網路的網路譯碼
JP2022160878A (ja) 通信装置、通信装置の制御方法、およびプログラム
JP2005117244A (ja) 無線パケット通信方式
WO2010041122A2 (en) Method of using acknowledgment tones for data consistency in intra-vehicular wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522533

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14427955

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810818

Country of ref document: EP

Kind code of ref document: A1