WO2014199532A1 - ハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法 - Google Patents

ハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法 Download PDF

Info

Publication number
WO2014199532A1
WO2014199532A1 PCT/JP2013/084057 JP2013084057W WO2014199532A1 WO 2014199532 A1 WO2014199532 A1 WO 2014199532A1 JP 2013084057 W JP2013084057 W JP 2013084057W WO 2014199532 A1 WO2014199532 A1 WO 2014199532A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
adhesive
honeycomb sandwich
sandwich structure
honeycomb
Prior art date
Application number
PCT/JP2013/084057
Other languages
English (en)
French (fr)
Inventor
一史 関根
竹谷 元
博巳 世古
好和 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13886867.4A priority Critical patent/EP3009808B1/en
Priority to US14/893,844 priority patent/US10161810B2/en
Priority to JP2015522471A priority patent/JP6022059B2/ja
Publication of WO2014199532A1 publication Critical patent/WO2014199532A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/125Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance using changes in reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering

Definitions

  • an optical fiber sensor has been proposed as one of sensors for evaluating the temperature of a fiber reinforced plastic or plastic structure.
  • This optical fiber sensor is a small and lightweight temperature sensor, and is used in a state where it is embedded in the structure, or is used in a state where it is adhered to the surface of the structure.
  • the method for manufacturing a honeycomb sandwich structure includes an optical fiber sensor structure in which an optical fiber is inserted into a tube, the tube is deformed by heating under pressure, and the optical fiber and the tube are in contact with each other. And a second step of installing the optical fiber sensor structure manufactured in the first step so that the sensor part is disposed at a desired position on the adhesive surface of the skin material via the first adhesive. And an optical fiber sensor structure with the first adhesive and the second adhesive by superimposing the second adhesive on the optical fiber sensor structure installed on the adhesive surface via the first adhesive in the second step.
  • a honeycomb core is placed on the bonding surface on which the optical fiber sensor structure sandwiched between the first adhesive and the second adhesive in the third step and the third step is sandwiched and applied under pressure.
  • FIG. 1 is a perspective view of a honeycomb sandwich structure in a first embodiment of the present invention. It is sectional drawing of the optical fiber sensor structure 4 in Embodiment 1 of this invention. It is an expanded sectional view near the FBG sensor part formed in the optical fiber in Embodiment 1 of this invention. It is explanatory drawing which shows the structure of the FBG sensor part in Embodiment 1 of this invention. It is a graph which shows the characteristic of the reflection spectrum of the FBG sensor part 6 in Embodiment 1 of this invention. It is a block diagram of the temperature measurement system using the optical fiber sensor structure in Embodiment 1 of this invention. It is explanatory drawing which shows the mode of the pressurization of the optical fiber and resin tube in Embodiment 1 of this invention.
  • the thermal control element is provided on the surface.
  • the heat control can be executed accurately and the temperature can be evaluated with high resolution and high accuracy.
  • the present invention has a technical feature in that the honeycomb sandwich structure has such a structure, and the specific numerical values shown in the following Embodiment 1 are examples, and It does not affect the scope.
  • Embodiment 1 FIG. First, a coordinate system used in the following description will be described.
  • the ribbon direction of the honeycomb cells is the X direction
  • the cell width direction of the honeycomb cells is the Y direction
  • the out-of-plane direction is the Z direction.
  • the coordinate system of the fiber reinforced plastic skin material for indicating the orientation direction of the reinforcing fibers in the honeycomb sandwich structure the X direction is the 0 degree direction of the reinforcing fibers
  • the Y direction is the 90 degree direction of the reinforcing fibers.
  • FIG. Fig. 1 is a perspective view of a honeycomb sandwich structure according to Embodiment 1 of the present invention.
  • the optical fiber sensor structure 4 is oriented in the X direction (0 degree direction) as shown in FIG.
  • FIG. 1 in order to explain specifically, when one optical fiber sensor structure 4 is embedded in each of the two adhesive layers 2 provided on the front and back surfaces of the honeycomb core 3. Is illustrated.
  • the honeycomb sand sandwich structure in which mission equipment is mounted on an artificial satellite a temperature difference is generated between the two skin materials 1 due to heat input from sunlight, heat generation from the mounted equipment, and the like. Therefore, at least one optical fiber sensor structure 4 must be bonded to the skin material 1 so that the temperatures of the two skin materials 1 can be measured.
  • the optical fiber 5 includes a core 9 and a clad 10 covering the outer periphery of the core 9, and the FBG sensor unit 6 is formed in the core 9.
  • the outer periphery of the clad 10 is covered with a coating 7, and the coating 7 is removed in the vicinity of the FBG sensor portion 6, so that the clad 10 is exposed.
  • the entire structure shown in FIG. 3 is covered with the resin tube 8.
  • the resin tube 8 when the temperature is measured by bonding the optical fiber sensor structure 4 to the honeycomb sandwich structure, the light is further affected without being affected by the distortion of the honeycomb sandwich structure. Since the fiber 5 is fixed, the position of the FBG sensor unit 6 does not move in the axial direction of the optical fiber 5. Therefore, the temperature of the honeycomb sandwich structure can be accurately measured.
  • the diameter of the entire optical fiber 5 including the coating 7 can be about 250 ⁇ m
  • the diameter of the cladding 10 can be about 125 ⁇ m
  • the diameter of the core 9 can be about 10 ⁇ m.
  • Each of the plurality of FBG sensor units 6 can be formed in the core 9 over a range of, for example, about 5 mm, but is not limited to this range.
  • the optical fiber according to the numerical values shown in the first embodiment is an example, and the present invention can be applied to optical fibers according to other numerical values than the numerical values shown here.
  • the relationship between the center wavelength (Bragg wavelength: ⁇ B ), the period ⁇ , and the refractive index n of the reflection spectrum is expressed by the following equation (1).
  • the refractive index n depends on temperature
  • the period ⁇ depends on temperature and strain.
  • ⁇ B 2n ⁇ (1)
  • the optical fiber 5 and the coating 7 are covered with the resin tube 8 in the optical fiber sensor structure 4 so as not to be affected by the distortion of the honeycomb sandwich structure, and the optical fiber sensor structure is formed inside the adhesive layer 2.
  • the Bragg wavelength ⁇ B is measured with the body 4 embedded. Thereby, temperature can be calculated
  • the FBG sensor unit 6 formed in the optical fiber 5 can be used as a temperature sensor.
  • the FBG sensor part 6 vicinity may be covered with the coating
  • the periphery of the optical fiber 5 in which the FBG sensor unit 6 is formed is not covered with the coating 7, the temperature information of the honeycomb sandwich structure can be more accurately transmitted to the FBG sensor unit 6. . Therefore, in order to measure the temperature with higher accuracy, it is preferable that the periphery of the optical fiber 5 on which the FBG sensor unit 6 is formed is not covered with the coating 7.
  • FIG. 6 is a configuration diagram of a temperature measurement system using the optical fiber sensor structure 4 according to Embodiment 1 of the present invention.
  • the temperature measurement system includes an optical fiber 5, an optical circulator 11, an ASE (Amplified Spontaneous Emission) light source 12, and an optical wavelength meter 13.
  • the optical circulator 11 for converting the optical path is connected to the base end portion of the optical fiber 5.
  • the optical circulator 11 is connected to an ASE light source 12 that is a broadband light source and an optical wavelength meter 13 that is a wavelength measuring device.
  • the Bragg wavelength ⁇ B can be specifically measured.
  • the temperature of the honeycomb sandwich structure can be obtained from the above equation (1) by measuring the Bragg wavelength ⁇ B.
  • FIG. 7 is an explanatory diagram showing a state of pressurization of the optical fiber 5 and the resin tube 8 in the first embodiment of the present invention.
  • FIG. 7 shows a cross section of the optical fiber 5 covered with the coating 7 as a representative example.
  • FIG. 8 is an explanatory diagram showing the positional relationship between the optical fiber 5 and the resin tube 8 in the optical fiber sensor structure 4 in Embodiment 1 of the present invention.
  • FIG. 8A shows a cross-sectional view of the optical fiber sensor structure 4 in FIG. 2
  • FIG. 8B shows a cross-sectional view along AA ′ in FIG. ) Shows a cross-sectional view along line BB ′ in FIG.
  • the coating 7 is formed so that the periphery of the optical fiber 5 on which the FBG sensor unit 6 is formed is not covered with the coating 7 as described above. And the vicinity of the FBG sensor unit 6 is exposed in advance.
  • the optical fiber 5 is placed in a coaxial resin tube 8, placed on a surface plate 15, covered entirely with a bagging film 16, sealed with a sealing material 17, and the interior (sealed space). Is evacuated with a pump (not shown). In this state, heating is performed from above the bagging film 16 under pressure (for example, pressurization is performed at atmospheric pressure (about 1 atm)).
  • the optical fiber sensor structure 4 can be manufactured by placing the optical fiber 5 in the resin tube 8 and heating it under pressure. Specifically, as shown in FIG. 8A, in the optical fiber sensor structure 4, the resin tube 8 is deformed according to the shape of the optical fiber 5, and the periphery of the optical fiber 5 is covered with the resin tube 8. It has been broken.
  • the optical fiber 5 covered with the coating 7 is not in direct contact with the resin tube 8, and the coating 7 is in direct contact with the resin tube 8.
  • the optical fiber 5 not covered with the coating 7 that is, the optical fiber 5 on which the FBG sensor unit 6 is formed
  • the optical fiber 5 not covered with the coating 7 is in direct contact with the resin tube 8. Yes.
  • the optical fiber sensor structure 4 when the optical fiber sensor structure 4 is embedded in the adhesive layer 2, heat is transmitted to the optical fiber 5 in contact with the resin tube 8 through the resin tube 8.
  • the amount of the optical fiber 5 that is not covered with the coating 7 extends in the vertical direction (the vertical direction in the drawing). Low thermal resistance. Therefore, the temperature of the honeycomb sandwich structure is accurately measured by the FBG sensor unit 6.
  • FIG. 9 is an explanatory diagram showing a state in which the optical fiber sensor structure 4 is temporarily fixed to the skin material 1 in the first embodiment of the present invention.
  • the cross section of the optical fiber 5 in which the FBG sensor part 6 shown in previous FIG.8 (c) is formed is shown as a typical example.
  • a first molding material 18 composed of a skin material 1 and an optical fiber sensor structure 4 sandwiched between two film-like adhesives 14 (first adhesive 14a and second adhesive 14b) is added.
  • first adhesive 14a and second adhesive 14b two film-like adhesives 14
  • the optical fiber sensor structure 4 sandwiched between the two film adhesives 14 is temporarily fixed to the skin material 1.
  • the FBG sensor unit 6 is arranged at a desired position on the first adhesive 14 a overlapped with the surface of the skin material 1 installed on the surface plate 15.
  • the optical fiber sensor structure 4 is installed, and the second adhesive 14b is further stacked. In this way, by sandwiching the optical fiber sensor structure 4 between the two film-like adhesives 14, the optical fiber sensor structure 4 can be bonded in a state of being embedded in the adhesive layer 2 when bonded to the skin material 1.
  • the surface of the skin material 1 to which the optical fiber sensor structure 4 is bonded corresponds to the surface to which the honeycomb core 3 is bonded.
  • the whole is covered with the bagging film 16, sealed with the sealing material 17, and the inside (sealed space) is evacuated with a pump (not shown). Further, in this state, the bagging film 16 is pressed from the upper part of the bagging film 16 at, for example, atmospheric pressure (about 1 atmosphere) to be brought into close contact. Through such steps, the optical fiber sensor structure 4 sandwiched between the two film-like adhesives 14 is temporarily fixed to the skin material 1.
  • FIG. 10 is an explanatory diagram for explaining a manufacturing process of the honeycomb sandwich structure according to Embodiment 1 of the present invention. Since the description of the process for manufacturing the optical fiber sensor structure 4 has been described above, the description thereof is omitted.
  • the skin in which the optical fiber sensor structure 4 is temporarily fixed via the two film-like adhesives 14 (the first adhesive 14a and the second adhesive 14b).
  • Two materials 1 are manufactured as a first skin material 1a and a second skin material 1b.
  • the honeycomb core 3 is placed on the second adhesive 14b in the first skin material 1a manufactured in the first step.
  • the second core material 1b manufactured in the first step is manufactured on the honeycomb core 3 placed on the second adhesive 14b in the first skin material 1a in the second step. 2 Cover the second skin material 1b from above with the adhesive 14b facing downward.
  • the temporarily fixed optical fiber sensor structure 4 is bonded to the skin material 1 by heating under pressure, and the skin material 1 and the honeycomb core 3 are further bonded. .
  • the honeycomb sandwich structure provided with the optical fiber sensor structure 4 is manufactured.
  • the layer at the time of adhering these by the two film-like adhesives 14 corresponds to the adhesive layer 2.
  • FIG. 11 shows how the honeycomb sandwich structure is formed by bonding the optical fiber sensor structure 4 to the skin material 1 and bonding the honeycomb core 3 in the first embodiment of the present invention.
  • FIG. 12 is an explanatory diagram showing the positional relationship among the adhesive layer 2, the honeycomb core 3, and the optical fiber sensor structure 4 in the honeycomb sandwich structure according to Embodiment 1 of the present invention.
  • 12A shows a cross-sectional view when the honeycomb core 3 does not exist above the optical fiber sensor structure 4
  • FIG. 12B shows the honeycomb core 3 above the optical fiber sensor structure 4.
  • FIG. Sectional drawing in case there exists is shown.
  • a structure is manufactured.
  • the honeycomb core 3 for example, an aluminum alloy honeycomb core having a cell size of 3/8 inch, a height of 25.4 mm, and a foil thickness of 0.018 mm may be used.
  • an optical fiber sensor structure temporarily fixed to each of two skin materials 1 (first skin material 1a and second skin material 1b) via a honeycomb core 3.
  • 4 adheresive 14
  • the whole is covered with the bagging film 16, sealed with the sealing material 17, and the inside (sealed space) is evacuated with a pump (not shown).
  • heating is performed from above the bagging film 16 under pressure (for example, pressurization is performed at atmospheric pressure (about 1 atm)).
  • the film adhesive 14 may be cured by heating at 120 ° C.
  • the adhesive layer follows the shape of the optical fiber sensor structure 4. 2 is formed.
  • the honeycomb core 3 is present immediately above the optical fiber sensor structure 4, the honeycomb core 3 is crushed along the shape of the optical fiber sensor structure 4. It is bonded to the skin material 1 through the adhesive layer 2.
  • cover 7 is shown as a representative example, also about the cross section of the optical fiber 5 which is not covered with the coating
  • a carbon fiber reinforced plastic composed of carbon fiber M60J (manufactured by Toray Industries, Inc.) and an epoxy resin that is cured at 170 ° C.
  • the structure of the carbon fiber reinforced plastic that can be used here is not limited to the combination of the carbon fiber M60J and the epoxy resin that is cured at 170 ° C., and any combination may be used.
  • a semi-cured sheet-like “prepreg” manufactured by impregnating a resin into a plurality of reinforced fibers that have been combined may be used.
  • the combination of the fiber and the resin constituting the carbon fiber reinforced plastic shown here is an example, and the present invention is applicable to a carbon fiber reinforced plastic composed of other combinations. is there.
  • the film-like adhesive 14 for example, an epoxy adhesive having a thickness of 60 ⁇ m and being cured at 180 ° C. can be used, but is not limited thereto, and any thermosetting resin may be used.
  • the adhesive may be used.
  • the optical fiber sensor structure 4 is sandwiched between the two film-like adhesives 14, but the present invention is not limited to this. Instead, for example, a liquid adhesive may be applied to the optical fiber sensor structure 4 and bonded with a film adhesive.
  • the grating length of the FBG sensor unit 6 can be, for example, 5 mm. However, the length is not limited to this, and any length may be used as long as the length is in the range of about 1 mm to 10 mm. There may be.
  • an optical fiber sensor is embedded in an adhesive layer in which a fiber reinforced plastic skin material and a honeycomb core are bonded, whereby the thermal control element is placed on the surface of the structure. It is possible to realize a honeycomb sandwich structure in which the temperature of the structure can be evaluated with high resolution and high accuracy while allowing accurate thermal control by bonding to the substrate.
  • the optical fiber of the optical fiber sensor structure is formed with an FBG sensor portion in which the Bragg wavelength of the reflection spectrum changes according to temperature and strain, so that the temperature of the honeycomb sandwich structure can be changed by the optical fiber sensor structure. It was possible to measure.
  • an optical fiber sensor structure having different diameters around the FBG sensor part and other parts is placed in a coaxial resin tube and heated under pressure to form the FBG sensor part in the resin tube. It is deformed so as to come into contact with the optical fiber.
  • the position of the FBG sensor portion does not move in the axial direction of the optical fiber, and a structure with low thermal resistance in the out-of-plane direction is realized in the FBG sensor portion. This makes it possible to measure the temperature of the honeycomb sandwich structure more accurately than in the past.
  • the process of bonding the skin material and the honeycomb core Manufactures honeycomb sandwich structures.
  • the optical fiber sensor structure having the FBG sensor portion is embedded in the adhesive layer without the FBG sensor portion moving in the axial direction of the optical fiber and without decreasing the heat conduction in the out-of-plane direction. It was possible to measure the temperature with high resolution and high accuracy.
  • the present invention is not limited thereto.
  • the present invention is also applicable to other optical fibers that can detect the temperature of the structure.
  • the temperature can be measured with higher accuracy if the periphery where the sensor unit for measuring the temperature is not covered with the coating.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 繊維強化プラスチック製の表皮材とハニカムコアとから構成される、ハニカムサンドイッチ構造体において、表皮材と、ハニカムコアとの間に形成される接着層内に光ファイバセンサ構造体を埋め込む構造とすることで、表面に熱制御素子を接着した場合であっても、正確に熱制御を実行することができるとともに、高分解能かつ高精度に温度を評価することのできるハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法を得ることができる。

Description

ハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法
 本発明は、繊維強化プラスチック製の表皮材と、ハニカムコアとから構成されるとともに、温度センサである光ファイバセンサを備えたハニカムサンドイッチ構造体およびその製造方法に関するものである。
 人工衛星の構造には、繊維強化プラスチック製の表皮材と、ハニカムコアとから構成される、軽量かつ高剛性なハニカムサンドイッチ構造体が一般的に用いられている。特に、ミッション搭載構造において、高剛性なハニカムサンドイッチ構造体が用いられている。
 しかしながら、太陽光入熱および搭載機器発熱等の軌道上の熱環境変化によって、ハニカムサンドイッチ構造体に熱変形が発生するので、搭載されたカメラおよびアンテナ等のミッション機器における地球指向軸の角度が変動してしまう。特に、地球から約3万6千Kmの遠方に位置している静止衛星においては、指向軸角度がわずかに変動するだけでも、地球観測および測位の精度が著しく低下することとなる。
 そのため、ヒータ等による熱制御によって、ハニカムサンドイッチ構造体の温度を可能な限り均一に維持し、熱変形を抑制することが重要となる。そして、正確な熱制御が実行されるように、軌道上におけるハニカムサンドイッチ構造体の温度を、高分解能かつ高精度に計測することが必要である。
 ここで、繊維強化プラスチック製またはプラスチック製の構造体の温度を評価するセンサの1つとして、光ファイバセンサが提案されている。この光ファイバセンサは、小型かつ軽量な温度センサであり、この構造体に埋め込まれた状態で使用されたり、構造体の表面に接着された状態で使用されたりする。
 このような光ファイバセンサを備えた構造体の1つとして、例えば、反射スペクトルのブラッグ波長が温度に応じて変化するFBG(Fiber Bragg Grating)が形成された光ファイバセンサが表面に接着された人工衛星機器パネルがある。具体的には、搭載された電子機器の温度およびその直下の機器パネルの温度を計測するために、電子機器が搭載される位置に対応する機器パネル表面に光ファイバセンサが接着されている(例えば、特許文献1参照)。
特許第4532425号公報
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1に記載の従来技術においては、前述したように、機器パネルの表面に光ファイバセンサを接着することで温度計測が行われる。また、機器パネルの表面には、光ファイバセンサとともに、ヒータ、OSR(Optical Solar Reflector)およびMLI(Multi Layer Insulation)等といった熱制御素子が接着されている。
 ここで、一般的に、光ファイバセンサを表面に接着するためには、表面に形成される接着層の厚さが厚くなってしまう。したがって、光ファイバセンサの直径に合わせて形成した接着層に熱制御素子を接着する場合、接着層の厚さが厚いので、熱の伝わり(熱伝導)が悪くなり、結果として、熱制御の性能が低下してしまうという問題点があった。
 また、熱制御素子の接着位置を避けて、機器パネルの表面に光ファイバセンサを接着する場合、光ファイバセンサの接着位置が限定されてしまうので、結果として、温度の計測点数が限られ、高分解能に温度を計測することができないという問題点があった。
 本発明は、前記のような課題を解決するためになされたものであり、表面に熱制御素子を接着した場合であっても、正確に熱制御を実行することができるとともに、高分解能かつ高精度に温度を評価することのできるハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法を得ることを目的とする。
 本発明におけるハニカムサンドイッチ構造体は、繊維強化プラスチック製の表皮材と、表皮材と接着層を介して接着されるハニカムコアとから構成されるハニカムサンドイッチ構造体であって、温度を検出するためのセンサ部が1個以上形成される光ファイバと、光ファイバの周囲を覆うチューブとを備えた光ファイバセンサ構造体が接着層の内部に埋め込まれているものである。
 また、本発明におけるハニカムサンドイッチ構造体の製造方法は、光ファイバをチューブの中に挿入し、加圧下で加熱することでチューブを変形させ、光ファイバと、チューブとが接触した光ファイバセンサ構造体を製造する第1ステップと、表皮材の接着面に第1接着剤を介してセンサ部が所望の位置に配置されるように第1ステップで製造した光ファイバセンサ構造体を設置する第2ステップと、第2ステップにおいて接着面に第1接着剤を介して設置した光ファイバセンサ構造体に第2接着剤を重ねることで、第1接着剤と、第2接着剤とで光ファイバセンサ構造体を挟む第3ステップと、第3ステップにおいて第1接着剤と、第2接着剤とで挟んだ光ファイバセンサ構造体が設置される接着面にハニカムコアを設置し、加圧下で加熱することで、接着面に光ファイバセンサ構造体を接着するとともに、ハニカムコアを接着する第4ステップと、を備えたものである。
 本発明によれば、繊維強化プラスチック製の表皮材とハニカムコアとから構成される、ハニカムサンドイッチ構造体において、表皮材と、ハニカムコアとの間に形成される接着層内に光ファイバセンサ構造体を埋め込む構造とする。これにより、表面に熱制御素子を接着した場合であっても、正確に熱制御を実行することができるとともに、高分解能かつ高精度に温度を評価することのできるハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法を得ることができる。
本発明の実施の形態1におけるハニカムサンドイッチ構造体の斜視図である。 本発明の実施の形態1における光ファイバセンサ構造体4の断面図である。 本発明の実施の形態1における光ファイバに形成されるFBGセンサ部付近の拡大断面図である。 本発明の実施の形態1におけるFBGセンサ部の構造を示す説明図である。 本発明の実施の形態1におけるFBGセンサ部6の反射スペクトルの特性を示すグラフである。 本発明の実施の形態1における光ファイバセンサ構造体を用いた温度計測システムの構成図である。 本発明の実施の形態1における光ファイバおよび樹脂チューブの加圧の様子を示す説明図である。 本発明の実施の形態1において、光ファイバセンサ構造体内の光ファイバおよび樹脂チューブの位置関係を示す説明図である。 本発明の実施の形態1において、表皮材に光ファイバセンサ構造体が仮止めされる様子を示す説明図である。 本発明の実施の形態1におけるハニカムサンドイッチ構造体の製造工程を説明するための説明図である。 本発明の実施の形態1において、表皮材に光ファイバセンサ構造体が接着されるとともに、ハニカムコアが接着されることよって、ハニカムサンドイッチ構造体が成形される様子を示す説明図である。 本発明の実施の形態1におけるハニカムサンドイッチ構造体内の接着層、ハニカムコアおよび光ファイバセンサ構造体の位置関係を示す説明図である。
 以下、本発明によるハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。
 ここで、本願発明におけるハニカムサンドイッチ構造体は、表皮材と、ハニカムコアとの間に形成される接着層内に光ファイバセンサ構造体が直線状に埋め込まれているので、表面に熱制御素子が接着された場合に熱制御を正確に実行することができるとともに、高分解能かつ高精度に温度を評価することができるという技術的特徴を有する。換言すると、本願発明は、ハニカムサンドイッチ構造体がこのような構造をとることに技術的特徴を有しており、以下の実施の形態1で示す具体的な数値等は、一例であって、権利範囲に影響を及ぼすものではない。
 実施の形態1.
 まず始めに、以下の説明において用いる座標系について説明する。本実施の形態1のハニカムサンドイッチ構造体を示す場合、面内方向のうち、ハニカムセルのリボン方向をX方向、ハニカムセルのセル幅方向をY方向とし、面外方向をZ方向とする。また、ハニカムサンドイッチ構造体における強化繊維の配向方向を示すための、繊維強化プラスチック製の表皮材の座標系に関して、X方向を強化繊維の0度方向とし、Y方向を強化繊維の90度方向とする。
 次に、本実施の形態1におけるハニカムサンドイッチ構造体について、図1を参照しながら説明する。図1は、本発明の実施の形態1におけるハニカムサンドイッチ構造体の斜視図である。
 図1に示すように、ハニカムサンドイッチ構造体は、繊維強化プラスチック製の表皮材1(以降では、単に表皮材1と称す)、接着層2、ハニカムコア3および光ファイバセンサ構造体4を備えて構成されている。具体的には、対向する2個の表皮材1が、ハニカムコア3の両面に接着層2を介して接着されており、接着層2の内部には、チューブに覆われた光ファイバセンサ構造体4が埋め込まれている。
 なお、光ファイバセンサ構造体4は、図1に示すように、X方向(0度方向)に配向しているものとする。また、図1では具体的に説明するために、ハニカムコア3の表面と裏面に設けられた2個の接着層2のそれぞれの内部に1個ずつ光ファイバセンサ構造体4が埋め込まれている場合を例示している。
 また、人工衛星においてミッション機器が搭載されるハニカムサンドサンドイッチ構造体では、太陽光の入熱や搭載機器の発熱などにより、2枚の表皮材1間に温度差が発生して変形する。そのため、2枚の表皮材1の温度を計測できるように、表皮材1には少なくとも1個ずつ光ファイバセンサ構造体4を接着しておく必要がある。
 次に、本実施の形態1における光ファイバセンサ構造体4について、図2~図5を参照しながら説明する。図2は、本発明の実施の形態1における光ファイバセンサ構造体4の断面図である。図3は、本発明の実施の形態1における光ファイバ5に形成されるFBGセンサ部6付近の拡大断面図である。図4は、本発明の実施の形態1におけるFBGセンサ部6の構造を示す説明図である。図5は、本発明の実施の形態1におけるFBGセンサ部6の反射スペクトルの特性を示すグラフである。
 なお、図2における光ファイバセンサ構造体4の断面図は、先の図1における光ファイバセンサ構造体4の配向方向(X方向)に対して平行である(すなわち、X-Z面に平行である)断面の図を示している。また、図3におけるFBGセンサ部6付近の拡大図は、図2における光ファイバセンサ構造体4の断面図に示されているFBGセンサ部6付近を拡大した図を示している。
 図2に示すように、温度を検出するための光ファイバセンサ構造体4は、FBGセンサ部6を有する光ファイバ5、被覆7および樹脂チューブ8(チューブ)を備えて構成されている。
 ここで、FBGセンサ部6とは、光ファイバ5に形成されたファイバ・ブラッグ・グレーティング(Fiber Bragg Grating)部のことであり、光ファイバ5によって直列に接続されるように、それぞれが互いに間隔をおいて1個以上設けられている。なお、図2では具体的に説明するために、3個のFBGセンサ部6が互いに間隔をおいて設けられている場合を例示している。
 また、図2に示すように、FBGセンサ部6が形成される(位置する)光ファイバ5の周囲は、被覆7で覆われておらず(被覆7が除去されており)、これに対して、FBGセンサ部6が形成されない(位置しない)光ファイバ5の周囲は、被覆7で覆われている。さらに、光ファイバ5の周囲全体(被覆7で覆われている箇所および覆われていない箇所)は、樹脂チューブ8で覆われている。
 具体的には、図3に示すように、光ファイバ5は、コア9と、コア9の外周を覆うクラッド10とを有しており、コア9中にFBGセンサ部6が形成されている。そして、クラッド10の外周が被覆7で覆われており、FBGセンサ部6付近では、被覆7が除去されており、クラッド10が露出した構造となっている。
 また、樹脂チューブ8で、図3に示した構造全体が覆われている。このように、樹脂チューブ8を用いることによって、光ファイバセンサ構造体4をハニカムサンドイッチ構造体に接着して温度を計測する際に、ハニカムサンドイッチ構造体の歪みの影響を受けることなく、さらに、光ファイバ5が固定されるので、FBGセンサ部6の位置が光ファイバ5の軸方向に移動することがない。したがって、ハニカムサンドイッチ構造体の温度を正確に計測することができる。
 なお、ここでは、光ファイバ5および被覆7を覆うためのチューブとして、樹脂製のチューブである樹脂チューブ8を例示したが、これに限定されない。すなわち、ハニカムサンドイッチ構造体に接着して温度を計測する際に、ハニカムサンドイッチ構造体の歪みの影響を受けことなく、さらに、光ファイバ5が固定されるチューブであればよく、例えば、金属製のチューブを用いてもよい。
 また、光ファイバ5内の各部のサイズについては、例えば、被覆7を含めた光ファイバ5全体の直径を250μm程度、クラッド10の直径を125μm程度、コア9の直径を10μm程度とすることができるが、これらの大きさに限定されない。また、複数設けられているFBGセンサ部6のそれぞれは、例えば、5mm程度の範囲に渡ってコア9中に形成することができるが、この範囲に限定されない。このように、本実施の形態1で示す数値に係る光ファイバは、一例であって、本願発明は、ここで示した数値以外の他の数値に係る光ファイバに対しても適用可能である。
 また、FBGセンサ部6は、屈折率が光ファイバ5の長手方向(配向方向)に周期的に変化するように、コア9中に形成されており、急峻な反射スペクトル特性が得られるという特徴を有している。具体的には、図4に示すように、コア9の屈折率が周期長Λで変化し、図5に示すように、急峻な反射スペクトル特性が得られ、反射スペクトルの中心波長(ブラッグ波長:λB)の光強度が最も大きくなる。
 ここで、反射スペクトルの中心波長(ブラッグ波長:λB)、周期Λおよび屈折率nの関係は、次式(1)で表される。また、屈折率nは、温度に依存し、周期Λは、温度および歪みに依存する。
  λB=2nΛ                            (1)
 したがって、ハニカムサンドイッチ構造体の歪みの影響を受けないように、光ファイバセンサ構造体4において光ファイバ5および被覆7を樹脂チューブ8で覆う構造とするとともに、接着層2の内部に光ファイバセンサ構造体4を埋め込んだ状態でブラッグ波長λBを計測する。これにより、上式(1)から温度を正確に求めることができる。このように、光ファイバ5に形成されるFBGセンサ部6は、温度センサとして使用することが可能となる。
 なお、FBGセンサ部6付近が被覆7で覆われていてもよく、このような場合であっても、従来技術と比べて温度を正確に計測することができる。ただし、FBGセンサ部6が形成される光ファイバ5の周囲が被覆7で覆われないようにする場合、ハニカムサンドイッチ構造体の温度の情報を、FBGセンサ部6へより正確に伝達することができる。したがって、温度をより精度よく計測するためには、FBGセンサ部6が形成される光ファイバ5の周囲が被覆7で覆われないようにすることが好ましい。
 次に、ハニカムサンドイッチ構造体の温度を評価するための温度計測システムの一例について、図6を参照しながら説明する。図6は、本発明の実施の形態1における光ファイバセンサ構造体4を用いた温度計測システムの構成図である。
 図6に示すように、温度計測システムは、光ファイバ5、光サーキュレータ11、ASE(Amplified Spontaneous Emission)光源12および光波長計13を備える。
 ハニカムサンドイッチ構造体の温度を計測する場合、光ファイバ5の基端部に、光路を変換する光サーキュレータ11が接続される。また、光サーキュレータ11には、広帯域光源であるASE光源12と、波長計測装置である光波長計13とが接続される。
 このようなシステムを構成することにより、ブラッグ波長λBを具体的に計測することができる。そして、前述したように、ブラッグ波長λBを計測することによって、上式(1)からハニカムサンドイッチ構造体の温度を求めることができる。
 次に、本実施の形態1におけるハニカムサンドイッチ構造体の製造方法について、図7~図11を参照しながら説明する。
 まず始めに、光ファイバ5の周囲を樹脂チューブ8で覆うことで、光ファイバセンサ構造体4を製造する場合について、図7および図8を参照しながら説明する。図7は、本発明の実施の形態1における光ファイバ5および樹脂チューブ8の加圧の様子を示す説明図である。なお、図7においては、代表例として、被覆7で覆われている光ファイバ5の断面を示している。
 図8は、本発明の実施の形態1において、光ファイバセンサ構造体4内の光ファイバ5および樹脂チューブ8の位置関係を示す説明図である。また、図8(a)は、先の図2における光ファイバセンサ構造体4の断面図を示し、図8(b)は、(a)におけるA-A’断面図を示し、図8(c)は、(a)におけるB-B’断面図を示す。
 ここで、ハニカムサンドイッチ構造体の温度をより精度よく計測できるようにするために、前述したように、FBGセンサ部6が形成される光ファイバ5の周囲が被覆7で覆われないように被覆7を除去し、あらかじめFBGセンサ部6付近を露出した状態にしている。
 図7に示すように、光ファイバ5を同軸の樹脂チューブ8の中に入れて、定盤15に設置し、バギングフィルム16で全体を覆い、シール材17で密閉して、内部(密閉空間)をポンプ(図示せず)で真空状態にする。また、この状態で、バギングフィルム16の上部から加圧下(例えば、大気圧(1気圧程度)で加圧する)で加熱する。
 このように、光ファイバ5を樹脂チューブ8の中に入れて加圧下で加熱することによって、光ファイバセンサ構造体4を製造することができる。具体的には、図8(a)に示すように、光ファイバセンサ構造体4において、光ファイバ5の形状にしたがって樹脂チューブ8が変形した状態で、光ファイバ5の周囲が樹脂チューブ8で覆われている。
 また、図8(b)に示すように、被覆7で覆われている光ファイバ5は、樹脂チューブ8と直接接触しておらず、被覆7が樹脂チューブ8と直接接触している。これに対して、図8(c)に示すように、被覆7で覆われていない光ファイバ5(すなわち、FBGセンサ部6が形成される光ファイバ5)は、樹脂チューブ8と直接接触している。
 したがって、接着層2の内部に光ファイバセンサ構造体4を埋め込んだ場合、樹脂チューブ8を介して、樹脂チューブ8に接触している光ファイバ5に熱が伝わることとなる。換言すると、FBGセンサ部6が形成される光ファイバ5においては、被覆7で覆われている光ファイバ5と比べて、被覆7で覆われていない分だけ、縦方向(紙面縦方向)への熱抵抗が小さい。そのため、FBGセンサ部6によって、ハニカムサンドイッチ構造体の温度が正確に計測される。
 次に、表皮材1に光ファイバセンサ構造体4を仮止めする場合について、図9を参照しながら説明する。図9は、本発明の実施の形態1において、表皮材1に光ファイバセンサ構造体4が仮止めされる様子を示す説明図である。なお、図9においては、代表例として、先の図8(c)に示した、FBGセンサ部6が形成される光ファイバ5の断面を示している。
 ここでは、表皮材1と、2枚のフィルム状の接着剤14(第1接着剤14aおよび第2接着剤14b)で挟み込まれた光ファイバセンサ構造体4とからなる第1成形材料18を加圧することによって、2枚のフィルム状の接着剤14で挟み込まれた光ファイバセンサ構造体4を表皮材1に仮止めする。
 具体的には、図9に示すように、定盤15に設置された表皮材1の面に重ねられた第1接着剤14a上に、FBGセンサ部6が所望の位置に配置されるように、光ファイバセンサ構造体4を設置し、第2接着剤14bをさらに重ねる。このように、2枚のフィルム状の接着剤14で光ファイバセンサ構造体4を挟み込むことによって、表皮材1と接着した際に接着層2内に埋め込まれた状態で接着させることができる。なお、表皮材1において光ファイバセンサ構造体4が接着される面は、ハニカムコア3を接着する面に相当する。
 続いて、バギングフィルム16で全体を覆い、シール材17で密閉して、内部(密閉空間)をポンプ(図示せず)で真空にする。また、この状態で、バギングフィルム16の上部から、例えば、大気圧(1気圧程度)で加圧して密着させる。このような工程を経て、2枚のフィルム状の接着剤14で挟み込まれた光ファイバセンサ構造体4が表皮材1に仮止めされることとなる。
 次に、ハニカムサンドイッチ構造体の製造工程について、図10を参照しながら説明する。図10は、本発明の実施の形態1におけるハニカムサンドイッチ構造体の製造工程を説明するための説明図である。なお、光ファイバセンサ構造体4を製造する工程の説明については、前述したので、説明を省略する。
 まず、第1ステップとして、前述したように、2枚のフィルム状の接着剤14(第1接着剤14aおよび第2接着剤14b)を介して、光ファイバセンサ構造体4が仮止めされた表皮材1を、第1表皮材1aおよび第2表皮材1bとして、2個製造する。
 次に、第2ステップとして、第1ステップで製造した、第1表皮材1aにおける第2接着剤14bの上にハニカムコア3を載せる。続いて、第3ステップとして、第2ステップで第1表皮材1aにおける第2接着剤14bの上に載せられたハニカムコア3に対して、第1ステップで製造した、第2表皮材1bにおける第2接着剤14bを下に向けた状態で、この第2表皮材1bを上から被せる。
 さらに、最終の第4ステップとして、加圧下で加熱することで、仮止めされた光ファイバセンサ構造体4が表皮材1に接着するとともに、さらに、この表皮材1とハニカムコア3とが接着する。これにより、光ファイバセンサ構造体4を備えたハニカムサンドイッチ構造体が製造されたこととなる。なお、2枚のフィルム状の接着剤14によってこれらが接着される際の層が接着層2に相当する。
 次に、前述した第2ステップ~第4ステップの具体的な内容について、図11および図12を参照しながら説明する。
 図11は、本発明の実施の形態1において、表皮材1に光ファイバセンサ構造体4が接着されるとともに、ハニカムコア3が接着されることよって、ハニカムサンドイッチ構造体が成形される様子を示す説明図である。図12は、本発明の実施の形態1におけるハニカムサンドイッチ構造体内の接着層2、ハニカムコア3および光ファイバセンサ構造体4の位置関係を示す説明図である。また、図12(a)は、光ファイバセンサ構造体4の上部にハニカムコア3が存在しない場合の断面図を示し、図12(b)は、光ファイバセンサ構造体4の上部にハニカムコア3が存在する場合の断面図を示す。
 ここでは、光ファイバセンサ構造体4が仮止めされた、2個の表皮材1と、それらに挟み込まれたハニカムコア3とからなる第2成形材料19を加圧下で加熱することによって、ハニカムサンドイッチ構造体を製造する。なお、ハニカムコア3の一例として、例えば、セルサイズが3/8インチ、高さが25.4mm、箔厚が0.018mmのアルミニウム合金製のハニカムコアを用いればよい。
 具体的には、図11に示すように、ハニカムコア3を介して、2個の表皮材1(第1表皮材1aおよび第2表皮材1b)のそれぞれに仮止めされる光ファイバセンサ構造体4(接着剤14)が対向するように、第2成形材料19を定盤15に設置する。このような位置関係とすることで、ハニカムコア3の両面が各表皮材1の接着剤14と接触することとなる。
 続いて、バギングフィルム16で全体を覆い、シール材17で密閉して、内部(密閉空間)をポンプ(図示せず)で真空にする。また、この状態で、バギングフィルム16の上部から加圧下(例えば、大気圧(1気圧程度)で加圧する)で加熱する。なお、この場合、例えば、120℃で加熱することで、フィルム状の接着剤14を硬化させればよい。このような工程を経て、仮止めされた光ファイバセンサ構造体4が接着層2内に埋め込まれた状態で表皮材1に接着されるとともに、さらに、ハニカムコア3が2個の表皮材1に挟み込まれた状態で接着されることとなる。
 ここで、図12(a)に示すように、接着層2の厚さt1よりも光ファイバセンサ構造体4の直径Dの方が大きいので、光ファイバセンサ構造体4の形状に沿って接着層2が形成される。また、図12(b)に示すように、光ファイバセンサ構造体4の直上にハニカムコア3が存在している場合、ハニカムコア3が光ファイバセンサ構造体4の形状に沿ってつぶれた状態で接着層2を介して、表皮材1と接着している。なお、図12においては、代表例として、被覆7で覆われている光ファイバ5の断面を示すが、被覆7で覆われていない光ファイバ5の断面についても、接着層2の厚さt1よりも光ファイバセンサ構造体4の直径Dの方大きいので同様のことがいえる。
 なお、表皮材1の材料として、例えば、炭素繊維M60J(東レ株式会社製)と、170℃で硬化するエポキシ樹脂とから構成される炭素繊維強化プラスチックを用いことができるが、これに限定されない。すなわち、ここで用いることのできる炭素繊維強化プラスチックの構成は、炭素繊維M60Jと、170℃で硬化するエポキシ樹脂との組み合わせに限定されず、どのような組み合わせであってもよい。また、まとめられた複数本の強化繊維に樹脂を含浸させて製造された半硬化状態のシート状の「プリプレグ」を用いてもよい。このように、ここで示す炭素繊維強化プラスチックを構成する繊維と、樹脂との組合せは、一例であって、本願発明は、他の組合せから構成される炭素繊維強化プラスチックに対しても適用可能である。
 また、フィルム状の接着剤14として、例えば、厚さが60μmであり、180℃で硬化するエポキシ接着剤を用いることができるが、これに限定されず、熱硬化性樹脂であればよく、液状の接着剤を用いてもよい。
 また、表皮材1、フィルム状の接着剤14および光ファイバセンサ構造体4からなる成形材料18において、2枚のフィルム状の接着剤14で光ファイバセンサ構造体4を挟み込んだが、これに限定されず、例えば、光ファイバセンサ構造体4に液状の接着剤を塗布してフィルム接着剤で接着してもよい。
 また、FBGセンサ部6のグレーティング長として、例えば、長さを5mmにすることができるが、これに限定されず、1mmから10mm程度の範囲内の長さであれば、どのような長さであってもよい。
 以上のように、本実施の形態1によれば、光ファイバセンサを、繊維強化プラスチック製の表皮材とハニカムコアとを接着している接着層内に埋め込むことで、熱制御素子を構造の表面に接着して正確な熱制御を可能とした上で、構造の温度を高分解能かつ高精度に評価できるハニカムサンドイッチ構造体を実現することができる。
 また、光ファイバセンサ構造体の光ファイバには、反射スペクトルのブラッグ波長が温度および歪みに応じて変化するFBGセンサ部を形成することで、ハニカムサンドイッチ構造体の温度をこの光ファイバセンサ構造体によって計測することを可能にした。
 また、FBGセンサ部周辺とそれ以外の部分との直径を異なるようにした光ファイバセンサ構造体を同軸の樹脂チューブ内に入れ、加圧下で加熱して、樹脂チューブをFBG部センサ部が形成された光ファイバと接触するように変形させている。この結果、光ファイバセンサ構造体においては、FBGセンサ部の位置が光ファイバの軸方向に移動することなく、さらに、FBGセンサ部において面外方向への熱抵抗の小さい構造が実現されているので、ハニカムサンドイッチ構造体の温度を従来と比べてより正確に計測することを可能にした。
 また、表皮材に接着層を重ねて接着層の所定の位置に、光ファイバセンサ構造体を設置して接着層を重ねる前工程を行った後に、表皮材と、ハニカムコアとを接着する工程により、ハニカムサンドイッチ構造体を製造している。この結果、FBGセンサ部が光ファイバの軸方向に移動することなく、かつ面外方向の熱伝導が低下することなく、FBGセンサ部を内部に有する光ファイバセンサ構造体を接着層の内部に埋め込むことができ、温度を高分解能かつ高精度に計測することを可能にした。
 なお、本実施の形態1では、光ファイバセンサ構造体4を構成する光ファイバ5の一例として、FBGセンサ部6が1個以上形成されている光ファイバを例示したが、これに限定されず、本願発明は、構造体の温度を検出することのできる他の光ファイバに対しても適用可能である。例えば、レイリー散乱、ラマン散乱、ブリルアン散乱の三種類の散乱光型の光ファイバセンサである。また、他の光ファイバにおいても同様に、温度を計測するためのセンサ部が形成されている周囲が被覆で覆われないようにすれば、温度をより精度よく測定することができる。

Claims (6)

  1.  繊維強化プラスチック製の表皮材と、前記表皮材と接着層を介して接着されるハニカムコアとから構成されるハニカムサンドイッチ構造体であって、
     温度を検出するためのセンサ部が1個以上形成される光ファイバと、前記光ファイバの周囲を覆うチューブとを備えた光ファイバセンサ構造体が前記接着層の内部に埋め込まれている
     ハニカムサンドイッチ構造体。
  2.  請求項1に記載のハニカムサンドイッチ構造体において、
     前記センサ部が位置する前記光ファイバの周囲は、被覆で覆われておらず、前記センサ部が位置しない前記光ファイバの周囲は、被覆で覆われている
     ハニカムサンドイッチ構造体。
  3.  請求項1または2に記載のハニカムサンドイッチ構造体において、
     前記光ファイバは、前記センサ部として、FBG(ファイバ・ブラッグ・グレーティング)センサ部が1個以上形成されている
     ハニカムサンドイッチ構造体。
  4.  請求項1から3のいずれか1項に記載のハニカムサンドイッチ構造体において、
     前記チューブは、樹脂製または金属製のチューブである
     ハニカムサンドイッチ構造体。
  5.  請求項1から4のいずれか1項に記載のハニカムサンドイッチ構造体の製造方法であって、
     前記光ファイバを前記チューブの中に挿入し、加圧下で加熱することで前記チューブを変形させ、前記光ファイバと、前記チューブとが接触した前記光ファイバセンサ構造体を製造する第1ステップと、
     前記表皮材の接着面に第1接着剤を介して前記センサ部が所望の位置に配置されるように前記第1ステップにおいて製造した前記光ファイバセンサ構造体を設置する第2ステップと、
     前記第2ステップにおいて前記接着面に前記第1接着剤を介して設置した前記光ファイバセンサ構造体に第2接着剤を重ねることで、前記第1接着剤と、前記第2接着剤とで前記光ファイバセンサ構造体を挟む第3ステップと、
     前記第3ステップにおいて前記第1接着剤と、前記第2接着剤とで挟んだ前記光ファイバセンサ構造体が設置される前記接着面に前記ハニカムコアを設置し、加圧下で加熱することで、前記接着面に前記光ファイバセンサ構造体を接着するとともに、前記ハニカムコアを接着する第4ステップと、
     を備えたハニカムサンドイッチ構造体の製造方法。
  6.  請求項1から4のいずれか1項に記載のハニカムサンドイッチ構造体の製造方法であって、
     前記センサ部が位置する前記光ファイバの周囲および前記センサ部が位置しない前記光ファイバの周囲が被覆で覆われている場合、前記センサ部が位置する前記光ファイバの周囲を覆う被覆を除去する第1ステップと、
     前記第1ステップにおいて前記センサ部が位置する前記光ファイバの周囲を覆う被覆を除去した前記光ファイバを前記チューブの中に挿入し、加圧下で加熱することで前記チューブを変形させ、前記光ファイバと、前記チューブとが接触した前記光ファイバセンサ構造体を製造する第2ステップと、
     前記表皮材の接着面に第1接着剤を介して前記センサ部が所望の位置に配置されるように前記第2ステップにおいて製造した前記光ファイバセンサ構造体を設置する第3ステップと、
     前記第3ステップにおいて前記接着面に前記第1接着剤を介して設置した前記光ファイバセンサ構造体に第2接着剤を重ねることで、前記第1接着剤と、前記第2接着剤とで前記光ファイバセンサ構造体を挟む第4ステップと、
     前記第4ステップにおいて前記第1接着剤と、前記第2接着剤とで挟んだ前記光ファイバセンサ構造体が設置される前記接着面に前記ハニカムコアを設置し、加圧下で加熱することで、前記接着面に前記光ファイバセンサ構造体を接着するとともに、前記ハニカムコアを接着する第5ステップと、
     を備えたハニカムサンドイッチ構造体の製造方法。
PCT/JP2013/084057 2013-06-10 2013-12-19 ハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法 WO2014199532A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13886867.4A EP3009808B1 (en) 2013-06-10 2013-12-19 Honeycomb sandwich structure and production method for honeycomb sandwich structure
US14/893,844 US10161810B2 (en) 2013-06-10 2013-12-19 Honeycomb sandwich structure and method of manufacturing honeycomb sandwich structure
JP2015522471A JP6022059B2 (ja) 2013-06-10 2013-12-19 ハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013121506 2013-06-10
JP2013-121506 2013-06-10

Publications (1)

Publication Number Publication Date
WO2014199532A1 true WO2014199532A1 (ja) 2014-12-18

Family

ID=52021859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084057 WO2014199532A1 (ja) 2013-06-10 2013-12-19 ハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法

Country Status (4)

Country Link
US (1) US10161810B2 (ja)
EP (1) EP3009808B1 (ja)
JP (1) JP6022059B2 (ja)
WO (1) WO2014199532A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013667A (ja) * 2014-07-03 2016-01-28 三菱電機株式会社 ハニカムサンドイッチ構造体およびその製造方法
EP3211399A4 (en) * 2015-01-15 2017-11-29 Mitsubishi Heavy Industries, Ltd. Bonded structure, method for manufacturing same, and bonding state detection method
JP6519721B1 (ja) * 2018-01-15 2019-05-29 三菱電機株式会社 ハニカムサンドイッチパネルおよびその製造方法
WO2019138660A1 (ja) * 2018-01-15 2019-07-18 三菱電機株式会社 ハニカムサンドイッチパネルおよびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10416004B2 (en) * 2016-05-02 2019-09-17 Mitsubishi Electric Corporation Resin impregnation detection device, coil for rotating machine, and method for impregnating and molding resin of coil for rotating machine
GB2540271B (en) * 2016-06-24 2017-08-02 Epsilon Optics Aerospace Ltd An improved fibre sensor
US10739543B1 (en) * 2019-02-14 2020-08-11 Ofs Fitel, Llc Optical fiber coating
US20220260429A1 (en) * 2019-07-30 2022-08-18 Mitsubishi Electric Corporation Temperature measurement system and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836030A (en) * 1985-05-20 1989-06-06 Lockheed Corporation Method of testing composite materials for structural damage
JP2001004440A (ja) * 1999-06-18 2001-01-12 Nippon Telegr & Teleph Corp <Ntt> 光ファイバセンサ埋込板、光ファイバセンサ埋込型複合材料およびその製造方法
JP2005265473A (ja) * 2004-03-16 2005-09-29 Toshiba Corp 熱分布測定装置
JP4532425B2 (ja) 2006-03-22 2010-08-25 三菱電機株式会社 人工衛星機器パネル
JP2013156200A (ja) * 2012-01-31 2013-08-15 Mitsubishi Electric Corp 光ファイバセンサを備えたハニカムサンドイッチ構造体およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2017661A1 (en) * 1989-05-30 1990-11-30 James E. O'connor Composite cellular sandwich structure
JP4155749B2 (ja) * 2002-03-20 2008-09-24 日本碍子株式会社 ハニカム構造体の熱伝導率の測定方法
US7211784B2 (en) 2004-03-16 2007-05-01 Kabushiki Kaisha Toshiba Photo-detection device and temperature distribution detection device using the same
DE102004053460A1 (de) * 2004-11-05 2006-05-11 Emitec Gesellschaft Für Emissionstechnologie Mbh Schutzelement für einen Messfühler, sowie entsprechender Messfühler und Wabenkörper
JP5047069B2 (ja) * 2008-06-17 2012-10-10 三菱電機株式会社 ヒートパイプ埋め込みパネル及びその製造方法
US20130034324A1 (en) 2011-08-03 2013-02-07 Baker Hughes Incorporated Optical fiber sensor and method for adhering an optical fiber to a substrate
CN108336526B (zh) * 2013-04-24 2020-02-21 莫列斯有限公司 具有热表面的连接器系统
JP6448488B2 (ja) * 2014-08-28 2019-01-09 日本碍子株式会社 耐熱衝撃性試験方法、及び耐熱衝撃性試験装置
JP6218163B1 (ja) * 2016-03-04 2017-10-25 三菱電機株式会社 光ファイバ温度センサおよびその製造方法
JP6726634B2 (ja) * 2017-03-28 2020-07-22 日本碍子株式会社 ハニカム構造体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836030A (en) * 1985-05-20 1989-06-06 Lockheed Corporation Method of testing composite materials for structural damage
JP2001004440A (ja) * 1999-06-18 2001-01-12 Nippon Telegr & Teleph Corp <Ntt> 光ファイバセンサ埋込板、光ファイバセンサ埋込型複合材料およびその製造方法
JP2005265473A (ja) * 2004-03-16 2005-09-29 Toshiba Corp 熱分布測定装置
JP4532425B2 (ja) 2006-03-22 2010-08-25 三菱電機株式会社 人工衛星機器パネル
JP2013156200A (ja) * 2012-01-31 2013-08-15 Mitsubishi Electric Corp 光ファイバセンサを備えたハニカムサンドイッチ構造体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3009808A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013667A (ja) * 2014-07-03 2016-01-28 三菱電機株式会社 ハニカムサンドイッチ構造体およびその製造方法
EP3211399A4 (en) * 2015-01-15 2017-11-29 Mitsubishi Heavy Industries, Ltd. Bonded structure, method for manufacturing same, and bonding state detection method
JP6519721B1 (ja) * 2018-01-15 2019-05-29 三菱電機株式会社 ハニカムサンドイッチパネルおよびその製造方法
WO2019138660A1 (ja) * 2018-01-15 2019-07-18 三菱電機株式会社 ハニカムサンドイッチパネルおよびその製造方法

Also Published As

Publication number Publication date
US10161810B2 (en) 2018-12-25
JP6022059B2 (ja) 2016-11-09
US20160109303A1 (en) 2016-04-21
EP3009808A1 (en) 2016-04-20
JPWO2014199532A1 (ja) 2017-02-23
EP3009808A4 (en) 2016-11-23
EP3009808B1 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6022059B2 (ja) ハニカムサンドイッチ構造体およびハニカムサンドイッチ構造体の製造方法
JP6203142B2 (ja) ハニカムサンドイッチ構造体およびその製造方法
Goossens et al. Aerospace-grade surface mounted optical fibre strain sensor for structural health monitoring on composite structures evaluated against in-flight conditions
CN106404065B (zh) 一种复合材料封装的光纤光栅传感器及其制造方法
JP6157186B2 (ja) 繊維強化複合材料構造体の製造方法
JP5675665B2 (ja) 光ファイバセンサを備えたハニカムサンドイッチ構造体およびその製造方法
US8327716B2 (en) Optical strain gauge
EP3243640B1 (en) Composite material molding method
JP6139026B2 (ja) 最大歪率測定のためのfbgセンサ、その製造方法及び使用方法
JP6218163B1 (ja) 光ファイバ温度センサおよびその製造方法
Hegde et al. Temperature compensated diaphragm based Fiber Bragg Grating (FBG) sensor for high pressure measurement for space applications
KR101529610B1 (ko) 민감도가 제어된 fbg 탐촉자, fbg 탐촉자 센싱 시스템 및 그 센싱방법과 제조방법
JP2006194704A (ja) 溶接型光ひずみゲージとその製造方法および溶接型光ひずみゲージユニット
Li et al. Analysis on strain transfer of surface-bonding FBG on Al 7075-T6 alloy host
Torres Arellano et al. Mechanical characterization of an alternative technique to embed sensors in composite structures: the monitoring patch
JP5047069B2 (ja) ヒートパイプ埋め込みパネル及びその製造方法
ITTO20130825A1 (it) Dispositivo per la rilevazione di deformazioni e la trasmissione dei dati rilevati e metodo per la sua realizzazione
CA2909484C (en) Bonded structure and bonding-condition detecting method
WO2016114194A1 (ja) 接着構造体とその製造方法及び接着状態検出方法
Murayama et al. Structural health monitoring of a full-scale composite structure with fiber-optic sensors
Bosboom et al. Ribbon tapes, shape sensors, and hardware
JP2001004440A (ja) 光ファイバセンサ埋込板、光ファイバセンサ埋込型複合材料およびその製造方法
US20220260429A1 (en) Temperature measurement system and manufacturing method therefor
WO2022223766A1 (en) Method for embedding a monitoring system in a device
MURAYAMA et al. Structural Monitoring of Large Composite Structures by Fiber-Optic Distributed Sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522471

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14893844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013886867

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE