WO2014198099A1 - 一种触摸屏及显示装置 - Google Patents

一种触摸屏及显示装置 Download PDF

Info

Publication number
WO2014198099A1
WO2014198099A1 PCT/CN2013/085027 CN2013085027W WO2014198099A1 WO 2014198099 A1 WO2014198099 A1 WO 2014198099A1 CN 2013085027 W CN2013085027 W CN 2013085027W WO 2014198099 A1 WO2014198099 A1 WO 2014198099A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
touch
area
sensing electrode
electrode
Prior art date
Application number
PCT/CN2013/085027
Other languages
English (en)
French (fr)
Inventor
刘英明
董学
王海生
郭建
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/235,922 priority Critical patent/US9448654B2/en
Publication of WO2014198099A1 publication Critical patent/WO2014198099A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • Embodiments of the present invention relate to the field of display technologies, and in particular, to an etch screen and a display device.
  • a touch screen with etch function has gradually become the mainstream in the display field due to its simple structure, lightness, thinness and low cost.
  • the touch screen mainly includes a capacitive touch screen, a resistive touch screen, an optical touch screen and the like. Capacitive touch screens are a more common and common type of touch screen.
  • a top view of a capacitive touch screen includes a plurality of touch driving electrodes 800 disposed along a first direction and a touch sensing electrode 900 disposed along a second direction.
  • the first direction and the second direction are perpendicular to each other, and adjacent touches
  • the coupling between the drive electrode 800 and the etched sensing electrode 900 produces a mutual capacitance Cm (mutual capacitance).
  • Cm mutual capacitance
  • the touch detection device for detecting the touch point detects the change amount of the current corresponding to the capacitance Cm before and after the touch point finger touches, thereby The position of the touch point is detected.
  • FIG. 2 which is a schematic cross-sectional view of the touch driving electrode 800 and the touch sensing electrode 900 shown in FIG. 1, a voltage is applied to the touch driving electrode 800 and the etched sensing electrode 900 during the touch phase of the etch screen, and an electric field is formed therebetween.
  • the line segment with an arrow in Fig. 2 represents the electric field line.
  • the electric field formed between the touch driving electrode 800 and the touch sensing electrode 900 includes two parts, which are between the forward electric field and the non-overlapping surface formed between the facing overlapping surfaces between the touch driving electrode 800 and the touch sensing electrode 900, respectively.
  • the projected electric field formed is a schematic cross-sectional view of the touch driving electrode 800 and the touch sensing electrode 900 shown in FIG. 1, a voltage is applied to the touch driving electrode 800 and the etched sensing electrode 900 during the touch phase of the etch screen, and an electric field is formed therebetween.
  • the line segment with an arrow in Fig. 2 represents the electric field line.
  • the capacitance between the touch drive electrode and the touch sense electrode corresponding to the forward electric field is a parasitic capacitance C1 which does not have a beneficial effect on the etch.
  • the capacitance CO between the touch driving electrode and the touch sensing electrode corresponding to the projected electric field is a capacitance that can be changed by the finger, and Cm is approximately equal to C0+C!.
  • the finger can only change the value of the mutual capacitance Cm by changing the electric field projected to the outside of the touch driving electrode 800 and the touch sensing electrode 900.
  • the touch screen according to the structure classification includes at least an external touch screen and an in-cell touch screen.
  • the touch detection device detects that the amount of change in the current or voltage corresponding to the capacitance Cm before and after the touch of the finger is not obvious, The control effect is poor.
  • the touch effect is good, and it is necessary to increase the surface area of at least one of the touch sensing electrode and the touch driving electrode, and increase the touch sensing electrode and the Z or touch.
  • Driving the area of the electrode increases the vertical overlap area between the touch sensing electrode and the touch driving electrode, increases the parasitic capacitance between the touch driving electrode and the touch sensing electrode, and makes it difficult to reduce the ratio between the forward electric field and the projected electric field.
  • the touch effect is difficult to improve.
  • the touch sensing electrode and the touch driving electrode are embedded in the display screen, the larger touch sensing electrode and the touch driving electrode are connected with the conductive functional film layer in the display screen, such as the gate line, the data line, and the common electrode. There is a large parasitic capacitance, which also reduces the quality of the image displayed on the display.
  • the embodiment of the invention provides a touch screen and a display device for implementing a touch screen and a display device with better touch effects.
  • a touch screen provided by an embodiment of the present invention includes: a first substrate and a second substrate disposed opposite to each other, and a touch driving electrode and a touch sensing electrode disposed on the first substrate and the second substrate, respectively;
  • An area of the first substrate on which the touch sensing electrode is to be formed is disposed with an uneven area, and the touch sensing electrode is disposed on the first substrate according to a shape of the first substrate, and is formed with the first substrate.
  • An area of the second substrate on which the touch driving electrode is to be formed is disposed with an uneven area, and the touch driving electrode is disposed on the second substrate according to a shape of the second substrate, and is formed with the second substrate An uneven area corresponding to an uneven area.
  • the first substrate and the second substrate are different substrates
  • the uneven area of the first substrate is a recessed area formed on the first substrate having a flat surface lower than a horizontal plane of the surface of the first substrate;
  • a black matrix and a colored resin layer are also included, a black matrix and a colored resin layer;
  • the black matrix is disposed on the first substrate according to the recessed area on the first substrate, and forms a recessed area corresponding to the recessed area on the first substrate;
  • the touch sensing electrodes are disposed on the black matrix according to a shape of the black matrix, and form a recessed area corresponding to the recessed area of the black matrix;
  • the colored resin layer is located above the black matrix
  • a plurality of pixel units distributed in a matrix are disposed on a side of the second substrate adjacent to the first substrate, and the touch driving electrodes are disposed on the pixel unit.
  • the method further includes:
  • the uneven area is a recessed area
  • the recessed area is a groove-shaped area or a plurality of hole-shaped areas disposed along a direction in which the touch sensing electrode extends;
  • the recessed area is a groove-shaped area or a plurality of hole-shaped areas provided along a direction in which the touch driving electrodes extend.
  • the groove-shaped region corresponding to the touch sensing electrode has a trapezoidal shape, a corner shape or an arc shape along a longitudinal section of the short side direction of the etched sensing electrode;
  • the groove-shaped region corresponding to the touch sensing electrode has an isosceles trapezoidal shape, an isosceles angle shape or an arc shape along a longitudinal section of the short side direction of the touch sensing electrode;
  • Embodiments of the present invention provide a display device including the etch screen of any of the above modes.
  • Embodiments of the present invention are disposed on a substrate with a touch driving electrode and/or a touch sensing electrode
  • the corresponding region is provided with an uneven region, and the etched sensing electrode is formed on the substrate according to the corresponding uneven region to form a corresponding uneven region, and the etched driving electrode is formed on the substrate according to the corresponding uneven region, and correspondingly formed
  • the uneven area, the projected area of the touch sensing electrode having the uneven area on the substrate is smaller than the surface area thereof; the projected area of the touch driving electrode having the uneven area on the substrate is smaller than the surface area thereof; and the touch driving electrode and the etched sensing electrode are improved
  • the ratio of the projected electric field to the forward electric field, and the uneven area on the substrate body can reduce the difficulty of making the etching screen, thereby reducing the probability of occurrence of various undesirable phenomena of the touch screen.
  • FIG. 2 is a schematic cross-sectional view of the capacitive touch screen shown in FIG. 1;
  • FIG. 3 is a top plan view of a substrate having an uneven region corresponding to a touch sensing electrode according to Embodiment 1 of the present invention
  • FIG. 4 is a top plan view of a substrate having an uneven region corresponding to an etched driving electrode according to an embodiment of the present invention
  • FIG. 8 is a top plan view of a substrate having a groove-like region according to Embodiment 1;
  • Embodiment 9 is a touch screen with a triangular cross section in a recessed region provided in Embodiment 1;
  • FIG. 2 is a top plan view of a substrate having an uneven region corresponding to an etched driving electrode and a touch sensing electrode according to an embodiment of the present invention
  • the substrate is a substrate that does not form any functional film layer, for example, the substrate is a glass substrate or a substrate of other materials in which no functional film layer is formed, that is, unevenness is formed on the substrate body ⁇ region.
  • the touch screen provided by the embodiment of the invention may be a capacitive touch screen of any structure, and may be an external touch screen (Add on type) or an in-cell touch screen (On Cell or In Cell type integrated in the display). touch screen).
  • the touch drive driving electrode and the etched sensing electrode are disposed on the same substrate or the etch screen disposed on different substrates; the touch driving electrodes and the touch sensing electrodes are disposed on the same substrate, specifically including one side or the same on the same substrate On opposite sides of the same substrate.
  • the structure of the above-mentioned etch screen is merely illustrative of the present invention and is not specifically limited herein.
  • the uneven area may be, but not limited to, a recessed area, a convex shaped area, or both a concave area and a convex shaped area.
  • the recessed area on the substrate may be, but not limited to, a groove-like area or a hole-shaped area.
  • the depth of the hole in the hole-like region is smaller than the thickness of the substrate, that is, the hole is not a perforation.
  • the depth of the groove of the groove-like region is smaller than the thickness of the substrate.
  • the convex region may be a strip-shaped convex region or a columnar convex region.
  • Embodiment 1 The touch screen is an external touch screen.
  • a schematic diagram of a touch screen provided by an embodiment of the present invention includes:
  • a plurality of touch driving electrodes 3 disposed on the substrate 1 in a second direction crossing the first direction; the touch driving electrodes 3 and the etched sensing electrodes 2 are insulated;
  • the area of the substrate 1 on which the touch sensing electrode 2 is to be formed corresponds to the touch sensing electrode 2, and the uneven area 11 is disposed; or as shown in FIG. 4, the side of the substrate 1 where the touch driving electrode 3 is to be formed and the touch driving The area corresponding to the electrode 3 is provided with an uneven area II; or as shown in FIG. 5, the side of the substrate 1 where the touch sensing electrode 2 is to be formed is provided with an uneven area in a region corresponding to the touch sensing electrode 2, and the substrate An area of the side where the touch driving electrode 3 is to be formed corresponding to the touch driving electrode 3 is provided with an uneven area 11.
  • the manner of forming the uneven region includes various types.
  • a groove-shaped or hole-shaped recessed region lower than the horizontal surface of the substrate surface may be formed on the substrate not provided with any film layer structure and the surface is flat, specifically by dry method. Etching or wet etching etches the recessed regions on the substrate having a flat surface, and the surface of the substrate itself is made uneven.
  • a land-like or columnar structure higher than the surface level of the substrate surface may be formed on a substrate which is not provided with any film structure and whose surface is flat, so that the surface of the substrate is an uneven structure.
  • the recessed area may specifically be a groove-like area 11 or a hole-like area as shown in Fig. 3.
  • the first direction is a longitudinal direction and the second direction is a lateral direction.
  • FIG. 3 illustrates the present invention by taking the surface area of the touch sensing electrode as an example.
  • FIG. 4 illustrates the invention by increasing the surface area of the touch driving electrode.
  • FIG. 5 illustrates the surface area of the touch sensing electrode and the touch driving electrode in the same manner as the H inch.
  • the touch screen provided in Embodiment 1 may be disposed on the same substrate or on different substrates.
  • etch driving electrode and the touch sensing electrode are disposed on different substrates, respectively, on each substrate
  • An uneven region corresponding to the touch driving electrode or the etched sensing electrode is disposed; or an uneven region corresponding to the touch driving electrode or the touch sensing electrode is disposed on the substrate of one of the substrates.
  • the etched driving electrode and the touch sensing electrode When the etched driving electrode and the touch sensing electrode are disposed on the same substrate, they may be respectively disposed on opposite sides of the substrate, or may be disposed on the same side of the substrate. When the etched driving electrode and the touch sensing electrode are disposed on opposite sides of the substrate, uneven regions corresponding to the touch driving electrodes and the etched sensing electrodes are respectively disposed on opposite sides of the substrate. When the touch driving electrodes and the etched sensing electrodes are disposed on the same side of the substrate, uneven regions corresponding to the touch driving electrodes and the touch sensing electrodes are simultaneously disposed on one side of the substrate. Of course, it is also possible to provide an uneven region corresponding to one of the touch driving electrodes and the touch sensing electrodes on the substrate. As long as the surface area of at least one of the etched driving electrode and the touch sensing electrode is increased, the parasitic capacitance between the touch driving electrode and the etched sensing electrode can be reduced, and the touch effect of the etch screen can be improved.
  • the touch driving electrode and the touch sensing electrode may be disposed in the same layer or in different layers.
  • the touch screen, the etch driving electrode and the touch sensing electrode provided by the embodiments of the present invention are not limited to being rectangular, and the etch driving electrode and/or the touch sensing electrode may also include a plurality of electrode units, and each electrode unit may be Rectangle, square, diamond or regular polygon.
  • FIG. 6 is a cross-sectional view of the touch screen along the ⁇ - ⁇ sentence shown in FIG.
  • the touch screen includes a substrate 1;
  • the touch sensing electrode 2 is located above the substrate I;
  • the touch screen shown in FIG. 6 is a mode of the external touch screen.
  • the external touch screen provided with the recessed area on the substrate provided by the embodiment of the present invention is not limited to the touch screen shown in FIG. 6, and is not listed here.
  • the principle that the touch screen provided in the first embodiment can improve the touch effect is specifically described below.
  • the recessed area may also be disposed on an insulating layer or other functional film layer in the substrate, but there are the following disadvantages:
  • the recessed region on the insulating layer is generally realized by a photolithography etching process, and when the insulating layer is thin, it is easy to make a via hole on the insulating layer (that is, a via hole is formed on the insulating layer) It is easy to cause a short circuit between the electrically conductive functional film layer on both sides of the insulating layer (for example, causing the touch driving electrode and the etched sensing electrode).
  • a plurality of functional film layers have been prepared before the recessed regions on the insulating layer are formed, and the recessed regions on the insulating layer are formed, and processes such as photolithography etching are likely to cause defects in the device.
  • the insulating layer when the insulating layer is thick, it will affect the light transmittance of the display screen, affecting the display effect; when the insulating layer is thin, it is easy to make perforations on the insulating layer (that is, the insulating layer is made up and down transparently) Hole), easy to cause on both sides of the insulation
  • the electrically conductive functional film layer is shorted.
  • the recessed region can be formed on the substrate of the existing thickness without increasing the thickness of the substrate.
  • the thickness of the finished touch screen does not increase.
  • no functional film layer is formed on the substrate, and the defective screen is not caused by the recessed area, and there is no process difficulty.
  • a recessed region of a suitable depth may be formed on the substrate according to actual requirements, thereby forming a corresponding recessed region of a certain depth on the touch sensing electrode, which is not specifically limited herein.
  • the recessed area on the substrate provided by the present invention will be specifically described below in conjunction with the touch screen provided in the first embodiment.
  • the recessed areas on the substrate can be arranged in a variety of ways. For example, a groove-like area or a hole-shaped area or the like.
  • the present invention will be schematically illustrated by exemplifying a groove-like region or a hole-like region provided in a region corresponding to the touch sensing electrode on the substrate.
  • Method 1 The recessed area is a groove-shaped area.
  • a groove-like region 11 provided on the substrate 1 corresponding to the etched sensing electrode (e.g., the region where the closed dotted line is located) is shown.
  • the longitudinal section of the groove-like region along the short side direction of the etched sensing electrode is a trapezoidal shape, a rectangular shape, an arc shape, Or a triangle shape, etc.
  • the longitudinal cross-sectional view of the touch sensing electrode 2 shown in Figs. 3 to 7 along the short side is a trapezoidal shape.
  • the longitudinal section of the groove-like region along the short side of the groove is determined according to the patterning process conditions and the width of the touch sensing electrode, and is not limited herein.
  • Figure 9 is a partial cross-sectional view of the substrate 1 in the etch screen of Figure 8 taken along line BB', and the longitudinal section of the groove-like region I I along the short side is triangular.
  • Fig. 10 is a cross-sectional view of the substrate 1 in the etch screen of Fig. 8 taken along the line B-B', and the groove-like region 11 is curved in a longitudinal sectional view along the short side.
  • the touch effect on the entire etched screen is consistent, and the longitudinal section of the groove-shaped region along the short side is obtained. It is an isosceles triangle shape, an isosceles ladder shape, or a part of a circle (arc shape).
  • a region corresponding to a touch sensing electrode on the substrate may be provided with a groove-like region or a plurality of mutually parallel groove-like regions, and a groove-like region shown in FIGS. 3 to 10 corresponds to a touch sensing electrode.
  • FIG. 11 is a schematic plan view showing the formation of the uneven region 11 in the region corresponding to the touch driving electrode 2 and the etched sensing electrode 3 on the same side of the substrate 1; and each touch driving electrode 2 or touch sensing electrode 3 corresponding regions form a plurality of recessed regions.
  • the number of the groove-like regions disposed on the substrate corresponding to a touch sensing electrode may be set according to the width of the etched sensing electrode and the process conditions, which is not specifically limited herein.
  • a hole-like region 11 provided on a region of the substrate 1 corresponding to the touch sensing electrode 2 is shown.
  • the touch sensing electrodes 2 are formed on the substrate 1 in accordance with the shape of the substrate 1, to form corresponding hole-like regions.
  • the aperture of the hole-shaped area near the end of the touch-sensing electrode is larger than the aperture of the end of the aperture-sensing electrode, so that the surface of the hole has a certain slope with respect to the substrate, and the maximum aperture is slightly smaller than the two long-edge edges of the touch-sensing electrode.
  • the distance between the two is 1/2 or 1/3 of the distance between the two long sides of the touch sensing electrode.
  • each of the hole-shaped regions corresponding to the area where each touch sensing electrode is located is arranged in a row or columns in the longitudinal direction, and only one row of the hole-like regions 11 is shown in FIG.
  • the spacing between any adjacent two hole-like regions on the same column on the substrate is not limited.
  • the arrangement of the above-mentioned hole-shaped regions, the adjacent pitch and the aperture are both preferred.
  • the method is determined according to the process conditions and the width of the touch sensing electrode, and the like.
  • Embodiment 2 The touch screen is an in-cell touch screen.
  • the in-cell touch panel is a touch screen in which the touch driving electrodes and the etched sensing electrodes are embedded in the display screen, and the display screen can be a liquid crystal display (LCD) or an organic electroluminescent display (0: LED).
  • LCD liquid crystal display
  • LED organic electroluminescent display
  • the second substrate 5 is provided with a pixel array 51, and the touch driving electrodes 3 are disposed in the second direction above the pixel array 51, and the pixel array 51 and the etch driving electrodes 3 are insulated by the second insulating layer 52;
  • the region of the second substrate 5 where the touch driving electrode 3 is to be formed may also be provided with an uneven region, and the touch driving electrode 3 is disposed thereon according to the shape of the second substrate 5 to form a corresponding uneven region.
  • the spacer is located in a region corresponding to the black matrix.
  • the in-cell touch panel shown in FIG. 13 is provided with a common electrode for realizing image display on the second substrate 5.
  • the H-inch liquid crystal display is an In-Plane-Switchmg (IPS) mode and an advanced ADVanced Super Dimension Switch (ADS) mode.
  • the common electrode is time-driven, and during the image display phase, a voltage Vcom is applied to the common electrode to effect image display. In the touch phase, a high frequency voltage signal is applied to the common electrode to implement touch. This arrangement simplifies the structure of the in-cell touch screen, saves the production cost of the product, and improves the competitiveness of the product.
  • the substrate is a glass substrate or a flexible plastic substrate, and a glass substrate is taken as an example.
  • Ovenflow Fusion Draw The specific process of making a recessed area: the molten liquid glass is injected into the Fusion Machine by a tube. When the body is cooled by H inches, it will flow out to both sides, and the molten glass will flow along the fire.
  • the wall is joined to each other at the end of the wall, and a desired channel or via is formed on the upper surface of the glass by the jig to form recessed regions in different regions on the glass substrate. A recessed region on the glass substrate is formed after the glass substrate is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明的实施例公开了一种触摸屏及显示装置,用以提高触摸屏的蝕控效果。所述触摸屏包括:相对设置的第一基板和第二基板,分别位于第一基板和第二基板上相互交叉设置的触摸驱动电极和触摸感应电极;所述第一基板上待形成触摸感应电极的区域设置有不平坦区域,所述蝕摸感应电极依照所述第一基板的形状设置于所述第一基板上,并形成与所述第一基板的不平坦区域相对应的不平坦区域;和/或所述第二基板上待形成触摸驱动电极的区域设置有不平坦区域,所述触摸驱动电极依照所述第二基板的形状设置于所述第二基板上,并形成与所述第二基板的不平坦区域相对应的不平坦区域。

Description

本发明的实施例涉及显示技术领域, 尤其涉及一种蝕摸屏及显示装置。
A 具有蝕摸功能的触摸显示屏由于其结构简单、 轻、 薄、 成本低等优点, 已经逐渐成为显示领域的主流。
触摸屏主要包括电容式触摸屏、 电阻式触摸屏, 光学式触摸屏等。 电容 式触摸屏为较常见且较普遍的一种触摸屏。
以下结合触摸屏的结构简单说明电容式蝕摸屏的触控原理。
参见图 1 , 为电容式触摸屏的俯视示意图, 包括多条沿第一方向设置的 触摸驱动电极 800和沿第二方向设置的触摸感应电极 900, 第一方向和第二 方向相互垂直, 相邻触摸驱动电极 800和蝕摸感应电极 900之间耦合产生互 电容 Cm (mutual capacitance )。 当手指触碰屏幕时, 手指上的等效电场会改 变所述互电容 Cm的值, 用于检测触摸点的触摸检测装置通过检测触摸点手 指触碰前后电容 Cm对应的电流的变化量, 从而检测出触摸点的位置。
参见图 2, 为图 1所示的触摸驱动电极 800和触摸感应电极 900的截面 示意图, 在蝕摸屏的触摸阶段为触摸驱动电极 800和蝕摸感应电极 900施加 电压, 二者之间形成电场, 图 2中带箭头的线段表示电场线。 触摸驱动电极 800和触摸感应电极 900之间形成的电场包括两部分, 分别为触摸驱动电极 800和触摸感应电极 900之间正对交叠面之间形成的正向电场和非交叠面之 间形成的投射电场。 正向电场对应的触摸驱动电极和触摸感应电极之间的电 容为对蝕摸不起有益效果的寄生电容 Cl。投射电场对应的触摸驱动电极和触 摸感应电极之间的电容 CO为能够被手指改变的电容, Cm约等于 C0+C!。手 指只能通过改变投射到触摸驱动电极 800和触摸感应电极 900之外的电场改 变互电容 Cm的值。 触摸屏按照结构分类至少包括外挂式触摸屏和内嵌式触摸屏。 无论是外挂式触摸屏还是内嵌式触摸屏, 当正向电场与投射电场之间的 比值较大时, 触摸检测装置检测触摸点手指触碰前后电容 Cm对应的电流或 电压的变化量不明显, 触控效果较差。 要想保证触碰前后触摸点电容 Cm对 应的电流或电压的变化量较大, 触控效果较好, 需要增加触摸感应电极和触 摸驱动电极至少之一的表面积, 增加触摸感应电极和 Z或触摸驱动电极的面积 的同时又会增加触摸感应电极和触摸驱动电极之间的垂直交叠面积, 增加触 摸驱动电极和触摸感应电极之间的寄生电容, 难以降低正向电场与投射电场 之间的比值, 触控效果难以提高。 当触摸感应电极和触摸驱动电极内嵌在显 示屏中时, 面积较大的触摸感应电极和触摸驱动电极与显示屏中的导电功能 膜层, 例如栅线、 数据线和公共电极等之间也存在较大的寄生电容, 同时还 会降低显示屏显示图像的品质。
本发明实施例提供了一种触摸屏及显示装置, 用以实现一种触控效果较 好的触摸屏和显示装置。
为实现上述目的, 本发明实施例提供的触摸屏包括: 相对设置的第一基 板和第二基板, 分别位于第一基板和第二基板上相互交叉设置的触摸驱动电 极和触摸感应电极;
所述第一基板上待形成触摸感应电极的区域设置有不平坦区域, 所述触 摸感应电极依照所述第一基板的形状设置于所述第一基板上, 并形成与所述 第一基板的不平坦区域相对应的不平坦区域; 和 Z或
所述第二基板上待形成触摸驱动电极的区域设置有不平坦区域, 所述触 摸驱动电极依照所述第二基板的形状设置于所述第二基板上, 并形成与所述 第二基板的不平坦区域相对应的不平坦区域。
较佳地, 所述第一基板和所述第二基板为不同的基板;
所述第一基板的不平坦区域为在表面平坦的第一基板上制作出的低于所 述第一基板表面所在水平面的凹陷区域;
还包括, 黑矩阵和彩色树脂层; 所述黑矩阵依照所述第一基板上的凹陷区域设置于所述第一基板上, 并 形成与所述第一基板上的凹陷区域相对应的凹陷区域;
所述触摸感应电极依照所述黑矩阵的形状设置于所述黑矩阵上, 并形成 与所述黑矩阵的凹陷区域相对应的凹陷区域;
所述彩色树脂层位于所述黑矩阵之上;
所述第二基板靠近所述第一基板的一侧设置有呈矩阵分布的多个像素单 元, 所述触摸驱动电极设置在所述像素单元之上。
较佳地, 还包括:
位于所述彩色树脂层上的平坦层和位于所述平坦层上的隔垫物。
较佳地, 所述不平坦区域为凹陷区域;
所述触摸感应电极对应的区域设置有凹陷区域时, 所述凹陷区域为沿所 述触摸感应电极延伸的方向设置的凹槽状区域或多个孔状区域; 和 /或
所述触摸驱动电极对应的区域设置有凹陷区域时, 所述凹陷区域为沿所 述触摸驱动电极延伸的方向设置的凹槽状区域或多个孔状区域。
较佳地, 与所述触摸感应电极对应的凹槽状区域沿与蝕摸感应电极的短 边方向的纵截面为梯形状、 ≡角形状或弧状;
与所述触摸驱动电极对应的凹槽状区域沿与触摸驱动电极的短边方向的 纵截面为梯形状、 ΞΞ角形状或弧状。
较佳地, 与所述触摸感应电极对应的凹槽状区域, 沿与触摸感应电极的 短边方向的纵截面为等腰梯形状、 等腰≡角形状或圆弧状;
与所述触摸驱动电极对应的凹槽状区域, 沿与蝕摸驱动电极的短边方向 的纵截面为等腰梯形状、 等腰三角形状或圆弧状。
较佳地, 与所述触摸驱动电极或蝕摸感应电极对应的多个孔状区域中任 意相邻的两个孔状区域之间的距离相等。
较佳地, 所述触摸感应电极设置在与所述黑矩阵相对应的区域。
较佳地, 所述触摸驱动电极与所述触摸感应电极之间的垂直交叠面积小 于触摸感应电极的表面积。
本发明实施例提供一种显示装置, 包括上述任一方式的蝕摸屏。
本发明实施例通过在基板上设置与触摸驱动电极和 /或触摸感应电极相 对应的区域设置不平坦区域, 蝕摸感应电极依照与其对应的不平坦区域形成 在基板上, 形成对应的不平坦区域, 蝕摸驱动电极依照与其对应的不平坦区 域形成在基板上, 形成对应的不平坦区域, 具有不平坦区域的触摸感应电极 在基板上的投影面积小于其表面积; 具有不平坦区域的触摸驱动电极在基板 上的投影面积小于其表面积; 提高触摸驱动电极与蝕摸感应电极之间的投射 电场与正向电场的比值, 在基板本体上制作不平坦区域可以降低蝕摸屏的制 作难度, 从而降低触摸屏的各种不良现象发生的几率。 附图说明
图 1为现有为电容式触摸屏的俯视示意图;
图 2为图 1所示的电容式触摸屏截面示意图;
图 3为本发明实施例一提供的具有与触摸感应电极对应的不平坦区域的 基板俯视示意图;
图 4为本发明实施例提供的具有与蝕摸驱动电极对应的不平坦区域的基 板俯视示意图;
图 5为本发明实施例提供的具有与蝕摸驱动电极和蝕摸感应电极对应的 不平坦区域的基板俯视示意图;
图 6为图 3所示的蝕摸屏在 A- 向的截面图;
图 7为本发明实施例提供的触摸驱动电极和触摸感应电极之间形成的电 场示意图;
图 8为实施例一提供的具有凹槽状区域的基板俯视示意图;
图 9为实施例一提供的凹陷区域的截面为三角形状的触摸屏;
图 10为实施例一提供的凹陷区域的截面为弧状的触摸屏;
图 II 为本发明实施例提供的具有与蝕摸驱动电极和触摸感应电极对应 的不平坦区域的基板俯视示意图;
图 12为本发明实施例一提供的孔状凹陷结构的触摸屏俯视示意图; 图 13为实施例二提供的内嵌式蝕摸屏结构示意图。 本发明实施例提供了一种蝕摸屏及显示装置, 用以降低触摸驱动电极和 触摸感应电极之间正向电场与投射电场的比值, 提高触摸屏的触控效果。
本发明通过在待形成触摸感应电极和 /或触摸驱动电极的基板上, 与每一 触摸感应电极和 /或触摸驱动电极相对应的区域设置不平坦区域, 所述触摸感 应电极和 /或所述触摸驱动电极依照所述基板的形状设置于其上形成对应的 不平坦区域。 保证触摸驱动电极与触摸感应电极之间的垂直交叠面较小的前 提下实现表面积较大的蝕摸感应电极, 从而降低触摸驱动电极与蝕摸感应电 极之间的正向电场和投射电场的比值, 提高蝕摸屏的触控效果。 当触摸感应 电极和触摸驱动电极内嵌在显示屏中时, 还可以减小触摸感应电极或触摸驱 动电极与显示屏中的栅线、 数据线和公共电极等导电功能膜层之间的寄生电 容, 提高显示屏显示图像的品质。
需要说明的是, 所述基板为未形成任何功能膜层的基板, 例如该基板为 未形成有任何功能膜层的玻璃基板或其他材质的基板, 也就是说, 在基板本 体^上形成不平坦区域。
本发明实施例提供的触摸屏可以为任何结构的电容式蝕摸屏, 可以为外 挂式触摸屏(Add on式蝕摸屏),或集成在显示屏中的内嵌式触摸屏(On Cell 或 In Cell式触摸屏)。 蝕摸驱动电极和蝕摸感应电极设置在同一基板上的触 摸屏或者设置在不同基板上的蝕摸屏; 触摸驱动电极和触摸感应电极设置在 同一基板上具体包括设置在同一基板的一侧或设置在同一基板相对的两侧。 上述提到的蝕摸屏的结构仅是举例说明本发明, 这里不作具体限定。
在基板上设置不平坦区域, 即基板的表面为曲面状, 而非平面状。 所述 触摸感应电极和蝕摸驱动电极至少之一依照所述基板的形状设置于其上形成 对应的曲面状电极。
所述不平坦区域可以但不限于为凹陷区域、 凸起状区域, 或同时包括凹 陷区域和凸起状区域。
较佳地,所述基板上的凹陷区域可以但不限于为凹槽状区域或孔状区域。 该孔状区域中的孔的深度小于基板的厚度, 即该孔不是穿孔。 凹槽状区域的 凹槽的深度小于基板的厚度。 所述凸起状区域可以为条状凸起区域或柱状凸 起区域。 本发明将以凹陷区域为例示意性地说明本发明提供的触摸屏和显示装 置。
以下将通过不同的实施例说明本发明提供的不同结构的蝕摸屏。
实施例一: 触摸屏为外挂式触摸屏。
参见图 3 , 本发明实施例提供的触摸屏俯视示意图, 包括:
基板 1;
位于基板 1上沿第一方向分布的多条触摸感应电极 2;
位于基板 1上沿与第一方向交叉的第二方向分布的多条触摸驱动电极 3 ; 触摸驱动电极 3和蝕摸感应电极 2保持绝缘;
其中, 基板 1待形成触摸感应电极 2的一侧与触摸感应电极 2相对应的 区域设置有不平坦区域 11 ; 或者如图 4所示, 基板 1待形成触摸驱动电极 3 的一侧与触摸驱动电极 3相对应的区域设置有不平坦区域 I I; 或者如图 5所 示, 基板 1待形成触摸感应电极 2的一侧与触摸感应电极 2相对应的区域设 置有不平坦区域, —且.基板 i待形成触摸驱动电极 3的一侧与触摸驱动电极 3 相对应的区域设置有不平坦区域 11。
形成不平坦区域的方式包括多种, 例如, 可以在未设置任何膜层结构且 表面各处平整的基板上制作低于基板表面水平面的凹槽状或孔状的凹陷区 域, 具体可以通过干法刻蚀或湿法刻蚀在表面平坦的基板上刻蚀凹陷区域, 制作出的基板本身表面不平整。 或者可以在未设置任何膜层结构且表面各处 平整的基板上制作高于基板表面水平面的凸台状或柱状结构, 使得基板表面 为为凹凸不平状结构。
凹陷区域具体可以为如图 3所示的凹槽状区域 11或孔状区域。
图 3中所述第一方向为纵向, 所述第二方向为橫向。
图 3以增加触摸感应电极的表面积为例说明本发明, 图 4以增加触摸驱 动电极的表面积为例说明本发明, 图 5 以同 H寸增加触摸感应电极和触摸驱动 电极的表面积为例说明。
实施例一提供的触摸屏, 蝕摸驱动电极和触摸感应电极可以设置在同一 基板上, 也可以设置在不同的基板上。
当蝕摸驱动电极和触摸感应电极设置在不同基板上^, 在各基板上分别 设置与触摸驱动电极或蝕摸感应电极相对应的不平坦区域; 或者在其中之一 的基板上设置与触摸驱动电极或触摸感应电极相对应的不平坦区域。
当蝕摸驱动电极和触摸感应电极设置在同一基板上日寸, 可以分别设置在 基板相对的两侧, 也可以设置在基板的同一侧。 当蝕摸驱动电极和触摸感应 电极设置在基板相对的两侧日寸, 在基板相对的两侧分别设置与触摸驱动电极 和蝕摸感应电极相对应的不平坦区域。 当触摸驱动电极和蝕摸感应电极设置 在基板的同一侧时, 在基板的一侧同时设置与触摸驱动电极和触摸感应电极 相对应的不平坦区域。 当然, 也可以在基板上设置与触摸驱动电极和触摸感 应电极之一相对应的不平坦区域。 只要增加蝕摸驱动电极和触摸感应电极至 少之一的表面积就可以减小触摸驱动电极和蝕摸感应电极之间的寄生电容, 就可以提高蝕摸屏的触控效果。
当蝕摸驱动电极和触摸感应电极设置在基板的同一侧时, 触摸驱动电极 和触摸感应电极可以同层相绝缘设置或不同层设置。
需要说明的是, 本发明实施例提供的触摸屏, 蝕摸驱动电极和触摸感应 电极不限于为矩形状, 蝕摸驱动电极和 /或触摸感应电极也可以包括多个电极 单元, 各电极单元可以为矩形、 正方形、 菱形或正多边形等。
以下将以蝕摸驱动电极和蝕摸感应电极设置在同一基板的不同层为例说 明。 以图 3所示的触摸屏为例, 为了更清楚地说明图 3所示的触摸屏的结构, 如图 6所示为图 3所示的触摸屏沿 Α-ΑΊ句的截面示意图;
触摸屏包括基板 1 ;
触摸感应电极 2位于基板 I之上;
第一绝缘层 4位于蝕摸感应电极 2之上;
触摸驱动电极 3位于第一绝缘层 4之上;
基板 1上设置有朝向触摸感应电极 2的凹陷区域, 蝕摸感应电极 2依照 基板 1的形状设置于其上形成对应的凹陷区域。 如图 7所示, 触摸感应电极 2的截面图为曲线状。
图 6所示的触摸屏为外挂式触摸屏的一种方式, 本发明实施例提供的基 板上设置有凹陷区域的外挂式触摸屏不限于为图 6所示的触摸屏, 这里就不 ——列举。 以下具体说明实施例一提供的触摸屏可以提高触控效果的原理。
参见图 7, 图 7为图 6所示的蝕摸屏中的其中一条触摸感应电极 2和一 条触摸驱动电极 3以及二者之间形成的正向电场和投射电场示意图; 图 7中 带箭头的直线或曲线表示电场线。 触摸感应电极 2位于具有不平坦区域的基 板上形成对应的不平坦区域, 触摸感应电极 2的表面为曲面状, 如图 7所示, 触摸感应电极 2沿短边的截面图为曲线状。 触摸驱动电极 3与触摸感应电极 2之间的垂直交叠面积小于触摸感应电极 2的表面积。 与图 2所示的现有触 摸驱动电极 800和触摸感应电极 900的设置方式相比, 本发明提供的触摸感 应电极 2的设置方式降低了蝕摸驱动电极 3与触摸感应电极 2之间的正向电 场和投射电场的比值。 当手指 50触碰触摸屏时, 改变所述投射电场的大小, 触摸检测装置遥过检测蝕摸点手指触碰前后电流值或电压值的变化量确定触 摸点的位置, 当正对电场与投射电场之间的比值减小时, 蝕摸驱动电极和触 摸感应电极之间的寄生电容就减小, 蝕摸点蝕碰前后电流值或电压值的变化 量就较大,可以较准确地检测出手指触碰触摸屏后投射电场信号的微弱变化, 触摸屏的触控效果更加明显。
当然, 凹陷区域也可以设置在基板中的某一绝缘层或其他功能膜层上, 但是会存在以下不足:
1、 基板上需要单独设置一层绝缘层, 蝕摸屏厚度较厚, 不利于实现轻薄 的触摸屏。
2、 在绝缘层上制作凹陷区域的工艺难度大, 容易导致触摸屏出现各种不 良现象。
具体地, 绝缘层上设置凹陷区域一般通过光刻刻蚀等工艺流程实现, 绝 缘层较薄的情况下, 容易在绝缘层上制作出穿孔 (即绝缘层上制作出上下通 透的过孔), 容易造成位于绝缘层两侧的可导电的功能膜层(例如造成触摸驱 动电极和蝕摸感应电极) 之间短路。 另外, 针对内嵌式触摸屏, 在制作绝缘 层上的凹陷区域之前已经做好了多种功能膜层, 在制作绝缘层上的凹陷区域 寸, 光刻刻蚀等工艺很容易造成器件的不良。 并且, 当绝缘层较厚时, 会影 响显示屏的光线透光率, 影响显示效果; 当绝缘层较薄时, 容易在绝缘层上 制作出穿孔(即绝缘层上制作出上下通透的过孔), 容易造成位于绝缘层两侧 的可导电的功能膜层短路。
本发明实施例提供的触摸屏, 由于基板相比较绝缘层较厚, 无需增加基 板的厚度就可以实现现有厚度的基板上制作凹陷区域。 制成的触摸屏的厚度 不会增加。 另外, 在制作凹陷区域之前, 基板上未形成任何功能膜层, 不会 因为制作凹陷区域造成蝕摸屏的不良现象, 无任何工艺难度。
参见图 7, 理论上, 基板 1 上设置的凹陷区域的深度 h越深, 蝕摸感应 电极 2和 /或触摸驱动电极 3的表面积越大, 触摸驱动电极 3与触摸感应电极 2之间的垂直交叠面积不因凹陷区域的深度 h改变而改变, 触摸驱动电极 3 与触摸感应电极 2之间的投射电场就越大, 触控效果越好。 因此, 在具体实 施过程中, 可以根据实际需求在基板上形成合适深度的凹陷区域, 从而在触 摸感应电极上形成相对应的一定深度的凹陷区域, 这里不作具体限定。
以下将结合实施例一提供的触摸屏具体说明本发明提供的基板上的凹陷 区域。 基板上的凹陷区域可以有多种设置方式。 例如凹槽状区域或孔状区域 等。 以下仅以在基板上与触摸感应电极相对应的区域设置凹槽状区域或孔状 区域为例示意性地说明本发明。
方式一: 凹陷区域为凹槽状区域。
如图 8所示, 显示了基板 1上的与蝕摸感应电极相对应的区域 (如封闭 的虚线所在区域) 设置的凹槽状区域 11。
例如在构图工艺允许的前提下, 凹槽状区域沿蝕摸感应电极的短边方向 (即图 8所示的 B- B'向) 的纵截面图为梯形状、 矩形状、 圆弧状、 或三角形 状等。 图 3至图 7所示的触摸感应电极 2沿短边的纵截面图为梯形状。 在具 体实施过程中, 凹槽状区域沿凹槽的短边的纵截面图根据构图工艺条件和触 摸感应电极的宽度确定, 这里不作限制。
图 9为图 8所示的蝕摸屏中的基板 1在 B-B'向的部分截面图, 凹槽状区 域 I I沿短边的纵截面图为三角形状。
图 10为图 8所示的蝕摸屏中的基板 1在 B- B'向的截面图, 凹槽状区域 11沿短边的纵截面图为弧状。
较佳地, 为了保证触摸感应电极两侧的投射电场的电场强度尽量一致, 保证整个蝕摸屏上的各处触控效果较一致, 所述凹槽状区域沿短边的纵截面 为等腰三角形状、 等腰梯形状, 或者为圆的一部分 (圆弧状) 等。
基板上与一条触摸感应电极对应的区域可以设置一个凹槽状区域或设置 多个相互平行的凹槽状区域, 图 3至图 10所示的一个凹槽状区域对应一条触 摸感应电极。
如图 11所示, 图 11为在基板 1的同一侧与触摸驱动电极 2和蝕摸感应 电极 3相对应的区域形成不平坦区域 11的俯视示意图;与每一触摸驱动电极 2或触摸感应电极 3相对应的区域形成多个凹陷区域。
在具体实施过程中, 基板上与一条触摸感应电极相应的区域设置的凹槽 状区域的个数可以根据蝕摸感应电极的宽度和工艺条件设置, 这里不作具体 限定。 参见图 12, 显示了基板 1上与触摸感应电极 2相对应的区域设置的孔状 区域 11。 触摸感应电极 2依照基板 1的形状形成在基板 1上, 形成对应的孔 状区域。
较佳地, 孔状区域靠近触摸感应电极的一端的孔径大于远离蝕摸感应电 极的一端的孔径, 使得孔的表面相对于基板具有一定坡度, 最大孔径略小于 触摸感应电极两个长边边缘之间的距离; 或者所述最大孔径为触摸感应电极 两个长边边缘之间的距离的 1/2或 1/3等,具体实施过程中可以根据需求和制 图工艺条件确定, 这里不予限制。
较佳地, 每一触摸感应电极所在区域对应的各孔状区域沿纵向呈一列或 者多列排列, 图 12中仅显示一列孔状区域 11。
较佳地, 基板上位于同一列上的任意相邻的两个孔状区域之间的间距相
-寸。
需要说明的是, 上述各孔状区域的排列方式、 相邻间距和孔径均为较佳 的方式, 在具体实施过程中, 根据工艺条件和触摸感应电极的宽度等因素确 定, 这里不作任何限制。
实施例二: 触摸屏为内嵌式触摸屏。
内嵌式触摸屏为触摸驱动电极和蝕摸感应电极内嵌在显示屏中的一种触 摸屏, 显示屏可以为液晶显示屏 (LCD) 或有机电致发光显示屏 (0:LED)。 实施例二以集成有实施例一提供的具有凹陷区域的蝕摸感应电极和 /或 触摸驱动电极为例进一步说明本发明。
需要说明的是, 触摸驱动电极和蝕摸感应电极可以设置在彩膜基板上, 也可以设置在阵列基板上, 或者触摸感应电极设置在彩膜基板上, 触摸驱动 电极设置在阵列基板上。
以下以触摸感应电极设置在液晶显示屏的彩膜基板上, 触摸驱动电极设 置在阵列基板上为例示意性说明本发明。
参见图 13, 蝕摸屏包括:
相对设置的第一基板 1 (对应实施例一附图中的基板 1 ) 和第二基板 5 ; 第一基板 1用于实现彩膜基板, 第二基板 5用于实现阵列基板。
位于第一基板 i和第二基板 5之间的液晶层 6;
第一基板 1上设置有不平坦区域, 该凹陷区域可以为在表面平坦的第一 基板上制作出的低于所述第一基板表面所在水平面的凹陷区域;
第一基板 i上设置有黑矩阵 14、 触摸感应电极 2和彩色树脂层 13 ; 黑矩阵 14依照第一基板 1 上的凹陷区域设置于其上形成对应的凹陷区 域;
触摸感应电极 2依照黑矩阵 14的形状设置于其上形成对应的凹陷区域; 彩色树脂层 13位于黑矩阵 14之上;
触摸感应电极 2具体位于黑矩阵 14所在的区域且沿第一方向分布。 较佳地, 参见图 13 , 触摸屏还包括:
位于彩色树脂层 13上方的平坦层 15 , 以及位于平坦层 15上方的隔垫物
16。
所述隔垫物可以为柱状、 梳状或其他形状的隔垫物, 这里不作限制。 在具体实施过程中, 触摸感应电极和黑矩阵的设置方式还可以为: 蝕摸 感应电极依照第一基板上的形状设置于其上形成对应的不平坦区域, 黑矩阵 依照触摸感应电极上的形状设置于其上形成对应的不平坦区域;
第二基板 5上设置有像素阵列 51 , 位于像素阵列 51上方沿第二方向分 布的触摸驱动电极 3 , 像素阵列 51和蝕摸驱动电极 3通过第二绝缘层 52相 绝缘; 较佳地, 第二基板 5待形成触摸驱动电极 3的区域也可以设置不平坦区 域, 触摸驱动电极 3依照第二基板 5的形状设置于其上形成对应的不平坦区 域。
所述第一方向和第二方向交叉设置, 图 13中所述第一方向为纵向, 所述 第二方向为横向。
较佳地, 隔垫物位于与黑矩阵相对应的区域。
实例二提供的第一基板上的不平坦区域与实施例一提供的基板上的不平 坦区域的设置方式相同, 不同之处在于, 触摸驱动电极和蝕摸感应电极设置 的位置不同, 实施例一与实施例二均不脱离在基板上形成不平坦区域, 蝕摸 感应电极和 /或触摸驱动电极依照基板的形状设置于其上形成对应的不平坦 区域, 这里不再赘述。
实施例二提供的触摸屏, 蝕摸感应电极可以设置在黑矩阵上, 黑矩阵设 置在基板上; 或者触摸感应电极也可以设置在黑矩阵与基板之间; 或者还可 以设置在其他绝缘层上, 只要保证触摸感应电极形成对应于基板形状的不平 坦区域即可。
较佳地, 所述触摸感应电极位于与黑矩阵相对应的区域, 不影响像素的 开口率和光透过率。
较佳地, 图 13所示的内嵌式触摸屏, 第二基板 5上设置有实现图像显示 的公共电极, 此 H寸液晶显示屏为平面方向转换 (In- Plane- Switchmg, IPS ) 模 式和高级超维场转换 ( ADvanced Super Dimension Switch, ADS )模式。 公共 电极分时间驱动, 在图像显示阶段, 为公共电极施加电压 Vcom实现图像显 示。 在触控阶段, 为公共电极施加高频电压信号实现触控。 这样的设置方式, 简化了内嵌式触摸屏的结构, 节约产品的制作成本, 提高产品的竞争力。
需要说明的是, 上述实施例二提供的内嵌式触摸屏, 蝕摸驱动电极设置 在第二基板上, 蝕摸感应电极设置在第一基板上。 在具体实施过程中, 不限 于实施例二的设置方式, 任何具有本发明所有实施例提供的基板上具有凹陷 区域或凸起状区域, 触摸感应电极依照基板的结构设置于其上形成对应的不 平坦区域, 均包括在本发明的范围之内, 这里不再赘述。
以下筒单说明制作本发明提供的具有凹陷区域的基板的实现方式。 一般地, 基板为玻璃基板或柔性塑料基板, 以玻璃基板为例说明。
方式一: 在形成玻璃基板的过程中形成位于玻璃基板上的凹陷区域。 例如利用浮法、 流孔下引法或溢流熔融法制作本发明所述凹陷区域。 浮法 (Float Technology )制作凹陷区域的具体过程: 熔融玻璃从池窑中连 续流入并漂浮在相对密度较大的锡液表面上, 在重力和表面张力的作用下, 玻璃液在锡液面上铺开、 此时利用治具在玻璃上表面形成所需要的沟道或者 过孔。 凹陷区域的具体结构 (例如凹槽状区域或孔状区域) 由治具的形状决 定, 玻璃冷却后进行退火、 得到具有凹陷区域的平板玻璃。
流孔下引法(Slot Down Draw) 制作凹陷区域的具体过程:瑢融玻璃从镀 了白金的流孔漏板槽中流出, 用流孔开孔和下引速度调整玻璃膜层的厚度, 利用治具在玻璃上表面形成所需要的沟道或者过孔, 玻璃冷却后得到具有凹 陷区域的平板玻璃。
溢流熔融法(Ovenflow Fusion Draw ) 制作凹陷区域的具体过程:将熔融 的液态玻璃用管注入到 Fusion Machine中, 当本体冷却 H寸, 会向两侧流出, 流出的瑢融玻璃会沿着耐火壁流下在壁的末端相互结合, 利用治具在玻璃上 表面形成所需要的沟道或者过孔, 形成位于玻璃基板上的不同区域的凹陷区 域。 在玻璃基板形成后制作玻璃基板上的凹陷区域。
具体地, 在玻璃基板形成后通过包括曝光、 显影、 光刻和刻蚀等构图工 艺形成玻璃基板上的凹陷区域。 可以采用干法刻蚀或湿法刻蚀形成玻璃基板 上的凹陷区域。 干法刻蚀具体可以采用高速度的气体溅射的方法刻蚀, 湿法 刻蚀可以采用酸液 (如氢氟酸 HF ) 刻蚀。
需要说明的是, 本发明附图中的各膜层的厚度和相对大小不代表实际的 厚度和相对大小, 目的在于示意性地说明本发明。 另外, 本发明实施例提到 的 "之上" "之下"等字眼仅是说明两层膜层的上下位置关系, 并不代表两个 膜层的图案相同, 也不代表两个膜层在基板上的投影重叠。 例如, 黑矩阵位 于基板之上, 彩色树脂层位于黑矩阵之上, 仅是说明基板, 黑矩阵和彩色树 脂层之间的上下相对位置, 黑矩阵和彩色树脂层的图案并没有做具体限定。 本发明实施例还提供一种显示装置, 包括本发明实施例提供的任一种方 式的触摸屏和显示面板。 当所述触摸屏为外挂式触摸屏时, 所述蝕摸屏外挂 在所述显示面板之上。 当所述蝕摸屏为内嵌式触摸屏时, 所述触摸屏集成在 所述显示面板中。
所述显示装置可以为液晶面板、 液晶显示器、 液晶电视、 有机电致发光 显示 OLED面板、 OLED显示器、 OLED电视或电子纸等显示装置。
本发明实施例通过将触摸屏中的蝕摸感应电极设置在具有不平坦区域的 基板上, 增加触摸感应电极的表面积, 提高蝕摸驱动电极与触摸感应电极之 间的投射电场。 在有限宽的黑矩阵区域设置表面积较大的蝕摸感应电极, 在 提高触摸屏的触控效果的同时不影响内嵌式蝕摸屏的开口率和光线透过率。 此外, 基板上设置不平坦区域可以降低触摸屏的厚度, 降低触摸屏的制作难 度, 从而降低触摸屏的各种不良现象发生的几率。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

1. 一种触摸屏, 其中, 包括: 相对设置的第一基板和第二基板, 分别位 于第一基板和第二基板上相互交叉设置的触摸驱动电极和触摸感应电极; 所述第一基板上待形成触摸感应电极的区域设置有不平坦区域, 所述触 摸感应电极依照所述第一基板的形状设置于所述第一基板上, 并形成与所述 第一基板的不平坦区域相对应的不平坦区域; 和 /或
所述第二基板上待形成触摸驱动电极的区域设置有不平坦区域, 所述触 摸驱动电极依照所述第二基板的形状设置于所述第二基板上, 并形成与所述 第二基板的不平坦区域对应的不平坦区域。
2. 根据权利要求 1所述的触摸屏, 其中, 所述第一基板和所述第二基板 为不同的基板;
所述第一基板上的不平坦区域为在表面平坦的第一基板上制作出的低于 所述第一基板表面所在水平面的凹陷区域;
还包括, 黑矩阵和彩色树脂层;
所述黑矩阵依照所述第一基板上的凹陷区域设置于所述第一基板上, 并 形成与所述第一基板上的凹陷区域相对应的凹陷区域;
所述触摸感应电极依照所述黑矩阵的形状设置于所述黑矩阵上, 并形成 与所述黑矩阵的凹陷区域相对应的凹陷区域;
所述彩色树脂层位于所述黑矩阵之上;
所述第二基板靠近所述第一基板的一侧设置有呈矩阵分布的多个像素单 元, 所述触摸驱动电极设置在所述像素单元之上。
3. 根据权利要求 2所述的触摸屏, 其中, 还包括:
位于所述彩色树脂层上的平坦层和位于所述平坦层上的隔垫物。
4. 根据权利要求 i所述的蝕摸屏, 其中, 所述不平坦区域为凹陷区域; 所述触摸感应电极对应的区域设置有凹陷区域时, 所述凹陷区域为沿所 述触摸感应电极延伸的方向设置的凹槽状区域或多个孔状区域; 和 Z或
所述触摸驱动电极对应的区域设置有凹陷区域时, 所述凹陷区域为沿所 述触摸驱动电极延伸的方向设置的凹槽状区域或多个孔状区域。
5. 根据权利要求 4所述的触摸屏, 其中, 与所述触摸感应电极对应的凹 槽状区域沿与触摸感应电极的短边方向的纵截面为梯形状、三角形状或弧状;
状区域沿与触摸驱动电极的短边方向的
Figure imgf000018_0001
6, 根据权利要求 5所述的触摸屏, 其中, 与所述触摸感应电极对应的凹 槽状区域, 沿与蝕摸感应电极的短边方向的纵截面为等腰梯形状、 等腰三角 与所述触摸驱动电极对应的凹槽状区域, 沿与蝕摸驱动电极的短边方向 的纵截面为等腰梯形状、 等腰三角形状或圆弧状。
7. 根据权利要求 4所述的触摸屏, 其中, 与所述触摸驱动电极或触摸感 应电极对应的多个孔状区域中任意相邻的两个孔状区域之间的距离相等。
8. 根据权利要求 2所述的触摸屏, 其中, 所述蝕摸感应电极设置在与所 述黑矩阵相对应的区域。
9. 根据权利要求 1-8中的任一项所述的触摸屏, 其中, 所述触摸驱动电 极与所述触摸感应电极之间的垂直交叠面积小于触摸感应电极的表面积。
10. 一种显示装置, 其中, 包括权利要求 1-9 中的任一权项所述的蝕摸 屏。
PCT/CN2013/085027 2013-06-13 2013-10-11 一种触摸屏及显示装置 WO2014198099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,922 US9448654B2 (en) 2013-06-13 2013-10-11 Touch screen and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310232409.1A CN103309536B (zh) 2013-06-13 2013-06-13 一种触摸屏及显示装置
CN201310232409.1 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014198099A1 true WO2014198099A1 (zh) 2014-12-18

Family

ID=49134825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085027 WO2014198099A1 (zh) 2013-06-13 2013-10-11 一种触摸屏及显示装置

Country Status (3)

Country Link
US (1) US9448654B2 (zh)
CN (1) CN103309536B (zh)
WO (1) WO2014198099A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309536B (zh) * 2013-06-13 2016-12-28 北京京东方光电科技有限公司 一种触摸屏及显示装置
CN105940360B (zh) * 2014-01-28 2019-06-07 积水保力马科技株式会社 含传感器片的外装设备和传感器片单元、以及含传感器片的外装设备的制造方法
CN104483776B (zh) * 2014-12-30 2017-10-17 京东方科技集团股份有限公司 一种彩膜基板及其制备方法、显示装置
CN105159514B (zh) * 2015-09-15 2019-03-15 深圳市华星光电技术有限公司 一种触控面板及其制备方法
CN106991361A (zh) * 2016-01-21 2017-07-28 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制备方法、电子装置
CN105629548A (zh) * 2016-01-26 2016-06-01 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN106325640A (zh) * 2016-08-29 2017-01-11 红河以恒科技集团有限公司 一种触控电极结构、触控面板及触控显示装置
CN106293246A (zh) * 2016-08-31 2017-01-04 京东方科技集团股份有限公司 一种触控屏、其制作方法及显示装置
CN106648219B (zh) 2016-11-11 2020-03-10 京东方科技集团股份有限公司 触控组件、显示面板及制造触控组件的方法
JP6815173B2 (ja) * 2016-11-17 2021-01-20 株式会社ジャパンディスプレイ タッチセンサ及び表示装置
CN108121933B (zh) * 2016-11-28 2022-02-25 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制备方法、电子装置
WO2018145255A1 (zh) * 2017-02-08 2018-08-16 深圳市飞仙智能科技有限公司 一种智能终端、电容式指纹传感器及其感测模块
US10372266B2 (en) * 2017-03-24 2019-08-06 Parade Technologies, Ltd. Systems and methods of improved water detection on a touch-sensitive display using directional scanning techniques
CN109299630B (zh) * 2017-07-24 2022-07-01 中芯国际集成电路制造(天津)有限公司 半导体指纹传感器及其制作方法
CN109299629B (zh) * 2017-07-24 2022-03-25 中芯国际集成电路制造(天津)有限公司 半导体指纹传感器及其制作方法
CN109308432B (zh) * 2017-07-27 2022-06-28 中芯国际集成电路制造(上海)有限公司 一种半导体指纹传感器及其制作方法、电子装置
CN109308433B (zh) * 2017-07-27 2022-09-20 中芯国际集成电路制造(上海)有限公司 一种半导体指纹传感器及其制作方法、电子装置
CN109711230B (zh) * 2017-10-26 2023-05-02 中芯国际集成电路制造(上海)有限公司 一种半导体指纹传感器及其制作方法、电子装置
CN108388379B (zh) 2018-03-15 2021-05-25 京东方科技集团股份有限公司 触控面板、其制作方法及显示装置
CN109375406A (zh) * 2018-11-30 2019-02-22 武汉华星光电技术有限公司 显示面板及触控显示装置
CN109669578B (zh) * 2018-12-26 2022-03-15 厦门天马微电子有限公司 显示面板及其制造方法和显示装置
US10739928B1 (en) * 2019-02-28 2020-08-11 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch substrate and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121573A (ko) * 2011-04-27 2012-11-06 주식회사 이노터치테크놀로지 투영 정전용량 터치 패널 및 그의 제조 방법
CN103064576A (zh) * 2013-02-07 2013-04-24 汕头超声显示器(二厂)有限公司 一种具有纳米银电极的电容触摸屏
CN103105970A (zh) * 2013-02-06 2013-05-15 南昌欧菲光科技有限公司 触摸屏感应模组及包含该触摸屏感应模组的显示器
CN103309536A (zh) * 2013-06-13 2013-09-18 北京京东方光电科技有限公司 一种触摸屏及显示装置
CN203299797U (zh) * 2013-06-13 2013-11-20 北京京东方光电科技有限公司 一种触摸屏及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243027B2 (en) * 2006-06-09 2012-08-14 Apple Inc. Touch screen liquid crystal display
CN101930133A (zh) * 2009-06-19 2010-12-29 台均科技(深圳)有限公司 液晶面板和液晶显示器
KR101073280B1 (ko) * 2010-04-01 2011-10-12 삼성모바일디스플레이주식회사 터치 스크린 패널 및 이를 구비한 영상표시장치
CN101943814B (zh) * 2010-07-16 2012-07-18 汕头超声显示器(二厂)有限公司 一种内嵌触控液晶显示器
JP5071563B2 (ja) * 2011-01-19 2012-11-14 ソニー株式会社 透明導電性素子、入力装置、および表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121573A (ko) * 2011-04-27 2012-11-06 주식회사 이노터치테크놀로지 투영 정전용량 터치 패널 및 그의 제조 방법
CN103105970A (zh) * 2013-02-06 2013-05-15 南昌欧菲光科技有限公司 触摸屏感应模组及包含该触摸屏感应模组的显示器
CN103064576A (zh) * 2013-02-07 2013-04-24 汕头超声显示器(二厂)有限公司 一种具有纳米银电极的电容触摸屏
CN103309536A (zh) * 2013-06-13 2013-09-18 北京京东方光电科技有限公司 一种触摸屏及显示装置
CN203299797U (zh) * 2013-06-13 2013-11-20 北京京东方光电科技有限公司 一种触摸屏及显示装置

Also Published As

Publication number Publication date
US20150253912A1 (en) 2015-09-10
CN103309536A (zh) 2013-09-18
US9448654B2 (en) 2016-09-20
CN103309536B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2014198099A1 (zh) 一种触摸屏及显示装置
WO2014183452A1 (zh) 一种触摸屏及显示装置
JP6124997B2 (ja) 3dタッチ液晶レンズ格子、その製造方法及び3dタッチ表示装置
US10222919B2 (en) Capacitive touch screen and single layer wiring electrode array
KR101363151B1 (ko) 터치스크린용 투명 회로 기판, 그 제조 방법 및 이를 포함하는 터치스크린
WO2015035716A1 (zh) 触摸屏及其制作方法、显示装置
TWI449088B (zh) 液晶顯示裝置及其製造方法
WO2017071415A1 (zh) 触控结构、触控屏及显示装置
WO2017004986A1 (zh) 触控显示面板及其制作方法、触控显示装置
WO2016041271A1 (zh) 阵列基板、内嵌式触摸屏和触控显示装置
WO2018024133A1 (zh) 一种触控屏及其制作方法、外挂式触摸显示装置
WO2014190672A1 (zh) 阵列基板、触控面板及显示装置
WO2016086648A1 (zh) 触摸屏及其制作方法及显示装置
WO2019024564A1 (zh) 触控基板及其制作方法、触控显示装置
WO2015180288A1 (zh) 内嵌式触控面板及显示装置
WO2021249098A1 (zh) 显示基板及其制备方法、显示装置
TWI538141B (zh) 觸控螢幕與導電線路的製作方法
WO2019169882A1 (zh) 触控基板及其制造方法和显示装置
TW201913327A (zh) 觸控面板
US20160253026A1 (en) Touch Panel, Method of Fabricating the Same and Touch Display Device
JP2019510246A (ja) アレイ基板及び表示装置
US9798426B2 (en) Touch panel and method of manufacturing thereof
WO2014183393A1 (zh) 触摸定位结构及其制造方法、触摸屏和显示装置
WO2015100934A1 (zh) 液晶透镜、其制作方法以及显示装置
WO2016184256A1 (zh) 内嵌式触摸屏、显示装置及制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235922

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886747

Country of ref document: EP

Kind code of ref document: A1