WO2014196688A1 - 저저항 금속층을 가지는 후면전극과 이를 이용한 태양전지 및 이들을 제조하는 방법 - Google Patents

저저항 금속층을 가지는 후면전극과 이를 이용한 태양전지 및 이들을 제조하는 방법 Download PDF

Info

Publication number
WO2014196688A1
WO2014196688A1 PCT/KR2013/007092 KR2013007092W WO2014196688A1 WO 2014196688 A1 WO2014196688 A1 WO 2014196688A1 KR 2013007092 W KR2013007092 W KR 2013007092W WO 2014196688 A1 WO2014196688 A1 WO 2014196688A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resistance metal
low resistance
solar cell
back electrode
Prior art date
Application number
PCT/KR2013/007092
Other languages
English (en)
French (fr)
Inventor
어영주
조준식
박주형
윤경훈
안세진
곽지혜
윤재호
조아라
신기식
안승규
유진수
박상현
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014196688A1 publication Critical patent/WO2014196688A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a method of manufacturing the improved back electrode, and more particularly, to a technique for improving the resistance performance by using a back electrode as a multilayer structure.
  • Solar cells are devices that convert light energy into electrical energy, and are attracting great attention as environmentally friendly future energy sources.
  • the solar cell produces electricity using the properties of the semiconductor.
  • the solar cell has a PN junction structure in which a P (positive) type semiconductor and an N (negative) type semiconductor are bonded to each other. Holes and electrons are generated in the semiconductor by the energy of the sunlight, and the holes move toward the P-type semiconductor by the electric field generated at the PN junction, and the electrons are the N-type semiconductor. Move toward the side, creating a potential.
  • the solar cell can be classified into a substrate type solar cell and a thin film type solar cell.
  • a substrate type solar cell is a solar cell manufactured by using a semiconductor material such as silicon as a substrate, and a thin film type solar cell is a thin film on a substrate such as glass.
  • the solar cell is manufactured by forming a semiconductor layer in the form of. Recently, as shown in FIG. 1, the efficiency of the solar cell is improved through the development of a solar cell using the CIGS light absorbing layer.
  • the ratio of sunlight absorbed by the light absorption layer must be increased.
  • the manufacturing cost can be lowered by using the light absorption layer of the thin film as compared to the substrate-type solar cell, but there is a problem that the light absorption rate is lowered.
  • the scattering of sunlight is generated by bumping with the unevenness, thereby increasing the ratio of sunlight absorbed by the light absorbing layer. That is, the light path in the light absorbing layer is lengthened by the light scattered and diffused, and even if the light absorbing layer is formed into a thin film, the probability of being absorbed by the light absorbing layer is increased, thereby increasing the efficiency of the solar cell.
  • CIGS light absorbing layer-based solar cells are manufactured by sequentially forming a backcontact such as molybdenum and a CIGS light absorbing layer on a substrate such as glass.
  • the manufacturing method of such a rear electrode is partially disclosed in US Patent No. 6,258,620.
  • the patent discloses a method for producing molybdenum into a bilayer structure by a sputtering deposition process, in which the first step is to form a first molybdenum layer exhibiting high adhesion to the substrate under relatively high argon pressure, In a second step, a low resistivity second molybdenum layer is formed on the first layer under relatively low argon pressure.
  • the patent only suggests the formation of a conductive layer of a bi-layer structure, and it has been confirmed that the conductive layer produced by the patent does not exhibit a sufficiently low specific resistance to a desired degree.
  • the high density between the metal atoms is to cause the diffusion of sodium supplied from the substrate to suppress the effective process concentration acting as an important factor for the performance of the solar cell.
  • Patent Document 1 Korean Patent Publication No. 10-0838167 relates to a method for manufacturing a back electrode of a solar cell having a CI (G) S (Cupper-Indium-Gallium-Selenide) light absorbing layer.
  • the present invention provides a method of improving the characteristics of an electrode by simultaneously changing the pressure of a reaction gas for plasma generation during a sputtering process and simultaneously applying an RF bias to a substrate during DC sputtering.
  • a method of manufacturing a back contact of a solar cell including a cupper-indium-gallium-selenide (CI (S)) light absorbing layer comprising: (a) DC sputtering under a reaction gas at a pressure of 5 to 15 mTorr; Forming a first conductive layer on the substrate by; And (b) forming a second conductive layer on the first conductive layer by DC sputtering while applying an RF bias on the substrate under a reaction gas at a pressure of 1 to 5 mTorr in a range lower than the pressure of step (a).
  • CI (S) cupper-indium-gallium-selenide
  • the present invention by changing the pressure of the reaction gas supplied in the sputtering process, it is possible to manufacture the back electrode having excellent adhesion between the electrode and the glass substrate and easy sodium diffusion, and also RF to the substrate during DC sputtering By simultaneously applying the bias, it is possible to manufacture a back electrode having a relatively low resistivity electrode characteristic.
  • the present invention provides a method of manufacturing a solar cell back electrode
  • the molybdenum of the molybdenum (Mo) layer to form molybdenum selenide by selenium (Se) of the CIGS light absorption layer to improve the contact resistance of the rear electrode, the low-resistance metal layer of the bottom of the molybdenum layer The effect is to lower the overall sheet resistance.
  • FIG. 1 is a cross-sectional view of the main portion of the solar cell using a typical CIGS light absorption layer.
  • Figure 2 is an exploded perspective view of the main portion extract showing the rear electrode 200 and the solar cell of the present invention.
  • Figure 3 is an excerpt sectional view showing the back electrode 200 and the solar cell of the present invention.
  • MoSe molybdenum selenide
  • FIG. 5 is a flowchart illustrating a method of manufacturing the solar cell of the present invention.
  • Figure 2 is an exploded perspective view of the main portion extract showing the back electrode and the solar cell of the present invention.
  • 3 is a cross-sectional view of main parts showing the rear electrode 200 and the solar cell of the present invention.
  • the present invention provides a method for manufacturing a solar cell back electrode
  • the low resistance metal is silver (Ag), titanium (Ti), copper (Cu), It is preferable to contain at least any one of aluminum (Al), gold (Au), and zinc (Zn).
  • the low resistance metal layer 210 is sputtered metal, cathode arc deposition, vapor Deposition, Electron Beam Deposition, Chemical Vapor Deposition, Atomic Layer Deposition, Electrochemical Deposition, Spray Coating, Doctor Blade Coating, Screen Printing, Inkjet Coating, Thermal Deposition, Electron Beam Deposition, Electrodeposition, Plating, Sputtering, Thermal Deposition, Electron Deposition, Electrodeposition And forming by depositing using at least one of the plating methods.
  • the low resistance metal layer 210 may have a thickness of 100 nm to 10 ⁇ m.
  • the molybdenum (Mo) layer 220 is sputtered metal, cathode arc deposition, vapor deposition, electron beam Vapor deposition, chemical vapor deposition, atomic layer deposition, electrochemical deposition, spray coating, doctor blade coating, screen printing, inkjet coating, thermal deposition, electron beam deposition, electrodeposition, plating, sputtering, thermal deposition, electron beam deposition, electrodeposition, plating It is formed by depositing using at least one method.
  • the molybdenum (Mo) layer 220 is preferably 100nm ⁇ 5 ⁇ m in thickness.
  • the molybdenum layer has a high resistance value of molybdenum, but as shown in FIG. 4, since the molybdenum is formed to reduce contact resistance by forming selenium (Se) and molybdenum selenide of the CIGS layer, the molybdenum layer is thinner than the low-resistance metal layer. It is formed to have a thickness.
  • the molybdenum (M0) layer 220 is not limited to a single layer may be composed of multiple layers.
  • a molybdenum lower layer doped with sodium (Na) for easy sodium (Na) diffusion and a molybdenum upper layer composed of molybdenum alone may be formed, as in Korean Patent Publication No. 10-0838167, 5 to 15 forming a first conductive layer on the substrate by DC sputtering under a reaction gas at a mTorr pressure; And forming a second conductive layer on the first conductive layer by DC sputtering while applying an RF bias on the substrate under a reaction gas at a pressure of 1 to 5 mTorr in a range lower than the pressure of the process. It is.
  • the thickness of each layer is preferably equally divided by the thickness of the entire molybdenum layer 220.
  • the present invention further provides a method of manufacturing a solar cell using the back electrode.
  • FIG. 5 is a flowchart illustrating a method of manufacturing the solar cell of the present invention. As shown in Figure 5, the solar cell manufacturing method of the present invention,
  • the step (s200) of forming the back electrode layer 200 on the substrate may include a method of manufacturing the back electrode described above.
  • Forming the CIGS light absorbing layer 300 including copper, indium, gallium, and selenium on the back electrode layer 200 (s300) may include coevaporation, sputtering, electrodeposition, Any one of organometallic chemical vapor deposition (MOCVD), molecular beam growth (MBE), screen printing and particle deposition can be applied.
  • MOCVD organometallic chemical vapor deposition
  • MBE molecular beam growth
  • molybdenum selenide is formed on the interface between the molybdenum layer 220 and the light absorbing layer 300. Since the molybdenum selenide is formed, the contact resistance is reduced and the electron-hole recombination is reduced.
  • Forming a buffer layer 400 including at least one of CdS, ZnS, InOH on the light absorption layer 300 (s400) is a solution growth method (CBD), electrodeposition (Electrodeposition), coevaporation (Coevaporation), Sputtering, Atomic Layer Epitaxy, Atomic Layer Deposition, Chemical Vapor Deposition (CVD), Organic Metal Chemical Vapor Deposition (MOCVD), Molecular Line Growth (MBE), Spray Pyrolysis It is preferable to apply at least one of the method (Spray pyrolysis), ion layer gas reaction (ILGAR), pulsed laser deposition (Pulsed Laser Deposition).
  • the transparent conductive layer 500 may be sputtered, RF sputtered, DC sputtering, reactive sputtering.
  • the front electrode 600 (grid electrode) and the anti-reflection film 700 may be provided on the transparent conductive layer 500.
  • the molybdenum of the molybdenum (Mo) layer to form molybdenum selenide by selenium (Se) of the CIGS light absorption layer to improve the contact resistance of the rear electrode, the low-resistance metal layer of the bottom of the molybdenum layer The effect is to lower the overall sheet resistance.
  • the present invention has high industrial applicability because it is possible to increase the photoelectric conversion efficiency of the solar cell by reducing the specific resistance of the back electrode and improving the contact resistance to reduce recombination of electrons and holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 후면전극이 다중층으로 구성된 CIGS 박막 태양전지에 관한 것으로, 태양전지의 기판(100)위에 형성되는 후면전극(200)에 있어서, 태양전지 후면전극의 제조방법에 있어서, (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000), (ii) 상기 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000) 를 포함하는 것을 특징으로 하여 태양전지의 광전변환효율을 높이는 효과가 있는 것임.

Description

저저항 금속층을 가지는 후면전극과 이를 이용한 태양전지 및 이들을 제조하는 방법
본 발명은 후면전극을 개량한 태양전지 및 그 제조방법에 관한 것으로서, 특히 후면전극을 다중층 구조로 하여 저항성능을 개선하는 기술에 관한 것이다.
태양전지는 빛 에너지를 전기 에너지로 변환시키는 장치로서, 친환경적인 미래 에너지원으로 크게 주목받고 있다. 태양전지는 반도체의 성질을 이용하여 전기를 생산하는데, 구체적으로 P(positive)형 반도체와 N(negative)형 반도체를 접합시킨 PN접합 구조를 하고 있으며, 이러한 태양전지에 태양광이 입사되면, 입사된 태양광이 가지고 있는 에너지에 의해 상기 반도체 내에서 정공(hole) 및 전자(electron)가 발생하고, 이때, PN접합에서 발생한 전기장에 의해서 상기 정공은 P형 반도체 쪽으로 이동하고 상기 전자는 N형 반도체쪽으로 이동하게 되어 전위가 발생된다.
태양전지는 기판형 태양전지와 박막형 태양전지로 구분할 수 있는데, 기판형 태양전지는 실리콘과 같은 반도체물질 자체를 기판으로 이용하여 태양전지를 제조한 것이고, 박막형 태양전지는 유리 등과 같은 기판 상에 박막의 형태로 반도체층을 형성하여 태양전지를 제조한 것이다. 최근에는 도 1에 도시된 바와 같이, CIGS 광흡수층을 이용한 태양전지의 개발을 통해 효율 향상을 도모하고 있다.
태양전지의 광전변환 효율을 높이기 위해서는 광흡수층에 흡수되는 태양광의 비율을 높여야 한다. 박막형 태양전지의 경우, 기판형 태양전지에 대비하여 박막의 광흡수층을 사용함에 따라 제조단가를 낮출 수 있으나 광흡수율이 떨어지는 문제점이 있다. 이와 같은 광흡수율 저하를 극복하기 위한 방안으로, 태양전지의 단위기능막에 표면요철을 부여하는 방법이 있다.
표면요철구조가 형성된 상태에서 태양광이 입사하면 요철과 부딪혀 태양광의 산란이 발생되어 광흡수층에서 흡수되는 태양광의 비율을 높일 수 있게 된다. 즉, 산란되어 확산되는 빛에 의해 광흡수층 내에서의 광경로가 길어지게 되고, 광흡수층을 박막으로 만들더라도 광흡수층에 흡수될 확률이 높아지게 되어 태양전지의 효율을 높이는 것이 가능하다.
CIGS 광흡수층 기반의 태양전지는 유리 등의 기판(substrate)에 몰리브덴 등의 후면전극(backcontact)과 CIGS 광흡수층을 순차적으로 형성하여 제조하게 된다. 이러한 후면전극의 제조방법은 미국 등록특허 제6,258,620호에 일부 개시되어 있다. 상기 특허에는 몰리브덴을 스퍼터링 증착 공정에 의해 2층(bilayer)구조로 제조하는 방법이 개시되어 있는 바, 첫 번째 단계에서 상대적으로 높은 아르곤 압력하에 기판에높은 접착력을 나타내는 제 1 몰리브덴 층을 형성하고, 두 번째 단계에서 상대적으로 낮은 아르곤 압력하에 상기 제 1 층 상에 낮은 비저항의 제 2 몰리브덴 층을 형성한다. 그러나, 상기 특허는 2층(bi-layer) 구조의 도전층 형성에 대한 내용만을 제시하고 있을 뿐이고, 상기특허에 의해 제조되는 도전층은 소망하는 정도의 충분히 낮은 비저항을 발휘하지 못하는 것으로 확인되었다. 또한, 상기 특허에 따르면, 금속 원자들간의 높은 밀도는 기판으로부터 공급되는 나트륨의 확산을 억제하여 태양전지의 성능에 중요한 요소로 작용하는 유효공정농도를 저하시키는 원인이 된다.
(특허문헌 1) 대한민국 등록특허공보 등록번호 제 10-0838167는 CI(G)S(Cupper-Indium-Gallium-Selenide) 광흡수층을 가지는 태양전지의 후면전극의 제조방법에 관한 것으로, 후면전극 형성을 위한 스퍼터링 공정시 플라즈마 생성을 위한 반응 가스의 압력을 변화시켜진행하고, DC 스퍼터링시 기판에 RF 바이어스를 동시에 인가하여 전극의 특성을 향상시키는 방법을 제공한다. 즉, CI(G)S(Cupper-Indium-Gallium-Selenide) 광흡수층을 포함하는 태양전지의 후면전극(back contact)을 제조하는 방법으로서, (a) 5 ~ 15 mTorr 압력의 반응 가스하에서 DC 스퍼터링에 의해 기판 상에 제 1 도전층을 형성하는 과정; 및 (b) 상기 과정(a)의 압력보다 낮은 범위에서 1 ~ 5 mTorr 압력의 반응 가스하에서 상기 기판 상에 RF 바이어스를 인가하면서 DC 스퍼터링에 의해 상기 제 1 도전층 상에 제 2 도전층을 형성하는 과정을 제공한다. 상기의 발명에 따르면, 상기 스퍼터링 과정에서 공급되는 반응 가스의 압력을 변화시킴으로써 전극과 유리기판 사이의 접착성이 뛰어나면서도 나트륨 확산이 용이한 후면전극의 제조가 가능하며, 또한 DC 스퍼터링시 기판에 RF 바이어스를 동시에 인가함으로써 상대적으로 낮은 비저항의 전극 특성을 갖는 후면전극의 제조가 가능하다. 그러나, 후면전극의 재질을 몰리브덴이외의 재질을 제시하지 아니한 만큼 비저항 개선에 있어서 한계가 있었다.
태양전지의 광전변환 효율을 높이기 위해서는 광흡수층에 흡수되는 태양광의 비율을 높이는 것이 중요하지만 후면전극의 저항을 감소시키는 것도 간과할 수 없다. 즉 생성된 전류의 손실을 최소화하며, 후면전극의 비저항을 감소시키는 기술이 필요한 것이다.
이에, 본 발명은 태양전지 후면전극의 제조방법에 있어서,
(i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000);
(ii) 상기 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000);
를 포함시킴으로써 상기와 같은 문제를 해결하고자 한다.
본 발명에 따르면, 몰리브덴(Mo)층의 몰리브덴은 상기 CIGS 광흡수층의 셀레늄(Se)과 셀렌화 반응으로 셀렌화몰리브덴을 형성하여 후면전극의 접촉저항을 개선하며, 몰리브덴층 저부의 저저항금속층이 전체적인 면저항값을 낮추어 주는 효과가 있는 것이다.
결론적으로 후면전극의 비저항을 감소시키고, 접촉저항을 개선하여 전자와 정공의 재결합을 줄임으로써 태양전지의 광전변환효율을 높이는 것이 가능하게 된다.
도 1은 일반적인 CIGS 광흡수층을 이용한 태양전지의 요부발췌 단면도.
도 2는 본 발명의 후면전극(200)과 태양전지를 도시한 요부 발췌 분해사시도.
도 3은 본 발명의 후면전극(200)과 태양전지를 도시한 요부발췌 단면도.
도 4는 본 발명의 후면전극(200)과 광흡수층(300) 경계면에서 셀렌화몰리브덴(MoSe)가 형성되는 것을 설명하기 위한 설명도.
도 5는 본 발명의 태양전지를 제조하는 방법을 설명하는 순서도.
<부호의 설명>
100: 기판
200: 후면전극
210: 저저항금속층
200: 몰리브덴(Mo)층
300: 광흡수층
400: 버퍼층
500: 투명전도층
600: 전면전극층
700: 반사방지막
본 발명인 요철구조의 이중후면전극을 갖는 태양전지의 제조방법의 일실시예를 하기 첨부된 도면을 참조하여 설명하도록 한다.
도 2는 본 발명인 후면전극과 태양전지를 도시한 요부 발췌 분해사시도이고. 도 3은 본 발명의 후면전극(200)과 태양전지를 도시한 요부발췌 단면도이다.
본 발명은 태양전지 후면전극의 제조방법에 있어서,
(i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000);
(ii) 상기 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000);
를 포함하는 것을 특징으로 한다.
상기 (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000)에서의 저저항 금속은 은(Ag), 티타늄(Ti), 구리(Cu), 알루미늄(Al), 금(Au), 아연(Zn) 중에서 적어도 어느 하나 이상을 포함하는 것이 바람직하다.
또한, 상기 (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000)에서 저저항 금속층(210)은 저저항 금속을 스퍼터링, 음극아크증착, 증기증착, 전자빔증착, 화학기상증착, 원자층증착, 전기화학적증착, 분사코팅, 닥터블레이드코팅, 스크린 프린트, 잉크젯 코팅, 열증착법, 전자선증착법, 전착법, 도금법스퍼터링, 열증착법, 전자선증착법, 전착법, 도금법 중에서 적어도 어느 하나의 방법을 이용하여 증착시켜 형성한다.
상기 증착과정을 통해 저저항 금속층(210)은 그 두께가 100nm~10μm로 형성되는 것이 바람직하다.
상기 (ii) 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000)에서 몰리브덴(Mo)층(220)은 저저항 금속을 스퍼터링, 음극아크증착, 증기증착, 전자빔증착, 화학기상증착, 원자층증착, 전기화학적증착, 분사코팅, 닥터블레이드코팅, 스크린 프린트, 잉크젯 코팅, 열증착법, 전자선증착법, 전착법, 도금법스퍼터링, 열증착법, 전자선증착법, 전착법, 도금법 중에서 적어도 어느 하나의 방법을 이용하여 증착시켜 형성한다.
상기 몰리브덴(Mo)층(220)의 두께는 100nm~5μm인 것이 바람직하다. 상기 몰르브덴층은 몰리브덴이 기본적인 저항수치는 높으나, 도 4에 도시된 바와 같이, CIGS 층의 셀레늄(Se)과 셀렌화몰리브덴을 형성시켜 접촉저항을 감소시키기 위한 것이므로, 상기 저저항 금속층에 비해 얇은 두께를 갖도록 형성시킨다.
또한, 상기 몰리브덴(M0)층(220)은 단일층에 한정되지 아니하며 다중층으로 구성될 수 있다. 예로서 용이한 나트륨(Na) 확산을 위하여 나트륨(Na)이 도핑된 몰리브덴 하부층과, 몰리브덴으로만 구성된 몰리브덴 상부층으로 구성시킬 수 있으며, 대한민국 등록특허공보 등록번호 제 10-0838167와 같이, 5 ~ 15 mTorr 압력의 반응 가스하에서 DC 스퍼터링에 의해 기판 상에 제 1 도전층을 형성하는 과정; 및 상기 과정의 압력보다 낮은 범위에서 1 ~ 5 mTorr 압력의 반응 가스하에서 상기 기판 상에 RF 바이어스를 인가하면서 DC 스퍼터링에 의해 상기 제 1 도전층 상에 제 2 도전층을 형성시키는 방법을 적용할 수도 있는 것이다. 이러한 다중층의 구조를 갖는 경우 각 층의 두께는 전체 몰리브덴층(220)의 두께를 균등분할하는 것이 바람직하다.
본 발명은 이에 나아가 상기의 후면전극을 이용한 태양전지의 제조방법을 제공한다.
도 5는 본 발명의 태양전지를 제조하는 방법을 설명하는 순서도이다. 도 5에 도시된 바와 같이, 본 발명의 태양전지 제조방법은,
*(i) 기판(100)을 준비하는 단계(s100);
(ii) 상기 기판 위에 후면전극층(200)을 형성하는 단계(s200);
(iii) 후면전극층(200) 위에 구리, 인듐, 갈륨, 셀레늄을 포함하여 구성되는 CIGS 광흡수층(300)을 형성하는 단계(s300);
(iv) 상기 광흡수층(300) 위에 CdS, ZnS, InOH 중에서 적어도 어느 하나를 포함하는 버퍼층(400)을 형성하는 단계(s400);
*(v) 상기 버퍼층(400) 위에 산화아연, 산화갈륨, 산화알루미늄, 산화인듐, 산화납, 산화구리, 산화티탄, 산화주석, 산화철, 이산화주석, 인듐주석산화물 및 이들 중 2 이상의 물질의 산화물 중에서 적어도 어느 하나를 포함하는 투명전도층(500)을 형성하는 단계(s500);
를 포함하는 것에 있어서,
상기, 기판 위에 후면전극층(200)을 형성하는 단계(s200)는 상기 기 서술한 후면전극을 제조하는 방법을 포함하는 것을 특징으로 한다.
후면전극층(200) 위에 구리, 인듐, 갈륨, 셀레늄을 포함하여 구성되는 CIGS 광흡수층(300)을 형성하는 단계(s300)는 동시증착법(Coevaporation), 스퍼터링법(Sputtering), 전착법(Electrodeposition), 유기금속화학기상증착법(MOCVD), 분자선성장법(MBE), 스크린프린팅법(Screen printing), 입자증착법(Particle deposition) 중에서 어느 하나의 방법을 적용할 수 있다.
상기 CIGS 광흡수층(300)이 후면전극층(200)위에 형성됨으로써 셀렌화 공정을 수행 후, 상기 몰리브덴층(220)과 상기 광흡수층(300)의 경계면에 셀렌화몰리브덴이 형성 된다. 상기의 셀렌화몰리브덴 등이 형성됨으로써 접촉저항이 줄어들고 전자-홀 재결합을 줄여주는 장점이 있다.
상기 광흡수층(300) 위에 CdS, ZnS, InOH 중에서 적어도 어느 하나를 포함하는 버퍼층(400)을 형성하는 단계(s400)는 용액성장법(CBD), 전착법(Electrodeposition), 동시증착법(Coevaporation), 스퍼터링법(Sputtering), 원자층성장법(Atomic Layer Epitaxy), 원자층증착법(Atomic Layer Deposition), 화학기상증착법(CVD), 유기금속화학기상증착법(MOCVD), 분자선성장법(MBE), 분무열분해법(Spray pyrolysis), ILGAR(Ion Layer Gas Reaction), 레이저증착법(Pulsed Laser Deposition)중에서 적어도 어느 하나의 방법을 적용하는 것이 바람직하다.
상기 버퍼층(400) 위에 산화아연, 산화갈륨, 산화알루미늄, 산화인듐, 산화납, 산화구리, 산화티탄, 산화주석, 산화철, 이산화주석, 인듐주석산화물 및 이들 중 2 이상의 물질의 산화물(예; 주석아연산화물(Zinc Tin Oxide)) 중에서 적어도 어느 하나를 포함하는 투명전도층(500)을 형성하는 단계(s500)에서 상기 투명전도층(500)은 스퍼터링법, RF 스퍼터링법, DC 스퍼터링법, 반응성 스퍼터링법, 증발증착법(Evaporation), 전자선증착법(E-beam evaporation), 유기금속화학증착법(MOCVD), 원자층성장법(Atomic Layer Epitaxy), 분자선성장법(MBE), 전착법(Electrodeposition) 중에서 어느 하나의 방법으로 증착되도록 하는 것이 바람직하다. 또한 상기 투명전도층(500) 위에 전면전극(600)(그리드전극)과 반사방지막(700)이 설치될 수 있다.
본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시예에 불과하며, 당업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.
본 발명에 따르면, 몰리브덴(Mo)층의 몰리브덴은 상기 CIGS 광흡수층의 셀레늄(Se)과 셀렌화 반응으로 셀렌화몰리브덴을 형성하여 후면전극의 접촉저항을 개선하며, 몰리브덴층 저부의 저저항금속층이 전체적인 면저항값을 낮추어 주는 효과가 있는 것이다.
즉, 후면전극의 비저항을 감소시키고, 접촉저항을 개선하여 전자와 정공의 재결합을 줄임으로써 태양전지의 광전변환효율을 높이는 것이 가능하기 때문에, 본 발명은 산업상 이용가능성이 높다.

Claims (13)

  1. 태양전지 후면전극의 제조방법에 있어서,
    (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000);
    (ii) 상기 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000);
    를 포함하는 것을 특징으로 하는 저저항 금속층을 가지는 후면전극의 제조방법.
  2. 제 1항에 있어서, 상기 (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000)에서의 저저항 금속은 은(Ag), 티타늄(Ti), 구리(Cu), 알루미늄(Al), 금(Au), 아연(Zn) 중에서 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 저저항 금속층을 가지는 후면전극의 제조방법.
  3. 제 1항에 있어서,
    상기 (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000)의 저저항 금속층(210)은 스퍼터링, 음극아크증착, 증기증착, 전자빔증착, 화학기상증착, 원자층증착, 전기화학적증착, 분사코팅, 닥터블레이드코팅, 스크린 프린트, 잉크젯 코팅, 열증착법, 전자선증착법, 전착법, 도금법스퍼터링, 열증착법, 전자선증착법, 전착법, 도금법 중에서 적어도 어느 하나의 방법을 이용하여 증착시켜 형성하는 것을 특징으로 하는 저저항 금속층을 가지는 후면전극의 제조방법.
  4. 제 1항에 있어서,
    상기 (i) 태양전지의 기판(100) 위에 저저항 금속으로 저저항 금속층(210)을 형성시키는 단계(s1000)의 저저항 금속층(210)은 그 두께가 100nm~10μm인 것을 특징으로 하는 저저항 금속층을 가지는 후면전극의 제조방법.
  5. 제 1항에 있어서,
    상기 (ii) 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000)의 몰리브덴(Mo)층(220)은 저저항 금속을 스퍼터링, 음극아크증착, 증기증착, 전자빔증착, 화학기상증착, 원자층증착, 전기화학적증착, 분사코팅, 닥터블레이드코팅, 스크린 프린트, 잉크젯 코팅, 열증착법, 전자선증착법, 전착법, 도금법스퍼터링, 열증착법, 전자선증착법, 전착법, 도금법 중에서 적어도 어느 하나의 방법을 이용하여 증착시켜 형성하는 것을 특징으로 하는 저저항 금속층을 가지는 후면전극의 제조방법.
  6. 제 1항에 있어서,
    (ii) 상기 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000)에서 상기 몰리브덴(Mo)층(220)의 두께가 100nm~5μm인 것을 특징으로 하는 저저항 금속층을 가지는 후면전극의 제조방법.
  7. 제 1항에 있어서,
    (ii) 상기 저저항 금속층(210) 위에 몰리브덴(Mo)층(220)을 형성시키는 단계(s2000)에서, 상기 몰리브덴(Mo)층(220)은 나트륨(Na)이 도핑된 몰리브덴 하부층(221)과, 몰리브덴으로만 구성된 몰리브덴 상부층(222)으로 구성시키는 것을 특징으로 하는 저저항 금속층을 가지는 후면전극의 제조방법.
  8. 태양전지의 제조방법에 있어서,
    (i) 기판(100)을 준비하는 단계(s100);
    (ii) 상기 기판 위에 후면전극층(200)을 형성하는 단계(s200);
    (iii) 후면전극층(200) 위에 구리, 인듐, 갈륨, 셀레늄을 포함하여 구성되는 CIGS 광흡수층(300)을 형성하는 단계(s300);
    (iv) 상기 광흡수층(300) 위에 CdS, ZnS, InOH 중에서 적어도 어느 하나를 포함하는 버퍼층(400)을 형성하는 단계(s400);
    (v) 상기 버퍼층(400) 위에 산화아연, 산화갈륨, 산화알루미늄, 산화인듐, 산화납, 산화구리, 산화티탄, 산화주석, 산화철, 이산화주석, 인듐주석산화물 및 이들 중 2 이상의 물질의 산화물 중에서 적어도 어느 하나를 포함하는 투명전도층(500)을 형성하는 단계(s500);
    를 포함하는 것에 있어서,
    상기 (ii) 상기 기판 위에 후면전극층(200)을 형성하는 단계(s200)는 제 1항 내지 제 6항 중 어느 한 항의 방법을 포함하는 것을 특징으로 하는 태양전지의 제조방법.
  9. 태양전지의 기판(100)위에 형성되는 후면전극(200)에 있어서,
    상기 후면전극(200)은 저저항금속층(210)과 몰리브덴층(220)의 다중층으로 구성된 것을 특징으로 하는 저저항 금속층을 가지는 태양전지의 후면전극.
  10. 제 9항에 있어서 상기 저저항 금속층(210)의 저저항 금속은 은(Ag), 티타늄(Ti), 구리(Cu), 알루미늄(Al), 금(Au), 아연(Zn) 중에서 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 저저항 금속층을 가지는 태양전지의 후면전극.
  11. 제 9항에 있어서, 상기 저저항 금속층(210)의 저저항 금속은 그 두께가 100nm~10μm인 것을 특징으로 하는 저저항 금속층을 가지는 태양전지의 후면전극.
  12. 제 9항에 있어서, 상기 몰리브덴층(220)의 두께가 100nm~10μm인 것을 특징으로 하는 저저항 금속층을 가지는 태양전지의 후면전극.
  13. 태양전지에 있어서,
    기판(100)과, 상기 기판(100) 위에 형성된 후면전극층(200)과, 상기 후면전극층(200) 위에 형성되는 광흡수층(300)과, 상기 광흡수층(300) 위에 형성되는 버퍼층(400)과, 상기 버퍼층(400) 위에 형성되는 투명전도층(500)을 포함하는 것에 있어서,
    상기 후면전극층(200)은 제 9항 내지 제 12항 중 어느 한 항의 후면전극으로 형성되며;
    상기 광흡수층(300)은 구리, 인듐, 갈륨, 셀레늄을 포함하여 구성되는 CIGS 광흡수층인 것을 특징으로 하는 태양전지.
PCT/KR2013/007092 2013-06-04 2013-08-06 저저항 금속층을 가지는 후면전극과 이를 이용한 태양전지 및 이들을 제조하는 방법 WO2014196688A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130063854A KR101480394B1 (ko) 2013-06-04 2013-06-04 저저항 금속층을 가지는 후면전극과 이를 이용한 태양전지 및 이들을 제조하는 방법
KR10-2013-0063854 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196688A1 true WO2014196688A1 (ko) 2014-12-11

Family

ID=52008309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007092 WO2014196688A1 (ko) 2013-06-04 2013-08-06 저저항 금속층을 가지는 후면전극과 이를 이용한 태양전지 및 이들을 제조하는 방법

Country Status (2)

Country Link
KR (1) KR101480394B1 (ko)
WO (1) WO2014196688A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212336A (ja) * 2009-03-09 2010-09-24 Fujifilm Corp 光電変換素子とその製造方法、及び太陽電池
KR20110009133A (ko) * 2008-05-19 2011-01-27 쇼와쉘세키유가부시키가이샤 Cis계 박막태양전지의 제조방법
JP2011155146A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 太陽電池およびその製造方法
KR20120054127A (ko) * 2010-11-19 2012-05-30 한국세라믹기술원 후막형 cigs 태양전지 및 그 제조방법
KR20130045516A (ko) * 2011-10-26 2013-05-06 한국과학기술연구원 박막태양전지 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110009133A (ko) * 2008-05-19 2011-01-27 쇼와쉘세키유가부시키가이샤 Cis계 박막태양전지의 제조방법
JP2010212336A (ja) * 2009-03-09 2010-09-24 Fujifilm Corp 光電変換素子とその製造方法、及び太陽電池
JP2011155146A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 太陽電池およびその製造方法
KR20120054127A (ko) * 2010-11-19 2012-05-30 한국세라믹기술원 후막형 cigs 태양전지 및 그 제조방법
KR20130045516A (ko) * 2011-10-26 2013-05-06 한국과학기술연구원 박막태양전지 및 이의 제조방법

Also Published As

Publication number Publication date
KR20140142771A (ko) 2014-12-15
KR101480394B1 (ko) 2015-01-12

Similar Documents

Publication Publication Date Title
US20160284882A1 (en) Solar Cell
US20130255760A1 (en) Solar cell and method of manufacturing the same
WO2012046935A1 (ko) 태양 전지
WO2013062298A1 (en) Solar cell and method of fabricating the same
US20140000703A1 (en) Thin Film Article and Method for Forming a Reduced Conductive Area in Transparent Conductive Films for Photovoltaic Modules
WO2014142400A1 (ko) 후면 버퍼층을 갖는 태양전지 및 그 제조방법
GB2405030A (en) Bifacial thin film solar cell
CN111384187A (zh) 复合背电极及其制备方法和叠层太阳能电池
WO2013055008A1 (en) Solar cell and solar cell module
JP6015994B2 (ja) 光学素子及びその製造方法
CN103201854A (zh) 太阳能电池设备及其制造方法
CN112133830A (zh) 一种2-t钙钛矿叠层太阳能电池模块及其制备方法
JP5918765B2 (ja) 太陽光発電装置
WO2013081344A1 (en) Solar cell module and method of fabricating the same
CN214176064U (zh) 一种双面入射叠层太阳能电池
WO2013055005A1 (en) Solar cell and preparing method of the same
KR101046358B1 (ko) 태양전지용 투명전극 제조방법
WO2014196688A1 (ko) 저저항 금속층을 가지는 후면전극과 이를 이용한 태양전지 및 이들을 제조하는 방법
WO2013081346A1 (en) Solar cell module and method of fabricating the same
KR101393859B1 (ko) 태양전지 및 이의 제조 방법
KR20130119072A (ko) 태양광 발전장치
KR101880640B1 (ko) 태양 전지 및 이의 제조방법
KR101209820B1 (ko) 박막태양전지 및 그 제조방법
KR101448030B1 (ko) 전반사막을 갖는 후면전극과 이를 이용한 태양전지 및 이들의 제조방법
KR20220165016A (ko) 태양광 발전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886582

Country of ref document: EP

Kind code of ref document: A1