WO2014196312A1 - 樹脂ゴム複合体 - Google Patents

樹脂ゴム複合体 Download PDF

Info

Publication number
WO2014196312A1
WO2014196312A1 PCT/JP2014/062492 JP2014062492W WO2014196312A1 WO 2014196312 A1 WO2014196312 A1 WO 2014196312A1 JP 2014062492 W JP2014062492 W JP 2014062492W WO 2014196312 A1 WO2014196312 A1 WO 2014196312A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
resin
plasma treatment
pressure plasma
composite
Prior art date
Application number
PCT/JP2014/062492
Other languages
English (en)
French (fr)
Inventor
裕一 青柳
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to EP14807987.4A priority Critical patent/EP3006490A1/en
Priority to JP2015521352A priority patent/JPWO2014196312A1/ja
Publication of WO2014196312A1 publication Critical patent/WO2014196312A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/12Layered products comprising a layer of natural or synthetic rubber comprising natural rubber

Definitions

  • the present invention relates to a resin-rubber composite. More specifically, the present invention relates to a resin-rubber composite in which a resin molded product and a vulcanized rubber are directly bonded without an adhesive.
  • a method of using an adhesive is generally used.
  • the bonding method using an adhesive is not only complicated in process and complicated in process control, it is not only expensive but also it is necessary to use a large amount of environmental load substance such as organic solvent and also at the time of composite production It has the disadvantage that the adhesive is washed away by the molten resin.
  • Patent Documents 1 and 2 disclose a method in which the surface of a vulcanized rubber is modified by plasma treatment to adhere a resin.
  • the vulcanized rubber and the resin adhere immediately after the plasma treatment, it is difficult to maintain the adhesion state with time. This is considered to be due to the fact that the anti-aging agent, paraffin wax, plasticizer, sulfur etc. bloom over time on the vulcanized rubber surface, thereby significantly reducing the adhesiveness.
  • An object of the present invention is a resin-rubber composite in which a resin molded product and a vulcanized rubber are directly bonded without an adhesive, and the adhesiveness significantly decreases with time even after formation of the composite. There is nothing to offer.
  • the resin-rubber composite according to the present invention is a resin-rubber composite in which a resin-molded product and a vulcanized rubber are directly bonded without an adhesive and the resin and the rubber are bonded. There is an excellent effect that adhesion does not decrease significantly with time even after formation.
  • vulcanized rubber vulcanized natural rubber, EPDM, nitrile rubber, hydrogenated nitrile rubber, acrylic rubber, fluororubber and the like can be used without particular limitation.
  • Bloom removal treatment is carried out by cleaning treatment by a known method such as alkaline degreasing, organic solvent degreasing, hydrocarbon degreasing, low pressure plasma treatment under oxygen or air atmosphere, etc.
  • Preferably low pressure plasma under oxygen or air atmosphere It is done by processing.
  • Low-pressure plasma treatment introduces a vulcanized rubber molded product into a glass vacuum vessel equipped with two parallel flat plate electrodes, and uses a high frequency power supply such as 40 kHz or 13.56 MHz or a 2.45 GHz frequency under oxygen or air atmosphere.
  • the pressure is about 10 to 1000 Pa
  • the power is about 10 to 30000 W
  • the time is about 0.1 to 60 minutes.
  • the bloom component on the surface of the vulcanized rubber is removed.
  • This process is an essential process on the surface of the vulcanized rubber where only bloom is observed, but it is an optional process on the surface of the vulcanized rubber where no bloom is observed.
  • the vulcanized rubber surface (which has been subjected to the bloom removal treatment) is first subjected to low pressure plasma treatment using an inert gas as a first step.
  • an inert gas inert gas
  • He gas, Ne gas, Ar gas, Kr gas, Xe gas, N 2 gas, etc. preferably He gas
  • Ar gas, N 2 gas alone or as a mixture, more preferably He gas alone using a high frequency power supply such as 40 kHz or 13.56 MHz or a microwave power supply with a frequency of 2.45 GHz It is performed under the conditions of 10 to 1000 Pa, power of about 10 to 30000 W, and time of about 0.1 to 60 minutes.
  • the low pressure plasma treatment using hydrocarbon gas in the second step is performed under the same conditions and procedures as the low pressure plasma treatment in the first step.
  • the hydrocarbon gas any hydrocarbon type monomer can be used, and specific examples thereof include aliphatic saturated hydrocarbons such as methane, ethane, propane and butane, ethylene, propylene and n- At least one kind of aliphatic unsaturated hydrocarbons such as butene, isobutene and acetylene, alicyclic hydrocarbons such as cyclohexene and cyclohexane, aromatic hydrocarbons such as styrene and benzene, etc. is used, preferably ethylene gas is used. .
  • the formation of the hydrocarbon plasma polymerized film by such treatment makes it possible to effectively prevent the blooming of the vulcanized rubber component.
  • the low pressure plasma treatment using the hydrocarbon gas in the second step is performed again.
  • Such low pressure plasma treatment is performed under the same conditions and procedures as the low pressure plasma treatment of the first step.
  • a functional group can be imparted to the hydrocarbon plasma polymerized film to firmly adhere the resin.
  • any thermoplastic resin can be used without particular limitation, and for example, polyamide resin, polyphenylene sulfide resin, polyimide resin, polyether ether ketone resin, polyethylene terephthalate resin, poly A butylene terephthalate resin, a polyethylene naphthalate resin, a polycarbonate resin etc. are mentioned, Preferably a polyamide-type resin is used.
  • polyamide-based resin examples include the following types of typical polyamide (PA) and monomers: PA613, 3T, 6T, 6I, 9T, PA810, PA812, PA1010, PA1012, and others PA1212, PAPACM12, etc. and alloys or blend resins thereof are also used.
  • PA polyamide
  • PA613, 3T, 6T, 6I, 9T PA810, PA812, PA1010, PA1012, and others PA1212, PAPACM12, etc. and alloys or blend resins thereof are also used.
  • thermoplastic resin one to which a filler such as glass fiber is appropriately added to secure desired physical properties can be used, and a plurality of thermoplastic resins can be blended and used.
  • the plasma-treated vulcanized rubber is attached to the mold of an injection molding machine and then heated to a temperature above the melting point of the resin.
  • the resin thus melted is brought into contact with the surface of the vulcanized rubber by an injection molding method and pressurized, and the resin-rubber composite is produced by the above steps. Therefore, the shape of the vulcanized rubber to be compounded may be any shape as long as it can be applied to the mold, and the shape of the resin to be compounded to the vulcanized rubber may also be arbitrary.
  • Example 1 Natural rubber 100 parts by weight HAF carbon black 55 ⁇ Stearic acid (Miyoshi oil product) 1 ⁇ Zinc flower (Sakai Chemical Industry Products) 5 Wax (Ouchi emerging chemical industry product San knock) 3 3 Anti-aging agent (Kawaguchi Chemical Industries Antage RD) 0.6 ⁇ Anti-aging agent (Kawaguchi Chemical Industry Product Antage 3C) 3 ⁇ Vulcanization accelerator (Ouchi emerging chemical industry product Noxseller MSA-G) 1 ⁇ Sulfur 6
  • Each of the above components was compounded and kneaded, and compression molding was performed under the conditions of vulcanization at 180 ° C. for 4 minutes so that the thickness is 2 mm. The resulting rubber molded product was cut into a size of 20 ⁇ 40 ⁇ 2 mm to obtain a vulcanized rubber test piece.
  • Bloom removal treatment is performed by introducing a vulcanized rubber test piece into a microwave plasma processing apparatus and performing low-pressure plasma processing by microwave method under an oxygen atmosphere with a pressure of about 30 Pa, a frequency of 2.45 GHz and an output of 600 W for 5 minutes. It was
  • Step 1 The rubber test pieces subjected to the bloom removal treatment were subjected to a low pressure plasma treatment by a microwave system under a condition of a frequency of 2.45 GHz and an output of 600 W for 1 minute in an atmosphere of He gas at a pressure of about 30 Pa.
  • Step 2 Following step 1, low-pressure plasma-treated rubber test pieces using He gas were subjected to microwave low-pressure plasma treatment under an ethylene gas atmosphere with a pressure of about 30 Pa, a frequency of 2.45 GHz, and a power of 600 W for 1 minute.
  • Step 3 Following step 2, the ethylene gas low-pressure plasma-treated rubber test piece was subjected to low-pressure plasma treatment under microwave conditions under a He gas atmosphere with a pressure of about 30 Pa, a frequency of 2.45 GHz and an output of 600 W for 1 minute.
  • the rubber test piece that has been subjected to the above processing is attached to a mold of an injection molding machine (HM7 manufactured by Nissei Plastic Industry Co., Ltd .; clamping pressure 7 tons [686 MPa]) and then melted at a temperature of 285 ° C. G30)
  • HM7 manufactured by Nissei Plastic Industry Co., Ltd .
  • clamping pressure 7 tons [686 MPa] 7 tons [686 MPa]
  • a resin-rubber composite having a 20 ⁇ 40 ⁇ 4 mm resin layer was produced by bringing a resin into contact with a vulcanized rubber surface by an injection molding method and pressing it at about 6 MPa.
  • the rubber layer portion of the resin-rubber composite was forcibly peeled off with pliers, and only the residual rubber area ratio was measured.
  • the residual rubber area ratio after leaving for 10 minutes after formation of the composite was 100%, The rubber remaining area ratio after standing for 24 hours was also 100%.
  • measurement of adhesive strength and percentage area of remaining rubber by 90 ° peel test according to JIS K 6256 corresponding to ISO 813, 814 is performed on the obtained resin-rubber composite, but hydrocarbon
  • the rubber remaining area ratio was measured by the above-mentioned method because the plasma polymerization film becomes extremely slippery when it is rubberized.
  • Example 2 In Example 1, when acetylene gas is used instead of ethylene gas in step 2, the rubber remaining area ratio of the obtained resin-rubber composite is 90% after standing for 10 minutes for composite formation, and 24 hours It was 80% after leaving.
  • Example 3 In Example 1, when propylene gas was used instead of ethylene gas in step 2, the rubber remaining area ratio of the obtained resin-rubber composite was 90% after being allowed to stand for 10 minutes for composite formation, and 24 hours It was 80% after leaving.
  • Example 4 In Example 1, when methane gas was used instead of ethylene gas in step 2, the rubber remaining area ratio of the obtained resin-rubber composite was 90% after being allowed to stand for 10 minutes for complex formation, and was left for 24 hours It was 80% after.
  • Example 5 In Example 1, using an EPDM composition of the following composition as a rubber composition, compression molding was carried out under the conditions of vulcanization at 180 ° C. for 6 minutes to prepare a vulcanized rubber test piece, to obtain a resin-rubber composite .
  • EPDM JSR product EP 33
  • HAF carbon black 55 ⁇
  • Stearic acid Miyoshi oil product
  • Zinc flower Tin (Sakai Chemical Industry Products)
  • Dyna process oil Idemitsu Kosan product PW-380
  • Organic peroxides NOF product perm mill D
  • Example 6 In Example 1, a nitrile rubber composition of the following composition is used as a rubber composition, and compression molding is performed under vulcanization conditions of 180 ° C. for 4 minutes to prepare a vulcanized rubber test piece, to obtain a resin-rubber composite.
  • Nitrile rubber 100 parts by weight HAF carbon black 50 ⁇ 1 stearic acid Zinc flower (Sakai Chemical Industry Products) 5 Plasticizer (ADEKA product RS-107; adipic acid ether ester) 5 Anti-aging agent (Anthese RD) 1.5 ⁇ Anti-aging agent (Antage 3C) 2 ⁇ Vulcanization accelerator (Ouchi emerging chemical industry product Noccellar TT) 0.6 ⁇ Vulcanization accelerator (Ouchi emerging chemical industry product Noxcella CZ) 1.5 ⁇ Sulfur 0.5
  • the rubber remaining area ratio of the obtained resin-rubber composite was 100% after being allowed to stand for 10 minutes for complex formation, and 90% after being allowed to stand for 24 hours.
  • Example 7 In Example 1, a hydrogenated nitrile rubber composition having the following composition is used as a rubber composition, and compression molding is performed under a vulcanization condition of 180 ° C. for 6 minutes to prepare a vulcanized rubber test piece, and a resin-rubber composite I got Hydrogenated nitrile rubber (Nippon Zeon product Zetpol 2020) 100 parts by weight HAF carbon black 50 ⁇ 1 stearic acid Zinc flower (Sakai Chemical Industry Products) 5 Plasticizer (RS-107) 5 ⁇ Anti-aging agent (Anthese RD) 0.5 ⁇ Anti-aging agent (Ouchi emerging chemical industry product Noc Crack MBZ) 0.6 ⁇ Vulcanizing agent (Hercules product VulCup40KE) 8 ⁇ The rubber remaining area ratio of the obtained resin-rubber composite was 100% after being allowed to stand for 10 minutes for complex formation, and 90% after being allowed to stand for 24 hours.
  • Example 8 In Example 1, an acrylic rubber composition of the following composition is used as a rubber composition, and compression molding is performed under vulcanization conditions at 180 ° C. for 8 minutes to prepare a vulcanized rubber test piece, to obtain a resin-rubber composite.
  • the Acrylic rubber (Unimatec product PA-522HF) 100 parts by weight HAF carbon black 55 ⁇ 1 stearic acid Anti-aging agent (Shiroishi calcium product now guard 445) 2 ⁇ Processing aids (Schil & Seilacher (GmbH & Co) products 2 ⁇ Scractor WB 212) Processing aid (Toho Chemical Industry product Fasfanol RL210) 0.5 ⁇ Vulcanization accelerator (Unimatec product Cheminox AC-6) 0.6 ⁇ Vulcanization accelerator (Ouchi emerging chemical industry product Noccellar DT) 2 The rubber remaining area ratio of the obtained resin-rubber composite was 100% after being allowed to stand for 10 minutes for complex formation, and was 100% even after being allowed to stand for 24 hours.
  • Example 9 In Example 1, a fluororubber composition of the following composition is used as a rubber composition, and compression molding is carried out under the conditions of vulcanization at 180 ° C. for 6 minutes to prepare a vulcanized rubber test piece to obtain a resin-rubber composite.
  • the Fluorine rubber 100 parts by weight calcium metasilicate 40 ⁇ MT carbon black 20 pieces Magnesium oxide (Kyowa Chemical Products Magnesia # 150) 6 Calcium hydroxide 3 Vulcanizing agent (DuPont's product curative # 30) 2 Vulcanization accelerator (DuPont's product curative # 20) 1 ⁇
  • the rubber remaining area ratio of the obtained resin-rubber composite was 100% after being allowed to stand for 10 minutes for complex formation, and was 80% after being allowed to stand for 24 hours.
  • Example 1 Comparative Example 1 In Example 1, a resin-rubber composite was obtained without performing the bloom removal process and all the low pressure plasma processes of Steps 1 to 3. The rubber remaining area ratio of the obtained resin-rubber composite was 0% after being allowed to stand for 10 minutes for composite formation.
  • Comparative example 2 In Example 1, a resin-rubber composite was obtained without performing the plasma treatment of Steps 2 to 3. The remaining rubber area ratio of the obtained resin-rubber composite was 100% after being allowed to stand for 10 minutes for complex formation, but was 10% after being allowed to stand for 24 hours.
  • Comparative example 3 In Example 1, a resin-rubber composite was obtained without performing the plasma treatment of Step 3. The rubber remaining area ratio of the obtained resin-rubber composite was 0% after being allowed to stand for 10 minutes for composite formation.
  • Comparative example 4 In Example 1, a mixed resin of He gas and ethylene gas of 1: 1 was used for the plasma treatment of Step 1, and a resin-rubber composite was obtained without performing the plasma treatment of Steps 2-3. The rubber remaining area ratio of the obtained resin-rubber composite was 0% after being allowed to stand for 10 minutes for composite formation.
  • Comparative example 5 In Example 1, a resin-rubber composite was obtained without performing the bloom removal treatment. The rubber remaining area ratio of the obtained resin-rubber composite was 0% after being allowed to stand for 10 minutes for composite formation.
  • Comparative example 6 In Example 1, a resin-rubber composite was obtained without performing the plasma treatment of Step 1. The rubber remaining area ratio of the obtained resin-rubber composite was 30% after being allowed to stand for 10 minutes for composite formation.

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 加硫ゴム表面に、不活性ガスを用いた低圧プラズマ処理、炭化水素ガスを用いた低圧プラズマ処理および不活性ガスを用いた低圧プラズマ処理が順次施された加硫ゴムに、接着剤を介することなく樹脂を直接接着せしめた樹脂ゴム複合体。この樹脂ゴム複合体は、樹脂成形品と加硫ゴムとを接着剤を介さずに直接接着させて樹脂とゴムとを接着させた樹脂ゴム複合体であるにもかかわらず、複合体形成後においても接着性が著しく低下することがないといったすぐれた効果を奏する。

Description

樹脂ゴム複合体
 本発明は、樹脂ゴム複合体に関する。さらに詳しくは、樹脂成形品と加硫ゴムとを接着剤を介さずに直接接着させた樹脂ゴム複合体に関する。
 樹脂成形品と加硫ゴムとを複合一体化する方法としては、一般的に接着剤を用いて行う方法が用いられている。しかしながら、接着剤を用いる接着方法は、工程が複雑で工程管理が煩雑となり、コスト高であるばかりではなく、有機溶剤等の環境負荷物質を大量に使用しなければならず、また複合体製造時に接着剤が溶融した樹脂に流されてしまうといったデメリットを有する。
 一方、特許文献1~2には、加硫ゴム表面をプラズマ処理によって改質し、樹脂を接着させる方法が開示されている。これらの文献記載の方法では、プラズマ処理直後は加硫ゴムと樹脂とが接着するものの、経時的にその接着状態を維持することが難しい。これは、加硫ゴム表面に老化防止剤、パラフィンワックス、可塑剤、イオウなどが経時的にブルームすることにより、著しく接着性を低下させることによるものと考えられる。
特開平5-202208号公報 特開平9-216960号公報
 本発明の目的は、樹脂成形品と加硫ゴムとを接着剤を介さずに直接接着させた樹脂ゴム複合体であって、複合体形成後においても経時的に接着性が著しく低下することがないものを提供することにある。
 かかる本発明の目的は、加硫ゴム表面に、不活性ガスを用いた低圧プラズマ処理、炭化水素ガスを用いた低圧プラズマ処理および不活性ガスを用いた低圧プラズマ処理が順次施された加硫ゴムに、接着剤を介することなく樹脂を直接接着せしめた樹脂ゴム複合体によって達成される。
 本発明に係る樹脂ゴム複合体は、樹脂成形品と加硫ゴムとを接着剤を介さずに直接接着させて樹脂とゴムとを接着させた樹脂ゴム複合体であるにもかかわらず、複合体形成後においても経時的に接着性が著しく低下することがないといったすぐれた効果を奏する。
 加硫ゴムとしては、加硫された天然ゴム、EPDM、ニトリルゴム、水素化ニトリルゴム、アクリルゴム、フッ素ゴムなどを特に制限することなく用いることができる。
 これらの加硫ゴム表面には、不活性ガスを用いた低圧プラズマ処理、炭化水素ガスを用いた低圧プラズマ処理および不活性ガスを用いた低圧プラズマ処理が順次施される。ここで、ゴム表面にブルームがみられるものについては、各プラズマ処理に先立ち加硫ゴム表面のブルーム除去処理が行われる。
 ブルーム除去処理は、アルカリ脱脂、有機溶媒脱脂、炭化水素脱脂など公知の方法による洗浄処理や、酸素または空気雰囲気下での低圧プラズマ処理等により行われ、好ましくは酸素または空気雰囲気下での低圧プラズマ処理により行われる。低圧プラズマ処理は、2枚の平行平板電極を備えたガラス製真空容器内に加硫ゴム成形品を導入し、酸素または空気雰囲気下、周波数40kHz、13.56MHz等の高周波電源または周波数2.45GHzのマイクロ波電源を使用して、圧力約10~1000Pa、出力約10~30000W、時間約0.1~60分間の条件下で行われる。かかる処理によって加硫ゴム表面のブルーム成分が除去されることとなる。この過程はブルームのみられる加硫ゴム表面には必須の工程となるが、ブルームがみられない加硫ゴム表面に対しては任意の工程となる。
 (ブルーム除去処理された)加硫ゴム表面には、まず第1ステップとして不活性ガスを用いた低圧プラズマ処理が施される。低圧プラズマ処理は、2枚の平行平板電極を備えたガラス製真空容器内で、不活性ガス雰囲気としてHeガス、Neガス、Arガス、Krガス、Xeガス、N2ガス等、好ましくはHeガス、Arガス、N2ガスを単独でまたは混合して用い、さらに好ましくはHeガスを単独で用い、周波数40kHz、13.56MHz等の高周波電源または周波数2.45GHzのマイクロ波電源を使用して、圧力約10~1000Pa、出力約10~30000W、時間約0.1~60分間の条件下で行われる。かかる処理によって、次いで形成される炭化水素プラズマ重合膜と加硫ゴムとの密着性が向上するようになる。
 第1ステップの不活性ガスを用いた低圧プラズマ処理に引続き、第2ステップの炭化水素ガスを用いた低圧プラズマ処理が、第1ステップの低圧プラズマ処理と同様の条件および手順により行われる。炭化水素ガスとしては、炭化水素系モノマーであればいかなるものであっても使用することができ、具体的にはメタン、エタン、プロパン、ブタンなどの脂肪族飽和炭化水素、エチレン、プロピレン、n-ブテン、イソブテン、アセチレンなどの脂肪族不飽和炭化水素、シクロヘキセン、シクロヘキサンなどの脂環式炭化水素、スチレン、ベンゼンなどの芳香族炭化水素等の少くとも一種が用いられ、好ましくはエチレンガスが用いられる。かかる処理による炭化水素プラズマ重合膜形成によって、加硫ゴム成分のブルームを有効に防止することができるようになる。
 第2ステップの炭化水素ガスを用いた低圧プラズマ処理の後、第3ステップの不活性ガスを用いた低圧プラズマ処理が再び行われる。かかる低圧プラズマ処理は、第1ステップの低圧プラズマ処理と同様の条件および手順により行われる。かかる処理により、炭化水素プラズマ重合膜へ官能基を付与して樹脂を強固に密着させることができる。
 加硫ゴムに接着させる樹脂としては、熱可塑性樹脂であれば特に制限されることなく用いることができ、例えばポリアミド系樹脂、ポリフェニレンスルフィド樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート樹脂等が挙げられ、好ましくはポリアミド系樹脂が用いられる。
 ポリアミド系樹脂としては、代表的なポリアミド(PA)の種類およびモノマーとしては次のようなものが挙げられ、この他に、PA613、3T、6T、6I、9T、PA810、PA812、PA1010、PA1012、PA1212、PAPACM12等およびこれらのアロイまたはブレンド樹脂も用いられる。
   種類          原料モノマー       
    46    テトラメチレンジアミン-アジピン酸塩
    6    ε-カプロラクタム、ε-アミノカプロン酸
    66    ヘキサメチレンジアミン-アジピン酸塩
   610    ヘキサメチレンジアミン-セバシン酸塩
   612    ヘキサメチレンジアミン-ドデカン二酸塩
    11    ω-アミノウンデカン酸
    12    ω-ラウロラクタム、ω-アミノドデカン酸
 熱可塑性樹脂は、所望の物性を確保するためにガラスファイバー等の充填剤が適宜添加されたものも用いることができ、また複数の熱可塑性樹脂をブレンドして用いることもできる。
 ステップ1~3の低圧プラズマ処理が施された加硫ゴムへの樹脂の接合は、プラズマ処理された加硫ゴムを射出成型機の金型に取り付けた後、樹脂の融点以上の温度に加熱して溶融させた樹脂を射出成形法により加硫ゴム表面に接触させ、加圧することによって行われ、以上の工程によって樹脂ゴム複合体が作製される。したがって、金型に適用し得る限り、複合化される加硫ゴムの形状は任意の形状であり得、また加硫ゴムに複合化される樹脂の形状も任意であり得る。
 次に、実施例について本発明を説明する。
 実施例1
 天然ゴム                       100重量部
 HAFカーボンブラック                  55 〃
 ステアリン酸(ミヨシ油脂製品)              1 〃
 亜鉛華(堺化学工業製品)                 5 〃
 ワックス(大内新興化学工業製品サンノック)        3 〃
 老化防止剤(川口化学工業製品アンテージRD)       0.6 〃
 老化防止剤(川口化学工業製品アンテージ3C)        3 〃
 加硫促進剤(大内新興化学工業製品ノクセラーMSA-G)    1 〃
 イオウ                         6 〃
以上の各成分を配合、混練し、厚みが2mmとなるように180℃、4分間の加硫条件下で圧縮成形を行った。得られたゴム成形物を20×40×2mmの大きさにカットし加硫ゴム試験片を得た。
 得られた加硫ゴム試験片の表面には、ブルームが確認されたため、まずブルーム除去処理が施された。ブルーム除去処理は、加硫ゴム試験片をマイクロ波プラズマ処理装置内に導入し、圧力約30Paの酸素雰囲気下、周波数2.45GHz、出力600W、5分間の条件でマイクロ波方式による低圧プラズマ処理により行われた。
 ブルーム除去処理に続いて、次の3ステップからなる低圧プラズマ処理が行われた。
 〔ステップ1〕
 ブルーム除去処理されたゴム試験片を、圧力約30PaのHeガス雰囲気下、周波数2.45GHz、出力600W、1分間の条件でマイクロ波方式による低圧プラズマ処理を行った。
 〔ステップ2〕
 ステップ1に続き、Heガスを用いた低圧プラズマ処理ゴム試験片を、圧力約30Paのエチレンガス雰囲気下、周波数2.45GHz、出力600W、1分間の条件でマイクロ波方式による低圧プラズマ処理を行った。
 〔ステップ3〕
 ステップ2に続き、エチレンガス低圧プラズマ処理ゴム試験片を、圧力約30PaのHeガス雰囲気下、周波数2.45GHz、出力600W、1分間の条件でマイクロ波方式による低圧プラズマ処理を行った。
 以上の処理が完了したゴム試験片を射出成形機(日精樹脂工業製HM7;型締め圧力7トン〔686MPa〕)の金型に取り付けた後、温度285℃で溶融したPA66(東レ製品アミランCM3001-G30)樹脂を射出成形法により加硫ゴム表面に接触させ、約6MPaで加圧することによって、20×40×4mmの樹脂層を有する樹脂ゴム複合体を作製した。
 樹脂ゴム複合体のゴム層部分をペンチにて強制的に剥離させ、ゴム残り面積率のみ測定を行ったところ、複合体を形成後10分間放置した後のゴム残り面積率は100%であり、24時間放置後のゴム残り面積率についても100%であった。なお、通常の接着性試験は、得られた樹脂ゴム複合体についてISO 813、814に対応するJIS K6256に準拠した90°剥離試験による接着強度及びゴム残り面積率の測定が行われるが、炭化水素プラズマ重合膜にゴムを付けると極度に滑るようになるため、上記方法によってゴム残り面積率の測定が行われた。
 実施例2
 実施例1において、ステップ2のエチレンガスの代わりにアセチレンガスが用いられたところ、得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では90%であり、24時間放置後では80%であった。
 実施例3
 実施例1において、ステップ2のエチレンガスの代わりにプロピレンガスが用いられたところ、得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では90%であり、24時間放置後では80%であった。
 実施例4
 実施例1において、ステップ2のエチレンガスの代わりにメタンガスが用いられたところ、得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では90%であり、24時間放置後では80%であった。
 実施例5
 実施例1において、ゴム組成物として下記配合のEPDM組成物を用い、180℃、6分間の加硫条件下で圧縮成形を行って加硫ゴム試験片を作成し、樹脂ゴム複合体を得た。
 EPDM(JSR社製品EP33)                 100重量部
 HAFカーボンブラック                  55 〃
 ステアリン酸(ミヨシ油脂製品)              1 〃
 亜鉛華(堺化学工業製品)                 5 〃
 ダイナプロセスオイル(出光興産製品PW-380)        5 〃
 有機過酸化物(日本油脂製品パークミルD)        1.5 〃
得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では100%であり、24時間放置後では90%であった。
 実施例6
 実施例1において、ゴム組成物として下記配合のニトリルゴム組成物を用い、180℃、4分間の加硫条件下で圧縮成形を行って加硫ゴム試験片を作成し、樹脂ゴム複合体を得た。
 ニトリルゴム(日本ゼオン製品DN200)          100重量部
 HAFカーボンブラック                  50 〃
 ステアリン酸                      1 〃
 亜鉛華(堺化学工業製品)                 5 〃
 可塑剤(ADEKA社製品RS-107;アジピン酸エーテルエステル) 5 〃
 老化防止剤(アンテージRD)               1.5 〃
 老化防止剤(アンテージ3C)                2 〃
 加硫促進剤(大内新興化学工業製品ノクセラーTT)     0.6 〃
 加硫促進剤(大内新興化学工業製品ノクセラーCZ)     1.5 〃
 イオウ                        0.5 〃
得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では100%であり、24時間放置後では90%であった。
 実施例7
 実施例1において、ゴム組成物として下記配合の水素化ニトリルゴム組成物を用い、180℃、6分間の加硫条件下で圧縮成形を行って加硫ゴム試験片を作成し、樹脂ゴム複合体を得た。
 水素化ニトリルゴム(日本ゼオン製品Zetpol 2020)    100重量部
 HAFカーボンブラック                  50 〃
 ステアリン酸                      1 〃
 亜鉛華(堺化学工業製品)                 5 〃
 可塑剤(RS-107)                     5 〃
 老化防止剤(アンテージRD)               0.5 〃
 老化防止剤(大内新興化学工業製品ノクラックMBZ)    0.6 〃
 加硫剤(ハーキュレス社製品VulCup40KE)          8 〃
得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では100%であり、24時間放置後では90%であった。
 実施例8
 実施例1において、ゴム組成物として下記配合のアクリルゴム組成物を用い、180℃、8分間の加硫条件下で圧縮成形を行って加硫ゴム試験片を作成し、樹脂ゴム複合体を得た。
 アクリルゴム(ユニマテック製品PA-522HF)        100重量部
 HAFカーボンブラック                  55 〃
 ステアリン酸                      1 〃
 老化防止剤(白石カルシウム製品ナウガード445)      2 〃
 加工助剤(Schil & Seilacher(GmbH&Co)社製品       2 〃
               スクラクトールWB212)
 加工助剤(東邦化学工業製品ファスファノールRL210)   0.5 〃
 加硫促進剤(ユニマテック製品ケミノックスAC-6)     0.6 〃
 加硫促進剤(大内新興化学工業製品ノクセラーDT)      2 〃
得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では100%であり、24時間放置後においても100%であった。
 実施例9
 実施例1において、ゴム組成物として下記配合のフッ素ゴム組成物を用い、180℃、6分間の加硫条件下で圧縮成形を行って加硫ゴム試験片を作成し、樹脂ゴム複合体を得た。
 フッ素ゴム(デュポン社製品バイトンE45)        100重量部
 メタけい酸カルシウム                 40 〃
 MTカーボンブラック                  20 〃
 酸化マグネシウム(協和化学製品マグネシア♯150)     6 〃
 水酸化カルシウム                    3 〃
 加硫剤(デュポン社製品キュラティブ♯30)         2 〃
 加硫促進剤(デュポン社製品キュラティブ♯20)       1 〃
得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では100%であり、24時間放置後では80%であった。
 比較例1
 実施例1において、ブルーム除去処理およびステップ1~3のすべての低圧プラズマ処理を行うことなく、樹脂ゴム複合体を得た。得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では0%であった。
 比較例2
 実施例1において、ステップ2~3のプラズマ処理を行うことなく、樹脂ゴム複合体を得た。得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では100%であったが、24時間放置後では10%であった。
 比較例3
 実施例1において、ステップ3のプラズマ処理を行うことなく、樹脂ゴム複合体を得た。得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では0%であった。
 比較例4
 実施例1において、ステップ1のプラズマ処理にHeガスとエチレンガスが1:1の混合ガスを用い、ステップ2~3のプラズマ処理を行うことなく樹脂ゴム複合体を得た。得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では0%であった。
 比較例5
 実施例1において、ブルーム除去処理を行うことなく、樹脂ゴム複合体を得た。得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では0%であった。
 比較例6
 実施例1において、ステップ1のプラズマ処理を行うことなく、樹脂ゴム複合体を得た。得られた樹脂ゴム複合体のゴム残り面積率は、複合体形成10分間放置後では30%であった。
 以上の結果より次のことがいえる。
 (1) 各実施例では樹脂ゴム複合体を形成させた後24時間経った後においても強固な接着力を示している。
 (2) ブルーム除去処理および低圧プラズマ処理を全く行わなかった場合(比較例1)、ステップ3のプラズマ処理を行わず炭化水素プラズマ重合膜に樹脂と反応する官能基が存在しない場合(比較例3)、炭化水素単独のプラズマ重合膜の形成が行われない場合(比較例4)、加硫ゴム表面にブルームが確認されているにもかかわらずブルームの除去が行われない場合(比較例5)、ステップ1のHeガスを用いたプラズマ処理が行われず、ゴムへの炭化水素プラズマ重合膜の密着性が悪い場合(比較例6)には、ゴムと樹脂との接着性が不十分となる。
 (3) 特許文献2などで開示されているように低圧プラズマ処理が酸素ガス雰囲気下に続きHeガス雰囲気下で行われるのみでは、樹脂ゴム複合体形成後10分間の接着性には優れているものの、24時間経過後ではゴム残り面積率が10%となってしまう(比較例2)。

Claims (7)

  1.  加硫ゴム表面に、不活性ガスを用いた低圧プラズマ処理、炭化水素ガスを用いた低圧プラズマ処理および不活性ガスを用いた低圧プラズマ処理が順次施された加硫ゴムに、接着剤を介することなく樹脂を直接接着せしめた樹脂ゴム複合体。
  2.  加硫ゴム表面のブルームが予め除去処理されたうえで各プラズマ処理が行われた請求項1記載の樹脂ゴム複合体。
  3.  ブルームの除去が、洗浄処理または酸素あるいは空気雰囲気下での低圧プラズマ処理により行われた請求項2記載の樹脂ゴム複合体。
  4.  加硫ゴムが天然ゴム、EPDM、ニトリルゴム、水素化ニトリルゴム、アクリルゴムまたはフッ素ゴムの加硫ゴムである請求項1または2記載の樹脂ゴム複合体。
  5.  不活性ガス低圧プラズマ処理がいずれもHeガス低圧プラズマ処理として行われた請求項1記載の樹脂ゴム複合体。
  6.  炭化水素ガス低圧プラズマ処理がエチレンガス低圧プラズマ処理として行われた請求項1記載の樹脂ゴム複合体。
  7.  加硫ゴム表面に、射出成形法により樹脂を直接接着せしめた請求項1記載の樹脂ゴム複合体。
PCT/JP2014/062492 2013-06-03 2014-05-09 樹脂ゴム複合体 WO2014196312A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14807987.4A EP3006490A1 (en) 2013-06-03 2014-05-09 Resin-rubber composite
JP2015521352A JPWO2014196312A1 (ja) 2013-06-03 2014-05-09 樹脂ゴム複合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-116623 2013-06-03
JP2013116623 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196312A1 true WO2014196312A1 (ja) 2014-12-11

Family

ID=52007965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062492 WO2014196312A1 (ja) 2013-06-03 2014-05-09 樹脂ゴム複合体

Country Status (3)

Country Link
EP (1) EP3006490A1 (ja)
JP (1) JPWO2014196312A1 (ja)
WO (1) WO2014196312A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614534A (en) * 1979-07-16 1981-02-12 Shin Etsu Chem Co Ltd Surface treatment of plastic molded product
JPS6141541A (ja) * 1984-08-04 1986-02-27 株式会社ブリヂストン ゴム製品用標識
JPS6241233A (ja) * 1985-08-16 1987-02-23 Bridgestone Corp 加硫ゴムと他材料との接着方法
JPS6241232A (ja) * 1985-08-16 1987-02-23 Bridgestone Corp 加硫ゴムと他材料との接着方法
JPS62132940A (ja) * 1985-12-04 1987-06-16 Sumitomo Electric Ind Ltd 高分子基材へのプラズマ重合薄膜形成方法
JPH02103206A (ja) * 1988-10-13 1990-04-16 Kanebo Ltd プラズマ処理−重合装置
JPH03262636A (ja) * 1990-03-14 1991-11-22 Bridgestone Corp ゴム系複合材料の製造方法
JPH05202208A (ja) 1991-08-20 1993-08-10 Bridgestone Corp 加硫ゴムの表面処理方法
JPH09216960A (ja) 1996-02-08 1997-08-19 Bridgestone Corp 加硫ゴムの表面処理方法及びゴム系複合材料の製造方法
JP2001162723A (ja) * 1999-12-08 2001-06-19 Tokai Rubber Ind Ltd ゴム・ポリアミド複合体及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614534A (en) * 1979-07-16 1981-02-12 Shin Etsu Chem Co Ltd Surface treatment of plastic molded product
JPS6141541A (ja) * 1984-08-04 1986-02-27 株式会社ブリヂストン ゴム製品用標識
JPS6241233A (ja) * 1985-08-16 1987-02-23 Bridgestone Corp 加硫ゴムと他材料との接着方法
JPS6241232A (ja) * 1985-08-16 1987-02-23 Bridgestone Corp 加硫ゴムと他材料との接着方法
JPS62132940A (ja) * 1985-12-04 1987-06-16 Sumitomo Electric Ind Ltd 高分子基材へのプラズマ重合薄膜形成方法
JPH02103206A (ja) * 1988-10-13 1990-04-16 Kanebo Ltd プラズマ処理−重合装置
JPH03262636A (ja) * 1990-03-14 1991-11-22 Bridgestone Corp ゴム系複合材料の製造方法
JPH05202208A (ja) 1991-08-20 1993-08-10 Bridgestone Corp 加硫ゴムの表面処理方法
JPH09216960A (ja) 1996-02-08 1997-08-19 Bridgestone Corp 加硫ゴムの表面処理方法及びゴム系複合材料の製造方法
JP2001162723A (ja) * 1999-12-08 2001-06-19 Tokai Rubber Ind Ltd ゴム・ポリアミド複合体及びその製造方法

Also Published As

Publication number Publication date
EP3006490A1 (en) 2016-04-13
JPWO2014196312A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
US8007916B2 (en) Process for production of a composite
CN103492514B (zh) 粘合粘接剂组合物、使用其的粘接方法、层压体和轮胎
CN104284922B (zh) 橡胶片、使用其的充气轮胎、以及橡胶片的生产方法
JP2013538943A5 (ja)
Liu et al. Effects of argon plasma treatment on the interfacial adhesion of PBO fiber/bismaleimide composite and aging behaviors
KR20170039238A (ko) 모울드에서 바디를 모울딩하는 방법
EP2199110A2 (en) Retreaded tire and methods of preparation
MY160836A (en) Modified resin systems for liquid resin infusion applications & process methods related thereto
CN107108972B (zh) 复合物
EP2199109A2 (en) Tire tread strip and methods of preparation
CA2148762A1 (fr) Materiau comprenant un elastomere vulcanise associe a un elastomere thermoplastique
WO2014196312A1 (ja) 樹脂ゴム複合体
JP6464600B2 (ja) ゴム組成物、ゴム組成物金属積層体、及び加硫ゴム製品
RU2012111711A (ru) Способ производства композитного формованного изделия
CN110861380A (zh) 一种单一材料复合可回收冷冻食品包装膜及其制备方法
CN106232754B (zh) 透明粘合片
JP5874865B1 (ja) 樹脂ゴム複合体の製造法
KR20100098470A (ko) 아라미드 섬유보강 고무복합재 및 이의 제조방법
JP6075444B2 (ja) 樹脂ゴム複合体
JP5070582B2 (ja) Dlc膜で被覆の接着性改善ポリオレフィン部材
RU2797809C2 (ru) Способ получения трехслойного композиционного материала на основе сверхвысокомолекулярного полиэтилена, резины и металла
KR20160060252A (ko) 고무 보강용 파라계 아라미드섬유가 분산된 고무복합체 및 이의 제조방법
US20190264069A1 (en) Roll-shaped body
CN109401088A (zh) 一种耐热氧老化轮胎硫化胶囊的制备方法
Kundu et al. A synergy of atmospheric plasma and UV-additive incorporated PU and styrene–isoprene-styrene adhesive for improving inter-layer adhesion in PVF/Fabric/BOPET laminate for aerostat envelope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014807987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014807987

Country of ref document: EP