WO2014196176A1 - Solid-state imaging element and imaging apparatus - Google Patents

Solid-state imaging element and imaging apparatus Download PDF

Info

Publication number
WO2014196176A1
WO2014196176A1 PCT/JP2014/002873 JP2014002873W WO2014196176A1 WO 2014196176 A1 WO2014196176 A1 WO 2014196176A1 JP 2014002873 W JP2014002873 W JP 2014002873W WO 2014196176 A1 WO2014196176 A1 WO 2014196176A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
reset
discharge
solid
state imaging
Prior art date
Application number
PCT/JP2014/002873
Other languages
French (fr)
Japanese (ja)
Inventor
崇 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157035513A priority Critical patent/KR101760200B1/en
Publication of WO2014196176A1 publication Critical patent/WO2014196176A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to a solid-state imaging device including a photoelectric conversion unit that generates electric charge upon irradiation with light, and an imaging device including the solid-state imaging device.
  • a photoelectric conversion unit including a pair of electrodes and a photoelectric conversion layer sandwiched between these electrodes is provided above the silicon substrate, and generated in this photoelectric conversion layer
  • a photoelectric conversion layer stacked type solid-state imaging device is drawing attention, in which a stored charge is transferred from one of the pair of electrodes to a silicon substrate and accumulated, and a signal corresponding to the accumulated charge is read by a signal readout circuit formed on the silicon substrate. ing.
  • a solid-state imaging device for example, in Patent Document 1, as shown in FIG. 21, a photoelectric conversion unit 201 and a floating diffusion FD (hereinafter simply referred to as FD) that accumulates charges generated in the photoelectric conversion unit 201.
  • the output transistor 202 that outputs a voltage corresponding to the charge accumulated in the FD
  • the reset transistor 203 that resets the charge accumulated in the FD
  • the signal output from the output transistor 202 are selectively output to the signal line.
  • a solid-state imaging device has been proposed in which a large number of pixel portions 200 each including a selection transistor 204 are two-dimensionally arranged.
  • This solid-state imaging device is a circuit having a so-called three-transistor structure in which no transistor is provided between the FD and the photoelectric conversion unit 201, and the FD and the photoelectric conversion unit 201 are electrically connected directly. is there.
  • FIG. 22 shows the timing of the discharge operation of the pixel portion 200 and the read operation of the charge signal in the nth to n + 2th rows.
  • FIG. 23 shows changes in driving and FD potential over time when the solid-state imaging device shown in FIG. 21 performs imaging under conditions where uniform light is incident on all pixels.
  • the solid line represents an ideal FD potential when there is no capacitive coupling, and the broken line represents a change in the potential of the FD when affected by capacitive coupling.
  • the change in the FD potential of the pixel of interest with the change in the FD potential of the adjacent pixel is a feature when there is an influence of capacitive coupling.
  • Each line discharges the charge accumulated in the FD until the time of discharge in the figure, and reads out the signal charge accumulated in the FD during the accumulation period from the discharge to the read at the time of reading.
  • the signal reading is completed at the time t1, and the potential of the FD becomes the reference potential.
  • discharging is performed at time t2, accumulation is started after the potential of FD is set to the reference potential.
  • reading is performed at time t5, and a signal corresponding to the signal charge accumulated in the FD between time t2 and time t5 is output.
  • the FD potential of the n-th row also changes with a large change in the FD potential of the n + 1-th row at time t2.
  • the FD potential changes monotonously from time t3 to time t4
  • the FD potential changes monotonically from time t3 to time t2, and then at time t2.
  • the potential decreases once, and the FD potential increases from the potential by accumulation of signal charges until time t4. For this reason, when the signal in the n-th row is read at time t4, the signal level is lower than the original signal level as indicated by the dotted line, compared to the original signal level indicated by the solid line.
  • red filters (R) and green filters (G) are alternately arranged in the column direction of the pixel unit 200.
  • the pixel unit 200 provided with the green filter is arranged in the same column as the pixel unit 200 provided with the red filter.
  • the discharge of the pixel unit 200 provided with the red filter decreases the potential of the FD of the pixel unit 200 provided with the green filter, and the magnitude of the charge signal G1. Will be smaller.
  • the pixel unit 200 provided with the green filter is in the same column as the pixel unit 200 provided with the blue filter, the pixel unit 200 provided with the blue filter is arranged in the lower row of FIG. Since no light is incident and the potential of the FD does not change, the discharge of the pixel portion 200 provided with the blue filter does not affect the potential of the FD of the pixel portion 200 provided with the green filter. A charge signal G2 larger than the charge signal G1 is acquired.
  • the coupling rate is the degree of influence of a potential change between FDs of adjacent pixel portions 200.
  • the coupling rate is determined by the ratio between the parasitic capacitance and the storage capacitance of the FD. The smaller the size of the pixel portion 200, the lower the degree of freedom of layout and the higher the coupling rate.
  • a black sun afterimage corresponding to ⁇ 100 electrons is generated in the (n + 1) th row.
  • an afterimage of accumulated charge amount ⁇ ( ⁇ coupling ratio) is generated due to capacitive coupling between adjacent pixel rows. As the coupling rate increases, the afterimage becomes significantly larger.
  • Patent Document 2 discloses that feedback reset is performed to reduce reset kTC noise.
  • Patent Document 2 does not describe a configuration that achieves both afterimage suppression and reset kTC noise reduction.
  • the present invention obtains an appropriate image signal that can sufficiently suppress an afterimage due to the effect of capacitive coupling formed between adjacent pixel rows and that has reduced reset kTC noise. It is an object of the present invention to provide a solid-state imaging device capable of performing imaging and an imaging apparatus including the solid-state imaging device.
  • the solid-state imaging device of the present invention includes a photoelectric conversion unit that generates a signal charge corresponding to the amount of incident light, a storage unit that stores the signal charge generated in the photoelectric conversion unit, and a signal charge stored in the storage unit.
  • a signal charge that is stored in the storage unit and includes a plurality of pixel units that are electrically connected to the photoelectric conversion unit, the power storage unit, and the input node of the output circuit.
  • Charge accumulation read operation of acquiring the signal charge accumulated in the power storage unit after the discharge, and resetting the power storage unit after acquiring the signal charge to acquire the reset level of the power storage unit are performed sequentially in a row, and before each row is discharged, preliminary discharge is performed to discharge preliminary charges from the power storage unit, and n-th row (n is a natural number) and n + 1-th row preliminary discharge are performed.
  • the power storage unit is a feedback control circuit is provided for performing feedback control so that the reference potential, characterized in that performing feedback control during discharge and reset.
  • feedback control can be performed at the time of resetting.
  • the pixel portion is provided with a row selection circuit connected between the output circuit and a signal line from which signal charges and reset levels are output, and the row selection circuit is made conductive when discharging. In the preliminary discharge, it can be made non-conductive.
  • the discharge of the nth row and the reset of rows other than the nth row can be performed at different timings.
  • the feedback control circuit can be provided with a voltage source for supplying a reference voltage and an inverting amplifier to which the voltage source is connected.
  • the reset of the nth row and the read preliminary reset of the (n + 1) th row can be performed simultaneously.
  • the row selection circuit can be turned on during resetting and non-conducted during read pre-reset.
  • the signal charge can be acquired before the read preliminary reset of the nth row, and the reset level of the nth row can be acquired after the reset of the (n + 1) th row.
  • the storage unit in the nth row can be brought into an electrically floating state.
  • a preliminary discharge shift register that outputs a pulse signal for performing preliminary discharge
  • a discharge shift register that outputs a pulse signal for performing discharge
  • a shift register can be provided.
  • At least three correlated double sampling processing circuits can be provided for each signal line from which signal charges and reset levels are output.
  • the pixel portion includes a first electrode partitioned in units of pixels and a second electrode provided to face the pixel electrode with the photoelectric conversion portion interposed therebetween.
  • These pixel portions can be a common electrode.
  • the photoelectric conversion part can include an organic photoelectric conversion film.
  • the organic photoelectric conversion film can be common to all the pixel portions.
  • the signal charge from the photoelectric conversion part can be made a hole.
  • the signal charge from the photoelectric conversion unit can be converted to electrons.
  • a protection circuit can be provided in the power storage unit.
  • An image pickup apparatus includes the solid-state image pickup element according to the present invention.
  • preliminary discharge for discharging preliminary charges from the power storage unit is performed before discharging of the power storage unit of the pixel unit of each row, and discharge of the nth row and n + 1 are performed. Since the preliminary discharge of the row is performed at the same time, the potential of the FD of the n-th row is obtained even when the capacitive coupling between the n-th row and the n + 1-th row is relatively large as described with reference to FIG. The effect of preliminary discharge on the (n + 1) th row can be reduced, and an appropriate image signal can be acquired. The reason will be described in detail later.
  • the feedback control circuit provided for each column of the pixel unit is used to perform the feedback control so that the power storage unit becomes the reference potential. And an image signal having a high S / N can be acquired.
  • the solid-state imaging device and imaging apparatus of the present invention can realize both suppression of the influence of capacitive coupling between adjacent pixels and reduction of reset kTC noise.
  • FIG. 6 is a diagram showing reset pulses RS (n ⁇ 1) to RS (n + 1) and selection pulses RW (n ⁇ 1) to RW (n + 1) at the time of preliminary discharge, discharge and reading.
  • the figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing discharge of the (n-1) th row simultaneously with the preliminary discharge of the nth row The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing preliminary discharge of the (n + 1) th row simultaneously with discharge of the nth row
  • the figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing readout reset of the n-th row The figure for demonstrating the influence of the afterimage in 1st Embodiment of the solid-state image sensor of this invention.
  • the figure which shows the positional relationship of the electrical storage part FD at the time of laying out the readout circuit of a pixel part by mirror image relation The figure which shows the electrical potential change of the electrical storage part FD at the time of only discharging
  • the figure which shows the structure and capacitive coupling of the pixel part of the conventional solid-state image sensor Timing chart for explaining discharge of conventional solid-state imaging device and reading of charge signal The figure for demonstrating the influence of the capacitive coupling in the conventional solid-state image sensor.
  • the figure for demonstrating the influence of the false signal by the capacitive coupling in the conventional solid-state image sensor The figure for demonstrating the influence of the afterimage by the capacitive coupling in the conventional solid-state image sensor
  • FIG. 1 is a diagram illustrating a pixel unit constituting the solid-state imaging device of the present embodiment.
  • the solid-state imaging device of the present embodiment has a large number of pixel portions 10 shown in FIG.
  • the pixel unit 10 includes a photoelectric conversion unit 11, a floating diffusion FD (corresponding to an accumulation unit) (hereinafter simply referred to as FD), an output transistor 12 (corresponding to an output circuit), a reset, A transistor 13 and a selection transistor 14 (corresponding to a selection circuit) are provided.
  • the output transistor 12, the reset transistor 13, and the selection transistor 14 are each composed of an n-channel MOS transistor. Note that the size of the pixel portion 10 is desirably 5 ⁇ m or less.
  • the photoelectric conversion unit 11 includes a pixel electrode 104 (corresponding to the first electrode), a counter electrode 108 (corresponding to the second electrode) provided to face the pixel electrode 104, the pixel electrode 104, and the counter electrode. And a photoelectric conversion layer 107 provided between them.
  • the pixel electrode 104 is a thin film electrode divided for each pixel portion 10 and is formed of a transparent or opaque conductive material such as ITO, aluminum, titanium nitride, copper, tungsten, or the like.
  • the pixel electrode 104 collects charges generated in the photoelectric conversion layer 107 for each pixel unit 10.
  • the counter electrode 108 is an electrode for applying a voltage to the photoelectric conversion layer 107 between the pixel electrode 104 and generating an electric field in the photoelectric conversion layer 107. Since the counter electrode 108 is provided on the light incident surface side of the photoelectric conversion layer 107 and needs to be transmitted through the counter electrode 108 and incident on the photoelectric conversion layer 107, the counter electrode 108 is transparent to the incident light. It is formed from a conductive material such as ITO. Note that the counter electrode 108 in the present embodiment is configured by one electrode common to all the pixel units 10, but may be configured to be divided for each pixel unit 10.
  • the photoelectric conversion layer 107 includes an organic photoelectric conversion film or an inorganic photoelectric conversion film that absorbs incident light and generates charges according to the absorbed light quantity. Note that a function of a charge blocking layer or the like that suppresses charge injection from the electrode to the photoelectric conversion layer 107 between the photoelectric conversion layer 107 and the counter electrode 108 or between the photoelectric conversion layer 107 and the pixel electrode 104. A layer may be provided.
  • a bias voltage is applied to the counter electrode 108 so that holes out of the charges generated in the photoelectric conversion layer 107 move to the pixel electrode 104 and electrons move to the counter electrode 108.
  • a bias voltage a voltage higher than the power supply voltage Vdd (a voltage supplied to the drain of the output transistor 12 in FIG. 1, for example, 3 V) is used as a bias voltage so that the photoelectric conversion layer 107 exhibits sufficiently high sensitivity. It is desirable to use about 5 to 20 V, for example 10 V).
  • FD is composed of an n-type impurity region electrically connected to the pixel electrode 104. Since the potential of the FD changes according to the amount of holes collected by the pixel electrode 104, the FD functions as a charge storage portion.
  • the output transistor 12 converts the charge signal accumulated in the FD into a voltage signal and outputs it to the signal line SL.
  • the gate terminal of the output transistor 12 is electrically connected to the FD, and the drain terminal is connected to the power supply voltage Vdd of the solid-state imaging device.
  • the source terminal of the output transistor 12 is connected to the drain terminal of the selection transistor 14.
  • the pixel unit 10 in the present embodiment is a so-called three-transistor circuit in which the FD, the pixel electrode 104 of the photoelectric conversion unit 11, and the gate terminal of the output transistor 12 are directly connected.
  • the reset transistor 13 resets the potential of the FD to a reference potential.
  • the FD is electrically connected to the drain terminal of the reset transistor 13, and the reset drain line RL is connected to the source terminal.
  • the reset drain line RL is provided for each column of the pixel units 10 and is shared by a plurality of pixel units 10 belonging to each column.
  • a feedback control circuit 16 is connected to one end of each reset drain line RL.
  • the feedback control circuit 16 is provided for each column of the pixel unit 10, and includes an inverting amplifier 16a and a voltage source 16b for supplying a reference voltage Vref.
  • the signal line SL is connected to the inverting input terminal ( ⁇ ) of the inverting amplifier 16a, the voltage source 16b is connected to the non-inverting input terminal (+), and the reset drain line RL is connected to the output terminal.
  • the reset transistor 13 When the reset pulse RS applied to the gate terminal of the reset transistor 13 becomes high level, the reset transistor 13 is turned on, and electrons are injected from the source to the drain of the reset transistor 13. Then, the injection of electrons causes the potential of the FD to drop and the potential of the FD to be reset to the reference potential.
  • the selection transistor 14 When the selection transistor 14 is turned on at this time, the potential of the FD is changed to the output transistor. 12, input to the feedback control circuit 16 via the selection transistor 14 and the signal line SL.
  • the feedback control circuit 16 feedback-controls the FD potential based on the current potential of the FD and the reference voltage Vref supplied from the voltage source 16b. At this time, if the gain of the output transistor 12 is 1 and the threshold voltage of the output transistor is Vth, the potential of the signal line SL is Vref, the potentials of the reset drain lines RL and FD are Vref + Vth, and the FD potential is constant. Maintained. Thus, by performing feedback control of the potential of the FD, reset kTC noise of the reset transistor 13 can be reduced.
  • the selection transistor 14 has a source terminal connected to the signal line SL, and selectively outputs a signal output from the output transistor 12 of each pixel unit 10 to the signal line SL provided for each column. belongs to.
  • the selection pulse RW applied to the gate terminal of the selection transistor 14 becomes a high level, the selection transistor 14 is turned on, whereby a signal output from the output transistor 12 of each pixel unit 10 is output to the signal line SL.
  • FIG. 2 is a schematic cross-sectional view of a solid-state imaging device 100 in which a large number of pixel portions 10 shown in FIG. 1 are two-dimensionally arranged.
  • the same name and reference numeral are assigned to the same configuration as the pixel unit 10 shown in FIG.
  • the solid-state imaging device 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a photoelectric conversion layer 107, and a counter electrode. 108, a sealing layer 110, a color filter 111, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116.
  • the substrate 101 is a glass substrate or a semiconductor substrate such as Si.
  • An insulating layer 102 is formed on the substrate 101.
  • a plurality of pixel electrodes 104 and one or more connection electrodes 103 are formed on the surface of the insulating layer 102.
  • the photoelectric conversion layer 107 generates an electric charge according to the received light as described above.
  • the photoelectric conversion layer 107 is provided so as to cover the plurality of pixel electrodes 104.
  • the photoelectric conversion layer 107 has a constant film thickness on the pixel electrode 104, but there is no problem even if the film thickness changes outside the pixel portion (outside the effective pixel area).
  • the counter electrode 108 is an electrode facing the pixel electrode 104, and is provided so as to cover the photoelectric conversion layer 107.
  • the counter electrode 108 is formed up to the connection electrode 103 arranged outside the photoelectric conversion layer 107 and is electrically connected to the connection electrode 103.
  • connection unit 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply unit 115.
  • the counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103. Note that the counter voltage supply unit 115 may be configured not directly on the substrate 101 but directly connected to an external power source.
  • the readout circuit 116 includes the FD, the output transistor 12, the reset transistor 13, and the selection transistor 14 shown in FIG. 1, and is wired by a metal wiring (not shown) in the insulating layer 102.
  • the readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104. Note that the reading circuit 116 is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102.
  • the sealing layer 110 is provided so as to cover the counter electrode 108.
  • the sealing layer 110 is provided in order to prevent the photoelectric conversion layer 107 from being deteriorated by water or oxygen in the atmosphere, and may be formed not by a single layer but by a stack of a plurality of inorganic material films.
  • a laminated film of an AlO x film formed by an atomic layer deposition method (ALCVD method) and a SiO x N y film formed by a chemical vapor deposition method (CVD method) may be used.
  • the color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110.
  • the light shielding layer 113 is formed in a region other than the region where the color filter 111 is provided on the sealing layer 110, and prevents light from entering the photoelectric conversion layer 107 formed outside the effective pixel region.
  • a Bayer color filter can be used as the color filter 111.
  • the color filter is not limited to this, and a complementary color filter or other known color filters can be used.
  • the protective layer 114 is formed on the color filter 111 and the light shielding layer 113, and protects the entire solid-state imaging device.
  • FIG. 3 is a diagram showing an overall configuration including peripheral circuits of the solid-state imaging device 100 shown in FIG.
  • the solid-state imaging device 100 includes a vertical driver 121, a control unit 122, a signal processing circuit 123, a horizontal driver 124, an LVDS 125, a serial conversion unit 126, and a pad 127. It has.
  • the pixel area shown in FIG. 3 represents an area where the pixel portions 10 of the solid-state imaging device 100 shown in FIG. 2 are arranged.
  • a signal line SL for outputting a signal from the output transistor 12 of each pixel unit 10 and the reset drain line RL described above are provided for each column of the pixel unit 10.
  • the feedback control circuit 16 is provided for each column of the pixel unit 10.
  • the control unit 122 includes a timing generator and the like, outputs the frame synchronization signal VD and the row synchronization signal HD, and controls the operation of the vertical driver 121 and the horizontal driver 124 to control the charge signal in the pixel unit 10. It controls reading and the like.
  • the vertical driver 121 outputs a reset pulse RS and a selection pulse RW to the readout circuit 116 based on the frame synchronization signal VD and the row synchronization signal HD output from the control unit 122, and controls the operation of the readout circuit 116.
  • the vertical driver 121 of this embodiment performs preliminary discharge of the FD before discharging the accumulated charge in the so-called FD conventionally performed, and also performs preliminary discharge of the (n + 1) th row at the same time as the discharge of the nth row.
  • the readout circuit 116 is controlled so as to be performed. The preliminary discharge of FD will be described in detail later.
  • the signal processing circuit 123 is provided corresponding to each column of the readout circuit 116.
  • the signal processing circuit 123 includes an ADC circuit that performs correlated double sampling (CDS) processing on the signals output from the corresponding columns and converts the processed signals into digital signals.
  • CDS correlated double sampling
  • the signal processed by the signal processing circuit 123 is stored in a memory provided for each column.
  • the horizontal driver 124 performs control to sequentially read out signals for one row of the pixel unit 10 stored in the memory of the signal processing circuit 123 and output the signals to the LVDS 125.
  • the LVDS 125 transmits a digital signal in accordance with LVDS (low voltage differential).
  • the serial conversion unit 126 converts an input parallel digital signal into a serial signal and outputs it.
  • the pad 127 is an interface used for input / output with the outside.
  • preliminary discharge, discharge, and readout operations are sequentially performed for each row of the pixel unit 10.
  • preliminary discharge, discharge, and readout operations for each row of the pixel unit 10 are performed by sequentially scanning in the column direction of the pixel unit 10.
  • the reading operation here includes both acquisition of signal charges accumulated in the FD after the charge accumulation period after discharge and acquisition of a reset level when the FD is reset after acquisition of the signal charges. Shall be included.
  • FIG. 4 shows an example of preliminary discharge, discharge, and readout timings in the (n ⁇ 1) th row (n is a natural number of 2 or more), the nth row, and the (n + 1) th row of the solid-state imaging device 100 of the present embodiment.
  • FIG. 5 shows reset pulses RS (n ⁇ 1) to RS (n + 1) and selection pulses RW (n ⁇ 1) to RW at the time of preliminary discharge, discharge and reading from the (n ⁇ 1) th row to the (n + 1) th row. (N + 1) is shown.
  • preliminary discharge, discharge, and readout are sequentially performed for the n ⁇ 1th row, the nth row, and the n + 1th row.
  • preliminary discharge of the pixel unit 10 of the n-th row is performed simultaneously with discharge of the pixel unit 10 of the n ⁇ 1-th row
  • reserve of the pixel unit 10 of the n + 1-th row is performed simultaneously with discharge of the pixel unit 10 of the n-th row. Discharge.
  • the n-1th line is discharged simultaneously with the nth preliminary discharge.
  • the reset pulse RS (n-1) for discharging is output from the vertical driver 121 to the pixel unit 10 in the (n-1) th row.
  • the reset transistor 13 of the pixel portion 10 is turned on by the reset pulse RS (n ⁇ 1), the potential of the FD is reset, and the discharge is performed.
  • the selection pulse RW (n ⁇ 1) is output from the vertical driver 121, and the selection transistor 14 of the pixel unit 10 in the (n ⁇ 1) th row is turned on.
  • a preliminary reset pulse RS (n) for preliminary discharge is output from the vertical driver 121 to the pixel unit 10 in the n-th row. Then, as shown in FIG. 6, the reset transistor 13 of the pixel unit 10 is turned on by the preliminary reset pulse RS (n), the potential of the FD is reset, and preliminary discharge is performed.
  • the selection pulse RW (n) is not output from the vertical driver 121, and the selection transistor 14 is not turned on. Accordingly, the potential of the FD of the pixel portion 10 in the n-th row is reset to Vref + Vth (n ⁇ 1) that is the potential of the reset drain line RL.
  • the potential of the FD of the pixel unit 10 in the n-th row changes greatly.
  • the reset transistor 13 is turned on in the pixel unit 10 in the n ⁇ 1th row, the potential of the FD of the pixel unit 10 in the n ⁇ 1th row is fixed. Therefore, the FD of the pixel unit 10 in the (n ⁇ 1) th row is not affected by the potential change of the FD of the pixel unit 10 in the nth row, and a false signal due to coupling between adjacent pixels is not generated.
  • the discharge reset pulse RS (n) for discharge is output from the vertical driver 121 to the pixel unit 10 in the n-th row when the n-th row is discharged. Is done. Then, as shown in FIG. 7, the discharge reset pulse RS (n) turns on the reset transistor 13 of the pixel portion 10, and the potential of the FD is reset to the reference potential again, thereby discharging. At this time, the selection pulse RW (n) is also output from the vertical driver 121, whereby the selection transistor 14 is turned on and feedback control is performed on the potential of the FD of the pixel unit 10 in the n-th row. As a result, the potential of the FD of the pixel unit 10 in the nth row is reset to Vref + Vth (n).
  • the preliminary discharge of the (n + 1) th row is performed simultaneously with the above-mentioned discharge of the nth row.
  • the feedback control of the potential of the FD of the (n + 1) th row is not performed during the preliminary discharge in the (n + 1) th row.
  • the potential of the FD of the pixel unit 10 in the (n + 1) th row is reset to Vref + Vth (n).
  • the potential of the FD of the pixel unit 10 in the (n + 1) th row also changes greatly during the preliminary discharge in the (n + 1) th row, but the reset transistor 13 is turned on in the pixel unit 10 in the nth row.
  • the potential of the FD of the pixel portion 10 is fixed. Therefore, no false signal is generated due to coupling between adjacent pixels.
  • the selection pulse RW (n (n) is applied from the vertical driver 121 to the pixel unit 10 in the n-th row when a predetermined charge accumulation period has elapsed. ) Is output.
  • the selection transistor 14 is turned on by the selection pulse RW (n), whereby the signal charge accumulated in the FD is converted into a voltage signal by the output transistor 12, and the signal line SL is converted into a signal level. Is output.
  • a read reset pulse RS (n) for acquiring a reset level is output from the vertical driver 121 to the pixel unit 10 in the n-th row.
  • the reset transistor 13 of the pixel unit 10 is turned on by this read reset pulse RS (n), and the potential of the FD of the n-th row is feedback-controlled again.
  • the potential of FD is reset to Vref + Vth (n).
  • the read reset pulse RS (n) is turned off, whereby the reset transistor 13 is turned off and a signal immediately after the reset is completed is output to the signal line SL as a reset level.
  • the signal processing circuit 123 calculates a difference between the signal level and the reset level, and uses this difference as an image signal.
  • the potential of the FD in the nth row is reset to Vref + Vth (n ⁇ 1) during preliminary discharge.
  • the potential of the FD in the nth row is reset to Vref + Vth (n). That is, the potential of the FD at the time of preliminary discharge is different from the potential of the FD at the time of discharge and reading.
  • the potential of the FD after preliminary discharge is reset again by the subsequent discharge, there is no practical problem even if this potential is different.
  • the potential of the FD at the time of discharging and reading is the same feedback-controlled potential, and the reset kTC noise is suppressed. Therefore, according to the present embodiment, it is possible to acquire images with less fixed pattern noise and reset kTC noise.
  • a feedback loop is formed by the feedback control circuit 16 when discharging is performed in a predetermined row, and the other rows are connected to the feedback control circuit 16.
  • the discharge of the nth row for which feedback control is performed and the resetting of reading of the rows other than the nth row are performed at different timings.
  • the afterimage suppression effect in the solid-state imaging device of the first embodiment will be described with reference to FIG.
  • the coupling rate between adjacent pixels is assumed to be a%.
  • the description will focus on the nth row.
  • the potential of the FD after discharging the nth row becomes Vref + Vth (n) by the feedback control in the nth row discharging.
  • the potential of the FD of the (n + 1) th row immediately before the discharge of the (n + 1) th row becomes Vref ⁇ Vth (n) because it becomes the potential after the discharge of the nth row.
  • the potential of the FD after discharging the n-th row is Vref + Vth (n) as described above.
  • the FD of the n-th row is in an electrically floating state.
  • the reading of the nth row is performed, and the signal corresponding to the potential of the FD in the above equation is added and read out.
  • the term of the above equation includes the threshold voltage Vth of the output transistor 12 and the feedback control circuit. Only 16 reference voltages Vref are included. That is, since the signal due to the afterimage is not added to the read signal, it is not affected by the afterimage.
  • the charge signal in the nth row is the spare signal in the (n + 1) th row.
  • the potential of the FD in the nth row when the preliminary discharge in the (n + 1) th row is completed can be set to the reference potential Vref + Vth (n).
  • the charge signal in the (n ⁇ 1) th row is not affected by the preliminary discharge in the nth row.
  • the potential of the FD of the (n ⁇ 1) th row when the preliminary discharge is completed can be set to the reference potential Vref + Vth (n ⁇ 1). That is, with such preliminary discharge, the potential of each row before discharge can be made constant, so that the signal superimposed by adjacent pixel coupling is constant regardless of the amount of signal charge accumulated in the adjacent pixel. is there.
  • the present invention is more effective as the coupling rate becomes higher.
  • the coupling rate becomes so large that it cannot be ignored, so the effect of the present invention is remarkable.
  • the solid-state imaging device 100 of the above-described embodiment it is possible to achieve both suppression of the influence of capacitive coupling between adjacent pixels and reduction of reset kTC noise.
  • the afterimage suppression effect can be obtained as described above.
  • the threshold voltage of the output transistor 12 is affected by the coupling between adjacent pixels when each row is discharged. A signal depending on Vth is added to the read signal.
  • the table below shows the signal level and reset level acquired in reading in each row and the image signal which is the difference between them.
  • the solid-state imaging device of the second embodiment is configured so as to cancel the noise caused by the Vth variation of the output transistor 12 as described above.
  • the solid-state imaging device of the second embodiment is configured to further perform a read preliminary reset after discharge of each row in the solid-state imaging device of the first embodiment and before resetting of reading. is there.
  • a reset at the time of reading is referred to as a read reset.
  • FIG. 11 shows an example of preliminary discharge, discharge, read preliminary reset, and read reset timing in the (n ⁇ 1) th row, the nth row, and the (n + 1) th row of the solid-state imaging device of the second embodiment.
  • FIG. 12 shows reset pulses RS (n ⁇ 1) to RS (n + 1) and selection pulses RW (n) at the time of preliminary discharge, discharge, read preliminary reset and read reset from the (n ⁇ 1) th row to the (n + 1) th row. -1) to RW (n + 1) are shown as examples.
  • FIGS. 11 and 12 it is assumed that time progresses from left to right in the upper stage, and then time progresses from left to right in the lower stage.
  • preliminary discharge, discharge, read preliminary reset, and read reset are sequentially performed on the n ⁇ 1th row, the nth row, and the n + 1th row.
  • the nth preliminary discharge is performed simultaneously with the n ⁇ 1th discharge
  • the n + 1th preliminary discharge is performed simultaneously with the nth discharge.
  • the read preliminary reset of the nth row is performed simultaneously with the read reset of the (n ⁇ 1) th row
  • the read preliminary reset of the (n + 1) th row is performed simultaneously with the read reset of the nth row.
  • the signal level of the nth row is acquired immediately before the read preliminary reset of the nth row, and the reset level of the nth row is acquired immediately after the read reset of the (n + 1) th row.
  • the signal level acquisition timing in each row is indicated by a circle, and the reset level acquisition timing is indicated by a cross.
  • the signal level and the reset level are acquired at the same timing as the nth row.
  • FIG. 13 is a diagram illustrating an overall configuration including a peripheral circuit of the solid-state imaging device according to the second embodiment.
  • the solid-state imaging device of the second embodiment is similar to the solid-state imaging device of the first embodiment in the configuration of the pixel unit 10 and the like, and the following points are mainly different from the solid-state imaging device of the first embodiment.
  • the following points are mainly different from the solid-state imaging device of the first embodiment.
  • the solid-state imaging device outputs a reset pulse and a selection pulse corresponding to each drive of preliminary ejection, ejection, signal level acquisition, readout preliminary reset, readout reset, and reset level acquisition in each row described above.
  • Five shift registers are provided.
  • a preliminary discharge shift register 121a includes a preliminary discharge shift register 121a, a discharge shift register 121b, a signal level acquisition / read preliminary reset shift register 121c, a read reset shift register 121d, and a reset level acquisition shift register 121e.
  • These five shift registers output a reset pulse or a selection pulse at a preset timing for each row based on a control signal output from a TG (timing generator) 122a in the control unit 122.
  • signal level acquisition and read preliminary reset are performed in the same row within the same row selection period, they can be performed by a pulse signal from one shift register. Since discharge, readout reset and reset level acquisition are performed in different rows within the same row selection period, a shift register is required for each operation.
  • the signal processing circuit 123 of the solid-state imaging device of the second embodiment has three CDS circuits (correlated doubles) of the first, second, and third CDS circuits 123a, 123b, and 123c for each signal line SL.
  • a sampling processing circuit performs correlated double sampling processing.
  • the first, second, and third CDS circuits 123a, 123b, and 123c are provided for the respective signal lines SL. Note that the number of CDS circuits is not limited to three, and three or more CDS circuits may be provided for each signal line SL.
  • the first, second, and third CDS circuits 123a, 123b, and 123c are sequentially switched at the signal level acquisition timing of each row. For example, when the signal level of the (n ⁇ 1) th row is acquired, the signal level is acquired by the first CDS circuit 123a. When the signal level of the nth row is acquired, the signal level is acquired by the second CDS circuit 123b. When the signal level is acquired, the signal level is acquired by the third CDS circuit 123c. The switching from the first CDS circuit 123a to the third CDS circuit 123c is sequentially repeated every time the signal levels of the three rows are acquired.
  • the signal level of the n-th row is acquired when a predetermined charge accumulation period has elapsed.
  • the selection pulse RW (n) is output from the signal level acquisition / readout preliminary reset shift register 121c to the nth row.
  • the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW (n), whereby the signal charge accumulated in the FD is converted into a voltage signal by the output transistor 12 and output as a signal level to the signal line SL.
  • the read preliminary reset of the nth row is performed simultaneously with the read reset of the n ⁇ 1th row.
  • a reset pulse RS (n ⁇ 1) for read reset is output from the read reset shift register 121d to the (n ⁇ 1) th row.
  • the reset pulse RS (n ⁇ 1) turns on the reset transistor 13 in the (n ⁇ 1) th row, resets the potential of the FD, and discharges.
  • the selection pulse RW (n ⁇ 1) is also output, and the selection transistor 14 in the (n ⁇ 1) th row is turned on.
  • a feedback loop is completed for the pixel unit 10 in the n ⁇ 1th row, and the potential of the FD is reset to Vref + Vth (n ⁇ 1).
  • the selection pulse RW (n ⁇ 1) falls after the reset pulse RS (n ⁇ 1) during the read reset. That is, the selection transistor 14 is turned off after the reset transistor 13. This is because if the selection transistor 14 is turned off first, the feedback loop may not be established and the reset level of the FD may fluctuate.
  • the read preliminary reset pulse RS (n) for the read preliminary reset is output from the read preliminary reset shift register 121c to the nth row. Then, as shown in FIG. 14, the read preliminary reset pulse RS (n) turns on the reset transistor 13 in the n-th row, resets the potential of the FD, and performs the read preliminary reset. However, at this time, since the feedback loop is established for the pixel unit 10 in the (n ⁇ 1) th row, the selection pulse RW (n) is not output and the selection transistor 14 is not turned on. Accordingly, the potential of the FD of the pixel portion 10 in the n-th row is reset to Vref + Vth (n ⁇ 1) that is the potential of the reset drain line RL.
  • the read reset of the nth row is performed simultaneously with the read preliminary reset of the (n + 1) th row.
  • the reset transistor 13 and select transistor 14 of the nth row are turned on as shown in FIG.
  • a feedback loop is completed for the pixel unit 10 in the n-th row, and the potential of the FD is reset to Vref + Vth (n).
  • the reset transistor of the (n + 1) th row is turned on and the selection transistor 14 is not turned on, similarly to the read preliminary reset of the nth row described above.
  • the potential of the FD of the pixel unit 10 in the (n + 1) th row changes during the read pre-reset in the (n + 1) th row.
  • the reset transistor 13 since the reset transistor 13 is turned on in the pixel unit 10 in the n-th row, the FD potential of the pixel unit 10 in the n-th row is fixed. Therefore, the FD of the pixel unit 10 in the n-th row is not affected by the potential change of the FD of the pixel unit 10 in the n + 1-th row.
  • the reset level of the nth row is acquired.
  • This reset level is acquired after the read reset of the (n + 1) th row.
  • the reason why the reset level is acquired at such timing is to reduce the influence of the Vth variation of the output transistor 12 to zero when the image signal is acquired by subtracting the reset level from the signal level of the nth row. Details will be described later.
  • the selection pulse RW (n) is output from the reset level acquisition shift register 121e, and only the selection transistor 14 in the nth row is turned on. Is done. As a result, the potential of the FD of the pixel unit 10 in the n-th row is output to the signal line SL as a reset level.
  • the difference between the signal level and the reset level is calculated in the CDS circuit of the signal processing circuit 123, and this difference is acquired as an image signal.
  • the potential of the FD after the discharge of the nth row is affected by the change in the potential of the FD of the (n + 1) th row due to the discharge of the (n + 1) th row.
  • the signal level of the n-th row is acquired at the elapse of a predetermined charge accumulation period.
  • the above-mentioned n rows A signal corresponding to the potential of the FD after the eye is discharged is acquired as a signal level.
  • the read preliminary reset of the n-th row is performed.
  • the read reset of the (n ⁇ 1) -th row is also performed at the same time. Is Vref + Vth (n ⁇ 1) as shown in FIG.
  • the readout reset of the nth row is performed, and the potential of the FD of the nth row becomes Vref + Vth (n) as shown in FIG.
  • the read reset of the (n + 1) th row is performed after the read reset of the nth row and before the acquisition of the reset level of the nth row.
  • the potential of the FD immediately before the read reset of the (n + 1) th row is Vref + Vth (n) by the feedback control of the read reset of the nth row as shown in FIG.
  • the potential of the FD immediately after the read reset of the (n + 1) th row is Vref + Vth (n + 1) as shown in FIG.
  • the FD of the nth row is in an electrically floating state, so that the potential of the FD of the nth row is coupled between adjacent pixels by the read reset of the (n + 1) th row.
  • the potential difference before and after the read reset of the (n + 1) th row ⁇ the coupling rate a% is affected. Therefore, the potential of the FD of the nth row after the read reset of the (n + 1) th row is as shown in FIG.
  • Vref + Vth (n) + ⁇ Vref + Vth (n) ⁇ ⁇ Vref + Vth (n + 1) ⁇ ⁇ a% Vref + Vth (n) + ⁇ Vth (n) ⁇ Vth (n + 1) ⁇ ⁇ a% It becomes.
  • both the signal level and the reset level are Vref + Vth (n) + ⁇ Vth (n) ⁇ Vth (n + 1) ⁇ ⁇ a% Therefore, zero is acquired as the image signal.
  • the table below shows the signal level and reset level acquired in each row and the image signal which is the difference between them.
  • the image signals in all rows can be set to zero.
  • the signal level is acquired before the read preliminary reset of the nth row, and the read preliminary reset of the (n + 1) th row is performed at the same time as the read reset of the nth row. Since the potential is set to Vref + Vth (n) and then the FD potential is set to Vref + Vth (n + 1) by the read reset of the (n + 1) th row, the reset level of the nth row is acquired. In other words, the influence of the Vth variation of the output transistor 12 on the image signal can be canceled.
  • the readout circuit of each pixel unit 10 may be laid out in a pattern having periodicity in the pixel unit column direction.
  • the readout circuit of the pixel portion when laid out in a mirror image relationship, the readout circuit is laid out in a pattern of 2 rows in the column direction, and the coupling capacitance between adjacent pixels is also 2 rows.
  • the capacitive coupling between the pixel units 10 in the nth row (odd row) and the n + 1th row (even row) is relatively large, and the n + 1th row (even row).
  • the (n + 2) -th row (odd-numbered row) pixel portions 10 are relatively small in capacitive coupling.
  • the capacitive coupling between the pixel portions 10 of the (n + 2) th row (odd row) and the (n + 3) th row (even row) becomes relatively large.
  • FIG. 19 shows a change in the potential of the FD when only discharging is performed as in the prior art without performing the above-described preliminary discharge in such a configuration.
  • the figure shows the time variation of the drive and FD potential when imaging is performed under conditions where uniform light is incident on all pixels.
  • a solid line indicates an ideal potential change when there is no capacitive coupling
  • a dotted line indicates an actual potential change.
  • the influence of the discharge of the (n + 1) th row on the potential of the FD of the pixel portions 10 and 20 of the nth row and the discharge of the (n + 3) th row are n + 2 rows.
  • the influence on the FD potential of the pixel portions 10 and 20 of the eye is large, the influence of the discharge of the (n + 2) th row on the potential of the FD of the pixel portions 10 and 20 on the (n + 1) th row is small.
  • the even-numbered lines n + 1 and n + 3 can obtain an output almost equal to the case without capacitive coupling, while the odd-numbered lines n and n + 2 have no capacitive coupling.
  • the output will be very different. That is, even if uniform light is incident on the pixel portions 10 and 20 from the n-th row to the n + 3-th row, the charges read out by the odd-numbered pixel portions 10 and 20 and the even-numbered pixel portions 10 and 20 are read.
  • the magnitudes of the signals are different, and horizontal lines appear every other line on the read image.
  • the influence of the capacitive coupling described above can be suppressed, so that the occurrence of horizontal stripes can be prevented. it can.
  • the readout circuit of the pixel unit 10 is not limited to the 2-row cycle, and may be laid out with a pattern of a 3-row cycle or a 4-row cycle, for example.
  • the capacitive coupling formed between adjacent pixels in the column direction is a pattern that periodically changes in the column direction, it may be laid out in any periodic structure. The effect of the present invention becomes remarkable.
  • the reset transistor 13, the output transistor 12, and the selection transistor 14 are composed of n-channel MOS transistors, and holes are collected by the pixel electrode 104.
  • the present invention is not limited to this, and the reset transistor 13, the output transistor 12, and the selection transistor 14 are configured by p-channel MOS transistors, and electrons are collected by the pixel electrode 104 and a charge signal corresponding to the amount of the electrons is collected. May be read by the signal read circuit 116 formed of a p-channel MOS transistor.
  • holes are collected by the pixel electrode 104 and read out by the signal read circuit 116 formed of an n-channel MOS transistor, or as described above, the pixel electrode
  • the signal read circuit 116 formed of an n-channel MOS transistor, or as described above, the pixel electrode
  • the electrons are collected by the pixel electrode, and this is read out by an n-channel MOS transistor.
  • the voltage amplitude of the FD is large as compared with the case where it is configured to read by a circuit.
  • the FD of the pixel portion 10 of the first and second embodiments is shown in FIG. In this way, the protection circuit 17 may be provided. Since the number of components of the readout circuit 116 increases, the coupling rate increases. However, according to the present embodiment, there is no problem because it is possible to suppress deterioration in image quality due to the coupling rate.
  • the solid-state imaging device of the above-described embodiment can be used for various imaging devices.
  • the imaging device include a digital camera, a digital video camera, an electronic endoscope, and a camera-equipped mobile phone.

Abstract

 A solid-state imaging element on which pixel units are multiply arranged in two dimensions, and an imaging apparatus provided with the solid-state imaging element, wherein there is obtained an appropriate image signal in which the effect of capacitive coupling formed between adjacent pixel rows can be adequately suppressed, and reset kTC noise is reduced. When a signal charge stored in a storage unit (FD) of a pixel unit (10) is discharged, the signal charge stored in the storage unit (FD) during the charge storage time is subsequently obtained, the storage unit (FD) is reset after obtaining the signal charge, and a charge storage read operation for obtaining the reset level of the storage unit (FD) is performed in row order, an advance discharge is performed before the discharge for each row to discharge a preliminary charge from the storage unit (FD), the discharge of the nth row (n being an integer) and the advance discharge of the n+1th row are performed simultaneously, and feedback control is performed at the time of discharge using a feedback control circuit (16) provided for each line of the pixel unit.

Description

固体撮像素子および撮像装置Solid-state imaging device and imaging apparatus
 本発明は、光の照射を受けて電荷を発生する光電変換部を備えた固体撮像素子およびその固体撮像素子を備えた撮像装置に関するものである。 The present invention relates to a solid-state imaging device including a photoelectric conversion unit that generates electric charge upon irradiation with light, and an imaging device including the solid-state imaging device.
 近年、固体撮像素子の高感度化、画素微細化に対応するために、シリコン基板の上方に一対の電極とこれらで挟まれた光電変換層を含む光電変換部を設け、この光電変換層で発生した電荷を上記一対の電極の一方からシリコン基板に移動させて蓄積し、この蓄積電荷に応じた信号を、シリコン基板に形成した信号読出し回路で読み出す光電変換層積層型の固体撮像素子が注目されている。 In recent years, in order to cope with high sensitivity and pixel miniaturization of solid-state imaging devices, a photoelectric conversion unit including a pair of electrodes and a photoelectric conversion layer sandwiched between these electrodes is provided above the silicon substrate, and generated in this photoelectric conversion layer A photoelectric conversion layer stacked type solid-state imaging device is drawing attention, in which a stored charge is transferred from one of the pair of electrodes to a silicon substrate and accumulated, and a signal corresponding to the accumulated charge is read by a signal readout circuit formed on the silicon substrate. ing.
 このような固体撮像素子として、たとえば特許文献1には、図21に示すように、光電変換部201と、光電変換部201において発生した電荷を蓄積するフローティングディフュージョンFD(以下、単にFDという)と、FDに蓄積された電荷に対応した電圧を出力する出力トランジスタ202と、FDに蓄積された電荷をリセットするリセットトランジスタ203と、出力トランジスタ202から出力された信号を信号線に選択的に出力する選択トランジスタ204とを備えた画素部200が2次元状に多数配列された固体撮像素子が提案されている。この固体撮像素子は、FDと光電変換部201との間にトランジスタが設けられていない、いわゆる3トランジスタの構成の回路であり、FDと光電変換部201とが電気的に直接接続されたものである。 As such a solid-state imaging device, for example, in Patent Document 1, as shown in FIG. 21, a photoelectric conversion unit 201 and a floating diffusion FD (hereinafter simply referred to as FD) that accumulates charges generated in the photoelectric conversion unit 201. The output transistor 202 that outputs a voltage corresponding to the charge accumulated in the FD, the reset transistor 203 that resets the charge accumulated in the FD, and the signal output from the output transistor 202 are selectively output to the signal line. A solid-state imaging device has been proposed in which a large number of pixel portions 200 each including a selection transistor 204 are two-dimensionally arranged. This solid-state imaging device is a circuit having a so-called three-transistor structure in which no transistor is provided between the FD and the photoelectric conversion unit 201, and the FD and the photoelectric conversion unit 201 are electrically connected directly. is there.
 ここで、上述したような固体撮像素子においては、画素部200の各行についてそれぞれ排出および電荷信号の読み出し動作が順次行われる。図22は、n行目~n+2行目の画素部200の排出および電荷信号の読み出し動作のタイミングを示すものである。 Here, in the solid-state imaging device as described above, the discharge operation and the readout operation of the charge signal are sequentially performed for each row of the pixel unit 200. FIG. 22 shows the timing of the discharge operation of the pixel portion 200 and the read operation of the charge signal in the nth to n + 2th rows.
 図22に示すように、蓄積期間の開始時には、まず、不要電荷の排出が行われる。排出は、リセットパルスRSによって画素部200のリセットトランジスタ203がオンされ、FDに蓄積された電荷がリセットされることで行われる。 As shown in FIG. 22, at the start of the accumulation period, unnecessary charges are first discharged. The discharge is performed when the reset transistor 203 of the pixel portion 200 is turned on by the reset pulse RS and the charge accumulated in the FD is reset.
 リセットトランジスタ203がオフされ、排出が完了するとこの時点からFDへの電荷の蓄積が開始する。そして、所定の電荷蓄積期間が経過した際に、画素部200に選択パルスRWが出力され、この選択パルスRWによって選択トランジスタ204がオンし、これによりFDに蓄積された信号電荷が出力トランジスタ202によって電圧信号に変換され、蓄積信号として信号線に出力される。その後、リセットトランジスタ203をオンすることで、FDがリセットされ、リセットされた後のFDの電位がリセット信号として信号線に出力される。蓄積信号とリセット信号との差分を画像信号として用いることで、固定パターンノイズの少ない画像の取得が可能となる。 When the reset transistor 203 is turned off and the discharge is completed, accumulation of electric charges in the FD starts from this point. When a predetermined charge accumulation period elapses, a selection pulse RW is output to the pixel unit 200, and the selection transistor 204 is turned on by the selection pulse RW, whereby the signal charge accumulated in the FD is output by the output transistor 202. It is converted into a voltage signal and output to the signal line as an accumulated signal. After that, the reset transistor 203 is turned on to reset the FD, and the reset potential of the FD is output to the signal line as a reset signal. By using the difference between the accumulated signal and the reset signal as an image signal, it is possible to acquire an image with less fixed pattern noise.
 上述したような画素部200の行毎の排出および電荷信号の読み出し動作が、画素部200の列方向に順次走査されて行われることによって1フレームの画像信号が取得される。 The above-described discharge for each row of the pixel portion 200 and the readout operation of the charge signal are sequentially scanned in the column direction of the pixel portion 200, whereby one frame of image signal is acquired.
特開2011-54746号公報JP 2011-54746 A 国際公開第2012/137445号International Publication No. 2012/137445
 ここで、上述したような固体撮像素子においては、図21に示すように、画素部の配線や基板の不純物領域などの寄生容量に起因して、異なる行の隣接する画素部200間において容量カップリングが発生してしまう。特に、画素部の微細化が進むと、画素部本来の容量が小さくなるのに加えて、レイアウトの制限も厳しくなるため、容量カップリングの影響が必然的に大きくなってしまう。 Here, in the solid-state imaging device as described above, as shown in FIG. 21, due to the parasitic capacitance such as the wiring of the pixel portion or the impurity region of the substrate, the capacitance cup between the adjacent pixel portions 200 in different rows. A ring will occur. In particular, when the pixel portion is further miniaturized, the original capacitance of the pixel portion is reduced, and the layout is more severely limited. Therefore, the influence of capacitive coupling is inevitably increased.
 特に、上述した3トランジスタの構成では、画素ごとにFDが必要なこと、FDと光電変換部201との間にトランジスタが設けられておらず電気的に直接つながっていることから、隣接する画素部200のFD間の容量カップリングの影響が大きくなりやすい。この影響について説明する。 In particular, in the above-described three-transistor configuration, an FD is required for each pixel, and since no transistor is provided between the FD and the photoelectric conversion unit 201, the adjacent pixel units are electrically connected. The effect of capacitive coupling between 200 FDs tends to increase. This effect will be described.
 図23は図21に示す固体撮像素子において、全ての画素に均一な光が入射する条件で撮像を行った場合の駆動とFD電位の時間変化を示している。実線は容量カップリングが一切ない場合の理想的なFD電位を表し、破線は容量カップリングの影響を受けた場合のFDの電位変化を表す。隣接画素のFD電位の変化に伴い、着目画素のFD電位が変化してしまうのが、容量カップリングの影響がある場合の特徴である。 FIG. 23 shows changes in driving and FD potential over time when the solid-state imaging device shown in FIG. 21 performs imaging under conditions where uniform light is incident on all pixels. The solid line represents an ideal FD potential when there is no capacitive coupling, and the broken line represents a change in the potential of the FD when affected by capacitive coupling. The change in the FD potential of the pixel of interest with the change in the FD potential of the adjacent pixel is a feature when there is an influence of capacitive coupling.
 各行は図中の排出の時点でそれまでFDに蓄積していた電荷を排出し、読み出しの時点で排出から読み出しまでの蓄積期間にFDに蓄積した信号電荷を読み出す。ここで、n+1行目に注目すると、時刻t1において信号の読み出しが完了し、FDの電位が基準電位になる。その後、時刻t2において排出を行い、FDの電位を基準電位にした上で、蓄積を開始する。そして時刻t5において読み出しを行い、時刻t2から時刻t5の間にFDに蓄積した信号電荷に応じた信号を出力する。 Each line discharges the charge accumulated in the FD until the time of discharge in the figure, and reads out the signal charge accumulated in the FD during the accumulation period from the discharge to the read at the time of reading. Here, paying attention to the (n + 1) th row, the signal reading is completed at the time t1, and the potential of the FD becomes the reference potential. Thereafter, discharging is performed at time t2, accumulation is started after the potential of FD is set to the reference potential. Then, reading is performed at time t5, and a signal corresponding to the signal charge accumulated in the FD between time t2 and time t5 is output.
 一方、n行目に注目すると、時刻t2より前の時刻t3において排出を行い、蓄積を開始する。そして、時刻t2より後の時刻t4において読み出しを行う。すなわち、n行目の蓄積期間中(t3~t4の間)にn+1行目の排出を行うことになる。 On the other hand, when attention is paid to the n-th row, discharging is performed at time t3 before time t2, and accumulation is started. Then, reading is performed at time t4 after time t2. That is, the n + 1th row is discharged during the accumulation period of the nth row (between t3 and t4).
 ここでn行目とn+1行目の間の容量カップリングが大きい場合、時刻t2におけるn+1行目のFD電位の大きな変化に伴い、n行目のFD電位も変化してしまう。容量カップリングがない場合には時刻t3から時刻t4まで単調にFD電位が変化するのに対し、容量カップリングが大きい場合、時刻t3から時刻t2まで単調にFD電位が変化した後、時刻t2において電位が一旦下がり、時刻t4までその電位から信号電荷の蓄積によってFD電位が上昇することになる。このため、時刻t4においてn行目の信号を読み出す際に、実線で示した本来の信号レベルに比べて、点線で示すような本来の信号レベルよりも低い信号レベルになってしまう。 Here, when the capacitive coupling between the n-th row and the n + 1-th row is large, the FD potential of the n-th row also changes with a large change in the FD potential of the n + 1-th row at time t2. When there is no capacitive coupling, the FD potential changes monotonously from time t3 to time t4, whereas when the capacitive coupling is large, the FD potential changes monotonically from time t3 to time t2, and then at time t2. The potential decreases once, and the FD potential increases from the potential by accumulation of signal charges until time t4. For this reason, when the signal in the n-th row is read at time t4, the signal level is lower than the original signal level as indicated by the dotted line, compared to the original signal level indicated by the solid line.
 このような信号レベルの異常は、読み出す信号に比べて排出する際の電位変化が大きいほどに目立ちやすい。このため、固体撮像素子に入射する光が大きく、フレーム期間に比べて蓄積期間が短いほどこの影響が顕著になる。この結果、信号量が小さい場合のS/Nの低下や、露光期間に対する信号の直線性(リニアリティ)の低下などの問題を引き起こす。 Such an abnormality in the signal level is more conspicuous as the potential change when discharging is larger than the signal to be read out. For this reason, this effect becomes more conspicuous as the light incident on the solid-state imaging device is larger and the accumulation period is shorter than the frame period. As a result, problems such as a decrease in S / N when the signal amount is small and a decrease in signal linearity with respect to the exposure period are caused.
 また、たとえば上述した固体撮像素子において、ベイヤー配列のカラーフィルタが設けられている場合には、画素部200の列方向について、赤フィルタ(R)と緑フィルタ(G)とが交互に配列された画素部の列と、青フィルタ(B)と緑フィルタ(G)とが交互に配列された画素部の列とが存在することになる。 For example, in the solid-state imaging device described above, when a Bayer color filter is provided, red filters (R) and green filters (G) are alternately arranged in the column direction of the pixel unit 200. There will be a column of pixel portions and a column of pixel portions in which blue filters (B) and green filters (G) are alternately arranged.
 このような固体撮像素子に対して、R光とG光とを含むY光が照射された場合、緑フィルタが設けられた画素部200が、赤フィルタが設けられた画素部200と同じ列にある場合には、図24の上段に示すように、赤フィルタが設けられた画素部200の排出によって、緑フィルタが設けられた画素部200のFDの電位が減少し、その電荷信号G1の大きさが小さくなることになる。 When such a solid-state imaging device is irradiated with Y light including R light and G light, the pixel unit 200 provided with the green filter is arranged in the same column as the pixel unit 200 provided with the red filter. In some cases, as shown in the upper part of FIG. 24, the discharge of the pixel unit 200 provided with the red filter decreases the potential of the FD of the pixel unit 200 provided with the green filter, and the magnitude of the charge signal G1. Will be smaller.
 一方、緑フィルタが設けられた画素部200が、青フィルタが設けられた画素部200と同じ列にある場合には、図24の下段に示すように、青フィルタが設けられた画素部200には光が入射せず、そのFDの電位も変化しないため、青フィルタが設けられた画素部200の排出によって、緑フィルタが設けられた画素部200のFDの電位が影響を受けることはなく、上記電荷信号G1よりも大きい電荷信号G2が取得される。 On the other hand, when the pixel unit 200 provided with the green filter is in the same column as the pixel unit 200 provided with the blue filter, the pixel unit 200 provided with the blue filter is arranged in the lower row of FIG. Since no light is incident and the potential of the FD does not change, the discharge of the pixel portion 200 provided with the blue filter does not affect the potential of the FD of the pixel portion 200 provided with the green filter. A charge signal G2 larger than the charge signal G1 is acquired.
 すなわち、画素部200の列によって緑フィルタが設けられた画素部200の感度が異なるためカラーバランスが本来とは異なるものとなり、適切な画像信号を取得することができない。 That is, since the sensitivity of the pixel unit 200 provided with the green filter differs depending on the column of the pixel units 200, the color balance is different from the original, and an appropriate image signal cannot be acquired.
 また、たとえば上述した固体撮像素子においては容量カップリングに起因して残像が発生する。この影響を図25を用いて説明する。 Further, for example, in the above-described solid-state imaging device, an afterimage is generated due to capacitive coupling. This effect will be described with reference to FIG.
 まず、各行の排出前までに10000個の電子がFDに蓄積されており、隣接する行のカップリング率が1%の場合について説明する。なお、カップリング率とは、隣接する画素部200のFD間の電位変化の影響度のことである。例えば、カップリング率1%の場合、隣接画素の信号が変化した際に、その1%だけ信号が変化することを表している。カップリング率は寄生容量とFDの蓄積容量との比で決まり、画素部200のサイズが小さくなるほどレイアウトの自由度が下がり、カップリング率が高くなり易いことになる。 First, a case will be described in which 10000 electrons are accumulated in the FD before each row is discharged and the coupling rate of the adjacent row is 1%. Note that the coupling rate is the degree of influence of a potential change between FDs of adjacent pixel portions 200. For example, when the coupling rate is 1%, the signal changes by 1% when the signal of the adjacent pixel changes. The coupling rate is determined by the ratio between the parasitic capacitance and the storage capacitance of the FD. The smaller the size of the pixel portion 200, the lower the degree of freedom of layout and the higher the coupling rate.
 まず、n行目の排出によってn行目のFDに蓄積された10000個の電子は0個になる。しかしながら、次いで実行されるn+1行目のFDの排出により、n行目のFDは容量カップリングの影響を受けて、n+1行目のFDに蓄積されている10000個の電子が0個になるのに伴い、(0-10000)個の電子の1%の電子数に相当する電位となる。すなわち、n行目のFDは-100個の電子に相当する電位となる。そして、このあとn行目の読み出しが行われるため、n行目からは-100個の電子に相当する黒沈み残像が発生する。n+1行目についても同様に-100個の電子に相当する黒沈み残像が発生する。このように、隣接画素行間の容量カップリングに起因して蓄積電荷量×(-カップリング率)の残像が発生する。カップリング率が高いほど残像が顕著に大きくなる。 First, 10000 electrons accumulated in the FD of the nth row by discharging the nth row become zero. However, due to the subsequent discharge of the FD of the (n + 1) th row, the FD of the nth row is affected by the capacitive coupling, and 10000 electrons accumulated in the FD of the (n + 1) th row become zero. Accordingly, the potential corresponds to the number of electrons of 1% of (0-10000) electrons. That is, the FD in the nth row has a potential corresponding to −100 electrons. Then, since reading of the nth row is performed, a black sun afterimage corresponding to −100 electrons is generated from the nth row. Similarly, a black sun afterimage corresponding to −100 electrons is generated in the (n + 1) th row. As described above, an afterimage of accumulated charge amount × (−coupling ratio) is generated due to capacitive coupling between adjacent pixel rows. As the coupling rate increases, the afterimage becomes significantly larger.
 そこで、上述したような隣接画素行間の容量カップリングの影響を抑制するため、たとえば特許文献2においては、n+1行目の画素部のFDをリセットして基準電位とする際に、n行目の画素部のFDの電位を固定する方法が提案されている。 Therefore, in order to suppress the influence of the capacitive coupling between adjacent pixel rows as described above, for example, in Patent Document 2, when the FD of the pixel portion in the (n + 1) th row is reset to the reference potential, the nth row A method for fixing the potential of the FD in the pixel portion has been proposed.
 一方、上述した3トランジスタの固体撮像素子においては、排出および信号読出しのリセットの際に発生するリセットkTCノイズがキャンセルできないため問題となる。この問題に対して特許文献2においては、フィードバックリセットを行い、リセットkTCノイズを低減することが開示されている。 On the other hand, in the above-described three-transistor solid-state imaging device, there is a problem because reset kTC noise generated at the time of discharging and resetting signal readout cannot be canceled. For this problem, Patent Document 2 discloses that feedback reset is performed to reduce reset kTC noise.
 しかしながら、特許文献2には残像の抑制とリセットkTCノイズの低減を両立する構成については記載されていない。 However, Patent Document 2 does not describe a configuration that achieves both afterimage suppression and reset kTC noise reduction.
 本発明は、上記の事情に鑑み、隣接する画素行間に形成される容量カップリングの影響による残像を十分に抑制することができ、かつリセットkTCノイズが低減された適切な画像信号を取得することができる固体撮像素子およびその固体撮像素子を備えた撮像装置を提供することを目的とする。 In view of the above circumstances, the present invention obtains an appropriate image signal that can sufficiently suppress an afterimage due to the effect of capacitive coupling formed between adjacent pixel rows and that has reduced reset kTC noise. It is an object of the present invention to provide a solid-state imaging device capable of performing imaging and an imaging apparatus including the solid-state imaging device.
 本発明の固体撮像素子は、入射光の光量に応じた信号電荷を発生する光電変換部と、光電変換部において発生した信号電荷を蓄積する蓄積部と、蓄積部に蓄積された信号電荷に応じた電圧を出力する出力回路とを含み、光電変換部と蓄電部と出力回路の入力ノードとが電気的に接続された画素部が二次元状に複数配列され、蓄積部に蓄積された信号電荷を排出し、その排出後、電荷蓄積期間経過時において蓄電部に蓄積された信号電荷を取得し、かつ信号電荷の取得後に蓄電部をリセットして蓄電部のリセットレベルを取得する電荷蓄積読出動作を行順次に行うものであり、各行の排出の前に、蓄電部から予備的な電荷の排出を行う予備排出を行い、かつn行目(nは自然数)の排出とn+1行目の予備排出とを同時に行うものであり、画素部の列毎に、蓄電部が基準電位となるようにフィードバック制御を行うフィードバック制御回路が設けられ、排出およびリセットの際にフィードバック制御を行うものであることを特徴とする。 The solid-state imaging device of the present invention includes a photoelectric conversion unit that generates a signal charge corresponding to the amount of incident light, a storage unit that stores the signal charge generated in the photoelectric conversion unit, and a signal charge stored in the storage unit. A signal charge that is stored in the storage unit, and includes a plurality of pixel units that are electrically connected to the photoelectric conversion unit, the power storage unit, and the input node of the output circuit. Charge accumulation read operation of acquiring the signal charge accumulated in the power storage unit after the discharge, and resetting the power storage unit after acquiring the signal charge to acquire the reset level of the power storage unit Are performed sequentially in a row, and before each row is discharged, preliminary discharge is performed to discharge preliminary charges from the power storage unit, and n-th row (n is a natural number) and n + 1-th row preliminary discharge are performed. At the same time. For each column of the parts, the power storage unit is a feedback control circuit is provided for performing feedback control so that the reference potential, characterized in that performing feedback control during discharge and reset.
 また、上記本発明の固体撮像素子においては、リセットの際にフィードバック制御を行うようにできる。 Further, in the solid-state imaging device of the present invention, feedback control can be performed at the time of resetting.
 また、画素部を、出力回路と、信号電荷およびリセットレベルが出力される信号線との間に接続された行選択回路を備えたものとし、その行選択回路を、排出の際には導通し、予備排出の際には非導通となるようにできる。 Further, the pixel portion is provided with a row selection circuit connected between the output circuit and a signal line from which signal charges and reset levels are output, and the row selection circuit is made conductive when discharging. In the preliminary discharge, it can be made non-conductive.
 また、n行目の排出とn行目以外の行のリセットとを異なるタイミングで行うようにできる。 Also, the discharge of the nth row and the reset of rows other than the nth row can be performed at different timings.
 また、フィードバック制御回路を、基準電圧を供給する電圧源と、電圧源が接続された反転増幅器とを備えたものとできる。 Also, the feedback control circuit can be provided with a voltage source for supplying a reference voltage and an inverting amplifier to which the voltage source is connected.
 また、各行について、排出後であってリセットの前に、蓄電部から予備的な電荷の排出を行う読み出し予備リセットを行うようにできる。 Also, for each row, it is possible to perform a read preliminary reset for discharging preliminary charges from the power storage unit after discharging and before resetting.
 また、n行目のリセットとn+1行目の読み出し予備リセットとを同時に行うようにできる。 Also, the reset of the nth row and the read preliminary reset of the (n + 1) th row can be performed simultaneously.
 また、行選択回路を、リセットの際には導通させ、読み出し予備リセットの際には非導通とさせることができる。 Also, the row selection circuit can be turned on during resetting and non-conducted during read pre-reset.
 また、n行目の読み出し予備リセットの前に信号電荷を取得し、n+1行目の上記リセットの後にn行目のリセットレベルを取得するものとできる。 Also, the signal charge can be acquired before the read preliminary reset of the nth row, and the reset level of the nth row can be acquired after the reset of the (n + 1) th row.
 また、n+1行目の排出およびリセットの際に、n行目の蓄積部を電気的に浮いたフローティング状態にすることができる。 In addition, when discharging and resetting the (n + 1) th row, the storage unit in the nth row can be brought into an electrically floating state.
 また、予備排出を行うためのパルス信号を出力する予備排出用シフトレジスタと、排出を行うためのパルス信号を出力する排出用シフトレジスタと、信号電荷の取得および読み出し予備リセットを行うためのパルス信号を出力する信号レベル取得・読み出し予備排出用シフトレジスタと、上記リセットを行うためのパルス信号を出力する読み出しリセット用シフトレジスタと、リセットレベルの取得を行うためのパルス信号を出力するリセットレベル取得用シフトレジスタとを設けることができる。 Also, a preliminary discharge shift register that outputs a pulse signal for performing preliminary discharge, a discharge shift register that outputs a pulse signal for performing discharge, and a pulse signal for performing signal charge acquisition and read preliminary reset Signal level acquisition / reading preliminary discharge shift register, read reset shift register outputting pulse signal for resetting, and reset level acquisition outputting pulse signal for reset level acquisition A shift register can be provided.
 また、信号電荷およびリセットレベルが出力される各信号線に対して、それぞれ少なくとも3つの相関二重サンプリング処理回路を設けることができる。 Also, at least three correlated double sampling processing circuits can be provided for each signal line from which signal charges and reset levels are output.
 また、画素部を、画素単位で区画された第1の電極と光電変換部を挟んで画素電極に対向して設けられた第2の電極とを備えたものとし、第2の電極を、全ての画素部について共通の電極とすることができる。 In addition, the pixel portion includes a first electrode partitioned in units of pixels and a second electrode provided to face the pixel electrode with the photoelectric conversion portion interposed therebetween. These pixel portions can be a common electrode.
 また、光電変換部を、有機光電変換膜を含むものとできる。 Also, the photoelectric conversion part can include an organic photoelectric conversion film.
 また、有機光電変換膜を、全ての画素部について共通なものとできる。 Also, the organic photoelectric conversion film can be common to all the pixel portions.
 また、光電変換部からの信号電荷を正孔とすることができる。 Also, the signal charge from the photoelectric conversion part can be made a hole.
 また、光電変換部からの信号電荷を電子とすることができる。 Also, the signal charge from the photoelectric conversion unit can be converted to electrons.
 また、蓄電部に保護回路を設けることができる。 Also, a protection circuit can be provided in the power storage unit.
 本発明の撮像装置は、上記本発明の固体撮像素子を備えたことを特徴とするものである。 An image pickup apparatus according to the present invention includes the solid-state image pickup element according to the present invention.
 本発明の固体撮像素子および撮像装置によれば、各行の画素部の蓄電部の排出の前に、蓄電部から予備的な電荷の排出を行う予備排出を行い、かつn行目の排出とn+1行目の予備排出とを同時に行うようにしたので、図21で説明したようにn行目とn+1行目との間の容量カップリングが比較的大きい場合においても、n行目のFDの電位に対するn+1行目の予備排出の影響を小さくすることができ、適切な画像信号を取得することができる。なお、その理由については、後で詳述する。 According to the solid-state imaging device and the imaging apparatus of the present invention, preliminary discharge for discharging preliminary charges from the power storage unit is performed before discharging of the power storage unit of the pixel unit of each row, and discharge of the nth row and n + 1 are performed. Since the preliminary discharge of the row is performed at the same time, the potential of the FD of the n-th row is obtained even when the capacitive coupling between the n-th row and the n + 1-th row is relatively large as described with reference to FIG. The effect of preliminary discharge on the (n + 1) th row can be reduced, and an appropriate image signal can be acquired. The reason will be described in detail later.
 また、排出およびリセットレベルを取得するためのリセットの際、画素部の列毎に設けたフィードバック制御回路を用いて蓄電部が基準電位となるようにフィードバック制御を行うようにしたので、リセットkTCノイズを低減してS/Nの高い画像信号を取得することができる。 Further, when resetting to obtain the discharge and reset levels, the feedback control circuit provided for each column of the pixel unit is used to perform the feedback control so that the power storage unit becomes the reference potential. And an image signal having a high S / N can be acquired.
 すなわち、本発明の固体撮像素子および撮像装置は、隣接画素間の容量カップリングの影響の抑制と、リセットkTCノイズの低減との両方を実現できるものである。 That is, the solid-state imaging device and imaging apparatus of the present invention can realize both suppression of the influence of capacitive coupling between adjacent pixels and reduction of reset kTC noise.
本発明の固体撮像素子の第1および第2実施形態を構成する画素部を示す図The figure which shows the pixel part which comprises 1st and 2nd embodiment of the solid-state image sensor of this invention. 本発明の固体撮像素子の第1および第2実施形態の断面模式図Sectional schematic diagram of the first and second embodiments of the solid-state imaging device of the present invention 本発明の固体撮像素子の第1の実施形態の全体構成を示す図The figure which shows the whole structure of 1st Embodiment of the solid-state image sensor of this invention. 本発明の固体撮像素子の第1の実施形態における予備排出、排出および電荷信号の読み出しのタイミングの一例を示す図The figure which shows an example of the timing of the preliminary | backup discharge | emission, discharge | emission, and the read-out of a charge signal in 1st Embodiment of the solid-state image sensor of this invention. 予備排出、排出および読み出しの際におけるリセットパルスRS(n-1)~RS(n+1)および選択パルスRW(n-1)~RW(n+1)を示す図FIG. 6 is a diagram showing reset pulses RS (n−1) to RS (n + 1) and selection pulses RW (n−1) to RW (n + 1) at the time of preliminary discharge, discharge and reading. n行目の予備排出と同時にn-1行目の排出を行う際における各画素部のリセットトランジスタと選択トランジスタの状態を示す図The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing discharge of the (n-1) th row simultaneously with the preliminary discharge of the nth row n行目の排出と同時にn+1行目の予備排出を行う際における各画素部のリセットトランジスタと選択トランジスタの状態を示す図The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing preliminary discharge of the (n + 1) th row simultaneously with discharge of the nth row n行目の信号レベルを取得する際における各画素部のリセットトランジスタと選択トランジスタの状態を示す図The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of acquiring the signal level of nth line n行目の読み出しリセットを行う際における各画素部のリセットトランジスタと選択トランジスタの状態を示す図The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing readout reset of the n-th row 本発明の固体撮像素子の第1の実施形態における残像の影響を説明するための図The figure for demonstrating the influence of the afterimage in 1st Embodiment of the solid-state image sensor of this invention. 本発明の固体撮像素子の第2の実施形態におけるn-1行目とn行目とn+1行目の予備排出、排出、読み出し予備リセットおよび読み出しリセットのタイミングの一例を示す図The figure which shows an example of the preliminary | backup discharge | emission of the n-1st line, the nth line, and the n + 1 line, discharge | emission preliminary read reset, and read reset timing in 2nd Embodiment of the solid-state image sensor of this invention. 本発明の固体撮像素子の第2の実施形態におけるn-1行目~n+1行目の予備排出、排出、読み出し予備リセットおよび読み出しリセットの際のリセットパルスRS(n-1)~RS(n+1)および選択パルスRW(n-1)~RW(n+1)の一例を示す図Reset pulses RS (n−1) to RS (n + 1) at the time of preliminary discharge, discharge, read preliminary reset and read reset of the (n−1) th to (n + 1) th rows in the second embodiment of the solid-state imaging device of the present invention And a diagram showing an example of selection pulses RW (n−1) to RW (n + 1) 本発明の固体撮像素子の第2の実施形態の全体構成を示す図The figure which shows the whole structure of 2nd Embodiment of the solid-state image sensor of this invention. n-1行目の読み出しリセットと同時にn行目の読み出し予備リセットを行う際における各画素部のリセットトランジスタと選択トランジスタの状態を示す図The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing the read reset of the nth row simultaneously with the read reset of the (n-1) th row n行目の読み出しリセットと同時にn+1行目の読み出し予備リセットを行う際における各画素部のリセットトランジスタと選択トランジスタの状態を示す図The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing the read-out preliminary reset of the (n + 1) -th row simultaneously with the read-out reset of the n-th row n+1行目の読み出しリセットを行う際における各画素部のリセットトランジスタと選択トランジスタの状態を示す図The figure which shows the state of the reset transistor and selection transistor of each pixel part at the time of performing the read reset of the (n + 1) th row 本発明の固体撮像素子の第2の実施形態における出力トランジスタのVthのバラツキの影響を説明するための図The figure for demonstrating the influence of the variation in Vth of the output transistor in 2nd Embodiment of the solid-state image sensor of this invention. 画素部の読出し回路を鏡像関係でレイアウトした場合における蓄電部FDの位置関係を示す図The figure which shows the positional relationship of the electrical storage part FD at the time of laying out the readout circuit of a pixel part by mirror image relation 図18に示す蓄電部FDの位置関係の場合に、予備排出を行うことなく排出のみを行った場合の蓄電部FDの電位変化を示す図The figure which shows the electrical potential change of the electrical storage part FD at the time of only discharging | emitting without performing preliminary discharge in the case of the positional relationship of the electrical storage part FD shown in FIG. 第1および第2の実施形態の画素部の蓄電部FDに保護回路を設けた構成を示す図The figure which shows the structure which provided the protection circuit in the electrical storage part FD of the pixel part of 1st and 2nd embodiment. 従来の固体撮像素子の画素部の構成と容量カップリングとを示す図The figure which shows the structure and capacitive coupling of the pixel part of the conventional solid-state image sensor 従来の固体撮像素子の排出および電荷信号の読み出しを説明するためのタイミングチャートTiming chart for explaining discharge of conventional solid-state imaging device and reading of charge signal 従来の固体撮像素子における容量カップリングの影響を説明するための図The figure for demonstrating the influence of the capacitive coupling in the conventional solid-state image sensor 従来の固体撮像素子における容量カップリングによる偽信号の影響を説明するための図The figure for demonstrating the influence of the false signal by the capacitive coupling in the conventional solid-state image sensor 従来の固体撮像素子における容量カップリングによる残像の影響を説明するための図The figure for demonstrating the influence of the afterimage by the capacitive coupling in the conventional solid-state image sensor
 以下、図面を参照して本発明の固体撮像素子の第1の実施形態について説明する。図1は、本実施形態の固体撮像素子を構成する画素部を示す図である。本実施形態の固体撮像素子は、図1に示す画素部10を2次元状に多数配列したものである。 Hereinafter, a first embodiment of the solid-state imaging device of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a pixel unit constituting the solid-state imaging device of the present embodiment. The solid-state imaging device of the present embodiment has a large number of pixel portions 10 shown in FIG.
 画素部10は、図1に示すように、光電変換部11と、フローティングディフュージョンFD(蓄積部に相当する)(以下、単にFDという)と、出力トランジスタ12(出力回路に相当する)と、リセットトランジスタ13と、選択トランジスタ14(選択回路に相当する)とを備えている。そして、出力トランジスタ12、リセットトランジスタ13および選択トランジスタ14は、それぞれnチャネルのMOSトランジスタで構成されている。なお、画素部10のサイズは5μm以下であることが望ましい。 As shown in FIG. 1, the pixel unit 10 includes a photoelectric conversion unit 11, a floating diffusion FD (corresponding to an accumulation unit) (hereinafter simply referred to as FD), an output transistor 12 (corresponding to an output circuit), a reset, A transistor 13 and a selection transistor 14 (corresponding to a selection circuit) are provided. The output transistor 12, the reset transistor 13, and the selection transistor 14 are each composed of an n-channel MOS transistor. Note that the size of the pixel portion 10 is desirably 5 μm or less.
 光電変換部11は、画素電極104(第1の電極に相当する)と、画素電極104に対向して設けられた対向電極108(第2の電極に相当する)と、画素電極104と対向電極108との間に設けられた光電変換層107とを備えている。 The photoelectric conversion unit 11 includes a pixel electrode 104 (corresponding to the first electrode), a counter electrode 108 (corresponding to the second electrode) provided to face the pixel electrode 104, the pixel electrode 104, and the counter electrode. And a photoelectric conversion layer 107 provided between them.
 画素電極104は、画素部10毎に区分された薄膜電極であり、たとえばITO、アルミニウム、窒化チタン、銅、タングステンなどのような透明または不透明な導電性材料から形成されるものである。画素電極104は、光電変換層107において発生した電荷を画素部10毎に捕集するものである。 The pixel electrode 104 is a thin film electrode divided for each pixel portion 10 and is formed of a transparent or opaque conductive material such as ITO, aluminum, titanium nitride, copper, tungsten, or the like. The pixel electrode 104 collects charges generated in the photoelectric conversion layer 107 for each pixel unit 10.
 対向電極108は、画素電極104との間で光電変換層107に電圧を印加し、光電変換層107に電界を生じさせるための電極である。対向電極108は、光電変換層107よりも光の入射面側に設けられており、対向電極108を透過して光電変換層107に光を入射させる必要があるため、入射光に対して透明なITOなどの導電性材料から形成される。なお、本実施形態における対向電極108は、全ての画素部10で共通の1枚の電極から構成されるものであるが、画素部10毎に分割する構成としてもよい。 The counter electrode 108 is an electrode for applying a voltage to the photoelectric conversion layer 107 between the pixel electrode 104 and generating an electric field in the photoelectric conversion layer 107. Since the counter electrode 108 is provided on the light incident surface side of the photoelectric conversion layer 107 and needs to be transmitted through the counter electrode 108 and incident on the photoelectric conversion layer 107, the counter electrode 108 is transparent to the incident light. It is formed from a conductive material such as ITO. Note that the counter electrode 108 in the present embodiment is configured by one electrode common to all the pixel units 10, but may be configured to be divided for each pixel unit 10.
 光電変換層107は、入射光を吸収し、その吸収した光量に応じた電荷を発生する有機光電変換膜または無機光電変換膜を含むものである。なお、光電変換層107と対向電極108との間、または光電変換層107と画素電極104との間に、電極から光電変換層107へ電荷が注入されるのを抑制する電荷ブロッキング層などの機能層を設けるようにしてもよい。 The photoelectric conversion layer 107 includes an organic photoelectric conversion film or an inorganic photoelectric conversion film that absorbs incident light and generates charges according to the absorbed light quantity. Note that a function of a charge blocking layer or the like that suppresses charge injection from the electrode to the photoelectric conversion layer 107 between the photoelectric conversion layer 107 and the counter electrode 108 or between the photoelectric conversion layer 107 and the pixel electrode 104. A layer may be provided.
 本実施形態の画素部10においては、光電変換層107で発生した電荷のうち正孔が画素電極104に移動し、電子が対向電極108に移動するように、対向電極108に対してバイアス電圧が印加される。光電変換層107が十分に高い感度を発現するように、バイアス電圧としては、読出し回路の電源電圧Vdd(図1において出力トランジスタ12のドレインに供給されている電圧、たとえば3V)よりも高い電圧(5~20V程度、たとえば10V)を用いることが望ましい。 In the pixel unit 10 of the present embodiment, a bias voltage is applied to the counter electrode 108 so that holes out of the charges generated in the photoelectric conversion layer 107 move to the pixel electrode 104 and electrons move to the counter electrode 108. Applied. As a bias voltage, a voltage higher than the power supply voltage Vdd (a voltage supplied to the drain of the output transistor 12 in FIG. 1, for example, 3 V) is used as a bias voltage so that the photoelectric conversion layer 107 exhibits sufficiently high sensitivity. It is desirable to use about 5 to 20 V, for example 10 V).
 FDは、画素電極104と電気的につながったn形不純物領域からなるものである。画素電極104に捕集された正孔の量に応じてFDの電位が変化するため、FDは電荷蓄積部として機能する。 FD is composed of an n-type impurity region electrically connected to the pixel electrode 104. Since the potential of the FD changes according to the amount of holes collected by the pixel electrode 104, the FD functions as a charge storage portion.
 出力トランジスタ12は、FDに蓄積された電荷信号を電圧信号に変換して信号線SLに出力するものである。出力トランジスタ12のゲート端子はFDに電気的に接続され、ドレイン端子は固体撮像素子の電源電圧Vddが接続されている。また、出力トランジスタ12のソース端子は選択トランジスタ14のドレイン端子に接続されている。本実施形態における画素部10は、FDと光電変換部11の画素電極104と出力トランジスタ12のゲート端子とが電気的に直接接続された、いわゆる3トランジスタ構成の回路である。 The output transistor 12 converts the charge signal accumulated in the FD into a voltage signal and outputs it to the signal line SL. The gate terminal of the output transistor 12 is electrically connected to the FD, and the drain terminal is connected to the power supply voltage Vdd of the solid-state imaging device. The source terminal of the output transistor 12 is connected to the drain terminal of the selection transistor 14. The pixel unit 10 in the present embodiment is a so-called three-transistor circuit in which the FD, the pixel electrode 104 of the photoelectric conversion unit 11, and the gate terminal of the output transistor 12 are directly connected.
 リセットトランジスタ13は、FDの電位を基準電位にリセットするものである。リセットトランジスタ13のドレイン端子にはFDが電気的に接続され、ソース端子にはリセットドレイン線RLが接続されている。リセットドレイン線RLは、画素部10の列毎に設けられるものであり、各列に属する複数の画素部10によって共用されるものである。また、各リセットドレイン線RLの一端にはフィードバック制御回路16が接続されている。 The reset transistor 13 resets the potential of the FD to a reference potential. The FD is electrically connected to the drain terminal of the reset transistor 13, and the reset drain line RL is connected to the source terminal. The reset drain line RL is provided for each column of the pixel units 10 and is shared by a plurality of pixel units 10 belonging to each column. A feedback control circuit 16 is connected to one end of each reset drain line RL.
 フィードバック制御回路16は、画素部10の列毎に設けられるものであり、反転増幅器16aと、基準電圧Vrefを供給する電圧源16bとを備えている。反転増幅器16aの反転入力端子(-)に信号線SLが接続され、非反転入力端子(+)に電圧源16bが接続され、出力端子にリセットドレイン線RLが接続されている。 The feedback control circuit 16 is provided for each column of the pixel unit 10, and includes an inverting amplifier 16a and a voltage source 16b for supplying a reference voltage Vref. The signal line SL is connected to the inverting input terminal (−) of the inverting amplifier 16a, the voltage source 16b is connected to the non-inverting input terminal (+), and the reset drain line RL is connected to the output terminal.
 リセットトランジスタ13のゲート端子に印加されるリセットパルスRSがハイレベルになると、リセットトランジスタ13がオンし、リセットトランジスタ13のソースからドレインに電子が注入される。そして、この電子の注入によってFDの電位が降下してFDの電位が基準電位にリセットされることになるが、このとき選択トランジスタ14がオンしている場合には、FDの電位が、出力トランジスタ12、選択トランジスタ14および信号線SLを介してフィードバック制御回路16に入力される。 When the reset pulse RS applied to the gate terminal of the reset transistor 13 becomes high level, the reset transistor 13 is turned on, and electrons are injected from the source to the drain of the reset transistor 13. Then, the injection of electrons causes the potential of the FD to drop and the potential of the FD to be reset to the reference potential. When the selection transistor 14 is turned on at this time, the potential of the FD is changed to the output transistor. 12, input to the feedback control circuit 16 via the selection transistor 14 and the signal line SL.
 そして、FDの現在の電位と電圧源16bから供給される基準電圧Vrefに基づいて、フィードバック制御回路16によってFDの電位がフィードバック制御される。このとき、出力トランジスタ12のゲインを1、出力トランジスタの閾値電圧をVthとすると、信号線SLの電位はVref、リセットドレイン線RLおよびFDの電位はVref+VthとなってFDの電位が一定の基準電位に維持される。このようにFDの電位をフィードバック制御することによって、リセットトランジスタ13のリセットkTCノイズを低減することができる。 The feedback control circuit 16 feedback-controls the FD potential based on the current potential of the FD and the reference voltage Vref supplied from the voltage source 16b. At this time, if the gain of the output transistor 12 is 1 and the threshold voltage of the output transistor is Vth, the potential of the signal line SL is Vref, the potentials of the reset drain lines RL and FD are Vref + Vth, and the FD potential is constant. Maintained. Thus, by performing feedback control of the potential of the FD, reset kTC noise of the reset transistor 13 can be reduced.
 選択トランジスタ14は、そのソース端子が信号線SLに接続されるものであり、各画素部10の出力トランジスタ12から出力される信号を列ごとに設けられた信号線SLに選択的に出力するためのものである。選択トランジスタ14のゲート端子に印加される選択パルスRWがハイレベルになると、選択トランジスタ14はオンし、これにより各画素部10の出力トランジスタ12から出力された信号が信号線SLに出力される。 The selection transistor 14 has a source terminal connected to the signal line SL, and selectively outputs a signal output from the output transistor 12 of each pixel unit 10 to the signal line SL provided for each column. belongs to. When the selection pulse RW applied to the gate terminal of the selection transistor 14 becomes a high level, the selection transistor 14 is turned on, whereby a signal output from the output transistor 12 of each pixel unit 10 is output to the signal line SL.
 図2は、図1に示した画素部10を2次元状に多数配列した固体撮像素子100の断面模式図である。なお、以下の説明では、図1に示した画素部10と同じ構成については同じ名称と符号を付している。 FIG. 2 is a schematic cross-sectional view of a solid-state imaging device 100 in which a large number of pixel portions 10 shown in FIG. 1 are two-dimensionally arranged. In the following description, the same name and reference numeral are assigned to the same configuration as the pixel unit 10 shown in FIG.
 固体撮像素子100は、図2に示すように、基板101と、絶縁層102と、接続電極103と、画素電極104と、接続部105と、接続部106と、光電変換層107と、対向電極108と、封止層110と、カラーフィルタ111と、遮光層113と、保護層114と、対向電極電圧供給部115と、読出し回路116とを備えている。 As shown in FIG. 2, the solid-state imaging device 100 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode 104, a connection portion 105, a connection portion 106, a photoelectric conversion layer 107, and a counter electrode. 108, a sealing layer 110, a color filter 111, a light shielding layer 113, a protective layer 114, a counter electrode voltage supply unit 115, and a readout circuit 116.
 基板101は、ガラス基板またはSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102の表面には複数の画素電極104と1つ以上の接続電極103が形成されている。 The substrate 101 is a glass substrate or a semiconductor substrate such as Si. An insulating layer 102 is formed on the substrate 101. A plurality of pixel electrodes 104 and one or more connection electrodes 103 are formed on the surface of the insulating layer 102.
 光電変換層107は、上述したように受光した光に応じて電荷を発生するものである。光電変換層107は、複数の画素電極104を覆うように設けられている。光電変換層107は、画素電極104の上では一定の膜厚となっているが、画素部以外(有効画素領域外)では膜厚が変化していても問題ない。 The photoelectric conversion layer 107 generates an electric charge according to the received light as described above. The photoelectric conversion layer 107 is provided so as to cover the plurality of pixel electrodes 104. The photoelectric conversion layer 107 has a constant film thickness on the pixel electrode 104, but there is no problem even if the film thickness changes outside the pixel portion (outside the effective pixel area).
 対向電極108は、画素電極104と対向する電極であり、光電変換層107を覆うように設けられている。対向電極108は、光電変換層107よりも外側に配置された接続電極103の上にまで形成されており、接続電極103と電気的に接続されている。 The counter electrode 108 is an electrode facing the pixel electrode 104, and is provided so as to cover the photoelectric conversion layer 107. The counter electrode 108 is formed up to the connection electrode 103 arranged outside the photoelectric conversion layer 107 and is electrically connected to the connection electrode 103.
 接続部106は、絶縁層102に埋設されており、接続電極103と対向電極電圧供給部115とを電気的に接続するためのプラグなどである。対向電極電圧供給部115は、基板101に形成され、接続部106および接続電極103を介して対向電極108に所定の電圧を印加するものである。なお、対向電圧供給部115は、基板101に形成された構成ではなく、直接外部の電源とつながった構成としても良い。 The connection unit 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply unit 115. The counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103. Note that the counter voltage supply unit 115 may be configured not directly on the substrate 101 but directly connected to an external power source.
 読出し回路116は、図1に示したFDと、出力トランジスタ12と、リセットトランジスタ13と、選択トランジスタ14とを備え、絶縁層102中の金属配線(図示せず)で配線されたものである。読出し回路116は、複数の画素電極104の各々に対応して基板101に設けられており、対応する画素電極104で捕集された電荷に応じた信号を読出すものである。なお、読出し回路116は、絶縁層102内に配置された図示しない遮光層によって遮光されている。 The readout circuit 116 includes the FD, the output transistor 12, the reset transistor 13, and the selection transistor 14 shown in FIG. 1, and is wired by a metal wiring (not shown) in the insulating layer 102. The readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104. Note that the reading circuit 116 is shielded from light by a light shielding layer (not shown) disposed in the insulating layer 102.
 封止層110は、対向電極108を覆うように設けられている。封止層110は光電変換層107が大気中の水や酸素によって劣化するのを防ぐために設けられており、単一層ではなく、複数の無機材料膜の積層などによって形成されていても良い。たとえば、原子層堆積法(ALCVD法)によって形成されたAlO膜と化学気相成膜法(CVD法)によって形成されたSiO膜の積層膜でも良い。 The sealing layer 110 is provided so as to cover the counter electrode 108. The sealing layer 110 is provided in order to prevent the photoelectric conversion layer 107 from being deteriorated by water or oxygen in the atmosphere, and may be formed not by a single layer but by a stack of a plurality of inorganic material films. For example, a laminated film of an AlO x film formed by an atomic layer deposition method (ALCVD method) and a SiO x N y film formed by a chemical vapor deposition method (CVD method) may be used.
 カラーフィルタ111は、封止層110上の各画素電極104と対向する位置に形成されている。遮光層113は、封止層110上のカラーフィルタ111を設けた領域以外に形成されており、有効画素領域以外に形成された光電変換層107に光が入射するのを防止するものである。カラーフィルタ111としては、たとえばベイヤー配列のカラーフィルタを用いることができるが、これに限らず、補色型のカラーフィルタやその他の公知なカラーフィルタを用いることができる。 The color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110. The light shielding layer 113 is formed in a region other than the region where the color filter 111 is provided on the sealing layer 110, and prevents light from entering the photoelectric conversion layer 107 formed outside the effective pixel region. As the color filter 111, for example, a Bayer color filter can be used. However, the color filter is not limited to this, and a complementary color filter or other known color filters can be used.
 保護層114は、カラーフィルタ111および遮光層113上に形成されており、固体撮像素子全体を保護するものである。 The protective layer 114 is formed on the color filter 111 and the light shielding layer 113, and protects the entire solid-state imaging device.
 図3は、図2に示した固体撮像素子100の周辺回路を含む全体構成を示す図である。図3に示すように、本実施形態の固体撮像素子100は、垂直ドライバ121と、制御部122と、信号処理回路123と、水平ドライバ124と、LVDS125と、シリアル変換部126と、パッド127とを備えている。図3に示す画素領域は、図2に示した固体撮像素子100の画素部10が配列された領域を表している。 FIG. 3 is a diagram showing an overall configuration including peripheral circuits of the solid-state imaging device 100 shown in FIG. As shown in FIG. 3, the solid-state imaging device 100 according to the present embodiment includes a vertical driver 121, a control unit 122, a signal processing circuit 123, a horizontal driver 124, an LVDS 125, a serial conversion unit 126, and a pad 127. It has. The pixel area shown in FIG. 3 represents an area where the pixel portions 10 of the solid-state imaging device 100 shown in FIG. 2 are arranged.
 画素領域には、各画素部10の出力トランジスタ12から信号が出力される信号線SLと、上述したリセットドレイン線RLとが画素部10の列毎に設けられている。そして、上述したようにフィードバック制御回路16が、画素部10の列毎に設けられている。 In the pixel area, a signal line SL for outputting a signal from the output transistor 12 of each pixel unit 10 and the reset drain line RL described above are provided for each column of the pixel unit 10. As described above, the feedback control circuit 16 is provided for each column of the pixel unit 10.
 制御部122は、タイミングジェネレータなどを備えたものであり、フレーム同期信号VDや行同期信号HDを出力するとともに、垂直ドライバ121や水平ドライバ124の動作を制御することによって画素部10における電荷信号の読出しなどを制御するものである。 The control unit 122 includes a timing generator and the like, outputs the frame synchronization signal VD and the row synchronization signal HD, and controls the operation of the vertical driver 121 and the horizontal driver 124 to control the charge signal in the pixel unit 10. It controls reading and the like.
 垂直ドライバ121は、制御部122から出力されたフレーム同期信号VDおよび行同期信号HDに基づいて、読出し回路116に対してリセットパルスRSや選択パルスRWを出力し、読出し回路116の動作を制御するものである。特に、本実施形態の垂直ドライバ121は、いわゆる従来から行われているFDにおける蓄積電荷の排出の前に、FDの予備排出を行うとともに、n行目の排出と同時にn+1行目の予備排出を行うように読出し回路116を制御するものである。FDの予備排出については、後で詳述する。 The vertical driver 121 outputs a reset pulse RS and a selection pulse RW to the readout circuit 116 based on the frame synchronization signal VD and the row synchronization signal HD output from the control unit 122, and controls the operation of the readout circuit 116. Is. In particular, the vertical driver 121 of this embodiment performs preliminary discharge of the FD before discharging the accumulated charge in the so-called FD conventionally performed, and also performs preliminary discharge of the (n + 1) th row at the same time as the discharge of the nth row. The readout circuit 116 is controlled so as to be performed. The preliminary discharge of FD will be described in detail later.
 信号処理回路123は、読出し回路116の各列に対応して設けられるものである。信号処理回路123は、対応する列から出力された信号に対し、相関二重サンプリング(CDS)処理を行ない、処理後の信号をデジタル信号に変換するADC回路を備えたものである。信号処理回路123で処理後の信号は、列毎に設けられたメモリに記憶される。 The signal processing circuit 123 is provided corresponding to each column of the readout circuit 116. The signal processing circuit 123 includes an ADC circuit that performs correlated double sampling (CDS) processing on the signals output from the corresponding columns and converts the processed signals into digital signals. The signal processed by the signal processing circuit 123 is stored in a memory provided for each column.
 水平ドライバ124は、信号処理回路123のメモリに記憶された画素部10の1行分の信号を順次読出してLVDS125に出力する制御を行なうものである。 The horizontal driver 124 performs control to sequentially read out signals for one row of the pixel unit 10 stored in the memory of the signal processing circuit 123 and output the signals to the LVDS 125.
 LVDS125は、LVDS(low voltage differential signaling)に従ってデジタル信号を伝送する。シリアル変換部126は、入力されるパラレルのデジタル信号をシリアルに変換して出力するものである。パッド127は、外部との入出力に用いるインターフェースである。 The LVDS 125 transmits a digital signal in accordance with LVDS (low voltage differential). The serial conversion unit 126 converts an input parallel digital signal into a serial signal and outputs it. The pad 127 is an interface used for input / output with the outside.
 次に、本実施形態の固体撮像素子100の動作について説明する。 Next, the operation of the solid-state imaging device 100 of this embodiment will be described.
 本実施形態の固体撮像素子100においては、画素部10の各行についてそれぞれ予備排出、排出、読み出し動作が順次行われる。また、画素部10の行毎の予備排出、排出および読み出し動作が、画素部10の列方向に順次走査されて行われる。なお、ここでいう読み出し動作には、排出後、電荷蓄積期間経過時においてFDに蓄積された信号電荷の取得と、その信号電荷の取得後にFDをリセットした際のリセットレベルの取得との両方が含まれるものとする。 In the solid-state imaging device 100 of this embodiment, preliminary discharge, discharge, and readout operations are sequentially performed for each row of the pixel unit 10. In addition, preliminary discharge, discharge, and readout operations for each row of the pixel unit 10 are performed by sequentially scanning in the column direction of the pixel unit 10. Note that the reading operation here includes both acquisition of signal charges accumulated in the FD after the charge accumulation period after discharge and acquisition of a reset level when the FD is reset after acquisition of the signal charges. Shall be included.
 図4は、本実施形態の固体撮像素子100のn-1行目(nは2以上の自然数)とn行目とn+1行目における予備排出、排出および読み出しのタイミングの一例を示すものである。また、図5は、n-1行目~n+1行目までの予備排出、排出および読み出しの際におけるリセットパルスRS(n-1)~RS(n+1)および選択パルスRW(n-1)~RW(n+1)を示すものである。 FIG. 4 shows an example of preliminary discharge, discharge, and readout timings in the (n−1) th row (n is a natural number of 2 or more), the nth row, and the (n + 1) th row of the solid-state imaging device 100 of the present embodiment. . FIG. 5 shows reset pulses RS (n−1) to RS (n + 1) and selection pulses RW (n−1) to RW at the time of preliminary discharge, discharge and reading from the (n−1) th row to the (n + 1) th row. (N + 1) is shown.
 図4に示すように、本実施形態の固体撮像素子100においては、n-1行目、n行目およびn+1行目に対して、予備排出、排出および読み出しを行順次で行う。また、このときn-1行目の画素部10の排出と同時にn行目の画素部10の予備排出を行い、n行目の画素部10の排出と同時にn+1行目の画素部10の予備排出を行う。以下、具体的な動作について、図6~図9も参照しながら説明する。 As shown in FIG. 4, in the solid-state imaging device 100 according to the present embodiment, preliminary discharge, discharge, and readout are sequentially performed for the n−1th row, the nth row, and the n + 1th row. At this time, preliminary discharge of the pixel unit 10 of the n-th row is performed simultaneously with discharge of the pixel unit 10 of the n−1-th row, and reserve of the pixel unit 10 of the n + 1-th row is performed simultaneously with discharge of the pixel unit 10 of the n-th row. Discharge. A specific operation will be described below with reference to FIGS.
 まず、n行目の予備排出と同時にn-1行目の排出が行われる。n-1行目の排出の際には、垂直ドライバ121からn-1行目の画素部10に対して、排出のためのリセットパルスRS(n-1)が出力される。そして、図6に示すように、このリセットパルスRS(n-1)によって画素部10のリセットトランジスタ13がオンされ、FDの電位がリセットされて排出が行われる。このとき、垂直ドライバ121から選択パルスRW(n-1)が出力され、n-1行目の画素部10の選択トランジスタ14がオンされる。これにより、n-1行目の画素部10に対してフィードバックループが完成し、n-1行目の画素部10の出力トランジスタの閾値をVth(n-1)とすると、信号線SLの電位がVref、リセットドレイン線RLの電位がVref+Vth(n-1)、FDの電位がVref+Vth(n-1)となる。 First, the n-1th line is discharged simultaneously with the nth preliminary discharge. When discharging in the (n-1) th row, the reset pulse RS (n-1) for discharging is output from the vertical driver 121 to the pixel unit 10 in the (n-1) th row. Then, as shown in FIG. 6, the reset transistor 13 of the pixel portion 10 is turned on by the reset pulse RS (n−1), the potential of the FD is reset, and the discharge is performed. At this time, the selection pulse RW (n−1) is output from the vertical driver 121, and the selection transistor 14 of the pixel unit 10 in the (n−1) th row is turned on. As a result, a feedback loop is completed for the pixel unit 10 in the (n−1) th row, and the potential of the signal line SL is assumed when the threshold value of the output transistor of the pixel unit 10 in the (n−1) th row is Vth (n−1). Is Vref, the potential of the reset drain line RL is Vref + Vth (n−1), and the potential of the FD is Vref + Vth (n−1).
 一方、n行目の予備排出に注目すると、垂直ドライバ121からn行目の画素部10に対して、予備排出のための予備リセットパルスRS(n)が出力される。そして、図6に示すように、この予備リセットパルスRS(n)によって画素部10のリセットトランジスタ13がオンされ、FDの電位がリセットされて予備排出が行われる。ただし、この際にはn-1行目の画素部10に対してフィードバックループが成立しているため、n行目の画素部10に対してフィードバックループを成立させることはできない。このため、垂直ドライバ121から選択パルスRW(n)は出力されず、選択トランジスタ14はオンされない。したがって、n行目の画素部10のFDの電位は、リセットドレイン線RLの電位であるVref+Vth(n-1)にリセットされる。 On the other hand, when attention is paid to the preliminary discharge in the n-th row, a preliminary reset pulse RS (n) for preliminary discharge is output from the vertical driver 121 to the pixel unit 10 in the n-th row. Then, as shown in FIG. 6, the reset transistor 13 of the pixel unit 10 is turned on by the preliminary reset pulse RS (n), the potential of the FD is reset, and preliminary discharge is performed. However, at this time, since a feedback loop is established for the pixel unit 10 in the (n-1) th row, a feedback loop cannot be established for the pixel unit 10 in the nth row. For this reason, the selection pulse RW (n) is not output from the vertical driver 121, and the selection transistor 14 is not turned on. Accordingly, the potential of the FD of the pixel portion 10 in the n-th row is reset to Vref + Vth (n−1) that is the potential of the reset drain line RL.
 ここで、n行目の予備排出の際にはn行目の画素部10のFDの電位が大きく変化する。しかしながら、n-1行目の画素部10ではリセットトランジスタ13がオンされているため、n-1行目の画素部10のFDの電位は固定されている。したがって、n-1行目の画素部10のFDはn行目の画素部10のFDの電位変化の影響を受けず、隣接画素間カップリングによる偽信号が発生しない。 Here, at the time of preliminary discharge in the n-th row, the potential of the FD of the pixel unit 10 in the n-th row changes greatly. However, since the reset transistor 13 is turned on in the pixel unit 10 in the n−1th row, the potential of the FD of the pixel unit 10 in the n−1th row is fixed. Therefore, the FD of the pixel unit 10 in the (n−1) th row is not affected by the potential change of the FD of the pixel unit 10 in the nth row, and a false signal due to coupling between adjacent pixels is not generated.
 次に、n行目の予備排出の後、n行目の排出の際には、垂直ドライバ121からn行目の画素部10に対して、排出のための排出リセットパルスRS(n)が出力される。そして、図7に示すように、この排出リセットパルスRS(n)によって画素部10のリセットトランジスタ13がオンされ、再びFDの電位が基準電位にリセットされて排出が行われる。そして、このとき、垂直ドライバ121から選択パルスRW(n)も出力され、これにより選択トランジスタ14がオンされてn行目の画素部10のFDの電位に対してフィードバック制御が行われる。この結果、n行目の画素部10のFDの電位はVref+Vth(n)にリセットされる。 Next, after the n-th preliminary discharge, the discharge reset pulse RS (n) for discharge is output from the vertical driver 121 to the pixel unit 10 in the n-th row when the n-th row is discharged. Is done. Then, as shown in FIG. 7, the discharge reset pulse RS (n) turns on the reset transistor 13 of the pixel portion 10, and the potential of the FD is reset to the reference potential again, thereby discharging. At this time, the selection pulse RW (n) is also output from the vertical driver 121, whereby the selection transistor 14 is turned on and feedback control is performed on the potential of the FD of the pixel unit 10 in the n-th row. As a result, the potential of the FD of the pixel unit 10 in the nth row is reset to Vref + Vth (n).
 そして、上述したn行目の排出と同時に、n+1行目の予備排出が行われる。n行目の予備排出の場合と同様に、n+1行目においても予備排出の際にはn+1行目のFDの電位のフィードバック制御は行われない。そして、n+1行目の画素部10のFDの電位はVref+Vth(n)にリセットされる。 And the preliminary discharge of the (n + 1) th row is performed simultaneously with the above-mentioned discharge of the nth row. As in the case of the preliminary discharge of the nth row, the feedback control of the potential of the FD of the (n + 1) th row is not performed during the preliminary discharge in the (n + 1) th row. Then, the potential of the FD of the pixel unit 10 in the (n + 1) th row is reset to Vref + Vth (n).
 このn+1行目の予備排出の際にもn+1行目の画素部10のFDの電位が大きく変化するが、n行目の画素部10ではリセットトランジスタ13がオンされているため、n牛御目の画素部10のFDの電位は固定されている。したがって、隣接画素間カップリングによる偽信号が発生しない。 The potential of the FD of the pixel unit 10 in the (n + 1) th row also changes greatly during the preliminary discharge in the (n + 1) th row, but the reset transistor 13 is turned on in the pixel unit 10 in the nth row. The potential of the FD of the pixel portion 10 is fixed. Therefore, no false signal is generated due to coupling between adjacent pixels.
 次に、上述したn行目の画素部10の排出が行われた後、所定の電荷蓄積期間が経過した際に、垂直ドライバ121からn行目の画素部10に対して選択パルスRW(n)が出力される。そして、図8に示すように、この選択パルスRW(n)によって選択トランジスタ14がオンし、これによりFDに蓄積された信号電荷が出力トランジスタ12によって電圧信号に変換されて信号レベルとして信号線SLに出力される。 Next, after the discharge of the pixel unit 10 in the n-th row described above, the selection pulse RW (n (n) is applied from the vertical driver 121 to the pixel unit 10 in the n-th row when a predetermined charge accumulation period has elapsed. ) Is output. Then, as shown in FIG. 8, the selection transistor 14 is turned on by the selection pulse RW (n), whereby the signal charge accumulated in the FD is converted into a voltage signal by the output transistor 12, and the signal line SL is converted into a signal level. Is output.
 次に、垂直ドライバ121からn行目の画素部10に対して、リセットレベルを取得するための読み出しリセットパルスRS(n)が出力される。そして、図9に示すように、この読み出しリセットパルスRS(n)によって画素部10のリセットトランジスタ13がオンされ、再びn行目のFDの電位がフィードバック制御され、n行目の画素部10のFDの電位がVref+Vth(n)にリセットされる。その後、読み出しリセットパルスRS(n)がオフとなり、これによりリセットトランジスタ13がオフされてリセットが完了した直後の信号がリセットレベルとして信号線SLに出力される。 Next, a read reset pulse RS (n) for acquiring a reset level is output from the vertical driver 121 to the pixel unit 10 in the n-th row. Then, as shown in FIG. 9, the reset transistor 13 of the pixel unit 10 is turned on by this read reset pulse RS (n), and the potential of the FD of the n-th row is feedback-controlled again. The potential of FD is reset to Vref + Vth (n). Thereafter, the read reset pulse RS (n) is turned off, whereby the reset transistor 13 is turned off and a signal immediately after the reset is completed is output to the signal line SL as a reset level.
 そして、信号処理回路123において信号レベルとリセットレベルとの差分が算出され、この差分を画像信号として用いる。 Then, the signal processing circuit 123 calculates a difference between the signal level and the reset level, and uses this difference as an image signal.
 本実施形態では、予備排出の際にはn行目のFDの電位はVref+Vth(n-1)にリセットされる。一方、排出および読み出しの際にはn行目のFDの電位はVref+Vth(n)にリセットされる。すなわち、予備排出の際のFDの電位が、排出および読み出しの際のFDの電位とは異なる。しかし、予備排出した後のFDの電位は、その後の排出によって再度リセットされることから、この電位が異なっていても実用上問題はない。一方、排出および読み出しの際のFDの電位はフィードバック制御された同一の電位になっており、リセットkTCノイズが抑圧されている。したがって、本実施形態によれば、固定パターンノイズ、リセットkTCノイズとも少ない画像の取得が可能となる。 In the present embodiment, the potential of the FD in the nth row is reset to Vref + Vth (n−1) during preliminary discharge. On the other hand, at the time of discharging and reading, the potential of the FD in the nth row is reset to Vref + Vth (n). That is, the potential of the FD at the time of preliminary discharge is different from the potential of the FD at the time of discharge and reading. However, since the potential of the FD after preliminary discharge is reset again by the subsequent discharge, there is no practical problem even if this potential is different. On the other hand, the potential of the FD at the time of discharging and reading is the same feedback-controlled potential, and the reset kTC noise is suppressed. Therefore, according to the present embodiment, it is possible to acquire images with less fixed pattern noise and reset kTC noise.
 なお、このフィードバック制御によりkTCノイズをより効果的に抑制するため、図5に示すように、排出リセットパルスRSと読み出しリセットパルスRSをオフする際、そのパルス信号が徐々に立ち下がる(オフ状態となる)テーパーリセットを行うようにしてもよい。 In order to more effectively suppress kTC noise by this feedback control, as shown in FIG. 5, when the discharge reset pulse RS and the read reset pulse RS are turned off, the pulse signals gradually fall (off state and Taper reset may be performed.
 上記説明では、n行目の画素部の動作を中心に説明したが、その他の行についても、上記と同様である。なお、上記第1の実施形態の固体撮像素子100は、所定の行において排出を行っている際にはフィードバック制御回路16によるフィードバックループが形成されるため、その他の行はフィードバック制御回路16に接続されない。すなわち、フィードバック制御が行われるn行目の排出とn行目以外の行の読み出しのリセットとは異なるタイミングで行われることになる。 In the above description, the operation of the pixel portion in the nth row has been mainly described, but the same applies to the other rows. In the solid-state imaging device 100 of the first embodiment, a feedback loop is formed by the feedback control circuit 16 when discharging is performed in a predetermined row, and the other rows are connected to the feedback control circuit 16. Not. In other words, the discharge of the nth row for which feedback control is performed and the resetting of reading of the rows other than the nth row are performed at different timings.
 次に、上記第1の実施形態の固体撮像素子における残像の抑制効果について、図10を参照しながら説明する。なお、ここでは残像の抑制効果の説明のため、各行の排出と読み出しとの間の新たな信号電荷の蓄積はないものとし、隣接画素間のカップリング率をa%として説明する。また、ここではn行目を中心として説明する。 Next, the afterimage suppression effect in the solid-state imaging device of the first embodiment will be described with reference to FIG. Here, in order to explain the afterimage suppression effect, it is assumed that no new signal charge is accumulated between the discharge and readout of each row, and the coupling rate between adjacent pixels is assumed to be a%. Here, the description will focus on the nth row.
 まず、n行目の排出後のFDの電位は、n行目の排出におけるフィードバック制御によりVref+Vth(n)となる。 First, the potential of the FD after discharging the nth row becomes Vref + Vth (n) by the feedback control in the nth row discharging.
 一方、n+1行目の排出直前のn+1行目のFDの電位は、n行目の排出後の電位となるのでVref-Vth(n)となる。そして、この電位の状態においてn+1行目の排出が行われると、排出後のn+1行目のFDの電位はフィードバック制御によりVref+Vth(n+1)になる。すなわち、n+1行目の排出の前後でFDの電位差は、
Vref+Vth(n)-{Vref+Vth(n+1)}=Vth(n)-Vth(n+1)
となる。
On the other hand, the potential of the FD of the (n + 1) th row immediately before the discharge of the (n + 1) th row becomes Vref−Vth (n) because it becomes the potential after the discharge of the nth row. When the discharge in the (n + 1) th row is performed in this potential state, the potential of the FD in the (n + 1) th row after discharge becomes Vref + Vth (n + 1) by feedback control. That is, the potential difference of FD before and after the discharge of the (n + 1) th row is
Vref + Vth (n) − {Vref + Vth (n + 1)} = Vth (n) −Vth (n + 1)
It becomes.
 ここで、n行目の排出後のFDの電位は、上述したようにVref+Vth(n)となっているが、このときn行目のFDは電気的にフローティング状態であるので、n+1行目の排出による隣接画素間のカップリングの影響によって上述した電位差×カップリング率a%だけ影響を受けることになる。したがって、n+1行目の排出後のn行目のFDの電位は、
Vref+Vth(n)+{Vth(n)-Vth(n+1)}×a%
となる。
Here, the potential of the FD after discharging the n-th row is Vref + Vth (n) as described above. At this time, the FD of the n-th row is in an electrically floating state. The influence of the coupling between adjacent pixels due to the discharge is affected by the above-described potential difference × coupling rate a%. Therefore, the potential of the FD of the nth row after the discharge of the (n + 1) th row is
Vref + Vth (n) + {Vth (n) −Vth (n + 1)} × a%
It becomes.
 続いて、n行目の読み出しが行われ、上式のFDの電位に相当する信号が付加されて読み出されることになるが、上式の項には出力トランジスタ12の閾値電圧Vthとフィードバック制御回路16の基準電圧Vrefしか含まれていない。すなわち、読み出される信号には残像の影響による信号は付加されないので、残像の影響を受けることはない。 Subsequently, the reading of the nth row is performed, and the signal corresponding to the potential of the FD in the above equation is added and read out. The term of the above equation includes the threshold voltage Vth of the output transistor 12 and the feedback control circuit. Only 16 reference voltages Vref are included. That is, since the signal due to the afterimage is not added to the read signal, it is not affected by the afterimage.
 なお、ここではn行目の読み出し信号に対する残像の抑制効果について説明したが、n-1行目、n+1行目についても同様である。 Although the afterimage suppression effect for the readout signal in the nth row has been described here, the same applies to the (n−1) th and n + 1th rows.
 また、本実施形態の固体撮像素子においては、図10に示すように、n+1行目の予備排出時にはn行目では排出が行われているので、n行目の電荷信号はn+1行目の予備排出の影響を受けず、n+1行目の予備排出完了時のn行目のFDの電位を基準電位Vref+Vth(n)とすることができる。また、n行目の予備排出時にはn-1行目では排出が行われているので、n-1行目の電荷信号はn行目の予備排出の影響を受けることがなく、n行目の予備排出完了時のn-1行目のFDの電位を基準電位Vref+Vth(n-1)にすることができる。すなわち、このような予備排出により、排出前の各行の電位を一定にすることができるため、隣接画素カップリングによって重畳される信号は、隣接画素に蓄積していた信号電荷量によらず一定である。 Further, in the solid-state imaging device of the present embodiment, as shown in FIG. 10, since the discharge is performed in the nth row during the preliminary discharge in the (n + 1) th row, the charge signal in the nth row is the spare signal in the (n + 1) th row. Without being affected by the discharge, the potential of the FD in the nth row when the preliminary discharge in the (n + 1) th row is completed can be set to the reference potential Vref + Vth (n). In addition, since discharge is performed in the (n−1) th row during the preliminary discharge in the nth row, the charge signal in the (n−1) th row is not affected by the preliminary discharge in the nth row. The potential of the FD of the (n−1) th row when the preliminary discharge is completed can be set to the reference potential Vref + Vth (n−1). That is, with such preliminary discharge, the potential of each row before discharge can be made constant, so that the signal superimposed by adjacent pixel coupling is constant regardless of the amount of signal charge accumulated in the adjacent pixel. is there.
 したがって、隣接画素間カップリングがある場合にも、残像だけでなく偽信号の発生も防止することができる。 Therefore, even when there is coupling between adjacent pixels, not only an afterimage but also a false signal can be prevented.
 本発明は、カップリング率が高くなるほど効果が大きく、特に、画素部10のサイズを5μm以下とした場合には、カップリング率が無視できないほど大きくなるので、本発明の効果が顕著である。 The present invention is more effective as the coupling rate becomes higher. In particular, when the size of the pixel portion 10 is 5 μm or less, the coupling rate becomes so large that it cannot be ignored, so the effect of the present invention is remarkable.
 すなわち、上記実施形態の固体撮像素子100によれば、隣接画素間の容量カップリングの影響の抑制と、リセットkTCノイズの低減との両方を実現することができる。 That is, according to the solid-state imaging device 100 of the above-described embodiment, it is possible to achieve both suppression of the influence of capacitive coupling between adjacent pixels and reduction of reset kTC noise.
 また、上述したように固体撮像素子に対してベイヤー配列などのカラーフィルタを設けた場合でも、画素部の列によって緑フィルタが設けられた画素部の感度が異なるようなことがないので、適切なカラーバランスの画像信号を取得することができる。 In addition, even when a color filter such as a Bayer array is provided for the solid-state imaging device as described above, the sensitivity of the pixel unit provided with the green filter does not differ depending on the column of the pixel unit. Color balance image signals can be acquired.
 次に、本発明の固体撮像素子の第2の実施形態について説明する。 Next, a second embodiment of the solid-state image sensor of the present invention will be described.
 第1の実施形態の固体撮像素子においては、上述したように残像の抑制効果を得ることができるが、一方で、各行の排出時における隣接画素間のカップリングの影響によって出力トランジスタ12の閾値電圧Vthに依存する信号が読み出し信号に付加されることになる。下表は、各行における読み出しにおいて取得される信号レベルとリセットレベルとこれらの差である画像信号とを示したものである。
Figure JPOXMLDOC01-appb-T000001
In the solid-state imaging device according to the first embodiment, the afterimage suppression effect can be obtained as described above. On the other hand, the threshold voltage of the output transistor 12 is affected by the coupling between adjacent pixels when each row is discharged. A signal depending on Vth is added to the read signal. The table below shows the signal level and reset level acquired in reading in each row and the image signal which is the difference between them.
Figure JPOXMLDOC01-appb-T000001
 上表に示すように最終的に取得される画像信号には、隣接する画素部10の出力トランジスタ12のVthの差分にカップリング率を積算した信号が付加されることになる。したがって、出力トランジスタ12のVthにバラツキが少なければ特に問題はないが、出力トランジスタ12のVthのバラツキが大きい場合や、カップリング率が高い場合には、Vthのバラツキに起因する画像信号のノイズが問題となる。たとえば、画素サイズが小さくなることによって、カップリング率が高くなった場合や出力トランジスタ12が微細化してVthのバラツキが大きくなった場合に問題となる。 As shown in the table above, a signal obtained by integrating the coupling rate to the difference in Vth of the output transistors 12 of the adjacent pixel units 10 is added to the image signal finally obtained. Therefore, there is no particular problem if there is little variation in Vth of the output transistor 12, but when the variation in Vth of the output transistor 12 is large or when the coupling rate is high, the noise of the image signal due to the variation in Vth It becomes a problem. For example, a problem arises when the coupling ratio increases due to a reduction in pixel size, or when the output transistor 12 becomes finer and the variation in Vth increases.
 第2の実施形態の固体撮像素子は、上述したような出力トランジスタ12のVthのバラツキに起因するノイズをキャンセルすることができるように構成されたものである。 The solid-state imaging device of the second embodiment is configured so as to cancel the noise caused by the Vth variation of the output transistor 12 as described above.
 具体的には、第2の実施形態の固体撮像素子は、上記第1の実施形態の固体撮像素子における各行の排出後、読み出しのリセットの前に、読み出し予備リセットをさらに行うようにしたものである。なお、本実施形態においては、読み出しの際のリセットを読み出しリセットという。 Specifically, the solid-state imaging device of the second embodiment is configured to further perform a read preliminary reset after discharge of each row in the solid-state imaging device of the first embodiment and before resetting of reading. is there. In the present embodiment, a reset at the time of reading is referred to as a read reset.
 図11は、第2の実施形態の固体撮像素子のn-1行目とn行目とn+1行目とにおける予備排出、排出、読み出し予備リセットおよび読み出しリセットのタイミングの一例を示すものである。また、図12は、n-1行目~n+1行目までの予備排出、排出、読み出し予備リセットおよび読み出しリセットの際におけるリセットパルスRS(n-1)~RS(n+1)および選択パルスRW(n-1)~RW(n+1)の一例を示すものである。なお、図11および図12においては、上段の左から右に向かって時間が進行し、その後、下段の左から右に向かって時間が進行しているものとする。 FIG. 11 shows an example of preliminary discharge, discharge, read preliminary reset, and read reset timing in the (n−1) th row, the nth row, and the (n + 1) th row of the solid-state imaging device of the second embodiment. Further, FIG. 12 shows reset pulses RS (n−1) to RS (n + 1) and selection pulses RW (n) at the time of preliminary discharge, discharge, read preliminary reset and read reset from the (n−1) th row to the (n + 1) th row. -1) to RW (n + 1) are shown as examples. In FIGS. 11 and 12, it is assumed that time progresses from left to right in the upper stage, and then time progresses from left to right in the lower stage.
 図11に示すように、第2の実施形態の固体撮像素子においては、n-1行目、n行目およびn+1行目に対して、予備排出、排出、読み出し予備リセットおよび読み出しリセットを行順次で行う。また、このとき第1の実施形態と同様に、n-1行目の排出と同時にn行目の予備排出を行い、n行目の排出と同時にn+1行目の予備排出を行う。そして、さらにn-1行目の読み出しリセットと同時にn行目の読み出し予備リセットを行い、n行目の読み出しリセットと同時にn+1行目の読み出し予備リセットを行う。 As shown in FIG. 11, in the solid-state imaging device of the second embodiment, preliminary discharge, discharge, read preliminary reset, and read reset are sequentially performed on the n−1th row, the nth row, and the n + 1th row. To do. At this time, similarly to the first embodiment, the nth preliminary discharge is performed simultaneously with the n−1th discharge, and the n + 1th preliminary discharge is performed simultaneously with the nth discharge. Further, the read preliminary reset of the nth row is performed simultaneously with the read reset of the (n−1) th row, and the read preliminary reset of the (n + 1) th row is performed simultaneously with the read reset of the nth row.
 また、図11に示すように、n行の読み出し予備リセットの直前にn行目の信号レベルを取得し、n+1行目の読み出しリセットの直後にn行目のリセットレベルを取得する。図11においては各行における信号レベルの取得のタイミングを丸印で表し、リセットレベルの取得のタイミングをバツ印で表している。n-1行およびn+1行についても、n行目と同様のタイミングで信号レベルとリセットレベルが取得される。 Further, as shown in FIG. 11, the signal level of the nth row is acquired immediately before the read preliminary reset of the nth row, and the reset level of the nth row is acquired immediately after the read reset of the (n + 1) th row. In FIG. 11, the signal level acquisition timing in each row is indicated by a circle, and the reset level acquisition timing is indicated by a cross. For the (n−1) th and n + 1th rows, the signal level and the reset level are acquired at the same timing as the nth row.
 図13は、第2の実施形態の固体撮像素子の周辺回路を含む全体構成を示す図である。なお、第2の実施形態の固体撮像素子は、画素部10の構成などは第1の実施形態の固体撮像素子と同様であり、以下、第1の実施形態の固体撮像素子と異なる点を中心に説明する。 FIG. 13 is a diagram illustrating an overall configuration including a peripheral circuit of the solid-state imaging device according to the second embodiment. Note that the solid-state imaging device of the second embodiment is similar to the solid-state imaging device of the first embodiment in the configuration of the pixel unit 10 and the like, and the following points are mainly different from the solid-state imaging device of the first embodiment. Explained.
 第2の実施形態の固体撮像素子は、上述した各行における予備排出、排出、信号レベル取得、読み出し予備リセット、読み出しリセットおよびリセットレベル取得の各駆動に対応するリセットパルスおよび選択パルスを出力するための5つのシフトレジスタが設けられている。 The solid-state imaging device according to the second embodiment outputs a reset pulse and a selection pulse corresponding to each drive of preliminary ejection, ejection, signal level acquisition, readout preliminary reset, readout reset, and reset level acquisition in each row described above. Five shift registers are provided.
 具体的には、予備排出用シフトレジスタ121a、排出用シフトレジスタ121b、信号レベル取得・読み出し予備リセット用シフトレジスタ121c、読み出しリセット用シフトレジスタ121dおよびリセットレベル取得用シフトレジスタ121eを備えている。これらの5つのシフトレジスタは、制御部122におけるTG(タイミングジェネレータ)122aから出力された制御信号に基づいて、各行に対して予め設定されたタイミングでリセットパルスまたは選択パルスを出力するものである。 Specifically, it includes a preliminary discharge shift register 121a, a discharge shift register 121b, a signal level acquisition / read preliminary reset shift register 121c, a read reset shift register 121d, and a reset level acquisition shift register 121e. These five shift registers output a reset pulse or a selection pulse at a preset timing for each row based on a control signal output from a TG (timing generator) 122a in the control unit 122.
 なお、信号レベル取得と読み出し予備リセットは、同じ行選択期間内において同じ行で行われるものであるので、これらに関しては1つのシフトレジスタからのパルス信号によって行うことができるが、これら以外の予備排出、排出、読み出しリセットおよびリセットレベル取得は、同じ行選択期間内においてそれぞれ異なる行で行われるため、各動作に対してそれぞれシフトレジスタが必要となる。 Since signal level acquisition and read preliminary reset are performed in the same row within the same row selection period, they can be performed by a pulse signal from one shift register. Since discharge, readout reset and reset level acquisition are performed in different rows within the same row selection period, a shift register is required for each operation.
 また、第2の実施形態の固体撮像素子の信号処理回路123は、各信号線SLに対して第1、第2および第3のCDS回路123a,123b,123cの3つのCDS回路(相関二重サンプリング処理回路)を備えている。このCDS回路は相関二重サンプリング処理を行うものである。 Further, the signal processing circuit 123 of the solid-state imaging device of the second embodiment has three CDS circuits (correlated doubles) of the first, second, and third CDS circuits 123a, 123b, and 123c for each signal line SL. A sampling processing circuit). This CDS circuit performs correlated double sampling processing.
 第2の実施形態の固体撮像素子においては、図11および図12に示すように、たとえばn-1行目の信号レベルを取得してからn-1行目のリセットレベルを取得するまでの間に、n行目の信号レベルとn+1行目の信号レベルを取得する必要があるので、3行の信号レベルを保持しておく必要がある。したがって、上述したように各信号線SLに対して第1、第2および第3のCDS回路123a,123b,123cをそれぞれ設けている。なお、CDS回路は、3つに限らず、各信号線SLに対して3つ以上のCDS回路を設けるようにしてもよい。 In the solid-state imaging device of the second embodiment, as shown in FIG. 11 and FIG. 12, for example, from the acquisition of the signal level of the (n-1) th row to the acquisition of the reset level of the (n-1) th row. In addition, since it is necessary to acquire the signal level of the nth row and the signal level of the (n + 1) th row, it is necessary to hold the signal level of the third row. Therefore, as described above, the first, second, and third CDS circuits 123a, 123b, and 123c are provided for the respective signal lines SL. Note that the number of CDS circuits is not limited to three, and three or more CDS circuits may be provided for each signal line SL.
 第1、第2および第3のCDS回路123a,123b,123cは、各行の信号レベル取得のタイミングで順次切り替えられる。たとえば、n-1行目の信号レベル取得時には第1のCDS回路123aによって信号レベルが取得され、n行目の信号レベル取得時には第2のCDS回路123bによって信号レベルが取得され、n+1行目の信号レベル取得時には第3のCDS回路123cによって信号レベルが取得される。そして、第1のCDS回路123aから第3のCDS回路123cまでの切り替えが3行の信号レベルの取得毎に順次繰り返される。 The first, second, and third CDS circuits 123a, 123b, and 123c are sequentially switched at the signal level acquisition timing of each row. For example, when the signal level of the (n−1) th row is acquired, the signal level is acquired by the first CDS circuit 123a. When the signal level of the nth row is acquired, the signal level is acquired by the second CDS circuit 123b. When the signal level is acquired, the signal level is acquired by the third CDS circuit 123c. The switching from the first CDS circuit 123a to the third CDS circuit 123c is sequentially repeated every time the signal levels of the three rows are acquired.
 次に、第2の実施形態の固体撮像素子の詳細な動作について、図12および図14~図16を参照しながら説明する。なお、各行の予備排出および排出の動作については、第1の実施形態の固体撮像素子と同様であるのでここでは説明を省略し、各行の排出以降の動作について説明する。また、ここではn行目の動作に注目して説明する。 Next, the detailed operation of the solid-state imaging device of the second embodiment will be described with reference to FIG. 12 and FIGS. Note that the preliminary discharge and discharge operations for each row are the same as those of the solid-state imaging device according to the first embodiment, so that the description thereof is omitted here, and the operations after the discharge of each row are described. Here, description will be given focusing on the operation of the nth row.
 まず、n行目について排出が終わった後、所定の電荷蓄積期間の経過時点において、n行目の信号レベルの取得が行われる。n行目の信号レベルの取得の際には、信号レベル取得・読み出し予備リセット用シフトレジスタ121cからn行目に対して選択パルスRW(n)が出力される。そして、この選択パルスRW(n)によって画素部10の選択トランジスタ14がオンし、これによりFDに蓄積された信号電荷が出力トランジスタ12によって電圧信号に変換されて信号レベルとして信号線SLに出力される。 First, after the discharge for the n-th row is completed, the signal level of the n-th row is acquired when a predetermined charge accumulation period has elapsed. When acquiring the signal level of the nth row, the selection pulse RW (n) is output from the signal level acquisition / readout preliminary reset shift register 121c to the nth row. Then, the selection transistor 14 of the pixel unit 10 is turned on by the selection pulse RW (n), whereby the signal charge accumulated in the FD is converted into a voltage signal by the output transistor 12 and output as a signal level to the signal line SL. The
 次に、n-1行目の読み出しリセットと同時にn行目の読み出し予備リセットが行われる。n-1行目の読み出しリセットの際には、読み出しリセット用シフトレジスタ121dからn-1行目に対して、読み出しリセットのためのリセットパルスRS(n-1)が出力される。そして、図14に示すように、このリセットパルスRS(n-1)によってn-1行目のリセットトランジスタ13がオンされ、FDの電位がリセットされて排出が行われる。このとき選択パルスRW(n-1)も出力され、n-1行目の選択トランジスタ14がオンされる。これにより、n-1行目の画素部10に対してフィードバックループが完成し、FDの電位がVref+Vth(n-1)にリセットされる。 Next, the read preliminary reset of the nth row is performed simultaneously with the read reset of the n−1th row. At the read reset of the (n−1) th row, a reset pulse RS (n−1) for read reset is output from the read reset shift register 121d to the (n−1) th row. Then, as shown in FIG. 14, the reset pulse RS (n−1) turns on the reset transistor 13 in the (n−1) th row, resets the potential of the FD, and discharges. At this time, the selection pulse RW (n−1) is also output, and the selection transistor 14 in the (n−1) th row is turned on. As a result, a feedback loop is completed for the pixel unit 10 in the n−1th row, and the potential of the FD is reset to Vref + Vth (n−1).
 なお、図12に示すように、読み出しリセットの際には、リセットパルスRS(n-1)よりも後に選択パルスRW(n-1)が立ち下がる。すなわち、リセットトランジスタ13よりも後に選択トランジスタ14をオフするようにしている。これは選択トランジスタ14が先にオフすると、フィードバックループが成立しなくなってFDのリセットレベルが変動してしまう可能性があるからである。 As shown in FIG. 12, the selection pulse RW (n−1) falls after the reset pulse RS (n−1) during the read reset. That is, the selection transistor 14 is turned off after the reset transistor 13. This is because if the selection transistor 14 is turned off first, the feedback loop may not be established and the reset level of the FD may fluctuate.
 一方、n行目の読み出し予備リセットに注目すると、読み出し予備リセット用シフトレジスタ121cからn行目に対して、読み出し予備リセットのための読み出し予備リセットパルスRS(n)が出力される。そして、図14に示すように、この読み出し予備リセットパルスRS(n)によってn行目のリセットトランジスタ13がオンされ、FDの電位がリセットされて読み出し予備リセットが行われる。ただし、この際にはn-1行目の画素部10に対してフィードバックループが成立しているため、選択パルスRW(n)は出力されず、選択トランジスタ14はオンされない。したがって、n行目の画素部10のFDの電位は、リセットドレイン線RLの電位であるVref+Vth(n-1)にリセットされる。 On the other hand, paying attention to the read preliminary reset of the nth row, the read preliminary reset pulse RS (n) for the read preliminary reset is output from the read preliminary reset shift register 121c to the nth row. Then, as shown in FIG. 14, the read preliminary reset pulse RS (n) turns on the reset transistor 13 in the n-th row, resets the potential of the FD, and performs the read preliminary reset. However, at this time, since the feedback loop is established for the pixel unit 10 in the (n−1) th row, the selection pulse RW (n) is not output and the selection transistor 14 is not turned on. Accordingly, the potential of the FD of the pixel portion 10 in the n-th row is reset to Vref + Vth (n−1) that is the potential of the reset drain line RL.
 次に、n+1行目の読み出し予備リセットと同時にn行目の読み出しリセットが行われる。n行目の読み出しリセットの際には、上述したn-1行目の読み出しリセットと同様に、図15に示すように、n行目のリセットトランジスタ13と選択トランジスタ14がオンされる。これにより、n行目の画素部10に対してフィードバックループが完成し、FDの電位がVref+Vth(n)にリセットされる。 Next, the read reset of the nth row is performed simultaneously with the read preliminary reset of the (n + 1) th row. At the time of read reset of the nth row, the reset transistor 13 and select transistor 14 of the nth row are turned on as shown in FIG. As a result, a feedback loop is completed for the pixel unit 10 in the n-th row, and the potential of the FD is reset to Vref + Vth (n).
 一方、n+1行目の読み出し予備リセットの際には、上述したn行目の読み出し予備リセットと同様に、n+1行目のリセットトランジスタがオンされ、選択トランジスタ14はオンされない。 On the other hand, in the read preliminary reset of the (n + 1) th row, the reset transistor of the (n + 1) th row is turned on and the selection transistor 14 is not turned on, similarly to the read preliminary reset of the nth row described above.
 ここで、n+1行目の読み出し予備リセットの際にはn+1行目の画素部10のFDの電位が変化する。しかしながら、n行目の画素部10ではリセットトランジスタ13がオンされているため、n行目の画素部10のFDの電位は固定されている。したがって、n行目の画素部10のFDはn+1行目の画素部10のFDの電位変化の影響を受けることはない。 Here, the potential of the FD of the pixel unit 10 in the (n + 1) th row changes during the read pre-reset in the (n + 1) th row. However, since the reset transistor 13 is turned on in the pixel unit 10 in the n-th row, the FD potential of the pixel unit 10 in the n-th row is fixed. Therefore, the FD of the pixel unit 10 in the n-th row is not affected by the potential change of the FD of the pixel unit 10 in the n + 1-th row.
 次に、n行目のリセットレベルが取得されるが、このリセットレベルの取得は、n+1行目の読み出しリセットの後に行われる。このようなタイミングでリセットレベルを取得するのは、n行目の信号レベルからリセットレベルを減算して画像信号を取得した場合に、出力トランジスタ12のVthのバラツキの影響をゼロにするためであるが、詳細は後で説明する。 Next, the reset level of the nth row is acquired. This reset level is acquired after the read reset of the (n + 1) th row. The reason why the reset level is acquired at such timing is to reduce the influence of the Vth variation of the output transistor 12 to zero when the image signal is acquired by subtracting the reset level from the signal level of the nth row. Details will be described later.
 n+1行目の読み出しリセットの際には、上述したn-1行目およびn行目の読み出しリセットと同様に、図16に示すように、n+1行目のリセットトランジスタ13と選択トランジスタ14がオンされる。これにより、n+1行目に対してフィードバックループが完成し、FDの電位がVref+Vth(n+1)にリセットされる。 In the read reset of the (n + 1) th row, the reset transistor 13 and the selection transistor 14 of the (n + 1) th row are turned on as shown in FIG. The As a result, a feedback loop is completed for the (n + 1) th row, and the potential of the FD is reset to Vref + Vth (n + 1).
 そして、n+1行目の読み出しリセットの後、リセットレベルの取得の際には、リセットレベル取得用シフトレジスタ121eから選択パルスRW(n)が出力され、これによりn行目の選択トランジスタ14のみがオンされる。これによりn行目の画素部10のFDの電位がリセットレベルとして信号線SLに出力される。 When the reset level is acquired after the read reset of the (n + 1) th row, the selection pulse RW (n) is output from the reset level acquisition shift register 121e, and only the selection transistor 14 in the nth row is turned on. Is done. As a result, the potential of the FD of the pixel unit 10 in the n-th row is output to the signal line SL as a reset level.
 そして、信号処理回路123のCDS回路において信号レベルとリセットレベルとの差分が算出され、この差分が画像信号として取得される。 Then, the difference between the signal level and the reset level is calculated in the CDS circuit of the signal processing circuit 123, and this difference is acquired as an image signal.
 次に、上述したようにn-1行目~n+1行目の画素部10を動作させた場合における出力トランジスタ12のVthのバラツキの抑制効果について、図17を参照しながら説明する。なお、ここではVthのバラツキの抑制効果の説明のため、各行の排出と読み出しの間の新たな信号電荷の蓄積はないものとし、隣接画素間のカップリング率をa%として説明する。また、ここではn行目を中心として説明する。 Next, the effect of suppressing the variation in Vth of the output transistor 12 when the pixel units 10 in the (n−1) th row to the (n + 1) th row are operated as described above will be described with reference to FIG. Here, for the purpose of explaining the effect of suppressing the variation in Vth, it is assumed that no new signal charge is accumulated between discharge and readout of each row, and the coupling rate between adjacent pixels is assumed to be a%. Here, the description will focus on the nth row.
 まず、n行目の排出後のFDの電位は、第1の実施形態で説明したように、n+1行目の排出によるn+1行目のFDの電位変化の影響により、
Vref+Vth(n)+{Vth(n)-Vth(n+1)}×a%
となる。
First, as described in the first embodiment, the potential of the FD after the discharge of the nth row is affected by the change in the potential of the FD of the (n + 1) th row due to the discharge of the (n + 1) th row.
Vref + Vth (n) + {Vth (n) −Vth (n + 1)} × a%
It becomes.
 そして、n行目の排出後、所定の電荷蓄積期間の経過時点においてn行目の信号レベルが取得されるが、ここでは信号電荷の蓄積はないものと仮定しているので、上記のn行目の排出後のFDの電位に相当する信号が信号レベルとして取得される。 Then, after the discharge of the n-th row, the signal level of the n-th row is acquired at the elapse of a predetermined charge accumulation period. Here, since it is assumed that no signal charge is accumulated, the above-mentioned n rows A signal corresponding to the potential of the FD after the eye is discharged is acquired as a signal level.
 n行目の信号レベルの取得後、n行目の読み出し予備リセットが行われるが、このときn-1行目の読み出しリセットも同時に行われるので、読み出し予備リセット後のn行目のFDの電位は、図14に示すようにVref+Vth(n-1)となる。 After obtaining the signal level of the n-th row, the read preliminary reset of the n-th row is performed. At this time, the read reset of the (n−1) -th row is also performed at the same time. Is Vref + Vth (n−1) as shown in FIG.
 次に、n行目の読み出しリセットが行われ、n行目のFDの電位は、図15に示すようにVref+Vth(n)となる。そして、n行目の読み出しリセットの後であってn行目のリセットレベルの取得の前に、n+1行目の読み出しリセットが行われる。n+1行目の読み出しリセットの直前のFDの電位は、図15に示すようにn行目の読み出しリセットのフィードバック制御によりVref+Vth(n)となっている。一方、n+1行目の読み出しリセットの直後のFDの電位は、図16に示すようにVref+Vth(n+1)となる。 Next, the readout reset of the nth row is performed, and the potential of the FD of the nth row becomes Vref + Vth (n) as shown in FIG. Then, after the read reset of the nth row and before the acquisition of the reset level of the nth row, the read reset of the (n + 1) th row is performed. The potential of the FD immediately before the read reset of the (n + 1) th row is Vref + Vth (n) by the feedback control of the read reset of the nth row as shown in FIG. On the other hand, the potential of the FD immediately after the read reset of the (n + 1) th row is Vref + Vth (n + 1) as shown in FIG.
 そして、n+1行目の読み出しリセットが行われる際、n行目のFDは電気的にフローティング状態であるので、n行目のFDの電位は、n+1行目の読み出しリセットによる隣接画素間のカップリングの影響によって、n+1行目の読み出しリセットの前後の電位差×カップリング率a%だけ影響を受けることになる。したがって、n+1行目の読み出しリセット後のn行目のFDの電位は、図16に示すように、
Vref+Vth(n)+{Vref+Vth(n)-{Vref+Vth(n+1)}×a%=Vref+Vth(n)+{Vth(n)-Vth(n+1)}×a%
となる。
When the read reset of the (n + 1) th row is performed, the FD of the nth row is in an electrically floating state, so that the potential of the FD of the nth row is coupled between adjacent pixels by the read reset of the (n + 1) th row. As a result, the potential difference before and after the read reset of the (n + 1) th row × the coupling rate a% is affected. Therefore, the potential of the FD of the nth row after the read reset of the (n + 1) th row is as shown in FIG.
Vref + Vth (n) + {Vref + Vth (n) − {Vref + Vth (n + 1)} × a% = Vref + Vth (n) + {Vth (n) −Vth (n + 1)} × a%
It becomes.
 そして、n+1行目の読み出しリセット後、上式のFDの電位に相当する信号がリセットレベルとして読み出され、信号レベルからリセットレベルが減算されて画像信号が取得されるが、本実施形態によれば、図17に示すように信号レベルとリセットレベルともに、
Vref+Vth(n)+{Vth(n)-Vth(n+1)}×a%
となるので、画像信号としてはゼロが取得されることになる。
Then, after the read reset of the (n + 1) th row, a signal corresponding to the potential of the above FD is read as a reset level, and the reset level is subtracted from the signal level to obtain an image signal. As shown in FIG. 17, both the signal level and the reset level are
Vref + Vth (n) + {Vth (n) −Vth (n + 1)} × a%
Therefore, zero is acquired as the image signal.
 下表は、各行おいて取得される信号レベルとリセットレベルとこれらの差である画像信号とを示したものである。
Figure JPOXMLDOC01-appb-T000002
The table below shows the signal level and reset level acquired in each row and the image signal which is the difference between them.
Figure JPOXMLDOC01-appb-T000002
 上表に示すように、全ての行の画像信号をゼロとすることができる。 As shown in the table above, the image signals in all rows can be set to zero.
 本実施形態によれば、n行目の読み出し予備リセットの前に信号レベルを取得しておき、n行目の読み出しリセットと同時にn+1行目の読み出し予備リセットを行うことによってn+1行目のFDの電位をVref+Vth(n)にし、その後、n+1行目の読み出しリセットによってFDの電位をVref+Vth(n+1)にした後に、n行目のリセットレベルを取得するようにしたので、信号レベルとリセットレベルとを同じ大きさにすることができ、すなわち、画像信号に対する出力トランジスタ12のVthのバラツキの影響をキャンセルすることができる。 According to the present embodiment, the signal level is acquired before the read preliminary reset of the nth row, and the read preliminary reset of the (n + 1) th row is performed at the same time as the read reset of the nth row. Since the potential is set to Vref + Vth (n) and then the FD potential is set to Vref + Vth (n + 1) by the read reset of the (n + 1) th row, the reset level of the nth row is acquired. In other words, the influence of the Vth variation of the output transistor 12 on the image signal can be canceled.
 また、上記第1および第2の実施形態の固体撮像素子100においては、各画素部10の読出し回路を画素部列方向について周期性を有するパターンでレイアウトするようにしてもよい。 Further, in the solid-state imaging device 100 of the first and second embodiments, the readout circuit of each pixel unit 10 may be laid out in a pattern having periodicity in the pixel unit column direction.
 たとえば、画素部の読出し回路を鏡像関係でレイアウトした場合、読出し回路は列方向について2行周期のパターンでレイアウトされることになり、隣接する画素間のカップリング容量も2行周期になる。 For example, when the readout circuit of the pixel portion is laid out in a mirror image relationship, the readout circuit is laid out in a pattern of 2 rows in the column direction, and the coupling capacitance between adjacent pixels is also 2 rows.
 すなわち、図18に示す模式図のように、たとえばn行目(奇数行)とn+1行目(偶数行)の画素部10間の容量カップリングが相対的に大きくなり、n+1行目(偶数行)とn+2行目(奇数行)の画素部10間の容量カップリングが相対的に小さくなる。また、n+2行目(奇数行)とn+3行目(偶数行)の画素部10間の容量カップリングが相対的に大きくなる。 That is, as shown in the schematic diagram of FIG. 18, for example, the capacitive coupling between the pixel units 10 in the nth row (odd row) and the n + 1th row (even row) is relatively large, and the n + 1th row (even row). ) And the (n + 2) -th row (odd-numbered row) pixel portions 10 are relatively small in capacitive coupling. Further, the capacitive coupling between the pixel portions 10 of the (n + 2) th row (odd row) and the (n + 3) th row (even row) becomes relatively large.
 このような構成において、上述した予備排出を行うことなく、従来のように排出のみを行う場合のFDの電位変化を示したのが図19である。全ての画素に均一な光が入射する条件で撮像を行った場合の駆動とFD電位の時間変化を示している。図19で実線は容量カップリングが全くない場合の理想的な電位変化を示し、点線が実際の電位変化を示している。図18に示す容量カップリングの大きさに従って、図19に示すように、n+1行目の排出がn行目の画素部10,20のFDの電位に及ぼす影響とn+3行目の排出がn+2行目の画素部10,20のFDの電位に及ぼす影響は大きいが、n+2行目の排出がn+1行目の画素部10,20のFDの電位に及ぼす影響は小さいことになる。この結果、偶数行であるn+1行目およびn+3行目は容量カップリングがない場合とほぼ等しい出力が得られるのに対し、奇数行であるn行目およびn+2行目は容量カップリングがない場合とは大きく異なる出力になる。すなわち、n行目~n+3行目までの画素部10,20に対して均一な光が入射したとしても、奇数行の画素部10,20と偶数行の画素部10,20とで読み出される電荷信号の大きさが異なり、読み出された画像上に1行おきの横筋が発生してしまう。 FIG. 19 shows a change in the potential of the FD when only discharging is performed as in the prior art without performing the above-described preliminary discharge in such a configuration. The figure shows the time variation of the drive and FD potential when imaging is performed under conditions where uniform light is incident on all pixels. In FIG. 19, a solid line indicates an ideal potential change when there is no capacitive coupling, and a dotted line indicates an actual potential change. According to the size of the capacitive coupling shown in FIG. 18, as shown in FIG. 19, the influence of the discharge of the (n + 1) th row on the potential of the FD of the pixel portions 10 and 20 of the nth row and the discharge of the (n + 3) th row are n + 2 rows. Although the influence on the FD potential of the pixel portions 10 and 20 of the eye is large, the influence of the discharge of the (n + 2) th row on the potential of the FD of the pixel portions 10 and 20 on the (n + 1) th row is small. As a result, the even-numbered lines n + 1 and n + 3 can obtain an output almost equal to the case without capacitive coupling, while the odd-numbered lines n and n + 2 have no capacitive coupling. The output will be very different. That is, even if uniform light is incident on the pixel portions 10 and 20 from the n-th row to the n + 3-th row, the charges read out by the odd-numbered pixel portions 10 and 20 and the even-numbered pixel portions 10 and 20 are read. The magnitudes of the signals are different, and horizontal lines appear every other line on the read image.
 これに対し、上記実施形態の固体撮像素子において説明したようなタイミングで予備排出を行うようにすれば、上述した容量カップリングの影響を抑制することができるので、横筋の発生を防止することができる。 On the other hand, if the preliminary discharge is performed at the timing as described in the solid-state imaging device of the above embodiment, the influence of the capacitive coupling described above can be suppressed, so that the occurrence of horizontal stripes can be prevented. it can.
 また、画素部10の読出し回路は、2行周期に限らず、たとえば3行周期や4行周期のパターンでレイアウトするようにしてもよい。要するに、列方向に隣接する画素間に形成される容量カップリングが、列方向について周期的に変化するようなパターンであれば如何なる周期構造でレイアウトしてもよく、このようにレイアウトされた場合、本発明の効果が顕著となる。 Further, the readout circuit of the pixel unit 10 is not limited to the 2-row cycle, and may be laid out with a pattern of a 3-row cycle or a 4-row cycle, for example. In short, as long as the capacitive coupling formed between adjacent pixels in the column direction is a pattern that periodically changes in the column direction, it may be laid out in any periodic structure. The effect of the present invention becomes remarkable.
 また、上記第1および第2の実施形態の固体撮像素子100においては、リセットトランジスタ13、出力トランジスタ12および選択トランジスタ14をnチャネルMOSトランジスタから構成し、画素電極104によって正孔を捕集するようにしたが、これに限らず、リセットトランジスタ13、出力トランジスタ12および選択トランジスタ14をpチャネルMOSトランジスタから構成するようにし、画素電極104で電子を捕集し、その電子の量に応じた電荷信号を、pチャネルMOSトランジスタで構成された信号読出し回路116で読み出すようにしてもよい。 In the solid-state imaging device 100 of the first and second embodiments, the reset transistor 13, the output transistor 12, and the selection transistor 14 are composed of n-channel MOS transistors, and holes are collected by the pixel electrode 104. However, the present invention is not limited to this, and the reset transistor 13, the output transistor 12, and the selection transistor 14 are configured by p-channel MOS transistors, and electrons are collected by the pixel electrode 104 and a charge signal corresponding to the amount of the electrons is collected. May be read by the signal read circuit 116 formed of a p-channel MOS transistor.
 上記第1および第2の実施形態のように画素電極104で正孔を捕集し、これをnチャネルMOSトランジスタで構成された信号読出し回路116で読み出す構成としたり、もしくは上述したように画素電極104で電子を捕集し、これをpチャネルMOSトランジスタで構成された信号読出し回路116で読み出す構成とした場合、画素電極によって電子を捕集し、これをnチャネルMOSトランジスタで構成された信号読出し回路によって読み出す構成とした場合と比較すると、FDの電圧振幅が大きい。このため、予備排出を行わない場合の排出時のFDの電位変化が大きいため、容量カップリングが隣接画素のFDの信号電荷に与える影響も大きいので、上述した予備排出の効果をより顕著に得ることができる。 As in the first and second embodiments, holes are collected by the pixel electrode 104 and read out by the signal read circuit 116 formed of an n-channel MOS transistor, or as described above, the pixel electrode When the electron is collected at 104 and read out by the signal reading circuit 116 constituted by a p-channel MOS transistor, the electrons are collected by the pixel electrode, and this is read out by an n-channel MOS transistor. The voltage amplitude of the FD is large as compared with the case where it is configured to read by a circuit. For this reason, since the potential change of the FD at the time of discharge when the preliminary discharge is not performed is large, the influence of the capacitive coupling on the signal charge of the FD of the adjacent pixel is large, so that the effect of the preliminary discharge described above can be obtained more remarkably. be able to.
 ただし、このような構成の場合、FDの電位が上昇し過ぎて回路が破壊される可能性があるため、第1および第2の実施形態の画素部10のFDに対して、図20に示すように保護回路17を設けた構成としても良い。読出し回路116の構成部品が多くなるため、カップリング率が大きくなるが、本実施形態によればカップリング率による画質の低下を抑制できるので問題ない。 However, in the case of such a configuration, since the potential of the FD may increase excessively and the circuit may be destroyed, the FD of the pixel portion 10 of the first and second embodiments is shown in FIG. In this way, the protection circuit 17 may be provided. Since the number of components of the readout circuit 116 increases, the coupling rate increases. However, according to the present embodiment, there is no problem because it is possible to suppress deterioration in image quality due to the coupling rate.
 また、上述した実施形態の固体撮像素子は、種々の撮像装置に用いることができる。撮像装置としては、たとえばデジタルカメラ、デジタルビデオカメラ、電子内視鏡、カメラ付携帯電話などがある。 Further, the solid-state imaging device of the above-described embodiment can be used for various imaging devices. Examples of the imaging device include a digital camera, a digital video camera, an electronic endoscope, and a camera-equipped mobile phone.

Claims (19)

  1.  入射光の光量に応じた信号電荷を発生する光電変換部と、該光電変換部において発生した信号電荷を蓄積する蓄積部と、該蓄積部に蓄積された信号電荷に応じた電圧を出力する出力回路とを含み、前記光電変換部と前記蓄電部と前記出力回路の入力ノードとが電気的に接続された画素部が二次元状に複数配列され、
     前記蓄積部に蓄積された信号電荷を排出し、該排出後、電荷蓄積期間経過時において前記蓄電部に蓄積された信号電荷を取得し、かつ該信号電荷の取得後に前記蓄電部をリセットして該蓄電部のリセットレベルを取得する電荷蓄積読出動作を行順次に行うものであり、
     各行の前記排出の前に、前記蓄電部から予備的な電荷の排出を行う予備排出を行い、かつn行目(nは自然数)の前記排出とn+1行目の前記予備排出とを同時に行うものであり、
     前記画素部の列毎に、前記蓄電部が基準電位となるようにフィードバック制御を行うフィードバック制御回路が設けられ、前記排出の際に前記フィードバック制御を行うものであることを特徴とする固体撮像素子。
    A photoelectric conversion unit that generates a signal charge corresponding to the amount of incident light, a storage unit that stores the signal charge generated in the photoelectric conversion unit, and an output that outputs a voltage corresponding to the signal charge stored in the storage unit A plurality of pixel units that are electrically connected to the photoelectric conversion unit, the power storage unit, and an input node of the output circuit,
    Discharging the signal charge stored in the storage unit, acquiring the signal charge stored in the power storage unit when the charge storage period has elapsed after the discharge, and resetting the power storage unit after acquiring the signal charge The charge accumulation and reading operation for acquiring the reset level of the power storage unit is performed in a row sequence,
    Prior to the discharge of each row, preliminary discharge for discharging preliminary charges from the power storage unit is performed, and the discharge in the nth row (n is a natural number) and the preliminary discharge in the (n + 1) th row are performed simultaneously. And
    A solid-state imaging device, wherein a feedback control circuit that performs feedback control so that the power storage unit becomes a reference potential is provided for each column of the pixel units, and performs the feedback control at the time of discharging. .
  2.  前記リセットの際に前記フィードバック制御を行うものである請求項1記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the feedback control is performed at the time of resetting.
  3.  前記画素部が、前記出力回路と、前記信号電荷およびリセットレベルが出力される信号線との間に接続された行選択回路を備えたものであり、
     該行選択回路が、前記排出の際には導通し、前記予備排出の際には非導通となるものである請求項1または2記載の固体撮像素子。
    The pixel portion includes a row selection circuit connected between the output circuit and a signal line from which the signal charge and a reset level are output.
    3. The solid-state imaging device according to claim 1, wherein the row selection circuit is turned on during the discharge and is turned off during the preliminary discharge.
  4.  前記n行目の前記排出と前記n行目以外の行の前記リセットとが異なるタイミングで行われるものである請求項1から3いずれか1項記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 3, wherein the discharge of the n-th row and the reset of rows other than the n-th row are performed at different timings.
  5.  前記フィードバック制御回路が、基準電圧を供給する電圧源と、該電圧源が接続された反転増幅器とを備えたものである請求項1から4いずれか1項記載の固体撮像素子。 5. The solid-state imaging device according to claim 1, wherein the feedback control circuit includes a voltage source for supplying a reference voltage and an inverting amplifier to which the voltage source is connected.
  6.  各行について、前記排出後であって前記リセットの前に、前記蓄電部から予備的な電荷の排出を行う読み出し予備リセットを行うものである請求項1から5いずれか1項記載の固体撮像素子。 6. The solid-state imaging device according to claim 1, wherein a read preliminary reset is performed for each row after the discharge and before the reset, so as to discharge preliminary charges from the power storage unit.
  7.  n行目の前記リセットとn+1行目の前記読み出し予備リセットとを同時に行うものである請求項6記載の固体撮像素子。 The solid-state imaging device according to claim 6, wherein the reset of the nth row and the read preliminary reset of the (n + 1) th row are performed simultaneously.
  8.  前記画素部が、前記出力回路と、前記信号電荷およびリセットレベルが出力される信号線との間に接続された行選択回路を備えたものであり、
     該行選択回路が、前記リセットの際には導通し、前記読み出し予備リセットの際には非導通となるものである請求項6または7記載の固体撮像素子。
    The pixel portion includes a row selection circuit connected between the output circuit and a signal line from which the signal charge and a reset level are output.
    8. The solid-state imaging device according to claim 6, wherein the row selection circuit is turned on during the resetting and is turned off during the read preliminary resetting.
  9.  n行目の前記読み出し予備リセットの前に前記信号電荷を取得し、n+1行目の前記リセットの後にn行目の前記リセットレベルを取得するものである請求項6から8いずれか1項記載の固体撮像素子。 The signal charge is acquired before the read preliminary reset of the nth row, and the reset level of the nth row is acquired after the reset of the (n + 1) th row. Solid-state image sensor.
  10.  n+1行目の前記排出および前記リセットの際に、n行目の前記蓄積部が電気的に浮いたフローティング状態である請求項6から9いずれか1項記載の固体撮像素子。 10. The solid-state imaging device according to claim 6, wherein the storage unit in the n-th row is in a floating state in which the storage unit in the n-th row is in an electrically floating state during the ejection and the reset in the (n + 1) -th row.
  11.  前記予備排出を行うためのパルス信号を出力する予備排出用シフトレジスタと、
     前記排出を行うためのパルス信号を出力する排出用シフトレジスタと、
     前記信号電荷の取得および前記読み出し予備リセットを行うためのパルス信号を出力する信号レベル取得・読み出し予備排出用シフトレジスタと、
     前記リセットを行うためのパルス信号を出力する読み出しリセット用シフトレジスタと、
     前記リセットレベルの取得をためのパルス信号を出力するリセットレベル取得用シフトレジスタとを備えた請求項6から10いずれか1項記載の固体撮像素子。
    A preliminary discharge shift register that outputs a pulse signal for performing the preliminary discharge;
    A discharge shift register that outputs a pulse signal for performing the discharge;
    A signal level acquisition / reading preliminary discharge shift register that outputs a pulse signal for acquiring the signal charge and performing the reading preliminary reset, and
    A read reset shift register that outputs a pulse signal for performing the reset;
    The solid-state imaging device according to claim 6, further comprising: a reset level acquisition shift register that outputs a pulse signal for acquiring the reset level.
  12.  前記信号電荷およびリセットレベルが出力される各信号線に対して、それぞれ少なくとも3つの相関二重サンプリング処理回路が設けられている請求項6から11いずれか1項記載の固体撮像素子。 12. The solid-state imaging device according to claim 6, wherein at least three correlated double sampling processing circuits are provided for each signal line from which the signal charge and the reset level are output.
  13.  前記画素部が、画素単位で区画された第1の電極と前記光電変換部を挟んで前記画素電極に対向して設けられた第2の電極とを備え、
     前記第2の電極が、全ての前記画素部について共通の電極であることを特徴とする請求項1から12いずれか1項記載の固体撮像素子。
    The pixel unit includes a first electrode partitioned in pixel units and a second electrode provided to face the pixel electrode with the photoelectric conversion unit interposed therebetween,
    13. The solid-state imaging device according to claim 1, wherein the second electrode is a common electrode for all the pixel portions.
  14.  前記光電変換部が、有機光電変換膜を含むものであることを特徴とする請求項1から13いずれか1項記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the photoelectric conversion unit includes an organic photoelectric conversion film.
  15.  前記有機光電変換膜が、全ての前記画素部について共通なものあることを特徴とする請求項14記載の固体撮像素子。 15. The solid-state imaging device according to claim 14, wherein the organic photoelectric conversion film is common to all the pixel portions.
  16.  前記光電変換部からの信号電荷が正孔であることを特徴とする請求項1から15いずれか1項記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 15, wherein a signal charge from the photoelectric conversion unit is a hole.
  17.  前記光電変換部からの信号電荷が電子であることを特徴とする請求項1から15いずれか1項記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 15, wherein a signal charge from the photoelectric conversion unit is an electron.
  18.  前記蓄電部に保護回路が設けられていることを特徴とする請求項1から17いずれか1項記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein a protection circuit is provided in the power storage unit.
  19.  請求項1から18いずれか1項記載の固体撮像素子を備えたことを特徴とする撮像装置。 An imaging apparatus comprising the solid-state imaging device according to any one of claims 1 to 18.
PCT/JP2014/002873 2013-06-04 2014-05-30 Solid-state imaging element and imaging apparatus WO2014196176A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157035513A KR101760200B1 (en) 2013-06-04 2014-05-30 Solid-state imaging element and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013117891A JP6134979B2 (en) 2013-06-04 2013-06-04 Solid-state imaging device and imaging apparatus
JP2013-117891 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196176A1 true WO2014196176A1 (en) 2014-12-11

Family

ID=52007833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002873 WO2014196176A1 (en) 2013-06-04 2014-05-30 Solid-state imaging element and imaging apparatus

Country Status (4)

Country Link
JP (1) JP6134979B2 (en)
KR (1) KR101760200B1 (en)
TW (1) TWI611696B (en)
WO (1) WO2014196176A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564083A (en) * 2016-08-30 2019-04-02 英特尔公司 Condenser type proximity sensing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323813B2 (en) * 2014-12-26 2018-05-16 パナソニックIpマネジメント株式会社 Imaging device
CN111901540B (en) 2014-12-26 2023-05-23 松下知识产权经营株式会社 Image pickup apparatus
KR20180060308A (en) 2016-11-28 2018-06-07 삼성전자주식회사 Image sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147302A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Solid-state imaging device, and camera system using same
JP2013090219A (en) * 2011-10-19 2013-05-13 Sony Corp Imaging apparatus and imaging display system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471515A (en) * 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
US5461425A (en) * 1994-02-15 1995-10-24 Stanford University CMOS image sensor with pixel level A/D conversion
US5631704A (en) * 1994-10-14 1997-05-20 Lucent Technologies, Inc. Active pixel sensor and imaging system having differential mode
US5892540A (en) * 1996-06-13 1999-04-06 Rockwell International Corporation Low noise amplifier for passive pixel CMOS imager
US6222175B1 (en) * 1998-03-10 2001-04-24 Photobit Corporation Charge-domain analog readout for an image sensor
US6493030B1 (en) * 1998-04-08 2002-12-10 Pictos Technologies, Inc. Low-noise active pixel sensor for imaging arrays with global reset
JP4444371B1 (en) 2009-09-01 2010-03-31 富士フイルム株式会社 Imaging device and imaging apparatus
JP5714982B2 (en) * 2011-02-01 2015-05-07 浜松ホトニクス株式会社 Control method of solid-state image sensor
CN103444167B (en) 2011-04-08 2017-09-29 松下知识产权经营株式会社 The driving method of solid camera head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147302A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Solid-state imaging device, and camera system using same
JP2013090219A (en) * 2011-10-19 2013-05-13 Sony Corp Imaging apparatus and imaging display system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564083A (en) * 2016-08-30 2019-04-02 英特尔公司 Condenser type proximity sensing
US11112521B2 (en) 2016-08-30 2021-09-07 Intel Corporation Capacitive proximity sensing

Also Published As

Publication number Publication date
TWI611696B (en) 2018-01-11
TW201507475A (en) 2015-02-16
KR20160008632A (en) 2016-01-22
JP6134979B2 (en) 2017-05-31
JP2014236422A (en) 2014-12-15
KR101760200B1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
US10567691B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP6776011B2 (en) Imaging device and imaging system
US8816266B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP6727938B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND IMAGING SYSTEM
JP5516960B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
US8854518B2 (en) Solid-state imaging device, method of driving the same, and electronic system including the device
TWI495341B (en) Solid state camera device
WO2013140872A1 (en) Solid imaging device and electronic equipment
US9560285B2 (en) Image pickup apparatus and image pickup system
US10645327B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP6351423B2 (en) Imaging apparatus and imaging system
JP2014078870A (en) Solid-state imaging element and imaging apparatus
WO2011083541A1 (en) Solid-state image capture device and image capture device
WO2014196176A1 (en) Solid-state imaging element and imaging apparatus
JP6195728B2 (en) Solid-state imaging device and imaging apparatus
JP2007129473A (en) Solid-state imaging apparatus and imaging system
WO2011105018A1 (en) Solid-state imaging device and camera system
JP6217338B2 (en) Solid-state imaging device and imaging apparatus
JP5893372B2 (en) Solid-state imaging device, imaging device, and signal readout method
JP7160129B2 (en) Imaging element and imaging device
JP7198675B2 (en) Solid-state imaging device, its driving circuit, and imaging device
JP2013197697A (en) Solid-state image pickup device and electronic apparatus
JP2015076722A (en) Solid photographing element and photographing device
JP5945463B2 (en) Solid-state imaging device
WO2015111370A1 (en) Solid-state imaging device and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035513

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14807061

Country of ref document: EP

Kind code of ref document: A1