WO2014196008A1 - 検査装置および検査方法 - Google Patents

検査装置および検査方法 Download PDF

Info

Publication number
WO2014196008A1
WO2014196008A1 PCT/JP2013/065394 JP2013065394W WO2014196008A1 WO 2014196008 A1 WO2014196008 A1 WO 2014196008A1 JP 2013065394 W JP2013065394 W JP 2013065394W WO 2014196008 A1 WO2014196008 A1 WO 2014196008A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
dimensional measurement
electronic component
result
light
Prior art date
Application number
PCT/JP2013/065394
Other languages
English (en)
French (fr)
Inventor
伸章 田端
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to KR1020157035470A priority Critical patent/KR101737954B1/ko
Priority to JP2015521191A priority patent/JP6097389B2/ja
Priority to PCT/JP2013/065394 priority patent/WO2014196008A1/ja
Priority to CN201380077175.6A priority patent/CN105264329B/zh
Publication of WO2014196008A1 publication Critical patent/WO2014196008A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder

Definitions

  • the present invention relates to an inspection apparatus and an inspection method, and more particularly to an inspection apparatus and an inspection method provided with a three-dimensional measurement unit.
  • an inspection apparatus provided with a three-dimensional measuring unit is known.
  • Such an inspection apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-149736.
  • Japanese Patent Application Laid-Open No. 2011-149736 discloses an appearance inspection apparatus for inspecting a substrate on which an electronic component including a projection unit that irradiates first light for three-dimensional measurement and an illumination unit for two-dimensional measurement is mounted.
  • the appearance inspection apparatus includes an imaging unit that captures an image captured by light emitted from each of the projection unit and the illumination unit, and a control unit.
  • the control unit is configured to perform three-dimensional measurement and automatically set an inspection window (inspection region) for inspecting a region to be inspected based on the result of the three-dimensional measurement.
  • the appearance inspection apparatus automatically sets an inspection window, and then uses the inspection window to perform two-dimensional measurement on a substrate different from the substrate on which the three-dimensional measurement has been performed in order to set the inspection window. Is considered to be configured.
  • the appearance inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 2011-149736, it is possible to automatically set an inspection window when inspecting a region to be inspected, while performing three-dimensional measurement to set the inspection window.
  • the two-dimensional measurement may cause the set inspection window and the inspection target part to deviate. In that case, the two-dimensional measurement (inspection) is performed. There is a problem that it cannot be performed with high accuracy.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to perform two-dimensional measurement (inspection) even when the set inspection region and the inspection target region are misaligned. ) Can be performed with high accuracy.
  • An inspection apparatus includes a three-dimensional measurement unit capable of acquiring height information of a region to be inspected, and a two-dimensional measurement unit capable of acquiring at least one information among hue, saturation, and brightness.
  • a control unit that performs three-dimensional measurement, corrects an inspection region for inspecting an inspection target region based on a result of the three-dimensional measurement, and performs two-dimensional measurement in the corrected inspection region.
  • the control unit that corrects the inspection region for inspecting the region to be inspected based on the result of the three-dimensional measurement and performs two-dimensional measurement in the corrected inspection region.
  • the control unit corrects the inspection frame coordinates defining the inspection region based on the result of the three-dimensional measurement, and performs the two-dimensional measurement based on the corrected inspection frame coordinates. Is configured to do. According to this configuration, even when the position of the set inspection region and the inspection target part is shifted, the position of the shifted inspection region and the inspection target part is determined using the inspection frame coordinates that define the inspection region. It can be easily adjusted to match.
  • the first illumination unit capable of irradiating the first light for three-dimensional measurement capable of acquiring the height information of the region to be inspected, the hue, the saturation, and the brightness.
  • a second illumination unit capable of emitting a second light for two-dimensional measurement capable of acquiring at least one of the information, a first light of the first illumination unit, and a second light of the second illumination unit, respectively.
  • an imaging unit capable of imaging the region to be inspected by using the first light emitted from the first illumination unit and performing a three-dimensional measurement based on the result of the three-dimensional measurement.
  • the inspection area for inspecting the inspection target region is corrected, and two-dimensional measurement is performed using the second light emitted from the second illumination unit in the corrected inspection area.
  • control unit compares the result of the three-dimensional measurement with the result of the two-dimensional measurement, and when the comparison result is determined to be substantially the same, the state of the inspection target part It is comprised so that control which discriminates may be performed. If comprised in this way, based on both the result of the two-dimensional measurement measured in the state in which the position shift between the examination region and the examination target part is adjusted, and the result of the three-dimensional measurement, The state can be accurately determined.
  • the control unit compares the result of the three-dimensional measurement with the result of the two-dimensional measurement, and determines that the state of the inspection target part is different when the comparison result is different. Is determined, or control is performed to determine the state of the region to be inspected without considering a result different from the two-dimensional measurement among the results of the three-dimensional measurement.
  • the control unit compares the result of the three-dimensional measurement with the result of the two-dimensional measurement, and determines that the result of the comparison is different, the result of the three-dimensional measurement.
  • it is configured to perform control for discriminating the state of the examination target part by correcting a result different from the two-dimensional measurement using the result of the two-dimensional measurement. If comprised in this way, when there exists a possibility that the three-dimensional measurement may not be performed correctly, it can suppress determining the state of the region to be inspected based on an inaccurate three-dimensional measurement result. Since it can do, it can suppress that the precision at the time of discriminating the state of an inspection object part falls.
  • the first light for performing three-dimensional measurement by the phase shift method and the second light for performing two-dimensional measurement different from the first light are respectively provided.
  • the first illumination unit capable of irradiating the first light for three-dimensional measurement that is configured to be able to switch and irradiate and can acquire the height information of the examination target part and at least one information of hue, saturation, and brightness
  • the projector further includes a projector that functions as a second illumination unit capable of emitting a second light for two-dimensional measurement that can be acquired, and the control unit performs three-dimensional measurement using the first light and performs three-dimensional measurement.
  • the inspection region for inspecting the region to be inspected is corrected, and the two-dimensional measurement is performed using the second light in the corrected inspection region. If comprised in this way, even when the set inspection area
  • the image processing apparatus further includes an imaging unit capable of imaging the examination target site using each of the first light of the first illumination unit and the second light of the second illumination unit, and the projector is viewed from above.
  • a plurality of control units are provided so as to surround the imaging unit, and the control unit irradiates the second light from one of the plurality of projectors, and uses the second light in the corrected inspection region to perform two-dimensional It is configured to take measurements.
  • the control unit specifies the position of the electronic component by performing three-dimensional measurement of the electronic component as the inspection target site, and based on the specified position of the electronic component.
  • the inspection area for inspecting the electronic component is corrected, and two-dimensional measurement is performed in the corrected inspection area. If comprised in this way, even when the position of the set inspection region and the electronic component which is the inspection target part is shifted, the two-dimensional measurement is performed in a state where the position of the inspection region and the electronic component is shifted. Therefore, the two-dimensional measurement (inspection) of the electronic component can be performed with high accuracy.
  • control unit specifies the position of the electronic component by performing three-dimensional measurement of the electronic component as the inspection target part, and based on the specified position of the electronic component, Control is performed to correct the inspection frame coordinates that define the inspection area at the time of measurement.
  • the inspection region coordinates and the electronic component that are deviated can be determined using the inspection frame coordinates that define the inspection region. It can be easily adjusted to match the position of.
  • the control unit performs three-dimensional measurement when the solder as the inspection target portion is printed on the substrate and inspects the solder based on the result of the three-dimensional measurement.
  • the inspection area to be corrected is corrected, and two-dimensional measurement is performed in the corrected inspection area.
  • the two-dimensional measurement can be performed in a state where the position of the inspection region and the solder is shifted. Since this can be suppressed, two-dimensional measurement (inspection) can be accurately performed before the electronic component is mounted on the substrate (on the solder).
  • substrate it can suppress that a production efficiency falls.
  • the control unit mounts the electronic component as the inspection target part on the substrate and performs three-dimensional measurement at a timing before reflow, and displays the result of the three-dimensional measurement.
  • the inspection area for inspecting the electronic component is corrected based on the corrected inspection area, and two-dimensional measurement is performed in the corrected inspection area. If comprised in this way, even when the position of the set inspection region and the electronic component which is the inspection target part mounted on the substrate is shifted, the two-dimensional state is generated while the position of the inspection region and the electronic component is shifted. Since measurement can be suppressed, two-dimensional measurement (inspection) can be accurately performed before reflowing. Thereby, since an electronic component can be inspected at an early stage as compared with a case where the electronic component is inspected after the electronic component is mounted and reflowed, it is possible to suppress a decrease in production efficiency.
  • the control unit mounts the electronic component as the inspection target part on the substrate, performs three-dimensional measurement at a timing after reflow, and displays the result of the three-dimensional measurement. Based on this, the inspection area for inspecting the electronic component is corrected, and the electronic area is inspected by performing two-dimensional measurement using the corrected inspection area. According to this configuration, even when the terminal portion of the electronic component is displaced due to the melting and hardening of the solder in the reflow process, the two-dimensional state in which the position of the inspection region and the electronic component is misaligned. It can suppress that measurement is performed.
  • the control unit performs three-dimensional measurement, corrects an inspection region for inspecting an electronic component based on a result of the three-dimensional measurement, and performs electronic control in the corrected inspection region. It is configured to perform two-dimensional measurement on at least one of the direction in which the components are arranged and the solder joint state. If comprised in this way, since it can suppress that a two-dimensional measurement will be performed in the state from which the position of a test
  • An inspection method includes a step of performing three-dimensional measurement capable of acquiring height information of an inspection target part, and correcting an inspection region for inspecting the inspection target part based on the result of the three-dimensional measurement. And a step of performing two-dimensional measurement capable of acquiring at least one information of hue, saturation, and brightness in the corrected inspection area.
  • the step of correcting the inspection region for inspecting the region to be inspected based on the result of the three-dimensional measurement and performing the two-dimensional measurement in the corrected inspection region By providing, even when the position of the set inspection region and the inspection target part is shifted, it is possible to adjust so that the shifted inspection region and the inspection target part are aligned. Thereby, since it can suppress that two-dimensional measurement will be performed in the state from which the position of a test
  • two-dimensional measurement (inspection) can be performed with high accuracy even when the set inspection region and the inspection target part are misaligned.
  • the inspection apparatus 100 is for inspecting the printed state of solder on a solder printed substrate 110 (see FIG. 2) on which a solder 120 is printed on a printed board 130.
  • Solder 120 is arranged (printed) at a predetermined position on the printed circuit board 130 on the solder printed circuit board 110. Further, the surface of the printed circuit board 130 and the surface of the solder 120 have the same color.
  • the inspection apparatus 100 is configured to perform various inspections such as whether the amount of positional deviation with respect to the design position of the solder 120 is within an allowable range and whether or not the solder 120 is printed (out of stock inspection).
  • the solder 120 is an example of the “inspection site” in the present invention.
  • the printed circuit board 130 is an example of the “board” in the present invention.
  • the inspection apparatus 100 includes a substrate transport conveyor 10 for transporting a solder printed substrate 110 (see FIG. 2) provided on the base 1, and the solder printed substrate 110 in the Y direction. It mainly includes a moving table 20 to be moved, a unit support portion 30, an imaging unit 40 supported by the unit support portion 30 so as to be movable in the X direction, and a control device 50 (see FIG. 3).
  • a substrate transport conveyor 10 for transporting a solder printed substrate 110 (see FIG. 2) provided on the base 1, and the solder printed substrate 110 in the Y direction. It mainly includes a moving table 20 to be moved, a unit support portion 30, an imaging unit 40 supported by the unit support portion 30 so as to be movable in the X direction, and a control device 50 (see FIG. 3).
  • a control device 50 see FIG. 3
  • the board conveyance conveyor 10 holds the solder printed board 110 (see FIG. 2) and carries it in the X direction, thereby bringing the solder printed board 110 into the inspection apparatus 100, carrying it to the inspection position, and the inspection apparatus 100. Has a function of carrying out the solder-printed substrate 110 from.
  • the substrate transfer conveyor 10 includes a carry-in unit 11 on the apparatus upstream side (arrow X2 direction side), a carry-out unit 12 on the apparatus downstream side (arrow X1 direction side), and a moving unit 13 provided on the moving table 20. It is out.
  • the carry-in part 11 and the carry-out part 12 each have a pair of conveyor parts extending in the X direction.
  • the carry-in part 11 and the carry-out part 12 are movable in the Y direction with respect to the front conveyors 11a and 12a on the arrow Y2 direction side fixedly provided on the base 1 and the base 1, respectively. It has rear conveyors 11b and 12b provided on the arrow Y1 direction side.
  • the carry-in unit 11 and the carry-out unit 12 are driven by a motor (not shown) to move the rear conveyors 11b and 12b in synchronization with the Y direction, thereby moving the interval between the conveyors (Y between the front conveyor and the rear conveyor). (Distance in the direction) can be adjusted according to the width (width in the Y direction) of the solder printed substrate 110 being conveyed.
  • the moving part 13 has a pair of conveyor parts each provided in the X direction provided on the moving table 20 movable in the Y direction.
  • the moving unit 13 includes a front conveyor 13a fixedly provided on the moving table 20, and a rear conveyor 13b provided movably in the Y direction with respect to the moving table 20. Yes.
  • the moving unit 13 drives the rear conveyor 13b by a motor (not shown) and moves it in the Y direction so that the conveyor interval (distance in the Y direction between the front conveyor and the rear conveyor) is conveyed by solder printing. It can be adjusted according to the width of the finished substrate 110.
  • the moving unit 13 is configured to be able to hold the solder-printed substrate 110 in a fixed position on the moving unit 13 by a holding mechanism (not shown).
  • the front conveyor 11a, the rear conveyor 11b, the front conveyor 13a, and the rear conveyor 13b of the moving unit 13 are synchronously driven in a state where the moving unit 13 is aligned with the carry-in unit 11 in the Y direction.
  • the solder-printed board 110 is carried into the moving unit 13 from the carry-in unit 11.
  • the front conveyor 12a, the rear conveyor 12b of the unloading unit 12 the front conveyor 13a of the moving unit 13 and the rear conveyor 13b are driven in synchronization.
  • the solder-printed board 110 is carried out from the moving unit 13 to the carry-out unit 12.
  • the moving table 20 rotates so as to extend in the Y direction, a table 21 on which the moving unit 13 is placed, a pair of guide rails 22 fixedly provided on the base 1 so as to extend in the Y direction.
  • a ball screw shaft 23 provided in a possible manner and a Y-axis motor 24 for rotating the ball screw shaft 23 about its axis are included.
  • the table 21 is provided on the base 1 so as to be movable along the guide rail 22, and has a nut portion (not shown) that engages with the ball screw shaft 23.
  • the moving table 20 moves the table 21 in the Y direction by rotationally driving the ball screw shaft 23 by the Y-axis motor 24, and as a result, the pair of conveyors (the front conveyor 13 a and the rear conveyor 13 b) of the moving unit 13.
  • the solder-printed substrate 110 held in (1) is moved in the Y direction.
  • the unit support part 30 includes a beam part 31 extending in the X direction provided so as to straddle the movement table 20 at a position above the movement table 20 and the movement part 13, and beams at both ends in the X direction on the base 1.
  • the gate 31 has a gate shape formed by a pair of legs (not shown) that respectively support both ends of the portion 31.
  • a support frame 32 that supports the imaging unit 40 on the Y2 direction side, a pair of guide rails 33 provided so as to extend in the X direction, and a guide rail 33 provided so as to extend in the X direction are provided on the beam portion 31 so as to be rotatable.
  • the support frame 32 is configured to be able to move along the pair of guide rails 33 while being screwed to the ball screw shaft 34.
  • the unit support 30 rotates the ball screw shaft 34 by the X-axis motor 35 and moves the support frame 32 in the X direction, thereby moving the imaging unit 40 supported by the support frame 32 to the moving table 20 (moving). Configured to be moved in the X direction above the portion 13).
  • the imaging unit 40 includes an illumination unit 41 that can illuminate illumination light at a plurality of different illumination angles, and a plurality of projectors that can illuminate illumination light from a predetermined angle. 42. Further, the imaging unit 40 includes an imaging unit 43 that captures an upper surface image of the solder-printed substrate 110 (solder 120) with the imaging direction directed vertically downward (in the direction of arrow Z2). The imaging unit 40 is moved in the X direction by the unit support unit 30, and the solder printed substrate 110 on the moving unit 13 is moved in the Y direction by the moving table 20. Thereby, the imaging unit 40 can image the solder 120 at a predetermined position on the solder-printed substrate 110.
  • the illumination unit 41 is an example of the “second illumination unit” and the “two-dimensional measurement unit” in the present invention.
  • the projector 42 is an example of the “first illumination unit” and the “three-dimensional measurement unit” in the present invention.
  • the imaging unit 43 is an example of the “three-dimensional measurement unit” and “two-dimensional measurement unit” in the present invention.
  • the illumination part 41 has the dome shape shape by which the opening part 411 was formed in the top schematically, and has the some illumination provided in the inner surface side of the dome.
  • An imaging unit 43 is disposed above the opening 411 (in the direction of the arrow Z1), and the imaging unit 43 is configured to take an image of the solder-printed substrate 110 through the opening 411.
  • an upper stage illumination 412, a middle stage illumination 413, and a lower stage illumination 414 are respectively circular when viewed from above in order from the apex side (arrow Z 1 direction side) where the opening 411 is provided.
  • the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 are provided so as to surround the imaging unit 43 when viewed from above.
  • a plurality of upper stage illuminations 412 are provided at the uppermost position (in the direction of arrow Z1) in the illumination unit 41 so as to surround the outer periphery of the opening 411.
  • the middle stage illumination 413 is provided in a plurality so as to surround the upper stage illumination 412 at a position below the upper stage illumination 412 (in the arrow Z2 direction) and above the lower stage illumination 414 (in the arrow Z1 direction).
  • a plurality of lower stage illuminations 414 are provided so as to surround the middle stage illuminations 413 at positions below the middle stage illuminations 413 (in the direction of arrow Z2).
  • the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 are configured to be able to irradiate light for two-dimensional measurement capable of acquiring information on hue (gradation), saturation, and brightness, respectively. ing.
  • these upper stage illumination 412, middle stage illumination 413, and lower stage illumination 414 are each comprised from white LED.
  • a thin film-like foreign matter 120a for example, a film
  • the illumination light for two-dimensional measurement will be described as second light.
  • the illumination part 41 has a dome shape
  • the position of illumination is separated from the imaging part 43 (opening part 411) as it goes downward (arrow Z2 direction) from the upper stage illumination 412. Therefore, the upper stage illumination 412 is configured to irradiate the second light from a position substantially directly above (in the arrow Z1 direction) with respect to the imaging target (the solder 120 on the solder-printed substrate 110). Therefore, the irradiation direction of the upper stage illumination 412 and the imaging direction of the imaging unit 43 are configured to be substantially the same direction. Further, the middle stage illumination 413 is configured to reflect light on the inner surface of the dome of the illumination unit 41 and to irradiate the entire imaging target (the solder 120 on the mounted substrate 110) with uniform second light.
  • the lower stage illumination 414 is comprised so that 2nd light may be irradiated with an irradiation angle (elevation angle) of about 30 degree
  • the imaging part 43 is comprised so that it can image with respect to the same imaging target using the 2nd light irradiated from a different angle.
  • the projector 42 is configured to be able to irradiate illumination light (first light) for three-dimensional measurement that can acquire the height information of the solder 120 with respect to the printed circuit board 130.
  • the projector 42 is configured to illuminate with illumination light of a projection pattern having a sinusoidal light intensity distribution as the first light. As a result, a striped light pattern whose light intensity changes at a constant period (for example, 3 mm) is projected onto the solder 120.
  • the height position of the solder 120 can be measured (height information is acquired) by the phase shift method (three-dimensional measurement).
  • the projector 42 is configured to be able to irradiate the first light from a position obliquely above approximately 45 degrees with respect to the solder 120 (printed circuit board 130).
  • a plurality of projectors 42 are provided so as to surround the imaging unit 43 as viewed from above.
  • the imaging unit 43 includes a CCD camera provided with a lens 43a.
  • the imaging unit 43 is provided at a position (in the direction of arrow Z1) above the solder printed substrate 110 (substrate transport conveyor 10), and the imaging direction is substantially perpendicular to the solder printed substrate 110. It is provided vertically downward (arrow Z2 direction).
  • the imaging unit 43 is configured to be able to image the solder 120 using the first light of the projector 42 and the second light of the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414, respectively.
  • the imaging unit 43 captures a three-dimensional image of the solder printed substrate 110 (solder 120) using the first light irradiated from the projector 42 to the solder printed substrate 110 (solder 120). It is configured as follows. Accordingly, an image including height information is obtained under the first light by the projector 42. In addition, the imaging unit 43 uses the second light irradiated from the illumination unit 41 to the solder printed substrate 110 (solder 120) to provide a two-dimensional (planar) surface of the solder printed substrate 110 (solder 120). ) It is configured to take an image.
  • the imaging unit 43 includes component-specific imaging elements that detect the intensity of each of the red (r) component, the green (g) component, and the blue (b) component.
  • a color image including a red (r) component, a green (g) component, and a blue (b) component is obtained under illumination light from the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 made of white LEDs.
  • the imaging unit 43 uses the upper illumination 412, the middle illumination 413, and the lower illumination 414, respectively, to provide data (images) corresponding to the upper 120d, middle 120e, and lower 120f of the two-dimensional data (image) 120c of the solder 120. ) Is configured to get. Then, based on the acquired data, the arithmetic processing unit 51 acquires information on hue, saturation, and brightness.
  • the inspection apparatus 100 is configured to be controlled by the control apparatus 50.
  • the control device 50 includes an arithmetic processing unit 51, a storage unit 52, a motor control unit 53, an illumination control unit 54, and an imaging control unit 55.
  • the control device 50 is connected to a display unit 60 such as a touch panel, and is configured to accept an operation input from a user.
  • the arithmetic processing unit 51 is an example of the “control unit” in the present invention.
  • the arithmetic processing unit 51 includes a CPU that executes logical operations, a ROM (Read Only Memory) that stores programs for controlling the CPU, and a RAM (Random Access Memory) that temporarily stores various data during operation of the device. It is composed of The arithmetic processing unit 51 is configured to control each unit of the inspection apparatus 100 via the motor control unit 53, the illumination control unit 54, and the imaging control unit 55 in accordance with a program stored in the ROM. Thereby, the arithmetic processing unit 51 images the carried-in printed solder board 110 with the imaging unit 40, and uses the captured image to inspect the print state of the solder 120 printed on the solder-printed board 110. It is configured.
  • the arithmetic processing unit 51 performs three-dimensional measurement and corrects the inspection area 140 (inspection frame coordinates defining the inspection area 140) for inspecting the solder 120 based on the result of the three-dimensional measurement.
  • the corrected inspection area 140 (based on the corrected inspection frame coordinates)
  • two-dimensional measurement (inspection) (high-precision measurement control) is performed.
  • the arithmetic processing unit 51 performs three-dimensional measurement using the first light, and the result of the three-dimensional measurement (the center of the solder 120 actually printed).
  • the inspection area 140 for inspecting the solder 120 is corrected based on the deviation between the coordinates 140a and the designed center coordinates 140b of the solder 120.
  • the arithmetic processing unit 51 is configured to perform two-dimensional measurement (inspection) using the second light emitted from the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 in the corrected examination region 140. Yes.
  • the arithmetic processing unit 51 is configured to perform this control on the printed circuit board 130 on which the solder 120 is printed.
  • the arithmetic processing unit 51 is configured to perform this control when the solder 120 is printed on the printed circuit board 130, for example.
  • the inspection area 140 is defined by an inspection frame coordinate axis 140X extending in a direction substantially perpendicular to the moving table 20 moving direction and an inspection frame coordinate axis 140Y extending in a direction substantially parallel to the moving table 20 moving direction. It is defined by the inspection frame coordinates.
  • the arithmetic processing unit 51 compares the result of the three-dimensional measurement with the result of the two-dimensional measurement, and performs control to determine (inspect) the state of the solder 120 when it is determined that the comparison result is substantially the same. It is configured as follows. On the other hand, the arithmetic processing unit 51 is configured to compare the result of the three-dimensional measurement with the result of the two-dimensional measurement, and not determine (inspect) the state of the solder 120 when it is determined that the comparison result is different. ing. Specifically, the arithmetic processing unit 51 includes a part 120b1 (see FIG.
  • the state of the solder 120 is changed. It is configured to perform control that does not discriminate (inspect).
  • the storage unit 52 includes a nonvolatile storage device that can store various data and can be read out by the arithmetic processing unit 51.
  • the storage unit 52 includes captured image data captured by the imaging unit 43, substrate data that defines design position information of the solder 120 printed on the printed circuit board 130, and a component shape database that defines the shape of the solder 120. Etc. are stored.
  • the motor control unit 53 moves each servo motor of the inspection apparatus 100 (the Y-axis motor 24 for moving the moving table 20 in the Y direction and the imaging unit 40 in the X direction). And the like, and the like, and the like are controlled to drive the X-axis motor 35 and the motor 14 for transporting the solder printed substrate 110 of the substrate transport conveyor 10. Further, the motor control unit 53 is configured to acquire the imaging position of the imaging unit 43, the position of the solder printed substrate 110, and the like based on signals from encoders (not shown) of the respective servo motors.
  • the illumination control unit 54 Based on the control signal output from the arithmetic processing unit 51, the illumination control unit 54 turns on each of the projector 42, the upper illumination 412, the middle illumination 413, and the lower illumination 414 at a predetermined timing. It is configured.
  • the imaging control unit 55 is configured to acquire captured image data by reading the imaging signal from the imaging unit 43 at a predetermined timing based on the control signal output from the arithmetic processing unit 51. .
  • the display unit 60 has a touch panel that can accept information input (operation input) from the user, functions as a display unit that displays a captured image captured by the imaging unit 43, and an input operation on the display screen. And function as an input unit for receiving.
  • solder inspection process by the arithmetic processing unit 51 of the inspection apparatus 100 according to the first embodiment of the present invention will be described.
  • the solder inspection process is executed when the solder 120 is printed on the printed board 130, for example.
  • step S1 the visual field is moved to the position of the solder 120. Specifically, the imaging unit 40 is moved in the X direction by the unit support unit 30, the solder printed substrate 110 on which the solder 120 is printed is moved in the Y direction by the moving table 20, and the solder 120 is moved to the imaging unit 40. In the field of view.
  • step S2 the field of view is imaged. Specifically, the first light is emitted from the projector 42 and the field of view is imaged by the imaging unit 43, and the second light is emitted from the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414, and the imaging unit The field of view is picked up by 43.
  • step S3 the three-dimensional shape of the solder 120 is measured based on the image captured when the first light is irradiated.
  • step S4 the main body shape of the solder 120 is extracted based on the three-dimensional shape measured in step S3.
  • step S5 a three-dimensional inspection is performed. Specifically, information on the height (three-dimensional) of the solder 120 is acquired based on the three-dimensional shape measured in step S3 and the main body shape of the solder 120 extracted in step S4. In step S6, the center coordinates 140a (see FIG. 6) of the solder 120 actually printed are acquired.
  • step S7 the inspection area 140 (inspection frame coordinates defining the inspection area 140) is corrected.
  • the design center coordinates 140b position information of the solder 120 printed on the printed circuit board 130 stored in the storage unit 52 and the solder 120 acquired in the above step S6.
  • the center coordinate 140a is compared, and the amount of deviation of the acquired center coordinate 140a of the solder 120 from the design center coordinate 140b stored in the storage unit 52 is detected. Based on the amount of deviation, the inspection area 140 is corrected so as to correspond to the center coordinates 140a of the solder 120 actually printed.
  • step S8 a two-dimensional inspection is performed. Specifically, based on an image acquired when the second light for two-dimensional measurement capable of acquiring information on hue (gradation), saturation, and lightness is applied to the solder 120, the solder 120 is obtained. Two-dimensional information is acquired.
  • step S9 the results of the two-dimensional inspection and the three-dimensional inspection are compared.
  • step S10 it is determined whether or not the results of the two-dimensional inspection and the three-dimensional inspection are substantially the same. If the results of the two-dimensional inspection and the three-dimensional inspection are not substantially the same, the process returns to step S1. On the other hand, if the results of the two-dimensional inspection and the three-dimensional inspection are substantially the same, the process proceeds to step S11. For example, in the example shown in FIGS. 4 and 5, the data (image) 120b (see FIG. 4) acquired when the solder 120 is irradiated with the first light includes noise in part 120b1, Data (image) 120c (see FIG.
  • step S5 acquired when the solder 120 is irradiated with the second light corresponds to the shape of the solder 120. In such a case, it is determined that the results of the two-dimensional inspection and the three-dimensional inspection are not substantially the same, and the process returns to step S1.
  • step S11 the state of the solder 120 is determined (inspected). Specifically, based on the information about the height (three-dimensional) of the solder 120 in step S5 and the information acquired when the solder 120 is irradiated with the second light in step S8, the volume, shape, It is determined (inspected) whether various items such as a bridge (short circuit) are within a predetermined range (the state of the solder 120 is appropriate).
  • step S12 it is determined whether or not all fields of view on the solder printed substrate 110 have been inspected. If all the fields of view on the solder printed substrate 110 have not been inspected, the process returns to step S1. On the other hand, when all the visual fields on the solder-printed substrate 110 are inspected, the solder inspection process is ended.
  • the processing area 51 that corrects the inspection area 140 for inspecting the solder 120 based on the result of the three-dimensional measurement and performs the two-dimensional measurement in the corrected inspection area 140 is provided.
  • the processing area 51 that corrects the inspection area 140 for inspecting the solder 120 based on the result of the three-dimensional measurement and performs the two-dimensional measurement in the corrected inspection area 140 is provided.
  • the inspection frame coordinates defining the inspection region 140 are corrected based on the result of the three-dimensional measurement, and the two-dimensional measurement is performed based on the corrected inspection frame coordinates.
  • An arithmetic processing unit 51 is configured.
  • the inspection frame coordinates that define the inspection region 140 can be used to easily adjust the misaligned inspection region 140 and the solder 120 to be aligned.
  • the projector 42 capable of irradiating the first light capable of acquiring the height information of the solder 120 with respect to the printed circuit board 130 and the information on the hue, saturation, and brightness can be acquired.
  • the illumination unit 41 capable of emitting the second light and the imaging unit 43 capable of imaging the solder 120 using the first light and the second light are provided.
  • the arithmetic processing unit 51 is configured to perform three-dimensional measurement using the first light, correct the inspection region 140, and perform two-dimensional measurement using the second light in the corrected inspection region 140. To do. Thereby, with the simple configuration provided with the projector 42, the illumination unit 41, and the imaging unit 43, it is possible to adjust so that the shifted inspection region 140 and the inspection target part are aligned.
  • the result of the three-dimensional measurement is compared with the result of the two-dimensional measurement, and when it is determined that the comparison result is substantially the same, the state of the solder 120 is determined.
  • An arithmetic processing unit 51 that performs control (inspection) is provided. Accordingly, the state of the solder 120 can be accurately determined (inspected) based on both the two-dimensional measurement result and the three-dimensional measurement result.
  • An arithmetic processing unit 51 is provided.
  • the arithmetic processing unit 51 is configured to perform the high-precision measurement control when the solder 120 is printed on the printed board 130. Accordingly, two-dimensional measurement (inspection) can be accurately performed before the electronic component is mounted on the printed circuit board 130 (on the solder 120). Therefore, the solder 120 is mounted after the electronic component is mounted on the printed circuit board 130. Since the solder 120 can be inspected at an early stage as compared with the case where the inspection is performed, it is possible to suppress a decrease in production efficiency.
  • the inspection apparatus 200 displays the mounting state of the electronic component 220 on the electronic component mounted substrate 210 (see FIG. 9) on which the electronic component 220 is mounted on the printed board 230. It is a device for inspection.
  • An electronic component 220 is arranged (mounted) at a predetermined position on the printed circuit board 230 on the electronic component mounted substrate 210. Further, the surface of the printed circuit board 230 and the surface of the electronic component 220 have the same color.
  • the inspection apparatus 200 determines whether the arrangement direction and the amount of positional deviation with respect to the design position of the electronic component 220 are within an allowable range, the shape of the fillet when the electronic component 220 is soldered to the printed circuit board 230 is within the allowable range, or the electronic component 220. It is configured to perform various inspections such as whether or not the device is mounted (out of stock inspection). Further, as shown in FIGS. 9 and 10, the electronic component 220 is provided with a polarity mark 221 for inspecting the arrangement direction of the electronic component 220, a terminal 222 for mounting on the printed board 230, and the like. . In the example shown in FIGS.
  • the electronic component 220 is mounted on the printed circuit board 230 on which the solder is printed, but the solder for joining the terminal 222 to the printed circuit board 230 is omitted. Show.
  • the electronic component 220 is an example of the “part to be inspected” in the present invention.
  • the printed circuit board 230 is an example of the “board” in the present invention.
  • the inspection apparatus 200 uses a substrate transfer conveyor 10 for transferring an electronic component mounted substrate 210 (see FIG. 9) provided on the base 1 and an electronic component mounted substrate 210 as Y. It mainly includes a moving table 20 that is moved in the direction, a unit support 30, an imaging unit 40 that is supported by the unit support 30 so as to be movable in the X direction, and a control device 250 (see FIG. 3).
  • the imaging unit 40 includes an illumination unit 41 (upper illumination 412, middle illumination 413, and lower illumination 414) that can emit the second light at a plurality of different illumination angles, and a plurality of projectors 42. Including.
  • the imaging unit 40 includes an imaging unit 43 that captures an upper surface image of the electronic component mounted substrate 210 with the imaging direction directed vertically downward (arrow Z2 direction).
  • the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 are configured to be able to irradiate light for two-dimensional measurement capable of acquiring information on hue (gradation), saturation, and brightness, respectively. ing.
  • a portion on the surface of the electronic component 220 thin film-like polarity mark 221 serving as a mark in the direction in which the electronic component 220 is arranged, or solder, which is difficult to detect by three-dimensional measurement
  • the projector 42 is configured to be able to irradiate illumination light (first light) for three-dimensional measurement that can acquire the height information of the electronic component 220 with respect to the printed board 230.
  • illumination light first light
  • the projector 42 is configured to be able to irradiate illumination light (first light) for three-dimensional measurement that can acquire the height information of the electronic component 220 with respect to the printed board 230.
  • the arithmetic processing unit 51 specifies the position of the electronic component 220 by performing three-dimensional measurement. Then, the arithmetic processing unit 51 corrects the inspection region 240 for inspecting the electronic component 220 based on the position of the electronic component 220 specified by the three-dimensional measurement, and performs two-dimensional measurement (inspection) in the corrected inspection region 240. Is configured to do. Specifically, as illustrated in FIGS. 9 and 10, the arithmetic processing unit 51 performs the three-dimensional measurement using the first light and the result of the three-dimensional measurement (the electronic component 220 actually mounted).
  • the inspection area 240 (inspection frame coordinates defining the inspection area 240) when performing the two-dimensional measurement of the electronic component 220 is corrected. It is configured to perform control.
  • the arithmetic processing unit 51 is configured to perform two-dimensional measurement (inspection) using the second light emitted from the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 in the corrected examination region 240. Yes.
  • the inspection area 240 is defined by an inspection frame coordinate axis 240X extending in a direction substantially perpendicular to the moving table 20 moving direction and an inspection frame coordinate axis 240Y extending in a direction substantially parallel to the moving table 20 moving direction. It is defined by the inspection frame coordinates.
  • the arithmetic processing unit 51 is configured to perform this control on the printed circuit board 230 on which the electronic component 220 is mounted.
  • the arithmetic processing unit 51 performs, for example, three-dimensional measurement at a timing before and after the reflow after the electronic component 220 is mounted on the printed board 230, and based on the result of the three-dimensional measurement.
  • the inspection area 240 for inspecting is corrected, and two-dimensional measurement is performed in the corrected inspection area 240.
  • the storage unit 52 includes captured image data captured by the imaging unit 43, data defining design position information of the electronic component 220 mounted on the printed circuit board 230, polarity marks 221 provided on the electronic component 220, terminals The positions where 222 and the printed circuit board 230 are joined by soldering are stored.
  • the electronic component inspection process is executed, for example, at the timing before the reflow and after the reflow while the electronic component 220 is mounted on the printed board 230.
  • step S21 the visual field is moved to the position of the electronic component 220.
  • the imaging unit 40 is moved in the X direction by the unit support unit 30, the electronic component mounted substrate 210 on which the electronic component 220 is mounted is moved in the Y direction by the moving table 20, and the electronic component 220 is moved. It is stored in the imaging field of the imaging unit 40.
  • step S22 the field of view is imaged. Specifically, the first light is emitted from the projector 42, the field of view is imaged by the imaging unit 43, and the second light is emitted from the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414, and the imaging unit The field of view is picked up by 43.
  • step S23 the three-dimensional shape of the electronic component 220 is measured based on the image captured when the first light is irradiated.
  • step S24 the main body shape of the electronic component 220 is extracted based on the three-dimensional shape measured in step S23.
  • step S25 a three-dimensional inspection is performed. Specifically, based on the three-dimensional shape measured in step S23 and the main body shape of the electronic component 220 extracted in step S24, information regarding three-dimensional information such as the height of the electronic component 220 is acquired. In step S26, the center coordinates 240a (see FIG. 9) of the electronic component 220 actually mounted are acquired.
  • step S27 the inspection area 240 (inspection frame coordinates defining the inspection area 240) is corrected.
  • the design center coordinates 240b position information of the electronic component 220 printed on the printed circuit board 230 stored in the storage unit 52 and the electronic component acquired in step S26 described above. 220 is compared with the central coordinates 240a of 220, and a deviation amount of the acquired central coordinates 240a of the electronic component 220 with respect to the designed central coordinates 240b stored in the storage unit 52 is detected. Based on the amount of deviation, the inspection area 240 (inspection frame coordinates) is corrected so as to correspond to the center coordinates 240a of the electronic component 220 actually mounted.
  • the three-dimensional measurement is performed.
  • the boundary between the printed circuit board 230 and the electronic component 220 can be detected and the inspection area 240 can be corrected.
  • step S28 a two-dimensional inspection of the fillet is performed.
  • the second light for two-dimensional measurement capable of acquiring information on hue (gradation), saturation, and lightness was irradiated to solder (not shown) provided on the terminal 222 of the electronic component 220.
  • solder not shown
  • Two-dimensional information about the solder fillet is acquired based on the acquired image.
  • step S29 a two-dimensional inspection of the polarity (arrangement direction) of the electronic component 220 is performed. Specifically, based on an image acquired when the polar mark 221 of the electronic component 220 is irradiated with the second light for two-dimensional measurement capable of acquiring information on hue (gradation), saturation, and brightness. Two-dimensional information about the polarity (arrangement direction) of the electronic component 220 is acquired.
  • step S30 the results of the two-dimensional inspection and the three-dimensional inspection are compared.
  • step S31 it is determined whether or not the results of the two-dimensional inspection and the three-dimensional inspection are substantially the same. If the results of the two-dimensional inspection and the three-dimensional inspection are not substantially the same, the process returns to step S21. On the other hand, if the results of the two-dimensional inspection and the three-dimensional inspection are substantially the same, the process proceeds to step S32.
  • step S32 the state of the electronic component 220 is determined (inspected). Specifically, three-dimensional information such as the height of the electronic component 220 in step S25, two-dimensional information of the solder fillet provided on the terminal 222 of the electronic component 220 in step S28, and the electronic component 220 in step S29. Based on the two-dimensional information about the polarity (arrangement direction) of the electronic component 220, whether various items such as the orientation of the electronic component 220 and the shape of the solder provided on the terminal 222 are within a predetermined range (electronic It is determined (inspected) whether or not the state of the component 220 is appropriate.
  • step S33 it is determined whether or not all fields of view on the electronic component mounted substrate 210 have been inspected. If all the fields of view on the electronic component mounted substrate 210 have not been inspected, the process returns to step S21. On the other hand, when all the visual fields on the electronic component mounted substrate 210 are inspected, the electronic component inspection processing is ended.
  • the arithmetic processing unit 51 that corrects the inspection region 240 for inspecting the electronic component 220 based on the result of the three-dimensional measurement and performs the two-dimensional measurement in the corrected inspection region 240 is provided. .
  • the misaligned inspection area 240 and the electronic component 220 can be adjusted to be aligned.
  • the position of the electronic component 220 is specified by performing three-dimensional measurement of the electronic component 220, and the electronic component 220 is inspected based on the specified position of the electronic component 220.
  • the arithmetic processing unit 51 is configured to correct the inspection area 240 and perform two-dimensional measurement in the corrected inspection area 240. Thereby, since it can suppress that two-dimensional measurement is performed in the state where the position of inspection field 240 and electronic component 220 shifted, performing two-dimensional measurement (inspection) of electronic component 220 with sufficient accuracy. Can do.
  • the position of the electronic component 220 is specified by performing the three-dimensional measurement of the electronic component 220, and the electronic component 220 is determined based on the specified position of the electronic component 220.
  • the arithmetic processing unit 51 is configured to perform control to correct the inspection frame coordinates that define the inspection region 240 when performing two-dimensional measurement. Thereby, using the inspection frame coordinates that define the inspection region 240, the shifted inspection region 240 and the electronic component 220 can be easily adjusted so as to be aligned.
  • the arithmetic processing unit 51 is configured so that the electronic component 220 is mounted on the printed circuit board 230 and the high-precision measurement control is performed at a timing before reflow. Thereby, two-dimensional measurement (inspection) can be accurately performed before reflowing. As a result, since the electronic component 220 can be inspected at an earlier stage than the case where the electronic component 220 is inspected after the electronic component 220 is mounted and reflowed, it is possible to suppress a decrease in production efficiency. Can do.
  • the arithmetic processing unit 51 is configured so that the electronic component 220 is mounted on the printed board 230 and the high-precision measurement control is performed at the timing after reflow. Accordingly, even when the position of the terminal 222 of the electronic component 220 is displaced due to melting and hardening of the solder in the reflow process, the two-dimensional measurement is performed in a state where the positions of the inspection region 240 and the electronic component 220 are displaced. Can be suppressed.
  • the arithmetic processing unit 51 is configured to perform two-dimensional measurement on the orientation and solder joint state in which the electronic component 220 is arranged in the corrected inspection region 240. Thereby, since it can suppress that two-dimensional measurement is performed in the state where the position of inspection field 240 and electronic component 220 shifted, two-dimensional of the direction where electronic component 220 is arranged, and a solder joint state Measurement (inspection) can be performed with high accuracy.
  • the illumination unit (second illumination unit) can be irradiated with illumination light at three different irradiation angles by the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414.
  • the present invention is not limited to this.
  • the second illumination unit may be configured to be able to irradiate illumination light at two irradiation angles only by the upper stage illumination and the lower stage illumination, and can irradiate illumination light at four or more different illumination angles. You may comprise as follows.
  • the upper stage illumination 412, the middle stage illumination 413, the lower stage illumination 414 (second illumination unit), and the imaging unit are separately provided.
  • the present invention is not limited to this. Not limited to.
  • a two-dimensional measurement unit in which the second illumination unit and the imaging unit are integrally configured may be provided.
  • the projector (first illumination unit) and the imaging unit are separately provided.
  • a three-dimensional measurement unit in which the first illumination unit and the imaging unit are integrally configured may be provided.
  • the solder inspection target part
  • the electronic component inspection target part
  • the present invention is not limited to this. Absent. In this invention, you may test
  • the present invention is not limited to this.
  • two-dimensional measurement may be performed based on any one or two of hue, saturation, and brightness.
  • the state of the solder and the electronic component (part to be inspected) is not determined.
  • the present invention is not limited to this.
  • the state of the inspection target part is determined without considering the result of the three-dimensional measurement different from the two-dimensional measurement. May be. Thereby, when there is a possibility that the three-dimensional measurement or the two-dimensional measurement is not accurately performed, the state of the examination target part is determined based on the result of the incorrect three-dimensional measurement and the result of the two-dimensional measurement.
  • the example in which the second light for two-dimensional measurement is irradiated by the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 (illumination unit) is shown.
  • the invention is not limited to this.
  • a projector 142 configured to be able to irradiate the first light for performing three-dimensional measurement by the phase shift method and the second light for two-dimensional measurement different from the first light can be switched. You may irradiate 2nd light by a 1st illumination part. That is, the projector 142 may be configured to function as a first illumination unit that emits the first light and a second illumination unit that emits the second light.
  • the projector 142 is an example of the “first illumination unit” and the “second illumination unit” in the present invention.
  • the upper stage illumination 412, the middle stage illumination 413, and the lower stage illumination 414 (illumination unit) provided so as to surround the imaging unit are used for two-dimensional measurement.
  • the example which irradiates 2nd light was shown, this invention is not limited to this.
  • the first light for performing three-dimensional measurement and the second light for performing two-dimensional measurement different from the first light can be switched and irradiated.
  • a plurality of projectors 142 may be provided so as to surround the imaging unit when viewed from above, and the second light may be emitted from one of the plurality of projectors 142.
  • Two-dimensional measurement can be performed by easily detecting the shadow of the detection object by irradiating light.
  • an illumination unit provided so as to surround the imaging unit is used for two-dimensional measurement.
  • the second light is irradiated, since the second light is irradiated from the entire circumferential direction of the foreign matter, no shadow is formed, and thus the foreign matter 320 cannot be detected.
  • the shadow 321 can be formed by irradiating light from any one direction, so that the foreign object 320 can be easily detected.
  • the high-precision measurement control is performed when solder (inspection target part) is printed on the printed circuit board.
  • the electronic component (inspection target part) is applied to the printed circuit board.
  • the processing of the control unit has been described using a flow-driven flow that performs processing in order along the processing flow.
  • the processing operation of the control unit May be performed by event-driven (event-driven) processing that executes processing in units of events. In this case, it may be performed by a complete event drive type or a combination of event drive and flow drive.
  • Illumination unit (second illumination unit, two-dimensional measurement unit) 42 Projector (first illumination unit, three-dimensional measurement unit) 43 Imaging unit (3D measurement unit, 2D measurement unit) 51 Arithmetic processing part (control part) 100, 200 Inspection device 130, 230 Printed circuit board (board) 120 Solder (part to be inspected) 140, 240 Inspection area 142 Projector (first illumination unit, second illumination unit) 220 Electronic components (parts to be inspected)

Abstract

 この検査装置(100、200)は、検査対象部位(120、220)の高さ情報を取得可能な3次元計測部(42、43)と、色相、彩度、明度のうち少なくとも1つの情報を取得可能な2次元計測部(41、43)と、3次元計測を行うとともに、3次元計測の結果に基づいて検査対象部位を検査する検査領域(140、240)を補正し、補正された検査領域において2次元計測を行う制御部(51)とを備える。

Description

検査装置および検査方法
 この発明は、検査装置および検査方法に関し、特に、3次元計測部を備えた検査装置および検査方法に関する。
 従来、3次元計測部を備えた検査装置が知られている。このような検査装置は、たとえば、特開2011-149736号公報に開示されている。
 上記特開2011-149736号公報には、3次元計測用の第1の光を照射する投射ユニットと、2次元計測用の照明ユニットとを備える電子部品が実装された基板を検査する外観検査装置(検査装置)が開示されている。また、この外観検査装置は、投射ユニットおよび照明ユニットそれぞれから照射された光により撮像された画像を撮像する撮像ユニットと、制御部とを備えている。また、制御部は、3次元計測を行うとともに、3次元計測の結果に基づいて検査対象部位を検査する検査ウインドウ(検査領域)を自動的に設定するように構成されている。また、この外観検査装置は、自動的に検査ウインドウを設定した後、検査ウインドウを設定するために3次元計測を行った基板とは別の基板に対して、この検査ウインドウを用いて2次元計測を行うように構成されていると考えられる。
特開2011-149736号公報
 しかしながら、上記特開2011-149736号公報の外観検査装置では、検査対象部位を検査する際の検査ウインドウを自動的に設定することが可能である一方、検査ウインドウを設定するために3次元計測を行った基板とは別の基板の2次元計測を行うため、2次元計測を行う際に、設定された検査ウインドウと検査対象部位とがずれる場合があり、その場合、2次元計測(検査)を精度よく行うことができないという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、設定された検査領域と検査対象部位とがずれている場合でも、2次元計測(検査)を精度よく行うことが可能な検査装置および検査方法を提供することである。
 この発明の第1の局面による検査装置は、検査対象部位の高さ情報を取得可能な3次元計測部と、色相、彩度、明度のうち少なくとも1つの情報を取得可能な2次元計測部と、3次元計測を行うとともに、3次元計測の結果に基づいて検査対象部位を検査する検査領域を補正し、補正された検査領域において2次元計測を行う制御部とを備える。
 この発明の第1の局面による検査装置では、上記のように、3次元計測の結果に基づいて検査対象部位を検査する検査領域を補正し、補正された検査領域において2次元計測を行う制御部を設けることによって、設定された検査領域と検査対象部位との位置がずれている場合でも、ずれた検査領域と検査対象部位との位置を合せるように調整することができる。これにより、検査領域と検査対象部位との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、2次元計測(検査)を精度よく行うことができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、3次元計測の結果に基づいて検査領域を規定する検査枠座標を補正し、補正された検査枠座標に基づいて、2次元計測を行うように構成されている。このように構成すれば、設定された検査領域と検査対象部位との位置がずれている場合でも、検査領域を規定する検査枠座標を用いて、ずれた検査領域と検査対象部位との位置を合せるように容易に調整することができる。
 上記第1の局面による検査装置において、好ましくは、検査対象部位の高さ情報を取得可能な3次元計測用の第1の光を照射可能な第1照明部と、色相、彩度、明度のうち少なくとも1つの情報を取得可能な2次元計測用の第2の光を照射可能な第2照明部と、第1照明部の第1の光と第2照明部の第2の光とをそれぞれ用いて検査対象部位を撮像可能な撮像部とをさらに備え、制御部は、第1照明部から照射される第1の光を用いて3次元計測を行うとともに、3次元計測の結果に基づいて検査対象部位を検査する検査領域を補正し、補正された検査領域において第2照明部から照射される第2の光を用いて2次元計測を行うように構成されている。このように構成すれば、第1照明部、第2照明部および撮像部を設けた簡易な構成により、設定された検査領域と検査対象部位との位置がずれている場合でも、ずれた検査領域と検査対象部位との位置を合せるように調整することができる。
 上記第1の局面による検査装置において、制御部は、3次元計測の結果と2次元計測の結果とを対比し、対比した結果が略同一であると判断された場合に、検査対象部位の状態を判別する制御を行うように構成されている。このように構成すれば、検査領域と検査対象部位との位置のずれが調整された状態で計測された2次元計測の結果と、3次元計測の結果との両方に基づいて、検査対象部位の状態を正確に判別することができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、3次元計測の結果と2次元計測の結果とを対比し、対比した結果が異なると判断された場合に、検査対象部位の状態を判別しないか、または、3次元計測の結果のうち2次元計測と異なる結果を考慮せずに検査対象部位の状態を判別する制御を行うように構成されている。このように構成すれば、正確に3次元計測または2次元計測が行われていない可能性がある場合に、不正確な3次元計測の結果および2次元計測の結果に基づいて、検査対象部位の状態を判別するのを抑制することができるので、検査対象部位の状態を判別する際の精度が低下するのを抑制することができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、3次元計測の結果と2次元計測の結果とを対比し、対比した結果が異なると判断された場合に、3次元計測の結果のうち2次元計測と異なる結果を2次元計測の結果を用いて補正することにより検査対象部位の状態を判別する制御を行うように構成されている。このように構成すれば、正確に3次元計測が行われていない可能性がある場合に、不正確な3次元計測の結果に基づいて、検査対象部位の状態を判別するのを抑制することができるので、検査対象部位の状態を判別する際の精度が低下するのを抑制することができる。
 上記第1の局面による検査装置において、好ましくは、位相シフト法による3次元計測を行うための第1の光と第1の光とは異なる2次元計測を行うための第2の光とをそれぞれ切り替えて照射可能に構成され、検査対象部位の高さ情報を取得可能な3次元計測用の第1の光を照射可能な第1照明部および色相、彩度、明度のうち少なくとも1つの情報を取得可能な2次元計測用の第2の光を照射可能な第2照明部として機能するプロジェクタをさらに備え、制御部は、第1の光を用いて3次元計測を行うとともに、3次元計測の結果に基づいて、検査対象部位を検査する検査領域を補正し、補正された検査領域において第2の光を用いて2次元計測を行うように構成されている。このように構成すれば、設定された検査領域と検査対象部位とがずれている場合でも、第1照明部および第2照明部の両方の機能を有するプロジェクタを用いて、検査領域と検査対象部位との位置ずれが調整された状態で2次元計測を行うことができる。これにより、検査装置(照明部)の構造を簡素化しながら、2次元計測(検査)を精度よく行うことができる。
 この場合、好ましくは、第1照明部の第1の光と第2照明部の第2の光とをそれぞれ用いて検査対象部位を撮像可能な撮像部をさらに備え、プロジェクタは、上方から見て、撮像部を取り囲むように複数個設けられ、制御部は、複数個のプロジェクタのうちの1つのプロジェクタから第2の光を照射し、補正された検査領域において第2の光を用いて2次元計測を行うように構成されている。このように構成すれば、撮像部を取り囲むように設けられた第2照明部により照射された光を照射することにより検出対象物の影を検出して2次元計測を行う場合と異なり、所定の1方向から光を照射することにより検出対象物の影を容易に検出して2次元計測を行うことができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、検査対象部位としての電子部品の3次元計測を行うことにより電子部品の位置を特定するとともに、特定された電子部品の位置に基づいて、電子部品を検査する検査領域を補正し、補正された検査領域において2次元計測を行うように構成されている。このように構成すれば、設定された検査領域と検査対象部位である電子部品との位置がずれている場合でも、検査領域と電子部品との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、電子部品の2次元計測(検査)を精度よく行うことができる。
 この場合、好ましくは、制御部は、検査対象部位としての電子部品の3次元計測を行うことにより電子部品の位置を特定するとともに、特定された電子部品の位置に基づいて、電子部品の2次元計測を行う際の検査領域を規定する検査枠座標を補正する制御を行うように構成されている。このように構成すれば、設定された検査領域と検査対象部位である電子部品との位置がずれている場合でも、検査領域を規定する検査枠座標を用いて、ずれた検査領域と電子部品との位置を合せるように容易に調整することができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、検査対象部位としての半田が基板に印刷された際に、3次元計測を行うとともに、3次元計測の結果に基づいて半田を検査する検査領域を補正し、補正された検査領域において2次元計測を行うように構成されている。このように構成すれば、設定された検査領域と基板に印刷された検査対象部位である半田との位置がずれている場合でも、検査領域と半田との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、電子部品が基板上(半田の上)に実装される前に2次元計測(検査)を精度よく行うことができる。これにより、基板に電子部品が実装された後に半田の検査を行う場合と比べて早い段階で半田の検査を行うことができるので、生産効率が低下するのを抑制することができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、検査対象部位としての電子部品が基板に実装されるとともにリフロー前のタイミングで、3次元計測を行うとともに、3次元計測の結果に基づいて電子部品を検査する検査領域を補正し、補正された検査領域において2次元計測を行うように構成されている。このように構成すれば、設定された検査領域と基板に実装された検査対象部位である電子部品との位置がずれている場合でも、検査領域と電子部品との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、リフローされる前に2次元計測(検査)を精度よく行うことができる。これにより、電子部品が実装され、リフローされた後に電子部品の検査を行う場合と比べて早い段階で電子部品の検査を行うことができるので、生産効率が低下するのを抑制することができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、検査対象部位としての電子部品が基板に実装されるとともにリフロー後のタイミングで、3次元計測を行うとともに、3次元計測の結果に基づいて電子部品を検査する検査領域を補正し、補正された検査領域において用いて2次元計測を行うことにより電子部品を検査するように構成されている。このように構成すれば、リフロー工程での半田の溶融および硬化に伴なって電子部品の端子部の位置ずれが発生する場合にも、検査領域と電子部品との位置がずれた状態で2次元計測が行われてしまうのを抑制することができる。
 上記第1の局面による検査装置において、好ましくは、制御部は、3次元計測を行うとともに、3次元計測の結果に基づいて電子部品を検査する検査領域を補正し、補正された検査領域において電子部品が配置される向きおよび半田接合状態のうち少なくとも一方についての2次元計測を行うように構成されている。このように構成すれば、検査領域と電子部品との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、電子部品が配置される向きおよび半田接合状態の2次元計測(検査)を精度よく行うことができる。
 この発明の第2の局面による検査方法は、検査対象部位の高さ情報を取得可能な3次元計測を行うステップと、3次元計測の結果に基づいて、検査対象部位を検査する検査領域を補正するステップと、補正された検査領域において色相、彩度、明度のうち少なくとも1つの情報を取得可能な2次元計測を行うステップとを備える。
 この発明の第2の局面による検査方法では、上記のように、3次元計測の結果に基づいて検査対象部位を検査する検査領域を補正し、補正された検査領域において2次元計測を行うステップを設けることによって、設定された検査領域と検査対象部位との位置がずれている場合でも、ずれた検査領域と検査対象部位との位置を合せるように調整することができる。これにより、検査領域と検査対象部位との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、2次元計測(検査)を精度よく行うことができる。
 本発明によれば、上記のように、設定された検査領域と検査対象部位とがずれている場合でも、2次元計測(検査)を精度よく行うことができる。
本発明の第1実施形態による検査装置の全体構成を示す平面図である。 本発明の第1実施形態による検査装置のプロジェクタおよび照明部を説明するための図である。 本発明の第1実施形態による検査装置の制御に関する構成を示したブロック図である。 本発明の第1実施形態による検査装置により3次元計測された半田を示した図である。 本発明の第1実施形態による検査装置により2次元計測された半田を示した図である。 本発明の第1実施形態による検査装置の検査領域を補正する前の状態を示した図である。 本発明の第1実施形態による検査装置の検査領域を補正した後の状態を示した図である。 本発明の第1実施形態による検査装置の半田検査処理を説明するためのフローチャートである。 本発明の第2実施形態による検査装置の検査領域を補正する前の状態を示した図である。 本発明の第2実施形態による検査装置の検査領域を補正した後の状態を示した図である。 本発明の第2実施形態による検査装置の電子部品検査処理を説明するためのフローチャートである。 本発明の第1実施形態の変形例による検査装置のプロジェクタおよび照明部を説明するための図である。 本発明の第1実施形態の変形例による検査装置により検査される異物を上部からみた図である。 本発明の第1実施形態の変形例による検査装置により検査される異物の影を示した図である。
 以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
 まず、図1~図7を参照して、本発明の第1実施形態による検査装置100の構造について説明する。
 図1に示すように、第1実施形態による検査装置100は、半田120がプリント基板130に印刷された半田印刷済み基板110(図2参照)に対して、半田の印刷状態を検査するための装置である。半田印刷済み基板110には、プリント基板130上の所定位置に半田120が配置(印刷)されている。また、プリント基板130の表面と半田120の表面とは、同系統の色を有している。検査装置100は、半田120の設計位置に対する位置ズレの量が許容範囲内か、半田120が印刷されているか否か(欠品検査)などの各種検査を行うように構成されている。なお、半田120は、本発明の「検査対象部位」の一例である。また、プリント基板130は、本発明の「基板」の一例である。
 図1に示すように、検査装置100は、基台1上に設けられた半田印刷済み基板110(図2参照)を搬送するための基板搬送コンベア10と、半田印刷済み基板110をY方向に移動させる移動テーブル20と、ユニット支持部30と、ユニット支持部30によりX方向に移動可能に支持される撮像ユニット40と、制御装置50(図3参照)とを主に備えている。以下、検査装置100の具体的な構造を説明する。
 基板搬送コンベア10は、半田印刷済み基板110(図2参照)を保持してX方向に搬送することによって、検査装置100への半田印刷済み基板110の搬入、検査位置への搬送および検査装置100からの半田印刷済み基板110の搬出を行う機能を有する。基板搬送コンベア10は、装置上流側(矢印X2方向側)の搬入部11と、装置下流側(矢印X1方向側)の搬出部12と、移動テーブル20上に設けられた移動部13とを含んでいる。
 搬入部11および搬出部12は、X方向に延びる一対のコンベア部をそれぞれ有している。具体的には、搬入部11および搬出部12は、それぞれ基台1上に固定的に設けられた矢印Y2方向側の前側コンベア11aおよび12aと、基台1に対してY方向に移動可能に設けられた矢印Y1方向側の後側コンベア11bおよび12bとを有している。搬入部11および搬出部12は、この後側コンベア11bおよび12bを図示しないモータにより駆動してY方向に同期して移動させることにより、コンベアの間隔(前側コンベアと後側コンベアとの間のY方向の距離)を搬送される半田印刷済み基板110の幅(Y方向の幅)に応じて調整することが可能なように構成されている。
 また、移動部13は、Y方向に移動可能な移動テーブル20上に設けられたX方向に延びる一対のコンベア部をそれぞれ有している。具体的には、移動部13は、移動テーブル20上に固定的に設けられた前側コンベア13aと、移動テーブル20に対してY方向に移動可能に設けられた後側コンベア13bとを有している。移動部13は、この後側コンベア13bを図示しないモータにより駆動してY方向に移動させることにより、コンベア間隔(前側コンベアと後側コンベアとの間のY方向の距離)を搬送される半田印刷済み基板110の幅に応じて調整することが可能なように構成されている。また、移動部13は、図示しない保持機構によって半田印刷済み基板110を移動部13上の所定位置に固定的に保持することが可能なように構成されている。
 また、移動部13がY方向において搬入部11と位置が一致した状態で、搬入部11の前側コンベア11a、後側コンベア11b、移動部13の前側コンベア13a、後側コンベア13bが同期して駆動されることにより、半田印刷済み基板110が搬入部11から移動部13に搬入されるように構成されている。そして、移動部13がY方向において搬出部12と位置が一致した状態で、搬出部12の前側コンベア12a、後側コンベア12b、移動部13の前側コンベア13a、後側コンベア13bが同期して駆動されることにより、半田印刷済み基板110が移動部13から搬出部12に搬出されるように構成されている。
 また、移動テーブル20は、移動部13が載置されたテーブル21と、基台1上にY方向に延びるように固定的に設けられた一対のガイドレール22と、Y方向に延びるように回転可能に設けられたボールネジ軸23と、ボールネジ軸23を軸回りに回転駆動するためのY軸モータ24とを含んでいる。テーブル21は、基台1上でガイドレール22に沿って移動可能に設けられるとともに、ボールネジ軸23と螺合するナット部(図示せず)を有している。これにより、移動テーブル20は、Y軸モータ24によりボールネジ軸23を回転駆動することによってテーブル21をY方向に移動させ、その結果、移動部13の一対のコンベア(前側コンベア13aおよび後側コンベア13b)に保持された半田印刷済み基板110をY方向に移動させるように構成されている。
 ユニット支持部30は、移動テーブル20および移動部13よりも上方の位置で移動テーブル20を跨ぐように設けられたX方向に延びる梁部31と、基台1上のX方向の両端部において梁部31の両端部をそれぞれ支持する一対の脚部(図示せず)とからなる門型形状を有している。また、梁部31上には、Y2方向側で撮像ユニット40を支持する支持フレーム32と、X方向に延びるように設けられた一対のガイドレール33と、X方向に延びるように回転可能に設けられたボールネジ軸34と、ボールネジ軸34を軸回りに回転駆動するためのX軸モータ35とが設けられている。支持フレーム32は、ボールネジ軸34に螺合するとともに、一対のガイドレール33に沿って移動可能に構成されている。これにより、ユニット支持部30は、X軸モータ35によりボールネジ軸34を回転駆動して支持フレーム32をX方向に移動させることにより、支持フレーム32に支持された撮像ユニット40を移動テーブル20(移動部13)の上方でX方向に移動させるように構成されている。
 ここで、第1実施形態では、図2に示すように、撮像ユニット40は、異なる複数の照射角度で照明光を照射可能な照明部41と、所定角度から照明光を照射可能な複数のプロジェクタ42とを含んでいる。また、撮像ユニット40は、撮像方向を鉛直下方(矢印Z2方向)に向けられ半田印刷済み基板110(半田120)の上面画像を撮像する撮像部43を含んでいる。この撮像ユニット40がユニット支持部30によってX方向に移動されるとともに、移動部13上の半田印刷済み基板110が移動テーブル20によってY方向に移動される。これにより、撮像ユニット40が半田印刷済み基板110上の所定位置で半田120の撮像を行うことが可能である。なお、照明部41は、本発明の「第2照明部」および「2次元計測部」の一例である。また、プロジェクタ42は、本発明の「第1照明部」および「3次元計測部」の一例である。また、撮像部43は、本発明の「3次元計測部」および「2次元計測部」の一例である。
 また、照明部41は、概略的には、頂部に開口部411が形成されたドーム状形状を有し、ドームの内面側に設けられた複数の照明を有している。開口部411の上方(矢印Z1方向)には撮像部43が配置され、撮像部43がこの開口部411を介して半田印刷済み基板110の撮像を行うように構成されている。照明部41の内面側には、開口部411の設けられた頂点側(矢印Z1方向側)から順に、上段照明412と、中段照明413と、下段照明414とが、それぞれ上方から見て円形状に複数設けられている。また、上段照明412と、中段照明413と、下段照明414とは、上方から見て、撮像部43を取り囲むように設けられている。
 具体的には、上段照明412は、照明部41において最も上方(矢印Z1方向)の位置に、開口部411の外周を取り囲むように複数設けられている。また、中段照明413は、上段照明412よりも下方(矢印Z2方向)の位置であって、下段照明414よりも上方(矢印Z1方向)の位置で、上段照明412を取り囲むように複数設けられている。そして、下段照明414が、中段照明413よりも下方(矢印Z2方向)の位置で、中段照明413を取り囲むように複数設けられている。また、上段照明412と、中段照明413と、下段照明414とは、それぞれ、色相(階調)、彩度および明度の情報を取得可能な2次元計測用の光を照射可能なように構成されている。具体的には、これらの上段照明412と、中段照明413と、下段照明414とは、それぞれ白色LEDから構成されている。これにより、図2に示す例のように、3次元計測では検出し難い、半田120の表面上の薄膜状の異物120a(たとえば、フィルム)などを検出することが可能である。なお、簡略化のため、以下の説明では、この2次元計測用の照明光を第2の光として説明する。
 なお、照明部41がドーム状形状を有するため、上段照明412から下方(矢印Z2方向)に向かうにしたがって照明の位置が撮像部43(開口部411)から離間する。このため、上段照明412は、撮像対象(半田印刷済み基板110上の半田120)に対して略直上(矢印Z1方向)の位置から第2の光を照射するように構成されている。したがって、上段照明412の照射方向と撮像部43の撮像方向とが略同一方向となるように構成されている。また、中段照明413は、照明部41のドーム内面で光を反射させ、撮像対象(実装済み基板110上の半田120)の全体に均一な第2の光を照射するように構成されている。そして、下段照明414は、撮像対象に対して約30度の照射角度(仰角)で第2の光を照射するように構成されている。これにより、撮像部43は、同一の撮像対象に対して、異なる角度から照射された第2の光を用いて撮像を行うことが可能なように構成されている。
 プロジェクタ42は、プリント基板130に対する半田120の高さ情報を取得可能な3次元計測用の照明光(第1の光)を照射可能なように構成されている。プロジェクタ42は、第1の光である正弦波状の光強度分布を有する投影パターンの照明光により照明を行うように構成されている。これにより、一定の周期(たとえば、3mm)で光強度が変化する縞状の光パターンが半田120に対して投影される。この第1の光により照明を行うことによって、位相シフト法(3次元計測)により半田120の高さ位置を測定(高さ情報を取得)することが可能である。また、プロジェクタ42は、半田120(プリント基板130)に対して略45度の斜め上方の位置から、第1の光を照射可能に構成されている。また、プロジェクタ42は、上方から見て、撮像部43を囲むように複数個設けられている。
 撮像部43は、レンズ43aが設けられたCCDカメラなどから構成されている。撮像部43は、半田印刷済み基板110(基板搬送コンベア10)に対して上方(矢印Z1方向)の位置に設けられるとともに、撮像方向が半田印刷済み基板110に対して略垂直となるように、鉛直下方(矢印Z2方向)を向けて設けられている。撮像部43は、プロジェクタ42の第1の光と、上段照明412、中段照明413および下段照明414の第2の光とをそれぞれ用いて半田120を撮像可能なように構成されている。
 これにより、撮像部43は、プロジェクタ42から半田印刷済み基板110(半田120)に対して照射された第1の光を用いて、半田印刷済み基板110(半田120)の3次元画像を撮像するように構成されている。これにより、プロジェクタ42による第1の光の下では高さ情報を含む画像が得られる。また、撮像部43は、照明部41から半田印刷済み基板110(半田120)に対して照射された第2の光を用いて、半田印刷済み基板110(半田120)の上面の2次元(平面)画像を撮像するように構成されている。この撮像部43は、赤色(r)成分、緑色(g)成分および青色(b)成分のそれぞれの光の強度を検知する成分別の撮像素子を有している。これにより、白色LEDからなる上段照明412、中段照明413および下段照明414による照明光の下では赤色(r)成分、緑色(g)成分、青色(b)成分を含むカラー画像が得られる。また、撮像部43は、上段照明412、中段照明413および下段照明414のそれぞれにより、半田120の2次元データ(画像)120cの上段部120d、中段部120eおよび下段部120fに対応するデータ(画像)を取得するように構成されている。そして、取得されたデータに基づいて、演算処理部51により、色相、彩度および明度の情報が取得される。
 図3に示すように、検査装置100は、制御装置50によって制御されるように構成されている。制御装置50は、演算処理部51と、記憶部52と、モータ制御部53と、照明制御部54と、撮像制御部55とを含んでいる。また、制御装置50には、タッチパネルなどからなる表示ユニット60が接続され、ユーザからの操作入力を受け付けるように構成されている。なお、演算処理部51は、本発明の「制御部」の一例である。
 演算処理部51は、論理演算を実行するCPU、CPUを制御するプログラムなどを記憶するROM(Read Only Memory)および装置の動作中に種々のデータを一時的に記憶するRAM(Random Access Memory)などから構成されている。演算処理部51は、ROMに記憶されているプログラムに従って、モータ制御部53、照明制御部54および撮像制御部55を介して、検査装置100の各部を制御するように構成されている。これにより、演算処理部51は、搬入された半田印刷済み基板110を撮像ユニット40により撮像するとともに、撮像画像を用いて半田印刷済み基板110に印刷された半田120の印刷状態の検査を行うように構成されている。
 また、第1実施形態では、演算処理部51は、3次元計測を行うとともに、3次元計測の結果に基づいて半田120を検査する検査領域140(検査領域140を規定する検査枠座標)を補正し、補正された検査領域140において(補正された検査枠座標に基づいて)、2次元計測(検査)(高精度計測制御)を行うように構成されている。具体的には、図6および図7に示すように、演算処理部51は、第1の光を用いて3次元計測を行うとともに、3次元計測の結果(実際に印刷された半田120の中心座標140aと設計上の半田120の中心座標140bとのズレ)に基づいて、半田120を検査する検査領域140を補正するように構成されている。そして、演算処理部51は、補正された検査領域140において上段照明412、中段照明413および下段照明414から照射される第2の光を用いて2次元計測(検査)を行うように構成されている。また、演算処理部51は、半田120が印刷されたプリント基板130に対して、この制御を行うように構成されている。また、演算処理部51は、たとえば、プリント基板130に半田120が印刷された際に、この制御を行うように構成されている。なお、この検査領域140は、移動テーブル20が移動する方向に略垂直な方向に延びる検査枠座標軸140Xと、移動テーブル20が移動する方向に略平行な方向に延びる検査枠座標軸140Yとにより定められる検査枠座標により規定されている。
 演算処理部51は、3次元計測の結果と2次元計測の結果とを対比し、対比した結果が略同一であると判断された場合に、半田120の状態を判別(検査)する制御を行うように構成されている。一方、演算処理部51は、3次元計測の結果と2次元計測の結果とを対比し、対比した結果が異なると判断された場合に、半田120の状態を判別(検査)しないように構成されている。詳細には、演算処理部51は、第1の光による3次元計測により取得された半田120の形状を示すデータ(画像)120b(3次元計測の結果)のうち一部120b1(図4参照)が、第2の光による2次元計測により取得された半田120の形状を示すデータ(画像)120c(2次元計測の結果(図5参照))と異なっている場合には、半田120の状態を判別(検査)しない制御を行うように構成されている。
 記憶部52は、各種データの記憶および演算処理部51による読み出しが可能な不揮発性の記憶装置からなる。記憶部52には、撮像部43によって撮像された撮像画像データ、プリント基板130に印刷される半田120の設計上の位置情報を定めた基板データ、および、半田120の形状を定めた部品形状データベースなどが記憶されている。
 モータ制御部53は、演算処理部51から出力される制御信号に基づいて、検査装置100の各サーボモータ(移動テーブル20をY方向に移動するためのY軸モータ24、撮像ユニット40をX方向に移動させるためのX軸モータ35、基板搬送コンベア10の半田印刷済み基板110の搬送用のモータ14など)などの駆動を制御するように構成されている。また、モータ制御部53は、各サーボモータのエンコーダ(図示せず)からの信号に基づいて、撮像部43の撮像位置および半田印刷済み基板110の位置などを取得するように構成されている。
 照明制御部54は、演算処理部51から出力される制御信号に基づいて、プロジェクタ42、照明部41の上段照明412、中段照明413および下段照明414の各々を、所定のタイミングで点灯させるように構成されている。
 撮像制御部55は、演算処理部51から出力される制御信号に基づいて、撮像部43から所定のタイミングで撮像信号の読み出しを行うことにより、撮像画像のデータを取得するように構成されている。
 表示ユニット60は、ユーザからの情報入力(操作入力)を受け付け可能なタッチパネルを有し、撮像部43により撮像された撮像画像の表示を行う表示部としての機能と、表示画面上での入力操作を受け付ける入力部としての機能とを有している。
 次に、図4~図8を参照して、本発明の第1実施形態の検査装置100の演算処理部51による半田検査処理について説明する。なお、半田検査処理は、たとえば、半田120がプリント基板130に印刷された際に実行される。
 まず、ステップS1において、半田120の位置に視野が移動される。具体的には、撮像ユニット40がユニット支持部30によってX方向に移動されるとともに、半田120が印刷された半田印刷済み基板110が移動テーブル20によってY方向に移動され、半田120が撮像ユニット40の撮像視野に収められる。
 次に、ステップS2において、視野の撮像が行われる。具体的には、プロジェクタ42から第1の光が照射され、撮像部43により視野の撮像が行われるとともに、上段照明412、中段照明413および下段照明414から第2の光が照射され、撮像部43により視野の撮像が行われる。
 次に、ステップS3において、第1の光が照射された際に撮像された画像に基づいて、半田120の3次元形状が計測される。次に、ステップS4において、ステップS3で計測された3次元形状に基づいて、半田120の本体形状が抽出される。
 次に、ステップS5において、3次元検査が行われる。具体的には、ステップS3で計測された3次元形状およびステップS4で抽出された半田120の本体形状に基づいて、半田120の高さ(3次元)に関する情報が取得される。そして、ステップS6において、実際に印刷された半田120の中心座標140a(図6参照)が取得される。
 次に、ステップS7において、検査領域140(検査領域140を規定する検査枠座標)の補正が行われる。図6および図7に示す例では、記憶部52に記憶されているプリント基板130に印刷される半田120の設計上の中心座標140b(位置情報)と、上記ステップS6において取得された半田120の中心座標140aとが比較され、記憶部52に記憶されている設計上の中心座標140bに対する取得された半田120の中心座標140aのズレ量が検出される。そして、このズレ量に基づいて、実際に印刷された半田120の中心座標140aに対応するように検査領域140が補正される。これにより、プリント基板130の表面および半田120の表面が同系統の色を有することに起因して、2次元計測によりプリント基板130および半田120の境界が検出し難い場合でも、3次元計測によりプリント基板130および半田120の境界を検出するとともに、検査領域140を補正することが可能である。
 次に、ステップS8において、2次元検査が行われる。具体的には、色相(階調)、彩度および明度の情報を取得可能な2次元計測用の第2の光を半田120に照射した際に取得された画像に基づいて、半田120についての2次元の情報が取得される。
 次に、ステップS9において、2次元検査と3次元検査との結果が対比される。そして、ステップS10において、2次元検査と3次元検査との結果が略同一であるか否かが判断される。2次元検査と3次元検査との結果が略同一でない場合には、ステップS1に戻る。一方、2次元検査と3次元検査との結果が略同一である場合には、ステップS11に進む。たとえば、図4および図5に示す例では、第1の光を半田120に照射した際に取得されたデータ(画像)120b(図4参照)は、一部120b1にノイズを含んでおり、第2の光を半田120に照射した際に取得されたデータ(画像)120c(図5参照)は、半田120の形状に対応している。このような場合には、2次元検査と3次元検査との結果が略同一でないとして、ステップS1に戻る。
 次に、ステップS11において、半田120の状態が判別(検査)される。具体的には、ステップS5の半田120の高さ(3次元)に関する情報とステップS8の第2の光を半田120に照射した際に取得された情報に基づいて、半田120の体積、形状、ブリッジ(短絡)などの各種項目が、予め決められている所定範囲に入っているか(半田120の状態が適正であるか)否かが判別(検査)される。
 次に、ステップS12において、半田印刷済み基板110上の全ての視野が検査されたか否かが判断される。半田印刷済み基板110上の全ての視野が検査されていない場合には、ステップS1に戻る。一方、半田印刷済み基板110上の全ての視野が検査された場合には、半田検査処理が終了される。
 第1実施形態では、上記のように、3次元計測の結果に基づいて半田120を検査する検査領域140を補正し、補正された検査領域140において2次元計測を行う演算処理部51を設ける。これにより、設定された検査領域140と半田120との位置がずれている場合でも、ずれた検査領域140と半田120との位置を合せるように調整することができる。その結果、検査領域140と半田120との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、2次元計測(検査)を精度よく行うことができる。
 また、第1実施形態では、上記のように、3次元計測の結果に基づいて検査領域140を規定する検査枠座標を補正し、補正された検査枠座標に基づいて、2次元計測を行うように演算処理部51を構成する。これにより、検査領域140を規定する検査枠座標を用いて、ずれた検査領域140と半田120との位置を合せるように容易に調整することができる。
 また、第1実施形態では、上記のように、プリント基板130に対する半田120の高さ情報を取得可能な第1の光を照射可能なプロジェクタ42と、色相、彩度および明度の情報を取得可能な第2の光を照射可能な照明部41と、第1の光と第2の光とをそれぞれ用いて半田120を撮像可能な撮像部43とを設ける。また、第1の光を用いて3次元計測を行うとともに、検査領域140を補正し、補正された検査領域140において第2の光を用いて2次元計測を行うように演算処理部51を構成する。これにより、上記のプロジェクタ42、照明部41および撮像部43を設けた簡易な構成により、ずれた検査領域140と検査対象部位との位置を合せるように調整することができる。
 また、第1実施形態では、上記のように、3次元計測の結果と2次元計測の結果とを対比し、対比した結果が略同一であると判断された場合に、半田120の状態を判別(検査)する制御を行う演算処理部51を設ける。これにより、2次元計測の結果と、3次元計測の結果との両方に基づいて、半田120の状態を正確に判別(検査)することができる。
 また、第1実施形態では、上記のように、3次元計測の結果と2次元計測の結果とを対比し、対比した結果が異なると判断された場合に、検査対象部位の状態を判別しない制御を行う演算処理部51を設ける。これにより、正確に3次元計測または2次元計測が行われていない可能性がある場合に、不正確な3次元計測の結果および2次元計測の結果に基づいて、半田120の状態を判別(検査)するのを抑制し、判別する際の精度が低下するのを抑制することができる。
 また、第1実施形態では、上記のように、プリント基板130に半田120が印刷された際に、上記高精度計測制御を行うように演算処理部51を構成する。これにより、電子部品がプリント基板130上(半田120の上)に実装される前に2次元計測(検査)を精度よく行うことができるので、プリント基板130に電子部品が実装された後に半田120の検査を行う場合と比べて早い段階で半田120の検査を行うことができるので、生産効率が低下するのを抑制することができる。
(第2実施形態)
 以下、図1、図3、図9および図10を参照して、本発明の第2実施形態による検査装置200の構成について説明する。
 この第2実施形態では、検査対象部位としての半田120について検査を行った第1実施形態と異なり、検査対象部位としての電子部品220について検査を行う検査装置200について説明する。
 図1に示すように、第2実施形態による検査装置200は、電子部品220がプリント基板230に実装された電子部品実装済み基板210(図9参照)に対して、電子部品220の実装状態を検査するための装置である。電子部品実装済み基板210には、プリント基板230上の所定位置に電子部品220が配置(実装)されている。また、プリント基板230の表面と電子部品220の表面とは、同系統の色を有している。検査装置200は、電子部品220の設計位置に対する配置方向や位置ズレの量が許容範囲内か、電子部品220をプリント基板230に半田付けした際のフィレットの形状が許容範囲内か、電子部品220が搭載されているか否か(欠品検査)などの各種検査を行うように構成されている。また、電子部品220には、図9および図10に示すように、電子部品220の配置方向を検査するための極性マーク221や、プリント基板230に実装するための端子222などが設けられている。なお、図9および図10に示す例では、半田が印刷されたプリント基板230に電子部品220が実装された状態を示しているが、端子222をプリント基板230に接合する半田を省略して図示している。なお、電子部品220は、本発明の「検査対象部位」の一例である。また、プリント基板230は、本発明の「基板」の一例である。
 図1に示すように、検査装置200は、基台1上に設けられた電子部品実装済み基板210(図9参照)を搬送するための基板搬送コンベア10と、電子部品実装済み基板210をY方向に移動させる移動テーブル20と、ユニット支持部30と、ユニット支持部30によりX方向に移動可能に支持される撮像ユニット40と、制御装置250(図3参照)とを主に備えている。
 また、図3に示すように、撮像ユニット40は、異なる複数の照射角度で第2の光を照射可能な照明部41(上段照明412、中段照明413および下段照明414)と、複数のプロジェクタ42とを含んでいる。また、撮像ユニット40は、撮像方向を鉛直下方(矢印Z2方向)に向けられ電子部品実装済み基板210の上面画像を撮像する撮像部43を含んでいる。
 また、上段照明412と、中段照明413と、下段照明414とは、それぞれ、色相(階調)、彩度および明度の情報を取得可能な2次元計測用の光を照射可能なように構成されている。これにより、図10に示す例のように、3次元計測では検出し難い、電子部品220の表面上の部分(電子部品220が配置される向きの標識となる薄膜状の極性マーク221や、半田接合状態(半田のフィレット))などを検出することが可能である。
 プロジェクタ42は、プリント基板230に対する電子部品220の高さ情報を取得可能な3次元計測用の照明光(第1の光)を照射可能なように構成されている。縞状の投影パターンの第1の光により照明を行うことによって、位相シフト法(3次元計測)により電子部品220の高さ位置を測定(高さ情報を取得)することが可能である。
 演算処理部51は、3次元計測を行うことにより電子部品220の位置を特定する。そして、演算処理部51は、3次元計測により特定された電子部品220の位置に基づいて、電子部品220を検査する検査領域240を補正し、補正された検査領域240において2次元計測(検査)を行うように構成されている。具体的には、図9および図10に示すように、演算処理部51は、第1の光を用いて3次元計測を行うとともに、3次元計測の結果(実際に実装された電子部品220の中心座標240aと設計上の電子部品220の中心座標240bとのズレ)に基づいて、電子部品220の2次元計測を行う際の検査領域240(検査領域240を規定する検査枠座標)を補正する制御を行うように構成されている。そして、演算処理部51は、補正された検査領域240において上段照明412、中段照明413および下段照明414から照射される第2の光を用いて2次元計測(検査)を行うように構成されている。なお、この検査領域240は、移動テーブル20が移動する方向に略垂直な方向に延びる検査枠座標軸240Xと、移動テーブル20が移動する方向に略平行な方向に延びる検査枠座標軸240Yとにより定められる検査枠座標により規定されている。
 また、演算処理部51は、電子部品220が実装されたプリント基板230に対して、この制御を行うように構成されている。また、演算処理部51は、たとえば、電子部品220がプリント基板230に実装された後のリフロー前およびリフロー後のタイミングで、3次元計測を行うとともに、3次元計測の結果に基づいて電子部品220を検査する検査領域240を補正し、補正された検査領域240において2次元計測を行うように構成されている。
 記憶部52には、撮像部43によって撮像された撮像画像データ、プリント基板230に実装される電子部品220の設計上の位置情報を定めたデータ、電子部品220に設けられた極性マーク221、端子222およびプリント基板230を半田により接合する位置などが記憶されている。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
 次に、図9~図11を参照して、本発明の第2実施形態の検査装置200の演算処理部51による電子部品検査処理について説明する。なお、電子部品検査処理は、たとえば、電子部品220がプリント基板230に実装されるとともに、リフロー前およびリフロー後のタイミングに実行される。
 まず、ステップS21において、電子部品220の位置に視野が移動される。具体的には、撮像ユニット40がユニット支持部30によってX方向に移動されるとともに、電子部品220が実装された電子部品実装済み基板210が移動テーブル20によってY方向に移動され、電子部品220が撮像ユニット40の撮像視野に収められる。
 次に、ステップS22において、視野の撮像が行われる。具体的には、プロジェクタ42から第1の光が照射され、撮像部43により視野の撮像が行われるとともに、上段照明412、中段照明413および下段照明414から第2の光が照射され、撮像部43により視野の撮像が行われる。
 次に、ステップS23において、第1の光が照射された際に撮像された画像に基づいて、電子部品220の3次元形状が計測される。次に、ステップS24において、ステップS23で計測された3次元形状に基づいて、電子部品220の本体形状が抽出される。
 次に、ステップS25において、3次元検査が行われる。具体的には、ステップS23で計測された3次元形状およびステップS24で抽出された電子部品220の本体形状に基づいて、電子部品220の高さなどの3次元に関する情報が取得される。そして、ステップS26において、実際に実装された電子部品220の中心座標240a(図9参照)が取得される。
 次に、ステップS27において、検査領域240(検査領域240を規定する検査枠座標)の補正が行われる。図9および図10に示す例では、記憶部52に記憶されているプリント基板230に印刷される電子部品220の設計上の中心座標240b(位置情報)と、上記ステップS26において取得された電子部品220の中心座標240aとが比較され、記憶部52に記憶されている設計上の中心座標240bに対する取得された電子部品220の中心座標240aのズレ量が検出される。そして、このズレ量に基づいて、実際に実装された電子部品220の中心座標240aに対応するように検査領域240(検査枠座標)が補正される。これにより、プリント基板230の表面および電子部品220の表面が同系統の色を有することに起因して、2次元計測によりプリント基板230および電子部品220の境界が検出し難い場合でも、3次元計測によりプリント基板230および電子部品220の境界を検出するとともに、検査領域240を補正することが可能である。
 次に、ステップS28において、フィレットの2次元検査が行われる。具体的には、色相(階調)、彩度および明度の情報を取得可能な2次元計測用の第2の光を電子部品220の端子222に設けられた半田(図示せず)に照射した際に取得された画像に基づいて、半田のフィレットについての2次元の情報が取得される。
 次に、ステップS29において、電子部品220の極性(配置方向)の2次元検査が行われる。具体的には、色相(階調)、彩度および明度の情報を取得可能な2次元計測用の第2の光を電子部品220の極性マーク221に照射した際に取得された画像に基づいて、電子部品220の極性(配置方向)についての2次元の情報が取得される。
 次に、ステップS30において、2次元検査と3次元検査との結果が対比される。そして、ステップS31において、2次元検査と3次元検査との結果が略同一であるか否かが判断される。2次元検査と3次元検査との結果が略同一でない場合には、ステップS21に戻る。一方、2次元検査と3次元検査との結果が略同一である場合には、ステップS32に進む。
 次に、ステップS32において、電子部品220の状態が判別(検査)される。具体的には、ステップS25の電子部品220の高さなどの3次元に関する情報、ステップS28の電子部品220の端子222に設けられた半田のフィレットの2次元の情報、およびステップS29の電子部品220の極性(配置方向)についての2次元の情報に基づいて、電子部品220の向きや端子222に設けられた半田の形状などの各種項目が、予め決められている所定範囲に入っているか(電子部品220の状態が適正であるか)否かが判別(検査)される。
 次に、ステップS33において、電子部品実装済み基板210上の全ての視野が検査されたか否かが判断される。電子部品実装済み基板210上の全ての視野が検査されていない場合には、ステップS21に戻る。一方、電子部品実装済み基板210上の全ての視野が検査された場合には、電子部品検査処理が終了される。
 第2実施形態では、上記のように、3次元計測の結果に基づいて電子部品220を検査する検査領域240を補正し、補正された検査領域240において2次元計測を行う演算処理部51を設ける。これにより、設定された検査領域240と電子部品220との位置がずれている場合でも、ずれた検査領域240と電子部品220との位置を合せるように調整することができる。その結果、検査領域240と電子部品220との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、2次元計測(検査)を精度よく行うことができる。
 第2実施形態では、上記のように、電子部品220の3次元計測を行うことにより電子部品220の位置を特定するとともに、特定された電子部品220の位置に基づいて、電子部品220を検査する検査領域240を補正し、補正された検査領域240において2次元計測を行うように演算処理部51を構成する。これにより、検査領域240と電子部品220との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、電子部品220の2次元計測(検査)を精度よく行うことができる。
 また、第2実施形態では、上記のように、電子部品220の3次元計測を行うことにより電子部品220の位置を特定するとともに、特定された電子部品220の位置に基づいて、電子部品220の2次元計測を行う際の検査領域240を規定する検査枠座標を補正する制御を行うように演算処理部51を構成する。これにより、検査領域240を規定する検査枠座標を用いて、ずれた検査領域240と電子部品220との位置を合せるように容易に調整することができる。
 また、第2実施形態では、上記のように、電子部品220がプリント基板230に実装されるとともにリフロー前のタイミングで、上記高精度計測制御を行うように演算処理部51を構成する。これにより、リフローされる前に2次元計測(検査)を精度よく行うことができる。その結果、電子部品220が実装され、リフローされた後に電子部品220の検査を行う場合と比べて早い段階で電子部品220の検査を行うことができるので、生産効率が低下するのを抑制することができる。
 また、第2実施形態では、上記のように、電子部品220がプリント基板230に実装されるとともにリフロー後のタイミングで、上記高精度計測制御を行うように演算処理部51を構成する。これにより、リフロー工程での半田の溶融および硬化に伴なって電子部品220の端子222の位置ずれが発生する場合にも、検査領域240と電子部品220との位置がずれた状態で2次元計測が行われてしまうのを抑制することができる。
 また、第2実施形態では、上記のように、補正された検査領域240において電子部品220が配置される向きおよび半田接合状態についての2次元計測を行うように演算処理部51を構成する。これにより、検査領域240と電子部品220との位置がずれた状態で2次元計測が行われてしまうのを抑制することができるので、電子部品220が配置される向きおよび半田接合状態の2次元計測(検査)を精度よく行うことができる。
 また、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記第1実施形態および第2実施形態では、照明部(第2照明部)を、上段照明412と、中段照明413と、下段照明414とによって3つの異なる照射角度で照明光を照射可能に構成した例を示したが、本発明はこれに限られない。本発明では、第2照明部を、上段照明および下段照明のみにより2つの照射角度で照明光を照射可能なように構成してもよいし、4つ以上の異なる照射角度で照明光を照射可能なように構成してもよい。
 また、上記第1実施形態および第2実施形態では、上段照明412、中段照明413および下段照明414(第2照明部)と撮像部とをそれぞれ別個に設ける例を示したが、本発明はこれに限られない。本発明では、第2照明部と撮像部とが一体的に構成された2次元計測部を設けてもよい。また、上記第1実施形態および第2実施形態では、プロジェクタ(第1照明部)と撮像部とをそれぞれ別個に設ける例を示したが、本発明はこれに限られない。本発明では、第1照明部と撮像部とが一体的に構成された3次元計測部を設けてもよい。
 また、上記第1実施形態では、半田(検査対象部位)について検査を行い、上記第2実施形態では電子部品(検査対象部位)について検査を行う例を示したが、本発明はこれに限られない。本発明では、検査対象部位としての半田や電子部品以外の部位について検査を行ってもよい。
 また、上記第1実施形態および第2実施形態では、色相、彩度および明度に基づいて、2次元計測を行う例を示したが、本発明はこれに限られない。本発明では、色相、彩度および明度のうち、いずれか1つまたは2つに基づいて、2次元計測を行ってもよい。
 また、上記第1実施形態および第2実施形態では、3次元計測の結果と2次元計測の結果とが異なると判断された場合に、半田および電子部品(検査対象部位)の状態を判別しない例を示したが、本発明はこれに限られない。本発明では、3次元計測の結果と2次元計測の結果とが異なると判断された場合に、3次元計測の結果のうち2次元計測と異なる結果を考慮せずに検査対象部位の状態を判別してもよい。これにより、正確に3次元計測または2次元計測が行われていない可能性がある場合に、不正確な3次元計測の結果および2次元計測の結果に基づいて、検査対象部位の状態を判別するのを抑制することができるので、検査対象部位の状態を判別する際の精度が低下するのを抑制することができる。また、3次元計測の結果のうち2次元計測と異なる結果を2次元計測の結果を用いて補正することにより検査対象部位の状態を判別してもよい。これにより、正確に3次元計測が行われていない可能性がある場合に、不正確な3次元計測の結果に基づいて、検査対象部位の状態を判別するのを抑制することができるので、検査対象部位の状態を判別する際の精度が低下するのを抑制することができる。
 また、上記第1実施形態および第2実施形態では、上段照明412、中段照明413および下段照明414(照明部)により、2次元計測用の第2の光を照射する例を示したが、本発明はこれに限られない。本発明では、位相シフト法による3次元計測を行うための第1の光と第1の光とは異なる2次元計測用の第2の光とをそれぞれ切り替えて照射可能に構成されたプロジェクタ142(第1照明部)により、第2の光を照射してもよい。すなわち、プロジェクタ142は、第1の光を照射する第1照明部および第2の光を照射する第2照明部として機能するように構成されていてもよい。これにより、設定された検査領域と検査対象部位とがずれている場合でも、第1照明部および第2照明部の両方の機能を有するプロジェクタ142を用いて、検査領域と検査対象部位との位置ずれが調整された状態で2次元計測を行うことができる。その結果、検査装置の構造を簡素化しながら、2次元計測(検査)を精度よく行うことができる。また、プロジェクタ142は、本発明の「第1照明部」および「第2照明部」の一例である。
 また、上記第1実施形態および第2実施形態では、上方から見て、撮像部を取り囲むように設けられた上段照明412、中段照明413および下段照明414(照明部)により、2次元計測用の第2の光を照射する例を示したが、本発明はこれに限られない。本発明では、図12に示すように、3次元計測を行うための第1の光と第1の光とは異なる2次元計測を行うための第2の光とをそれぞれ切り替えて照射可能に構成されたプロジェクタ142を、上方から見て、撮像部を取り囲むように複数個設け、複数個のプロジェクタ142のうちの1つのプロジェクタ142により、第2の光を照射してもよい。これにより、撮像部を取り囲むように設けられた第2照明部により照射された光を照射することにより検出対象物の影を検出することにより2次元計測を行う場合と異なり、所定の1方向から光を照射することにより検出対象物の影を容易に検出することにより2次元計測を行うことができる。具体的には、図13に示すように、検査対象部位としてのプリント基板330上に立体的な異物320がある場合には、撮像部を取り囲むように設けられた照明部により2次元計測用の第2の光を照射した際には、異物の周方向の全体から第2の光が照射されるので影が形成されないため、異物320を検出することができない。これに対して、上記構成では、図14に示すように、任意の1方向から光を照射することにより影321を形成することができるので、異物320を容易に検出することができる。
 また、上記第1実施形態では、プリント基板に半田(検査対象部位)が印刷された際に上記高精度計測制御を行い、上記第2実施形態では、電子部品(検査対象部位)がプリント基板に実装されるとともに、リフロー前およびリフロー後のタイミングで上記高精度計測制御制御を行う例を示したが、本発明はこれに限られない。本発明では、印刷後、リフロー前およびリフロー後以外のタイミングで検査を行ってもよい。
 また、上記第1および第2実施形態では、説明の便宜上、制御部の処理を処理フローに沿って順番に処理を行うフロー駆動型のフローを用いて説明したが、たとえば、制御部の処理動作を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。
 41 照明部(第2照明部、2次元計測部)
 42 プロジェクタ(第1照明部、3次元計測部)
 43 撮像部(3次元計測部、2次元計測部)
 51 演算処理部(制御部)
 100、200 検査装置
 130、230 プリント基板(基板)
 120 半田(検査対象部位)
 140、240 検査領域
 142 プロジェクタ(第1照明部、第2照明部)
 220 電子部品(検査対象部位)

Claims (15)

  1.  検査対象部位(120、220)の高さ情報を取得可能な3次元計測部(42、43)と、
     色相、彩度、明度のうち少なくとも1つの情報を取得可能な2次元計測部(41、43)と、
     3次元計測を行うとともに、前記3次元計測の結果に基づいて前記検査対象部位を検査する検査領域(140、240)を補正し、補正された前記検査領域において2次元計測を行う制御部(51)とを備える、検査装置(100、200)。
  2.  前記制御部は、前記3次元計測の結果に基づいて前記検査領域を規定する検査枠座標を補正し、補正された前記検査枠座標に基づいて、前記2次元計測を行うように構成されている、請求項1に記載の検査装置。
  3.  前記検査対象部位の高さ情報を取得可能な前記3次元計測用の第1の光を照射可能な第1照明部(42)と、
     色相、彩度、明度のうち少なくとも1つの情報を取得可能な前記2次元計測用の第2の光を照射可能な第2照明部(41)と、
     前記第1照明部の第1の光と前記第2照明部の第2の光とをそれぞれ用いて前記検査対象部位を撮像可能な撮像部(43)とをさらに備え、
     前記制御部は、前記第1照明部から照射される前記第1の光を用いて前記3次元計測を行うとともに、前記3次元計測の結果に基づいて前記検査対象部位を検査する前記検査領域を補正し、補正された前記検査領域において前記第2照明部から照射される前記第2の光を用いて前記2次元計測を行うように構成されている、請求項1に記載の検査装置。
  4.  前記制御部は、前記3次元計測の結果と前記2次元計測の結果とを対比し、対比した結果が略同一であると判断された場合に、前記検査対象部位の状態を判別する制御を行うように構成されている、請求項1に記載の検査装置。
  5.  前記制御部は、前記3次元計測の結果と前記2次元計測の結果とを対比し、対比した結果が異なると判断された場合に、前記検査対象部位の状態を判別しないか、または、前記3次元計測の結果のうち前記2次元計測と異なる結果を考慮せずに前記検査対象部位の状態を判別する制御を行うように構成されている、請求項1に記載の検査装置。
  6.  前記制御部は、前記3次元計測の結果と前記2次元計測の結果とを対比し、対比した結果が異なると判断された場合に、前記3次元計測の結果のうち前記2次元計測と異なる結果を前記2次元計測の結果を用いて補正することにより前記検査対象部位の状態を判別する制御を行うように構成されている、請求項1に記載の検査装置。
  7.  位相シフト法による前記3次元計測を行うための第1の光と前記第1の光とは異なる前記2次元計測を行うための第2の光とをそれぞれ切り替えて照射可能に構成され、前記検査対象部位の高さ情報を取得可能な前記3次元計測用の第1の光を照射可能な第1照明部および色相、彩度、明度のうち少なくとも1つの情報を取得可能な前記2次元計測用の第2の光を照射可能な第2照明部として機能するプロジェクタ(42)をさらに備え、
     前記制御部は、前記第1の光を用いて前記3次元計測を行うとともに、前記3次元計測の結果に基づいて、前記検査対象部位を検査する前記検査領域を補正し、補正された前記検査領域において前記第2の光を用いて前記2次元計測を行うように構成されている、請求項1に記載の検査装置。
  8.  前記第1照明部の第1の光と前記第2照明部の第2の光とをそれぞれ用いて前記検査対象部位を撮像可能な撮像部をさらに備え、
     前記プロジェクタは、上方から見て、前記撮像部を取り囲むように複数個設けられ、
     前記制御部は、複数個の前記プロジェクタのうちの1つのプロジェクタから前記第2の光を照射し、補正された前記検査領域において前記第2の光を用いて2次元計測を行うように構成されている、請求項7に記載の検査装置。
  9.  前記制御部は、前記検査対象部位としての電子部品(220)の前記3次元計測を行うことにより前記電子部品の位置を特定するとともに、特定された前記電子部品の位置に基づいて、前記電子部品を検査する前記検査領域を補正し、補正された前記検査領域において前記2次元計測を行うように構成されている、請求項1に記載の検査装置。
  10.  前記制御部は、前記検査対象部位としての電子部品の前記3次元計測を行うことにより前記電子部品の位置を特定するとともに、特定された前記電子部品の位置に基づいて、前記電子部品の前記2次元計測を行う際の前記検査領域を規定する検査枠座標を補正する制御を行うように構成されている、請求項9に記載の検査装置。
  11.  前記制御部は、前記検査対象部位としての半田が基板に印刷された際に、前記3次元計測を行うとともに、前記3次元計測の結果に基づいて前記半田を検査する前記検査領域を補正し、補正された前記検査領域において前記2次元計測を行うように構成されている、請求項1に記載の検査装置。
  12.  前記制御部は、前記検査対象部位としての電子部品が基板に実装されるとともにリフロー前のタイミングで、前記3次元計測を行うとともに、前記3次元計測の結果に基づいて前記電子部品を検査する前記検査領域を補正し、補正された前記検査領域において前記2次元計測を行うように構成されている、請求項1に記載の検査装置。
  13.  前記制御部は、前記検査対象部位としての電子部品が基板に実装されるとともにリフロー後のタイミングで、前記3次元計測を行うとともに、前記3次元計測の結果に基づいて前記電子部品を検査する前記検査領域を補正し、補正された前記検査領域において用いて前記2次元計測を行うことにより前記電子部品を検査するように構成されている、請求項1に記載の検査装置。
  14.  前記制御部は、前記3次元計測を行うとともに、前記3次元計測の結果に基づいて電子部品を検査する前記検査領域を補正し、補正された前記検査領域において前記電子部品が配置される向きおよび半田接合状態のうち少なくとも一方についての前記2次元計測を行うように構成されている、請求項1に記載の検査装置。
  15.  検査対象部位の高さ情報を取得可能な3次元計測を行うステップと、
     前記3次元計測の結果に基づいて、前記検査対象部位を検査する検査領域を補正するステップと、
     補正された前記検査領域において色相、彩度、明度のうち少なくとも1つの情報を取得可能な2次元計測を行うステップとを備える、検査方法。
PCT/JP2013/065394 2013-06-03 2013-06-03 検査装置および検査方法 WO2014196008A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157035470A KR101737954B1 (ko) 2013-06-03 2013-06-03 검사 장치 및 검사 방법
JP2015521191A JP6097389B2 (ja) 2013-06-03 2013-06-03 検査装置および検査方法
PCT/JP2013/065394 WO2014196008A1 (ja) 2013-06-03 2013-06-03 検査装置および検査方法
CN201380077175.6A CN105264329B (zh) 2013-06-03 2013-06-03 检查装置以及检查方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065394 WO2014196008A1 (ja) 2013-06-03 2013-06-03 検査装置および検査方法

Publications (1)

Publication Number Publication Date
WO2014196008A1 true WO2014196008A1 (ja) 2014-12-11

Family

ID=52007684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065394 WO2014196008A1 (ja) 2013-06-03 2013-06-03 検査装置および検査方法

Country Status (4)

Country Link
JP (1) JP6097389B2 (ja)
KR (1) KR101737954B1 (ja)
CN (1) CN105264329B (ja)
WO (1) WO2014196008A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160095683A (ko) * 2015-02-03 2016-08-12 삼성디스플레이 주식회사 표면 결함 검사 장치 및 그것을 이용한 표면 결함 검사 방법
JP2019525191A (ja) * 2016-08-23 2019-09-05 タイコ エレクトロニクス (シャンハイ) カンパニー リミテッド はんだ付け品質検査プラットフォーム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814307B (zh) * 2017-01-10 2020-05-12 深圳鼎缘电子科技有限公司 一种腔体滤波器自动调试方法及系统
EP3582599B1 (en) * 2017-02-13 2022-03-30 Koh Young Technology Inc. Apparatus for inspecting components mounted on printed circuit board, operating method thereof, and computer-readable recording medium
CN109813727B (zh) * 2018-12-25 2021-08-03 苏州江奥光电科技有限公司 一种基于深度信息的pcb板焊接缺陷检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031605A (ja) * 2000-07-13 2002-01-31 Hitachi Ltd 欠陥確認装置および自動外観検査装置
JP2010091569A (ja) * 2008-10-13 2010-04-22 Koh Young Technology Inc 3次元形状の測定方法及び測定装置
JP2011149736A (ja) * 2010-01-19 2011-08-04 Saki Corp:Kk 外観検査装置及び外観検査方法
JP2012145484A (ja) * 2011-01-13 2012-08-02 Omron Corp はんだ付け検査方法、およびはんだ付け検査機ならびに基板検査システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324685B2 (en) * 2003-10-20 2008-01-29 Hewlett-Packard Development Company, L.P. Inspection systems and methods
JP4809032B2 (ja) * 2005-10-04 2011-11-02 ヤマハ発動機株式会社 実装基板の検査装置および印刷装置
JP4869776B2 (ja) * 2006-04-28 2012-02-08 ヤマハ発動機株式会社 印刷検査装置及び印刷装置
JP2009036736A (ja) * 2007-08-04 2009-02-19 Djtech Co Ltd 印刷半田検査方法及び装置
KR101078781B1 (ko) * 2010-02-01 2011-11-01 주식회사 고영테크놀러지 3차원 형상 검사방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031605A (ja) * 2000-07-13 2002-01-31 Hitachi Ltd 欠陥確認装置および自動外観検査装置
JP2010091569A (ja) * 2008-10-13 2010-04-22 Koh Young Technology Inc 3次元形状の測定方法及び測定装置
JP2011149736A (ja) * 2010-01-19 2011-08-04 Saki Corp:Kk 外観検査装置及び外観検査方法
JP2012145484A (ja) * 2011-01-13 2012-08-02 Omron Corp はんだ付け検査方法、およびはんだ付け検査機ならびに基板検査システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160095683A (ko) * 2015-02-03 2016-08-12 삼성디스플레이 주식회사 표면 결함 검사 장치 및 그것을 이용한 표면 결함 검사 방법
KR102314469B1 (ko) 2015-02-03 2021-10-20 삼성디스플레이 주식회사 표면 결함 검사 장치 및 그것을 이용한 표면 결함 검사 방법
JP2019525191A (ja) * 2016-08-23 2019-09-05 タイコ エレクトロニクス (シャンハイ) カンパニー リミテッド はんだ付け品質検査プラットフォーム

Also Published As

Publication number Publication date
CN105264329A (zh) 2016-01-20
JPWO2014196008A1 (ja) 2017-02-23
KR101737954B1 (ko) 2017-05-19
KR20160007656A (ko) 2016-01-20
JP6097389B2 (ja) 2017-03-22
CN105264329B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
US9441957B2 (en) Three-dimensional shape measuring apparatus
KR101152842B1 (ko) 삼차원 계측 장치 및 기판 검사기
US20130342677A1 (en) Vision testing device using multigrid pattern
JP6097389B2 (ja) 検査装置および検査方法
US20100007896A1 (en) Inspection system and method
WO2017138178A1 (ja) 三次元計測装置
KR101269976B1 (ko) 엘이디 부품의 3차원비전검사장치 및 비전검사방법
JP2011133306A (ja) 検査装置および検査方法
KR20130137660A (ko) 삼차원 계측 장치
KR101578056B1 (ko) 삼차원 계측 장치
WO2020065850A1 (ja) 3次元測定装置
KR101245622B1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
JP2009008578A (ja) 実装基板の検査装置および検査方法
JP6198312B2 (ja) 3次元測定装置、3次元測定方法および基板の製造方法
JP2011252864A (ja) 検査装置及び検査方法
WO2020241061A1 (ja) 三次元計測装置及び三次元計測方法
KR101442666B1 (ko) 복수 행의 조명부재를 포함하는 비전검사장치
KR20230097145A (ko) 실장 기판 검사 장치 및 검사 장치
JP4189111B2 (ja) 表面実装部品装着機および表面実装部品装着機における電子部品検出方法
JP7303069B2 (ja) 検査装置
US20220330420A1 (en) Method of verifying fault of inspection unit, inspection apparatus and inspection system
US11410297B2 (en) Method of verifying fault of inspection unit, inspection apparatus and inspection system
JP2010276582A (ja) 非接触形状計測装置及び非接触形状計測方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077175.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035470

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13886181

Country of ref document: EP

Kind code of ref document: A1