WO2014193176A1 - 광활성 메티오닌 표지단백질 생합성을 위한 메티오닐 tRNA 합성효소 및 이를 이용한 광활성 단백질 G 변이체 제조방법 - Google Patents

광활성 메티오닌 표지단백질 생합성을 위한 메티오닐 tRNA 합성효소 및 이를 이용한 광활성 단백질 G 변이체 제조방법 Download PDF

Info

Publication number
WO2014193176A1
WO2014193176A1 PCT/KR2014/004803 KR2014004803W WO2014193176A1 WO 2014193176 A1 WO2014193176 A1 WO 2014193176A1 KR 2014004803 W KR2014004803 W KR 2014004803W WO 2014193176 A1 WO2014193176 A1 WO 2014193176A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
variant
mrs
antibody
binding site
Prior art date
Application number
PCT/KR2014/004803
Other languages
English (en)
French (fr)
Inventor
이명규
정봉현
문정희
이가비
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130061895A external-priority patent/KR101582655B1/ko
Priority claimed from KR1020130148287A external-priority patent/KR101598581B1/ko
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to US14/894,756 priority Critical patent/US9914757B2/en
Publication of WO2014193176A1 publication Critical patent/WO2014193176A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y601/00Ligases forming carbon-oxygen bonds (6.1)
    • C12Y601/01Ligases forming aminoacyl-tRNA and related compounds (6.1.1)
    • C12Y601/0101Methionine-tRNA ligase (6.1.1.10)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a methionyl tRNA synthase (MRS) for introducing photomethioninp (pM) into a target protein in vivo, and to a method for preparing pM-introducing protein G variant, which is a photoactive methionine mimetic using the same. to be.
  • MRS methionyl tRNA synthase
  • Covalent bond formation by photoactivity between biopolymers provides important information for many intermolecular bonds and plays an important role in structural and functional studies.
  • This method includes protein-protein binding (Suchanek et. Al., Nat Methods, 2, 261-7, 2005; Chou et. Al., Chem Sci, 2, 480-83), protein-lipid binding (Gubbens et. Al. , Chem Biol, 16, 3-14, 2009) and protein-nucleic acid bonds (Pingoud et. Al., Mol Biosyst, 1, 135-41, 2005).
  • photoactive groups such as diazir ine, benzophenone and azide groups bound to the N-hydroxysuccinimide group are used to lysine the protein.
  • Jung introduced a cysteine residue at a specific position in the protein and introduced a photoactive group into the protein by introducing cysteine into a substance that combines a photoactive group with a maleimide group (Jung et.
  • MRS methionyl tRNA synthase
  • Antibodies have been used extensively in medical research and in the analysis of biological substances related to the diagnosis and treatment of diseases because of their very specific binding to antigens (Curr. Opin. Biotechnol. 12 (2001) 65-69, Curr. Opin Chem. Biol. 5 (2001) 40-45). Recently, as part of immunological assays, immunosensors have been developed that immobilize antibodies to solid support materials and measure currents, resistances, mass changes and optical characteristics (affinity biosensors, vol. 7: Techniques and protocols).
  • an immunosensor based on surface plasmon resonance using optical features has been commercialized, and surface plasmon—a ball-Zl-second sensation_ ⁇ point-island-red—point—beam (—two—minute—
  • surface plasmon a ball-Zl-second sensation_ ⁇ point-island-red—point—beam (—two—minute—
  • they can be detected in real time without labeling to measure antigen and antibody binding. It is particularly useful for this purpose (J. Mol. Recognit. 1999, 12, 390-408).
  • it is very important to selectively and stably immobilize antibodies on solid support materials. There are two techniques for immobilizing antibodies, chemical immobilization methods and physical immobilization methods. Physical methods (Trends Anal. Chem.
  • a support may be used before binding the antibody to a solid support material, and a technique using protein G as the support is known.
  • Protein G is a protein that strongly binds to most mammalian immunoglobulin G (IgG) Fc sites, and is very useful for the production of high-sensitivity chips with high alignment of antibodies in antibody chip manufacturing.
  • the protein G can be bound to nanoparticles or the like, and the antibody can be bound to be used for preparing a target-oriented carrier.
  • the binding of protein G and antibody is reversible, it can be replaced by antibodies in blood when blood samples are used (Saleemuddin, Adv Biochera Eng Biotechnol, 64, 203-26, 1999).
  • the residue-substituted PG-C3 plasmid was introduced into E. coli and purified to obtain photoactive mimetic protein G variants, and confirmed that the protein G variants and antibodies were irradiated with UV to form specific covalent bonds.
  • the present invention was completed by confirming that the photoactive methionine mimetic introduction protein G variant can be usefully used for the production of high-sensitivity biochips, biosensors, and cell capture chips.
  • An object of the present invention is to modify the methionyl tRNA synthase (MRS) for introducing photomethionine (pM) into a target protein in vivo. To provide a transfer.
  • MRS methionyl tRNA synthase
  • Another object of the present invention is the first antibody binding site of protein G (immunogloblin G binding region CI, PG-C1), the second antibody binding site (i ⁇ unogloblin G binding region C2, PG-C2) and Glutamine (Gin) at position 32, asparagine (Asn) at position 32, or N-terminus of any one amino acid sequence selected from the group consisting of a third antibody binding site (i (unogloblin G binding region C3, PG-C3) or Protein G variant consisting of amino acid sequence in which aspartic acid (Asp) at position 40 is substituted with methionine (Met) or asparagine (Asn) at position 37 is replaced with arginine (Arg), and pM is expressed in the protein G variant. It is to provide a protein G variant having a photoactivity and a method for producing the same.
  • the present invention provides alanine (Ala) at position 12 from the N-terminus of glycine (glysine) in the amino acid sequence of wild type E. coli methionyl tRNA synthase (MRS).
  • MRS E. coli methionyl tRNA synthase
  • leucine in position 13 is serine
  • tyrosine in position 260 is phenylalanine
  • isoleucine in position 297 is valine
  • position 301 Provided are an MRS variant for introducing phototnethionine (pM) ' to a target protein consisting of an amino acid sequence substituted with leucine and a histidine thereof, and a method of preparing the same.
  • the present invention provides a reagent composition for introducing pM to a target protein comprising the MRS variant.
  • step 2) preparing a transformant by introducing the expression vector of step 1) into E. coli simultaneously; And ⁇ 3) culturing the "transformant of the above step 2), comprising the step of expressing a target protein pM this cover,
  • a method of introducing pM into a target protein is provided.
  • the present invention is the first antibody binding site (i ⁇ unogloblin G binding region CI, PG-Cl), the second antibody binding site (i ⁇ unogloblin G binding region C2, PG-C2) of protein G And glutamine (Gin) at position 32 from the N-terminus of any one amino acid sequence selected from the group consisting of a third antibody binding site (i (unogloblin G binding region C3, PG-C3), asparagine (Asn) at position 35 Or a protein G variant consisting of an amino acid sequence in which aspartic acid (Asp) at position 40 is substituted with methionine (Met) or asparagine (Asn) at position 37 is substituted with arginine (Arg), and a method for preparing the same .
  • a third antibody binding site i (unogloblin G binding region C3, PG-C3), asparagine (Asn) at position 35
  • a protein G variant consisting of an amino acid sequence in which aspartic acid (As
  • the present invention also provides a polynucleotide encoding the protein G variant and an expression vector comprising the same ;
  • the present invention is an amino acid sequence of any one selected from the group consisting of the first antibody binding site (PG-C1), the second antibody binding site (PG-C2) and the third antibody binding site (PG-C3) of protein G 32-position glutamine (Gin), 35-position asparagine (Asn) or 40-position aspartic acid (Asp) is replaced by methionine (Met), or 37-position asparagine (Asn)
  • PIM photomethionine
  • Arg photomethionine
  • step 2) preparing a transformant by introducing the expression vector of step 1) into E. coli simultaneously;
  • step 2) culturing the transformant of step 2) provides a method for producing pM-introduced protein G variant, comprising expressing the protein-M protein labeled with pM.
  • the present invention also provides a fusion protein to which the protein G variant and the antibody or fragment thereof are bound.
  • the present invention provides a biochip and a biosensor comprising an antibody or fragment thereof bound to the protein G variant.
  • the present invention provides an antibody-labeled intravenous nanoparticle delivery agent comprising an antibody or fragment thereof bound to the Protein G variant.
  • the wild type E. coli methionyl tRNA synthase MRS variant of the present invention is a variant capable of biosynthesizing a target protein to which photomethionine (pM) has been introduced more effectively than the wild type MRS.
  • Biosynthesized pM-labeled proteins via variants may be used as an important tool for future analysis of other polymers that specifically bind to specific proteins.
  • the protein G variant in which pM is introduced using the MRS variant of the present invention forms a highly efficient covalent bond with the antibody by UV irradiation as well as high orientation, and thus, an antibody chip for analyzing a blood sample and a high sensitivity biochip ( It can be usefully used for the development of biochip, biosensor and cell capture chip.
  • FIG. 1 is a diagram schematically illustrating the preparation of a pET-28at vector for cloning a photomethionine (pM) labeled protein.
  • 6xH represents a histidine tag and tc represents a thrombin cleavage site.
  • Fig. 2 is a schematic diagram illustrating the preparation of a pET-GFP / FIH plasmid for expressing a GFP / FIH conjugate protein.
  • FIG. 3 is a diagram schematically illustrating the preparation of pBAD-MRSwt plasmid obtained by cloning of carboxyl terminal methionyl tRNA synthase (MRS) (MRS 1-548) to a pBAD / Myc-HisA vector.
  • MRS carboxyl terminal methionyl tRNA synthase
  • FIG. 4 is a diagram schematically illustrating the production of MRS variants through wild type MRS.
  • Black color The inverted triangle represents the variation of 13, 260 and 301 sites known as the position of the existing methionine residues, and the gray inverted triangle represents the variation of the 12 and 297 sites of interest in the present invention. Black triangles indicate stop codons. The amino acid of the wild type corresponding to each position is shown below.
  • FIG. 5 shows an increase in expression of pM labeled 6 ⁇ H_EGFP by MRS variant (MRS5pm).
  • Ara represents 0.02% L-arabinose
  • IPTG represents 1 mM IPTG
  • M9a represents M9BV + CMS-MET.
  • X represents E. coli culture in a medium containing no methionine nutrient
  • M represents E. coli culture in a medium containing methionine
  • pM represents a case of E. coli culture in a medium containing pM as methionine .
  • the expressed 6 ⁇ H-EGFP protein is indicated by a red arrow.
  • FIG. 6 is a diagram illustrating the binding structure of wild type MRS or MRS5pm variant and methionine (Met) or pM.
  • Red stars in the pM-MRSwt looks up a the molecular collision when the access to the M p of the wild-type MRS-binding site for wild-type and MRS pM bond, a bond is not easy.
  • MRS variant 7 shows an increase in expression of pM label 6 ⁇ H_FIH by MRS variant (MRS5pm).
  • Ara represents 0.02% L-arabinose
  • IPTG represents 1 mM IPTG
  • M9a represents M9BV + CMS-MET.
  • M represents the case where E. coli was cultured in a medium containing methionine
  • pM represents the case where E. coli was cultured in a medium containing pM as a methionine nutrient.
  • the expressed 6 ⁇ H-EGFP protein was marked with a red arrow.
  • FIG. 8 shows the purification of pM labeled 6 ⁇ H-EGFP.
  • 1 represents the supernatant obtained by ultrasonic crushing and centrifugation of the cultured Escherichia coli
  • 2 represents an unpurified eluate that flows through without binding to chromatography
  • 3 is washed with 30 mM histidine.
  • Eluents are indicated
  • 4 and 5 represent purified 6 ⁇ H-EGFP obtained by eluting with 150 mM imidazol.
  • FIG. 9 is a diagram showing the structure of a FIH dimer.
  • the black circle represents the part involved in the dimer formation at the carboxy terminus
  • the green circle and the red star represent the three methionine residues present in the dimer formation part
  • the green circle represents the very Two methionine residues present in close proximity are shown.
  • FIG. 10 is a diagram confirming the dimerization of FIH with or without UV irradiation of 365 nm.
  • A represents SDS-PAGE stained with coomassie and B represents western blot for anti-6xH antibody.
  • Fig. 11 is a diagram schematically illustrating the prepared pET-PG and pET-2xPG plasmid structures.
  • 12 is a diagram schematically illustrating the constructed pET-2xPG variant plasmid structure:
  • Iii display the amino acids and positions expressed after the mutation
  • Fig. 13 is a schematic diagram of the constructed pET-PG variant plasmid structure:
  • MRSwt normal MRS
  • MRS5m introduction
  • FIG 16 shows the 6H-2xPG3m tablet aspect:
  • fraction ions that do not bind Ni-NTA agarose fraction ions that do not bind Ni-NTA agarose
  • FIG. 17 shows photoactive covalent bond formation between UV-specific pM label 6H-2xPG4m and IgG or Fc.
  • FIG. 18 shows photoactive covalent bond formation between UV-specific pM label 61-? ( ⁇ 1 ⁇ 2 and IgG or Fc.
  • FIG. 19 shows UV-specific pM label 6H-PG4m or 6H-PG4m with 2-mercaptoethanol (2ME) and IgG or .
  • Figure shows the photoactive covalent bond between the Fc.
  • 20 is a diagram showing the substitution inhibition ability of the antibody in the blood by covalent binding of IgG and protein G.
  • 21 is a diagram showing the usefulness of the covalent conjugate of IgG and protein G in capturing antigen in the blood.
  • Figure 22 shows the efficacy of detecting antigen in the blood covalent conjugate of IgG and protein G It is also.
  • SA streptavidin
  • blgG biotinylated IgG
  • rEGFR recombinant e idermal growth factor receptor ectodomain.
  • IgGl anti-EGFR human antibody (Erbitux)
  • fIgG2 FITC-labeled EGFR rat antibody
  • Figure 23 is a diagram showing the usefulness of the covalent conjugate of IgG and protein G in the capture of specific cells in the blood.
  • FIG. 24 is a diagram showing the tertiary structure of the first antibody binding site (PG-C1), the second antibody binding site (PG-C2) and the third antibody binding site (PG-C3) of protein G: green: PG Amino acid variations with minor functional differences compared to -C1;
  • the present invention provides a variant of methionyl tRNA synthase (MRS) for introducing photomethionine (pM) into a target protein.
  • MRS methionyl tRNA synthase
  • the MRS variant of the wild-type E. coli MRS amino acid sequence N-terminus of the alanine position (Ala) in position 12 is glycine (glysine), leucine in position 13 (serine), tyrosine in position 260 ( tyrosine is substituted with phenylalanine, isoleucine at position 297 with valine, or histidine at position 301 with leucine. It is preferably composed of an amino acid sequence, but is not limited thereto.
  • the wild-type E. coli MRS is preferably composed of the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • the wild-type E. coli MRS is preferably made from a sequence without the C-terminus, but is not limited thereto.
  • the target protein is a target protein to be used may be any protein of Green Fluorescent Protein, as well as i (enhanced green fluorescence protein, EGFP) and FIH (factor inhibiting hypoxia inducible factor) used in this example.
  • EGFP enhanced green fluorescence protein
  • FIH factor inhibiting hypoxia inducible factor
  • the present inventors transformed the prepared protein expression vector into E. coll B834, and as a result of expressing a target protein of EGFP, FIH or GFP-FIH in a medium containing methionine or pM as a methionine nutrient,
  • the target protein was expressed during methionine treatment, but the target protein was hardly expressed during pM treatment.
  • the present inventors transformed the target protein expression vector and the MRS variant expression vector prepared above to E. coli B834, and as a result of expressing the target protein in a medium containing methionine or pM as methionine nutrients, It was confirmed that the target protein of EGFP, FIH, or GFP-FIH was expressed when the methionine was treated under the expression conditions, but that the target protein was hardly expressed during the pM treatment (see FIGS. 5 and 7). It was confirmed that the MRSlpm and MRS3pm variants that caused mutations at positions 260 and 301 did not show an increase in protein expression by pM as well as wild type MRS.
  • MRS5pm variant by having the effect of Alal2 and Ile297 residues respectively substituted by glycine and valine, with easy access to the pM to the ligand binding site of the MRS in order to remove the methyl group It was confirmed (see FIG. 8).
  • the present inventors have identified pM-labeled target proteins by DM using Ni-NTA-agarose chromatography.
  • See Fig. SDS-polyacrylamide gel and Western blotting irradiated with 365 nm of UV light to confirm the formation of dimers of GFP-FIH target proteins via photoactive covalent bonds.
  • See Figure 10 See Figure 10).
  • the MRS variant of the present invention can significantly biosynthesize pM-labeled target proteins.
  • the present invention provides a method for producing an MRS variant for introducing pM to a target protein produced by point mutations of wild type E. coli MRS.
  • the MRS variant is alanine at position 12 from the N-terminal to glycine, leucine at position 13 to serine, tyrosine to position phenylalanine at position 260, isoleucine at position 297 or valine at position 301 in the entire amino acid sequence.
  • the histidine at the position is composed of an amino acid sequence substituted with leucine, but is not limited thereto.
  • the MRS variant of the present invention can be produced by introducing a mutation into the wild type E. coli MRS gene.
  • the method of introducing a desired mutation into the nucleotide sequence of a nucleic acid can cause point mutations, degeneracy. Any method known to those skilled in the art may be used, such as PCR using oligonucleotides, cell mutagenesis including nucleic acids, or radiation exposure.
  • the present invention also provides a reagent composition for introducing pM to a target protein comprising an MRS variant.
  • the reagent composition including the MRS variant of the present invention can effectively biosynthesize a target protein into which pM is introduced, the reagent composition can significantly biosynthesize pM-labeled target protein.
  • the present invention comprises the steps of 1) preparing an expression vector comprising a polynucleotide encoding the target protein and an expression vector comprising the polynucleotide encoding the MRS variant;
  • step 2) preparing a transformant by introducing the expression vector of step 1) into E. coli simultaneously;
  • step 2) culturing the transformant of step 2) to provide a method for introducing pM into a target protein comprising expressing a target protein labeled with pM.
  • the expression vector is preferably a plasmid vector, a cosmid vector, a bacteriophage vector and a viral vector, and more preferably, a polamide vector is used, but is not limited thereto.
  • the culture is a
  • Polynucleotides encoding MRS variants of the invention are degenerate codons Due to or in consideration of the codon preferred in the organism to express the antibody, various modifications can be made to the coding region within a range that does not change the amino acid sequence of the antibody expressed from the coding region. Various modifications or modifications can be made within the scope of not affecting the expression of the gene, and those skilled in the art will appreciate that such modified genes are also included in the scope of the present invention. That is, as long as the polynucleotide of the present invention encodes a protein having equivalent activity, one or more nucleic acid bases may be changed by substitution, deletion, insertion, or a combination thereof, and these are also included in the scope of the present invention.
  • the sequence of such polynucleotides may be single or double stranded, and may be DNA molecules or RNA (mRNA) molecules.
  • expression control sequences such as promoters, terminators, enhancers, and the like, sequences for membrane targeting or secretion, depending on the type of host cell intended to produce the MRS variant. You can choose the appropriate nest and various combinations according to the purpose.
  • Expression vectors of the present invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, and viral vectors. Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals and enhancers, and can be prepared in various ways depending on the purpose.
  • the promoter of the expression vector may be constitutive or inducible.
  • the expression vector may also include a selection marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, includes the origin of replication.
  • the expression vector according to the present invention is a suitable host cell E. coli OF. coli)] after transformation, the cultivated transformed host cell can be mass produced the MRS variant according to the present invention.
  • Appropriate methods for culturing host cells, media conditions and the like can be readily selected by those skilled in the art from known techniques known to those skilled in the art.
  • the expression vector introduction method into the host cell may be any method known to those skilled in the art.
  • the present invention is the first antibody binding site (i ⁇ unogloblin G binding region CI, PG-C1) of the protein GCprotein G, the second antibody binding site (immunogloblin G binding region C2, PG-C2) and the third antibody binding Glutamine (Gin) at position 32, Asparagine (Asn) at position 35, or Aspartic acid at position 40 from any amino acid sequence N-terminus selected from the group consisting of the site (immunogloblin G binding region C3, PG-C3) (Asp) provides a Protein G variant consisting of an amino acid sequence in which methionine (Met) is substituted or asparagine (Asn) at position 37 is replaced with arginine (Arg).
  • the first antibody binding site of the protein G is preferably composed of the amino acid sequence of SEQ ID NO: 2, but is not limited thereto.
  • the second antibody binding site of the protein G is preferably composed of the amino acid sequence of SEQ ID NO: 3, but is not limited thereto.
  • the third antibody binding site of the protein G is preferably composed of the amino acid sequence of SEQ ID NO: 4, but is not limited thereto.
  • the first antibody binding site, the second antibody binding site or the third antibody binding site of the protein G is preferably included one or two, but is not limited thereto.
  • the substituted antibody binding site of the protein G is the first antibody binding site of the protein G (SEQ ID NO: 2: TYKL I LNGKTL GETTTEAVDAATAEKVF QYANDNGVDGEWTYDDATKTFTVTE), the second antibody binding site (SEQ ID NO: 3: TY LVING TLKGETTTEAVDAATAEKVFKQYANDNGVTFGET) First antibody binding site (SEQ ID NO: 4)
  • TYKLV I NGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE The amino acid sequences and tertiary structures of the liver are conserved from one another (Olsson et al., Eur J Biochem, 168, 319-24, 1987).
  • the present invention also provides a polynucleotide encoding the protein G variant.
  • the present invention also provides an expression vector comprising a polynucleotide encoding the protein G variant.
  • the present invention is an amino acid sequence of any one selected from the group consisting of the first antibody binding site (PG-C1), the second antibody binding site (PG-C2) and the third antibody binding site (PG-C3) of protein G 32-position glutamine (Gin), 35-position asparagine (Asn) or 40-position aspartic acid (Asp) is replaced by methionine (Met), or 37-position asparagine (Asn)
  • P-C1 the first antibody binding site
  • PG-C2 the second antibody binding site
  • PG-C3 the third antibody binding site
  • protein G 32-position glutamine
  • Asn 35-position asparagine
  • Asp 40-position aspartic acid
  • Metal methionine
  • Al photomethionine
  • M photomethionine transducing protein G variants having photoactivity, consisting of an amino acid sequence substituted with argin
  • the present inventors first determine the third antibody binding site of protein G (PG-C3 SEQ ID NO: 4, Olsson et al., Eur J Biochem, 168) without a methionine (Met) residue inside the sequence. , 319-24, 1987), a 6x histidine (6xH) tagged pET-28at vector prepared in an example to introduce photoactive methionine, a methionine mimetic that induces covalent bond formation by 330-370 nm ultraviolet irradiation.
  • Vectors containing one or two protein G motifs (mot if) were made in FIG. 1 (see FIGS. 1 and 11).
  • the present inventors have included two PG-C3 motifs, and the glutamine (Gln32) at the 32nd position from the motif N-terminus was replaced with Met, to prepare a gene encoding a PG-C3 variant having a Met residue introduced therein.
  • pET-2xPGlm containing 2 PG-C3 motifs, aspartic acid at position 40 (Asp40) and pET-2xPG2m with GIn32 substituted with Met, asparagine at position 37 (Asn37) PET-2xPG3m substituted with this arginine (Arg) and Asp40 and Gln32 substituted with Met, and two PG-C3 motifs, Asn37 substituted with Arg and Asparagine (Asn35) at position 35, Asp40 and Gln32 met PET-PGlm containing a pET-2xPG1 ⁇ 2 plasmid substituted with a PG-C3 motif and Gln32 substituted with Met from the motif N-terminus, a PET containing one PG-C3 motif and Gln32 and Asp40 substituted by Met — PG2m, contains one PG-C3 motif and Asn37 is Arg PET-PG3m substituted with Gln32 and Asp40 with Met, and one
  • the present inventors simultaneously express the plasmid encoding the methionyl tRAN synthase variant (MRS5m) gene prepared in one embodiment and the plasmid encoding the PG-C3 Met variant gene for expression of pM-labeled protein G variant. Transformed into auxotrophic Escherichia coli E. coli B834), and then expressed protein G in a minimal medium containing pM to express 6xH tagged 6H-2xPGlm, 6H-2xPG2m, 6H-2xPG3ml, 6H-2xPG3m2 and 6H.
  • MRS5m methionyl tRAN synthase variant
  • the present inventors confirmed that the expressed protein G variants are partially purified by Ni-NTA agarose chromatography since the 6xH group is bound, and most 6H-2xPG2m is 150% at the step gradient. It has been confirmed that it elutes from the imidazole, and therefore, other variants are also separated by the same case.
  • dimers were extracted and subjected to LC / MS / MS mass spectrometry.
  • the bands of the dimer positions were also derivatives containing the PG-C3 sequence, and the pM labeling rate was 50% or more.
  • the present inventors also described the purified pM-labeled protein G variants and human antibodies.
  • the present inventors 6H-PG4m covalently bonded to the biotinylated IgG (blgG) heavy chain (bH) by UV irradiation in order to confirm the inhibition of substitution of the antibody in the blood by covalent binding of the purified pM-labeled protein G variants SDS-PAGE, Coomassie staining, and western blotting were performed after treatment with serum, confirming that the conjugate was hardly affected by serum treatment (see FIG. 20). .
  • the present inventors mixed the pM label-? (; 1 ⁇ 2 with a human antibody in order to confirm the protein detection ability of the purified pM labeled protein G variant, Induction of covalent bonds after immunoprecipitation was performed to confirm that 6H—HER2 in the UV-irradiated group showed a recovery of up to 40% higher after immunoprecipitation. It was confirmed that the excellent protein detection ability in the blood (see Fig. 21).
  • the inventors of the present invention confirmed that the purified pM-labeled protein G variant was useful in the analysis of blood antigens and blood cells, and thus, the sensitivity and antibody-specific cell capture ability were excellent in UV-irradiated pM-labeled 6H-2xPG4m / antibody system. By confirming, it was confirmed that the pM introduced protein G variant can be used for biochips and biosensors and cell capture (see FIG. 22).
  • the pM-introduced protein G variant of the present invention forms high-efficiency covalent bonds with antibodies by UV irradiation as well as high orientation, and thus, development of antibody chips, high sensitivity biochips and biosensors for blood sample analysis It can be usefully used.
  • the present invention is an amino acid sequence of any one selected from the group consisting of the first antibody binding site (PG-C1), the second antibody binding site (PG-C2) and the third antibody binding site (PG-C3) of protein G
  • PG-C1 the first antibody binding site
  • PG-C2 the second antibody binding site
  • PG-C3 the third antibody binding site
  • Gin 32-position glutamine
  • Asn 35-position asparagine
  • Asp 40-position aspartic acid
  • Metal methionine
  • Asn 37-position asparagine
  • Arg arginine
  • the production method of the protein G variant is developed for antibody samples, high sensitivity biochips and biosensors for blood sample analysis. It can be usefully used.
  • an expression vector comprising a polynucleotide encoding said MRS variant and a first antibody binding site (PG-C1) of protein G, a second antibody binding site (PG-C2) and Glutamine (Gin) at position 32 half from the N-terminus of amino acid sequence selected from the group consisting of the third antibody binding site (PG-C3), asparagine (Asn) at position 35 or aspartic acid (Asp) at position 40
  • Preparing an expression vector comprising a polynucleotide encoding a protein G variant consisting of an amino acid sequence in which) is substituted with methionine (Met) or asparagine (Asn) at position 37 is substituted with arginine (Arg);
  • step 2) preparing a transformant by introducing the expression vector of step 1) into E. coli simultaneously;
  • step 2) culturing the transformant of step 2) provides a method for producing pM-introduced protein G variant, comprising expressing the protein-M protein labeled with pM.
  • the vector of step 1) is preferably a plasmid vector, a cosmid vector, a bacteriophage vector and a viral vector, and more preferably a plasmid vector is used, but is not limited thereto.
  • the polynucleotide encoding the protein G variant of the present invention is within the range that does not change the amino acid sequence of the antibody expressed from the coding region due to the degeneracy of the codon or in consideration of the codon preferred in the organism to express the antibody.
  • various modifications may be made, and various modifications or modifications may be made within a range that does not affect the expression of genes in portions other than the coding region, and those skilled in the art may include such modified genes. I can understand well. That is, as long as the polynucleotide of the present invention encodes a protein having equivalent activity, one or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof, and these are also included in the scope of the present invention. .
  • the sequence of such polynucleotides may be single or double stranded, and may be DNA molecules or RNA (mRNA) molecules.
  • expression control sequences such as promoters, terminators, enhancers, and the like, sequences for membrane targeting or secretion, depending on the type of host cell to produce the protein G variants. It can select suitably etc. and can combine variously according to the objective.
  • the present invention provides an amino acid sequence selected from the group consisting of the first antibody binding site (PG ⁇ C1), the second antibody binding site (PG-C2) and the third antibody binding site (PG-C3) of protein G 32-position glutamine (Gin), 35-position asparagine (Asn) or 40-position aspartic acid (Asp) is replaced by methionine (Met), or 37-position asparagine (Asn)
  • PG ⁇ C1 the first antibody binding site
  • PG-C2 the second antibody binding site
  • PG-C3 third antibody binding site
  • protein G 32-position glutamine (Gin) 35-position asparagine (Asn) or 40-position aspartic acid (Asp) is replaced by methionine (Met), or 37-position asparagine (Asn)
  • a protein G variant consisting of an amino acid sequence substituted with arginine (Arg), or a fusion protein in which an antibody is bound to a pM introduced protein G variant having photoactivity
  • the fusion protein in which the antibody is bound to the protein G variant is used for high sensitivity biochips, biosensors and cell capture. It can be usefully used for chip development.
  • the present invention is an amino acid sequence of any one selected from the group consisting of the first antibody binding site (PG-C1), the second antibody binding site (PG-C2) and the third antibody binding site (PG-C3) of protein G 32-position glutamine (Gin), 35-position asparagine (Asn) or 40-position aspartic acid (Asp) is replaced by methionine (Met), or 37-position asparagine (Asn)
  • a protein G variant consisting of an amino acid sequence substituted with arginine (Arg), or a biochip in which a highly oriented antibody is bound to a pM introducing protein G variant having photoactivity.
  • the present invention also provides a biosensor in which a highly oriented antibody is bound to the protein G variant.
  • the present invention also provides a cell capture system in which a highly oriented antibody is bound to the protein G variant.
  • the present invention is an amino acid sequence of any one selected from the group consisting of the first antibody binding site (PG-C1), the second antibody binding site (PG-C2) and the third antibody binding site (PG-C3) of protein G
  • the glutamine (Gin) at position 32, the asparagine (Asn) at position 35 or the aspartic acid (Asp) at position 40 are replaced with methionine (Met), or the asparagine (Asn) at position 37
  • An antibody labeled intravenous injectable nanoparticle delivery agent comprising an antibody or fragment thereof bound to a Protein G variant consisting of an amino acid sequence substituted with arginine (Arg) is provided.
  • the pM-introduced protein G variant of the present invention forms high-efficiency covalent bonds with the antibody by UV irradiation as well as high orientation, the antibody may be immobilized on the nanoparticle to be useful for preparing a nanoparticle carrier for targeted injection. .
  • a short-, i eu chamber's eu i eu example-is-not limited by the following Examples _ - ⁇ ⁇ invention will _ _ illustrating the eu-four-days easily eu as r of the eu invention.
  • the prepared pET-28at vector was Ndel-.
  • a vector capable of cleaving 6xH sites was prepared by maintaining a thrombin cleavage site, and an improved green fluorescence protein (EGFP) and EGFP were improved in the present invention.
  • EGFP green fluorescence protein
  • FH Factor inhibiting hypoxia inducible factor
  • FIG. 1 Factor inhibiting protein inhibiting hypoxia inducible factor (FIH) and protein G Used as vector for cloning
  • the protein expression gene was cloned into the pET-28at vector prepared in ⁇ Example 1>.
  • pEGFP-N3 BD Biosciences Clontech, USA ⁇ as a template, the forward primer (GFP-Bam— F) (SEQ ID NO: 8: 5 '-CGGGATCCATGGTGAGCAAGGGCGAG-3') and reverse primer After PCR amplification using (GFP-Xho-R) (SEQ ID NO: 5'-CCGCTCGAGTTACTTGTACAGCTCGTC-3 '), it was inserted into the BamHI / XhoI position of the pET-28at vector and named pET-GFP.
  • GFP-Bam— F forward primer
  • Xho-R reverse primer
  • GFP-FIH conjugated protein pEGFP-N3 (BD Biosciences Clontech, USA) was used as a template and GFP—Bam-F forward primer and GFP / FIH-R reverse primer (SEQ ID NO: 10: 5′-CGCCGCTGTCCCGCCGAGAGTGATCCCG -3 ') was used to amplify the EGFP gene for linking with FIH, using pET-FIH (Lee et al., Biol Chem, 278, 7558-63, 2003) as a template and GFP / FIH-F forward primer (SEQ ID NO: 11: 5'-ACTCTCGGCGGGACAGCGGCGGAGGCTG-3 ') and FIH-Xho-R reverse primer (SEQ ID NO: 12: 5'-TTCCCTCGAGACCCCTGGCAGGCTAG-3') to amplify the FIH gene for ligation with EGFP.
  • MRS methionyl tRNA synthase for synthesizing photomet ionine '(pM: L-2-am i no-5 and 5-az i -hexanoic acid) labeling proteins
  • the wild-type MRS gene was cloned. Variants thereof were prepared.
  • coli MRS gene consisting of the nucleotide sequence of SEQ ID NO: 5 using the TM TCTTTAGAGGCTTCCACCCA 3 '), It was inserted at the Ncol / Kpnl position of the pBAD / Myc-HisA vector (Invitrogen, USA), which was named pBAD-MRSwt (FIG. 3).
  • the primers used to prepare the MRS variant are summarized in [Table 1].
  • the PCR genes were purified and mixed in the configuration as shown in FIG. 4, and then, PCR was performed using BAD-F and MRS-Kpn-R primers as templates to obtain a product containing the mutations.
  • pBAD-MRSlm was prepared by cutting with Ncol / Kpnl and inserting into Ncol / Kpnl of the pBAD / Myc-HisA vector.
  • Other variants were prepared in the same manner using the designated primer pairs to prepare pBAD-MRS3m, pBAD-MRS4m and pBAD-MRS5m (FIG. 4).
  • MRS-Nco-F and MRS-Kpn-R are primer sets for amplifying the 1 to 548 sequences of MRS and introducing them into the pBAD / Myc-HisA vector.
  • MRS-A12G-F and MRS-A12G-R are primer sets for replacing 12th alanine with glycine.
  • MRS-L13G-F and MRS-L13G-R are primer sets for replacing the 13th leucine with glycine.
  • MRS-AL / GS-F and MRS-AL / GS-R are primer sets for glycinexerine substitution of 12th and 13th alanine-glycines.
  • MRS-Y260F-F and MRS-Y260F-R are primer sets for replacing 260th tyrosine with phenylalanine.
  • MRS-I297V-F and MRS-I297V-R are sets of primers for replacing the 297th isoleucine with valine.
  • MRS-H301L-F and MRS-H301L-R are primer sets for substituting the third histidine with leucine.
  • kanamycin Colonies having resistance to kanamycin (kanamycin) were selected and cultured in LB medium containing 30 kanamycin for one day. Then, the cultured Escherichia coli was obtained by centrifugation at 2000 xg for 15 to 20 minutes, and M9B (48 mM Na 2 HP0 4 , 22 mM KH 2 P0 4 , 9 mM NaCl, and 19 mM).
  • M9BV + 1/2 CMS-MET solution (M9B + 0.4% glucose, 2 mM MgS0 4 , 0.1 mM CaCl 2 , 0.05 mM MnCl 2 , 0.1 M FeCl 3 , 1 mg / m £ Thiamine, 0.2 nig / mi nicotinamide, 0.2 nig / mi folic acid, 0.2 mg / choline chloride and 0.02 mg / i riboflavine + 375 ⁇ g / mi CSM -MET (19 amino acid combinations except methionine) was diluted 1/5 and dispersed. The dispersed E.
  • coli was further incubated for 2 to 3 hours at 37 ° C., followed by addition of 375 ⁇ / ⁇ CSM-MET and 50 g / mi methionine or pM, and 20 ° with 1 mM IPTGdsopropyl ⁇ -D-1-thiogalactopyranoside. Protein expression was induced in C for 12-16 hours. Cells were then centrifuged and washed with PBS, water was removed with a micropipette as much as possible, and the wet cells were diluted in distilled water at a concentration of 100 nig / m ⁇ . Then, 5 ⁇ was mixed with the same amount of 2xSDS buffer and heated at 10CTC for 2 minutes to analyze protein expression by SDS-polyacrylamide gel electrophoresis.
  • the target protein was expressed during methionine treatment, but the target protein was hardly expressed upon pM treatment.
  • Example 5 Expression of pM-labeled 6xH-EGFP protein by MRS in E. coli B834.
  • pBAD-MRSwt or pBAD-MRSlm to pBAD-MRS5m and pET—GFP prepared in Example 3 were transformed into E. coli B834, and colonies having resistance to both ampicillin and kanamycin were selected. Cultured for one day in LB medium containing ampicillin and kanamycin. Cultured Escherichia coli was obtained by centrifugation at 2000 xg for 15 to 20 minutes, and diluted by diluting to 1/20 in LB medium containing ampicillin and kanamycin. The dispersed E. coli was further cultured for 1 hour, and then treated with 0.02% L-arabinose at 37 ° C. for 2 hours to express wild-type MRS or ⁇ S variants.
  • E. coli was washed twice with M9B, diluted 1/2 to 1/3 in M9BV + 1/2 CMS-MET solution, and ⁇ Example 4> and In the same way the expression of the target protein Induced. After incubation, the wet cells obtained by centrifugation were diluted in water at 100 rng / concentration, and then protein expression was analyzed by 5 ⁇ SDS-polyacrylamide gel electrophoresis.
  • the expression of the protein was high during methionine treatment under the condition of wild-type MRS expression, but the expression of EGFP protein was hardly expressed during pM treatment. It was confirmed. In addition, it was confirmed that the MRSlpm and MRS3pm variants which caused mutations in the previously known positions 13, 260 and 301 do not show an increase in protein expression by pM as in the wild type MRS. However, in the case of expressing the dry S5pm variant, it was confirmed that 6xH-EGFP protein was expressed even when treated with pM as in the plaque which had been treated with methionine (FIG. 5). In addition, when the 6xHFP EGFP was not treated with methionine or pM, the protein was not expressed by IPTG, and it was confirmed that 6xH-EGFP expressed during pM contained pM (FIG. 5).
  • the binding of wild-type MRS and methionine is easy, but due to the structure of pM having protruding diazirin group compared to methionine, MRS having Alal2 and Ile297 like wild-type MRS or MRSlpm and MRS3pm variants Since pM lacks a space for access to the ligand binding site, pM binding is difficult.
  • the MRS5pm variant was confirmed to have the effect of easy access of pM to the ligand binding site of MRS by replacing the Alal2 and Ile297 residues with glycine and valine, respectively, to remove the methyl group.
  • 6xFIH containing a molecular weight of about 45 KDa and including all 10 methionines in the molecule and the MRS variant prepared in Example 3 were used to express 6xH-FIH protein labeled pM in E. coli B834.
  • pBAD-MRSwt or pBAD-MRSlm to pBAD-MRS5m and pET-FIH were identified as E.
  • MRS and FIH proteins were expressed in the same manner as in ⁇ Example 5>.
  • the wet cells obtained by centrifugation were diluted in water at a concentration of 100 nig / mi, and then protein expression was analyzed by 5 ⁇ SDS-polyacrylamide gel electrophoresis.
  • pM-labeled 6xH-target protein was partially separated and purified by Ni-NTA-agarose chromatography. Specifically, the cells were obtained by centrifugation of E. coli expressing the pM-labeled protein, including the MRS5pm mutant cultured in Example 5 or Example 6 for the separation of 6xH-target protein labeled pM. .
  • FIG. 8 6xHis-tagged target proteins were partially separated and purified at 150 mM imidazole concentration in the step gradient Ni-NTA ⁇ agarose chromatography.
  • Example 8 Photoactive Covalent Binding Analysis of pM-labeled 6xH-EGFP and 6xH-FIH Proteins To confirm that the expressed target protein has photoactivity of the labeled pM, the photoactive covalent bonds of the expressed target protein were analyzed.
  • dimer formation between proteins was confirmed by irradiating UV of 365 nm wavelength to the partially purified purified pM protein in ⁇ Example 7>.
  • GFP / FIH protein expressed by binding EGFP to the amino terminal of FIH was expressed in E. coli.
  • Example 2 pBAD-MRS5m and pET-GFP / FIH prepared in Example 2 were transformed into E. coli B834, and the MRS variant and GFP / FIH protein were prepared in the same manner as in Example 5. Expressed. Then, p-labeled 6xH-GFP / FIH protein was partially separated and purified through Ni-NTA-agarose chromatography in the same manner as in ⁇ Example 7>, and the protein was irradiated with UV at 365 nm wavelength. Dimer formation was confirmed by Coomassie brilliant blue R-250 staining and western blotting analysis after development on SDS-polyacrylamide gels.
  • Example for Western blotting After SDS-PAGE, protein is transferred to nitrocellulose (NC) membrane to 6xH specific mouse monoclonal antibody (Aviva Systems) biology, USA) and anti-mouse IgG goat antibody (Millipore, USA) combined with horseradish peroxidase were sequentially linked. It was then confirmed by treatment with Amersham ECL Western Blotting Detection Reagent (GE Healthcare, USA). As a result, as shown in FIG. 10, a small amount of 6xH-GFP / FIH protein was separated and purified (FIG. 10A). Since 6xH exists only in GFP-FIH, a protein that artificially put the tag, the protein was not completely purified.
  • pET-2XFcBP Jung et al., Anal Chem, 81, 936-42, 2009
  • PCR polymerase chain reaction
  • PCR polymerase chain reaction
  • the product was obtained.
  • the PCR product was digested with restriction enzymes BamHI and Xhol and cloned into the BamHI / XhoI site of the pET-28at vector (FIG. 1), and the plasmid containing one or two PG-C3s was pET, respectively.
  • -PG and pET-2xPG were named ( Figure 11).
  • Mutant protein G plasmids were prepared by substituting methionine for PG-C3 in a pET-2 ⁇ PG plasmid containing two PG-C3 motifs and a pET-PG plasmid containing one PG-C3 motif.
  • the amino acid residue numbers substituted for introduction of methionine were based on the PG-C3 motif, and the residues substituted with Met were selected based on the tertiary binding structure between the protein G and the antibody.
  • PCR was performed using the primer set of [Table 3] as shown in FIG. First, ET-Xba-F / PG in the primer set of [Table 3] using pET-2xPG obtained by the method described in ⁇ Example 10> in order to replace the 32nd glutamine (Glutamine, Gln32) with methionine PCR was performed using -Q32M-R and PG-Q32M-F / Ins-Cla-R and each PCR product was obtained.
  • the obtained PCR product was mixed and obtained as a template by PCR using ET-Xba-F / Ins-Cla-R in the primer set of Table 3 below, cleaved and purified by BamHI and Clal. Insert 1 DNA was obtained. Then, PCR was performed as described above using Ins-Cla-F / PG-Q32M-R and PG-Q32M-F / ET-R among the primer sets shown in Table 2 below as templates. PCR products were obtained. The obtained PCR product was mixed and obtained as a template using PCR Ins-Clal-F / ET-R in the primer set of [Table 3], and then cleaved and purified by Clal and Xh. insert 2 DNA was obtained.
  • the insert 1 DNA and the insert 2 DNA were mixed and cloned into the BamHI / XhoI site of pET-28at to obtain a pET-2xPGlm plasmid.
  • PCR was performed using the pET-2xPGlm plasmid as a template to prepare pET-2xPG2m in which the 40th aspartic acid (Asp40) and Gln32 of PG-C3 motif were substituted with Met.
  • pET-2xPG2m plasmid as a template was carried out by PCR in the same manner as described above to replace asparagine (asparagine, Asn37) 37 times with arginine (arginine, Arg), Asp40 and Gln32 is substituted with pET- 2xPG3m was prepared. Then, PCR was carried out in the same manner as described above using the pET-2xPG3m plasmid as a template. As a result, pET—2 ⁇ PG4m having 35 asparagine (Asn35), Asp40 and Gln32 substituted with Met and Asn37o Arg was prepared (FIG. 12).
  • PCR was performed with ET-Xba-F / PG-XhoI-R in the primer set of Table 3 to obtain PCR DNA containing one PG motif.
  • the obtained PCR DNA was purified and digested using BamHI and Xh and cloned into BamHI / Xhol sites of pET-28at.
  • Each PG variant plasmid was named pET p PGlm, pET-PG2m, pET-PG3m and pET-PG4m (FIG. 13).
  • Example 12 Weaving of ⁇ -labeled Protein G Expression Vector and Transformant by MRS Variants
  • pM-labeled protein G variant pBAD-MRS5m plasmid prepared in Example 3 and ⁇ Example 11
  • the plasmids encoding the respective PG-C3 variants obtained by the method described in gt. Were transformed with Met auxotroph E. coli B834. Then, both the MRS5m and PG—C3 variant plasmids were included. Transformed E.
  • coli colonies were selected in LB solid medium containing 100 ⁇ ⁇ / ⁇ ampicillin and 50 ⁇ g / ⁇ l kanamycin, suspended in LB liquid medium and incubated for 24 hours. , Diluting the nutrient solution in 1/10 to 1/20 volume and incubating for 1 to 2 hours in LB liquid medium containing empicillin and kanamycin, and then 0.02% L-arabinose for 2 hours. ° C Processes up was expressed by MRS5m. Then, the MRS5m washing the expression of E. coli No.
  • M9B in M9B solution (48 mM Na 2 HP0 4, 22 mM KH2PO4, 9 mM NaCl and 19 mM NH 4 C1), and M9BV + 1 / 2 CMS-MET solution [M9B + 0.43 ⁇ 4 glucose, 2 mM MgSO 4 , 0.1 mM CaCl 2 , 0.05 mM MnCl 2 , 0.1 M FeCl 3 , 1 mg / m «thiamine, 0.2 mg / i nicotine Amide (nicotinamide), 0.2 mg / ra «folic acid, 0.2 mg / m £ choline chloride and 0.02 mg / i ribopol.avine + 375 ⁇ g / vxi CSM-MET methionine 19 amino acid mixtures except for 1)], and the E.
  • coli was incubated for 1 to 2 hours at 37 ° C or 3 hours at 18 ° C.
  • Each expressed protein is 6H-2xPGlm, 6H-2xPG2m, 6H-2xPG3ml, 6H-2xPG3m2 and 6H—2xPG4m if it has two PG-C3 motifs, and 6H-C3 if it has one PG-C3 motif.
  • Protein G variants expressed by the method described in Example 12 were all expressed in dissolved form, and 6xH groups were bound to the amino terminus of these proteins, thereby partially purified by Ni-NTA-agarose (Qiagen, USA) chromatography. It was.
  • 6H-PG4m-expressing transgenic E. coli was immersed, followed by cell disruption complete solution (20 mM Tris-HCl, 500 mM NaCL, 2 mM 2-mercaptoethanol, 1 mM per 100 mi culture). PMSF and 5> glycerol) were dispersed in 1-2 and sonicated.
  • the crushed solution was centrifuged at 15,000 rpm for 10 to 20 minutes, and then the supernatant was collected and partially separated and purified by Ni—NTA-agarose chromatography.
  • the purified supernatant was subjected to SDS-PAGE to 6H-2xPGlm, 6H-2xPG2m, 6H-2xPG3ml, 6H_2xPG3m2 and 6H_2xPG4m, and 6H-PGlm, 6H-PG2m, 6H-PG3ml, 6H-PG3m2 and 6H-PG4m Expression of the variants was confirmed.
  • the 6H-2xPG4m protein G variant and the anti-EGFR human monoclonal antibody (Erbitux, Merck, USA) or Fc fraction (abeam, USA) purified by the method described in Example 13 were mixed and then iced. After irradiating nm UV for 30 minutes, SDS-PAGE was performed to observe the presence of covalent bonds (FIG. 17).
  • 6H-PG3m or 6H_PG4m protein G variants purified by the method described in Example 13 above, and anti—EGFR human monoclonal antibody or Fc fractions were mixed and irradiated with 365 nm UV on ice for 30 minutes, followed by SDS- PAGE was performed to observe the presence of covalent bonds, and the density of the banddol was measured by the Image J program, and IgG heavy chain covalent bonds and Fc covalent bonds were calculated (FIG. 18):
  • IgG heavy chain covalent rate (%) [H-PG density / (H-PG density + H density) x 100];
  • Fc covalent bond [Fc-PG density / (Fc-PG density + Fc density) x 100].
  • PG4m was found to bind to the single-molecule antibody heavy chain, and as a result of the analysis of covalent bond formation ability by ultraviolet irradiation, 6H-PG4m having 3 methionines was found to be 6 PG3m with 2 theo-nins. Version of the sea—he confirmed the height of the altar.
  • pM-labeled 6H-PG3m formed 41.5 ⁇ 1.8% and 6H-PG4m formed covalent bonds with heavy chains at 53.0 ⁇ 1.0% covalent rate.
  • pM-labeled 6H-PG3m and Yes-? ⁇ 1 ⁇ 2 formed covalent bonds with the human Fc fraction, with covalent bonds of 35.8 ⁇ 1.73 ⁇ 4> and 52.1 ⁇ 1.0%, respectively, similar to the binding ratio of IgG to the heavy chain. It was confirmed (Fig. 18).
  • the probability of forming 50% protein G and IgG covalent bonds in the SDS-PAGE in the presence of 2-mermertoethanol (2ME) is theoretically that at least one Protein G is associated with IgG.
  • the covalent bond expansion is 75%, and at 35%, 58%.
  • 35.2% (+ 2ME) and 57.4% (-2ME) for 6H-PG3m, and 48.2% (+ 2ME) and 68.5% (-2ME) for 6H-PG4m were identified. Therefore, it was confirmed that the result is close to the theoretical calculation (Fig. 19).
  • biotinylated IgG (blgG) was prepared by binding 500 mg / g of biotin-NHS (N-hydroxysuccinimide) for 1 hour to 5 mg human IgG (Erbitux) equilibrated in PBS. . Then, the prepared WgG 20 / and 10 / g of Met or pM labeled 6H-PG1 ⁇ 2 were mixed and subjected to SDS-PAGE after UV irradiation as in ⁇ Example 14>.
  • blgG 20 and 10 methionine or pM labeled 6H-PG4m were bound to 10 ⁇ Ni-NTA-agarose beads (agarose bead, Quiagen, Germany) in the presence of 30 mM imidazole. Wash the beads twice with wash buffer (20 mM Tris-HCl 300 mM NaCl and 30 mM imidazole, pH 7.5) twice with TBS (20 mM Tris, 150 mM NaCl ⁇ 0.05% Tween 20, pH 7.5), Human plasma (Sigma-Aldr ich, USA) and 2% BSACbovine serum albumin solution were treated twice with 150 for 2 hours.
  • wash buffer (20 mM Tris-HCl 300 mM NaCl and 30 mM imidazole, pH 7.5
  • TBS 20 mM Tris, 150 mM NaCl ⁇ 0.05% Tween 20, pH 7.5
  • Human plasma Sigma-Aldr ich, USA
  • the IgG-protein G mutant covalent conjugate can be useful for the development of antibody chips for blood sample analysis, and also useful for the preparation of antibody-labeled intravenous targeted oriented nanoparticle carriers. It was confirmed that it can be used.
  • Protein G is very useful for the production of various antibody chips, but has a disadvantage in that it is reversibly dissociated by antibodies in the blood when processing blood samples, and thus cannot be used for protein detection and cell capture in blood. Therefore, immunoprecipitation was performed to confirm the availability of pM labeled protein variants for protein detection in blood. Specifically, 10 pM labeled 6H PG4m was attached to 10 ⁇ l of Sulfo Link- coupling resin (Thermo Sci, USA) for immunoprecipitation, and then treated with 2% BSA for 1 hour.
  • Sulfo Link- coupling resin Thermo Sci, USA
  • HER2 in the elution solution was separated by electrophoresis on an SDS-PAGE gel and stained with Coomassie brilliant blue R-250 (Fig. 21, left) or nitrocellulse membrane. And visualized using anti 6 ⁇ His mouse antibody (Abeam, USA) and peroxidase labeled anti mouse-IgG goat antibody (Life Technologies, USA) (FIG. 21, right).
  • the overall immunoprecipitated 6H-HER2 showed a high recovery rate of 20-3 after immunoprecipitation regardless of human serum treatment in the group irradiated with UV rays. In this case, the recovery was found to be higher, about 40%.
  • the recovery rate was less than 10% even in the group not treated with human serum.
  • the serum was treated, it was confirmed that less than 2% recovery rate appeared, and when the antibody was covalently bound to protein G by ultraviolet irradiation, it was confirmed that it is very useful for antigen analysis in blood (FIG. 21).
  • Example 17 Confirmation of Antigen Analysis in Blood of Protein Chip Covalently Bonded with Protein G
  • the photoactive protein G was covalently bound to the slide glass, and the antibody was fixed to have high orientation by UV irradiation to perform antigen analysis in blood samples.
  • N- (2-aminoethyl) maleimide hydrochloride N- (2-am i noe t hy 1) ma 1 eimi de hydrochloride
  • Tokyo Chemical Ind, Japan was added to 100 ⁇ l and bound for 1 hour.
  • the sulfhydryl was specifically fixed for a period of time and then 100 mM 2 mercaptoethanol was added to 150 ⁇ l of a 2% BSA-TBS solution to minimize free maleid and nonspecific protein binding.
  • 0.1 mg / ml human IgG (Erbitux) was dissolved in TBS, added 100 ⁇ l per well and bound with protein G for 30 minutes, and then irradiated with UV for 30 minutes to induce covalent binding between them.
  • streptavidin was dissolved in PBS at a concentration of 1 mg / ml and 0.2 mg / ml, and spotted by 0.5 ⁇ .
  • recombinant EGFR protein (Sino Biological Inc, China) was added to human blood containing 50 mM Tris-HCKpH 7.5) at concentrations of 1, 0.05 and 0 iig / ml, respectively, and anti-EGFR-rat labeled with FITC.
  • Antibody (Abeam, USA) was added at a concentration of 1 ug / ml, then 100 ⁇ l per well was added and stirred for 1 hour. Each well was washed sequentially with TBS and TBST containing 150 mM imidazole, and then fluorescence signal was analyzed at Ex488 nm / Em515 nm with a slide glass fluorescent scanner.
  • photoactive protein G was covalently bound to the slide glass, and the antibody was fixed to have high orientation by UV irradiation to perform cancer cell analysis in blood samples.
  • the protein G / antibody slide prepared by the method described in Example 18 was introduced with a male group on the surface, 2 ⁇ l of 2 ⁇ PG4m solution at a concentration of 1 mg / ml, and fixed for 1 hour, Each well was fixed with or without anti-HER2 or EGFR human antibody.
  • ⁇ 67 cells expressing HER2 and A549 cells expressing EGFR were dispersed in 100 ⁇ l of DMEM medium containing 10% FBS and 10% human serum and placed in each well, followed by 1 hour at a very slow rate. Was stirred.
  • As a control slide 2 mg 1 of 1 mg / ml straptavidin was prepared on an aldehyde slide. The slides were treated with human serum and then washed with PBS.
  • the antibody-specific cell capture was observed in the spotting site in the 6H-2xPG4m / antibody system irradiated with ultraviolet light (FIG. 23), but the 6H-2xPG4m / antibody system or streptavidin was not irradiated with ultraviolet light.
  • the / biotin-antibody system it was confirmed that the antibody-specific cell capture is very low (results not shown), so that the photoactive protein G variant was very useful for the capture of specific cells in the blood (FIG. 23).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 광활성 메티오닌 표지단백질 생합성을 위한 메티오닐 tRNA 합성효소 및 이를 이용한 광활성 단백질 G 변이체 제조방법에 관한 것으로, 구체적으로 야생형 대장균 메티오닐 tRNA 합성효소(methionyl tRNA synthase, MRS)의 아미노산 서열 N-말단으로부터 12 번째 위치의 알라닌이 글리신으로, 13 번째 위치의 류신이 세린으로, 260 번째 위치의 티로신이 페닐알라닌으로, 297 번째 위치의 이소류신이 발린으로 및 301 번째 위치의 히스티딘이 류신으로 치환된 MRS 변이체는 효과적으로 pM이 표지된 표적 단백질을 생합성함을 확인함으로써, 상기 MRS 변이체는 pM이 표지된 표적 단백질의 생합성에 유용하게 이용할 수 있다. 또한, 상기 MRS 변이체 MRS5m을 코딩하는 플라스미드 및 단백질 G의 세 번째 항체결합 부위(PG-C3)의 32, 35 및 40 위치를 메티오닌(Met) 잔기로, 37번 위치를 아르기닌(Arg) 잔기로 치환한 PG-C3 플라스미드를 대장균 내로 도입한 후 정제한 pM 도입 단백질 G 변이체는 UV를 조사하면 항체와 특이적인 공유 결합을 형성하므로, 상기 MRS 변이체를 이용하여 pM 도입된 단백질 G 변이체는 고감도 바이오칩(biochip), 바이오센서(biosensor) 및 세포 포획용 칩 제조에 유용하게 이용할 수 있다.

Description

【명세세
【발명의 명칭】
광활성 메티오닌 표지단백질 생합성을 위한 메티오닐 tRNA 합성효소 및 이 를 이용한 광활성 단백질 G 변이체 제조방법
[기술분야]
본 발명은 생체 내에서 표작 단백질에 광메티오닌 (photomethioninp, pM)을 도입하기 위한 메티오닐 tRNA 합성효소 (methionyl tRNA synthase, MRS) 및 이를 이용한 광활성 메티오닌 모사체인 pM 도입 단백질 G 변이체의 제조방법에 관한 것 이다.
【배경기술】
생체 고분자 간의 광활성에 의한 공유결합 형성은 많은 분자 간 결합에 중요한 정보를 제공하여 구조와 기능 연구에 중요한 역할을 하게 된다. 이 방법은 단백질—단백질 결합 (Suchanek et . al ., Nat Methods, 2, 261-7, 2005; Chou et . al. , Chem Sci, 2, 480-83) , 단백질 -지질 결합 (Gubbens et . al. , Chem Biol, 16, 3-14, 2009) , 단백질 -핵산 결합 (Pingoud et . al . , Mol Biosyst, 1, 135-41, 2005)등에 중요한 정보를 제공하는 도구로 사용되고 있다.
단백질에 광활성기를 도입하기 위해, N-하이드록시숙시니미드 (N- hydroxysuccinimide) 기에 결합시킨 디아지린 (diazir ine) , 벤조페논 (benzophonone) 및 아지드 (azide)기와 같은 광활성기를 단백질의 라이신 (lysine) 잔기의 아민기에 결합할 수 있으나, 이 경우 친수성 아미노산이. 소수성으로 변화되어 오히려 선택적으로 분자와 단백질 간의 결합을 방해하고, 비특이적인 결합윷 유발할 수 있다. 이와 같은 단점을 보완하기 위해, Jung은 단백질의 특정위치에 시스테인 (cysteine) 잔기를 도입하고, 광활성기와 말레이미드 (maleimide) 기를 결합시킨 물질을 시스테인을 도입하여 단백질에 광활성기를 도입하였다 (Jung et. al. , Anal Chem, 81, 936-42, 2009) . 생체 내 단백질 생합성 단계에서 비자연계 아미노산을 단백질에 도입하려는 연구들도 시행되고 있다 (Davis and Chin, Nat Reviews Mol Cell Biol, 13, 168-182, 2012). 미국 Scripps 연구소의 Schulz 박사팀은 자연계에서는 호박 종결 코돈 (amber stop codon)인 TAG를 인지하는 아미노산 tRNACUA 합성효소 및 tRNACUA 쌍을 활용하여 특정 아미노산 모사체를 단백질의 특정 위치에 도입하는 연구를 수행하여, 성공적으로 다양한 아미노산 모사체를 단백질 생합성 단계에서 도입하였다 (Xie and Schulz, Nat Reviews Mol Cell Biol, 7, 775-82, 2006) . 미국 CALTECH의 Tirrell 교수팀은 메티오닐 tRNA 합성효소 (methionyl tRNA synthase , MRS)의 변이체를 제작하여 비자연계 아미노산의 도입을 연구하였다. 특히, MRS 중 메티오닌의 결합부위로 알려진 (Crepin et. al., J Mol Biol, 332, 59-72, 2003) Leul3, Tyr260 및 His301 위치에 변이를 유도하여, 아지도노르류신 (azi donor leucine)을 . 대장균의 디하이드로포레이트 환원효소 (dihydrofolate reductase)의 메티오닌 잔기에 성공적으로 도입하였다 (Tanrikulu et . al. , Proc Nat Acad Sci USA, 106, 15285-90, 2009). 생체 내 단백질 생합성 단계에서 광활성을 가지는 비자연계 아미노산을 단백질에 도입하려는 연구들도 시행되고 있다. Tippmann 등은 아미노산 tRNACUA 합성효소 /tRNACUA 시스템을 이용하여 4'-[3- (트리플루오로메틸 )-3H-디아진 -3-일] -1- 페닐알라닌 ( 4 ' - [ 3- ( t r i f 1 uor ome t hy 1 ) _3H-d iazi η-3-y 1 ] - 1 -pheny lalanine, TfmdPhe )을 대장균 내에서 Z 도메일 단백질에 성공적으로 도입하였다 (Tippmann et . al., ChemBioChem, 8, 2210-14, 2007) - 또한, 피를리실 (pyrrolysyl, Pyl) tRNACUA 합성효소 /PyltRNACUA 시스템을 사용하여, 대장균 및 동물세포에서 디아지린 기를 도입한 라이신을 표적 단백질에 성공적으로 도입하였으며, 광활성에 의한 단백질 간의 공유결합을 유도할 수 있음을 확인하였다 (Chou et. al., Chem Sci, 2, 480- 83). 그러나 상기 잔기들은 크거나 (bulky) 긴 탄소 사슬을 지니고 있어, 표적물질과 정교하게 공유결합을 이루는 데에 단점을 가진다. 이와 같은 문제점들은 류신 또는 메티오닌과 매우 유사한 광류신 (photoleucine, pL; L-2- am i no-4 , -az i -pent ano i c acid) 또는 광메티오닌 (photomethionine, pM; L_2— amino— 5,5-azi-hexanoic acid)을 이용하여 해결이 가능하다 . Suchanek 등 (Nat Methods, 2, 261-7, 2005)은 동물세포 배양시 메티오닌 또는 류신이 없는 배지에 아미노산 영양원으로서 pM또는 pL의 광활성 아미노산 모사체들을 첨가하여 단백질을 생합성 한 후, 단백질에 표지된 광활성 아미노산 모사체를 단백질 간의 결합 분석에 활용하였다. 그러나 본 발명자들이 메티오닌 종속영양 (methionine auxotroph) 대장균인 E. coli Βδ34에서 메티오닌이 없는 최소 배지에 pM을 첨가하여 단백질을 발현한 결과 단백질 발현이 매우 낮게 나타났다.
항체는 항원에 매우 특이적으로 결합하기 때문에 질병의 진단 및 치료에 관련된 의학적 연구와 생물학적인 물질을 분석하는데 광범위하게 사용되어왔다 (Curr. Opin. Biotechnol. 12 (2001) 65-69, Curr. Opin. Chem. Biol. 5(2001) 40— 45). 최근에는 면역학적 측정법의 일환으로 항체를 고체지지물질에 고정화하고 전류, 저항, 질량의 변화 및 광학적인 특징 등을 측정하는 면역센서가 개발되었다 (affinity biosensors, vol . 7: Techniques and protocols) . 그 중 광학적인 특징을 이용한 표면 플라즈몬 공명에 기초를 둔 면역센서가 상업화되었는데, 표면 플라 몬—공 -Zl초를 의 센석_ ^점 -섬—적ᅩ인—점—보 (—두—분—자들아—특어 -적—으로一 결합을 하는지)와 정량적인 정보 (반웅 속도 (Kinetics)와 평형상수 (equilibrium constants))를 제공할 뿐만 아니라 표지 없이 실시간으로 감지할 수 있어, 항원과 항체 결합을 측정하는데 특히 유용하다 (J. Mol. Recognit. 1999, 12, 390-408) . 면역센서에서는 고체지지물질에 항체를 선택적이고 안정적으로 고정화시키는 것이 매우 중요하다. 항체를 고정화하는 기술에는, 크게 화학적 고정화방법과 물리적인 고정화방법의 두 가지가 있다. 물리적인 방법 (Trends Anal. Chem.2000 19, 530-540)은 재현성이 적고 단백질을 변성시키기 때문에 거의 사용되지 않고 있으며 화학적인 방법 (Langumur, 1997, 13, 6485-6490)이 단백질을 공유결합으로 잘 결합시켜 재현성이 좋고 적용밤위가 넓어 많이 사용되고 있다. 그러나 화학적인 방법으로 항체를 고정화시킬 때, 항체가 비대칭 거대분자이기 때문에 항체가 방향성을 잃거나 항원을 결합하는 활성을 잃게 되는 경우가 있다 (Analyst, 1996, 121(3): 29R-32R) .
항체의 항원결합능력을 더 좋게 하기 위해 항체를 고체지지물질에 결합시키기 전에 지지체를 사용하는 경우가 있으며, 이 지지체로 단백질 G를 사용하는 기술이 공지되어 있다. 단백질 G(Protein G)는 대부분의 포유동물 면역글로블린 G(IgG) Fc 부위와 강한 결합을 하는 단백질로서, 항체칩 제조시 항체의 배향성을 높인 고감도 칩 제작에 매우 유용하다. 또한, 단백질 G를 나노입자 등에 결합시키고 항체를 결합시켜, 표적지향적 전달체 제조에 활용 가능하다. 그러나, 단백질 G와 항체의 결합은 가역적이기 때문에 혈액 시료를 사용하는 경우 혈액 내 항체로 대체될 수 있어 (Saleemuddin, Adv Biochera Eng Biotechnol, 64, 203-26, 1999), 이들 간에 공유 결합 형성이 중요하다. 이들 분자 간의 공유 결합은 화학적으로 유도할 수 있으나, 이들 분자들에 비특이적인 수식을 유발시키는 단점이 있다. 이에, 본 발명자들은 생합성된 단백질 내에 광메티오닌 (photomethionine, pM)의 도입을 증진하고 이를 통해 항체-특이성이 향상된 단백질 G 변이체를 l^LJ^ ᅳ한ᅳ결^,ᅳ훼-갛균ᅳ내 ^^一 PM싀 빕된—표적一단—백—질—의——발현ᅳ을- 증진시킬 수 있는 대장균 메티오닐 tRNA 합성효소 (methyonyl tRNA synthase, MRS)의 변이체를 성공적으로 제작하였다. 또한, 상기 MRS 변이체인 MRS5m을 코딩하는 플라스미드 및 단백질 G의 세 번째 항체결합 부위 (immunogloblin G binding region C3, PG-C3)의 32, 35 및 40 .번째 위치를 Met 잔기로, 37 번째 위치를 Arg 잔기로 치환한 PG-C3 플라스미드를 대장균 내로 도입한 후 정제하여 광활성 모사체 도입 단백질 G 변이체를 획득하고, 상기 단백질 G 변이체 및 항체에 UV를 조사하여 특이적인 공유 결합을 형성하는 것을 확인함으로써, 상기 광활성 메티오닌 모사체 도입 단백질 G 변이체를 고감도 바이오칩 (biochip), 바이오센서 (biosensor) 및 세포 포획용 칩 제조에 유용하게 사용할 수 있음을 확인함으로써 본 발명을 완성하였다.
【발명의 상세한 설명】
【기술적 과제】 본 발명의 목적은 생체 내에서 표적 단백질에 광메티오닌 (photomethionine, pM)을 도입하기 위한 메티오닐 tRNA 합성효소 (methionyl tRNA synthase, MRS)의 변 이체를 제공하는 것이다.
본 발명의 또다른 목적은 단백질 G(protein G)의 첫 번째 항체 결합 부위 (immunogloblin G binding region CI, PG-C1) , 두 번째 항체 결합 부위 (i匪 unogloblin G binding region C2, PG-C2) 및 세 번째 항체 결합 부위 (i瞧 unogloblin G binding region C3, PG-C3)로 구성된 군으로부터 선택된 어느 하 나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치 의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아 미노산 서열로 구성된 단백질 G 변이체, 상기 단백질 G 변이체에 pM을 도입한 광활 성을 갖는 단백질 G 변이체 및 이의 제조 방법을 제공하기 위한 것이다.
[기술적 해결방법】 상기 과제를 해결하기 위하여, 본 발명은 야생형 대장균 메티오닐 tRNA 합성효소 (methionyl tRNA synthase, MRS)의 아미노산 서열에서 N-말단으로부터 12 번째 위치의 알라닌 (Ala)이 글리신 (glysine)으로, 13 번째 위치의 류신 (leucine)이 세린 (serine)으로, 260 번째 위치의 티로신 (tyrosine)이 페닐알라닌 (phenylalanine)으로, 297 번째 위치의 이소류신 (isoleucine)이 발린 (valine)으로 또는 301 번째 위치의 히스티딘 (histidine)이 류신으로 치환된 아미노산 서열로 구성된, 표적 단백질에 광메티오닌 (phototnethionine, pM)' 도입을 위한 MRS 변이체 및 이의 제조 방법을 제공한다.
또한, 본 발명은 상기 MRS 변이체를 포함하는 표적 단백질에 대한 pM 도입용 시약 조성물을 제공한다.
또한, 본 발명은
1) 표적 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터 및 상기 MRS 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터를 제조하는 단계;
2) 상기 단계 1)의 발현 백터를 동시에 대장균에 도입하여 형질전환체를 제조하는 단계 ; 및 ■ 3) 상기 단계 2)의' 형질전환체를 배양하여 pM이 표지된 표적 단백질을 발현시키는 단계를 포함하는,
표적 단백질로의 pM의 도입 방법을 제공한다.
또한, 본 발명은 단백질 G(protein · G)의 첫 번째 항체 결합 부위 (i薩 unogloblin G binding region CI, PG-Cl), 두 번째 항체 결합 부위 (i隱 unogloblin G binding region C2, PG-C2) 및 세 번째 항체 결합 부위 (i誦 unogloblin G binding region C3, PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된 단백질 G 변이체 및 이의 제조방법을 제공한다.
또한, 본 발명은 상기 단백질 G 변이체를 암호화하는 폴리뉴클레오티드 및 이를 포함하는 발현백터를 제공하는 것이다 ;
또한, 본 발명은 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된, 광활성을 갖는 광메티오닌 (photomethionine, pM) 도입 단백질 G 변이체를 제공한다.
또한, 본 발명은
1) 상기 MRS 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터 및 상기 단백질 G 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터를 각각 제조하는 단계 ;
2) 상기 단계 1)의 발현 백터를 동시에 대장균에 도입하여 형질전환체를 제조하는 단계 ; 및
3) 상기 단계 2)의 형질전환체를 배양하여 pM이 표지된 단백질 G 변이체를 발현시키는 단계를 포함하는, pM도입 단백질 G 변이체의 제조 방법을 제공한다. 또한, 본 발명은 상기 단백질 G 변이체, 및 항체 또는 이의 단편이 결합된 융합 단백질을 제공한다.
또한, 본 발명은 상기 단백질 G 변이체에 결합된 항체 또는 이의 단편을 포함하는 바이오 칩 및 바이오 센서를 제공한다.
. 아을러, 본 발명은 상기 단백질 G 변이체에 결합된 항체 또는 이의 단편을 포함하는 항체 표지 정맥주사용 나노입자 전달체를 제공한다.
[유리한 효과】 본 발명의 야생형 대장균 메티오닐 tRNA 합성효소 (methionyl tRNA synthase MRS) 변이체는 야생형 MRS보다 효과적으로 광메티오닌 (photomethionine, pM)이 도 입된 표적 단백질을 생합성 할 수 있는 변이체이므로, 본 발명의 MRS 변이체를 통 해 생합성된 pM표지 단백질은 향후 특정 단백질과 특이적으로 결합하는 다른 고분 자들을 분석하는데 증요한 도구로 사용될 수 있다. 또한, 본 발명의 MRS 변이체를 이용하여 pM이 도입된 단백질 G 변이체는 고배향성뿐만 아니라 UV 조사에 의해 항 체와 특이적으로 고효율 공유 결합을 형성하므로, 혈액 시료 분석용 항체칩, 고감 도 바이오칩 (biochip), 바이오센서 (biosensor) 및 세포 포획용 칩 개발에 유용하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 광메티오닌 (photomethionine, pM) 표지 단백질을 클로닝하기 위한 pET-28at 백터의 제조를 모식한 도이다. 6xH은 히스티딘 (Higt idine) 태그를 나타내며, tc는 트롬빈 절단 부위 (Trombin cleavage site)를 나타낸다.
도 2는 GFP/FIH 접합 단백질을 발현하기 위한 pET-GFP/FIH 플라스미드의 제 -조를 모식한 도이다.
도 3은 카복시 말단이 일부 절단된 메티오닐 tRNA합성효소 (methionyl tRNA synthase, MRS) (MRS 1-548)를 pBAD/Myc-HisA 백터에 클로닝한 pBAD-MRSwt 플라스미드의 제조를 모식한 도이다.
도 4는 야생형 MRS를 통한 MRS 변이체의 제조를 모식한 도이다. 검은색 역삼각형은 기존 메티오닌 잔기의 위치로 알려진 13, 260 및 301 부위의 변이를 나타내며, 회색 역삼각형은 본 발명에서 대상으로 하는 12 및 297 부위의 변이를 나타낸다. 검정색 삼각형은 정지 코돈 (stop codon)을 나타낸다. 각 위치에 해당하는 야생형의 아미노산은 아래에 표기하였다.
도 5는 MRS 변이체 (MRS5pm)에 의한 pM 표지 6xH_EGFP의 발현의 증가를 나타낸다. Ara는 0.02 % L-아라비노오즈 (L-arabinose)를, IPTG는 1 mM의 IPTG를 나타내며, M9a는 M9BV + CMS-MET를 나타낸다. X는 메티오닌 영양원올 포함하지 않은 배지에서 대장균을 배양한 경우를 나타내며, M은 메티오닌을 포함한 배지에서 대장균을 배양한 경우를 나타내고, pM은 pM을 메티오닌 영양원으로 포함한 배지에서 대장균을 배양한 경우를 나타낸다. 발현된 6xH-EGFP 단백질은 적색 화살표로 표시하였다.
도 6은 야생형 MRS 또는 MRS5pm 변이체 및 메티오닌 (Met) 또는 pM의 결합 구조를 예상한 도이다. MRSwt-pM의 적색 별은 야생형 MRS 및 pM이 결합하기 위해 pM이 야생형 MRS의 결합부위에 접근할 때 분자적인 충돌이 일어나, 결합이 용이하지 않음을 보인다.
도 7은 MRS 변이체 (MRS5pm)에 의한 pM 표지 6xH_FIH의 발현의 증가를 나타낸다. Ara는 0.02 % L-아라비노오즈 (L-arabinose)를, IPTG는 1 mM의 IPTG를 나타내며, M9a는 M9BV + CMS-MET를 나타낸다. M은 메티오닌을 포함한 배지에서 대장균을 배양한 경우를 나타내고, pM은 pM을 메티오닌 영양원으로 포함한 배지에서 대장균을 배양한 경우를 나타낸다. 발현된 6xH-EGFP 단백질은 적색 화살표로 표사하였다.
도 8은 pM 표지 6xH-EGFP의 정제를 나타낸다. 1은 배양한 대장균을 초음파 파쇄하고 원심분리하여 수득한 상등액을 나타내며, 2는 크로마토그래피에 결합하지 않고 통과 (flow trough)한 정제되지 않은 용출액을 나타내고, 3은 30 mM 히스티딘 (histidine)으로 세척한 용출액을 나타내며, 4 및 5는 150mM 이미다졸 (imidazol)로 용출되어 수득한 정제된 6xH-EGFP를 나타낸다.
도 9는 FIH 이량체의 구조를 나타내는 도이다. 검은색 원은 카복시 말단에 이량체 형성에 관여하는 부분을 나타내며, 초록색 원 및 적색 별은 이량체 형성 부분에 존재하는 3 개의 메티오닌 잔기를 나타내고, 초록색 원은 이 중 매우 근접하게 존재하는 2 개의 메티오닌 잔기를 나타낸다.
도 10은 365 nm의 UV 조사 유무에 의한 FIH의 이량체화를 확인한 도이다. A는 코마시에 (coomassie)로 염색한 SDS— PAGE를 나타내며, B는 항 -6xH 항체에 대한 웨스턴블럿 (western blot)올 나타낸다.
도 11은 제작한 pET-PG 및 pET-2xPG 플라스미드 구조를 모식화한 도이다. 도 12는 제작한 pET-2xPG 변이체 플라스미드 구조를 모식화한 도이다:
參: 변이 후 발현되는 아미노산 및 위치들 표시;
A: 종료 코돈 표시; 및
★ : 도입된 시스테인 (cysteine) 위치 표시.
도 13은 제작한 pET-PG 변이체 플라스미드 구조를 모식화한 도이다:
·: 변이 후 발현되는 아미노산 및 위치들 표시;
A: 종료 코돈 표시; 및
★ : 도입된 시스테인 위치 표시.
도 14는 정상 MRS(MRSwt) 또는 MRS5m 도입에 의한 pM 표지 단백질 G의 발현량올 나타낸 도이다:
1: MRSwt 및 6H-2xPG2m 공동 발현, LB, 아라비노오스 (arabinose) MRSwt 유도 (induct ion) 전;
2: MRSwt 및 6H-2xPG2m 공동 발현, MRSwt 및 6H-2xPG2m 공동 발현. LB, 아라비노오스 MRSwt 유도 후;
3: MRSwt 및 6H-2xPG2m 공동 발현, M9BV+1/2 CSM-Met 결핍 (starvation);
4: MRSwt 및 6H-2xPG2m 공동 발현, M9BV로 용해한 IPTG 유도+ Met 포함된 CSM-Met;
5: MRSwt 및 6H-2xPG2m 공동 발현, M9BV로 용해한 IPTG 유도+ pM 포함된 CSM-Met;
6: MRS5m 및 6H-2xPG2m 공동 발현, M9BV+1/2 CSM-Met 결핍 ;
7: MRS5m 및 6H_2xPG2m 공동 발현, M9BV로 용해한 IPTG 유도+ Met 포함된 CSM-Met;
8: MRS5m 및 6H_2xPG2m 공동 발현, M9BV로 용해한 IPTG 유도+ pM 포함된 CSM-Met; 9: MRS5m 및 6H-2xPG2m 공동 발현, M9BV로 용해한 IPTG 유도+ 0 mg/m pM 포함된 CSM-Met;
10: MRS5m 및 6H-2xPG2m 공동 발현, M9BV로 용해한 IPTG 유도+ 0.05 mg/ i pM포함된 CSM-Met ;
11: MRS5m 및 6H-2xPG2m 공동 발현, M9BV로 용해한 IPTG 유도+ 0.1 mg/mi pM포함된 CSM-Met; .
도 15는 6H-2xPG2ni의 정제 양상을 나타낸 도이다:
1 및 6: 초음파 분쇄 (sonication) 후 침점물 (pricipitate);
2 및 7: 초음파 분쇄 후 상층액 (supernatant);
3 및 8: Ni-NTA아가로오스 (agarose)에 결합하지 않는 분획 (fraction);
4 및 9: 10 mM 이미다졸 (imidazole) 용출; 및
5 및 10; 150 mM 이미다졸 용출.
도 16은 6H-2xPG3m정제 양상을 나타낸 도이다:
1 및 5: 초음파 분쇄 후 상층액 (supernatant);
2 및 6: Ni-NTA아가로오스 (agarose)에 결합하지 않는 분획 (fract ion);
3 및 7: 60 mM 이미다졸 ( imidazole) 용출; 및
4 및 8; 150 mM 이미다졸 용출.
도 17은 자외선 특이 pM 표지 6H-2xPG4m와 IgG 또는 Fc간의 광활성 공유결합 형성을 나타낸 도이다.
도 18은 자외선 특이 pM 표지 61-?(^½과 IgG 또는 Fc 간의 광활성 공유 결합 형성을 나타낸 도이다.
도 19는 2-머캅토에탄올 (2— mercaptoethanol, 2ME) 존재 유무에 따른 자외선 특이 pM 표지 6H-PG4m 또는 6H-PG4m과 IgG 또는. Fc 간의 광활성 공유 결합 양상을 나타낸 도이다.
도 20은 IgG와 단백질 G의 공유결합에 의한 혈액내 항체의 치환 억제능을 나타낸 도이다.
도 21은 IgG와 단백질 G의 공유결합체가 혈액내 항원 포획시 유용성을 나타낸 도이다.
도 22는 IgG와 단백질 G의 공유결합체가 혈액내 항원의 검출 효능을 나타낸 도이다. 기존에 많이 사용되는 streptavidin(SA)/biotinylated IgG(blgG)시스템을 대조군으로 사용함.
rEGFR: 재조합 e idermal growth factor 수용체 ectodomain.
IgGl: 항 EGFR 인간항체 (Erbitux)
fIgG2: FITC표지항 EGFR rat 항체
A: 6H-2xPG4m 및
B: 6H-PG4m
도 23은 IgG와 단백질 G의 공유결합체가 혈액내 특정 세포 포획시 유용성을 나타낸 도이다.
도 24은 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)의 3차 구조를 나타낸 도이다: 녹색: PG-C1과 비교하여 약간의 기능적 차이를 갖는 아미노산 변이;
빨간색: 기능적 차이가 비교적 큰 아미노산 변이;
파란색: 본 발명에서 치환한 아미노산들 (Q32, N35, N37 및 D40)로 3차 구조에서 보전이 매우 잘 되어 있음;
노란색-분흥색: PGᅳ C2;
하늘색-흰색: PG-C3, 치환부위는 분홍색 및 흰색으로 표시; 및
녹색: 항체 Fc 부위ᅳ 【발명의 실시를 위한 최선의 형태】
이하, 본 발명을상세히 설명한다. 본 발명은 표적 단백질에 광메티오닌 (photomethionine, pM) 도입을 위한 메티오닐 tRNA합성효소 (methionyl tRNA synthase, MRS)의 변이체를 제공한다. 상기 MRS 변이체는 야생형 대장균 MRS의 아미노산 서열 N-말단으로부터 12 번째 위치의 알라닌 (Ala)이 글리신 (glysine)으로, 13 번째 위치의 류신 (leucine)이 세린 (serine)으로, 260 번째 위치의 티로신 (tyrosine)이 페닐알라닌 (phenylalanine)으로, 297 번째 위치의 이소류신 ( isoleucine)이 발린 (valine)으로 또는 301 번째 위치의 히스티딘 (histidine)이 류신으로 치환된 아미노산 서열로 구성되는 것이 바람직하나 이에 한정되지 않는다.
상기 야생형 대장균 MRS는 서열번호 1의 아미노산 서열로 구성되는 것이 바람직하나, 이에 한정되지 않는다.
상기 야생형 대장균 MRS는 C-말단이 제거된 서열로부터 만들어지는 것이 바람직하나, 이에 한정되지 않는다.
상기 표적 단백질은 표적 단백질로는 본 실시예에서 사용한 녹색형광 단백질 (enhanced green fluorescence protein, EGFP) 및 FIH( factor inhibiting hypoxia inducible factor) 뿐만 아니라모든 단백질을 사용할 수 있다. 본 발명의 구체적인 실시예에서, 본 발명자들은 표적 단백질 클로닝을 위한 백터를 제조하였으며, 이를 사용하여 6x히스티딘 (6xH)이 태그된 표적 단백질로 녹색형광 단백질 (enhanced green fluorescence protein) (EGFP) , FIH(factor inhibi— tingᅳ hypoxia— indue— i—ble^
클로닝하였다 (도 1 및 도 2 참조). 또한, C-말단이 제거된 야생형 MRS 유전자를 클로닝하여 점돌연변이를 통한 MRS 변이체를 제조하였다 (도 3 및 도 4 참조).
또한, 본 발명자들은 상기 제조한 표적 단백질 발현 백터를 E. coll B834에 형질전환하여, 이를 메티오닌 영양원으로 메타오닌 또는 pM을 포함하는 배지에서 EGFP, FIH 또는 GFP-FIH의 표적 단백질을 발현한 결과, 메티오닌 처리시에는 표적 단백질이 발현되었으나, pM 처리시에는 표적 단백질이 거의 발현되지 않음을 확인하였다.
또한, 본 발명자들은 상기 제조한 표적 단백질 발현 백터 및 MRS 변이체 발현 백터를 동시에 E. coli B834에 형질전환하여, 이를 메티오닌 영양원으로 메티오닌 또는 pM을 포함하는 배지에서 표적 단백질을 발현한 결과, 야생형 MRS가 발현되는 조건에서 메티오닌 처리시에는 EGFP, FIH 또는 GFP-FIH의 표적 단백질이 발현되었으나, pM 처리시에는 표적 단백질이 거의 발현되지 않음을 확인하였으며 (도 5 및 도 7 참조), 이전에 알려진 13, 260 및 301 위치에 변이를 유발한 MRSlpm 및 MRS3pm 변이체는 야생형 MRS와 마찬가지로 pM에 의한 단백질 발현의 증가를 보이지 않음을 확인하였다. 그러나, MRS5pm 변이체를 발현시킨 경우에는 메티오닌을 처리했을 때와 마찬가지로 pM을 처리한 경우에도 6xH-EGFP 단백질이 발현됨을 확인하였다 (도 5 및 도 7 참조). 이를 통해, 본 발명자들은 야생형 MRS와 메티오닌의 결합은 용이하나, 메티오닌에 비해 돌출된 디아지린기를 가지는 pM의 구조로 인하여, 야생형 MRS와 같이 Alal2 및 Ile297을 가지는 MRS는 리간드 결합 부위에 pM이 접근할 수 있는 공간이 부족하므로 PM의 결합이 어려운 반면, MRS5pm 변이체는 메틸기를 제거하기 위해 Alal2 및 Ile297 잔기를 각각 글리신과 발린으로 치환하여 MRS의 리간드 결합 부위로 pM의 접근이 용이한 효과를 가짐을 확인하였다 (도 8 참조).
또한, pM의 결합을 최적화하기 위하여 기존에 알려진 기질의 결합 부위인 Leul3, Tyr260 및 His301을 각각 세린, 페닐알라닌 및 류신으로 치환함으로써, EGFP, FIH 또는 GFP-FIH의 표적 단백질에 pM의 도입 효과가 향상됨을 확인하였다 (도 9 참조).
또한, 본 발명자들은 pM이 표지된 표적 단백질을 Ni-NTA-아가로오즈 크로마토그래 ^ᅳ를ᅳ통 섶ᅳ DM으ᅵ _표 ᅵᅳ된ᅮ 6χΉ표적 -단-백질음ᅳ부분ᅳ분리—정체—하여— (—도ᅳ 참조), SDS-폴리아크릴아미드 겔 및 웨스턴블럿팅을 통해 365 nm의 UV를 조사하여 광활성 공유 결합을 통해 GFP-FIH 표적 단백질의 이량체 (dimer)가 형성됨을 확인하였다 (도 10 참조).
따라서, 본 발명의 MRS 변이체는 pM이 표지된 표적 단백질을 유의적으로 생합성 할 수 있음올 확인하였다. 또한, 본 발명은 야생형 대장균 MRS를 점 돌연변이를 통해 만들어지는 표적 단백질에 pM도입을 위한 MRS 변이체의 제조 방법올 제공한다.
상기 MRS 변이체는 전체 아미노산 서열에서 N-말단으로부터 12 번째 위치의 알라닌이 글리신으로, 13 번째 위치의 류신이 세린으로, 260 번째 위치의 티로신이 페닐알라닌으로, 297 번째 위치의 이소류신이 발린으로 또는 301 번째 위치의 히스티딘이 류신으로 치환된 아미노산 서열로 구성되는 것이 바람직하나, 이에 한정되지 않는다.
본 발명의 MRS 변이체는 야생형 대장균 MRS 유전자에 돌연변이를 도입하는 것으로 제작할 수 있다. 핵산의 염기 서열에 원하는 돌연변이를 도입하는 방법은 점 돌연변이 (point mutation), 축퇴성 (degeneracy)을 유발하는 올리고뉴클레오타이드를 이용한 PCR, 핵산을 포함하는 세포 변이유발제 또는 방사선 노출과 같이 당업자에게 공지된 어느 방법을 사용해도 무방하다. 또한, 본 발명은 MRS 변이체를 포함하는 표적 단백질에 대한 pM 도입용 시약 조성물을 제공한다.
본 발명의 MRS 변이체를 포함하는 시약 조성물은 효과적으로 pM이 도입된 표적 단백질을 생합성 할 수 있으므로, 상기 시약 조성물을 이용하여 pM이 표지된 표적 단빡질을 유의적으로 생합성 할 수 있다. 또한, 본 발명은 1) 표적 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터 및 상기 MRS 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터를 제조하는 단계;
2) 상기 단계 1)의 발현 백터를 동시에 대장균에 도입하여 형질전환체를 제조하는 단계 ; 및
3) 상기 단계 2)의 형질전환체를 배양하여 pM이 표지된 표적 단백질을 발현시키는 단계를 포함하는 표적 단백질로의 pM의 도입 방법을 제공한다.
상기 발현 백터는 플라스미드 백터, 코즈미드 백터, 박테리오 파지 백터 및 바이러스 백터인 것이 바람직하고, 폴라스미드 백터를 사용하는 것이 보다 바람직하나, 이에 한정되지 않는다.
상기 배양은
1) MRS 변이체 발현 플라스미드 및 표적 단백질 발현용 플라스미드를 동시에 대장균에 형질전환하는 단계 ;
2) 상기 단계 1)의 형질전환체에 L-아라비노즈를 첨가하여 MRS 변이체의 발현을 유도하는 단계 ;
3) 상기 단계 2)의 형질전환체의 배양 배지에 메티오닌을 제거하는 단계;
4) M 함유 최소배지에서 pM 표지 단백질을 발현하는 단계로 이루어지는 것이 바람직하나, 이에 한정되지 않는다.
본 발명의 MRS 변이체를 암호화하는 폴리뉴클레오티드는 코돈의 축퇴성으로 인하여 또는 상기 항체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 항체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함됨을 당업자는 잘 이해할 수 있을 것이다. 즉, 본 발명의 폴리뉴클레오티드는 이와 동등한 활성을 갖는 단백질을 코딩하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 이들 또한 본 발명의 범위에 포함된다. 이러한 폴리뉴클레오티드의 서열은 단쇄 또는 이중쇄일 수 있으며, DNA 분자 또는 RNA(mRNA)분자일 수 있다.
상기 발현 백터의 제작 시에는, 상기 MRS 변이체를 생산하고자 하는 숙주세포의 종류에 따라 프로모터 (promoter), 종결지 -(terminator), 인핸서 (inhancer) 등과 같은 발현조절 서열, 막 표적화 또는 분비를 위한 서열 둥을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.
본 발명의 발현백터는 플라스미드 백터, 코즈미드 벡터, 박테리오 파아지 백터 및 바이러스 백터 등을 포함하나 이에 제한되지 않는다. 적합한 발현백터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 발현백터의 프로모터는 구성적 또는 유도성일 수 있다. 또한 발현백터는 백터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함할 수 있고, 복제 가능한 발현백터인 경우 복제 기원을 포함한다.
본 발명에 따른 상기 발현백터를 적절한 숙주 세포인 대장균 OF. coli) ] 형질전환시킨 후, 형질전환된 숙주세포를 배양함으로써 본 발명에 따른 MRS 변이체를 대량 생산할 수 있다. 숙주세포의 적절한 배양 방법 및 배지 조건 등은 당해 분야의 통상의 기술자에게 알려진 공지 기술로부터 당업자가 용이하게 선택할 수 있다. 상기 숙주세포로의 발현백터 도입 방법은 당업자에게 공지된 어느 방법을 사용해도 무방하다. 또한, 본 발명은 단백질 GCprotein G)의 첫 번째 항체 결합 부위 (i画 unogloblin G binding region CI, PG-C1) , 두 번째 항체 결합 부위 (immunogloblin G binding region C2, PG-C2) 및 세 번째 항체 결합 부위 (immunogloblin G binding region C3, PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된 단백질 G 변이체를 제공한다. 상기 단백질 G의 첫 번째 항체 결합 부위는 서열번호 2의 아미노산 서열로 구성되는 것이 바람직하나 이에 한정되지 않는다.
상기 단백질 G의 두 번째 항체 결합 부위는 서열번호 3의 아미노산 서열로 구성되는 것이 바람직하나 이에 한정되지 않는다.
상기 단백질 G의 세 번째 항체 결합 부위는 서열번호 4의 아미노산 서열로 구성되^ 것이 바람직하나 이에 한정되지 않는다.
상기 단백질 G의 첫 번째 항체 결합 부위, 두 번째 항체 결합 부위 또는 세 번째 항체 결합 부위는 1 개 또는 2 개 포함되는 것이 바람직하나 이에 한정되지 않는다.
상기 단백질 G의 치환된 항체 결합 부위는 도 21과 같이 단백질 G의 첫 번째 항체 결합 부위 (서열번호 2: TYKL I LNGKTL GETTTEAVDAATAEKVF QYANDNGVDGEWTYDDATKTFTVTE ) , 두 번째 항체 결합 부위 (서열번호 3: TY LVING TLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE) 및 세 번째 항체 결합 부위 (서열번호 4:
TYKLV I NGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE ) 간 아미노산 서열 및 3차 구조가 서로 보존되어 있다 (Olsson et al. , Eur J Biochem, 168, 319-24, 1987) .
또한, 본 발명은 상기 단백질 G 변이체를 암호화하는 폴리뉴클레오티드를 제공한다.
또한, 본 발명은 상기 단백질 G 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현백터를 제공한다. 또한, 본 발명은 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된, 광활성을 갖는 광메티오닌 (photomethionine, M) 도입 단백질 G 변이체를 제공한다. 본 발명의 구체적인 실시예에서, 본 발명자들은 먼저 서열 내부에는 메티오닌 (methionine, Met) 잔기가 없는 단백질 G의 세 번째 항체결합 부위 (PG-C3 서열번호 4, Olsson et al. , Eur J Biochem, 168, 319-24, 1987)에 330-370 nm 자외선 조사에 의하여 공유결합 형성을 유도하는 메티오닌 모사체인 광활성 메티오닌을 도입하기 위하예 일 실시예에서 제조한 6x히스티딘 (6xH)이 태그된 pET-28at 백터 (도 1)에 1개 또는 2개 단백질 G 모티프 (mot if)를 포함한 백터를 제조하였다 (도 1 및 도 11 참조).
또한, 본 발명자들은 Met 잔기가 도입된 PG-C3 변이체를 코딩하는 유전자를 제조하기 위하여, 2개 PG-C3 모티프가 포함되고 모티프 N-말단으로부터 32 번째 위치의 글루타민 (Gln32)이 Met으로 치환된 pET-2xPGlm, 2개 PG-C3 모티프가 포함되고 40 번째 위치의 아스파르트산 (Asp40) 및 GIn32가 Met으로 치환된 pET- 2xPG2m, 2개 PG-C3 모티프가 포함되고 37 번째 위치의 아스파라긴 (Asn37)이 아르기닌 (Arg)으로 치환되고 Asp40 및 Gln32가 Met으로 치환된 pET-2xPG3m, 및 2개 PG-C3 모티프가 포함되고 Asn37이 Arg으로 치환되고 35 번째 위치의 아스파라긴 (Asn35), Asp40 및 Gln32가 Met으로 치환된 pET-2xPG½ 플라스미드와 1개 PG-C3 모티프가 포함되고 모티프 N-말단으로부터 Gln32가 Met로 치환된 pET- PGlm, 1개 PG-C3 모티프가 포함되고 Gln32 및 Asp40이 Met로 치환된 pET— PG2m, 1개 PG-C3 모티프가 포함되고 Asn37이 Arg으로 치환되고 Gln32 및 Asp40이 Met로 치환된 pET-PG3m, 및 1개 PG-C3 모티프가 포함되고 Asn37이 Arg으로 치환되고 Gln32, Asp40 및 Asn35가 Met로 치환된 pET-PG½ 플라스미드를 제조하였다 (도 12 및 도 13 참조). 또한, 본 발명자들은 pM 표지 단백질 G 변이체의 발현을 위하여, 일 실시예에서 제조한 메티오닐 tRAN 합성효소 변이체 (MRS5m) 유전자를 코딩하는 플라스미드와 상기 PG-C3 Met 변이체 유전자를 코딩하는 플라스미드를 동시에 Met 영양요구주 (auxotroph) 대장균 E. coli B834)에 형질전환시킨 다음, pM을 포함하는 최소 배지에서 단백질 G를 발현시켜 6xH 태그된 6H-2xPGlm, 6H-2xPG2m, 6H-2xPG3ml, 6H-2xPG3m2 및 6H-2xPG4m, 및 6H-PGlm, 6H-PG2m, 6H-PG3ml, 6H-PG3m2 및 6H-PG4m을 획득하였다. 상기 pM 표지 6H-PG 변이체가 MRS5m에 의해 발현이 증가함을 확인하였다 (도 14 참조).
또한, 본 발명자들은 상기 발현된 단백질 G 변이체들은 6xH기가 결합되어 있으므로 Ni-NTA 아가로우즈 크로마토그라피로 부분정제하여 발현 여부를 확인한 결과, 단계 농도구배 (step gradient)시 대부분의 6H-2xPG2m은 150 mM 이미다졸 (imidazole)에서 용출됨을 확인하였으며, 따라서, 다른 변이체들도 같은 건으로ᅳ 분ᅳ ᅵᅩ하볐ᅳ다ᅳ.—상 zᅵ 분점—제-한一변—이—체들—의—발ᅳ현ᅳ—양상을ᅳ^
확인한 결과, 단량체뿐만 아니라, 이량체, 삼량체 및 사량체 등의 올리고머를 형성함을 확인하였다 (도 15 및 도 16 참조). 또한, 이량체를 적출하여 LC/MS/MS 질량분석한 결과, 이량체 위치의 밴드도 PG-C3 서열을 포함하는 유도체이며 pM 표지율이 50% 이상임을 확인하였다.
또한, 본 발명자들은 상기 정제한 pM 표지 단백질 G 변이체와 인간 항체
IgG간의 공유결합을 확인하기 위하여, SDS-PAGE 분석 및 공유결합 형성능 분석을 수행한 결과, UV 조사시 pM 도입 단백질 G, 및 IgG 중쇄 (heavy chain) 및 Fc 부위와 공유결합이 효과적으로 유도되고, 이때 Met으로 치환된 잔기 수가 많을수록 공유 결합 형성를도 함께 증가함을 확인하였다 (도 Γ7 내지 도 19 참조)
또한, 본 발명자들은 상기 정제한 pM 표지 단백질 G 변이체의 공유결합에 의한 혈액내 항체의 치환 억제능을 확인하기 위하여, UV 조사하여 바이오틴화된 IgG(blgG) 중쇄 (bH)와 공유결합시킨 6H-PG4m에 혈청을 처리한 후 SDS—PAGE, 코마시 (Coomassie) 염색 및 웨스턴 블럿팅 (western blotting)을 수행한 결과, 상기 결합체가 혈청 처리에 의하여 영향을 거의 받지 않음을 확인하몄다 (도 20 참조).
또한, 본 발명자들은 상기 정제한 pM 표지 단백질 G 변이체의 혈액내 단백질 검출능을 확인하기 위하여, pM 표지 -?(;½과 인간 항체를 흔합하고 UV를 처리하여 공유결합을 유도한 후 면역침전법 (immunoprecipitation)을 수행한 결과, UV를 조사한 군에서 6H— HER2는 면역침전 후 회수율이 최대 40% 가량 더 높게 나타나는 것을 확인함으로써, 상기 pM 도입 단백질 G 변이체의 혈액내 단백질 검출능이 우수함올 확인하였다 (도 21 참조).
또한, 본 발명자들은 상기 정제한 pM 표지 단백질 G 변이체의 혈액내 항원 분석능 및 혈액내 세포 분석시 유용성을 확인한 결과, UV 조사한 pM 표지 6H- 2xPG4m/항체 시스템에서 감도 및 항체 특이적 세포 포획능이 우수함을 확인함으로써, 상기 pM 도입 단백질 G 변이체를 바이오 칩 및 바이오센서, 및 세포 포획에 이용할 수 있음을 확인하였다 (도 22 참조).
따라서, 본 발명의 pM 도입 단백질 G 변이체는 고배향성뿐만 아니라 UV 조사에 의해 항체와 특이적으로 고효율 공유 결합을 형성하므로, 혈액 시료 분석용 항체칩 , 고감도 바이오칩 (biochip) 및 바이오센서 (biosensor) 개발에 유용하게 사용될 수 있다. 또한, 본 발명은 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열에서, N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)을 메티오닌 (Met)으로 치환시키거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환시키는 단계를 포함하는 단백질 G 변이체의 제조 방법을 제공한다.
본 발명의 pM 도입 단백질 G 변이체는 고배향성뿐만 아니라 UV 조사에 의해 항체와 특이적으로 고효율 공유 결합을 형성하므로, 상기 단백질 G 변이체의 제조 방법은 혈액 시료 분석용 항체칩, 고감도 바이오칩 및 바이오센서 개발에 유용하게 사용될 수 있다.
또한, 본 발명은
1) 상기 MRS 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터 및 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 반째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된 단백질 G 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터를 각각 제조하는 단계;
2) 상기 단계 1)의 발현 백터를 동시에 대장균에 도입하여 형질전환체를 제조하는 단계 ; 및
3) 상기 단계 2)의 형질전환체를 배양하여 pM이 표지된 단백질 G 변이체를 발현시키는 단계를 포함하는, pM도입 단백질 G 변이체의 제조 방법을 제공한다. 상기 단계 1)의 백터는 플라스미드 백터, 코즈미드 백터, 박테리오 파지 벡터 및 바이러스 벡터인 것이 바람직하고, 플라스미드 백터를 사용하는 것이 보다 바람직하나, 이에 한정되지 않는다.
본 발명의 단백질 G 변이체를 암호화하는 폴리뉴클레오티드는 코돈의 축퇴성으로 인하여 또는 상기 항체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 항체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함됨을 당업자는 잘 이해할 수 있을 것이다. 즉, 본 발명의 폴리뉴클레오티드는 이와 동등한 활성을 갖는 단백질을 코딩하는 한, 하나 이상꾀 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 이들 또한 본 발명의 범위에 포함된다. 이러한 폴리뉴클레오티드의 서열은 단쇄 또는 이중쇄일 수 있으며, DNA 분자 또는 RNA(mRNA)분자일 수 있다.
상기 발현 벡터의 제작 시에는, 상기 단백질 G 변이체를 생산하고자 하는 숙주세포의 종류에 따라 프로모터 (promoter), 종결자 (terminator), 인핸서 (enhancer) 등과 같은 발현조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다. 또한, 본 발명은 단백질 G의 첫 번째 항체 결합 부위 (PGᅳ C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된 단백질 G 변이체, 또는 광활성을 갖는 pM도입 단백질 G 변이체에 항체가 결합된 융합 단백질을 제공한다. 상기 단편은 항체의 Fc 부위인 것이 바람직하나, 이에 한정되지 않는다. 본 발명의 pM 도입 단백질 G 변이체는 고배향성뿐만 아니라 UV 조사에 의해 항체와 특이적으로 고효율 공유 결합을 형성하므로, 상기 단백질 G 변이체에 항체가 결합된 융합 단백질은 고감도 바이오칩, 바이오센서 및 세포 포획용 칩 개발에 유용하게 사용될 수 있다. 또한, 본 발명은 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된 단백질 G 변이체, 또는 광활성을 갖는 pM 도입 단백질 G 변이체에 고배향성 항체가 결합된 바이오칩을 제공한다.
또한, 본 발명은 상기 단백질 G 변이체에 고배향성 항체가 결합된 바이오 센서를 제공한다.
또한, 본 발명은 상기 단백질 G 변이체에 고배향성 항체가 결합된 세포 포획 시스템을 제공한다.
본 발명의 pM 도입 단백질 G 변이체는 고배향성뿐만 아니라 UV조사에 의해 항체와 특이적으로 고효율 공유 결합을 형성하므로, 고감도 바이오칩, 바이오센서 및 세포 포획용 칩 개발에 유용하게 사용될 수 있다. 또한, 본 발명은 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 Nᅳ말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치꾀 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된 단백질 G 변이체에 결합된 항체 또는 이의 단편을 포함하는 항체 표지 정맥주사용 나노입자 전달체를 제공한다. 본 발명의 pM 도입 단백질 G 변이체는 고배향성뿐만 아니라 UV조사에 의해 항체와 특이적으로 고효율 공유 결합을 형성하므로, 항체를 나노입자에 고정시켜 표적지향적 주사용 나노입자 운반체 제조에 유용하게 사용될 수 있다.
이하, 본 발명올 실시예에 의해 상세히 설명한다.
단—, ᅵᅳ실ᅳ스ᅵᅳ예 -는— ^발명ᅳ을 _예시하는_것-일ᅳ뿐 r본ᅳ발명의—네—용이—하기 _ 실시예에 의해 한정되는 것은 아니다.
<실시예 1>표적 단백질 클로닝을 위한 백터의 제조
표적 단백질 클로닝을 위한 벡터를 제조하기 위하여, pET-28a (+) 백터 (Novagen, 미국)의 Ndel과 BamHI 사이에 3 개의 메티오닌 잔기를 제거하였다. 구체적으로, pET-28a (+)를 주형으로 사용하여, N-말단에 6x histidine tag (6xH)을 도입하는 정방향 프라이머 (TET-Xba-F) (서열번호 6: 5'- rrCCCCTCTAGAAATMTTTTGri AAC-3') 및 역방향 프라이머 (ET-Bam-R) (서열번호 7: 5'- GCGCGGATCCGCGCGGCACCAGGCCGC_3')를 사용하여 PCR로 증폭한 후, 증폭된 DNA를 Xbal 및 BamHI으로 잘라 pET_28a (+)의 Xbal/BamHI 위치에 삽입하여, pET-28at라 명명하였다.
그 결과, 도 1에서 나타낸 바와 같이 상기 제조한 pET-28at 백터는 Ndel-
BamHI 사이의 3 개의 메티오닌 잔기는 제거되었으나, 트롬빈 (thrombin) 절단부위를 유지하고 있어 6xH 부위의 절단이 가능한 백터를 제조하였으며, 본 발명에서 향상된 녹색형광 단백질 (enhanced green fluorescence protein) (EGFP) 및 EGFP- FIH(factor inhibiting hypoxia inducible factor) , 단백질 G(protein G)를 클로닝하기 위한 백터로 사용하였다 (도 1).
<실시예 2> pET-28at에 표적 단백질 발현 유전자클로닝
표적 단백질을 발현하기 위하여, 상기 <실시예 1>에서 제조한 pET-28at 백터에 단백질 발현 유전자를 클로닝하였다.
구체적으로, EGFP 단백질와 유전자를 얻기 위하여, pEGFP-N3(BD Biosciences Clontech, 미국 ^를 주형으로 하여, 정방향 프라이머 (GFP-Bam— F) (서열번호 8: 5 ' -CGGGATCCATGGTGAGCAAGGGCGAG-3 ' ) 및 역방향 프라이머 (GFP-Xho- R) (서열번호 9: 5'-CCGCTCGAGTTACTTGTACAGCTCGTC-3')를 사용하여 PCR로 증폭한 후, pET-28at 백터의 BamHI/XhoI 위치에 삽입하였으며, pET-GFP라 명명하였다.
GFP-FIH 접합된 단백질의 유전자를 얻기 위하여, pEGFP-N3(BD Biosciences Clontech, 미국)를 주형으로 하고 GFP— Bam-F 정방향 프라이머 및 GFP/FIH-R 역방향 프라이머 (서열번호 10: 5' -CGCCGCTGTCCCGCCGAGAGTGATCCCG-3 ')를 사용하여 FIH와 연결하기 위한 EGFP 유전자를 증폭하였으며, pET-FIH(Lee등, Biol Chem, 278, 7558-63, 2003)를 주형으로 하고 GFP/FIH-F 정방향 프라이머 (서열번호 11: 5'- ACTCTCGGCGGGACAGCGGCGGAGGCTG-3 ' ) 및 FIH-Xho-R 역방향 프라이머 (서열번호 12: 5'-TTCCCTCGAGACCCCTGGCAGGCTAG-3')를 사용하여 EGFP와 연결하기 위한 FIH 유전자를 증폭하였다. 두 종류의 증폭된 DNA를 흔합하여 GFP-Bam-F 및 FIH—Xho-R 프라이머를 사용해 PCR로 GFP-FIH 접합 유전자를 증폭하여, 이를 pET-28at 백터의 BamHI 및 Xhol 위치에 삽입하였고, 이를 pET-GFP/FIH로 명명하였다 (도 2).
<실시예 3>카복시 말단이 절단된 MRS클로닝
광메티오닌 (photomet ionine', pM: L-2-am i no-5 , 5-az i -hexano i c acid) 표지 단백질을 합성하기 위한 MRS methionyl tRNA synthase)를 제조하기 위하여, 야생형 MRS 유전자를 클로닝하여 이의 변이체를 제조하였다.
구체적으로, 대장균 0?. co// BL21) 게놈 DNA 추출물을 주형으로 하고, MRS- Nco-F 정방향 프라이머 (서열번호 13: 5 ' -AATTCCATGGCTCAAGTCGCGAA-3 ' ) 및 MRS-Kpn- R 역방향 프라이머 (서열번호 14: 5'-CAGCGGTACC™ TCTTTAGAGGCTTCCACCᅳ 3')를 사용해 서열번호 5의 염기서열로 구성된 대장균 MRS 유전자를 PCR로 증폭하였고, 이를 pBAD/Myc-HisA 백터 ( Invitrogen 사, 미국)의 Ncol/Kpnl 위치에 삽입하였고, 이를 pBAD-MRSwt으로 명명하였다 (도 3).
야생형 MRS로부터 변이체 MRS를 제조하기 위해, 상기 pBAD-MRSwt 백터를 주형으로 하여 점돌연변이 (point mutagenesis) 방법을 통해 다양한 점 변이체를 제조하였다 (도 4).
구체적으로, MRS 변이체 제조에 사용한 프라이머는 [표 1]에 정리하였다. 변이 생성을 포함하는 프라이머쌍을 이용해 도 4과 같은 구성으로 PCR을 한 유전자를 정제하여 섞어, 이를 주형으로 다시 BAD-F 및 MRS-Kpn-R 프라이머로 PCR하여 변이가 포함된 산물을 얻었다. 그 후ᅳ Ncol/Kpnl로 절단하여 pBAD/Myc- HisA 백터의 Ncol/Kpnl에 삽입하여 pBAD-MRSlm을 제조하였다. 다른 변이체들도 정해진 프라이머쌍을 사용하여 동일한 방법으로 변이체를 제조하여, pBAD-MRS3m, pBAD-MRS4m 및 pBAD-MRS5m을 제조하였다 (도 4).
【표 1】
MRS 및 변이체 클로닝을 위해 사용한 프라이머의 염기서열
Figure imgf000026_0001
Figure imgf000027_0001
• MRS-Nco-F 및 MRS-Kpn-R는 MRS의 1 내지 548 서열을 증폭하여 pBAD/Myc-HisA 백터에 도입하기 위한 프라이머 세트이다.
• MRS-A12G-F 및 MRS-A12G-R는 12번째 알라닌을 글리신으로 치환하기 위한 프라이머 세트임 .
· MRS-L13G-F 및 MRS-L13G-R는 13번째 류신을 글리신으로 치환하기 위한 프라이머 세트임.
• MRS-AL/GS-F 및 MRS-AL/GS-R는 12 및 13번째 알라닌-글리신을 글리신ᅳ세린 치환하기 위한 프라이머 세트임 .
• MRS-Y260F-F 및 MRS-Y260F-R는 260번째 티로신을 페닐알라닌으로 치환하기 위한 프라이머 세트임.
參 MRS-I297V-F 및 MRS-I297V-R는 297번째 이소류신을 발린으로 치환하기 위한 프라이머 세트임.
• MRS-H301L-F 및 MRS-H301L-R는 3이번째 히스티딘을 류신으로 치환하기 위한 프라이머 세트임.
<실시예 4> 메티오닌 종속 영양 대장균 ( coli B834)에서 pM 표지 단백질 발현 확인
외부 MRS를 발현하지 않을 때 pM 표지 단백질의 발현을 확인하기 위해, 메티오닌 종속 영양 대장균인 E. coli B834에서 pM이 표지된 EGFP, FIH 또는 GFP/FIH 단백질의 발현을 확인하였다.
구체적으로, 6xH 태그를 가지는 표적 단백질을 발현시키기 위하여ᅳ 상기 <실시예 2>에서 제조한 pET-GFP, pET-FIH 또는 pET-GFP/FIH 백터를 E. coli B834에 형질전환 (transformation)한 후, 카나마이신 (kanamycin)에 저항성을 가지는 콜로니를 선별하여, 30 의 카나마이신을 포함하는 LB 배지에서 하루 동안 배양하였다. 그런 다음, 배양한 대장균은 2000 xg에서 15 내지 20 분간 원심분리하여 수득하고, M9B(48 mM Na2HP04, 22 mM KH2P04, 9 mM NaCl , 및 19 mM NH4CI)으로 2 회 세척한 후, M9BV+1/2 CMS-MET 용액 (M9B + 0.4 % 포도당, 2 mM MgS04, 0.1 mM CaCl2, 0.05 mM MnCl2, 0.1 M FeCl3, 1 mg/m£ 티아민 (thiamine), 0.2 nig/ mi 니코틴아미드 (nicotinamide), 0.2 nig/mi 폴릭산 (folic acid), 0.2 mg/ 콜린 클로라이드 (choline chloride) 및 0.02 mg/i 리보플라빈 (riboflavine) + 375 βg/mi CSM-MET (메티오닌을 제외한 19개 아미노산 흔합물))에 1/5로 희석하여 분산하였다. 분산한 대장균은 37°C에서 2 내지 3 시간 동안 더 배양한 후, 375 β /Άί CSM-MET 및 50 g/mi 메티오닌 또는 pM을 가하고, 1 mM IPTGdsopropyl β- D-1-thiogalactopyranoside)로 20°C에서 12 내지 16 시간 동안 단백질 발현을 유도하였다. 그런 다음, 세포는 원심분리하여 PBS로 세척하고, 수분을 마이크로 피펫으로 최대한 제거한 다음, 젖은 세포를 100 nig/m^ 농도로 증류수에 희석하였다. 그런 다음, 5 ^를 동량의 2xSDS 완충용액과 흔합하여 10CTC에서 2 분간 가열하여 SDS-폴리아크릴아미드 겔 전기영동으로 단백질 발현을 분석하였다.
그 결과, 메티오닌 처리시에는 표적 단백질이 발현되었으나, pM 처리시에는 표적 단백질이 거의 발현되지 않음을 확인하였다.
<실시예 5> E. coli B834에서 MRS에 의한 pM표지 6xH-EGFP단백질 발현 확인 .
약 28 KDa의 분자량을 가지며 분자 내에 모두 7개의 메티오닌을 포함하는 6xF-EGFP 및 상기 <실시예 3>에서 제조한 MRS 변이체를 이용하여, E. coli B834에서 pM이 표지된 6xH-EGFP 단백질 발현을 확인하였다.
구체적으로, 상기 <실시예 3>에서 제조한 pBAD-MRSwt 또는 pBAD-MRSlm 내지 pBAD-MRS5m 및 pET— GFP를 E. coli B834에 형질전환한 후, 암피실린 및 카나마이신에 모두 저항성을 가지는 콜로니를 선별하여 암피실린 및 카나마이신을 포함하는 LB 배지에서 하루 동안 배양하였다. 배양한 대장균은 2000 xg에서 15 내지 20 분간 원심분리하여 수득하고, 암피실린 및 카나마이신을 포함하는 LB 배지에 1/20로 희석하여 분산하였다. 분산한 대장균은 1 시간 동안 더 배양한 후, 0.02 % L-아라비노오즈 (L-arabinose)를 37°C에서 2 시간 동안 처리하여 야생형 MRS 또는 服 S 변이체를 발현하였다. 그런 다음, 표적 단백질인 EGFP를 발현하기 위하여, 상기 대장균을 M9B로 2 회 세척하고, M9BV+1/2 CMS-MET 용액에 1/2 내지 1/3로 희석한 다음, <실시예 4>와 동일한 방법으로 표적 단백질의 발현을 유도하였다. 배양 후, 원심분리하여 수득한 젖은 세포를 100 rng/ 농도로 물에 희석한 다음, 5 峰 SDS-폴리아크릴아미드 겔 전기영동으로 단백질 발현을 분석하였다.
그 결과, 도 5에서 나타낸 바와 같이 외부 MRS의 발현이 되지 않을 때와 마찬가지로, 야생형 MRS가 발현되는 조건에서는 메티오닌 처리시 단백질의 발현이 높게 나타났으나, pM 처리시에는 EGFP 단백질이 거의 발현되지 않음을 확인하였다. 또한, 이전에 알려진 13, 260 및 301 위치에 변이를 유발한 MRSlpm 및 MRS3pm 변이체는 야생형 MRS와 마찬가지로 pM에 의한 단백질 발현의 증가를 보이지 않음을 확인하였다. 그러나, 服 S5pm 변이체를 발현시킨 경우에는 메티오닌을 처리했을 패와 마찬가지로 pM을 처리한 경우에도 6xH-EGFP 단백질이 발현됨을 확인하였다 (도 5). 아울러, 6xHᅳ EGFP는 메티오닌 또는 pM을 처리하지 않은 경우, IPTG에 의한 단백질의 발현이 이루어지지 않아, pM 처리시 발현된 6xH-EGFP에는 pM이 포함되어 있음을 확인하였다 (도 5).
상기 결과는 도 6에서 나타내는 바와 같이 야생형 MRS와 메티오닌의 결합은 용이하나, 메티오닌에 비해 돌출된 디아지린기를 가지는 pM의 구조로 인하여, 야생형 MRS 또는 MRSlpm 및 MRS3pm 변이체와 같이 Alal2 및 Ile297을 가지는 MRS는 리간드 결합 부위에 pM이 접근할 수 있는 공간이 부족하므로 pM의 결합이 어려움올 나타낸다. 반면에, MRS5pm 변이체는 메틸기를 제거하기 위해 Alal2 및 Ile297 잔기를 각각 글리신과 발린으로 치환하여 MRS의 리간드 결합 부위로 pM의 접근이 용이한 효과를 가짐을 확인하였다 (도 6). 또한, pM의 결합을 최적화하기 위하여 기존에 알려진 기질의 결합 부위인 Leul3, Tyr260 및 His301을 각각 세린, 페닐알라닌 및 류신으로 치환한 함으로써, 6xH-EGFP등의 표적 단백질에 pM의 도입 효과가 향상됨을 확인하였다 (도 6). <실시예 6> E. coli B834에서 MRS에 의한 pM표지 6xH-FIH단백질 발현 .
약 45 KDa의 분자량을 가지며 분자 내에 모두 10개의 메티오닌을 포함하는 6xFIH 및 상기 <실시예 3>에서 제조한 MRS 변이체를 이용하여 E. coli B834에서 pM이 표지된 6xH-FIH 단백질을 발현하였다.
구체적으로, pBAD-MRSwt 또는 pBAD-MRSlm 내지 pBAD-MRS5m 및 pET-FIH을 E. coli B834에 형질전환한 후, 상기 <실시예 5>와 동일한 방법으로 MRS 및 FIH 단백질을 발현하였다. 배양 후, 원심분리하여 수득한 젖은 세포를 100 nig/mi 농도로 물에 희석한 다음, 5 ^를 SDS-폴리아크릴아미드 겔 전기영동으로 단백질 발현을 분석하였다.
그 결과, 도 7에서 나타내는 바와 같이 MRS5pm 변이체를 발현시킨 경우에는 메티오닌을 처리했을 때보다 pM을 처리한 경우에 6xH-FIH 단백질이 유의적으로 발현됨을 확인하였다. 아울러, MRS4pm 변이체를 발현시킨 경우 6xH-FIH에 pM 표지 단백질의 발현되었으나, 야생형 및 MRS5pm 변이체를 발현시킨 경우에 비해. xH- FIH에 pM 표지 단백질이 적게 발현됨을 확인하였다 (도 7). MRS4pm 변이체는 MRS5pm 변이체에서 치환한 5 개의 아미노산 잔기 중 Leul3을 세린으로 치환하는 것을 제외한 네 개의 아미노산 잔기만 치환한 변이체이므로, 상기 결과는 MRS 변이체에 의한 pM 표지 단백질의 발현에서 Leul3 잔기를 세린으로 치환하는 것이 중요함을 확인하였다. <실시예 Ί> pM표지 6xH-EGFP 및 6xH-FIH단백질 부분 분리 정제
발현된 pM 표지 단백질을 정제하기 위하여 Ni-NTA-아가로오즈 크로마토그래피를 통하여 pM이 표지된 6xH-표적 단백질을 부분 분리정제하였다. 구체적으로, pM이 표자된 6xH—표적 단백질의 분리를 위하여 상기 <실시예 5> 또는 <실시예 6>에서 배양한 MRS5pm 변이체를 포함하여 pM 표지 단백질을 발현한 대장균을 원심분리하여 세포를 수득하였다. 그런 다음, 배양액 100 m« 당 세포 파괴용 완충액 (20 mM 트리스-HCKTris-HCl), 300 mM NaCL, 2 mM 2- 머갑토에탄을 (2ᅳ mercaptoethanol), 1 mM PMSF 및 5 % glycerol) 1 내지 2 m«에 분산한 후, 초음파 파쇄하였다. 파쇄액은 15,000 rpm에서 20 분간 원심분리 하여 상등액을 수득하고, 이를 Ni— NTA-아가로오즈 크로마토그래피로 ' 부분 분리정제하였다.
그 결과, 도 8에서 나타난 .바와 같이 단계 구배 Ni-NTAᅳ아가로오즈 크로마토그래피 중 150mM 이미다졸 (imidazole) 농도에서 6xHis-태그된 표적 단백질을 부분 분리정제함을 확인하였다 (도 8). <실시예 8> pM표지 6xH-EGFP및 6xH-FIH단백질의 광활성 공유 결합 분석 발현된 표적 단백질에 표지된 pM의 광활성을 가지는 것을 확인하기 위하여, 발현된 표적 단백질의 광활성 공유 결합을 분석하였다.
구체적으로, 상기 <실시예 7>에서 부분 분리정제한 pM 표지 단백질에 365 nm 파장의 UV를 조사하여 단백질간의 이량체 (dimer) 형성을 확인하였다.
그 결과, 단량체 (monomer)로 존재한다고 알려진 EGFP 단백질 간의 이량체를 형성하지 않음을 확인하였다. 또한, 도 9에서 나타낸 바와 같이 6χΗ-ΠΗ는 C- 말단으로 이량체를 형성한다고 알려져 있으며, 이량체 형성 부위에 3 개의 메티오닌 잔기가 존재하고, 이 중 2 개의 잔기가 서로 대웅되는 FIH 메티오닌 잔기와 매우 밀접한 구조를 보이는 것으로 알려져 있다 (도 9). 그러나, ΠΗ 단백질 또한 본 발명의 배양 및 IPTG로 인한 유도 조건에서는 LB 배지에서의 IPTG 유도 조건 (Lee등, Biol Chem, 278, 7558-63, 2003)과 다르게 UV 조사시 단백질이 침전물로 존재함을 확인하였다. <실시예 9> pM 표지 6xH~GFP/FIH 단백질의 부분 분리 정제 및 광활성 공유 결합 분석
상기 <실시예 8>의 단백질에서 광활성 공유결합이 형성되지 않음을 극복하기 위해, FIH의 아미노말단에 EGFP를 결합하여 발현한 GFP/FIH 단백질을 대장균에서 발현하였다.
구체적으로, pBAD-MRS5m 및 상기 <실시예 2>에서 제조한 pET-GFP/FIH를 E. coli B834에 형질전환한 후, 상기 <실시예 5>와 동일한 방법으로 MRS 변이체 및 GFP/FIH 단백질을 발현하였다. 그런 다음, 상기 <실시예 7>과 동일한 방법으로 Ni-NTA-아가로오즈 크로마토그래피를 통하여 pM이 표지된 6xH-GFP/FIH 단백질을 부분 분리정제하였으며, 365 nm 파장의 UV를 조사하여 단백질 간의 이량체 (dimer) 형성을 SDS-폴리아크릴아미드 겔에 전개 후 코마시에 브릴리언트 불루 R- 250(Coomassie brilliant blue R-250) 염색 및 웨스턴블럿팅 (westeren blotting) 분석을 통해 확인하였다.
웨스턴블럿팅을 위하예 SDS-PAGE 후 니트로셀를로오즈 (nitrocellulose, NC) 멤브레인으로 단백질을 이동시켜 6xH 특이 마우스 단일클론항체 (Aviva Systems biology, 미국) 및 겨자무과산화수소 (Horse-radish peroxidase)가 결합된 항 마우스 IgG 염소 항체 (Millipore, 미국)를 순차적으로 결합시켰다. 그런 다음, Amersham ECL 웨스턴블럿팅 검출시약 (GE Healthcare, 미국)을 처리하여 확인하였다. 그 결과, 도 10에서 나타난 바와 같이 6xH-GFP/FIH 단백질을 소량 분리 정제하였으며 (도 10A), 6xH는 이 tag를 인위적으로 넣어준 단백질인 GFP-FIH에만 존재하므로, 단백질이 완전히 정제되지 않아 72 KDa 위치에 몇 개 단백질 밴드가 존재하나, 6xH 특이 항체에 반응하는 밴드는 1 개뿐임을 알 수 있어, 386 nm의 UV 조사시 pM이 표지된 6xH-GFP/FIH 단백질이 이량체를 형성하는 것올 웨스턴블럿팅을 통하여 확인하였다 (도 10B).
<실시예 10>메티오닌 도입을 위한 단백질 G(protein G) 백터 제조
상기 <실시예 3>에 기재된 방법으로 획득한 MRS를 아용하여 pM표지 단백질 GCprotein G)를 획득하기 위하껴, 먼저, 상기 <실시예 1>에서 제조한 pET-28at 백터에 1개 또는 2개 단백질 G모티프 (motif)를 포함한 백터를 제조하였다.
구체적으로, pET-2XFcBP(Jung et al. , Anal Chem, 81, 936-42, 2009)를 주형으로 하기 [표 2]의 프라이머를 이용하여 중합효소연쇄반웅 (polymerase chain reaction: PCR)을 수행하여 1개 또는 2개 단백질 G의 세 번째 항체결합 부위 ( immunogloblin G-binding region C3: PG-C3 , Olsson et al., Eur J Biochem, 168, 319-24, 1987, 서열번호 4)가 들어 있는 PCR 산물을 얻었다. 그 다음, 상기 PCR 산물을 제한효소 BamHI 및 Xhol으로 절단하여 pET-28at 백터 (도 1)의 BamHI/XhoI 부위 (site)로 클로닝하고, 상기 1개 또는 2개 PG-C3을 포함한 플라스미드를 각각 pET-PG 및 pET-2xPG라 명명하였다 (도 11).
【표 2]
Figure imgf000032_0001
<실시예 11> 메티오닌 치환 단백질 G 플라스미드 제조
단백질 G와 항체 결합 구조 (Sauer-Er iksson et al . , Structure , 3, 265-78, 1995)를 바탕으로 32, 35, 40 위 치 에 도입 하기 위 하여, 상기 <실시 예 10>에 기 재된 방법으로 획득한 2개 PG-C3 모티프가 포함된 pET-2xPG 풀라스미 및 1개 PG-C3 모티프가 포함된 pET-PG 플라스미드 내 PG-C3를 메티오닌으로 치환하여 변이 단백질 G 플라스미드를 제조하였다.
구체적으로, 메티오닌을 도입을 위하여 치환시 킨 아미노산 잔기 번호들은 PG-C3 모티프를 기 준으로 하였으며, Met으로 치환시 키는 잔기들은 단백질 G와 항체 간의 3차 결합 구조를 바탕으로 선정하였다. 그 다음, 변이 체 제조를 위하여 도 3의 모식도와 같이 하기 [표 3]의 프라이 머 세트를 이용하여 PCR을 수행하였다. 먼저, 32 번째 글루타민 (Glutamine, Gln32)를 메티오닌으로 치환하기 위하여 상가 <실시 예 10〉에 기재된 방법으로 획득한 pET-2xPG를 주형으로 하기 [표 3]의 프라이머 세트 중 ET-Xba-F/PG-Q32M-R 및 PG-Q32M-F/Ins-Cla-R를 사용하여 PCR을 수행하고 각 PCR 산물을 획득하였다. 상기 획 득한 PCR 산물을 흔합하고, 이를 주형으로 하기 [표 3]의 프라이 머 세트 중 ET-Xba-F/Ins-Cla-R를 사용하여 PCR DNA를 획득한 후, BamHI 및 Clal으로 절단 및 정제하여 insert 1 DNA를 획득하였다 . 그 다음, pET-2xPG를 주형으로 하기 [표 2]의 프라이머 세트 중 Ins-Cla-F/PG- Q32M-R 및 PG-Q32M-F/ET-R를 사용하여 상기와 같이 PCR을 수행하여 각 PCR 산물을 획득하였다 . 상기 획득한 PCR 산물을 흔합하고, 이를 주형으로 하기 [표 3]의 프라이 머 세트 중 Ins-Clal-F/ET-R를 사용하여 PCR DNA를 획 득한 후, Clal 및 Xh이으로 절단 및 정제하여 insert 2 DNA를 얻었다. 그 후, 상기 insert 1 DNA 및 insert 2 DNA를 흔합하여 pET-28at의 BamHI/XhoI 부위 내로 클로닝하여 pET-2xPGlm 플라스미드를 획득하였다 . 그 다음, 상기 pET-2xPGlm 플라스미드를 주형으로 상기 와 같은 방법으로 PCR을 수행하여 PG-C3 모티프의 40 번째 아스파르트산 (aspart ic acid, Asp40) 및 Gln32가 Met으로 치환된 pET-2xPG2m을 제조하였다. 또한, 상기 pET-2xPG2m 플라스미드를 주형으로 상기 와 같은 방법으로 PCR을 수행하여 37 번 아스파라긴 (asparagine , Asn37)을 아르기 닌 (arginine , Arg)으로 치환되고, Asp40 및 Gln32가 Met으로 치환된 pET-2xPG3m을 제조하였다 . 그 다음, 상기 pET-2xPG3m 플라스미드를 주형으로 상기와 같은 방법으로 PCR을 수행하여 35 번 아스파라긴 (Asn35), Asp40 및 Gln32가 Met으로 치환되고, Asn37o Arg으로 치환된 pET— 2xPG4m을 제조하였다 (도 12).
【표 3]
Figure imgf000034_0001
또한, Protein G 모티프가 1개 있는 변이체를 제조하기 위하여, 도 13의 모식도와 같이 상기에 기재된 방법으로 획득한 pET-2xPGlm, pET-2xPG2m, pET- 2xPG3m 및 pET-2xPG4m 변이 플라스미드를 주형으로 상기 [표 3]의 프라이머 세트 중 ET-Xba-F/PG-XhoI-R로 PCR을 수행하여 1 개 PG 모티프가 들어 있는 PCR DNA를 획득하였다. 상기 획득한 PCR DNA를 정제 후 BamHI 및 Xh이을 이용하여 절단하고 pET-28at의 BamHI /Xhol 부위로 클론닝하였다. 각각의 PG 변이 플라스미드들은 pETᅳ PGlm, pET-PG2m, pET-PG3m 및 pET-PG4m이라 명명하였다 (도 13). <실시예 12> MRS변이체에 의한 ρίί표지 단백질 G발현백터 및 형질전환체의 제직" pM 표지 단백질 G 변이체 발현을 위하여, 상기 <실시예 3>에서 제조한 pBAD-MRS5m 플라스미드와 상기 <실시예 11〉에 기재된 방법으로 획득한 각각의 PG- C3 변이체들을 코딩하는 플라스미드를 Met 영양요구주 (auxotroph) 대장균 E. coli B834로 형질전환하였다. 그 다음, 상기 MRS5m 및 PG—C3 변이체 플라스미드들을 모두 포함하는 형질전환 E.coli콜로니들을 100 β^/ ί 엠피실린 (ampicillin) 및 50 βg/Άl 카나마이신 (kanamycin)이 함유된 LB 고체배지에서 선별하고, 이를 LB 액체배지에 현탁하여 24 시간 배양하였다. 그 다음, 상기 양액을 1/10 내지 1/20 부피로 희석하여 엠피실린 및 카나마이신이 함유된 LB 액체배지에서 1 내지 2 시간 배양한 다음, 0.02% L-아라비노스 (L-arabinose)를 2 시간 동안 37°C에서 처리하여 MRS5m을 발현시켰다. 그 다음, 상기 MRS5m 발현 대장균을 M9B 용액 (48 mM Na2HP04, 22 mM KH2PO4, 9 mM NaCl 및 19 mM NH4C1)로 2번 세척하고, M9BV+1/2 CMS-MET 용액 [M9B+0.4¾ 글루코오스 (glucose), 2 mM MgS04, 0.1 mM CaCl2, 0.05 mM MnCl2, 0.1 M FeCl3, 1 mg/m« 티아민 (thiamine), 0.2 mg/ i 니코틴아마이드 (nicotinamide), 0.2 mg/ra« 엽산 (folk acid), 0.2 mg/m£ 염화콜린 (choline chloride) 및 0.02 mg/i 리보폴라빈 (ribofl.avine)+375 μ g/vxi CSM-MET methionine을 제외한 19개 아미노산 흔합물)]에 1/2 내지 1/3로 희석시켰다. 그 다음, 상기 대장균을 37°C에서 1 내지 2시간 또는 18 °C에서 3시간 더 배양하여 Met을 결핍시 ¾ 다음, 375 β /ml CSM-MET를 50 βg/wl> 메티오닌 또는 50-100 jug/ mi pM이 되게 가하고, 1 mM IPTGdsopropyl 3-1)-1- 10§31&(;1:0 ^0^(16)로 18 °C에서 16 내지 20 시간 단백질 발현을 유도하였다. 각 발현된 단백질들은 2개의 PG-C3 모티프를 갖고 있는 경우에는 6H-2xPGlm, 6H-2xPG2m, 6H-2xPG3ml, 6H-2xPG3m2 및 6H— 2xPG4m으로, 1개의 PG-C3 모티프를 갖고 있는 경우에는 6H-PGlm, 6H-PG2m, 6H-PG3ml, 6H-PG3m2 및 6H- PG½으로 명명하였다.
그 결과, 도 14에 나타낸 바와 같이, MRS5m에 의해 pM 표지 6H-2xPG2m의 발현의 증가하고, 정상 MRS(MRSwt)에 의해서는 pM 단독 처리시 단백질 발현이 매우 낮지만, MRS5m에 의해서는 pM 단독 처리시에도 Met 처리시와 유사하게 단백질의 발현이 현저하게 증가됨을 확인하였다 (도 14). 또한 pM 처리농도를 100 /zg/ii 로 두 배 늘렸을 때, 유의적으로 단백질 발현량도 같이 증가하며, 다른 Met 변이체들도 6H-2xPG2m과 유사하게 MRS5m에 의한 pM 표지 단백질의 발현이 증가되는 양상을 나타냄을 확인하였다.
<실시예 13>단백질 G변이체 부분 분리 정제 및 질량분석
상기 <실시예 12>에 기재된 방법으로 발현된 단백질 G 변이체들은 모두 용해된 형태로 발현되었으며, 이들 단백질의 아미노말단에 6xH기가 결합되 있어 Ni-NTA-agarose(Qiagen, 미국) 크로마토그라피로 부분 정제하였다.
구체적으로, 상기 <실시예 12>에 기재된 방법으로 6H— 2xPGlm, 6H-2xPG2m, 6H-2xPG3ml, 6H-2xPG3m2 및 6H— 2xPG4m, 및 6H-PGlm, 6H-PG2m, 6H-PG3ml, 6H-PG3m2 및 6H-PG4m가 발현된 형질전환 E.coli를 원침시킨 다음, 100 mi 배양액당 세포파괴용 완층액 (20 mM Tris-HCl, 500 mM NaCL, 2 mM 2- 머갑토에탄을 (mercaptoethanol), 1 mM PMSF 및 5 > 글리세를 (glycerol)) 1 내지 2 에 분산시키고 초음파 파쇄를 하였다. 상기 파쇄액은 15,000 rpm에서 10 내지 20 분간 원침시킨 다음, 상층액올 모아 Ni— NTA-agarose 크로마토그라피로 부분 분리정제하였다. 상기 정제한 상층액은 SDS-PAGE를 수행하여 6H-2xPGlm, 6H-2xPG2m, 6H-2xPG3ml, 6H_2xPG3m2 및 6H_2xPG4m, 및 6H-PGlm, 6H-PG2m, 6H-PG3ml, 6H-PG3m2 및 6H-PG4m 단백질 G 변이체의 발현 여부를 확인하였다.
그 결과, 도 15 및 도 16에 나타낸 바와 같이, 단계 농도구배 (step gradient)시 대부분의 6H-2xPG2m는 150 mM 이미다졸 (imidazole)에서 용출됨을 확인하였으며, 따라서, 다른 변이체들도 같은 조건으로 부분 정제하였다. 흥미롭게도 정제된 Met 또는 pM 표지 6H-2xPG2m은 단량체 (monomer)뿐만 아니라 이보다 양은 적지만 이량체 (dimer), 삼량체 (trimer) 및 사량체 (tetramer) 등 다량체 (oligomer)를 형성함을 확인하였다 (도 15). 상기 결과는 본래 아미노산에 비해 소수성인 Met 도입으로 SDS 존재하에서, 그리고 가열하는 조건에 따라 안정한 형태인 을리고머 형성이 유도되는 것으로 여겨진다. 그러나, PG-C3의 이량체 및 다량체 형성은 궁극적으로 항체가 고배향성을 갖도록 포획하는 데에는 악영향을 즐 수 있다. Asn37은 항체의 Fab의 CH1 부위에 결합에 있어서 중요하나, Fc 부위 결합에는 영향을 주지 않으므로, 이를 타이로신 (tyrosin, Tyr)으로 치환하여 Fab 결합을 최소화할 수 있다고 보고되고 있다 (Jung et al., Anal Chem, 81, 936-42, 2009) . 한편, 6xH-2xPG2m의 Asn37을 Tyr으로 치환하여도 다량체 형성을 감소시키지는 못하였으나, Asn37을 Arg으로 치환한 6H-2xPG3m의 경우 을리고머 형성이 감소됨을 확인하였다 (도 16).
또한, 상기 SDS 상의 단량체 및 이량체 부분을 적출하여, 타이로신 효소분해 후 추출한 절단 펩타이드들에 대해 LC/MS/MS mass 분석을 수행한 결과, 모두 PG-C3 서열을 함유하는 것을 확인함으호써, 이량체 위치의 밴드도 단백질 G 유도체임을 확인하였다. 또한, 질량 분석에 의한 pM 표지율은 18°C에서 메티오닌을 결핍시키는 경우에 50-70%로 가장 높게 나타남을 확인하였다. <실시예 14> 단밸질 G 변이체에 의한 인간 항체 (i腿 unogloblin G, IgG)간의 공유 결합 확인
pM 표지 단백질 G 변이체와 인간 항체간의 공유결합을 확인하기 위하여, SDS-PAGE 분석 및 공유결합 형성능 분석을 수행하였다.
구체적으로, 상기 <실시예 13>에 기재된 방법으로 정제한 6H-2xPG4m 단백질 G 변이체 및 항 -EGFR 인간단일클론항체 (Erbitux, Merck, USA) 또는 Fc 분획 (abeam, 미국)을 흔합하여 아이스에서 365 nm UV를 30 분간 조사한 후, SDS-PAGE를 수행하여 공유결합 유무를 관찰하였다 (도 17).
또한, 상기 <실시예 13>에 기재된 방법으로 정제한 6H-PG3m 또는 6H_PG4m 단백질 G 변이체, 및 항— EGFR 인간단일클론항체 또는 Fc 분획을 흔합하여 아이스에서 365 nm UV를 30 분간 조사한 후, SDS-PAGE를 수행하여 공유결합 유무를 관찰하고, Image J 프로그램으로 밴드돌의 밀도를 측정하였으며, IgG 중쇄 공유결합를 및 Fc 공유결합를을 계산하였다 (도 18):
IgG 중쇄 공유결합률 (%)=[H-PG 밀도 /(H-PG 밀도 +H 밀도) x 100]; 및
Fc 공유결합를 =[Fc-PG 밀도 /(Fc-PG 밀도 +Fc 밀도) x 100].
또한, 2-머갑토에탄을 (2-mercaptoethanol)의 존재 유무에 따라 상기와 같이
6H-PG3m 또는 6H-PG4m 단백질 G 변이체, 및 Fc 분획 간의 공유결합 유무를 관찰하고, 공유결합를을 계산하였다 (도 19).
그 결과, 도 17에 나타낸 바와 같이, PG-C3 변이체와 IgG간의 공유결합은 pM 표지 PG-C3 변이체와 IgG 또는 Fc 흔합액에 UV 조사시에만 형성되었으며, 1 개의 단백질 G 분자에 2 개의 IgG 중쇄 (heavy chain, H) 또는 Fc 부위가 단백질 G 농도 의존적으로 결합함을 확인함으로써, 단백질 G 변이체는 IgG 중쇄에 특이성을 나타냄을 확인하였다 (도 17). 또한, pM 표지 PG-C3과 IgG 또는 Fc 간의 공유 결합 형성은 메티오닌 (Met) 치환 수에 비례하여 6H-2xPGlm에 비해 6H-2xPG2m이 공유 결합을 더 잘 형성하였으며, 37번 Arg을 도입한 6H_2xPG3m은 6H-2xPG2m에 비해 유사한 공유 결합능을 나타내었다. 6H-2xPG3m의 35번 위치에 메티오닌을 더 도입한 6H-2xPG4m은 6H-2xPG3m에 비해 가장 높은 공유 결합 형성능을 나타내었다. 6H- 2xPG3m 및 6H-2xPG4m등 2개 PG-C3 부위을 갖는 경우에는 1 분자당 2 분자의 IgG 중쇄 및 Fc 부위와도 공유 결합을 하는 것을 확인하였다.
또한, 도 18에 나타낸 바와 같이, 1개 PG-C3 부위을 갖는 6H-PG3m 및 6H-
PG4m는 1 분자 항체 중쇄와 결합하는 것으로 나타났으며, 자외선 조사에 의한 공유 결합 형성능을 분석한 결과도 예상대로 3 개 메티오닌을 갖는 6H-PG4m이 2개 테 오-닌ᅳ을ᅳ 6 PG3m에一버—해一높계ᅳ나타남을ᅳ확인—하였타 ^—2 ^
mercaptoethanol) 존재시 pM 표지 6H-PG3m은 41.5±1.8%, 6H-PG4m은 53.0±1.0% 공유결합률로 중쇄와 공유 결합을 형성함을 확인하였다. 또한 pM 표지 6H-PG3m 및 예-?(}½는 인간 Fc 분획과의 공유 결합을 형성하였으며, 공유결합를은 각각 35.8±1.7¾> 및 52.1±1.0 %로 IgG의 중쇄에 대한 결합률과 유사하게 나타남을 확인하였다 (도 18).
또한, IgG 1 분자에는 2 분자 단백질 G 결합 부위를 갖고 있으므로 이중 2ᅳ머갑토에탄올 (2ME)존재하의 SDS-PAGE에서 50% 단백질 G와 IgG 공유결합 형성 확률은 이론적으로 1개 이상의 Protein G가 IgG와 공유결합 확를이 75%이며, 35%일 경우에는 58%이다. 도 19에 나타낸 바와 같이, 6H-PG3m의 경우 35.2%(+2ME) 및 57.4 %(-2ME) , 6H-PG4m의 경우 48.2%(+2ME) 및 68.5%(-2ME)의 결합률올 나타냄을 확인하였으며, 따라서 상기 결과는 이론적 계산치에 근접함을 확인하였다 (도 19).
<실시예 15> IgG및 단백질 G의 공유결합에 의한 혈액내 항체의 치환 억제능 확인 단백질 G는 다양한 항체칩 제조에 매우 유용하나 혈액 시료처리시 가역적으로 혈액내 IgG로 치환되는 단점이 있으며, 이들 간의 공유결합은 이를 억제할 수 있다. 따라서, IgG 및 단백질 G의 공유결합에 의한 혈액내 항체의 치환 억제능을 분석하기 위하여, SDS-PAGE, 코마시 염색 및 웨스턴 블럿팅을 수행하였다. 구체적으로, PBS에 평형시킨 5 mg 인간 IgG(Erbitux)에 500 /g의 바이오틴 (biotin)-NHS(N-hydroxysuccinimide)를 1 시간 동안 결합시킨 다음, 투석시켜 바이오틴화된 IgG(blgG)를 제조하였다. 그 다음, 상기 제조한 WgG 20 / 와 10 /g의 Met 또는 pM 표지된 6H-PG½을 흔합하고 상기 <실시예 14>와 같이 UV 조사 후 SDS-PAGE를 수행하였다.
그 결과, 제조한 바이오틴화된 IgG 및 pM 표지 6H— PG4ni이 자외선 조사 후 공유 결합을 형성함을 확인하였다.
또한, blgG 20 와 10 의 메티오닌 또는 pM 표지된 6H-PG4m을 30 mM 이미다졸 (imidazole) 존재하에서 10 ^의 Ni-NTA-아가로오스 비드 (agarose bead, Quiagen, Germany)에 결합시킨 다음, 상기 비드를 세척완충액 (20 mM Tris-HCl 300 mM NaCl 및 30 mM imidazole, pH 7.5)으로 두 번, TBS(20 mM Tris, 150 mM NaCl 맟 0.05% Tween 20, pH 7.5)로 두 번 세척한 다음, 인간 혈장 (Sigma-Aldr ich, USA) 및 2% BSACbovine serum albumin) 용액을 150 씩 2시간 동안 두 번 처리하였다. 그 후, 상기 비드를 다시 세척완충액 및 TBS로 3 번씩 씻어준 다음, 30 ^의 용출완충액 (20 mM Tris-HCl, 300 mM NaCl 및 150 mM imidazole, 7.5)으로 용출하였다. 용출된 WgG는 SDS-PAGE 겔에 전기영동하여 분리하고, 코마시에 브릴리언트 블루 R-250(Coomassie brilliant blue R-250) 염색 (도 2으 왼쪽) 또는 니트로셀루로오스 막 (nitrocelkilse membrane)에 이동시키고 스트랩타비딘— 퍼옥시데이즈 (streptavidin-peroxidase)를 이용하여 시각화하였다 (도 20. 오른쪽). 그 결과, 도 20에 나타낸 바와 같이, 코마시 염색에 의하여 전체 단백질 양상을 분석한 결과 IgG의 경쇄 (light chain)(bL) 밴드, 및 pM 표지 및 자외선 조사군에서는 혈장 처리에 의한 변화가 미미하였으나 다른 군들에서는 변화가 대부분이 사라졌으며, blgG의 중쇄 (bH) 및 6H-PG4m 결합체 (bH-PG)도 혈청 처리에 의하여 거의 감소되지 않음을 확인하였다 (도 20, 왼쪽). 또한 웨스턴블럿팅에 의하여 분석한 양상도 비록 bH 및 bH-PG 밴드들의 신호는 미약하지만, 이와 유사하게 pM 표지 및 자외선 조사군에서는 bL, bH 및 bH-PG 밴드들이 혈청처리에 의하여 영향을 거의 받지 않지만, 나머지 군에서는 혈청 처리에 의하여 단백질 G에 결합된 blgG가 80%이상 해리되는 양상을 나타냄을 확인하였다 (도 20, 오른쪽). 따라서, 상기 결과를 통해 IgG-단백질 G 변이 공유결합체는 혈액시료 분석용 항체칩 등의 개발에 유용하게 사용할 수 있음을 확인하였으며, 이와 더불어 항체 표지 정맥주사용 표적지향적 나노입자 전달체 제조시에도 유용하게 사용될 수 있음을 확인하였다.
<실시예 16> 면역침전법에 의한 IgG 및 단백질 G의 공유결합체의 혈액내 단백질 검출능 분석
단백질 G는 다양한 항체칩 제조에 매우 유용하나 혈액 시료처리시 혈액내 항체에 의해 가역적으로 해리되는 단점이 있어 혈액내 단백질 검출 및 세포 포획에 사용할 수 없다. 따라서, pM 표지 단백질 변이체의 혈액내 단백질 검출을 위한 이용 가능성을 확인하기 위하여, 면역침전법 (immunoprecipitation)을 수행하였다. 구체적으로, 면역침전을 위하여 10 의 pM 표지 6H PG4m을 Sulfo Link- 커플링 레진 (coupling res in) (Thermo Sci, 미국) 10 μ 1에 부착시킨 다음, 2% BSA를 1시간 처리하였다. 다음 레진올 세척완충액으로 3번 씻어준 다음, 20 의 항 HER2 인간단일클론 항체 (Herceptin)를 처리하고, 일부는 365 nm 자외선을 30분 간 조사하여 공유 결합을 유도하였다. 6H-HER2 단백질 (Sino Biological Inc, China) 5 를 인간혈청 및 2% BSA 100 μ ΐ를 섞어준 다음, pM 표지된 6H-PG4m 레진에 1시간 동안 항체와의 결합을 유도하였다. 다음 레진을 세척완충액 200 μ ΐ으로 4번 세척하고, 레진의 용액을 충분히 제거한 다음, 1% SDS 용액으로 용출하였다. 용출 용액내 HER2의 양은 SDS-PAGE 겔에 전기영동하여 분리하고, 코마시에 브릴리언트 블루 R-250(Coomassie brilliant blue R-250) 염색 (도 21, 왼쪽) 또는 니트로셀루로오스 막 (nitrocellulse membrane)에 이동시키고 항 6xHis 마우스 항체 (Abeam, 미국) 및 퍼옥시데이즈 표지 항 마우스 -IgG 염소항체 (Life Technologies, 미국)를 이용하여 시각화하였다 (도 21, 오른쪽).
그 결과, 도 21에 나타난 바와 같이, 전체적으로 면역침전된 6H— HER2는 자외선을 조사한 군에서 인간혈청 처리와 관계없이 면역침전 후 회수율이 20-3 로 높게 나타났으며, 흥미롭게도 인간혈청을 처리한 경우에는 회수율이 40% 가량으로 더 높게 나타남을 확인하였다. 반면, 자외선을 조사하지 않은 군에서는 인간 혈청을 처리하지 않은 군에서도 회수율이 10% 미만의 회수율을 나타냈으며, 인간 혈청을 처리한 경우에는 2%미만의 회수율올 나타남을 확인함으로써, 단백질 G에 자외선 조사에 의해 항체를 공유 결합시킨 경우, 혈액내 항원 분석에 매우 유용함을 확인하였다 (도 21). <실시예 17> 단백질 G에 항체를 공유결합 시킨 단백질 칩의 혈액내 항원분석능 확인
고배향성 항체가 결합된 단백질 칩의 혈액 시료내 항원 분석시 매우 유용한 도구로 사용될 수 있다. 따라서, 광활성 단백질 G를 슬라이드글라스에 공유 결합시키고 항체를 자외선 조사에 의하여 고배향성을 갖게 고정시켜 혈액 시료내 항원 분석을 수행하였다.
구체적으로, 먼저 항원 검출을 위하여 알데하이드기로 활성화된 슬라리드글라스 (CEL Vantage Aldehyde Microarray Slides; Array it Co., 미국)에 12 x 8 瞧의 6개 웰 (well)을 만든 다음 각 웰에 PBS에 용해시킨 50 mM N-(2- 아미노에틸)말레이미드 염산염 ( N- ( 2-am i noe t hy 1 ) ma 1 e i m i de hydrochlor ide)( Tokyo Chemical Ind, 일본)을 100 μ 1씩 가하고 1시간 결합시킨 다음, 100 mM Tris-HCl, pH 7.5를 150 μ 1 처리하여 자유 알테히드기를 제거하고, TBST(20 mM Tris-HCl, 150 mM 염화 나트륨 (sodium chloride), 0.05% Tween 20, pH 7.5)로 세 번 세척하였다. 다음 6H-2xPG4m 및 6H-PG4m을 1 mg/ml 및 0.2 mg농도로 PBS에 녹이고 10 mM TCEP (Thermo Sci, 미국)를 처리한 다음, 슬라이드글라스 위에 0.5 μ 1씩 스팟팅 (spotting) 하고, 1시간 동안 설프히드릴기 (sulfhydryl) 특이적으로 고정하고, 다음 100 mM 2 머갑토에탄을 (mercaptoethanol)을 2% BSA-TBS 용액 150 μΐ를 가하여 자유 말레이드기 및 비특이 단백질 결합을 최소화하였다. 0.1 mg/ml 인간 IgG(Erbitux)를 TBS에 용해시키고 웰당 100 μ 1씩 가하여 단백질 G와 30분간 결합시킨 다음, 자외선을 30분 조사하여 공유 결합을 이들간의 유도하였다. 대조군으로는 스트렙타비딘 (streptavidin)을 PBS에 1 mg/ml 및 0.2 mg/ml 농도로 용해시키고, 0.5 μΐ씩 스팟팅하였다. 다음 2% BSA를 100 mM Tris-HCl, pH 7.5에 용해시켜 웰당 150 μΐ씩 처리하여 자유 알데히드기 및 비특이 단백질 결합을 제거하였다. 각각의 웰은 TBST로 세번 세척한 다음 바이오틴화된 인간항 -EGFR 항체 (Erbitux)를 2% BSA-TBS에 10 ug/ml 농도로 녹인 다음 웰당 100 μ 1 가하고 1시간 동안 교반시켜 항체를 고정시킨 후 TBST로 세척하였다. 항원 분석을 위하여, 재조합 EGFR 단백질 (Sino Biological Inc, China)을 50 mM Tris-HCKpH 7.5)이 들어있는 인간 혈액에 각각 1, 0.05 및 0 iig/ml 농도로 가하고, FITC로 표지된 항 EGFR-rat 항체 (Abeam, 미국)를 1 ug/ml 농도로 첨가한 다음, 웰당 100 μ 1씩 가하고 1 시간 동안 교반시켰다. 각 웰들을 150 mM 이미다졸 (imidazole)이 들어 있는 TBS 및 TBST로 순차적으로 세척한 다음 슬라이드글라스 형광스캐너로 Ex488 nm/Em515 nm에서 형광신호를 분석하였다.
그 결과, 도 22에 나타낸 바와 같이, 스트랩타비딘 /바이오틴 -항체 시스템이나 자외선을 조사하지 않은 pM-표지 6H-2xPG4m/항체 시스템에 비해 자외선을 조사한 pM-표지 6H-2xPG4m/항체 시스템에서 적어도 5배 이상 높은 감도를 나타냄을 확인함으로써 (도 22 가운데), 상기 단백질 G가 바이오 칩 및 센서 개발시 매우 유용함을 확인하였다 (도 22).
<실시예 18> 단백질 G에 항체를 공유결합 시킨 단백질 칩의 혈액내 세포 분석시 유용성 확인
고배향성 항체가 결합된 단백질 칩의 혈액 시료내 암세포 분석시에도 매우 유용한 도구로 사용될 수 있다. 따라서, 광활성 단백질 G를 슬라이드글라스에 공유 결합시키고 항체를 자외선 조사에 의하여 고배향성을 갖게 고정시켜 혈액 시료내 암세포 분석을 수행하였다.
구체적으로, 상기 <실시예 18>에 기재된 방법으로 준비된 단백질 G/항체 슬라이드는 표면에 말레이드기를 도입한 다음, 1 mg/ml 농도의 2xPG4m 용액을 2 μ1 스팟팅하고, 1시간 동안 고정시키고, 각 웰들에 항 HER2또는 EGFR 인간항체를 자외선 조사하거나 하지 않은 상태에서 고정시켰다. 다음 HER2를 발현하는 Τ67 세포 및 EGFR을 발현하는 A549 세포를 10% FBS 및 10% 인간혈청이 들어있는 DMEM 배지 100 μΐ에 10,000개 세포를 분산시키어 각 웰들에 넣어준 다음, 매우 느린 속도로 1시간 동안 교반시키었다. 대조군 슬라이드로는 알데하이드 슬라이드에 1 mg/ml 스트랩타비딘을 2 μ 1 스탓팅하여 준비하였다. 슬라이드에 인간혈청을 처리한 다음, PBS로 세척하였다. 그 다음, 배지 용액에 10 ,000개 Α549 세포 및 바이오틴화된 항 -EGFR 인간항체 1.5 를 동시에 가하여 30분 간 섞어준 다음, 스트렙타비딘이 코팅된 웰에 100 μΐ씩 분주하고 매우 느린 속도로 1시간 동안 교반시키었다. 모든 웰들을 1 FBS가 들어있는 DMEM 배지에 두번 세척한 다음, 스팟팅한 부위에 붙어 있는 세포를 분석하였다.
그 결과, 도 23에 나타낸 바와 같이, 자외선을 조사한 6H-2xPG4m/항체 시스템에서 항체특이적인 세포 포획이 spotting한 부위에서 관찰되었으나 (도 23), 자외선을 조사하지 않은 6H-2xPG4m/항체 시스템이나 streptavidin/biotin-항체 시스템에서는 항체특이적인 세포 포획이 매우 낮게 나타남을 확인함으로써 (결과는 보이지 않음), 광활성 단백질 G 변이체가 혈액내 특정세포 포획올 위하여 매우 유용함을 확인하였다 (도 23).

Claims

【청구의 범위】
【청구항 1】
야생형 대장균 메티오닐 tRNA 합성효소 (methionyl tRNA synthase, MRS)의 아미노산 서열 N-말단으로부터 12 번째 위치의 알라닌 (Ala)이 글리신 (glycine)으로, 13 번째 위치의 류신 (leucine)이 세린 (serine)으로, 260 번째 위치의 티로신 (tyrosine)이 페닐알라닌 (phenylalanine)으로, 297 번째 위치의 이소류신 (isoleucine)이 발린 (valine)으로 또는 301 번째 위치의 히스티딘 (histidine)이 류신으로 치환된 아미노산 서열로 구성된, 표적 단백질에 광메티오닌 (photomethionine, M) 도입을 위한 MRS변이체.
'
【청구항 2】
제 1항에 있어서, 상기 야생형 대장균 MRS는 서열번호 1의 아미노산 서열로 구성되는 것을 특징으로 하는 MRS 변아체.
【청구항 3】
제 1항에 있어서, 상기 야생형 대장균 MRS는 C-말단이 제거된 것을 특징으로 하는 MRS 변이체.
【청구항 4】
야생형 대장균 MRS를 점 돌연변이를 통해 전체 아미노산 서열에서 N- 말단으로부터 12 번째 위치의 알라닌을 글리신으로, 13 번째 위치의 류신을 세된으로, 260 번째 위치의 티로신을 페닐알라닌으로, 297 번째 위치의 이소류신을 발린으로 또는 301 번째 위치의 히스티딘을 류신으로 치환시키는 단계를 포함하는, 표적 단백질에 pM도입흘 위한 MRS 변이체의 제조 방법 .
【청구항 5】
제 4항에 있어서, 상기 야생형 대장균 MRS는 서열번호 1의 아미노산 서열로 구성되는 것을 특징으로 하는 MRS 변이체의 제조 방법.
【청구항 6】
제 1항의 MRS 변이체를 포함하는 표적 단백질에 대한 pM 도입용 시약 조성물.
【청구항 7】
1) 표적 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터 및 제 1항의 MRS 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터를 제조하는 단계 ;
2) 상기 단계 1)의 발현 백터를 동시에 대장균에 도입하여 형질전환체를 제조하는 단계 ; 및
3) 상기 단계 2)의 형질전환체를 배양하여 pM이 표지된 표적 단백질을 발현시키는 단계를 포함하는, 표적 단백질로의 pM 도입 방법.
【청구항 8】
단백질 G(protein G)의 첫 번째 항체 결합 부위 (immunogloblin G binding region CI, PG-C1), 두 번째 항체 결합 부위 ( i麵 unoglobl in G binding region C2, PG-C2) 및 세 번째 항체 결합 부위 (i圆 unogloblin G binding region C3, PG— C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민 (Gin), 35 번째 위치의 아스파라긴 (Asn) 또는 40 번째 위치의 아스파르트산 (Asp)이 메티오닌 (Met)으로 치환되거나, 또는 37 번째 위치의 아스파라긴 (Asn)이 아르기닌 (Arg)으로 치환된 아미노산 서열로 구성된, 단백질 G 변이체.
【청구항 9】
제 8항에 있어서, 상기 단백질 G의 첫 번째 항체 결합 부위 (PG-C1)는 서열번호 2의 아미노산 서열로 구성되는 것을 특징으로 하는 단백질 G 변이체.
【청구항 10】
제 8항에 있어서, 상기 단백질 항체 결합 부위 (PG-C2)는 서열번호 3의 아미노산 서열로 구성되는 것을 특징으로 하는 단백질 G 변이체.
[청구항 11】
제 8항에 있어서, 상기 단백질 G의 세 번째 항체 결합 부위 (PG-C3)는 서열번호 4의 아미노산 서열로 구성되는 것을 특징으로 하는 단백질 G 변이체.
【청구항 12】
제 8항에 있어서, 상기 단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 또는 세 번째 항체 결합 부위 (PG-C3)는 1 개 또는 2 개 포함되는 것을 특징으로 하는 단백질 G 변이체.
[청구항 13】
제 8항의 단백질 G 변이체를 암호화하는 폴리뉴클레오티드.
【청구항 14】
제 13항의 폴리뉴클레오티드를 포함하는 발현백터.
【청구항 15】
단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열 N-말단으로부터 32 번째 위치의 글루타민, 35 번째 위치의 아스파라긴 또는 40 번째 위치의 아스파르트산이 메티오닌으로 치환되거나, 또는 37 번째 위치의 아스파라긴이 아르기닌으로 치환된 아미노산 서열로 구성된, 광활성을 갖는 pM 도입 단백질 G 변이체.
【청구항 16】
단백질 G의 첫 번째 항체 결합 부위 (PG-C1), 두 번째 항체 결합 부위 (PG-C2) 및 세 번째 항체 결합 부위 (PG-C3)로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열에서, N-말단으로부터 32 번째 위치의 글루타민, 35 번째 위치의 아스파라긴 또는 40 번째 위치의 아스파르트산을 메티오닌으로 치환시키거나, 또는 37 번째 위치의 아스파라긴올 아르기닌으로 치환시키는 단계를 포함하는, 단백질 G 변이체의 제조 방법.
【청구항 17】
1) 제 1항의 MRS 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 발현 백터 및 제 14항의 발현 백터를 각각 제조하는 단계;
2) 상기 단계 1)의 발현 백터를 동시에 대장균에 도입하여 형질전환체를 제조하는 단계 ; 및
3) 상기 단계 2)의 형질전환체를 배양하여 pM이 표지된 단백질 G 변이체를 발현시키는 단계를 포함하는, pM 도입 단백질 G 변이체의 제조 방법.
【청구항 18】 ]
제 15항의 pM 도입 단백질 G 변이체에 항체가 결합된 융합 단백질.
【청구항 19】
제 15항의 pM 도입 단백질 G 변이체에 고배향성 항체가 결합된 바이오 칩.
【청구항 20】
제 15항의 pM 도입 단백질 G 변이체에 고배향성 항체가 결합된 바이오 센서 .
【청구항 21】
제 15항의 pM 도입 단백질 G 변이체에 고배향성 항체가 결합된 세포 포획 시스템.
【청구항 22】
제 15항의 단백질 G 변이체에 결합된 항체 또는 이의 단편을 포함하는 항체 표지 정맥주사용 나노입자 전달체.
PCT/KR2014/004803 2013-05-30 2014-05-29 광활성 메티오닌 표지단백질 생합성을 위한 메티오닐 tRNA 합성효소 및 이를 이용한 광활성 단백질 G 변이체 제조방법 WO2014193176A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/894,756 US9914757B2 (en) 2013-05-30 2014-05-29 Methionyl tRNA synthetase for biosynthesis of photomethionine-labeled protein and method for preparing photoactive protein G variant using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130061895A KR101582655B1 (ko) 2013-05-30 2013-05-30 광활성 메티오닌 모사체 표지 단백질 생합성을 위한 메티오닐 tRNA 합성효소 변이체
KR10-2013-0061895 2013-05-30
KR10-2013-0148287 2013-12-02
KR1020130148287A KR101598581B1 (ko) 2013-12-02 2013-12-02 광활성 메티오닌 모사체 도입 단백질 g 변이체

Publications (1)

Publication Number Publication Date
WO2014193176A1 true WO2014193176A1 (ko) 2014-12-04

Family

ID=51989126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004803 WO2014193176A1 (ko) 2013-05-30 2014-05-29 광활성 메티오닌 표지단백질 생합성을 위한 메티오닐 tRNA 합성효소 및 이를 이용한 광활성 단백질 G 변이체 제조방법

Country Status (2)

Country Link
US (1) US9914757B2 (ko)
WO (1) WO2014193176A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146627A (zh) * 2015-03-31 2016-11-23 上海业力生物科技有限公司 Fc特异结合蛋白、IgG亲和层析介质及其制备方法与应用
KR101764855B1 (ko) * 2015-05-29 2017-08-14 한국생명공학연구원 세포포획용 고배향성 항체 고정을 위한 아가로우즈 필름 코팅 마이크로포스트 플레이트

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080000507A (ko) * 2006-06-27 2008-01-02 한국생명공학연구원 N-말단에 시스테인 태그된 단백질 g 변형체

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080000507A (ko) * 2006-06-27 2008-01-02 한국생명공학연구원 N-말단에 시스테인 태그된 단백질 g 변형체

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CREPIN, T. ET AL.: "Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase", J. MOL. BIOL., vol. 332, no. 1, 5 September 2003 (2003-09-05), pages 59 - 72, XP027101462, DOI: doi:10.1016/S0022-2836(03)00917-3 *
HINO, N. ET AL.: "Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid", NATURE METHODS, vol. 2, no. 3, 17 February 2005 (2005-02-17), pages 201 - 206, XP003006833, DOI: doi:10.1038/nmeth739 *
SUCHANEK, M. ET AL.: "Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells", NATURE METHODS, vol. 2, no. 4, 23 March 2005 (2005-03-23), pages 261 - 267 *
TANRIKULU, I. C. ET AL.: "Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo", PROC. NATL. ACAD. SCI. USA, vol. 106, no. 36, 17 August 2009 (2009-08-17), pages 15285 - 15290, XP055223428, DOI: doi:10.1073/pnas.0905735106 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146627A (zh) * 2015-03-31 2016-11-23 上海业力生物科技有限公司 Fc特异结合蛋白、IgG亲和层析介质及其制备方法与应用
CN106146627B (zh) * 2015-03-31 2019-11-12 上海业力生物科技有限公司 Fc特异结合蛋白、IgG亲和层析介质及其制备方法与应用
KR101764855B1 (ko) * 2015-05-29 2017-08-14 한국생명공학연구원 세포포획용 고배향성 항체 고정을 위한 아가로우즈 필름 코팅 마이크로포스트 플레이트

Also Published As

Publication number Publication date
US20160200777A1 (en) 2016-07-14
US9914757B2 (en) 2018-03-13

Similar Documents

Publication Publication Date Title
JP6475630B2 (ja) ストレプトアビジン突然変異タンパク質およびそれらを使用する方法
AU2013331763B2 (en) Bispecific HER2 ligands for cancer therapy
JP5142265B2 (ja) 抗モータリン抗体のパラトープ及びエピトープ
JP2018520675A (ja) ジユビキチン変異タンパク質をベースとした新規結合タンパク質及びその生成方法
RU2714156C2 (ru) С5-связующие полипептиды
WO2021185360A1 (en) Novel truncated sortase variants
WO2017013129A1 (en) Her2 binding proteins based on di-ubiquitin muteins
US20100203653A1 (en) Protein G-Oligonucleotide Conjugate
EP3452097A1 (en) Targeted compounds for the site-specific coupling of chemical moieties comprising a peptide linker
Mori et al. Protein supramolecular complex formation by site-specific avidin–biotin interactions
KR100523212B1 (ko) 반응 단백질과 그의 기질 펩타이드간의 반응분석을 위한단백질 칩
WO2014193176A1 (ko) 광활성 메티오닌 표지단백질 생합성을 위한 메티오닐 tRNA 합성효소 및 이를 이용한 광활성 단백질 G 변이체 제조방법
JP2013527752A (ja) 融合ポリペプチドhpv抗原を用いたhpv抗体スクリーニング方法
KR20130065215A (ko) 단백질 골격모듈을 포함하는 융합 폴리펩타이드 및 이를 이용한 목적 단백질에 특이적인 펩타이드 라이브러리 스크리닝 방법
WO2023141360A2 (en) Anti-b7-h3 compounds and methods of use
CN113166217A (zh) 用于癌症诊断和治疗的新型folr1特异性结合蛋白
JPWO2010123013A1 (ja) プロテアーゼ認識配列を有するタグペプチドおよびその利用
KR101716055B1 (ko) Dna 앱타머를 활용한 새로운 단백질 탐지 시스템 및 이의 용도
KR101227434B1 (ko) 유방암 줄기세포 특이적 마커인 cd44 단백질 표적용 펩타이드 및 이의 이용
JP2017014112A (ja) 抗サバイビン抗体又は抗体誘導体及びそれらの利用
KR101598581B1 (ko) 광활성 메티오닌 모사체 도입 단백질 g 변이체
RU2817391C1 (ru) Рекомбинантная плазмидная ДНК pQE30-Ig-TIM1, обеспечивающая экспрессию иммуноглобулинового домена гена TIM-1/HAVCR-1 человека в клетках E. coli для диагностических и научных исследований
CN113087807B (zh) 用于检测糖类抗原的基于志贺毒素b亚基重组蛋白的探针、制备方法
RU2652901C1 (ru) Антитела, связывающие опухолеассоциированный MUC1, и способы их получения
JP2005229957A (ja) テロメアタンパク質trf2dna結合ドメイン変異体タンパク質、テロメアdna変異体及びtrf2dna結合ドメインと二重らせんdnaとの複合体構造の利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14894756

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14804962

Country of ref document: EP

Kind code of ref document: A1