WO2014192669A1 - 脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法 - Google Patents

脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法 Download PDF

Info

Publication number
WO2014192669A1
WO2014192669A1 PCT/JP2014/063776 JP2014063776W WO2014192669A1 WO 2014192669 A1 WO2014192669 A1 WO 2014192669A1 JP 2014063776 W JP2014063776 W JP 2014063776W WO 2014192669 A1 WO2014192669 A1 WO 2014192669A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
pressure
air
compressor
gas
Prior art date
Application number
PCT/JP2014/063776
Other languages
English (en)
French (fr)
Inventor
村田 聡
平岡 直大
中川 貴裕
哲司 上田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020157023010A priority Critical patent/KR101833111B1/ko
Priority to CN201480010580.0A priority patent/CN105051361B/zh
Publication of WO2014192669A1 publication Critical patent/WO2014192669A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a denitration device control device, a denitration device, and a denitration device control method.
  • exhaust gas from an internal combustion engine such as a diesel engine contains NOx, SOx, and harmful substances such as soot and substances that give a load to the environment. Therefore, various methods that do not discharge such harmful substances have been proposed.
  • EGR exhaust gas recirculation
  • Patent Document 1 describes an apparatus for recirculating and cooling exhaust gas from an automobile diesel engine.
  • the device described in Patent Document 1 includes a compressor driven by an exhaust turbine, and a downstream side of the exhaust turbine and an upstream side of the supercharger are connected by an exhaust gas recirculation path.
  • the exhaust gas recirculation path is connected to an air suction pipe before the compressor, and the exhaust gas and air are mixed in the suction pipe and then supplied to the compressor.
  • a compressor for a large engine provided in a ship or the like does not have an air suction pipe as described in Patent Document 1, and mixing means for mixing exhaust gas and air and introducing the mixture to the compressor Is provided immediately before the compressor.
  • exhaust gas is supplied to the mixing means using a blower that is not provided in the engine described in Patent Document 1. For this reason, in a supercharger for a large engine, if the pressure of the exhaust gas is high, the exhaust gas may be discharged out of the system from the air suction port connected to the mixing means.
  • the present invention has been made in view of such circumstances, and is capable of preventing the exhaust gas to be sent to the internal combustion engine from leaking out of the system, the control device for the denitration device, the denitration device, and the denitration device
  • An object is to provide a method for controlling an apparatus.
  • the following means are employed in the denitration apparatus control apparatus, denitration apparatus, and denitration apparatus control method of the present invention.
  • a control apparatus for a denitration apparatus includes an exhaust turbine that is rotationally driven by exhaust gas discharged from an internal combustion engine, one of the air sucked from an intake port and the exhaust gas when the exhaust turbine is rotationally driven.
  • a compressor that compresses a portion and sends it to the internal combustion engine; a mixing means that mixes the air and the exhaust gas and guides the air to the suction port; and an air inlet that is connected to the mixing means and guides the air to the mixing means And a blower for sending the exhaust gas to the mixing means, a control apparatus for a denitration apparatus, a pressure measuring means for measuring the pressure of the gas guided to the compressor, and a pressure measurement by the pressure measuring means
  • a rotation speed control means for controlling the rotation speed of the blower so that the value is less than the atmospheric pressure.
  • the denitration device compresses the exhaust turbine that is rotationally driven by the exhaust gas discharged from the internal combustion engine, and the air and exhaust gas that is sucked from the suction port when the exhaust turbine is rotationally driven, and sends the compressed air to the internal combustion engine.
  • a compressor is provided. That is, a supercharger is formed by the exhaust turbine and the compressor.
  • the compressor is connected to mixing means for mixing air and exhaust gas and introducing the mixture to the suction port, and air introduction means for introducing air to the mixing means.
  • the denitration apparatus also includes a blower that sends exhaust gas to the mixing means.
  • the control device of the denitration device measures the pressure of the gas guided to the compressor by the pressure measuring means.
  • the gas measured by the pressure measuring means is exhaust gas, air, or a mixture of exhaust gas and air.
  • the rotation speed of the blower is controlled by the rotation speed control means so that the pressure measurement value by the pressure measurement means is less than the atmospheric pressure.
  • this configuration can prevent the exhaust gas to be sent to the internal combustion engine from leaking out of the system.
  • the rotation speed control means sets the pressure measurement value as an upper limit according to any one of the scavenging pressure, the rotation speed of the compressor, the load of the internal combustion engine, and the rotation speed of the internal combustion engine.
  • the number of rotations of the blower is controlled so as to be less than the value.
  • the exhaust gas to be sent to the internal combustion engine can be prevented from leaking out of the system, and the exhaust gas can be set to an appropriate amount according to the operation of the internal combustion engine.
  • the denitration device is provided in a ship, and the upper limit value has a tolerance according to a load fluctuation of the internal combustion engine assumed in the operation of the ship.
  • This configuration can more reliably prevent the exhaust gas to be sent to the internal combustion engine from leaking out of the system.
  • the rotational speed control means corrects the rotational speed of the blower calculated according to the oxygen concentration supplied to the internal combustion engine so that the measured pressure value is less than atmospheric pressure.
  • the rotational speed of the blower is controlled based on the oxygen concentration supplied to the internal combustion engine, the exhaust gas to be sent to the internal combustion engine is moved out of the system while suppressing a decrease in the performance of the internal combustion engine. Leakage can be prevented.
  • a denitration apparatus compresses an exhaust turbine that is rotationally driven by exhaust gas discharged from an internal combustion engine, air sucked from an intake port by the exhaust turbine being rotationally driven, and a part of the exhaust gas.
  • a compressor for sending to the internal combustion engine, a mixing means for mixing the air and the exhaust gas and introducing the air to the suction port, an air introduction means connected to the mixing means and for introducing the air to the mixing means,
  • the blower for sending the exhaust gas to the mixing means, the pressure measuring means for measuring the pressure of the gas guided to the compressor, and the rotation of the blower so that the pressure measurement value by the pressure measuring means is less than atmospheric pressure.
  • a control device having a rotation speed control means for controlling the number.
  • the control method of the denitration apparatus includes: an exhaust turbine that is rotationally driven by exhaust gas discharged from an internal combustion engine; and the air sucked from an intake port and the exhaust gas that are rotationally driven by the exhaust turbine.
  • a compressor for sending to the internal combustion engine, a mixing means for mixing the air and the exhaust gas and introducing it to the suction port, an air introduction means for connecting the air to the mixing means, and for introducing the air to the mixing means, and the exhaust gas Is a control method of a denitration apparatus including a blower that sends the gas to the mixing means, the first step of measuring the pressure of the gas guided to the compressor by the pressure measurement means, and the pressure measurement value by the pressure measurement means is large.
  • a second step of controlling the rotational speed of the blower so as to be less than the atmospheric pressure.
  • FIG. 1 is a schematic configuration diagram of a denitration apparatus according to an embodiment of the present invention. It is a block diagram of the supercharger which concerns on embodiment of this invention. It is a functional block diagram of the blower rotation speed control part which concerns on embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram of a denitration apparatus 10 according to the present embodiment.
  • the denitration device 10 according to the present embodiment is, for example, a marine denitration device, and is provided in an internal combustion engine (diesel engine 12 in the present embodiment).
  • the denitration apparatus 10 includes a supercharger 14 and an EGR blower 16.
  • the supercharger 14 includes an exhaust turbine 18 and a compressor 20.
  • the exhaust turbine 18 is rotationally driven by exhaust gas discharged from the diesel engine 12.
  • the compressor 20 compresses a part of the air and exhaust gas (hereinafter referred to as “EGR gas”) sucked from the suction port when the exhaust turbine 18 is rotationally driven, and sends the compressed air to the diesel engine 12.
  • the compressor 20 is provided at the other end of the rotary shaft 22 provided with the exhaust turbine 18 at one end.
  • the compressor 20 also has a return gas casing 24 (also see FIG. 2) that is a mixing means that mixes air and EGR gas and guides them to the suction port of the compressor 20, and air to the return gas casing 24.
  • a silencer 26 (see also FIG. 2), which is an air introducing means for guiding, is connected.
  • the mixture of air and EGR gas sent from the compressor 20 is cooled by the air cooler 28 and supplied to the diesel engine 12.
  • the exhaust gas that has circulated through the exhaust turbine 18 circulates to the compressor 20 via the recirculation path 30.
  • the exhaust gas flowing through the recirculation path 30 is a part of the exhaust gas flowing through the exhaust turbine 18 and is hereinafter referred to as “EGR gas”.
  • EGR gas Exhaust gas that does not flow through the recirculation path 30 is discharged from the chimney to the outside of the system.
  • the recirculation path 30 includes an EGR valve 32, an EGR scrubber 34, and an EGR blower 16 in order from the upstream side.
  • the EGR valve 32 adjusts the flow rate of the EGR gas that is circulated to the recirculation path 30.
  • the EGR scrubber 34 includes a water treatment device 35, and removes soot and the like contained in the EGR gas by washing the EGR gas with water.
  • the EGR blower 16 sends EGR gas to the compressor 20.
  • the denitration apparatus 10 is provided with a pressure sensor 38 for measuring the pressure of the gas guided to the compressor 20.
  • the gas measured by the pressure sensor 38 is EGR gas, air, or a mixture of exhaust gas and air.
  • the denitration device 10 is controlled by a denitration device controller 40.
  • the denitration device control device 40 includes a blower rotation speed control unit 42 that controls the rotation speed of the EGR blower 16 so that the pressure measurement value by the pressure sensor 38 is less than the atmospheric pressure.
  • FIG. 2 is a configuration diagram of the supercharger 14.
  • the exhaust turbine 18 includes a turbine casing 50, a turbine disk 52 that is rotated by exhaust gas supplied from the diesel engine 12, and turbine blades 54 that are provided in the circumferential direction of the turbine disk 52.
  • the turbine casing 50 is provided so as to cover the turbine disk 52 and the turbine blades 54.
  • the turbine casing 50 passes through a turbine casing inlet 50 a through which exhaust gas is guided from an exhaust gas collecting pipe (not shown) of the diesel engine 12, an exhaust gas passage 50 b that guides exhaust gas from the diesel engine 12 to the turbine blades 54, and the turbine blades 54.
  • a turbine casing outlet 50c for guiding the exhaust gas to the outside of the exhaust turbine 18.
  • the turbine disk 52 has a disk shape, and a plurality of turbine blades 54 extending radially outward from the center of rotation are provided along the circumferential direction.
  • the turbine blades 54 are covered with a turbine casing 50 so as to surround the outside in the radial direction. Exhaust gas is guided to the turbine blade 54 from the exhaust gas passage 50b.
  • the turbine disk 52 and the rotating shaft 22 are rotationally driven by the exhaust gas guided to the turbine blades 54.
  • the exhaust gas that rotationally drives the turbine disk 52 and the rotary shaft 22 flows out from the turbine blades 54 to the turbine casing outlet 50c.
  • the compressor 20 includes a compressor casing 56 and an impeller 58 that compresses air by being driven to rotate.
  • the compressor casing 56 is provided so as to cover the impeller 58.
  • the compressor casing 56 includes a compressor casing inlet 56a which is a suction port for taking in air and EGR gas from the outside through the silencer 26 and the return gas casing 24, and a spiral chamber 56b into which the air compressed by the impeller 58 is guided.
  • the impeller 58 has a compressor casing outlet 56c for discharging the compressed air.
  • the impeller 58 has a substantially disk shape, and a plurality of wings (not shown) extending from the center toward the radially outer side are provided on one surface thereof.
  • the impeller 58 is covered by the spiral chamber 56b so as to surround the radially outer side. Air and EGR gas sucked from the compressor casing inlet 56a are guided to the impeller 58.
  • the impeller 58 is rotationally driven when the exhaust turbine 18 provided on the rotary shaft 22 is rotationally driven.
  • the air and EGR gas sucked from the compressor casing inlet 56 a are compressed by the rotationally driven impeller 58, and the compressed air and EGR gas are sent out radially outward of the impeller 58.
  • the air and EGR gas compressed by the impeller 58 pass through the spiral chamber 56b and are led out from the compressor casing outlet 56c.
  • the compressor casing 56 is provided so as to sandwich the return gas casing 24 between the compressor casing 56 and the silencer 26.
  • the return gas casing 24 has an opening 24a connected to an EGR return pipe (not shown) for guiding EGR gas, which is a part of the exhaust gas of the diesel engine 12, at a part of the outer wall thereof.
  • the return gas casing 24 is provided with a substantially cylindrical mixing member 62 therein.
  • the mixing member 62 has a substantially cylindrical shape, and its diameter is substantially equal to the diameter of the compressor casing inlet 56a.
  • the mixing member 62 has one axial end connected to the compressor casing inlet 56a and the other end connected to the silencer 26, so that the air introduced from the silencer 26 into the mixing member 62 is compressed by the compressor. It can pass to the casing inlet 56a.
  • the mixing member 62 is formed by forming a perforated plate having a plurality of holes 64 on its side wall into a cylindrical shape. For example, each of the plurality of holes 64 provided in the mixing member 62 has a substantially circular shape.
  • Rotating shaft 22 having one end protruding toward exhaust turbine 18 and the other end protruding toward compressor 20 passes through bearing stand 66. Further, a turbine casing 50 and a compressor casing 56 are connected to the bearing stand 66. The turbine casing 50, the bearing stand 66, and the compressor casing 56 are integrally fastened by a plurality of bolts (not shown).
  • the bearing stand 66 is provided with a journal bearing (not shown) and a thrust bearing (not shown). These journal bearings are provided in the vicinity on the exhaust turbine 18 side and in the vicinity on the compressor 20 side. With these journal bearings, the rotary shaft 22 can rotate around the axis and is supported by a bearing base 66.
  • exhaust gas acts on the turbine blades 54 by the thrust bearings disposed on both sides of a thrust collar (not shown) provided so as to protrude toward the outer periphery in the radial direction of the rotating shaft 22, so that the rotating shaft 22 is axially moved. And the rotation about the rotation shaft 22 is made possible.
  • the exhaust gas is guided from the exhaust gas collecting pipe of the diesel engine 12 to the turbine casing inlet 50 a of the turbine casing 50.
  • the exhaust gas guided to the turbine casing inlet 50a is guided to the turbine blade 54 through the exhaust gas passage 50b.
  • the turbine disk 52 and the rotary shaft 22 are rotationally driven by the exhaust gas guided to the turbine blades 54.
  • the exhaust gas that rotationally drives the turbine disk 52 and the rotary shaft 22 flows out from the turbine blades 54 to the turbine casing outlet 50c.
  • the impeller 58 is rotationally driven when the rotary shaft 22 is rotationally driven by exhaust gas.
  • the impeller 58 is driven to rotate, air is sucked into the silencer 26 from the outer periphery of the silencer 26.
  • a part of the exhaust gas of the diesel engine 12 is introduced into the return gas casing 24 as EGR gas from the introduction port 24 a of the return gas casing 24 provided between the silencer 26 and the compressor casing 56. .
  • the air sucked through the silencer 26 is guided to the inside of the substantially cylindrical mixing member 62 provided inside the return gas casing 24 by the impeller 58 being rotationally driven. Further, the EGR gas introduced into the return gas casing 24 from the introduction port 24 a of the return gas casing 24 is guided into the mixing member 62 through a plurality of holes 64 provided in the mixing member 62. As a result, the EGR gas can be uniformly mixed with the air passing through the inside of the mixing member 62.
  • the air and the EGR gas uniformly mixed in the mixing member 62 are mixed and sucked into the compressor casing 56 from the compressor casing inlet 56a.
  • the air-fuel mixture sucked into the compressor casing 56 is compressed by an impeller 58 that is driven to rotate.
  • the air-fuel mixture compressed by the impeller 58 is discharged from the compressor casing outlet 56c through the spiral chamber 56b.
  • the air-fuel mixture compressed by the supercharger 14 is supplied to the diesel engine 12. Thereby, the air-fuel mixture in which air and EGR gas are sufficiently mixed by the supercharger 14 is supplied to the diesel engine 12.
  • the pressure sensor 38 is provided in the vicinity of the end face of the air inlet of the silencer 26. Since the pressure sensor 38 is provided in the vicinity of the end face of the silencer 26 where the exhaust gas may leak out, the control by the blower rotation speed control unit 42, which will be described in detail later, as compared with the case where the pressure sensor 38 is provided elsewhere Good responsiveness.
  • the pressure sensor 38 is not limited to this, and may be provided in the vicinity of the end face of the EGR gas inlet of the return gas casing 24 (pressure sensor 38_A) or the outer periphery of the return gas casing 24 (pressure sensor 38_B).
  • the blower rotation speed control unit 42 controls the rotation speed of the EGR blower 16 so that a pressure measurement value by the pressure sensor 38 (hereinafter referred to as “compressor suction pressure P suc ”) becomes less than atmospheric pressure.
  • the blower rotation speed control unit 42 sets the compressor suction pressure P suc to less than atmospheric pressure, whereby the pressure of the exhaust gas sent to the compressor 20 becomes negative with respect to the atmospheric pressure.
  • the pressure of the exhaust gas sent to the compressor 20 becomes negative with respect to the atmospheric pressure, the exhaust gas does not leak out of the system from the silencer 26.
  • the blower rotation speed control unit 42 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a computer-readable recording medium.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • a series of processes for realizing various functions is recorded on a recording medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
  • FIG. 3 is a functional block diagram of the blower rotation speed control unit 42.
  • the opening degree of the EGR valve 32 is constant (for example, fully open).
  • the blower rotation speed control unit 42 corrects the rotation speed of the EGR blower 16 calculated according to the oxygen concentration supplied to the diesel engine 12 so that the compressor suction pressure P suc is less than atmospheric pressure. To do. Thereby, since the rotation speed of the EGR blower 16 is controlled based on the oxygen concentration supplied to the diesel engine 12, the blower rotation speed control unit 42 controls the diesel engine 12 while suppressing a decrease in the performance of the diesel engine 12. It is possible to prevent the EGR gas to be delivered from leaking out of the system.
  • the blower rotation speed control unit 42 rotates the EGR blower 16 so that the compressor suction pressure P suc is equal to or less than the upper limit value corresponding to the scavenging pressure P s or the supercharger rotation speed N t. Control the number.
  • the supercharger rotational speed Nt is the rotational speed of the compressor 20.
  • the target O 2 concentration calculation unit 70 sets a target value of O 2 concentration to be supplied to the diesel engine 12 (hereinafter referred to as “target O 2 concentration”) based on the load of the diesel engine 12 (hereinafter referred to as “engine load”). And the target O 2 concentration is output to the subtraction unit 72A.
  • the target O 2 concentration calculation unit 70 includes, as an example, a map showing the relationship between the engine load and the target O 2 concentration, and calculates the target O 2 concentration based on the map.
  • the subtraction unit 72A calculates a difference value between the current O 2 concentration and the target O 2 concentration (current O 2 concentration ⁇ target O 2 concentration), and outputs the difference value to the frequency correction amount calculation unit 74A.
  • the frequency correction amount calculation unit 74A calculates a frequency correction amount A, which is a frequency correction amount indicating the rotation speed of the EGR blower 16, by multiplying the difference value by the conversion coefficient ⁇ as shown in the equation (1). Then, the frequency correction amount A is output to the comparison unit 76.
  • the conversion coefficient ⁇ is a positive value.
  • Frequency correction amount A ⁇ ⁇ (current O 2 concentration ⁇ target O 2 concentration) (1)
  • Upper limit calculation unit 78A is the upper limit value of the compressor suction pressure P suc based on the scavenging pressure P s (hereinafter referred to as "suction pressure upper limit value P A".) Is calculated, the suction pressure upper limit value P A to subtraction unit 72B1 Output.
  • Upper limit calculation unit 78A includes a map showing the relation between the scavenging pressure P s and the compressor suction pressure P suc, calculates the suction pressure upper limit value P A on the basis of the map.
  • the upper limit calculator 78B calculates an upper limit value of the compressor suction pressure P suc (hereinafter referred to as “suction pressure upper limit value P B ”) based on the supercharger rotation speed N t and subtracts the suction pressure upper limit value P B. To the unit 72B2.
  • Upper limit calculation unit 78B includes a map showing the relationship between the supercharger speed N t and the compressor suction pressure P suc, calculates the suction pressure upper limit value P B on the basis of the map.
  • Suction pressure upper limit value P A and the suction pressure upper limit value P B is the upper limit for the compressor suction pressure P suc and below atmospheric pressure.
  • the suction pressure upper limit value P A and the suction pressure upper limit value P B is assumed to have a tolerance in accordance with the load fluctuation of the diesel engine 12 is assumed in the operation of the ship.
  • the load of the diesel engine 12 provided in the ship may fluctuate rapidly depending on weather conditions and the like.
  • the blower speed control unit 42 By providing the margin to the suction pressure upper limit value P A and the suction pressure upper limit value P B, the blower speed control unit 42, the load of the diesel engine 12 is rapidly increased, when the exhaust pressure is increased with this However, it is possible to more reliably prevent the exhaust gas to be sent to the diesel engine 12 from leaking out of the system.
  • the suction pressure of the compressor 20 because should a negative pressure relative to atmospheric pressure, the compressor suction pressure P suc, suction pressure upper limit value P A, and the suction pressure upper limit value P B is a negative value
  • Subtraction unit 72B1 includes suction pressure upper limit value P A and the difference value between the compressor suction pressure P suc - calculates (suction pressure upper limit value P A compressor suction pressure P suc), outputs the difference value to the frequency correction amount calculation unit 74B1 To do.
  • the frequency correction amount calculation unit 74B1 calculates the frequency correction amount B1 of the EGR blower 16 by multiplying the difference value by the conversion coefficient ⁇ 1 as shown in the equation (2), and the frequency correction amount B1 is compared with the comparison unit 80. Output to.
  • the conversion coefficient ⁇ 1 is a positive value.
  • Frequency correction amount B1 ⁇ 1 ⁇ (suction pressure upper limit value P A ⁇ compressor suction pressure P suc ) (2)
  • Subtraction unit 72B2 includes suction pressure upper limit value P B and the difference value between the compressor suction pressure P suc - calculates (suction pressure upper limit value P B compressor suction pressure P suc), outputs the difference value to the frequency correction amount calculation unit 74B2 To do.
  • the frequency correction amount calculation unit 74B2 calculates the frequency correction amount B2 of the EGR blower 16 by multiplying the difference value by the conversion coefficient ⁇ 2 as shown in the equation (3), and the frequency correction amount B2 is compared with the comparison unit 80. Output to.
  • the conversion coefficient ⁇ 2 is a positive value.
  • Frequency correction amount B2 ⁇ 2 ⁇ (suction pressure upper limit value P B ⁇ compressor suction pressure P suc ) (3)
  • the comparison unit 80 compares the frequency correction amount B1 and the frequency correction amount B2 to select which one is lower, and outputs the selected frequency correction amount B to the comparison unit 76.
  • the comparison unit 76 When the frequency correction amount B is 0 (zero) or a negative value (B ⁇ 0), the comparison unit 76 outputs the frequency correction amount B to the addition unit 82, and the frequency correction amount B is a positive value. (B> 0), the frequency correction amount A is output to the adder 82.
  • the addition unit 82 adds the frequency correction amount A or the frequency correction amount B to the current frequency of the EGR blower 16 and outputs the result to the EGR blower 16 as a frequency command value of the EGR blower 16.
  • the blower rotation speed control unit 42 outputs to the EGR blower 16 a frequency command value obtained by adding a frequency correction amount B that is a negative value to the current frequency of the EGR blower 16, so that the EGR blower 16 Lower the frequency of the current.
  • the EGR gas guided to the return gas casing 24 has a negative pressure, and the EGR gas is prevented from leaking out of the system.
  • the blower rotation speed control unit 42 does not need to correct the frequency of the EGR blower 16, and therefore outputs the frequency correction amount B that is 0 to the addition unit 82 for correction.
  • the frequency command value is output to the EGR blower 16 without performing it.
  • the blower rotation speed control unit 42 adds the frequency correction amount A that is a positive value to the current frequency of the EGR blower 16.
  • the frequency of the EGR blower 16 is increased from the current level.
  • the amount of EGR gas guided to the return gas casing 24 increases, and the amount of exhaust gas mixture increases.
  • the denitration apparatus 10 includes the exhaust turbine 18 that is rotationally driven by the exhaust gas discharged from the diesel engine 12, the air and EGR gas that are sucked from the intake port when the exhaust turbine 18 is rotationally driven. Is connected to a compressor 20 that compresses the gas and sends it to the diesel engine 12, a return gas casing 24 that mixes air and EGR gas and guides it to the suction port, and a return gas casing 24. A silencer 26 for guiding, and an EGR blower 16 for sending a part of the exhaust gas as EGR gas to the return gas casing 24 are provided.
  • the denitration device control device 40 measures the pressure of the gas guided to the compressor 20 and controls the rotation speed of the EGR blower 16 so that the compressor suction pressure P suc becomes less than atmospheric pressure. Therefore, the denitration device control device 40 according to the present embodiment can prevent the EGR gas to be sent to the diesel engine 12 from leaking out of the system.
  • the blower rotation speed control unit 42 sets the rotation speed of the EGR blower 16 so that the compressor suction pressure P suc is equal to or less than the upper limit value corresponding to the scavenging pressure P s and the turbocharger rotation speed N t.
  • the blower rotation speed control unit 42 may control the rotation speed of the EGR blower 16 so as to be equal to or less than an upper limit value corresponding to the engine load and the engine rotation speed.
  • blower rotation speed control unit 42 is configured so that the compressor suction pressure P suc corresponds to at least one of the scavenging pressure P s , the supercharger rotation speed N t , the engine load, and the engine rotation speed.
  • the number of revolutions of the EGR blower 16 may be controlled so as to be equal to or less than the upper limit.
  • the said embodiment demonstrated the form which controls the rotation speed of the EGR blower 16 so that compressor suction pressure Psuc may become less than atmospheric pressure
  • this invention is not limited to this. It is only necessary to control the compressor suction pressure P suc to be less than atmospheric pressure.
  • the denitration device control device 40 may use an EGR valve instead of the EGR blower 16 so that the compressor suction pressure P suc is less than atmospheric pressure. It is good also as a form which controls the opening degree of the EGR valve 32 with the form which controls the opening degree of 32, and the EGR blower 16.

Abstract

脱硝装置(10)は、ディーゼル機関(12)が排出する排ガスにより回転駆動される排気タービン(18)と、排気タービン(18)が回転駆動することにより吸込み口から吸引した空気及びEGRガスを圧縮し、ディーゼル機関(12)に送出する圧縮機(20)と、空気とEGRガスとを混合して吸込み口へ導く戻りガス用ケーシング(24)と、戻りガス用ケーシング(24)に接続され、空気を戻りガス用ケーシング(24)へ導くサイレンサ(26)と、排ガスの一部をEGRガスとして戻りガス用ケーシング(24)へ送出するEGRブロア(16)と、を備える。そして、脱硝装置制御装置(40)は、圧縮機(20)に導かれる気体の圧力を測定し、圧力測定値が大気圧未満となるように、EGRブロア(16)の回転数を制御する。これにより、ディーゼル機関(12)に送出されるべき排ガスが系外へ漏れ出すことが防がれる。

Description

脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法
 本発明は、脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法に関するものである。
 一般に、ディーゼルエンジン等の内燃機関の排ガスには、NOx、SOx、及び煤塵等の有害物質や環境に負荷を与える物質が含まれている。そのため、このような有害物質を排出しない種々の方式が提案されている。
 有害物質を低減させる代表的な方法としてNOxを低減できる排ガス再循環(Exhaust Gas Recirculation:EGR)方式がある。これは、燃焼により発生した排ガスの一部を燃焼用空気に混入して燃焼させ、燃焼温度を低下させることによりNOxの減少を図るものである。
 特許文献1には、自動車のディーゼルエンジンの排ガスを再循環し、冷却するための装置が記載されている。特許文献1に記載の装置は、排気タービンによって駆動される圧縮機を有し、排気タービンの下流側と過給機の上流側とが排気再循環路で接続されている。
特表2009-511797号公報
 特許文献1に記載のエンジンでは、圧縮機の手前で排気再循環路が空気の吸入管と接続され、排ガスと空気とが吸入管内で混合された後に圧縮機に供給される。ここで、例えば、船舶等に備えられる大型機関用の圧縮機には、特許文献1に記載されているような空気の吸入管がなく、排ガスと空気とを混合させて圧縮機に導く混合手段が圧縮機直前に設けられている。また、大型機関用の過給機では、特許文献1に記載のエンジンでは備えられないブロアを用いて、排ガスが混合手段に供給される。
 このため、大型機関用の過給機では、排ガスの圧力が高いと、混合手段に接続されている空気の吸込み口から系外へ排ガスが排出される可能性がある。
 本発明は、このような事情に鑑みてなされたものであって、内燃機関に送出されるべき排ガスが系外へ漏れ出すことを防ぐことができる、脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法は以下の手段を採用する。
 本発明の第一態様に係る脱硝装置の制御装置は、内燃機関が排出する排ガスにより回転駆動される排気タービンと、前記排気タービンが回転駆動することにより吸込み口から吸引した空気及び前記排ガスの一部を圧縮し、前記内燃機関に送出する圧縮機と、前記空気と前記排ガスを混合して前記吸込み口へ導く混合手段と、前記混合手段に接続され、前記空気を前記混合手段へ導く空気導入手段と、前記排ガスを前記混合手段へ送出するブロアと、を備える脱硝装置の制御装置であって、前記圧縮機に導かれる気体の圧力を測定する圧力測定手段と、前記圧力測定手段による圧力測定値が大気圧未満となるように、前記ブロアの回転数を制御する回転数制御手段と、を備える。
 本構成によれば、脱硝装置は、内燃機関が排出する排ガスにより回転駆動される排気タービン、及び排気タービンが回転駆動することにより吸込み口から吸引した空気及び排ガスを圧縮し、内燃機関に送出する圧縮機を備える。すなわち、排気タービン及び圧縮機によって過給機が形成される。また、圧縮機には、空気と排ガスとを混合して吸込み口へ導く混合手段、及び空気を混合手段へ導く空気導入手段が接続されている。また、脱硝装置は、排ガスを混合手段へ送出するブロアを備える。
 ここで、圧縮機へ送出される排ガスの圧力が高いと、空気導入手段から排ガスが系外へ漏れ出す可能性がある。
 そこで、脱硝装置の制御装置は、圧縮機に導かれる気体の圧力を圧力測定手段によって測定する。なお、圧力測定手段によって測定される気体は、排ガス、空気、又は排ガスと空気の混合気である。
 そして、圧力測定手段による圧力測定値が大気圧未満となるように、回転数制御手段によってブロアの回転数が制御される。圧力測定手段による圧力測定値を大気圧未満とすることによって、圧縮機へ送出される排ガスの圧力が大気圧に対して負圧となる。圧縮機へ送出される排ガスの圧力が、大気圧に対して負圧となると空気導入手段から排ガスが系外へ漏れだすことはない。
 以上のように、本構成は、内燃機関に送出されるべき排ガスが系外へ漏れ出すことを防ぐことができる。
 上記第一態様では、前記回転数制御手段が、前記圧力測定値を掃気圧力、前記圧縮機の回転数、前記内燃機関の負荷、及び前記内燃機関の回転数の何れか一つに応じた上限値以下とするように、前記ブロアの回転数を制御する。
 本構成によれば、内燃機関に送出されるべき排ガスが系外へ漏れ出すことを防ぐと共に、該排ガスを内燃機関の動作に応じた適正な量とすることができる。
 上記第一態様では、前記脱硝装置が船舶に備えられ、前記上限値が前記船舶の運航で想定される前記内燃機関の負荷変動に応じた裕度を有する。
 本構成によれば、内燃機関に送出されるべき排ガスが系外へ漏れ出すことをより確実に防ぐことができる。
 上記第一態様では、前記回転数制御手段が、前記内燃機関へ供給される酸素濃度に応じて算出された前記ブロアの回転数を、前記圧力測定値が大気圧未満となるように補正する。
 本構成によれば、内燃機関へ供給される酸素濃度を基準にブロアの回転数が制御されるので、内燃機関の性能の低下を抑制しつつ、内燃機関に送出されるべき排ガスが系外へ漏れ出すことを防ぐことができる。
 本発明の第二態様に係る脱硝装置は、内燃機関が排出する排ガスにより回転駆動される排気タービンと、前記排気タービンが回転駆動することにより吸込み口から吸引した空気及び前記排ガスの一部を圧縮し、前記内燃機関に送出する圧縮機と、前記空気と前記排ガスを混合して前記吸込み口へ導く混合手段と、前記混合手段に接続され、前記空気を前記混合手段へ導く空気導入手段と、前記排ガスを前記混合手段へ送出するブロアと、前記圧縮機に導かれる気体の圧力を測定する圧力測定手段、及び前記圧力測定手段による圧力測定値が大気圧未満となるように、前記ブロアの回転数を制御する回転数制御手段を有する制御装置と、を備える。
 本発明の第三態様に係る脱硝装置の制御方法は、内燃機関が排出する排ガスにより回転駆動される排気タービン、前記排気タービンが回転駆動することにより吸込み口から吸引した空気及び前記排ガスを圧縮し、前記内燃機関に送出する圧縮機、前記空気と前記排ガスとを混合して前記吸込み口へ導く混合手段、前記混合手段に接続され、前記空気を前記混合手段へ導く空気導入手段、及び前記排ガスを前記混合手段へ送出するブロアを備える脱硝装置の制御方法であって、前記圧縮機に導かれる気体の圧力を圧力測定手段によって測定する第1工程と、前記圧力測定手段による圧力測定値が大気圧未満となるように、前記ブロアの回転数を制御する第2工程と、を含む。
 本発明によれば、内燃機関に送出されるべき排ガスが系外へ漏れ出すことを防ぐことができる、という優れた効果を有する。
本発明の実施形態に係る脱硝装置の概略構成図である。 本発明の実施形態に係る過給機の構成図である。 本発明の実施形態に係るブロア回転数制御部の機能ブロック図である。
 以下に、本発明に係る脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法の一実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る脱硝装置10の概略構成図である。
 本実施形態に係る脱硝装置10は、一例として、舶用の脱硝装置であり、内燃機関(本実施形態ではディーゼル機関12)に備えられる。
 図1に示されるように、脱硝装置10は、過給機14及びEGRブロア16を備える。
 過給機14は、排気タービン18及び圧縮機20を備える。
 排気タービン18は、ディーゼル機関12が排出する排ガスにより回転駆動される。
 圧縮機20は、排気タービン18が回転駆動することにより吸込み口から吸引した空気及び排ガスの一部(以下「EGRガス」という。)を圧縮し、ディーゼル機関12へ送出する。なお、圧縮機20は、一端に排気タービン18が設けられた回転軸22の他端に設けられる。また、圧縮機20には、空気とEGRガスとを混合して圧縮機20の吸込み口へ導く混合手段である戻りガス用ケーシング24(図2も参照)、及び空気を戻りガス用ケーシング24へ導く空気導入手段であるサイレンサ26(図2も参照)が接続されている。
 なお、圧縮機20から送出される空気とEGRガスの混合気は、空気冷却器28によって冷却されてディーゼル機関12に供給される。
 排気タービン18を流通した排ガスは、再循環路30を介して、圧縮機20へ流通する。なお、本実施形態では再循環路30を流通する排ガスは、排気タービン18を流通した排ガスの一部であり、以下「EGRガス」という。再循環路30を流通しない排ガスは、煙突から系外へ放出される。
 再循環路30は、EGRバルブ32、EGRスクラバ34、及びEGRブロア16を上流側から順に備える。
 EGRバルブ32は、再循環路30へ流通させるEGRガスの流量を調整する。
 EGRスクラバ34は、水処理装置35を備えており、EGRガスを水洗浄することによってEGRガスに含まれる煤等を取り除く。
 EGRブロア16は、EGRガスを圧縮機20へ送出する。
 また、本実施形態に係る脱硝装置10には、圧縮機20に導かれる気体の圧力を測定する圧力センサ38が備えられる。なお、圧力センサ38によって測定される気体は、EGRガス、空気、又は排ガスと空気の混合気である。
 脱硝装置10は、脱硝装置制御装置40により制御される。脱硝装置制御装置40は、圧力センサ38による圧力測定値が大気圧未満となるように、EGRブロア16の回転数を制御するブロア回転数制御部42を備える。
 図2は、過給機14の構成図である。
 排気タービン18は、タービンケーシング50と、ディーゼル機関12から供給された排ガスによって回転するタービンディスク52と、タービンディスク52の周方向に設けられているタービン翼54とを有している。
 タービンケーシング50は、タービンディスク52とタービン翼54とを覆うように設けられている。タービンケーシング50は、ディーゼル機関12の排ガス集合管(図示せず)から排ガスが導かれるタービンケーシング入口50aと、ディーゼル機関12の排ガスをタービン翼54へ導く排ガス通路50bと、タービン翼54を通過した排ガスを排気タービン18外へ導くタービンケーシング出口50cとを有している。
 タービンディスク52は、円盤形状をなしており、回転中心から径方向外側に向けて延びているタービン翼54が周方向に沿って複数設けられている。タービン翼54は、タービンケーシング50によって径方向の外側を囲むように覆われている。タービン翼54には、排ガス通路50bから排ガスが導かれる。タービン翼54に導かれた排ガスによって、タービンディスク52及び回転軸22が回転駆動される。タービンディスク52及び回転軸22を回転駆動した排ガスは、タービン翼54からタービンケーシング出口50cに流出する。
 圧縮機20は、圧縮機ケーシング56と、回転駆動されることで空気を圧縮するインペラ58とを有している。
 圧縮機ケーシング56は、インペラ58を覆うように設けられている。圧縮機ケーシング56は、サイレンサ26及び戻りガス用ケーシング24を介して外部からの空気及びEGRガスを取り入れる吸込み口である圧縮機ケーシング入口56aと、インペラ58が圧縮した空気が導かれる渦巻き室56bと、インペラ58が圧縮した空気を排出する圧縮機ケーシング出口56cとを有している。
 インペラ58は、略円盤形状をなしており、その一面には中心から径方向外側に向けて延びている翼(図示せず)が複数設けられている。インペラ58は、渦巻き室56bによって径方向外側を囲むように覆われている。インペラ58には、圧縮機ケーシング入口56aから吸入された空気及びEGRガスが導かれる。インペラ58は、回転軸22上に設けられている排気タービン18が回転駆動することによって回転駆動される。回転駆動されたインペラ58によって、圧縮機ケーシング入口56aから吸入された空気及びEGRガスが圧縮され、圧縮された空気及びEGRガスは、インペラ58の径方向外側に送出される。インペラ58によって圧縮された空気及びEGRガスは、渦巻き室56bを通過して圧縮機ケーシング出口56cから導出される。
 圧縮機ケーシング56は、サイレンサ26との間に戻りガス用ケーシング24を挟むように設けられている。戻りガス用ケーシング24は、その外壁の一部にディーゼル機関12の排ガスの一部であるEGRガスを導くEGR戻り配管(図示せず)が接続される導入口24aが開口している。戻りガス用ケーシング24は、その内部に略円筒状の混合部材62が設けられている。
 混合部材62は、略円筒状とされており、その径が圧縮機ケーシング入口56aの直径と略同等とさている。混合部材62は、その軸方向の一端部を圧縮機ケーシング入口56aに接続して、他端部をサイレンサ26に接続することによって、混合部材62の内部をサイレンサ26から導入された空気が圧縮機ケーシング入口56aへ通過できるようになっている。混合部材62は、その側壁に複数の孔64が設けられている多孔板を円筒状に形成したものである。混合部材62に設けられている複数の孔64は、例えば、各々が略円形状とされている。
 軸受台66には、一端を排気タービン18側に突出させ、他端を圧縮機20側に突出させた回転軸22が貫通している。また、軸受台66には、タービンケーシング50と、圧縮機ケーシング56とが接続されている。これらタービンケーシング50と、軸受台66と、圧縮機ケーシング56とは、複数のボルト(図示せず)によって一体に締結されている。
 軸受台66には、ジャーナル軸受(図示せず)と、スラスト軸受(図示せず)が設けられている。これらジャーナル軸受は、排気タービン18側の近傍と、圧縮機20側の近傍とに設けられている。これらジャーナル軸受によって、回転軸22は、軸回りの回転が可能とされ、かつ、軸受台66によって支持されている。
 さらに回転軸22の半径方向外周に向かって突出して設けられているスラストカラー(図示せず)の両側に配置されているスラスト軸受によって、排ガスがタービン翼54に作用して回転軸22が軸方向へ移動することを規制すると共に、回転軸22回りの回転が可能とされている。
 次に、過給機14に供給されたEGRガスと空気との流れについて、図2を用いて説明する。
 ディーゼル機関12の排ガス集合管からタービンケーシング50のタービンケーシング入口50aへ排ガスが導かれる。タービンケーシング入口50aに導かれた排ガスは、排ガス通路50bを経てタービン翼54へ導かれる。タービン翼54に導かれた排ガスによってタービンディスク52及び回転軸22が回転駆動される。タービンディスク52及び回転軸22を回転駆動した排ガスは、タービン翼54からタービンケーシング出口50cに流出する。
 回転軸22には、タービンディスク52が設けられている端部と反対端にインペラ58が設けられているので、排ガスによって回転軸22が回転駆動することによって、インペラ58が回転駆動する。インペラ58が回転駆動することによって、サイレンサ26の外周から空気がサイレンサ26内に吸引される。また、サイレンサ26と圧縮機ケーシング56との間に設けられている戻りガス用ケーシング24の導入口24aから、ディーゼル機関12の排ガスの一部がEGRガスとして戻りガス用ケーシング24内へ導入される。
 戻りガス用ケーシング24の内部に設けられている略円筒状の混合部材62の内部には、インペラ58が回転駆動することによってサイレンサ26を経て吸引された空気が導かれる。また、戻りガス用ケーシング24の導入口24aから戻りガス用ケーシング24内に導入されたEGRガスは、混合部材62に設けられている複数の孔64から混合部材62の内部へ導かれる。これによって、混合部材62の内部を通過する空気にEGRガスを均一に混合することができる。
 このように、混合部材62の内部で均一に混合された空気とEGRガスとは、混合気とされて圧縮機ケーシング入口56aから圧縮機ケーシング56の内部に吸引される。圧縮機ケーシング56の内部に吸引された混合気は、回転駆動しているインペラ58によって圧縮される。インペラ58によって圧縮された混合気は、渦巻き室56bを経て圧縮機ケーシング出口56cから排出される。
 このように過給機14で圧縮された混合気は、ディーゼル機関12に供給される。これにより、ディーゼル機関12には、過給機14によって空気とEGRガスとが十分に混合した混合気が供給される。
 ここで、本実施形態に係る圧力センサ38は、一例として、サイレンサ26の空気入口の端面近傍に備えられる。排ガスが漏れ出る可能性があるサイレンサ26の端面近傍に圧力センサ38が備えられることで、圧力センサ38が他の場所に備えられる場合に比べて、詳細を後述するブロア回転数制御部42による制御の応答性がよい。なお、これに限らず、圧力センサ38は、戻りガス用ケーシング24のEGRガス入口の端面近傍(圧力センサ38_A)や戻りガス用ケーシング24の外周部(圧力センサ38_B)に設けられてもよい。
 次にブロア回転数制御部42による制御について詳細に説明する。
 ブロア回転数制御部42は、圧力センサ38による圧力測定値(以下「コンプレッサ吸込圧力Psuc」という。)が大気圧未満となるように、EGRブロア16の回転数を制御する。ブロア回転数制御部42は、コンプレッサ吸込圧力Psucを大気圧未満とすることによって、圧縮機20へ送出される排ガスの圧力が大気圧に対して負圧となる。圧縮機20へ送出される排ガスの圧力が、大気圧に対して負圧となるとサイレンサ26から排ガスが系外へ漏れだすことはない。
 ブロア回転数制御部42は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
 図3は、ブロア回転数制御部42の機能ブロック図である。なお、本実施形態では、EGRバルブ32の開度は一定(例えば全開)とされている。
 本実施形態に係るブロア回転数制御部42は、ディーゼル機関12へ供給される酸素濃度に応じて算出されたEGRブロア16の回転数を、コンプレッサ吸込圧力Psucが大気圧未満となるように補正する。
 これにより、ブロア回転数制御部42は、ディーゼル機関12へ供給される酸素濃度を基準にEGRブロア16の回転数が制御するので、ディーゼル機関12の性能の低下を抑制しつつ、ディーゼル機関12に送出されるべきEGRガスが系外へ漏れ出すことを防ぐことができる。
 また、本実施形態に係るブロア回転数制御部42は、コンプレッサ吸込圧力Psucが、掃気圧力P又は過給機回転数Nに応じた上限値以下となるように、EGRブロア16の回転数を制御する。なお、過給機回転数Nは、すなわち圧縮機20の回転数である。
 これにより、ブロア回転数制御部42は、ディーゼル機関12に送出されるべきEGRガスが系外へ漏れ出すことを防ぐと共に、EGRガスをディーゼル機関12の動作に応じた適正な量とすることができる。
 まず、目標O濃度算出部70が、ディーゼル機関12の負荷(以下「エンジン負荷」という。)に基づいて、ディーゼル機関12へ供給するO濃度の目標値(以下「目標O濃度」という。)を算出し、目標O濃度を減算部72Aへ出力する。なお、目標O濃度算出部70は、一例として、エンジン負荷と目標O濃度との関係を示したマップを備え、該マップに基づいて目標O濃度を算出する。
 減算部72Aは、現状のO濃度と目標O濃度の差分値(現状O濃度-目標O濃度)を算出し、差分値を周波数補正量算出部74Aへ出力する。
 周波数補正量算出部74Aは、(1)式に示されるように上記差分値に換算係数αを乗算することで、EGRブロア16の回転数を示す周波数の補正量である周波数補正量Aを算出し、周波数補正量Aを比較部76へ出力する。換算係数αは正の値である。
  周波数補正量A=α×(現状O濃度-目標O濃度) ・・・(1)
 上限値算出部78Aは、掃気圧力Pに基づいたコンプレッサ吸込圧力Psucの上限値(以下「吸込圧力上限値P」という。)を算出し、吸込圧力上限値Pを減算部72B1へ出力する。上限値算出部78Aは、一例として、掃気圧力Pとコンプレッサ吸込圧力Psucとの関係を示したマップを備え、該マップに基づいて吸込圧力上限値Pを算出する。
 上限値算出部78Bは、過給機回転数Nに基づいたコンプレッサ吸込圧力Psucの上限値(以下「吸込圧力上限値P」という。)を算出し、吸込圧力上限値Pを減算部72B2へ出力する。上限値算出部78Bは、一例として、過給機回転数Nとコンプレッサ吸込圧力Psucとの関係を示したマップを備え、該マップに基づいて吸込圧力上限値Pを算出する。
 吸込圧力上限値P及び吸込圧力上限値Pは、コンプレッサ吸込圧力Psucを大気圧未満とするための上限値である。
 また、吸込圧力上限値P及び吸込圧力上限値Pは、船舶の運航で想定されるディーゼル機関12の負荷変動に応じた裕度を有するものとする。
 船舶に備えられるディーゼル機関12の負荷は、気象条件等に応じて急激に変動する場合がある。吸込圧力上限値P及び吸込圧力上限値Pに裕度を持たせることによって、ブロア回転数制御部42は、ディーゼル機関12の負荷が急激に増加し、これに伴い排気圧力が上昇した場合でも、ディーゼル機関12に送出されるべき排ガスが系外へ漏れ出すことをより確実に防ぐことができる。
 また、圧縮機20の吸込み圧力は大気圧に対して負圧となるべきであるため、コンプレッサ吸込圧力Psuc、吸込圧力上限値P、及び吸込圧力上限値Pは、負の値とされる。
 減算部72B1は、吸込圧力上限値Pとコンプレッサ吸込圧力Psucとの差分値(吸込圧力上限値P-コンプレッサ吸込圧力Psuc)を算出し、差分値を周波数補正量算出部74B1へ出力する。
 周波数補正量算出部74B1は、(2)式に示されるように上記差分値に換算係数β1を乗算することで、EGRブロア16の周波数補正量B1を算出し、周波数補正量B1を比較部80へ出力する。換算係数β1は正の値である。
  周波数補正量B1=β1×(吸込圧力上限値P-コンプレッサ吸込圧力Psuc) ・・・(2)
 減算部72B2は、吸込圧力上限値Pとコンプレッサ吸込圧力Psucとの差分値(吸込圧力上限値P-コンプレッサ吸込圧力Psuc)を算出し、差分値を周波数補正量算出部74B2へ出力する。
 周波数補正量算出部74B2は、(3)式に示されるように上記差分値に換算係数β2を乗算することで、EGRブロア16の周波数補正量B2を算出し、周波数補正量B2を比較部80へ出力する。換算係数β2は正の値である。
  周波数補正量B2=β2×(吸込圧力上限値P-コンプレッサ吸込圧力Psuc) ・・・(3)
 比較部80は、周波数補正量B1と周波数補正量B2とを比較することで、何れか低い方を選択し、周波数補正量Bとして比較部76へ出力する。
 比較部76は、周波数補正量Bが0(零)又は負の値である場合(B≦0)、周波数補正量Bを加算部82へ出力し、周波数補正量Bが正の値である場合(B>0)、周波数補正量Aを加算部82へ出力する。
 加算部82は、EGRブロア16の現在の周波数に周波数補正量A又は周波数補正量Bを加算し、EGRブロア16の周波数指令値としてEGRブロア16へ出力する。
 このように、図3に示されるブロア回転数制御部42の制御によると、コンプレッサ吸込圧力Psucが吸込圧力上限値P又は吸込圧力上限値Pよりも高い場合、換算係数β2,β1は正の値であるため、算出される周波数補正量B1,B2は負の値となる。
 このため、ブロア回転数制御部42は、EGRブロア16の現状の周波数に対して、負の値である周波数補正量Bを加算した周波数指令値をEGRブロア16へ出力することで、EGRブロア16の周波数を現状より下げる。これにより、戻りガス用ケーシング24へ導かれるEGRガスが負圧となり、EGRガスが系外へ漏れ出ることが防止される。
 なお、周波数補正量Bが0の場合、ブロア回転数制御部42は、EGRブロア16の周波数を補正する必要がないため、0である周波数補正量Bを加算部82へ出力して、補正を行うことなく周波数指令値をEGRブロア16へ出力する。
 一方、周波数補正量Aが正の値の場合は、現状O濃度が目標O濃度よりも高く、排ガス混合量が不足していることを示している。
 このため、ブロア回転数制御部42は、周波数補正量Aと共に周波数補正量Bが正の値の場合、EGRブロア16の現状の周波数に対して、正の値である周波数補正量Aを加算した周波数指令値をEGRブロア16へ出力することで、EGRブロア16の周波数を現状より上げる。これにより、戻りガス用ケーシング24へ導かれるEGRガスの量が多くなり、排ガス混合量が増加する。
 以上説明したように、本実施形態に係る脱硝装置10は、ディーゼル機関12が排出する排ガスにより回転駆動される排気タービン18、排気タービン18が回転駆動することにより吸込み口から吸引した空気及びEGRガスを圧縮し、ディーゼル機関12に送出する圧縮機20、空気とEGRガスとを混合して吸込み口へ導く戻りガス用ケーシング24、戻りガス用ケーシング24に接続され、空気を戻りガス用ケーシング24へ導くサイレンサ26、排ガスの一部をEGRガスとして戻りガス用ケーシング24へ送出するEGRブロア16を備える。そして、脱硝装置制御装置40は、圧縮機20に導かれる気体の圧力を測定し、コンプレッサ吸込圧力Psucが大気圧未満となるように、EGRブロア16の回転数を制御する。
 従って、本実施形態に係る脱硝装置制御装置40は、ディーゼル機関12に送出されるべきEGRガスが系外へ漏れ出すことを防ぐことができる。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記実施形態では、ブロア回転数制御部42が、コンプレッサ吸込圧力Psucを掃気圧力P及び過給機回転数Nに応じた上限値以下とするようにEGRブロア16の回転数を制御する形態について説明したが、本発明は、これに限定されるものではない。ブロア回転数制御部42は、例えば、エンジン負荷やエンジン回転数に応じた上限値以下となるように、EGRブロア16の回転数を制御する形態としてもよい。また、ブロア回転数制御部42は、ブロア回転数制御部42は、コンプレッサ吸込圧力Psucが掃気圧力P、過給機回転数N、エンジン負荷、及びエンジン回転数の少なくとも一つに応じた上限値以下となるようにEGRブロア16の回転数を制御する形態としてもよい。
 また、上記実施形態では、コンプレッサ吸込圧力Psucが大気圧未満となるように、EGRブロア16の回転数を制御する形態について説明したが、本発明は、これに限定されるものではない。コンプレッサ吸込圧力Psucが大気圧未満となるように制御されればよく、例えば、脱硝装置制御装置40が、コンプレッサ吸込圧力Psucを大気圧未満とするように、EGRブロア16の替わりにEGRバルブ32の開度を制御する形態や、EGRブロア16と共にEGRバルブ32の開度を制御する形態としてもよい。
 10 脱硝装置
 12 ディーゼル機関
 16 EGRブロア
 18 排気タービン
 20 圧縮機
 24 戻りガス用ケーシング
 26 サイレンサ
 38 圧力センサ
 40 脱硝装置制御装置
 42 ブロア回転数制御部

Claims (6)

  1.  内燃機関が排出する排ガスにより回転駆動される排気タービンと、
     前記排気タービンが回転駆動することにより吸込み口から吸引した空気及び前記排ガスの一部を圧縮し、前記内燃機関に送出する圧縮機と、
     前記空気と前記排ガスを混合して前記吸込み口へ導く混合手段と、
     前記混合手段に接続され、前記空気を前記混合手段へ導く空気導入手段と、
     前記排ガスを前記混合手段へ送出するブロアと、
    を備える脱硝装置の制御装置であって、
     前記圧縮機に導かれる気体の圧力を測定する圧力測定手段と、
     前記圧力測定手段による圧力測定値が大気圧未満となるように、前記ブロアの回転数を制御する回転数制御手段と、
    を備える脱硝装置の制御装置。
  2.  前記回転数制御手段は、前記圧力測定値が掃気圧力、前記圧縮機の回転数、前記内燃機関の負荷、及び前記内燃機関の回転数の何れか一つに応じた上限値以下となるように、前記ブロアの回転数を制御する請求項1記載の脱硝装置の制御装置。
  3.  前記脱硝装置は、船舶に備えられ、
     前記上限値は、前記船舶の運航で想定される前記内燃機関の負荷変動に応じた裕度を有する請求項2記載の脱硝装置の制御装置。
  4.  前記回転数制御手段は、前記内燃機関へ供給される酸素濃度に応じて算出された前記ブロアの回転数を、前記圧力測定値が大気圧未満となるように補正する請求項1から請求項3の何れか1項記載の脱硝装置の制御装置。
  5.  内燃機関が排出する排ガスにより回転駆動される排気タービンと、
     前記排気タービンが回転駆動することにより吸込み口から吸引した空気及び前記排ガスの一部を圧縮し、前記内燃機関に送出する圧縮機と、
     前記空気と前記排ガスを混合して前記吸込み口へ導く混合手段と、
     前記混合手段に接続され、前記空気を前記混合手段へ導く空気導入手段と、
     前記排ガスを前記混合手段へ送出するブロアと、
     前記圧縮機に導かれる気体の圧力を測定する圧力測定手段、及び前記圧力測定手段による圧力測定値が大気圧未満となるように、前記ブロアの回転数を制御する回転数制御手段を有する制御装置と、
    を備える脱硝装置。
  6.  内燃機関が排出する排ガスにより回転駆動される排気タービン、前記排気タービンが回転駆動することにより吸込み口から吸引した空気及び前記排ガスを圧縮し、前記内燃機関に送出する圧縮機、前記空気と前記排ガスとを混合して前記吸込み口へ導く混合手段、前記混合手段に接続され、前記空気を前記混合手段へ導く空気導入手段、及び前記排ガスを前記混合手段へ送出するブロアを備える脱硝装置の制御方法であって、
     前記圧縮機に導かれる気体の圧力を圧力測定手段によって測定する第1工程と、
     前記圧力測定手段による圧力測定値が大気圧未満となるように、前記ブロアの回転数を制御する第2工程と、
    を含む脱硝装置の制御方法。
     
PCT/JP2014/063776 2013-05-31 2014-05-26 脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法 WO2014192669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157023010A KR101833111B1 (ko) 2013-05-31 2014-05-26 탈질장치의 제어장치, 탈질장치, 및 탈질장치의 제어방법
CN201480010580.0A CN105051361B (zh) 2013-05-31 2014-05-26 脱硝装置的控制装置、脱硝装置、及脱硝装置的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-115837 2013-05-31
JP2013115837A JP6096056B2 (ja) 2013-05-31 2013-05-31 脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法

Publications (1)

Publication Number Publication Date
WO2014192669A1 true WO2014192669A1 (ja) 2014-12-04

Family

ID=51988701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063776 WO2014192669A1 (ja) 2013-05-31 2014-05-26 脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法

Country Status (4)

Country Link
JP (1) JP6096056B2 (ja)
KR (1) KR101833111B1 (ja)
CN (2) CN107269405A (ja)
WO (1) WO2014192669A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511436A (zh) * 2015-12-25 2016-04-20 山东国电技术咨询有限公司 烟气脱硝系统两台反应器喷氨量的协调控制方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200537B1 (ja) * 2016-03-18 2017-09-20 三菱重工業株式会社 Egrシステム
JP6109988B1 (ja) * 2016-03-18 2017-04-05 三菱重工業株式会社 Egrシステム
JP6841645B2 (ja) * 2016-12-12 2021-03-10 三菱重工業株式会社 Egrシステムおよびディーゼルエンジン
JP6789793B2 (ja) * 2016-12-13 2020-11-25 三菱重工業株式会社 内燃機関
CN107299868A (zh) * 2017-06-26 2017-10-27 李宏江 发动机尾气循环加氧燃烧消除污染物排放的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385373A (ja) * 1989-08-28 1991-04-10 Sanshin Ind Co Ltd 船舶推進機の点火装置
JP2002332919A (ja) * 2001-02-26 2002-11-22 Mitsubishi Heavy Ind Ltd 排ガス再循環システム
JP2006088423A (ja) * 2004-09-22 2006-04-06 Rengo Co Ltd 片面段ボールの製造装置
JP2009511797A (ja) * 2005-10-10 2009-03-19 ベール ゲーエムベーハー ウント コー カーゲー 内燃機関の排ガスを再循環および冷却するための装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308062B1 (ko) * 1999-02-09 2001-09-13 이계안 디젤엔진용 과급장치
JP2004052593A (ja) * 2002-07-17 2004-02-19 Meidensha Corp 脱硝装置
JP4067025B2 (ja) * 2006-09-11 2008-03-26 いすゞ自動車株式会社 多段ターボチャージャの制御装置
FR2954407B1 (fr) * 2009-12-22 2018-11-23 Valeo Systemes De Controle Moteur Procede de commande d'un circuit egr d'un moteur de vehicule automobile, vanne pour la mise en oeuvre du procede et moteur avec la vanne.
JP2011225685A (ja) * 2010-04-16 2011-11-10 Yanmar Co Ltd ガス化発電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385373A (ja) * 1989-08-28 1991-04-10 Sanshin Ind Co Ltd 船舶推進機の点火装置
JP2002332919A (ja) * 2001-02-26 2002-11-22 Mitsubishi Heavy Ind Ltd 排ガス再循環システム
JP2006088423A (ja) * 2004-09-22 2006-04-06 Rengo Co Ltd 片面段ボールの製造装置
JP2009511797A (ja) * 2005-10-10 2009-03-19 ベール ゲーエムベーハー ウント コー カーゲー 内燃機関の排ガスを再循環および冷却するための装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511436A (zh) * 2015-12-25 2016-04-20 山东国电技术咨询有限公司 烟气脱硝系统两台反应器喷氨量的协调控制方法及系统

Also Published As

Publication number Publication date
JP2014234746A (ja) 2014-12-15
JP6096056B2 (ja) 2017-03-15
CN105051361B (zh) 2018-06-05
CN107269405A (zh) 2017-10-20
KR20150110750A (ko) 2015-10-02
KR101833111B1 (ko) 2018-02-27
CN105051361A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2014192669A1 (ja) 脱硝装置の制御装置、脱硝装置、及び脱硝装置の制御方法
JP5825791B2 (ja) 過給機およびこれを備えたディーゼル機関
EP2984300B1 (en) Asymmetric double-entry turbine
US20090196739A1 (en) Axial flow fluid device
JP2009047163A (ja) 効率範囲が広い出力タービンを備えた内燃機関装置
CN211202153U (zh) 涡轮增压器和废气再循环控制阀
JP5313981B2 (ja) 排ガスターボチャージャー構造体、該排ガスターボチャージャー構造体が装備された駆動システム、及び該駆動システムの設定方法
KR20160066067A (ko) 엔진의 이지알 믹서
CN210483915U (zh) 涡轮增压器和发动机空气系统
JP6041943B2 (ja) 舶用ディーゼル機関用過給機およびこれを備えた舶用ディーゼル機関
JP2022076179A (ja) 遠心圧縮機、ターボチャージャ及びエンジンシステム
WO2019087453A1 (ja) エンジンシステム
JP7042650B2 (ja) ターボチャージャ
KR20070022478A (ko) 이지알 시스템의 신기와 이지알가스 혼합 촉진장치
WO2022202412A1 (ja) コンプレッサケーシング、過給機及び過給機の運転方法
JP5747472B2 (ja) ターボ形圧縮機
JP2018031367A (ja) Egr装置が備えられたエンジンシステムとその制御方法
GB2564691B (en) An EGR system having a turbine driven auxiliary compressor
KR20110062132A (ko) 디젤 엔진의 녹스 저감 장치
JP2011144770A (ja) 内燃機関の制御装置
JP2005282526A (ja) 過給機付エンジンの吸気装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010580.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023010

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803925

Country of ref document: EP

Kind code of ref document: A1