WO2014192167A1 - ホイップクリーム用油脂組成物 - Google Patents

ホイップクリーム用油脂組成物 Download PDF

Info

Publication number
WO2014192167A1
WO2014192167A1 PCT/JP2013/072107 JP2013072107W WO2014192167A1 WO 2014192167 A1 WO2014192167 A1 WO 2014192167A1 JP 2013072107 W JP2013072107 W JP 2013072107W WO 2014192167 A1 WO2014192167 A1 WO 2014192167A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
fat
fats
peak
composition
Prior art date
Application number
PCT/JP2013/072107
Other languages
English (en)
French (fr)
Inventor
真由子 宮西
和一郎 小柳
Original Assignee
太陽油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽油脂株式会社 filed Critical 太陽油脂株式会社
Priority to CN201380003947.1A priority Critical patent/CN104053482B/zh
Priority to AU2013390914A priority patent/AU2013390914B2/en
Publication of WO2014192167A1 publication Critical patent/WO2014192167A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/003Compositions other than spreads

Definitions

  • the present invention relates to an oil / fat composition for whipped cream for providing a whipped cream having excellent emulsification stability, foamability, shape retention and good meltability.
  • trans fatty acid can be reduced by using completely hydrogenated oil (extremely hardened oil) instead of the above partially hydrogenated oil.
  • completely hydrogenated oil extremely hardened oil
  • an oil and fat composition that substantially contains no trans fatty acid, has excellent vibration resistance and heat resistance, and can maintain a sharp mouth-feeling property, it is mixed to have a predetermined constituent fatty acid. It has been proposed to use an oil and fat composition for foaming cream using a mixture of oils and fats (Patent Document 1).
  • a fat composition that provides a whipped cream having excellent emulsification stability, heat-resistant shape retention, oxidation stability, etc. and reduced trans fatty acids, random transesterified fats of lauric fats and palm fats having a predetermined melting point It has been proposed to use an oil and fat composition for whipped cream using a mixture of (Patent Document 2).
  • the present inventors made and studied various oil and fat compositions.
  • the present invention was an oil and fat composition for whipped cream containing at least two types of fats and oils, and a differential scanning calorimetry (DSC) curve.
  • DSC differential scanning calorimetry
  • the present invention provides the following.
  • Differential scanning calorimetry showing a calorimetric variation that is caused by cooling the fat composition to 60 ° C. to ⁇ 20 ° C. at a rate of 1 ° C./min. DSC) curve has at least 2 Tsunoyama peak ratio a H / a L mountain peak area a H of the high-temperature side with respect to the mountain peak area a L on the low temperature side is 0.01 to 0.20, the low-temperature side the ratio H H / H L mountain peak height H H on the high temperature side against the mountain peak height H L is 0.01 or more 0.35 or less, the whipping cream fat composition.
  • a transesterified oil (fat A) of mixed fats and oils including palm fats and lauric fats, and a high melting point fat (fat B) having a melting point of 45 ° C. or higher The oil and fat composition for whipped cream according to 1).
  • the total amount of palmitic acid and stearic acid in the constituent fatty acid composition of the mixed oil / fat transesterified oil (oil / fat A) containing palm oil / lauric oil / oil is 40% by mass or less, The oil / fat composition for whipped cream according to 2).
  • an oil / fat composition that provides an whipped cream oil-in-water emulsified oil / fat composition having excellent emulsification stability, foaming property, shape retention and mouth melting.
  • DSC differential scanning calorimetry
  • DSC Differential scanning calorimetry
  • This method is a method for detecting a difference in heat flow from a reference material when a measurement sample undergoes a change accompanied by a heat balance such as phase transition or melting. Therefore, the reference material is required to always have a specific heat capacity at the measurement range temperature.
  • DSC curve the result of DSC measurement is expressed as a curve (DSC curve) in which the vertical axis represents heat flow (Heat Flow / mW) and the horizontal axis represents temperature.
  • the peak of the DSC curve peak appears as an exothermic reaction, and the peak of the valley appears as an endothermic reaction.
  • DSC can be measured by a conventionally known method using a commercially available measuring apparatus. In Examples of the present specification, measurement was performed using a Perkin Elmer: Diamond DSC as a DSC apparatus.
  • the DSC curve is theoretically specific to a substance and is determined without depending on the measurement method, but in reality, it may be affected by the measurement method.
  • the DSC curve is measured by measuring the calorimetric variation generated by cooling the oil composition from 60 ° C. to ⁇ 20 ° C. at 1 ° C./min. It is defined as the resulting curve.
  • the fat and oil composition for whipped cream of the present invention contains at least two types of fats and oils, and the DSC curve has a temperature range of 60 ° C. to ⁇ 20 ° C. with the heat flow (Heat Flow / mW) on the vertical axis and the temperature on the horizontal axis.
  • Heat flow Heat Flow / mW
  • the “mountain peak” is a peak that appears on the DSC curve due to calorimetric variation due to phase transition or melting of the oil and fat composition.
  • the “baseline” is a DSC curve in a temperature region where no change occurs in the sample. In calculating the peak area, a straight line drawn horizontally from the peak peak starting point is used as the baseline.
  • Peak refers to a portion of a DSC curve until the curve leaves the baseline and returns to the baseline.
  • Peak area refers to the area between the baseline and the DSC curve (see FIG. 1) (however, in the actual analysis, the peak may not completely return to the baseline, and as described later. The peak area was analyzed using the extrapolation end point.)
  • Melt peak height refers to the length of a perpendicular line from the peak apex to the baseline (see FIG. 1).
  • the peak area on the lowest temperature side is referred to as A L
  • the peak peak area on the higher temperature side than the peak peak on the lowest temperature side is referred to as A H.
  • the peak end point is the extrapolation end point (the straight line extending the baseline in the cooling measurement and the low temperature side of the peak)
  • the temperature of the intersection of the tangent lines drawn at the point where the slope of the curve is maximum) is calculated.
  • the peak peak height on the lowest temperature side is called H L
  • the peak peak area on the highest temperature side is called H H (see FIG. 1).
  • the ratio A H / A L mountain peak area A H of the high-temperature side with respect to the mountain peak area A L on the low temperature side is 0.01 to 0.20, preferably 0.05 to 0.17, More preferably, it is 0.10 or more and 0.15 or less. Further, the ratio H H / H L of the peak peak height H L on the low temperature side to the peak peak height H H on the high temperature side is 0.01 or more and 0.35 or less, preferably 0.01 or more and 0.25. Or less, more preferably 0.02 or more and 0.20 or less, and most preferably 0.03 or more and 0.15 or less.
  • the oil / fat composition for whipped cream of the present invention is an oil / fat composition satisfying the above parameters and containing at least two types of oil / fat.
  • the fat composition for whipped cream of the present invention comprises at least two kinds of fats and oils, a transesterified oil (fat A) of mixed fats and oils containing palm fats and lauric fats, and high melting point fats and oils having a melting point of 45 ° C. or more ( It is preferable to contain fats and oils B). With such an oil and fat composition, it becomes possible to produce a whipped cream excellent in melting, flowering and foaming properties.
  • the fats and oils A are fats and oils obtained by transesterifying mixed fats and oils containing palm-derived fats and oils and lauric fats and oils.
  • the oil and fat derived from palm is an oil and fat selected from palm oil, fractionated oil of palm oil, and these hardened oils.
  • the amount of oil A added is not particularly limited, but as the amount increases, emulsification stability, heat shock resistance, and melting of the mouth decrease. Preferably, it is 50 to 90% by mass, more preferably about 60 to 85% by mass, and still more preferably about 70 to 80% by mass with respect to the amount of the oil and fat composition substance.
  • the lauric fat of fat A is a fat containing a large amount of lauric acid as a constituent fatty acid, more preferably a fat containing 40% by weight or more of the total constituent fatty acid, and more preferably coconut oil, palm kernel oil, these Oils selected from fractionated oils and these hardened oils.
  • the content of palm fats and oils is preferably 40 to 80% by weight, preferably 45 to 75% by weight, based on the total weight of the mixed fats and oils. Is more preferable, and 50 to 60% by mass is still more preferable.
  • the content of the lauric fat / oil is preferably 60 to 20% by weight, more preferably 50 to 25% by weight, based on the total weight of the mixed fat / oil.
  • Transesterified oils with a high palm content are not preferred because they are poorly melted and have a tendency to significantly reduce heat shock resistance. Transesterification of mixed fats and oils composed of palm fats and lauric fats and oils is desirable from the viewpoints of melting and heat shock resistance.
  • the mixed oil containing palm oil and fat and lauric oil is further transesterified to obtain oil A.
  • the method of transesterification of fats and oils can be performed by a method known in the art.
  • Examples of transesterification include random (non-selective) transesterification methods and selective (directed) transesterification methods (reference documents: Kosaku Yasuda, Ryoichiro Fukunaga, Nobuya Matsui, Masao Watanabe, new edition oil and fat products)
  • a random transesterification reaction method is preferred.
  • Random transesterification can be performed, for example, according to a chemical method in which transesterification is performed using sodium methylate, sodium hydroxide or the like as a catalyst, or an enzymatic method in which transesterification is performed using non-selective lipase or the like as a catalyst.
  • a chemical method in which transesterification is performed using sodium methylate, sodium hydroxide or the like as a catalyst
  • an enzymatic method in which transesterification is performed using non-selective lipase or the like as a catalyst.
  • the fat / oil A preferably has a total amount of palmitic acid and stearic acid in the fatty acid composition of the fat / oil A in the range of 40% by mass or less. This is because heat shock resistance and emulsion breakage resistance tend to be improved.
  • the total amount of palmitic acid and stearic acid is preferably 30% by mass or more and 40% by mass or less.
  • High melting point oils and fats (fat B) having a melting point of 45 ° C. or higher include Hyelsin rapeseed extremely hardened oil, rapeseed extremely hardened oil, palm extremely hardened oil, soybean extremely hardened oil, and mixed transesterified oils thereof (including fats and oils). Can be mentioned.
  • the melting point is more preferably 50 ° C. or higher, and further preferably 55 ° C. or higher. Furthermore, it is more preferable to contain behenic acid as a fatty acid composition. If the melting point is in the above range, the emulsion stability is improved by the effect of adjusting the fat A crystal. The effect is highest in Hyelsin rapeseed extremely hardened oil containing behenic acid.
  • the content of the fat and oil B in the oil and fat composition is preferably 5% by mass or less, more preferably 0.1 to 3% by mass or less. As the amount of the fat B is increased, the emulsification stability is improved, but when it is added in an amount of more than 5% by mass, the mouthfeel tends to deteriorate.
  • the oil and fat composition of the present invention preferably further contains lauric fats and oils (fat and fats C) subjected to transesterification.
  • the fat C is a fat different from the fat A and fat B, and does not include palm fat. It is because the melt and emulsification stability can be improved by adding the fat C.
  • Specific examples of preferred lauric fats and oils in the present invention include coconut oil, palm kernel oil, and fats and oils obtained by hydrogenating and fractionating them.
  • the method of transesterification of the fat C is as described for the fat A.
  • the amount of oil C added is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass with respect to the amount of the oil composition material.
  • fusing point of the fats and oils C is 29 degrees C or less from a viewpoint of melting.
  • the fatty acid composition constituting the whipped cream fat composition is preferably such that the trans fatty acid content is preferably less than 5% by mass relative to the total fatty acid composition mass, and is 3% by mass or less. Is more preferable, and it is still more preferable that it is less than 1.5 mass%.
  • trans fatty acids may cause diseases such as arteriosclerosis due to their ingestion, and it is preferable to keep the trans fatty acids low in whipped cream oil compositions.
  • the oil-in-water emulsified oil / fat composition of the present invention comprises an oil phase part and an aqueous phase part, and contains the oil / fat composition of the present invention described above in the oil phase.
  • the oil / fat composition of the present invention is preferably contained in the range of 30 to 50% by mass, more preferably in the range of 35 to 45% by mass with respect to the total mass of the oil-in-water emulsified oil / fat composition.
  • the whipped cream is obtained by foaming the oil-in-water emulsified oil / fat composition of the present invention by a usual method in the art.
  • the manufacture example of the whipped cream which uses the oil-in-water type emulsified oil-fat composition of this invention is shown, this invention is not limited to this example.
  • the oil and fat composition of the present invention is adjusted by melt mixing or the like.
  • Arbitrary additives, such as emulsifiers, such as a lecithin, sucrose fatty acid ester, sorbitan fatty acid ester, and glycerol fatty acid ester are added to an oil-fat composition, and it mixes and adjusts an oil phase.
  • arbitrary additives such as sodium metaphosphate, thickening polysaccharide, milk protein
  • these are disperse
  • the oil phase and the aqueous phase are mixed at 50 to 85 ° C. and pre-emulsified.
  • homogenization is performed under a pressure of 20 to 150 kg / cm 2 , followed by heat sterilization at 75 to 85 ° C. Thereafter, it is cooled to 5 to 10 ° C. and aged for 6 to 24 hours.
  • This creamy fat composition is whipped with a Hobart mixer to obtain a foamed whipped cream.
  • Oil preparation method (1) Mixed oil of 40% by mass of palm oil and 60% by mass of palm oil with 0.143% sodium methylate as a catalyst, and performs non-selective transesterification at 90 ° C for 30 minutes to perform decolorization and deodorization Oil 1 was obtained. The melting point of fat 1 was 34 ° C. The amount of trans fatty acid was 0.5% by mass. (2) Mixed oil of 35% by mass of palm oil and 65% by mass of palm oil with 0.143% sodium methylate as a catalyst, and non-selective transesterification at 90 ° C for 30 minutes to perform decolorization and deodorization Oil 2 was obtained. The melting point of fat 2 was 34 ° C. The amount of trans fatty acid was 1.1% by mass.
  • a mixed oil of 40% by mass of palm kernel oil and 60% by mass of palm oil is used as a catalyst with 0.12% sodium methylate, and a non-selective transesterification reaction is carried out at 90 ° C. for 30 minutes to decolorize and deodorize.
  • Oil and fat 3 was obtained.
  • the melting point of fat 3 was 34 ° C.
  • the trans fatty acid content was 0.8%.
  • Fats and oils 4 were obtained by performing the same reaction as the fats and oils 1 except that a mixed oil of 25% by weight of palm oil and 75% by weight of palm oil was used.
  • the melting point of fat 4 was 36 ° C.
  • the amount of trans fatty acid was 0.9% by mass.
  • Fats and oils 5 were obtained by performing the same reaction as the fats and oils 3 except that a mixed oil of 40% by weight of palm oil and 60% by weight of palm stearin was used. The melting point of fat 5 was 40 ° C. The amount of trans fatty acid was 0.5% by mass.
  • Fats and oils 6 were obtained by performing the same reaction as the fats and oils 1 except that a mixed oil of 35% by weight of palm kernel olein, 40% by weight of palm stearin and 25% by weight of palm oil was used. The melting point of fat 6 was 36 ° C. The amount of trans fatty acid was 0.5% by mass.
  • Fats and oils 7 were obtained by performing the same reaction as the fats and oils 1 except that a mixed oil of 35% by weight of palm kernel olein and 65% by weight of palm stearin was used. The melting point of fat 7 was 39 ° C. The amount of trans fatty acid was 0.3% by mass. (8) The rapeseed oil was extremely hardened and decolorized and deodorized to obtain fat 8. The melting point of the fat 8 was 67 ° C. The amount of trans fatty acid was 0.0% by mass. (9) Fats and oils 9 were obtained by performing the same reaction as the fats and oils 8 except that palm oil was used. The melting point of fat 9 was 58 ° C. The amount of trans fatty acid was 0.0% by mass.
  • Fat 12 was obtained by performing the same reaction as fat 1 except that 100% by mass of coconut oil was used. The melting point of the fat 12 was 27 ° C. The amount of trans fatty acid was 0.5% by mass.
  • Fats and oils 13 were obtained by performing the same reaction as the fats and oils 1 except that 100% by mass of palm kernel oil was used. The melting point of fat 13 was 27 ° C. The amount of trans fatty acid was 0.4% by mass.
  • Decolorization and deodorization of a mixed oil of 85% by mass of palm kernel oil and 15% by mass of a palm mid-melting point hardened oil (iodine value 42) were performed to obtain fat 14. The melting point of fat 14 was 27 ° C. The amount of trans fatty acid was 0.2% by mass.
  • Preparation of oil-in-water emulsified oil / fat composition 44.44 parts by mass of each oil / fat shown in Tables 1 and 2 was dissolved by heating, 0.22 parts by mass of lecithin, 0.15 parts by mass of sugar ester, and unsaturated glycerin fatty acid ester.
  • An oil phase was prepared by adding 0.11 part by mass and 0.08 part by mass of a saturated acid glycerin fatty acid ester.
  • 50.93 parts by mass of water, 4.0 parts by mass of skim milk powder and 0.07 parts by mass of metaphosphoric acid were added and dispersed to prepare an aqueous phase.
  • the oil phase and the aqueous phase were mixed, pre-emulsified at 65 ° C., and heat sterilized at 85 ° C. Then homogenized under a pressure of 80kg / cm 2, 20kg / cm 2. After cooling, it was aged at 5 ° C. overnight.
  • trans fatty acid content was measured by “trans fatty acid content (capillary gas chromatographic method)” described in “Oil and Fat Test Analysis Method” (2007) edited by Japan Oil Chemists' Society.
  • Viscosity oil-in-water emulsified oil / fat composition is left to stand at 5 ° C. overnight to perform aging, 500 g of oil-in-water emulsified oil / fat composition is put into a 500 ml beaker, and B-type viscometer (BROOK FIELDEL viscometer LVT), spindle 2 and speed 30 were measured after 30 seconds.
  • B-type viscometer BROOK FIELDEL viscometer LVT
  • Whip test 50 g of sugar was added to 500 g of an oil-in-water emulsified oil and fat composition, cooled to 5.0 ° C., and whipped at a speed of 2 with a Hobart mixer until 8 minutes standing.
  • the whipped cream was kept up to 10 minutes (hardness 140 to 160) for 8 minutes.
  • the time required for whipping time until 10 minutes), overrun, hardness, etc. were evaluated.
  • Heat shock (HS) test About 150 g of the oil-in-water emulsified oil / fat composition before whipping is placed in a milk bottle, placed in a constant temperature bath at 20 ° C., 25 ° C., 30 ° C., 35 ° C. for 1 hour, and then at a constant temperature of 5 ° C. Stored in bath for 6 hours. After storage, separation, bottling and viscosity were evaluated. These evaluations serve as indices for the emulsion stability test.
  • B-type viscometer Spindle # 3 Viscosity after 5 minutes was measured at speed 30. The time was indicated when it solidified or became 4000 mPa ⁇ s or more within 5 minutes.
  • the evaluation of the emulsion breakage test was comprehensively evaluated based on the following criteria. ⁇ : When the durability time is 15 minutes or more ⁇ : When the durability time is 10 minutes or more and less than 15 minutes ⁇ : When the durability time is 6 minutes or more and less than 10 minutes ⁇ : When the durability time is less than 6 minutes
  • DSC measurement oil and fat composition 5.0 to 7.0 mg was filled in an aluminum pan and sealed.
  • the pan filled with the oil and fat composition is completely dissolved by holding at 60 ° C. for 10 minutes, then cooled to ⁇ 20 ° C. at a cooling rate of 1 ° C./minute, and differential scanning is performed for the caloric variation that occurs during the phase transition. It measured with the calorimetry (DSC) apparatus (Perkin Elmer: DiamondDSC), and obtained the DSC curve. From the DSC curve, the peak area and the peak area on the high temperature side / low temperature peak area were calculated.
  • Mouth melting evaluation panelists evaluated the mouth melting in 5 stages by actually eating whipped cream (10 minutes). 5 ... very good 4 ... good 3 ... normal 2 ... somewhat bad 1 ... bad
  • the ratio A H / A L of the peak area A H on the high temperature side to the peak area A L on the low temperature side of the DSC curve is 0.01 or more and 0.20 or less, and
  • the oil / fat composition having a ratio H H / H L of the peak peak height H L to the peak peak height H H on the high temperature side is 0.01 or more and 0.35 or less, either of these parameters or Compared with the oil and fat composition that does not satisfy both, in each case, it was excellent in melting and showed an excellent emulsion breaking test result (stable).
  • the heat shock test shows that the oil and fat composition of the present invention is excellent in heat shock resistance even at a particularly high temperature (30 ° C. to 35 ° C.) as compared with other oils and fats.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Edible Oils And Fats (AREA)
  • Grain Derivatives (AREA)

Abstract

 少なくとも2種類の油脂を含むホイップクリーム用油脂組成物であって、前記油脂組成物の示差走査熱量測定(DSC)曲線に少なくとも2つの山ピークが存在し、低温側の山ピーク面積Aに対する高温側の山ピーク面積Aの比A/Aが0.20以下、低温側の山ピーク高さHと高温側の山ピーク高さHの比H/Hが0.35以下である、上記ホイップクリーム用油脂組成物により、輸送や保管における厳しい温度変化に対し、従来よりもより高い乳化安定性(ヒートショック耐性)を有する油脂組成物を提供することができる。

Description

ホイップクリーム用油脂組成物
 本発明は、乳化安定性に優れ、起泡性、保形性、口融けがよいホイップクリームを提供するためのホイップクリーム用油脂組成物に関する。
 従来から、製菓や料理に用いられるホイップクリームとして、植物性油脂を原料として製造される植物性クリーム(水中油型乳化物)を用いることが知られている。植物性クリームは生乳から得られる生クリームに比べて安定性に優れ、かつ比較的安価に製造されるという利点を有するためにその消費量は多い。
 この植物性クリームの製造では、流通時の温度変化する条件でも乳化安定性に優れ、口融け、造花性、気泡性に優れたホイップクリームが求められており、従来より数多くの提案がなされている。
 特に、起泡前のクリームの状態で流通させるクリームでは、起泡性(ホイップ時の操作性)、ホイップ後の保形性、更に口の中での融けやすさ(口融け)などの性能に加えて、輸送中の温度変化によりクリームの粘度が上昇しない(ヒートショック耐性)という特性が求められる。
 これらの性能を満たすクリームを得るために、様々な油脂の組み合わせが提案されており、従来、菜種油やパーム油などの部分水素添加油が用いられてきた。
 しかし、近年、従来用いられてきた硬化油中に含まれるトランス脂肪酸の過剰摂取が心疾患のリスクを高めるとの報告もあり、米国、カナダなどではトランス脂肪酸含有量の表示義務が課されている。従って、ホイップクリーム用の油脂組成物の開発にあたっては、トランス脂肪酸含量をできる限り低く抑えたいという要望もある。
 これに対し、上記の部分水素添加油に代わり完全水素添加油(極度硬化油)を用いることによりトランス脂肪酸を低下させることができる。しかし、完全水素添加油(極度硬化油)は融点が高く、口融けを低下させてしまう。
 例えば、実質的にトランス脂肪酸を含有せず、耐振性や耐熱性に優れ、シャープな口どけ性を維持できるホイップクリームを与える油脂組成物として、所定の構成脂肪酸を有するように混合したランダムエステル交換油脂の混合物を用いた起泡性クリーム用油脂組成物を用いることが提案されている(特許文献1)。
 また、乳化安定性、耐熱保形性、酸化安定性等に優れ、かつトランス脂肪酸が低減されたホイップクリームを与える油脂組成物として、所定の融点のラウリン系油脂とパーム系油脂のランダムエステル交換油脂との混合物を用いたホイップクリーム用油脂組成物を用いることが提案されている(特許文献2)。
 また、乳化安定性、ホイップの作業性、起泡性、耐熱保形性、離水耐性等に優れた油脂組成物として、パーム系油脂と、液状油及び/又はラウリン系油脂からなる油脂と高融点の油脂とを含む、特定のSFCを有する水中油型乳化油脂組成物が報告されている(特許文献3)。
 しかしながら、輸送や保管における厳しい温度変化に対し、より高い乳化安定性(ヒートショック耐性)が求められている。また、口融けについても更なる改善が求められている。
特開2009-219391号 特開2010-081930号 特開2006-254805号
 本発明者らは、上記の点に鑑み、様々な油脂組成物を作成して研究した結果、少なくとも2種類の油脂を含むホイップクリーム用油脂組成物であって、示差走査熱量測定(DSC)曲線に一定のパターンを有する油脂組成物を用いてホイップクリーム用水中油型乳化油脂組成物を製造すると、起泡性、保形性、口融けがよく、更に高いヒートショック耐性を有する水中油型乳化油脂組成物が得られるという知見を得て、本発明を完成するに至った。
 すなわち、本発明は、以下を提供する。
(1)少なくとも2種類の油脂を含むホイップクリーム用油脂組成物であって、前記油脂組成物を60℃~-20℃まで1℃/minで冷却して生じる熱量変異を示す示差走査熱量測定(DSC)曲線が少なくとも2つの山ピークを有し、低温側の山ピーク面積ALに対する高温側の山ピーク面積AHの比AH/ALが0.01以上0.20以下、低温側の山ピーク高さHLに対する高温側の山ピーク高さHHの比HH/HLが0.01以上0.35以下である、上記ホイップクリーム用油脂組成物。
(2)少なくとも2種類の油脂として、パーム系油脂とラウリン系油脂を含む混合油脂のエステル交換油(油脂A)、及び融点が45℃以上である高融点油脂(油脂B)を含有する、(1)に記載のホイップクリーム用油脂組成物。
(3)パーム系油脂とラウリン系油脂を含む混合油脂のエステル交換油(油脂A)の構成脂肪酸組成中のパルミチン酸及びステアリン酸の合計量が40質量%以下であることを特徴とする、(2)に記載のホイップクリーム用油脂組成物。
(4)油脂組成物が、更に、エステル交換したラウリン系油脂(油脂C)を含有する、(2)または(3)に記載のホイップクリーム用油脂組成物。
(5)融点が45℃以上である高融点油脂(油脂B)の油脂組成物中の含有量が5質量%以下である、(2)~(4)のいずれか一に記載のホイップクリーム用油脂組成物。
(6)(1)~(5)のいずれか一に記載のホイップクリーム用油脂組成物を油相中に含むホイップクリーム用水中油型乳化油脂組成物。
 本発明により、乳化安定性に優れ、起泡性、保形性、口融けに優れたホイップクリーム水中油型乳化油脂組成物を提供する油脂組成物が提供される。
示差走査熱量測定(DSC)曲線のピーク面積及び高さについて説明する図である。 本発明の実施例の示差走査熱量測定(DSC)曲線を示す図である。 本発明の実施例の示差走査熱量測定(DSC)曲線を示す図である。 本発明の比較例の示差走査熱量測定(DSC)曲線を示す図である。 本発明の比較例の示差走査熱量測定(DSC)曲線を示す図である。 本発明の実施例と比較例の油脂組成物の示差走査熱量測定(DSC)曲線を示す図である。
<示差走査熱量測定曲線>
 示差走査熱量測定(以下DSCという)とは、測定試料と基準物質との間の熱量の差を計測することで、融点やガラス転移点などを測定する熱分析の手法である。この手法は、測定試料が相転移・融解など熱の収支を伴う変化が起こった時の基準物質との熱流の差を検出する方法である。そのため、基準物質とされるものは測定範囲温度では常に一定の比熱容量であることが求められる。
 本明細書において、DSC測定の結果は、縦軸に熱流 (Heat Flow / mW) 、横軸に温度をとった曲線(DSC曲線)として表される。DSC曲線の山のピークは発熱反応、谷のピークは吸熱反応として現れる。
 DSCは、市販の測定装置により従来公知の方法で測定することができる。本明細書の実施例では、DSC装置として、Perkin Elmer:Diamond DSCを使用して測定した。
 DSC曲線は、理論的には物質に固有であり、測定方法に依存せずに決まるが、現実的には、測定方法により影響を受ける場合がある。本明細書では、測定方法により影響を受ける場合があることを考慮して、DSC曲線を、油脂組成物を60℃から-20℃まで1℃/minで冷却して生じる熱量変異を測定して得られる曲線であると定義している。
<ホイップクリーム用油脂組成物>
 本発明のホイップクリーム用油脂組成物は、少なくとも2種類の油脂を含み、縦軸に熱流 (Heat Flow / mW)、横軸に温度をとったDSC曲線の60℃~-20℃の温度範囲に少なくとも2つの山ピークを有する。
 ここで「山ピーク」とは、油脂組成物の相転移や融解などによる熱量変異によりDSC曲線上に現れるピークである。「ベースライン」とは、試料に変化を生じない温度領域のDSC曲線のことである。ピーク面積の算出においては、山ピークの開始点から水平に引いた直線をベースラインとして用いる。「ピーク」とは、DSC曲線において、曲線がベースラインから離れて、再度ベースラインに戻るまでの部分をいう。「ピーク面積」とは、ベースラインとDSC曲線との間の面積をいう(図1参照)(ただし、現実の分析においては、ピークが完全にベースラインに戻らない場合があるため、後述するとおり、補外終了点を用いてピーク面積の分析を行った。)。「山ピーク高さ」とは、ピーク頂点からベースラインへおろした垂線の長さをいう(図1参照)。
 前記少なくとも2つの山ピークのうち、最も低温側にある山ピーク面積をALと呼び、最も低温側にある山ピークより高温側の山ピーク面積をAHと呼ぶ。山ピーク面積AHは、ピーク開始点をピーク立ち上がり部分(=接線がゼロとなる部分)とし、ピーク終了点を低温側の山ピーク面積ALのピーク開始点(ピーク立ち上がり部分)までとして測定する。山ピーク面積ALについては、ピーク開始点をピーク立ち上がり部分(=接線がゼロとなる部分)とし、またピーク終了点を補外終了点(冷却測定においてベースラインを延長した直線とピークの低温側の曲線の勾配が最大となる点で引いた接線の交点の温度)として計算する。
 最も低温側にある山ピークより高温側に2つ以上の山ピークがある場合には、それらの高温側の山ピーク面積の合計をAHとする(図1参照)。
 前記少なくとも2つの山ピークのうち、最も低温側の山ピーク高さをHLと呼び、最も高温側の山ピーク高さ面積をHHと呼ぶ(図1参照)。
 本発明者らは、様々な油脂組成物を作成してそのDSC曲線を測定しているうちに、面積比と高さ比が一定の値を示す場合に乳化安定性が向上することを実験的に見いだした。すなわち、低温側の山ピーク面積ALと、高温側の山ピーク面積AHの比AH/ALが0.01以上0.20以下で、かつ低温側の山ピーク高さHLと高温側の山ピーク高さHHの比HH/HLが0.01以上0.35以下である油脂組成物を用いてホイップクリーム用水中油型乳化油脂組成物を製造すると、起泡性、保形性、口融けがよく、更に高いヒートショック耐性を有する水中油型乳化油脂組成物が得られるということを見いだした。
 低温側の山ピーク面積ALに対する高温側の山ピーク面積AHの比AH/ALは、0.01以上0.20以下であり、好ましくは0.05以上0.17以下であり、更に好ましくは0.10以上0.15以下である。
 また、低温側の山ピーク高さHLと高温側の山ピーク高さHHの比HH/HLは、0.01以上0.35以下であり、好ましくは0.01以上0.25以下であり、更に好ましくは0.02以上0.20以下であり、最も好ましくは0.03以上0.15以下である。
 本発明のホイップクリーム用油脂組成物は、上記パラメータを満たし、少なくとも2種類の油脂を含む油脂組成物である。本発明のホイップクリーム用油脂組成物は、少なくとも2種類の油脂として、パーム系油脂とラウリン系油脂を含む混合油脂のエステル交換油(油脂A)、及び融点が45℃以上である高融点油脂(油脂B)を含有することが好ましい。かかる油脂組成物により口融け、造花性、起泡性に優れたホイップクリームが製造可能となる。
 油脂Aとは、パーム由来の油脂と、ラウリン系油脂を含む混合油脂をエステル交換した油脂である。
 パーム由来の油脂とは、パーム油、パーム油の分別油、及びこれらの硬化油等から選択される油脂である。
 油脂Aの添加量は特に限定されないが、量が多くなると、乳化安定性、ヒートショック耐性、口融けが低下する。好ましくは、油脂組成物質量に対して50~90質量%であり、より好ましくは60~85質量%程度であり、更に好ましくは70~80質量%程度である。
 油脂Aのラウリン系油脂は、構成脂肪酸としてラウリン酸を多く含む油脂、より好ましくはラウリン酸を構成脂肪酸全体の40質量%以上含む油脂であり、更に好ましくは、ヤシ油、パーム核油、これらの分別油、及びこれらの硬化油から選択される油脂である。
 パーム由来の油脂とラウリン系油脂を含む混合油脂のうち、パーム系油脂の含有量は、混合油脂の合計質量に対し、40~80質量%であることが好ましく、45~75質量%であることがより好ましく、50~60質量%であることが更に好ましい。ラウリン系油脂の含有量は、混合油脂の合計質量に対し、60~20質量%であることが好ましく、50~25質量%であることがより好ましい。パーム含量が多いエステル交換油は口融けが悪く、ヒートショック耐性が著しく低下する傾向があり好ましく無い。パーム系油脂とラウリン系油脂からなる混合油脂のエステル交換は口融け及びヒートショック耐性の観点から望ましい。
 パーム系油脂とラウリン系油脂を含む前記混合油脂を更にエステル交換を行い油脂Aを得る。
 油脂のエステル交換の方法は当該技術分野で公知の方法で行うことができる。エステル交換には、例えば、ランダム(非選択的)エステル交換反応方法、選択型(指向型)エステル交換反応方法がある(参考文献:安田耕作、福永良一郎、松井宣也、渡辺正男、新版 油脂製品の知識、幸書房)、本発明では、ランダムエステル交換反応方法が好ましい。ランダムエステル交換は、例えば、ナトリウムメチラート、水酸化ナトリウム等を触媒としてエステル交換を行う化学的な方法、非選択的リパーゼ等を触媒としてエステル交換を行う酵素的な方法に従って行うことができる。特に、化学的な方法でランダムエステル交換反応を行うことにより、簡便であるため、より好ましい。
 油脂Aは、油脂Aの構成脂肪酸組成中のパルミチン酸及びステアリン酸の合計量が40質量%以下の範囲であることが好ましい。ヒートショック耐性及び乳化破壊耐性が向上する傾向にあるからである。パルミチン酸及びステアリン酸の合計量は好ましくは30質量%以上40質量%以下であることがより好ましい。
 融点が45℃以上である高融点油脂(油脂B)としては、ハイエルシン菜種極度硬化油、菜種極度硬化油、パーム極度硬化油、大豆極度硬化油、それら(油脂を含む)の混合エステル交換油が挙げられる。融点は50℃以上であることがより好ましく、55℃以上であることが更に好ましい。さらに脂肪酸組成としてベヘン酸を含有することがより好ましい。融点が上記範囲にあると、油脂Aの結晶調整効果により乳化安定性が向上する。その効果はベヘン酸を含有したハイエルシン菜種極度硬化油が最も高い。
 油脂Bの油脂組成物中の含有量は5質量%以下であることが好ましく、0.1~3質量%以下であることがより好ましい。油脂Bの添加量が多いほど、乳化安定性は向上するが5質量%より多く添加すると口どけが悪くなる傾向にある。
 本発明の油脂組成物は、油脂A及び油脂Bに加え、更にエステル交換したラウリン系油脂(油脂C)を含有することが好ましい。油脂Cは油脂A及び油脂Bとは異なる油脂であり、パーム系油脂を含まない。油脂Cを入れることにより、口融け及び乳化安定性が向上することができるからである。
 本発明において好ましいラウリン系の油脂の具体例としては、ヤシ油、パーム核油、またそれらを水素添加、分別等を行った油脂が挙げられる。
 油脂Cのエステル交換の方法は油脂Aに関して説明したとおりである。
 油脂Cの添加量は、油脂組成物質量に対して5~50質量%であることが好ましく、10~40質量%であることがより好ましい。また油脂Cの融点は口融けの観点から29℃以下であることが好ましい。
 本発明において、ホイップクリーム用油脂組成物を構成する脂肪酸組成として、好ましくは、トランス脂肪酸含有量が、全脂肪酸組成質量に対し、5質量%未満であることが好ましく、3質量%以下であることがより好ましく、1.5質量%未満であることが更に好ましい。トランス脂肪酸は、近年、その摂取により動脈硬化等の疾病を引き起こす可能性があることが報告されており、ホイップクリーム用油脂組成物においても低く抑えることが好ましい。
<水中油型乳化油脂組成物>
 本発明の水中油型乳化油脂組成物は、油相部と水相部からなり、上述した本発明の油脂組成物を油相中に含む。本発明の油脂組成物は、水中油型乳化油脂組成物の全質量に対して30~50質量%の範囲で含まれることが好ましく、35~45質量%の範囲で含まれることがより好ましい。
<ホイップクリーム>
 本発明において、ホイップクリームは、本発明の水中油型乳化油脂組成物を、当業技術分野において通常の方法により起泡したものである。
 以下、本発明の水中油型乳化油脂組成物を使用したホイップクリームの製造例を示すが、本発明はかかる例に限定されるものではない。
 まず、本発明の油脂組成物を融解混合等により調整する。油脂組成物に、レシチン、蔗糖脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル等の乳化剤等の任意の添加剤を加え、混合して油相を調整する。
 一方、水相部として、水に、メタリン酸Na、増粘多糖類、乳蛋白等の任意の添加剤を加えた後、これらを分散させて水相を調整する。
 50~85℃にて油相と水相を混合させ、予備乳化を行う。次いで20~150kg/cm2の圧力下で均質化を行い、次いで75~85℃にて加熱殺菌する。その後5~10℃にまで冷却し、6~24時間程度エージングを行なう。
 このクリーム状油脂組成物をホバートミキサーにてホイップして起泡済みホイップクリームを得る。
油脂調製方法
(1)ヤシ油40質量%、パーム油60質量%の混合油を0.143%のナトリウムメチラートを触媒とし、90℃で30分間、非選択的エステル交換反応を行い、脱色、脱臭を行い油脂1を得た。油脂1の融点は34℃であった。トランス脂肪酸量は0.5質量%であった。
(2)ヤシ油35質量%、パーム油65質量%の混合油を0.143%のナトリウムメチラートを触媒とし、90℃で30分間、非選択的エステル交換反応を行い、脱色、脱臭を行い油脂2を得た。油脂2の融点は34℃であった。トランス脂肪酸量は1.1質量%であった。
(3)パーム核油40質量%、パーム油60質量%の混合油を0.12%のナトリウムメチラートを触媒とし、90℃で30分間、非選択的エステル交換反応を行い、脱色、脱臭を行い油脂3を得た。油脂3の融点は34℃であった。トランス脂肪酸量は0.8%であった。
(4) ヤシ油25質量%、パーム油75質量%の混合油を用いる以外は油脂1と同様の反応を行い油脂4を得た。油脂4の融点は36℃であった。トランス脂肪酸量は0.9質量%であった。
(5)ヤシ油40質量%、パームステアリン60質量%の混合油を用いる以外は油脂3と同様の反応を行い油脂5を得た。油脂5の融点は40℃であった。トランス脂肪酸量は0.5質量%であった。
(6)パーム核オレイン35質量%、パームステアリン40質量%、パーム油25質量%の混合油を用いる以外は油脂1と同様の反応を行い油脂6を得た。油脂6の融点は36℃であった。トランス脂肪酸量は0.5質量%であった。
(7)パーム核オレイン35質量%、パームステアリン65質量%の混合油を用いる以外は油脂1と同様の反応を行い油脂7を得た。油脂7の融点は39℃であった。トランス脂肪酸量は0.3質量%であった。
(8)菜種油の極度硬化処理を行い、脱色脱臭を行い油脂8を得た。油脂8の融点は67℃であった。トランス脂肪酸量は0.0質量%であった。
(9)パーム油を用いる以外は、油脂8と同様の反応を行い油脂9を得た。油脂9の融点は58℃であった。トランス脂肪酸量は0.0質量%であった。
(10) ハイエルシン菜種極度硬化油50質量%、ヤシ油50質量%の混合油を油脂に対して0.143%のナトリウムメチラートを触媒とし、115℃で30分間、非選択的エステル交換反応を行い、脱色、脱臭を行い、油脂10を得た。油脂10の融点は47℃であった。トランス脂肪酸量は0.4質量%であった。
(11)ハイエルシン菜種油の極度硬化処理を行い、脱色、脱臭を行い油脂11を得た。油脂11の融点は60℃であった。トランス脂肪酸量は0.0質量%であった。
(12)ヤシ油100質量%を用いる以外は油脂1と同様の反応を行い油脂12を得た。油脂12の融点は27℃であった。トランス脂肪酸量は0.5質量%であった。
(13)パーム核油100質量%を用いる以外は油脂1と同様の反応を行い油脂13を得た。
油脂13の融点は27℃であった。トランス脂肪酸量は0.4質量%であった。
(14)パーム核油85質量%、パーム中融点硬化油(ヨウ素価 42)15質量%の混合油の脱色、脱臭を行い、油脂14を得た。油脂14の融点は27℃であった。トランス脂肪酸量は0.2質量%であった。
水中油型乳化油脂組成物の調製
 表1及び2に示した各油脂44.44質量部を加熱溶解し、そこにレシチン0.22質量部、シュガーエステル0.15質量部、不飽和グリセリン脂肪酸エステル0.11質量部、飽和酸グリセリン脂肪酸エステル0.08質量部を加え油相を調製した。
 一方、水50.93質量部と脱脂粉乳4.0質量部、メタリン酸0.07質量部を加えた後、分散させて水相を調製した。
 油相と水相を混合し、65℃で予備乳化を行い、85℃にて加熱殺菌を行った。次いで、80kg/cm2、20kg/cm2の圧力下で均質化した。冷却後、5℃、1晩のエージングをした。
トランス脂肪酸の測定
 トランス脂肪酸含量は、日本油化学会編「基準油脂試験分析法」(2007年)に記載の「トランス脂肪酸含量(キャピラリーガスクロマトグラフ法)」により測定した。
粘度
 水中油型乳化油脂組成物を、5℃で一晩静置してエージングを行い、500mlのビーカーに水中油型乳化油脂組成物を500g入れ、B型粘度計(BROOK FIELD社製粘度計のLVT)、スピンドル2番、スピード30にて30秒後の値を測定した。
ホイップ試験
 水中油型乳化油脂組成物500gに砂糖50g加え、5.0℃に冷却し、8分立てとなるまでホバートミキサーにて速度2にてホイップした。8分立てホイップクリームをさらに10分立て(硬度140~160)まで手立てした。
 ホイップにかかる時間(10分立てまでの時間)、オーバーラン、硬度等を評価した。
オーバーラン
 ホイップ後(10分立て)の体積増加率(%)。ただし、体積増加率は、
式:((a)(一定体積の水の重量-水と同体積のホイップ後のクリームの重量)/(b)(水と同体積のホイップ後のクリームの重量))×100、
に従って計算した。
硬度
 ホイップした水中油型乳化油脂組成物(クリーム)を45.5ml容器に入れ、ミクロペネメーター:RIGOSHA製のPENETRO METER使用、円スイ(1g)を使用し、平らにしたクリームへの円スイの針入度を測定(単位は1/10mm)した。
ヒートショック(HS)試験
 牛乳瓶にホイップ前の水中油型乳化油脂組成物を約150g入れ、20℃、25℃、30℃、35℃、の恒温槽に1時間入れ、その後、5℃の恒温槽に6時間保存した。保存後、分離、ボテ、粘度を評価した。これらの評価は乳化安定性試験の指標となる。
B型粘度計…スピンドル3番 スピード30にて5分後の粘度を測定した。固化または5分以内で4000mPa・s以上となった場合はその時間を示した。
リオン…スピンドル3番にて5分後の粘度を測定した。または、5分以内で10dPa・s以上になった場合にはその時間を示した。
 B型粘度計とリオン粘度計による評価を以下の基準に基づいて総合評価した。
◎:B型粘度計評価が4000mPa・s以下であり、かつリオン粘度計評価が10dPa・s以下の場合
○:B型粘度計評価が4000mPa・s以下であり、かつリオン粘度計評価が5分以内に10dPa・sを超える場合
△:B型粘度計評価が5分以内に4000mPa・sを超える場合(リオン粘度計評価なし)
×:固化または半固化の場合
乳化破壊試験
 100ccビーカーにホイップ前のクリームを約50g入れ、20℃恒温槽にて1時間保持し、その後200rpmにて20分間撹拌し、ボテるまで時間を耐久時間とした。耐久時間が長い方が液状安定性が高い。

 乳化破壊試験の評価を以下の基準に基づいて総合評価した。
◎:耐久時間が15分以上の場合
○:耐久時間が10分以上15分未満の場合
△:耐久時間が6分以上10分未満の場合
×:耐久時間が6分未満の場合
DSC測定
 油脂組成物5.0~7.0mgをアルミニウム製パンに充填し、密閉した。
 油脂組成物を充填したパンを60℃で10分保持することで完全に溶解させた後、1℃/分の冷却速度で-20℃まで冷却し、相転移の際に生じる熱量変異を示差走査熱量測定(DSC)装置(Perkin Elmer:DiamondDSC)により測定し、DSC曲線を得た。DSC曲線からピーク面積と高温側に出るピーク面積/低温ピーク面積を算出した。
口融け評価
 専門パネラー5名により、ホイップクリーム(10分立て)を実際に食して口溶けを5段階で評価した。
5…非常に良好
4…良好
3…普通
2…やや悪い
1…悪い
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表2から、DSC曲線の低温側の山ピーク面積ALに対する高温側の山ピーク面積AHの比AH/ALが0.01以上0.20以下であり、かつ低温側の山ピーク高さHLと高温側の山ピーク高さHHの比HH/HLが0.01以上0.35以下である油脂組成物を用いた場合には、このパラメータのいずれかあるいは双方を満たさない油脂組成物と比較して、いずれの場合にも口融けに優れ、かつ優れた乳化破壊試験結果を示した(安定であった)。また、ヒートショック試験では、本発明の油脂組成物は、他の油脂と比べて特に高い温度(30℃~35℃)においてもヒートショック耐性に優れるという結果を示している。

Claims (6)

  1. 少なくとも2種類の油脂を含むホイップクリーム用油脂組成物であって、前記油脂組成物を60℃から-20℃まで1℃/minの速度で冷却して生じる熱量変異を示す示差走査熱量測定(DSC)曲線が少なくとも2つの山ピークを有し、最も低温側に位置する山ピーク面積ALに対するより高温側の山ピーク面積の合計AHの比AH/ALが0.01以上0.20以下で、最も低温側の山ピーク高さHLに対する最も高温側の山ピーク高さHHの比HH/HLが0.01以上0.35以下である、上記ホイップクリーム用油脂組成物。
  2. 少なくとも2種類の油脂として、パーム系油脂とラウリン系油脂を含む混合油脂のエステル交換油(油脂A)、及び融点が45℃以上である高融点油脂(油脂B)を含む、請求項1に記載のホイップクリーム用油脂組成物。
  3. パーム系油脂とラウリン系油脂を含む混合油脂のエステル交換油(油脂A)の構成脂肪酸組成中のパルミチン酸及びステアリン酸の合計量が40質量%以下であることを特徴とする、請求項2に記載のホイップクリーム用油脂組成物。
  4. 油脂組成物が、更に、エステル交換したラウリン系油脂(油脂C)を含有する、請求項2または3に記載のホイップクリーム用油脂組成物。
  5. 融点が45℃以上である高融点油脂(油脂B)の油脂組成物中の含有量が5質量%以下である、請求項2~4のいずれか一項に記載のホイップクリーム用油脂組成物。
  6. 請求項1~5のいずれか一項に記載のホイップクリーム用油脂組成物を油相中に含むホイップクリーム用水中油型乳化油脂組成物。
PCT/JP2013/072107 2013-05-31 2013-08-19 ホイップクリーム用油脂組成物 WO2014192167A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003947.1A CN104053482B (zh) 2013-05-31 2013-08-19 搅打奶油用油脂组合物
AU2013390914A AU2013390914B2 (en) 2013-05-31 2013-08-19 Oil and fat composition for whipped cream

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013116144A JP5480425B1 (ja) 2013-05-31 2013-05-31 ホイップクリーム用油脂組成物
JP2013-116144 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192167A1 true WO2014192167A1 (ja) 2014-12-04

Family

ID=50749957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072107 WO2014192167A1 (ja) 2013-05-31 2013-08-19 ホイップクリーム用油脂組成物

Country Status (4)

Country Link
JP (1) JP5480425B1 (ja)
AU (1) AU2013390914B2 (ja)
MY (1) MY157546A (ja)
WO (1) WO2014192167A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167483A (ja) * 2014-03-05 2015-09-28 株式会社カネカ 起泡性水中油型乳化油脂組成物
WO2023080074A1 (ja) * 2021-11-04 2023-05-11 不二製油グループ本社株式会社 水中油型乳化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072331B2 (ja) * 2015-05-01 2017-02-01 太陽油脂株式会社 家庭用マーガリン類製造用油脂組成物
JP6955326B2 (ja) * 2016-08-01 2021-10-27 太陽油脂株式会社 コンパウンドクリーム用油脂組成物
WO2020075688A1 (ja) * 2018-10-10 2020-04-16 花王株式会社 ケーキ生地起泡用水中油型乳化組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111527A1 (ja) * 2010-03-12 2011-09-15 日清オイリオグループ株式会社 油脂組成物及び該油脂組成物を含有する水中油型乳化物
JP2012070703A (ja) * 2010-09-29 2012-04-12 Nof Corp ホイップクリーム用油脂組成物
WO2012121010A1 (ja) * 2011-03-04 2012-09-13 日清オイリオグループ株式会社 油脂組成物及び該油脂組成物を用いたバタークリーム
WO2012147554A1 (ja) * 2011-04-27 2012-11-01 日清オイリオグループ株式会社 油脂及びそれを使用してなる油脂含有食品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930217B2 (ja) * 2007-06-25 2012-05-16 日油株式会社 バタークリーム用油脂組成物
JP5366294B2 (ja) * 2008-09-05 2013-12-11 太陽油脂株式会社 ホイップクリーム用油脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111527A1 (ja) * 2010-03-12 2011-09-15 日清オイリオグループ株式会社 油脂組成物及び該油脂組成物を含有する水中油型乳化物
JP2012070703A (ja) * 2010-09-29 2012-04-12 Nof Corp ホイップクリーム用油脂組成物
WO2012121010A1 (ja) * 2011-03-04 2012-09-13 日清オイリオグループ株式会社 油脂組成物及び該油脂組成物を用いたバタークリーム
WO2012147554A1 (ja) * 2011-04-27 2012-11-01 日清オイリオグループ株式会社 油脂及びそれを使用してなる油脂含有食品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167483A (ja) * 2014-03-05 2015-09-28 株式会社カネカ 起泡性水中油型乳化油脂組成物
WO2023080074A1 (ja) * 2021-11-04 2023-05-11 不二製油グループ本社株式会社 水中油型乳化物

Also Published As

Publication number Publication date
JP2014233242A (ja) 2014-12-15
MY157546A (en) 2016-06-15
JP5480425B1 (ja) 2014-04-23
AU2013390914A1 (en) 2015-03-05
AU2013390914B2 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP4496178B2 (ja) 油脂組成物とその製造方法、水中油型乳化物、およびコンパウンドクリーム
JP5444972B2 (ja) ホイップクリーム用油脂組成物
JP4930217B2 (ja) バタークリーム用油脂組成物
JP5480425B1 (ja) ホイップクリーム用油脂組成物
JP2016054675A (ja) クリーム用油脂組成物
JP5341283B1 (ja) 起泡性水中油型乳化物用油脂および該油脂を含んでなる起泡性水中油型乳化物
JP4646326B2 (ja) 油脂組成物
JP4506711B2 (ja) 食用油脂組成物
JP5366294B2 (ja) ホイップクリーム用油脂組成物
JP2010011799A (ja) 中融点油脂及び可塑性油脂組成物
JP5715188B2 (ja) ホイップクリーム用油脂組成物
JP3238658B2 (ja) 起泡性クリーム用油脂組成物および起泡性クリーム
TW200524543A (en) Edible grease composition
JP6937582B2 (ja) ホイップクリーム用油脂組成物
JP2016208970A (ja) 凍結ホイップクリーム用油脂組成物
JP5745804B2 (ja) ホイップクリーム用油脂組成物
JP4768839B2 (ja) クリーム用油脂組成物
JP5510621B1 (ja) 起泡性水中油型乳化油脂組成物
JP2009153454A (ja) コーヒークリーム用油脂組成物
JP5252997B2 (ja) ホイップクリーム用水中油型乳化油脂組成物
JP5801720B2 (ja) ホイップクリーム用油脂組成物及び該ホイップクリーム用油脂組成物を使用したホイップクリーム
JP4268538B2 (ja) 起泡性油中水型乳化組成物の製造法
CN104053482B (zh) 搅打奶油用油脂组合物
JP5479637B1 (ja) 起泡性クリーム用油脂組成物及び起泡性クリーム
WO2020218437A1 (ja) 起泡性水中油型乳化組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013390914

Country of ref document: AU

Date of ref document: 20130819

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886086

Country of ref document: EP

Kind code of ref document: A1