WO2014190939A1 - 活齿无级变速器及其传动特性的控制策略设计方法 - Google Patents

活齿无级变速器及其传动特性的控制策略设计方法 Download PDF

Info

Publication number
WO2014190939A1
WO2014190939A1 PCT/CN2014/078960 CN2014078960W WO2014190939A1 WO 2014190939 A1 WO2014190939 A1 WO 2014190939A1 CN 2014078960 W CN2014078960 W CN 2014078960W WO 2014190939 A1 WO2014190939 A1 WO 2014190939A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable tooth
continuously variable
transmission
disk
variable transmission
Prior art date
Application number
PCT/CN2014/078960
Other languages
English (en)
French (fr)
Inventor
王国斌
Original Assignee
Wang Guobin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Guobin filed Critical Wang Guobin
Publication of WO2014190939A1 publication Critical patent/WO2014190939A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/10Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley provided with radially-actuatable elements carrying the belt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/24Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using chains or toothed belts, belts in the form of links; Chains or belts specially adapted to such gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/028Gearboxes; Mounting gearing therein characterised by means for reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios

Definitions

  • the invention relates to the field of mechanical transmission design and control technology, in particular to a movable tooth continuously variable transmission, and a control strategy design method for a transmission characteristic of a movable tooth continuously variable transmission.
  • the invention is based on the Chinese patent application number: 200580039668. 6, the publication number CN 101072963 A, the publication date: November 14, 2007, the name is "slide deformation tooth stepless meshing movable gear" based on the improved technology
  • the patent application No. 200580039668. 6 records the function of stepless engagement of the movable teeth by means of sliding combination sliding deformation, which can realize non-friction engagement stepless speed change.
  • the movable toothed sliding stepless transmission described in the patent No. 200580039668. 6 has a certain thickness of the movable tooth sliding piece. Therefore, from the theoretical point of view, the movable tooth transmission may have a certain meshing backlash, as shown in FIG. 2 . Shows that the transmission is stable. Summary of the invention
  • the present invention provides a control strategy design method for the movable tooth continuously variable transmission and its transmission characteristics.
  • the control strategy design method of the movable tooth continuously variable transmission and its transmission characteristics can effectively avoid the negative factors of the meshing backlash, so that the transmission process is always Work in the most stable "standard path" area.
  • a movable tooth continuously variable transmission comprising: a belt or a chain containing meshing teeth, a movable tooth unit body, and a sliding piece or a slider on two adjacent movable tooth unit bodies can simultaneously The two adjacent movable tooth unit bodies are tightly engaged with the meshing engaging teeth.
  • a control strategy design method for optimizing transmission characteristics of a movable tooth continuously variable transmission comprising: a cone disk having a track groove, a metal chain including meshing teeth, a movable tooth unit body, including a slider, a sliding piece
  • the movable tooth slider group is characterized in that: the control strategy of the movable tooth continuously variable transmission adopts the "standard diameter control theory", and the most optimal theoretical transmission for the movable tooth continuously variable transmission is taken closest to its current theoretical transmission.
  • the "standard diameter area" corresponds to the actual transmission ratio as the current control target transmission ratio.
  • the "standard diameter area” means that the radial position of the movable tooth unit body satisfies the "mechanical point of the adjacent movable tooth unit sliding piece and the sprocket.”
  • the arc length is equivalent to all radius regions of the sprocket pitch at the current radius.
  • the beneficial effects of the present invention are: when the transmission ratio of the movable tooth continuously variable transmission changes, in the adjacent "standardized area" When the speed regulation transition is carried out, it is necessary to pass the "non-standard diameter zone". At this time, there will be a certain meshing backlash, but since the "non-standard diameter zone" transition time is very short, it will not affect the overall performance of the transmission, most of the time, The movable toothless continuously variable transmission works in the "standard diameter zone". We call this control strategy "standard diameter control theory”. Obviously, using the "standard diameter control theory” to optimize the control strategy can reasonably and effectively avoid the movable teeth. The meshing backlash defect caused by the thickness of the slider can completely eliminate the torque ripple problem from the source, so that the performance advantage of the movable toothed stepless transmission is further improved.
  • Fig. 1 is a schematic view showing the state in which the movable tooth unit body is located in the "standard diameter area”.
  • Fig. 2 is a schematic view showing the state in which the movable tooth unit body is located in the "non-standard diameter area”.
  • Figure 3 is the first type of stabilizer.
  • Figure 4 is a second type of stabilizer.
  • a movable tooth continuously variable transmission comprising: a belt or chain including meshing teeth 4, a movable tooth unit body 5, and a movable toothed slider or slider 2 on the movable tooth unit body 5 meshing with a meshing tooth 4 of a belt or a chain
  • a movable tooth slider or slider 2 (also referred to simply as a slider or a slider) on two adjacent movable tooth unit bodies 5 can simultaneously have a belt or a chain corresponding to the two adjacent movable tooth unit bodies 5.
  • the upper meshing teeth 4 are tightly engaged, as shown in FIG.
  • the movable tooth slider or the slider 2 on the movable tooth unit body 5 is meshed with the meshing teeth 4 of the belt or the chain, which is in the continuously variable transmission
  • the movable tooth slider or slider 2 on any two adjacent movable tooth unit bodies 5 can At the same time, the meshing teeth 4 of the belt or chain are tightly engaged to realize zero backlash transmission.
  • the transmission between the belt or chain containing the meshing teeth 4 and the two adjacent movable tooth unit bodies 5 is zero backlash transmission, and it can also be said that the belt or chain containing the meshing teeth 4 is engaged with the movable tooth unit body 5
  • the transmission between the two can achieve zero backlash transmission. That is, a slider (or a slider) on any two adjacent movable tooth unit bodies 5 arranged on the same set of the cone 1 and a belt or chain corresponding to the two adjacent movable tooth unit 5
  • the meshing teeth 4 can be tightly engaged without the meshing backlash, and it can be said that at least one slider (or slider) can be simultaneously and adjacent to the two adjacent movable tooth unit bodies 5.
  • the teeth of the movable tooth unit 5 and the meshing teeth 4 on the chain can be tightly engaged, and the sliding pieces (or sliders) of any two adjacent movable tooth unit 5 can collectively transmit torque, thereby achieving No power flow interruption during the rotation continuously transfers power. That is, as shown in Fig. 1, when the movable tooth unit body 5 of the present application is driven by a belt or a chain, the sliding piece (or the slider) on each of the movable tooth unit bodies 5 is simultaneously meshed with the meshing teeth 4 (zero backlash meshing) As shown in FIG.
  • the belt or chain is a metal belt or a metal chain, and may be other toothed belts or chains with meshing teeth.
  • the transmission that meets this condition belongs to the "standard diameter zone” transmission, with zero backlash transmission, and the transmission is smooth and pulsating.
  • "Indexed area” The radius position of the movable tooth unit body 5 is equal to the arc length of the "sliding piece (or slider) of the adjacent two movable tooth unit bodies 5 and the meshing point of the meshing teeth 4 All radius regions of the integral or multiple of the pitch of the belt or chain containing the meshing teeth 4. That is, the movable tooth continuously variable transmission further includes a cone 1 which is disposed on the same set of the cone 1 when the movable tooth unit 5 is engaged with the meshing teeth 4 of the belt or the chain The pitch arc length between the meshing points is equivalent to an integral multiple of the pitch of the band or chain.
  • the arc length between the two adjacent movable tooth unit bodies 5 disposed on the same set of the cone 1 and the meshing points of the meshing teeth 4 of the belt or chain is equivalent to the pitch of the belt or chain.
  • the integer is an integer greater than zero.
  • the above statement uses "equivalent to” instead of “equal to” because the integer multiple of the pitch of the band or chain in this article is not numerically equal to the length of the arc in this article because The pitch of the belt or chain is a line segment, and the arc of the knot is an arc. When engaged, the pitch of the belt or the chain forms a part of the regular polygon inscribed with the arc of the joint, so that only the equivalent correspondence is achieved, and Not numerically equal)
  • the radius is a number of discrete or discontinuous values. We can refer to all the "scaled area” radii that meet this transmission characteristic as “standard”.
  • the radius group referred to as the "scale group”, the number of radii that meets this feature is called the "number of clusters”.
  • the movable tooth continuously variable transmission further includes a cone 1 , a plurality of movable tooth unit bodies 5 are arranged on the cone 1 , the cone 1 is provided with a cone track groove 3 , and the cone track 3 is along the cone 1
  • the busbar direction setting (the cone track groove 3 is arranged along the busbar direction of the cone disk, the drawing is an axial plan view, which is equivalent to the axial projection view, so the figure is embodied as a radial setting), the movable tooth
  • the unit body 5 is movable along the cone track groove 3.
  • the movable tooth unit body 5 includes a movable tooth slider group; the movable tooth slider group contains the sliding piece; or the movable tooth sliding blade group contains the slider; or the movable toothed sliding plate group contains the sliding piece and a slider, the sliding piece having a thickness smaller than a thickness of the slider.
  • a stabilizer for speed pulsation can be connected in series in the overall system power flow drive chain to further optimize the transmission characteristics, especially to optimize torque fluctuations during the transition of the “non-standard zone”.
  • the movable tooth continuously variable transmission further includes a stabilizer for stabilizing the speed pulsation, the stabilizer includes a torque input terminal 7, a torque output end 11, a damper spring 8, an overload protection control block 9, and an overload protection spring 10 .
  • the movable tooth continuously variable transmission further includes a stabilizer for stabilizing the speed pulsation, the stabilizer includes a torque input terminal 7, a torque output terminal 11, a damper spring 8, and an overload protection control block 9,
  • the disk-shaped torque input end 7 is provided with a plurality of first grooves 71 in the circumferential direction, and the annular drive plate 20 is sleeved on the torque input end 7.
  • the drive disk 20 is internally provided.
  • the overload protection spring 10 is disposed in the first recess 71, and the top end of the overload protection control block 9 abuts against the second recess 22, the overload protection control block
  • the bottom end of the 9 abuts against the overload protection spring 10, and the top end of the overload protection control block 9 can slide in the circumferential direction of the drive disk 20 with respect to the inner surface of one side of the second groove 22;
  • the annular torque output end 11 is sleeved Outside the drive plate 20
  • a plurality of third recesses 23 are circumferentially disposed on the outer side of the drive disc 20
  • a plurality of transmission blocks 111 that are in contact with the side walls of the third recess 23 are fixed to the inner side of the torque output end 11 for damping
  • One end of the spring 8 is offset from the transmission block 111 , The other end of the damper spring 8 side walls of the third recess 23 abuts.
  • the torque input end 7 of the stabilizer is connected to the transmission shaft 6, for example, the transmission shaft 6 can drive the torque input end 7 to rotate, and the torque input end 7 drives the transmission disk 20 to rotate through the overload protection control block 9, when the load is large When the design load is exceeded, the protection control block 9 and the drive plate 20 can be slipped to provide overload protection.
  • the torque output end 11 is rotated by the damper spring 8.
  • the outer ring of the drive plate 20 corresponds to an elastic buffer zone
  • the inner ring of the drive plate 20 corresponds to an overload protection zone.
  • the movable tooth continuously variable transmission further includes a stabilizer for stabilizing the speed pulsation, the stabilizer includes a torque output shaft 12, a torque input disk 15, a positioning lands 13, and two-way vibration damping.
  • Spring 14 is a stabilizer for stabilizing the speed pulsation, the stabilizer includes a torque output shaft 12, a torque input disk 15, a positioning lands 13, and two-way vibration damping.
  • the movable tooth continuously variable transmission further includes a stabilizer for stabilizing the speed pulsation, and the stabilizer includes a torque output shaft 12, a torque input disk 15, a positioning lands 13, a two-way damper spring 14, and a drive sleeve 30.
  • the drive sleeve 30 includes a driving disc 32 and a disc-shaped driven disc 31.
  • the annular driving disc 32 is sleeved on the driven disc 31.
  • the inner side of the driving disc 32 is provided with a plurality of fourth recesses 34, which are driven.
  • the external measurement of the disk 31 is provided with a plurality of fifth grooves 35 corresponding to the fourth grooves 34.
  • the two-way damper springs 14 are disposed in a space formed by the combination of the fourth grooves 34 and the fifth grooves 35.
  • 32 can drive the driven disc 31 to rotate by the two-way damper spring 14; the positioning lands 13, the drive sleeve 30 and the torque input disc 15 are sequentially stacked, and the positioning lands 13 and the torque input disc 15 are fixedly connected with the active disc 32,
  • the driven plate 31 can output torque through the torque output shaft 12.
  • the sleeve on the right side of the torque input disk 15 of the stabilizer is fixedly connected with the transmission shaft 6, the torque input disk 15 rotates together with the driving plate 32, and the driving disk 32 passes through the two-way damping spring. 14 drives the driven disc 31 to rotate, and the driven disc 31 drives the torque output shaft 12 to rotate.
  • a control strategy design method for optimizing transmission characteristics of a movable tooth continuously variable transmission comprising: a cone disk including a track groove, a metal chain including the meshing teeth 4, a movable tooth unit body 5, and a slider
  • the movable tooth slider group of the sliding piece adopts the "standard diameter control theory" for the control strategy of the movable tooth continuously variable transmission, and the closest to the current optimal theoretical transmission ratio for all the working conditions of the movable tooth continuously variable transmission.
  • the "standard diameter area" corresponds to the actual transmission ratio as the current control target transmission ratio.
  • the "standard diameter area” means that the radial position of the movable tooth unit body 5 satisfies the "mechanical point of the adjacent movable tooth unit sliding piece and the sprocket.”
  • the arc length is equivalent to all radius regions of the sprocket pitch at the current radius.
  • Figure 1 and Figure 2 both take the driving wheel as an example.
  • the cone rotates clockwise, and the flow direction of the power flow path is: a cone-toothed slider.
  • the integer multiple of the pitch is not numerically equal to the length of the arc in the definition of this sentence, but only achieves the equivalent correspondence; if another concept is used to describe the definition of the concept, it should be: in the same group Any sliding piece (including the sliding block) on the two adjacent movable tooth unit bodies arranged on the cone can be tightly meshed with the meshing teeth thereof, without meshing backlash, BP: in two adjacent movable tooth unit bodies At least one of the sliders (including the slider) can be meshed with the correspondingly meshed teeth at the same time, and the torque can be transmitted together. BP: The power is continuously transmitted during the rotation without interruption of the power flow).
  • the transmission that meets this condition belongs to the "standard diameter zone” transmission, with zero backlash transmission, and the transmission is smooth and pulsating.
  • “Caved area” It means that the radius position of the movable tooth unit body satisfies all the radius areas of "the adjacent movable tooth unit sliding piece and the sprocket meshing point arc length is equivalent to an integral multiple of the sprocket pitch at the current radius” .
  • the "scaled area” radius of this transmission characteristic is collectively referred to as the “standard radius group”, referred to as the “standard diameter group”, and the number of radii that conforms to this characteristic is called the "standard diameter group number”.
  • a stabilizer for stabilizing the speed pulsation can be connected in series in the overall system power flow transmission chain, and the transmission characteristics can be further optimized, especially in the speed regulation through the "non-standard diameter zone". Torque fluctuations during the transition.
  • the first type of stabilizer is shown in FIG. 3, which is composed of an elastic buffer and an overload protection zone, and includes: a torque input terminal 7, a damping spring 8, an overload protection control block 9, an overload protection spring 10, a torque output terminal 11, and the like.
  • a torque input terminal 7 a damping spring 8
  • an overload protection control block 9 an overload protection spring 10
  • a torque output terminal 11 a torque output terminal 11 and the like.
  • a flexible buffer such as the second type of stabilizer as shown in FIG. 4, which is equivalent to an elastic damper, which is composed of a driving disc, a driven disc, and an elastic connecting member, wherein
  • the elastic connecting element can be designed as a two-way damping and one-way damping type according to actual needs.
  • the torque output shaft 12, the positioning lands 13, the two-way damper spring 14, the torque input disk 12, and the like are included.
  • the elastic cushioning damping member may be a metal spring, a non-metal spring, a gas spring, a hydraulic spring, a hydraulic damper or the like. Note 1: The concept of no backlash or zero backlash described in this paper is not completely free of backlash in theory.
  • the sliding piece acts as a bearing torque
  • the sliding piece acts as a filling meshing backlash.
  • the organic combination with the slider can be equivalent to a gear whose tooth thickness can be arbitrarily changed. This is the concept of the movable gear.
  • the slider In non-precision applications, the slider must be used in a non-strict manner.
  • the slider can be used independently.
  • the slider can be combined into a pure slider group for power transmission.
  • the slider cannot be used independently. Used in combination. Therefore, the sliding piece refers to the bearing capacity required for the power transmission within the range of the current design index alone, and the large sliding block is required to carry the torque.
  • the sliding piece function is only used to fill the meshing backlash.
  • the sliding piece with a thickness greater than 1mm is generally designed with the function of the slider.
  • the sliding piece with a thickness less than lmm is designed with the function of the sliding piece.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Gears, Cams (AREA)
  • Transmission Devices (AREA)

Abstract

一种活齿无级变速器及其传动特性的控制策略设计方法,所述活齿无级变速器包括:含啮合齿(4)的带或链、活齿单元体(5),两个相邻的活齿单元体(5)上的滑片或滑块(2)能同时与该两个相邻的活齿单元体(5)相对应的带或链上的啮合齿(4)紧紧啮合。提出了一种"标径控制理论",该标径控制理论可以有效规避掉由于活齿滑片自身厚度产生的啮合齿隙负面因素,对于变速器所有工况,尽可能去取最接近于其当前最佳理论传动比的"标径区"对应实际传动比作为当前控制目标传动比,从而达到任何工况下都能实现无啮合齿隙精密传动。

Description

活齿无级变速器及其传动特性的控制策略设计方法
技术领域
本发明涉及机械传动设计及控制技术领域, 特别是一种活齿无级变速器, 还是一种 活齿无级变速器传动特性的控制策略设计方法。 背景技术
本发明是建立在中国专利申请号: 200580039668. 6, 公开号 CN 101072963 A, 公开 日期: 2007年 11月 14日,名称为《滑片变形齿无级啮合活齿轮》的基础上的改进技术, 该申请号为 200580039668. 6的专利中记录了依靠滑片组合滑移变形实现活齿无级啮合 的功能, 可以实现非摩擦啮合无级变速。 该申请号为 200580039668. 6的专利记载的活 齿滑片无级变速器, 由于活齿滑片自身有一定厚度, 所以从理论角度讲, 活齿传动可能 出现一定的啮合齿隙, 如图 2所示, 影响传动平稳性。 发明内容
为了解决现有活齿传动可能出现一定的啮合齿隙影响传动平稳性的技术问题,本发 明提供一种活齿无级变速器及其传动特性的控制策略设计方法。该活齿无级变速器及其 传动特性的控制策略设计方法在实际使用中, 如果采取下文所述 "标径控制理论", 则 可以有效规避掉此啮合齿隙负面因素, 使其传动过程总是工作在最平稳 "标径"区域。
本发明采用的技术方案是: 一种活齿无级变速器, 包括: 含啮合齿的带或链、 活齿 单元体,两个相邻的活齿单元体上的滑片或滑块能同时与该两个相邻的活齿单元体相对 应啮合的啮合齿紧紧啮合。
一种优化活齿无级变速器传动特性的控制策略设计方法, 该活齿无级变速器包括: 含有轨道槽的锥盘、含啮合齿的金属链、活齿单元体、包含有滑块、滑片的活齿滑片组, 其特征在于: 该活齿无级变速器的控制策略采用 "标径控制理论", 对于该活齿无级变 速器的所有工况, 取最接近于其当前最佳理论传动比的 "标径区"对应实际传动比作为 当前控制目标传动比, 该 "标径区"是指活齿单元体所在半径位置满足 "相邻活齿单元 滑片与链齿的啮合点节圆弧长等效于当前半径处链齿节距整数倍"的所有半径区。
本发明的有益效果是: 当该活齿无级变速器的传动比变化时, 在相邻的 "标径区" 进行调速过渡时需经过 "非标径区", 此时会有一定啮合齿隙, 但由于此 "非标径区" 过渡时间非常短暂, 基本不会影响变速器整体性能, 大多数时间段, 该活齿无级变速器 均工作在 "标径区", 我们把此控制策略称之为 "标径控制理论", 显见, 采用 "标径 控制理论"优化控制策略, 可以合理有效规避掉活齿滑片厚度导致的啮合齿隙缺陷, 其 扭矩脉动问题可以从源头彻底消除, 从而使活齿滑片无级变速器的性能优势进一步提 升。 附图说明
在此描述的附图仅用于解释目的, 而不意图以任何方式来限制本发明公开的范围。 另外, 图中的各部件的形状和比例尺寸等仅为示意性的, 用于帮助对本发明的理解, 并 不是具体限定本发明各部件的形状和比例尺寸。 本领域的技术人员在本发明的教导下, 可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图 1是活齿单元体位于 "标径区"的状态说明示意图。
图 2是活齿单元体位于 "非标径区"的状态说明示意图。
图 3是第一种稳扭器。
图 4是第二种稳扭器。
其中: 1、 锥盘, 2、 活齿滑片或滑块, 3、 锥盘轨道槽, 4、 啮合齿, 5、 活齿单元 体, 6、 传动轴;
7、 扭矩输入端, 71、 第一凹槽, 8、 减震弹簧, 9、 过载保护控制块, 10、 过载保 护弹簧, 11、 扭矩输出端, 111、 传动块, 20、 传动盘, 22、 第二凹槽, 23、 第三凹槽;
12、 扭矩输出轴, 13、 定位连接盘, 14、 双向减震弹簧, 15、 扭矩输入盘, 30、 传 动套盘, 31、 从动盘, 32、 主动盘, 34、 第四凹槽, 35、 第五凹槽。 具体实施方式
下面结合附图对本发明所述的活齿无级变速器作进一步详细的说明。一种活齿无级 变速器, 包括: 含啮合齿 4的带或链、 活齿单元体 5, 活齿单元体 5上的活齿滑片或滑 块 2与带或链的啮合齿 4啮合, 两个相邻的活齿单元体 5上的活齿滑片或滑块 2 (也可 以简称滑片或滑块) 能同时与该两个相邻的活齿单元体 5相对应的带或链上的啮合齿 4 紧紧啮合, 如图 1所示, 即活齿单元体 5上的活齿滑片或滑块 2与带或链的啮合齿 4啮 合传动,该活齿无级变速器中的任意两个相邻的活齿单元体 5上的活齿滑片或滑块 2能 同时与该带或链的啮合齿 4紧紧啮合, 实现零齿隙传动。
含啮合齿 4的带或链与该两个相邻的活齿单元体 5之间的传动为零齿隙传动,也可 以说是含啮合齿 4的带或链与其啮合的活齿单元体 5之间的传动能够达到零齿隙传动。 即在同一组锥盘 1上布置的任意两个相邻的活齿单元体 5上的滑片(或滑块)和与该两 个相邻的活齿单元体 5相对应的带或链上的啮合齿 4能紧紧啮合, 无啮合齿隙, 也可以 说是在任意两相邻的活齿单元体 5上都至少有一个滑片(或滑块)能同时和与该两个相 邻的活齿单元体 5相互对应的带或链上的啮合齿 4能紧紧啮合,该任意两相邻的活齿单 元体 5上滑片(或滑块)能共同进行扭矩传递, 从而达到在旋转过程中无动力流中断连 续传递功率。 即如图 1中, 本申请中的活齿单元体 5与带或链传动时, 每个活齿单元体 5上的滑片(或滑块)都同时与啮合齿 4啮合(零齿隙啮合), 而现有技术如图 2所示, 活齿单元体 5与带或链传动时, 只有一个活齿单元体 5上滑片(或滑块)与啮合齿 4啮 合(零齿隙啮合) , 其他滑片 (或滑块)与啮合齿 4之间存在齿隙。 本实施例中带或链 为金属带或金属链, 也可以是带有啮合齿的其他齿形带或链。
满足此条件的传动, 属于 "标径区"传动, 为零齿隙传动, 传动平稳无脉动。 "标径区": 指活齿单元体 5所在半径位置满足 "相邻的两个活齿单元体 5中的滑 片(或滑块)与啮合齿 4的啮合点的节圆弧长等效于含有啮合齿 4的带或链的节距整数 倍"的所有半径区。 即所述活齿无级变速器还包括锥盘 1, 当活齿单元体 5与带或链的 啮合齿 4啮合时,在同一组锥盘 1上布置的任意两个相邻活齿单元体 5的啮合点之间的 节圆弧长等效于所述带或链的节距的整数倍。即在同一组锥盘 1上布置的两个相邻活齿 单元体 5与所述带或链的啮合齿 4的啮合点之间的节圆弧长等效于所述带或链的节距的 整数倍。所述整数为大于 0的整数。 (注:上述语句中用的是"等效于 "而不是"等于", 是因为本文中的带或链的节距的整数倍并不是在数值上与本文中的节圆弧长相等, 因为 带或链的节距是线段, 而节圆弧是弧线, 啮合时, 带或链的节距形成了与该节圆弧内接 的正多边形的一部分, 所以只是达到了等效对应, 而不是在数值上相等)
对于同一款无级变速器, 符合其 "标径区"的半径存在很多, 该半径为多个离散或 不连续的数值,我们可以将所有符合此传动特性的 "标径区 "半径统称为 "标准半径群 ", 简称 "标径群", 符合此特征的半径数量称之为 "标径群数"。 通过合理设计活齿滑片 厚度及数量以及链条链齿节距及齿宽, 可以获得数量非常密集的 "标径群", 例如: 标 径群数 = 10, 则说明该款活齿无级变速器具有 10个不同半径的 "标径区", 这样, 在 该款活齿无级变速器工作时, 就有 10个 "标径区"可以作为最佳传动半径区, 相当于 找到 10个精密稳定传动比, 等效于 10档高效变速器。
另外, 所述活齿无级变速器还包括锥盘 1, 多个活齿单元体 5布置在锥盘 1上, 锥 盘 1上设有锥盘轨道槽 3, 锥盘轨道槽 3沿锥盘 1的母线方向设置 (锥盘轨道槽 3是沿 着锥盘的母线方向设置的, 本说明附图为轴向平面图, 相当于是轴向投影视图, 所以附 图便体现为径向设置), 活齿单元体 5能够沿锥盘轨道槽 3移动。活齿单元体 5含有活 齿滑片组; 该活齿滑片组含有所述滑片; 或者该活齿滑片组含有所述滑块; 或者该活齿 滑片组含有所述滑片和滑块, 所述滑片的厚度小于所述滑块的厚度。
可以在整体系统动力流传动链中串联一用来稳定速度脉动的稳扭器,则可以进一步 优化传动特性, 尤其是优化在调速经过 "非标径区" 过渡时的扭矩波动。
即所述活齿无级变速器还包括有用来稳定速度脉动的稳扭器,该稳扭器包括扭矩输 入端 7、 扭矩输出端 11、 减震弹簧 8、 过载保护控制块 9、 过载保护弹簧 10。
即如图 3所示, 活齿无级变速器还包括有用来稳定速度脉动的稳扭器, 该稳扭器包 括扭矩输入端 7、 扭矩输出端 11、 减震弹簧 8、 过载保护控制块 9、 过载保护弹簧 10和 传动盘 20; 圆盘形的扭矩输入端 7的周向设有多个第一凹槽 71, 环形的传动盘 20套设 在扭矩输入端 7夕卜,传动盘 20内测设有多个与第一凹槽 71相对应的第二凹槽 22,过载 保护弹簧 10设置在第一凹槽 71内, 过载保护控制块 9的顶端与第二凹槽 22抵接, 过 载保护控制块 9的底端与过载保护弹簧 10抵接, 过载保护控制块 9的顶端能够相对于 第二凹槽 22的一侧的内表面沿传动盘 20的周向打滑; 环形的扭矩输出端 11套设在传 动盘 20外, 传动盘 20的外侧沿周向设有多个第三凹槽 23, 扭矩输出端 11的内侧固定 有多个与第三凹槽 23的侧壁相接触的传动块 111,减震弹簧 8的一端与传动块 111抵接, 减震弹簧 8的另一端与第三凹槽 23的侧壁抵接。
使用时, 该稳扭器的扭矩输入端 7与传动轴 6连接, 如传动轴 6可以驱动扭矩输入 端 7转动, 扭矩输入端 7通过过载保护控制块 9带动传动盘 20转动, 当载荷较大超过 了设计载荷时, 保护控制块 9和传动盘 20之间能够打滑, 起到过载保护的作用。 传动 盘 20转动后通过减震弹簧 8再带动扭矩输出端 11转动。 传动盘 20的外圈对应的为弹 性缓冲区, 传动盘 20的内圈对应的为过载保护区。
或者, 如图 4所示, 所述活齿无级变速器还包括有用来稳定速度脉动的稳扭器, 该 稳扭器包括扭矩输出轴 12、 扭矩输入盘 15、 定位连接盘 13、 双向减震弹簧 14。
即所述活齿无级变速器还包括有用来稳定速度脉动的稳扭器,该稳扭器包括扭矩输 出轴 12、 扭矩输入盘 15、 定位连接盘 13、 双向减震弹簧 14和传动套盘 30; 传动套盘 30包括主动盘 32和圆盘形的从动盘 31, 环形的主动盘 32套设在从动盘 31夕卜, 主动盘 32的内侧周向设有多个第四凹槽 34, 从动盘 31的外测设有多个与第四 凹槽 34相对应的第五凹槽 35,双向减震弹簧 14设置在第四凹槽 34和第五凹槽 35组合 成的空间内,主动盘 32能够通过双向减震弹簧 14驱动从动盘 31转动;定位连接盘 13、 传动套盘 30和扭矩输入盘 15依次层叠设置,定位连接盘 13和扭矩输入盘 15均与主动 盘 32固定连接, 从动盘 31能够通过扭矩输出轴 12输出扭矩。
使用时, 如图 4所示, 该稳扭器的扭矩输入盘 15右侧的轴套与传动轴 6固定连接, 扭矩输入盘 15与主动盘 32—起转动, 主动盘 32通过双向减震弹簧 14带动从动盘 31 转动, 从动盘 31再带动扭矩输出轴 12转动。
一种优化活齿无级变速器传动特性的控制策略设计方法, 该活齿无级变速器包括: 含有轨道槽的锥盘 1、 含啮合齿 4的金属链、 活齿单元体 5、 包含有滑块、 滑片的活齿 滑片组, 该活齿无级变速器的控制策略采用 "标径控制理论", 对于该活齿无级变速器 的所有工况, 取最接近于其当前最佳理论传动比的 "标径区"对应实际传动比作为当前 控制目标传动比, 该 "标径区"是指活齿单元体 5所在半径位置满足 "相邻活齿单元滑 片与链齿的啮合点节圆弧长等效于当前半径处链齿节距整数倍"的所有半径区。
图 1、 图 2均以主动轮为例分析, 图示状态下, 锥盘顺时针旋转, 功率流路径流向 为: 锥盘一活齿滑片一链齿。
该 "标径控制理论"所述方案需满足条件: 在同一组锥盘 1上布置的两相邻活齿单 元体 5上的任一滑片(含滑块)与其相互啮合的链齿的啮合点之间的节圆弧长等效于当 前半径处链齿节距的整数倍(注: 此定义语句中用的是 "等效于"而不是 "等于", 是 因为本句定义中的链齿节距整数倍并不是在数值上与本句定义中的节圆弧长相等,只是 达到了等效对应; 如果用另一种传动特性方式来描述定义此概念, 则应该是: 在同一组 锥盘上布置的两相邻活齿单元体上的任一滑片(含滑块)与其相互啮合的链齿能紧紧啮 合, 无啮合齿隙, BP: 在两相邻的活齿单元体上都至少有任一滑片(含滑块)能同时与 其相互对应啮合的链齿能紧紧啮合, 能共同进行扭矩传递, BP: 达到在旋转过程中无动 力流中断连续传递功率) 。
满足此条件的传动, 属于 "标径区"传动, 为零齿隙传动, 传动平稳无脉动。 "标径区": 指活齿单元体所在半径位置满足"相邻活齿单元滑片与链齿的啮合点 节圆弧长等效于当前半径处链齿节距整数倍"的所有半径区。
对于同一款无级变速器, 符合其 "标径区"的半径存在很多, 我们可以将所有符合 此传动特性的 "标径区"半径统称为 "标准半径群", 简称 "标径群", 符合此特征的 半径数量称之为 "标径群数"。通过合理设计活齿滑片厚度及数量以及链条链齿节距及 齿宽, 可以获得数量非常密集的 "标径群", 例如: 标径群数 = 10, 则说明该款活齿无 级变速器具有 10个不同半径的 "标径区", 这样, 在该款活齿无级变速器工作时, 就 有 10个 "标径区"可以作为最佳传动半径区, 相当于找到 10个精密稳定传动比, 等效 于 10档高效变速器。
这样, 在做控制策略研究时, 对于变速器所有工况, 我们就尽可能去取最接近于其 当前最佳理论传动比的 "标径区" 对应实际传动比作为当前控制目标传动比, 从而达 到任何工况下都能实现无啮合齿隙精密传动。
对于一般车辆, 10档足够用了,对于重型车辆或特种车辆, 我们仍可以按此方法设 计出 10档以上甚至 20档以上档位, 以满足不同路况需求。
当变速器的传动比变化时,在相邻的"标径区 "进行调速过渡时需经过"非标径区", 此时会有一定啮合齿隙, 但由于此 "非标径区"过渡时间非常短暂, 基本不会影响变速 器整体性能,大多数时间段,变速器均工作在"标径区",我们把此控制策略称之为"标 径控制理论", 显见, 采用 "标径控制理论"优化控制策略, 可以合理有效规避掉活齿 滑片厚度导致的啮合齿隙缺陷, 其扭矩脉动问题可以从源头彻底消除, 从而使活齿滑片 无级变速器的性能优势进一步提升。
如图 3、 图 4所示, 可以在整体系统动力流传动链中串联一用来稳定速度脉动的稳 扭器, 则可以进一步优化传动特性, 尤其是优化在调速经过 "非标径区" 过渡时的扭 矩波动。
图 3所示的第一种稳扭器, 由弹性缓冲区、过载保护区组成, 包括: 扭矩输入端 7、 减震弹簧 8、过载保护控制块 9、过载保护弹簧 10、扭矩输出端 11等, 当扭矩在正常工 作允许范围内时, 只有弹性缓冲区起作用, 如果扭矩超过正常工作允许范围, 则过载保 护控制块分离达到安全保护作用。
一般情况下, 也可以只设置弹性缓冲区, 如图 4所示的第二种稳扭器, 其结构相当 于一弹性减震器, 由主动盘, 从动盘, 弹性连接元件组成, 其中, 弹性连接元件可以根 据实际情况需要设计为双向减震、单向减震类型。如图所示包括: 扭矩输出轴 12、定位 连接盘 13、双向减震弹簧 14、扭矩输入盘 12等。其弹性缓冲减震元件可以是金属弹簧、 非金属弹簧、 气体弹簧、 液力弹簧、 液力阻尼器等。 注 1 : 本文所述的无齿隙或零齿隙概念, 并不是理论上完全无齿隙, 实践证明: 有 微量齿隙有利于改善润滑及寿命, 并有利于降低加工精度及装配精度要求, 所以, 本文 所述的无齿隙或零齿隙概念只是相对而言, 只要在现有技术标准下的通用传动机械(如 齿轮传动) 允许范围内, 就可以视为无齿隙或零齿隙。
注 2: 滑片和滑块从结构上讲没有本质区别, 基本区别多数情况下只是厚度不同, 但从功能上讲, 滑块起承载扭矩作用, 而滑片起填充啮合齿隙作用, 滑块与滑片的有机 组合, 可以等效于齿厚可以任意变化的齿轮, 这就是活齿轮的概念。 在非精密场合, 对 滑块啮合齿隙要求不严格场合, 滑块可以独立使用, 完全用滑块组合成纯滑块组进行进 行功率传递, 但滑片不能独立使用承载扭矩, 应该与滑块组合使用。 所以, 滑片是指其 厚度不足以单独满足当前设计指标范围内的功率传递所需承载能力,需依靠厚度较大滑 块来承载扭矩, 其滑片功能只是用来起填充啮合齿隙作用。
或者, 也可以命名为: 厚度较大用于承载扭矩的滑块命名为: 承载滑片; 厚度较小 不能独立承载扭矩的滑片命名为: 填充滑片。在本文的控制策略分析中提及的滑片包含 此两类。
按目前中小排量车辆领域的扭矩工况讲:一般取厚度大于 1mm的滑片以滑块功能来 设计, 一般取厚度小于 lmm的滑片以滑片功能来设计。
注 3: 图 3、 图 4所示的第一种稳扭器、第二种稳扭器, 其中的扭矩输入端 7、扭矩 输出端 11, 扭矩输出轴 12、 扭矩输入盘 15, 均为功能解说方便而定义, 在实际使用过 程中, 可以互换作为输出端或输出端。
以上所述, 仅为本发明的具体实施例, 不能以其限定发明实施的范围, 所以其等同 组件的置换, 或依本发明专利保护范围所作的等同变化与修饰, 都应仍属于本专利涵盖 的范畴。 另外, 本发明中的技术特征与技术特征之间、 技术特征与技术方案之间、 技术 方案与技术方案之间均可以自由组合使用。

Claims

权利要求书
1、 一种活齿无级变速器, 其特征在于, 所述活齿无级变速器包括: 含啮合齿 (4) 的带或链、 活齿单元体(5) , 两个相邻的活齿单元体(5)上的滑片或滑块能同时与该 两个相邻的活齿单元体(5)相对应的带或链上的啮合齿 (4) 紧紧啮合。
2、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 含啮合齿(4) 的带或链 与该两个相邻的活齿单元体(5)之间的传动为零齿隙传动。
3、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 所述活齿无级变速器还 包括锥盘(1 ) , 多个活齿单元体(5)布置在锥盘(1 )上, 锥盘(1 )上设有锥盘轨道 槽(3) , 活齿单元体(5) 能够沿锥盘轨道槽(3)移动。
4、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 活齿单元体(5)含有活 齿滑片组;
该活齿滑片组含有所述滑片;
或者该活齿滑片组含有所述滑片和滑块, 所述滑片的厚度小于所述滑块的厚度。
5、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 所述活齿无级变速器还 包括锥盘(1 ), 当活齿单元体(5)与带或链的啮合齿(4)啮合时, 在同一组锥盘(1 ) 上布置的两个相邻活齿单元体(5 ) 的啮合点之间的节圆弧长等效于所述带或链的节距 的整数倍。
6、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 所述活齿无级变速器还 包括有用来稳定速度脉动的稳扭器,该稳扭器包括扭矩输入端(7)、扭矩输出端(11 )、 减震弹簧(8) 、 过载保护控制块(9) 、 过载保护弹簧(10) 。
7、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 所述活齿无级变速器还 包括有用来稳定速度脉动的稳扭器,该稳扭器包括扭矩输入端(7)、扭矩输出端(11 )、 减震弹簧(8) 、 过载保护控制块(9) 、 过载保护弹簧(10)和传动盘(20) ;
圆盘形的扭矩输入端(7)的外侧周向设有多个第一凹槽(71 ),环形的传动盘(20) 套设在扭矩输入端 (7 )外, 传动盘 (20) 内测设有多个与第一凹槽 (71 )相对应的第 二凹槽(22 ) , 过载保护弹簧 (10 ) 设置在第一凹槽(71 ) 内, 过载保护控制块 (9 ) 的顶端与第二凹槽(22 )抵接, 过载保护控制块 (9) 的底端与过载保护弹簧(10)抵 接, 过载保护控制块(9) 的顶端能够相对于第二凹槽(22) 的一侧的内表面沿传动盘 (20) 的周向打滑; 环形的扭矩输出端(11 )套设在传动盘(20)外, 传动盘(20) 的外侧沿周向设有 多个第三凹槽(23) , 扭矩输出端(11 ) 的内侧固定有多个与第三凹槽(23) 的侧壁相 接触的传动块(111 ) , 减震弹簧(8) 的一端与传动块(111 )抵接, 减震弹簧(8) 的 另一端与第三凹槽(23) 的侧壁抵接。
8、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 所述活齿无级变速器还 包括有用来稳定速度脉动的稳扭器,该稳扭器包括扭矩输出轴(12)、扭矩输入盘(15)、 定位连接盘(13) 、 双向减震弹簧(14) 。
9、 根据权利要求 1所述的活齿无级变速器, 其特征在于: 所述活齿无级变速器还 包括有用来稳定速度脉动的稳扭器,该稳扭器包括扭矩输出轴(12)、扭矩输入盘(15)、 定位连接盘(13) 、 双向减震弹簧(14)和传动套盘(30) ;
传动套盘(30)包括主动盘(32)和圆盘形的从动盘(31 ) , 环形的主动盘(32) 套设在从动盘(31 )外,主动盘(32)的内侧周向设有多个第四凹槽(34),从动盘(31 ) 的外测设有多个与第四凹槽(34)相对应的第五凹槽(35) , 双向减震弹簧(14)设置 在第四凹槽(34)和第五凹槽(35)组合成的空间内, 主动盘(32)能够通过双向减震 弹簧(14)驱动从动盘(31 )转动;
定位连接盘(13) 、 传动套盘(30)和扭矩输入盘(15)依次层叠设置, 定位连接 盘(13)和扭矩输入盘(15)均与主动盘(32) 固定连接, 从动盘(31 ) 能够通过扭矩 输出轴 (12)输出扭矩。
10.一种优化活齿无级变速器传动特性的控制策略设计方法, 该活齿无级变速器包 括: 含有轨道槽的锥盘 (1 ) 、 含啮合齿 (4) 的金属链、 活齿单元体 (5) 、 包含有滑 块、 滑片的活齿滑片组, 其特征在于: 该活齿无级变速器的控制策略采用 "标径控制理 论", 对于该活齿无级变速器的所有工况, 取最接近于其当前最佳理论传动比的 "标径 区"对应实际传动比作为当前控制目标传动比, 该 "标径区"是指活齿单元体(5) 所 在半径位置满足"相邻活齿单元滑片与链齿的啮合点节圆弧长等效于当前半径处链齿节 距整数倍"的所有半径区。
PCT/CN2014/078960 2013-05-31 2014-05-30 活齿无级变速器及其传动特性的控制策略设计方法 WO2014190939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310211485.4A CN104214291B (zh) 2013-05-31 2013-05-31 一种优化活齿无级变速器传动特性的控制策略设计方法
CN201310211485.4 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014190939A1 true WO2014190939A1 (zh) 2014-12-04

Family

ID=51988029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078960 WO2014190939A1 (zh) 2013-05-31 2014-05-30 活齿无级变速器及其传动特性的控制策略设计方法

Country Status (2)

Country Link
CN (1) CN104214291B (zh)
WO (1) WO2014190939A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976280A (zh) * 2015-07-17 2015-10-14 王声堂 啮合式无级变速异型链带及链带组

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108730497A (zh) * 2017-04-17 2018-11-02 王国斌 一种消除活齿滑片啮合齿隙的机构及延长啮合齿寿命的设计方法
CN107218364A (zh) * 2017-05-26 2017-09-29 北京工业大学 一种抑制活齿无级变速器转速转矩波动的方法
CN107630993B (zh) * 2017-11-02 2022-03-25 陈学琴 活片无极变速器
CN110005778A (zh) * 2018-01-04 2019-07-12 王国斌 高效率长寿命啮合传动无级变速器
CN108547927A (zh) * 2018-04-22 2018-09-18 北京工业大学 一种活齿无级变速器防锁死装置
CN114586508B (zh) * 2022-02-10 2023-04-21 河源市陈氏华兴农业发展有限公司 播种速度调节机构及播种机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US724450A (en) * 1902-08-02 1903-04-07 William Newton Dumaresq Variable-speed gear.
GB162384A (en) * 1920-01-27 1921-04-27 Francis Jeremiah Healey Improvements in and relating to variable velocity ratio gearing
US1650449A (en) * 1925-04-15 1927-11-22 Jaeger Max Positive variable-speed transmission
DE3932342A1 (de) * 1989-09-28 1991-04-11 Otto Lingner Stufenlos regelbares kettenrad
FR2664956A1 (fr) * 1990-07-23 1992-01-24 Badersbach Monique Variateur continu de vitesse a chaine.
WO1999036710A1 (en) * 1998-01-15 1999-07-22 Tae Hoon Kim Continuously variable transmission and method of changing speed using the same
CN100498006C (zh) * 2004-09-21 2009-06-10 北京维艾迪汽车科技有限公司 滑片变形齿无级啮合活齿轮
CN101676584A (zh) * 2008-09-19 2010-03-24 郭质刚 活齿准无级变速装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2937665Y (zh) * 2004-09-21 2007-08-22 王国斌 滑片变形活齿啮合型机械无级变速器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US724450A (en) * 1902-08-02 1903-04-07 William Newton Dumaresq Variable-speed gear.
GB162384A (en) * 1920-01-27 1921-04-27 Francis Jeremiah Healey Improvements in and relating to variable velocity ratio gearing
US1650449A (en) * 1925-04-15 1927-11-22 Jaeger Max Positive variable-speed transmission
DE3932342A1 (de) * 1989-09-28 1991-04-11 Otto Lingner Stufenlos regelbares kettenrad
FR2664956A1 (fr) * 1990-07-23 1992-01-24 Badersbach Monique Variateur continu de vitesse a chaine.
WO1999036710A1 (en) * 1998-01-15 1999-07-22 Tae Hoon Kim Continuously variable transmission and method of changing speed using the same
CN100498006C (zh) * 2004-09-21 2009-06-10 北京维艾迪汽车科技有限公司 滑片变形齿无级啮合活齿轮
CN101676584A (zh) * 2008-09-19 2010-03-24 郭质刚 活齿准无级变速装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976280A (zh) * 2015-07-17 2015-10-14 王声堂 啮合式无级变速异型链带及链带组

Also Published As

Publication number Publication date
CN104214291B (zh) 2018-09-25
CN104214291A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2014190939A1 (zh) 活齿无级变速器及其传动特性的控制策略设计方法
KR100978773B1 (ko) 유성식 회전 일직선 운동 변환 장치
JP4814351B2 (ja) 転動ボール式二段低変速装置
CN108799316B (zh) 一种rv精密减速机偏心轴及精密减速机
US8118699B2 (en) Sprocket for chain
JP2012529606A (ja) 動力伝達装置
EP2592302B1 (en) Deceleration device
CN109664178B (zh) 通过偏心调节块改变偏心值且传动比可变的抛光机构
CN101865243A (zh) 转矩分流式齿轮系
KR20170058411A (ko) 복합 유성 마찰 드라이브
CN2802198Y (zh) 章动活齿传动减速机
JP2016217391A (ja) 波動減速機の波動発生装置
CN105508585A (zh) 一种消隙行星减速机
US10557523B2 (en) Planetary gear train of internal engagement type
CN105020344A (zh) 精密2k-v型传动装置
CN105020346A (zh) 空心轴2k-v型精密减速装置
JP4119375B2 (ja) 複合遊星装置
KR20210018816A (ko) 고정 비율 접지 또는 마찰 드라이브
CN107882928B (zh) 一种复式摆线减速器
CN113324023B (zh) 双向预紧调隙的零背隙摆线行星减速器
CN101666367A (zh) 无隙行星传动装置
CN109404493A (zh) 重载型余弦齿轮包络环面蜗杆传动
RU2405993C1 (ru) Волновая зубчатая передача
CN203962876U (zh) 一种同轴单输入双向输出大速比摆线减速器
CN202493639U (zh) 单回路低回差齿轮传动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 05/02/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14803478

Country of ref document: EP

Kind code of ref document: A1