WO2014188993A1 - Method for producing optical film - Google Patents

Method for producing optical film Download PDF

Info

Publication number
WO2014188993A1
WO2014188993A1 PCT/JP2014/063179 JP2014063179W WO2014188993A1 WO 2014188993 A1 WO2014188993 A1 WO 2014188993A1 JP 2014063179 W JP2014063179 W JP 2014063179W WO 2014188993 A1 WO2014188993 A1 WO 2014188993A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
optical film
film
range
web
Prior art date
Application number
PCT/JP2014/063179
Other languages
French (fr)
Japanese (ja)
Inventor
達希 萩原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015518229A priority Critical patent/JP6264373B2/en
Publication of WO2014188993A1 publication Critical patent/WO2014188993A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed

Definitions

  • the present invention relates to a method for producing an optical film. More specifically, the present invention relates to a method for manufacturing a thinned and widened optical film, and relates to a method for manufacturing an optical film in which generation of scratches and optical unevenness is reduced.
  • liquid crystal display devices such as liquid crystal televisions tend to be thinner and larger, and accordingly, an optical film generally used as a member such as a polarizing plate protective film is also required to be thinner and wider. ing.
  • the stretching stress applied to the film is likely to be nonuniform, and optical unevenness due to disorder of the orientation of the thermoplastic resin in the film is likely to occur.
  • a method for producing a cellulose acylate film in which the orientation of the thermoplastic resin of the optical film is eliminated by stretching in the MD direction in a high residual solvent state and then in the TD direction in a low residual solvent state.
  • the draw ratio described in the Examples of Patent Document 1 is at most about 7% in the MD direction and about 10% in the TD direction, and this method has a small draw ratio, which contributes to widening and thinning. Furthermore, with the technique disclosed in Patent Document 1, it is difficult to eliminate the disorder of the orientation of the thermoplastic resin in the film, which is easily caused by stretching at a high stretching ratio as in the present invention.
  • Production conditions for reducing the stretching stress applied to the film while increasing the stretching ratio in the MD direction include methods such as increasing the stretching temperature and increasing the amount of residual solvent during stretching. Therefore, the necessary physical properties as an optical film cannot be obtained.
  • the method of performing stretching a plurality of times by reducing the stretching ratio performed at one time can suppress a rapid increase in stretching stress without reducing the orientation of the thermoplastic resin.
  • a long apparatus is required and the production cost is greatly increased.
  • the present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is a method for producing a thinned and widened optical film, and the stretching stress is rapidly increased during stretching in the MD direction. It is intended to provide a method for producing an optical film that suppresses a significant increase and enhances the orientation of a thermoplastic resin in the film and reduces the occurrence of scratches and optical unevenness caused by a transport roller.
  • the present inventor is a method for producing a thinned and widened optical film in the process of examining the cause of the above-mentioned problem, and a specific stretching at the time of stretching in the MD direction.
  • a method for producing an optical film with reduced can be obtained.
  • the pre-stretching is performed within the range of 20 to 100% by mass of the residual solvent represented by the following formula of the web at the start of stretching, and the main stretching is performed at a residual solvent amount of 1 to 30% by mass at the start of stretching.
  • Residual solvent amount (% by mass) ⁇ (mass before heat treatment of web ⁇ mass after heat treatment of web) / (mass after heat treatment of web) ⁇ ⁇ 100
  • the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the preliminary stretching is performed at a temperature within the range of (Tg-100) to (Tg-20) ° C.
  • the main stretching is performed (Tg-10) to (T
  • Tg The method for producing an optical film according to any one of Items 1 to 3, wherein the method is performed at a temperature within a range of Tg + 100) ° C.
  • thermoplastic resin used for the optical film is selected from any of cellulose acylate, acrylic resin, and a resin in which cellulose acylate and acrylic resin are mixed.
  • optical films that are high quality and thin film / wide, but thin films that are stretched at a high draw ratio in the MD and TD directions.
  • a widened optical film is likely to be scratched due to friction of a transport roller or the like in the manufacturing process, particularly when the stretching stress increases rapidly in the initial stage of stretching in the MD direction.
  • the stress applied to the film during stretching is likely to be non-uniform in a wide film, and optical unevenness due to uneven orientation of the thermoplastic resin is likely to occur, which has been a factor hindering high production.
  • the scratches are likely to occur when the web slips on the transport roller immediately before stretching when stretching in the MD direction.
  • the solution casting method has the advantage that even a high molecular weight thermoplastic resin that easily increases the elastic modulus of the film can be cast, whereas the high molecular weight thermoplastic resin is a resin chain-to-resin chain. Since there are many entanglement points, stress concentration is likely to occur, and the resin is difficult to stretch during stretching. This difficulty in stretching the resin is considered to be the cause of increasing the stress during stretching. In addition, increasing the stretching ratio in the MD direction and increasing the stretching speed in order to reduce the film thickness and increase the production also cause the stretching stress to increase synergistically.
  • the inventor's study by performing a low-strength pre-stretching under specific conditions before the main stretching, the entanglement points between the resin chains are effectively loosened and reduced, and then the main stretching is performed at a high magnification. Even when the resin chains are stretched, stress points due to the entanglement between the resin chains are less likely to occur because the entanglement points between the resin chains are reduced in the previous step. Therefore, the rapid increase in stretching stress can be suppressed, and further weak orientation can be given by pre-stretching, so that the orientation of the resin is easily aligned by main stretching, and the occurrence of scratches and optical unevenness can be reduced. Inferred.
  • the pre-stretching is a low-magnification stretching
  • the resin is not strong enough to inhibit the resin orientation during the main stretching, but the entanglement points between the resin chains are reduced, so that the MD direction. It is presumed that the effect of the main stretching and stretching in the TD direction can be enhanced, retardation unevenness of the film width can be suppressed, and uniform optical characteristics can be imparted.
  • the method for producing an optical film of the present invention is a method for producing an optical film in which an optical film having a thickness of 10 to 40 ⁇ m and a width of 1.4 m or more is produced by a solution casting method.
  • the web peeled from the stretched support is pre-stretched within a range of 1.01 to 1.10 times in the MD direction, and further stretched in the MD direction.
  • the main stretching is performed within a range of 1.15 to 2.50 times as a draw ratio from the viewpoint of thinning. Since the entanglement points between the resin chains are reduced by the preliminary stretching according to the present invention, even if the main stretching is performed at a high stretching ratio as in the above range, a low stretching stress can be maintained, and scratches caused by the transport roller. And the occurrence of optical unevenness can be reduced. Further, the preliminary stretching is performed within the range of 20 to 100% by mass of the residual solvent at the start of stretching, and the main stretching is performed within the range of 1 to 30% by mass of the residual solvent at the start of stretching.
  • the preliminary stretching is performed at a temperature within the range of (Tg-100) to (Tg-20) ° C. when the glass transition temperature of the optical film is Tg, and the main stretching is performed at (Tg-10) to Performing within the range of (Tg + 100) ° C. is preferable because it suppresses a rapid increase in stretching stress, increases the orientation of the resin in the film, and reduces the occurrence of scratches and optical unevenness due to the transport roller.
  • the temperature at the time of pre-stretching is within the above range, the drying speed of the solvent is high, the possibility of foaming due to volatilization of the solvent is low, and a special heating device is not required, so that the productivity is improved.
  • the stretching span of the preliminary stretching is preferably 2 m or less. From the viewpoint of equipment, it is preferable that the stretch span is as small as possible. However, if the span is too short, it becomes difficult to place the stretch span.
  • the stretching span refers to a length in which the film is stretched in the MD direction, and specifically refers to a length in which the film is conveyed to the rollers in a non-contact manner, that is, a distance between the rollers.
  • a clip tenter or the like when used for stretching, it means the interval between the clips.
  • the stretching span of the main stretching is preferably 2 m or more. This is because if the stretching span is short with respect to the film width, the width shrinkage is restricted, and there is a concern that uniform stretching cannot be performed.
  • the film is preliminarily stretched in the MD direction, followed by main stretching, and then stretched in the range of 1.3 to 3.0 times in the TD direction for thinning and widening. It is preferable from the viewpoint of obtaining a thin film and a wide optical film. Moreover, the elasticity modulus of MD direction of a film and TD direction improves by extending
  • thermoplastic resin used for the optical film is selected from any of cellulose acylate, acrylic resin, and a resin in which cellulose acylate and acrylic resin are mixed. From the viewpoint of obtaining. Furthermore, since the effect of the present invention is more easily manifested when the thermoplastic resin is an acrylic resin, it is suitable for application to an acrylic resin film.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the method for producing an optical film of the present invention is a method for producing an optical film in which an optical film having a thickness of 10 to 40 ⁇ m and a width of 1.4 m or more is produced by a solution casting method.
  • the web peeled from the extended support is pre-stretched in the range of 1.01 to 1.10 times in the MD direction, and further stretched in the MD direction.
  • the optical film manufactured by the manufacturing method of the optical film of the present invention is referred to as “the optical film of the present invention” in the present application.
  • Preliminary stretching refers to a low-magnification stretching operation performed before “main stretching” for stretching at a high magnification, and specifically, a range of 1.01 to 1.10 times in the MD direction. This is the stretching performed inside.
  • FIG. 1 is a schematic view showing an example of a production apparatus for carrying out the method for producing an optical film of the present invention.
  • the optical film manufacturing apparatus 1 includes a casting apparatus 101, a preliminary stretching apparatus 102 in the MD direction, a main stretching apparatus 103 in the MD direction, and stretching in the TD direction.
  • the apparatus 104, the drying apparatus 105, and the winding apparatus 106 are provided, and the film (web) 3 formed by the casting apparatus 101 is transported, and preliminary stretching is performed in the MD direction by the preliminary stretching apparatus 102.
  • the main stretching apparatus 103 performs high-stretching in the MD direction in the same manner.
  • the film is stretched in the TD direction by a stretching device 104 in the TD direction, dried (heat treated) by a drying device 105, and wound as an optical film by a winding device 106.
  • the web 3 may be dried by disposing a drying device between the first stretching device 102 and the second stretching device 103.
  • the cast film refers to a film in which a dope in which a resin, an additive or the like is dissolved is cast on a cast support, formed into a film, and peeled.
  • the casting apparatus 101 is a metal endless belt having a mirror-finished surface (a metal cylindrical drum having a mirror-finished surface instead of an endless belt) 101a as a support, and a resin solution.
  • the die 101b for casting the (dope) 2 on the endless belt 101a, the heating device 101c for removing the solvent from the dope 2 cast on the endless belt 101a, and the endless belt 101a were formed.
  • the endless belt 101a is wound around a driving roller 101a1 and a driven roller 101a2, and can travel in the direction of an arrow in the figure.
  • the peeling roller 4 is disposed at an end portion on the side where the dope 2 is cast on the endless belt 101a.
  • the casting apparatus 101 includes a casting process in which the resin solution (dope) 2 is cast on the endless belt 101a, and a casting film (web) 3 of the dope 2 formed on the endless belt 101a is peeled from the endless belt 101a. The peeling process to perform is performed.
  • the dope 2 When the dope 2 is cast on the endless belt 101a from the die 101b, the dope 2 gels on the endless belt 101a to form a cast film (web) 3.
  • the web 3 formed on the endless belt 101 a is peeled from the endless belt 101 a by the peeling roller 4.
  • the thickness of the web 3 on the endless belt 101a can be changed to various values so that the thickness of the optical film wound up by the winding device 106 becomes a predetermined thickness.
  • the thickness of the web 3 on the endless belt 101a is adjusted according to the casting amount of the dope 2, the traveling speed of the endless belt 101a, and the like.
  • the heating device 101c includes a drying box 101c1, a first heating air supply device 101d disposed in the drying box 101c1, a second heating air supply device 101e, and an exhaust port 101f.
  • the first heating air supply device 101d and the second heating air supply device 101e include heating air supply pipes 101d1 and 101e1 and headers 101d2 and 101e2, respectively.
  • the temperature of the web 3 on the endless belt 101a on the first heating air supply device 101d side and the temperature of the web 3 on the endless belt 101a on the second heating air supply device 101e side are based on the time required for evaporation of the solvent, respectively.
  • the degree of dispersion of fine particles in the dope 2, productivity, etc. for example, a range of ⁇ 5 ° C. to 70 ° C. is preferable, and a range of 0 ° C. to 60 ° C. is more preferable. .
  • the wind pressure of the heating air supplied from the first heating air supply device 101d and the second heating air supply device 101e is, for example, 50 to 50 in consideration of the uniformity of evaporation of the solvent, the degree of dispersion of the fine particles in the dope 2, and the like. A range of 5000 Pa is preferred.
  • the first heating air supply device 101d and the second heating air supply device 101e may supply only the heating air having a constant temperature, or stepwise the heating air having a plurality of temperatures along the traveling direction of the endless belt 101a. You may supply.
  • the heating device 101c shown in FIG. 1 is for removing the solvent by heating the web 3 with heating air, but is not limited to this, for example, a device for heating the web 3 with an infrared heater, or the back surface of the endless belt 101a. It is also possible to heat the web 3 from the back side by spraying heated air.
  • the time from casting the dope 2 on the endless belt 101a to peeling the web 3 from the endless belt 101a varies depending on the thickness of the manufactured optical film, the type of solvent, etc., but the endless belt 101a For example, the range of 0.5 to 5 minutes is preferable in consideration of good peelability from the surface.
  • the endless belt 101a preferably has a mirror-finished surface, and for example, a metal endless belt whose surface is plated with stainless steel or casting is preferably used.
  • the width of the endless belt 101a varies depending on the size of the optical film to be manufactured, but is preferably in the range of 1700 mm to 2700 mm, for example.
  • the width for casting the dope 2 is preferably in the range of 80 to 99% of the width of the endless belt 101a, for example.
  • the preliminary stretching device 102 includes an outer box 102a having a dry air intake port 102c and a discharge port 102b, and a stretching device 102d placed in the outer box 102a.
  • the preliminary stretching apparatus 102 stretches the web 3 peeled from the endless belt 101a in the MD direction.
  • the web 3 can be stretched in the MD direction by making a difference in peripheral speed between the transport rollers.
  • the drying air inlet 102b and the outlet 102c may be reversed.
  • the solvent removing means is not particularly limited, and other examples include means for heating with an infrared heater, for example.
  • the drying in the pre-stretching apparatus 102 may be performed at a constant temperature, or may be divided into three to four stages of temperature and may be divided into several stages of temperature.
  • a conventionally known method typically a heater heating method and an oven heating method, can be used.
  • the heater heating method is a method in which a heater installed between a low-speed roller group and a high-speed roller group instantaneously raises the temperature to a stretching temperature and stretches with a relatively short stretching span.
  • the distance between the low speed roller group and the high speed roller group is preferably as short as possible.
  • the stretching span is 2 m or less, and the conveying roller is installed, and more preferably within the range of 0.2 to 1.5 m. From the viewpoint of equipment, it is preferable that the stretch span is as small as possible.
  • the stretching span refers to a length in which the film is stretched in the MD direction, and specifically refers to a length in which the film is conveyed to the rollers in a non-contact manner, that is, a distance between the rollers.
  • the low-speed roller group it is preferable to preheat to a temperature as close as possible to the stretching temperature as long as film adhesion and scratches do not occur.
  • the inside of the pre-stretching apparatus 102 is preferably a floating that is stretched while being transported in a non-contact manner while the film is floated so that the hot air blown from nozzles arranged above and below the film passage does not come into contact with the nozzle.
  • the upstream side from the entrance and the downstream side from the exit of the prestretching apparatus 102 are generally held and conveyed by a suction roller and a guide roller at a holding angle capable of stably conveying the film.
  • the heater heating method is advantageous in that the amount of width shrinkage can be kept small, which is advantageous for forming a wide film, and that it can be installed in a relatively small space.
  • the oven heating method has high uniformity of optical characteristics. In addition, there are advantages such as less scratches and adhesion failure.
  • the MD stretching method is appropriately selected in consideration of materials to be used and necessary physical properties.
  • the stretching device 103 includes an outer box 103a having a dry air intake port 103c and a discharge port 103b, and a stretching device 103d placed in the outer box 103a.
  • the main stretching apparatus 103 performs a stretching process in which the web 3 stretched by the preliminary stretching apparatus 102 is stretched at a higher stretch ratio in the MD direction.
  • the stretching device 103d is not particularly limited. From the viewpoint of versatility and ease of operation, the stretching device 103d includes, for example, a low-speed roller group and a high-speed roller group as conveyance rollers similar to the pre-stretching device, and the peripheral speed of the roller.
  • an apparatus that stretches the web 3 in the MD direction may be used, and other stretching apparatuses include a clip tenter and a pin tenter, and can be selected and used as necessary.
  • the main stretching step is preferably a method of stretching the web 3 that has been dried to some extent by making a difference in peripheral speed between the conveying rollers, or a method and apparatus of stretching by a clip tenter.
  • the present stretching device 103 has a dry air intake port 103c and a discharge port 103b. This may be reversed. Although the case where heated air is used as the solvent removing means in the stretching apparatus 103 is shown, the solvent removing means is not particularly limited, and other examples include means for heating with an infrared heater, for example.
  • the stretching span of the main stretching is preferably 2 m or more. This is because if the stretching span is short with respect to the film width, the width shrinkage is restricted, and there is a concern that uniform stretching cannot be performed.
  • the drawing span is preferably in the range of 2 to 4 m in view of designing the equipment compactly, and more preferably in the range of 2.5 to 3.5 m.
  • the drying conditions in the stretching apparatus 103 vary depending on the residual solvent amount of the web 3 at the start of stretching by the second stretching apparatus 103, but taking into consideration drying time, shrinkage unevenness, stability of the amount of stretching, and the like. In addition, it achieves reasonable stretching, and at a constant temperature from the viewpoint of ensuring good dryness, flatness and film thickness uniformity without voids in the manufactured optical film, and ensuring elastic modulus and optical properties. It may be dried, or may be divided into three to four stages of temperature and dried in several stages.
  • the TD stretching device 104 includes an outer box 104a having a dry air intake port 104c and a discharge port 104b, and a TD stretching device 104d placed in the outer box 104a.
  • the TD stretching device 104 performs a stretching process of additionally stretching the web 3 stretched by the stretching device 103 in the TD direction.
  • the TD stretching device 104d is preferably a tenter stretching device, and the tenter to be used is not particularly limited, and examples thereof include a clip tenter and a pin tenter from the viewpoint of versatility and ease of operation. Can be selected and used. In particular, it is preferable to use a clip tenter.
  • the dry air intake 104c and the discharge port 104b may be reversed.
  • the solvent removal means is not particularly limited, and other examples include means for heating with an infrared heater, for example.
  • the drying conditions in the TD stretching device 104 vary depending on the residual solvent amount of the web 3 at the start of stretching by the TD stretching device 104, but considering the drying time, shrinkage unevenness, stability of the stretch amount, etc. Also, it can be stretched without difficulty and dried at a constant temperature from the viewpoint of ensuring good dryness, flatness and film thickness uniformity without voids in the manufactured optical film, and ensuring elastic modulus and optical properties. Alternatively, it may be divided into three to four stages of temperature and may be dried in several stages of temperature.
  • the drying device 105 includes a drying box 105a having a drying air intake port 105c and a discharge port 105b, an upper conveyance roller 105d that conveys the web 3, and a lower conveyance roller 105e.
  • the drying apparatus 105 performs a heat treatment step of drying the web 3 stretched in the MD direction in the pre-stretching, main stretching, and TD directions.
  • the upper conveyance roller 105d and the lower conveyance roller 105e are a set of upper and lower, and are composed of a plurality of sets.
  • the number of transport rollers disposed in the drying device 105 varies depending on the drying conditions, the drying method, the length of the optical film 8 to be manufactured, and the like, and is appropriately set.
  • the upper conveyance roller 105d and the lower conveyance roller 105e are free rotation rollers that are not rotated by a drive source.
  • a transport roller that freely rotates is not used between the drying device 105 and the winding device 106, but usually one to several transport drive rollers (rollers that are rotationally driven by a drive source).
  • the purpose of the driving roller for conveyance is to convey the web 3 by its drive, so the conveyance of the web 3 and the rotation of the driving roller are synchronized by nip, suction (air suction), or the like. With the mechanism.
  • the drying device 105 may dry using heated air, infrared light, or the like alone, or may dry using heated air and infrared light in combination. It is preferable to use heated air from the viewpoint of simplicity.
  • FIG. 1 shows a case where heated air is used.
  • the drying temperature varies depending on the amount of residual solvent in the web at the time of entering the drying process, but considering the drying time, unevenness of shrinkage, stability of the amount of expansion and contraction, etc., for example, the residual solvent in the range of 30 to 180 ° C. What is necessary is just to select suitably and decide by quantity. Further, it may be dried at a constant temperature, or may be divided into three to four stages of temperature and may be divided into several stages of temperature.
  • the amount of residual solvent in the web 3 after the drying process in the drying apparatus 104 is 0.01 to 0.5% by mass in consideration of the load of the drying process (heat treatment process), the dimensional stability during storage and the expansion / contraction rate. The range of is preferable.
  • the web 3 formed by the casting apparatus 101 is gradually removed of the solvent by the drying apparatus 105 and the total residual solvent amount becomes, for example, 2% by mass or less, the web 3 is called the optical film 8. There is.
  • the winding device 106 winds the optical film 8 having a predetermined residual solvent amount in a roll shape around the core to a required length by the drying device 105.
  • the temperature at the time of winding is preferably cooled to room temperature in order to prevent scratches and loosening due to shrinkage after winding.
  • the winder to be used can be used without any particular limitation, and may be a commonly used one, such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method with a constant internal stress. Can be wound up.
  • the casting step of casting the resin solution 2 on the metal support 101a and the web 3 formed on the support 101a are removed from the support 101a.
  • the manufacturing method of the optical film by the solution casting method is provided, which includes a heat treatment step for drying the web 3 and a winding step for winding the dried web 3 as an optical film.
  • Such a method for producing an optical film by the solution casting method is capable of using a high molecular weight resin capable of increasing the elastic modulus, viewpoints of suppression of coloring, suppression of foreign matter defects, suppression of optical defects such as die lines, and the like. To a preferable method for producing an optical film.
  • the optical film having a thickness in the range of 10 to 40 ⁇ m. Is to be manufactured.
  • the dissolving step is a step of dissolving a thermoplastic resin and other additives in an organic solvent mainly containing a good solvent for the thermoplastic resin while stirring the thermoplastic resin and other additives to form a dope, or a thermoplastic resin solution. Depending on the case, it is the process of mixing dope which is a main solution by mixing other additive solutions.
  • thermoplastic resin For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
  • the total thermoplastic resin in the dope is preferably in the range of 10 to 45% by mass.
  • a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml.
  • a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml is used for the aggregate remaining at the time of particle dispersion and the aggregate generated when the main dope is added. Only the aggregate can be removed. In the main dope, the concentration of particles is sufficiently thinner than that of the additive solution, so that aggregates do not stick together at the time of filtration and the filtration pressure does not increase suddenly.
  • the acrylic particle additive liquid is added from the stock kettle to the main dope dissolving kettle.
  • the main dope is filtered by a main filter, and an ultraviolet absorbent additive solution or the like may be further added in-line thereto.
  • the main dope may contain about 10 to 50% by weight of recycled material. Since the return material contains an additive, in that case, it is preferable to control the amount of additive added in accordance with the amount of return material added.
  • the return material is a product obtained by finely pulverizing an optical film, which is produced when an optical film is formed, and is obtained by cutting off both sides of the film, or an optical film original that has been speculated out by scratches, etc. .
  • thermoplastic resin and optionally pelletized by kneading additives may be preferably used.
  • a solvent useful for forming a dope when the optical film of the present invention is produced by a solution casting method is, for example, an organic solvent.
  • an organic solvent any organic solvent can be used without limitation as long as it can simultaneously dissolve a thermoplastic resin and other additives.
  • methylene chloride methylene chloride
  • non-chlorinated organic solvent methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone Ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3 -Hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate, and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a dope composition in which a thermoplastic resin and an additive are dissolved at least 10 to 45 mass% in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a solvent containing methylene chloride a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump), and is supported by an endless metal belt such as a stainless steel belt or a rotating metal drum.
  • a liquid feed pump for example, a pressurized metering gear pump
  • an endless metal belt such as a stainless steel belt or a rotating metal drum.
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • the web on the support after casting is preferably dried on the support in an atmosphere of ⁇ 5 to 100 ° C. More preferably, it is in the range of 40 to 70 ° C.
  • a peeling process is a process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably in the range of 0 to 40 ° C, more preferably in the range of 5 to 30 ° C.
  • the residual solvent amount of the web 3 (the residual solvent amount of the web 3 at the time of peeling) is the peelability and peeling of the web 3 from the endless belt 101a.
  • the range of 20 to 100% by mass is preferable, and the range of 35 to 90% by mass is preferable.
  • the range is more preferable, and the range of 45 to 80% by mass is further preferable.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is in the range of 20 to 150% by mass depending on the strength of drying conditions, the length of the metal support, etc. in addition to the reasons described above.
  • the web is too soft, the flatness at the time of peeling is impaired, and slippage and vertical stripes due to peeling tension are likely to occur. Therefore, the amount of residual solvent at the time of peeling is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (mass before heat treatment of web ⁇ mass after heat treatment of web) / (mass after heat treatment of web) ⁇ ⁇ 100
  • the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • peel tension due to the tension acting on the web 3 when peeling the web 3 from the endless belt 101a (peeling tension), and the tension acting on the web 3 when transporting the web 3 after peeling (conveying tension),
  • the web 3 is stretched in the conveyance direction (MD direction) of the web 3.
  • the peel tension and the transport tension are preferably in the range of 20 to 400 N / m, for example.
  • the peeling tension when peeling the metal support from the film is preferably at a tension of 200 N / m or less when wrinkles are likely to occur at the time of peeling, and more preferably in the range of the minimum tension that can be peeled to 175 N / m. Then, it is preferable to peel in the range of the minimum tension to 150 N / m, but it is particularly preferable to peel in the range of the minimum tension to 100 N / m.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 5 to 70 ° C., more preferably in the range of 0 to 60 ° C., and in the range of 15 to 60 ° C. Most preferred.
  • the pre-stretching according to the present invention is characterized in that it is performed within a range of 1.01 to 1.10 times in the MD direction. Within this range, there is no orientation of the resin that is so strong as to affect the orientation control of the resin in the main stretching, and the resin chains are also easily loosened. When the pre-stretching is performed at a ratio exceeding 1.10 times, the resin chains are surely loosened, but the orientation is likely to be non-uniform, and the non-uniformity of the orientation of the resin is likely to be expanded by the main stretching. It is necessary.
  • the web conveyance speed during pre-stretching according to the present invention is preferably 10 to 100 m / min, more preferably 15 to 100 m / min in terms of productivity and breaking.
  • the preferred stretching ratio is as described above.
  • the product value of the magnification is preferably in the range of 1.5 to 2.5 times. By performing stretching within the above range, it is preferable from the viewpoint of expression of the effect of the present invention and uniform stretching treatment, and the product value is particularly preferably in the range of 1.5 to 2.0 times. preferable.
  • the pre-stretching temperature is preferably a temperature within the range of (Tg-100) to (Tg-10) ° C., where Tg (° C.) is the glass transition temperature of the optical film. ) To (Tg ⁇ 20) ° C. is more preferable. If the stretching temperature is within the above range, there is no orientation of the resin that is strong enough to affect the orientation control of the resin in the main stretching, and the resin chain is also easily loosened.
  • the glass transition temperature Tg (° C.) of the film was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer) and determined according to JIS K7121 (1987).
  • the intermediate glass transition temperature (Tmg) was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer) and determined according to JIS K7121 (1987).
  • the residual solvent amount of the web 3 when the web 3 is started to be stretched by the prestretching apparatus 102 (the residual solvent amount of the web 3 at the start of stretching by the prestretching apparatus 102)
  • the residual solvent amount (% by mass) represented by the formula is preferably within the range of 20 to 100% by mass, more preferably within the range of 21 to 80% by mass, and particularly preferably 30 to 80% by mass. Range.
  • the stretching ratio of the main stretching is preferably in the range of 1.15 to 2.50 times from the viewpoint of thinning. Since the entanglement between the resin chains is effectively loosened by the pre-stretching according to the present invention, even if the main stretching is performed at a high stretching ratio as in the above range, it can be kept at a low stretching stress and depends on the transport roller. Generation of scratches and optical unevenness can be reduced.
  • the web conveyance speed during the main stretching according to the present invention is preferably 10 to 100 m / min, more preferably 15 to 100 m / min in terms of productivity and breaking.
  • the amount of residual solvent at the time of the main stretching may be within a range of 1 to 30% by mass, and it can be stretched at a desired stretching ratio without foaming during heating, and has flatness and optical properties. An optical film with high uniformity can be obtained.
  • the residual solvent amount is preferably in the range of 3 to 18% by mass.
  • the glass transition temperature of the optical film is Tg (° C.)
  • performing the main stretching within the range of (Tg ⁇ 10) to (Tg + 100) ° C. suppresses a rapid increase in stretching stress
  • the orientation of the resin in the film can be increased, and the occurrence of scratches and optical unevenness by the transport roller can be reduced, which is preferable.
  • it is in the range of Tg to (Tg + 80) ° C.
  • the stretching stress during the main stretching process is preferably in the range of 1 to 10 MPa, and the stretching stress is preferably in the range of 2 to 5 MPa while reducing the occurrence of scratches and uniforming the thermoplastic resin. This is particularly preferable from the viewpoint of promoting proper orientation.
  • the stretching stress can be measured by the following method.
  • the optical film was cut out at 120 mm (MD: longitudinal direction) ⁇ 10 mm (TD: lateral direction), and the sample was left in an environment of 23 ⁇ 2 ° C. and 55 ⁇ 5% RH for 24 hours, and then 23 ° C./55%.
  • the film is pulled in the MD direction at a chuck length of 50 mm and a speed of 50 mm / min in a thermostatic chamber held in RH, and the tensile load at that time is divided by the film cross-sectional area (that is, film width ⁇ film thickness).
  • Directional stretching stress is required.
  • TD stretching step As a preferred embodiment of the present invention, after pre-stretching and main-stretching in the MD direction, stretching in the range of 1.3 to 3.0 times in the TD direction may reduce the thickness and width of the optical film. Therefore, it is also preferable from the viewpoint of increasing the elastic modulus in the MD direction and TD direction of the optical film. More preferably, it is in the range of 1.5 to 2.5 times from the viewpoint of maintaining physical properties such as elastic modulus as an optical film.
  • the width of the web is a value measured with a C-type JIS grade 1 steel scale.
  • TD stretching step when a tenter stretching apparatus is used, it is preferable to use an apparatus that can independently control the holding position of the film by the tenter on the left and right. It is also preferable to create compartments with intentionally different temperatures to improve planarity. It is also preferable to provide a neutral zone between different temperature zones so that the zones do not interfere with each other.
  • Biaxial stretching also includes stretching in one direction and contracting the other while relaxing the tension.
  • the residual solvent amount of the web immediately before the web is conveyed to the TD stretching device 104 is preferably less than 20% by mass, and more preferably in the range of 1 to 10% by mass. If it is in the said range, planarity and optical uniformity can be improved and it is preferable.
  • the temperature during stretching in the TD direction is specifically preferably within the range of (Tg-10) to (Tg + 100) ° C. when the glass transition temperature of the optical film is Tg (° C.). , (Tg-5) to (Tg + 100) ° C. is preferable.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the TD stretching process is preferably within ⁇ 5 ° C., and ⁇ 2 It is more preferably within 1 ° C., and further preferably within 1 ° C.
  • the web conveyance speed during stretching in the TD direction according to the present invention is preferably in the range of 15 to 200 m / min, and more preferably in the range of 15 to 180 m / min in terms of productivity and breaking.
  • the heat treatment step is a step of drying (heat treatment) while alternately passing the stretched web through rollers arranged in a drying apparatus.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from a residual solvent amount of about 10% by mass or less. Throughout the whole, the drying is preferably carried out in the range of approximately 30 to 250 ° C., particularly preferably in the range of 40 to 160 ° C.
  • the winding process is a process in which the amount of residual solvent in the web becomes 2% by mass or less and is wound as an optical film by a winder, and the dimensional stability is achieved by setting the residual solvent amount to 0.05% by mass or less. Can be obtained. In particular, it is preferable to take up in the range of 0.00 to 0.05% by mass.
  • a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
  • the optical film of the present invention is preferably a long film.
  • the optical film has a thickness of about 100 m to 5000 m, and is usually in the form of a roll.
  • the width of the film is 1.4 m or more, which is necessary for obtaining a wide optical film, preferably 1.6 to 3 m, and more preferably 1.8 to 3 m.
  • the film thickness of the optical film of the present invention is characterized by being in the range of 10 to 40 ⁇ m in consideration of the use as a protective film for a thin polarizing plate, more preferably 15 to 35 ⁇ m, and 20 It is particularly preferable that the thickness is 35 ⁇ m.
  • the film thickness is within the above range, it is possible to meet the demand for thinning, and to satisfy physical properties required for an optical film.
  • the optical film manufactured by the method as described above is an optical film having low hygroscopicity, high transparency, and excellent weather resistance.
  • the optical film of the present invention contains a thermoplastic resin.
  • the “thermoplastic resin” refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into a desired shape.
  • thermoplastic resin used in the present invention is preferably manufactured easily and optically transparent.
  • transparent means that the total light transmittance of visible light is 60% or more, preferably 80% or more, and particularly preferably 90% or more.
  • cellulose acylate type resins such as a cellulose (di, tri) acetate, a cellulose acetate propionate, a cellulose acetate butyrate
  • Acrylic type such as a polymethylmethacrylate Resin
  • Polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polypropylene terephthalate, polyphenylene sulfide, polyphenylene oxide, polycaprolactone, polycarbonate resin, norbornene resin, monocyclic cyclic olefin resin, cyclic conjugated diene series Resins, vinyl alicyclic hydrocarbon resins, and cyclic polyolefin resins such as hydrides thereof, polyarylate resins, polysulfones (also polyether sulfones) Resin), polyethylene, polypropylene, ABS resin, polylactic acid, cellophane, polyvinylate, Polyester resin such as polyethylene terephthalate, poly
  • a cellulose acylate resin (hereinafter also referred to as cellulose acylate), an acrylic resin (hereinafter also referred to as acrylic resin), or a mixed resin thereof can improve the strength of the film and adjust optical properties. ,preferable.
  • the optical film of the present invention preferably contains cellulose acylate as a main component, and is suitable as an optical film for polarizing plate protective films and retardation films.
  • a main component means that the content rate of the cellulose acylate in the said optical film is 55 mass% or more. Preferably it is 70 mass% or more.
  • the cellulose acylate according to the present invention preferably has an acyl group having 2 to 4 carbon atoms.
  • the acyl group having 2 to 4 carbon atoms include an acetyl group, a propionyl group, and a butanoyl group.
  • the ⁇ -1,4-bonded glucose unit constituting cellulose has free hydroxy groups at the 2nd, 3rd and 6th positions.
  • Cellulose acylate is a polymer obtained by acylating part or all of these hydroxy groups with an acyl group.
  • the total acyl group substitution degree means the ratio in which all the hydroxy groups of cellulose located at the 2nd, 3rd and 6th positions are acylated per one glucose unit (100% acylation has a degree of substitution of 3). .
  • acyl groups include acetyl, propionyl, butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl, octadecanoyl, Examples thereof include an isobutanoyl group, a tert-butanoyl group, a cyclohexanecarbonyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, and a cinnamoyl group.
  • an acetyl group, a propionyl group, a butanoyl group, a dodecanoyl group, an octadecanoyl group, a tert-butanoyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, a cinnamoyl group, and the like are more preferable, and an acetyl group is particularly preferable.
  • a propionyl group and a butanoyl group (when the acyl group has 2 to 4 carbon atoms);
  • Specific cellulose acylates include at least selected from cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose acetate propionate benzoate, cellulose propionate, and cellulose butyrate.
  • One type is preferable.
  • cellulose acylates are cellulose (di, tri) acetate, cellulose acetate propionate and cellulose acetate butyrate, and particularly preferred cellulose acylates are cellulose (di, tri) acetate and cellulose acetate propioate. Nate.
  • cellulose triacetate those having an average degree of acetylation (bound acetic acid amount) in the range of 54.0 to 62.5% are preferably used, and more preferably, the average degree of acetylation is in the range of 58.0 to 62.5%. Of cellulose triacetate.
  • Cellulose diacetate preferably has an average degree of acetylation (bound acetic acid amount) in the range of 51.0% to 56.0%.
  • Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. .
  • Cellulose acetate propionate or cellulose acetate butyrate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y Those satisfying the following formulas (I) and (II) are preferred.
  • Formula (I) 2.0 ⁇ X + Y ⁇ 2.95
  • Formula (II) 0 ⁇ X ⁇ 2.5
  • the method for measuring the degree of substitution of the acyl group can be measured according to ASTM-D817-96.
  • the weight average molecular weight Mw of the cellulose acylate is preferably in the range of 80000 to 300000, more preferably in the range of 120,000 to 200000, from the viewpoint of controlling the elastic modulus and stretching stress. Within the above range, it is easy to control the elastic modulus by stretching during solution casting film formation, and it is easy to control the stress during break stretching of the film.
  • the number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 30,000 to 150,000 because the obtained cellulose acylate film has high mechanical strength. Further, cellulose acylate having a number average molecular weight of 40,000 to 100,000 is preferably used.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) of the cellulose acylate is preferably in the range of 1.4 to 3.0.
  • the weight average molecular weight Mw and number average molecular weight Mn of the cellulose acylate were measured using gel permeation chromatography (GPC).
  • the measurement conditions are as follows.
  • the raw material cellulose of cellulose acylate used in the present invention may be wood pulp or cotton linter, and wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • Cellulose acylates made from these can be used in appropriate mixture or independently.
  • the ratio of cellulose acylate derived from cotton linter: cellulose acylate derived from wood pulp (conifer): cellulose acylate derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50. : 50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30 it can.
  • the cellulose acylate according to the present invention can be produced by a known method.
  • cellulose is esterified by mixing cellulose as a raw material, a predetermined organic acid (such as acetic acid or propionic acid), an acid anhydride (such as acetic anhydride or propionic anhydride), and a catalyst (such as sulfuric acid).
  • a predetermined organic acid such as acetic acid or propionic acid
  • an acid anhydride such as acetic anhydride or propionic anhydride
  • a catalyst such as sulfuric acid
  • the reaction proceeds until the triester is formed.
  • the three hydroxy groups of the glucose unit are substituted with an organic acid acyl acid.
  • a mixed ester type cellulose acylate such as cellulose acetate propionate or cellulose acetate butyrate can be produced.
  • cellulose acylate having a desired degree of acyl substitution is synthesized by hydrolyzing cellulose triester. Thereafter, cellulose acylate is completed
  • the cellulose acylate according to the present invention has a pH of 6 when charged in 20 ml of pure water (electric conductivity 0.1 ⁇ S / cm or less, pH 6.8) and stirred in a nitrogen atmosphere at 25 ° C. for 1 hr.
  • the electric conductivity is preferably in the range of 1 to 100 ⁇ S / cm.
  • the optical film of the present invention is preferably a film containing an acrylic resin.
  • the acrylic resin is a polymer of acrylic acid ester or methacrylic acid ester, and includes copolymers with other monomers.
  • the acrylic resin used in the present invention includes a methacrylic resin.
  • the resin is not particularly limited, but a resin having a methyl methacrylate unit content in the range of 50 to 99% by mass and other monomer units copolymerizable therewith is preferably in the range of 1 to 50% by mass. .
  • alkyl methacrylates having 2 to 18 alkyl carbon atoms alkyl acrylates having 1 to 18 carbon atoms
  • amides such as acryloylmorpholine and N, N-dimethylacrylamide.
  • ⁇ , ⁇ -unsaturated acid such as acrylic acid or methacrylic acid, maleic acid
  • examples include unsaturated group-containing divalent carboxylic acids such as fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, and ⁇ and ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile.
  • two or more monomers can be used in combination.
  • the acrylic resin of the present invention may have a ring structure, specifically, a lactone ring structure, a glutaric anhydride structure, a glutarimide structure, an N-substituted maleimide structure and a maleic anhydride structure, a pyran ring. Structure is mentioned.
  • alkyl acrylate having 1 to 18 carbon atoms are methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate n-butyl acrylate, s-butyl acrylate, t-butyl acrylate, isopentyl acrylate, Examples thereof include neopentyl acrylate, t-pentyl acrylate, and 2-ethylhexyl acrylate.
  • alkyl methacrylate having 1 to 18 carbon atoms include ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, isopentyl methacrylate, neopentyl Examples include methacrylate, t-pentyl methacrylate, 2-ethylhexyl methacrylate, and the like.
  • isopropyl acrylate, t-butyl acrylate, isopropyl methacrylate, t-butyl methacrylate and the like can be mentioned.
  • vinyl monomer having an amide group examples include acrylamide, N-methylacrylamide, N-butylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, acryloylmorpholine, N-hydroxyethylacrylamide, acryloylpyrrolidine, Acryloylpiperidine, methacrylamide, N-methylmethacrylamide, N-butylmethacrylamide, N, N-dimethylmethacrylamide, N, N-diethylmethacrylamide, methacryloylmorpholine, N-hydroxyethylmethacrylamide, methacryloylpyrrolidine, methacryloylpiperidine, N-vinylformamide, N-vinylacetamide, vinylpyrrolidone and the like can be mentioned.
  • acryloylmorpholine, N, N-dimethylacrylamide, N-butylacrylamide, and vinylpyrrolidone are used.
  • methacrylic acid ester or acrylic acid ester having an alicyclic hydrocarbon group having 5 to 22 carbon atoms in the ester portion include, for example, cyclopentyl acrylate, cyclohexyl acrylate, methyl cyclohexyl acrylate, trimethylcyclohexyl acrylate, Norbornyl acrylate, norbornyl acrylate, cyano norbornyl acrylate, isobornyl acrylate, bornyl acrylate, menthyl acrylate, fentyl acrylate, adamantyl acrylate, dimethyladamantyl acrylate, tricycloacrylate [5.2 .1.0 2,6 ] dec-8-yl, tricyclo [5.2.1.0 2,6 ] dec-4-methyl acrylate, cyclodecyl acrylate, cyclopentyl methacrylate, cyclohex methacrylate Sil, methyl cyclohexyl meth
  • isobornyl methacrylate dicyclopentanyl methacrylate, dimethyladamantyl methacrylate and the like can be mentioned.
  • N-substituted maleimide examples include N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide, N-butylmaleimide, Ni-butylmaleimide, Nt-butylmaleimide, N-laurylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N-phenylmaleimide, N- (2-chlorophenyl) maleimide, N- (4-chlorophenyl) maleimide, N- (4-bromophenyl) phenylmaleimide, N -(2-methylphenyl) maleimide, N- (2-ethylphenylmaleimide), N- (2-methoxyphenyl) maleimide, N- (2,4,6-trimethylphenyl) maleimide, N- (4-benzylphenyl) Maleimide, N- (2,4,6-tribromoph Yl
  • N-methylmaleimide N-cyclohexylmaleimide, N-phenylmaleimide and the like can be mentioned.
  • the acrylic resin used in the acrylic resin-containing film according to the present invention has a weight average molecular weight (Mw) in the range of 100,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when producing the film. Preferably, it is in the range of 300,000 to 500,000.
  • the weight average molecular weight of the acrylic resin according to the present invention can be similarly measured by the gel permeation chromatography.
  • the method for producing the acrylic resin in the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resins can be used as the acrylic resin according to the present invention.
  • Delpet 60N, 80N above, manufactured by Asahi Kasei Chemicals Co., Ltd.
  • Dialal BR52, BR80, BR83, BR85, BR88 aboveve, manufactured by Mitsubishi Rayon Co., Ltd.
  • Parapet HR-S manufactured by Kuraray Co., Ltd.
  • Two or more acrylic resins can be used in combination.
  • the optical film of the present invention is also preferably used as a thermoplastic resin by mixing an acrylic resin and cellulose acylate.
  • the stretching stress during stretching is easy to control, and the orientation of the thermoplastic resin is also easy.
  • the acrylic resin can be appropriately selected from the aforementioned acrylic resins.
  • a cellulose acylate it can select from the above-mentioned cellulose acylate suitably, and it is preferable to use a cellulose triacetate or a cellulose acetate propionate especially.
  • an acrylic resin and cellulose acylate are contained in a compatible state.
  • the physical properties and quality required as an optical film can be supplemented with each other by dissolving different resins.
  • Whether or not the acrylic resin and cellulose acylate are in a compatible state can be determined, for example, based on the glass transition temperature Tg.
  • the glass transition temperatures of the two resins are different, when the two resins are mixed, there are two or more glass transition temperatures of the mixture because there is a glass transition temperature of each resin.
  • the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which becomes the glass transition temperature of the compatible resin.
  • the total mass of the acrylic resin and cellulose acylate in the optical film of the present invention is preferably 55% by mass or more of the total mass of the optical film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. It is.
  • additives it is also preferable to contain additives such as plasticizers, ultraviolet absorbers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles.
  • the optical film of the present invention preferably contains a sugar ester other than cellulose acylate because the effect of aligning and aligning the thermoplastic resin in a desired direction by stretching is preferable.
  • a sugar ester other than cellulose acylate because the effect of aligning and aligning the thermoplastic resin in a desired direction by stretching is preferable.
  • the sugar ester used in the present invention is preferably a sugar ester in which at least one pyranose ring or furanose ring is 1 to 12 and all or part of the OH groups in the structure are esterified.
  • the sugar ester used in the present invention is a compound containing at least one of a furanose ring and a pyranose ring, and may be a monosaccharide or a polysaccharide having 2 to 12 sugar structures linked together.
  • the sugar ester is preferably a compound in which at least one OH group of the sugar structure is esterified.
  • the average ester substitution degree is preferably within the range of 4.0 to 8.0, and more preferably within the range of 5.0 to 7.5.
  • the sugar ester applicable to the present invention is not particularly limited, and examples thereof include sugar esters represented by the following general formula (A).
  • G represents a monosaccharide or disaccharide residue
  • R 2 represents an aliphatic group or an aromatic group
  • m is directly bonded to the monosaccharide or disaccharide residue
  • N is the total number of — (O—C ( ⁇ O) —R 2 ) groups directly bonded to the monosaccharide or disaccharide residue, 3 ⁇ m + n ⁇ 8, and n ⁇ 0.
  • the sugar ester having the structure represented by the general formula (A) is a single kind of hydroxy group (m) and-(O—C ( ⁇ O) —R 2 ) groups in which the number (n) is fixed. It is difficult to isolate as a compound, and it is known that a compound in which several components different in m and n in the formula are mixed is obtained. Therefore, the performance as a mixture in which the number of hydroxy groups (m) and the number of — (O—C ( ⁇ O) —R 2 ) groups (n) are changed is important. In the case of the optical film of the present invention, Sugar esters having an average ester substitution degree in the range of 5.0 to 7.5 are preferred.
  • G represents a monosaccharide or disaccharide residue.
  • monosaccharides include allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, and the like.
  • disaccharide residue examples include trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, and isotrehalose.
  • R 2 represents an aliphatic group or an aromatic group.
  • the aliphatic group and the aromatic group may each independently have a substituent.
  • m is the total number of hydroxy groups directly bonded to the monosaccharide or disaccharide residue, and n is directly bonded to the monosaccharide or disaccharide residue.
  • the total number of — (O—C ( ⁇ O) —R 2 ) groups it is necessary that 3 ⁇ m + n ⁇ 8, and it is preferable that 4 ⁇ m + n ⁇ 8. Further, n ⁇ 0.
  • the — (O—C ( ⁇ O) —R 2 ) groups may be the same as or different from each other.
  • the aliphatic group in the definition of R 2 may be linear, branched or cyclic, and preferably has 1 to 25 carbon atoms, more preferably 1 to 20 carbon atoms. Those of ⁇ 15 are particularly preferred. Specific examples of the aliphatic group include, for example, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, amyl, iso-amyl, tert-amyl, n- Examples include hexyl, cyclohexyl, n-heptyl, n-octyl, bicyclooctyl, adamantyl, n-decyl, tert-octyl, dodecyl, hexadecyl, octadecyl, didecyl and the like.
  • the aromatic group in the definition of R 2 may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and more preferably an aromatic hydrocarbon group.
  • the aromatic hydrocarbon group preferably has 6 to 24 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples of the aromatic hydrocarbon group include rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl.
  • rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl.
  • a benzene ring, a naphthalene ring, and a biphenyl ring are particularly preferable.
  • As the aromatic heterocyclic group a ring containing at least one of an oxygen atom, a nitrogen atom or a sulfur atom is preferable.
  • heterocyclic ring examples include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, Examples of each ring include isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, and tetrazaindene.
  • aromatic heterocyclic group a pyridine ring, a triazine ring, and a quinoline ring are particularly preferable
  • a sugar ester may contain two or more different substituents in one molecule, contains an aromatic substituent and an aliphatic substituent in one molecule, and contains two or more different aromatic substituents. Two or more different aliphatic substituents contained in one molecule can be contained in one molecule.
  • the addition amount of the sugar ester is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 1 to 15% by mass with respect to the thermoplastic resin.
  • the optical film of the present invention preferably contains the following ester (polycondensation ester).
  • the optical film of the present invention preferably uses an ester other than a sugar ester as one of the plasticizers.
  • the ester other than the sugar ester applicable to the present invention is not particularly limited, but it is preferable to use a polycondensed ester having a structure represented by the following general formula (1).
  • the polycondensed ester is preferably contained in the range of 1 to 20% by mass and more preferably in the range of 2 to 15% by mass in the optical film of the present invention due to its plastic effect.
  • B 3 and B 4 each independently represent an aliphatic or aromatic monocarboxylic acid residue or a hydroxy group.
  • G 2 represents an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms.
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms.
  • n represents an integer of 1 or more.
  • the polycondensed ester is a polycondensed ester containing a repeating unit obtained by reacting a dicarboxylic acid and a diol, A represents a carboxylic acid residue in the polycondensed ester, and G 2 represents an alcohol residue.
  • the dicarboxylic acid constituting the polycondensed ester is an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, preferably an aromatic dicarboxylic acid.
  • the dicarboxylic acid may be one type or a mixture of two or more types. In particular, it is preferable to mix aromatic and aliphatic.
  • the diol constituting the polycondensed ester is an aromatic diol, an aliphatic diol or an alicyclic diol, preferably an aliphatic diol, more preferably a diol having 1 to 4 carbon atoms.
  • the diol may be one type or a mixture of two or more types.
  • Both ends of the polycondensed ester molecule may or may not be sealed.
  • alkylene dicarboxylic acid constituting A in the general formula (1) examples include 1,2-ethanedicarboxylic acid (succinic acid), 1,3-propanedicarboxylic acid (glutaric acid), 1,4-butanedicarboxylic acid. Divalent groups derived from (adipic acid), 1,5-pentanedicarboxylic acid (pimelic acid), 1,8-octanedicarboxylic acid (sebacic acid) and the like are included.
  • alkenylene dicarboxylic acid constituting A include maleic acid and fumaric acid.
  • aryl dicarboxylic acid constituting A examples include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and the like. Can be mentioned.
  • A may be one type or two or more types may be combined. Among them, A is preferably a combination of an alkylene dicarboxylic acid having 4 to 12 carbon atoms and an aryl dicarboxylic acid having 8 to 12 carbon atoms.
  • G 2 in the general formula (1) is a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, a divalent group derived from an aryl glycol having 6 to 12 carbon atoms, or a carbon atom. It represents a divalent group derived from oxyalkylene glycol of 4 to 12.
  • Examples of the divalent group derived from an alkylene glycol having 2 to 12 carbon atoms in G 2 include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, , 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-di-) Methylol heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-p
  • divalent groups derived from aryl glycols having 6 to 12 carbon atoms in G 2 include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxy Divalent groups derived from benzene (hydroquinone) and the like are included.
  • divalent group derived from oxyalkylene glycol having 4 to 12 carbon atoms in G are derived from diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like. Divalent groups are included.
  • G 2 may be a single type or a combination of two or more types.
  • G 2 is preferably a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, more preferably 2 to 5, and most preferably 2 to 4.
  • B 3 and B 4 in the general formula (1) are each a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid, or a hydroxy group.
  • the aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only those in which the aromatic ring is directly bonded to a carboxy group, Also included are those in which an aromatic ring is bonded to a carboxy group via an alkylene group or the like.
  • monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid.
  • Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Is included. Among these, a monovalent group derived from an alkyl monocarboxylic acid having 1 to 3 carbon atoms in the alkyl portion is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
  • the weight average molecular weight of the polycondensed ester used in the present invention is preferably in the range of 500 to 3000, more preferably in the range of 600 to 2000.
  • the weight average molecular weight can be measured by the gel permeation chromatography (GPC).
  • the flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream.
  • the dehydration condensation reaction was carried out while observing the degree of polymerization.
  • unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P2.
  • ⁇ Polycondensed ester P5 251 g of 1,2-propylene glycol, 354 g of terephthalic acid, 680 g of p-troyl acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst are charged into a 2 L four-necked flask equipped with a thermometer, stirrer, and slow cooling tube. The temperature is gradually raised with stirring until it reaches 230 ° C. in a nitrogen stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P5. The acid value was 0.30 and the number average molecular weight was 400.
  • the optical film of the present invention can contain other plasticizers as necessary for obtaining the effects of the present invention.
  • the plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or an ester plasticizer. Agent, acrylic plasticizer and the like.
  • At least one is preferably a polyhydric alcohol ester plasticizer.
  • the optical film of the present invention preferably contains a polyhydric alcohol ester represented by the following general formula (2).
  • B 1 -GB 2 In the general formula (2), B 1 and B 2 each independently represent an aliphatic or aromatic monocarboxylic acid residue.
  • G represents an alkylene glycol residue having a straight chain or branched structure having 2 to 12 carbon atoms.
  • G represents a divalent group derived from an alkylene glycol having a linear or branched structure having 2 to 12 carbon atoms.
  • Examples of the divalent group derived from an alkylene glycol having 2 to 12 carbon atoms in G include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1, 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol ( Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylol) Heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanedio ,
  • B 1 and B 2 are each independently a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid.
  • the aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only those in which the aromatic ring is directly bonded to a carboxy group, Also included are those in which an aromatic ring is bonded to a carboxy group via an alkylene group or the like.
  • monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid.
  • Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Is included. Among these, a monovalent group derived from an alkyl monocarboxylic acid having 1 to 10 carbon atoms in the alkyl portion is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
  • polyhydric alcohol esters applicable to the present invention are shown below, but the present invention is not limited to these exemplified compounds.
  • the polyhydric alcohol ester having a structure represented by the general formula (2) used in the present invention is preferably contained in the range of 0.5 to 5% by mass with respect to the optical film.
  • the content is more preferably in the range, and particularly preferably in the range of 1 to 2% by mass.
  • the polyhydric alcohol ester having the structure represented by the general formula (2) used in the present invention can be synthesized according to a conventionally known general synthesis method.
  • the optical film of the present invention can use a phosphate ester.
  • phosphoric acid esters triaryl phosphoric acid esters, diaryl phosphoric acid esters, monoaryl phosphoric acid esters, aryl phosphonic acid compounds, aryl phosphine oxide compounds, condensed aryl phosphoric acid esters, halogenated alkyl phosphoric acid esters, halogen-containing condensed phosphoric acid Examples thereof include esters, halogen-containing condensed phosphonic acid esters, and halogen-containing phosphorous acid esters.
  • Specific phosphoric acid esters include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloro) Propyl) phosphate, tris (tribromoneopentyl) phosphate, and the like.
  • glycolic acid esters (glycolate compounds) can be used as one kind of polyhydric alcohol esters.
  • the glycolate compound applicable to the present invention is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl
  • the optical film of the present invention preferably contains an ultraviolet absorber from the viewpoint of improving light resistance.
  • the ultraviolet absorber is intended to improve light resistance by absorbing ultraviolet rays of 400 nm or less, and in particular, the transmittance at a wavelength of 370 nm is preferably in the range of 2 to 30%, more preferably 4 It is in the range of -20%, more preferably in the range of 5-10%.
  • the UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, and particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers.
  • a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
  • the optical film of the present invention preferably contains two or more ultraviolet absorbers.
  • a polymeric ultraviolet absorber can be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used. Moreover, it is preferable that the ultraviolet absorber does not have a halogen group.
  • the method of adding the UV absorber can be added to the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof. Or you may add directly in dope composition.
  • an alcohol such as methanol, ethanol or butanol
  • an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof.
  • inorganic powders that do not dissolve in organic solvents use a dissolver or sand mill in organic solvents and cellulose acylate (cellulose acetate) to disperse them before adding them to the dope.
  • cellulose acylate cellulose acetate
  • the amount of the UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the optical film has a dry film thickness of 10 to 40 ⁇ m, it is 0.5 to 10% by mass relative to the optical film.
  • the range is preferably 0.6 to 4% by mass.
  • Antioxidants are also referred to as deterioration inhibitors.
  • deterioration inhibitors When an organic electroluminescence display device or the like is placed in a high humidity and high temperature state, the optical film may be deteriorated.
  • the antioxidant has a role of delaying or preventing the optical decomposition due to, for example, the residual solvent amount of halogen in the optical system, phosphoric acid of the phosphoric acid plasticizer, etc., and therefore, in the optical film of the present invention. It is preferable to contain.
  • a hindered phenol compound is preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
  • the amount of these compounds to be added is preferably in the range of 1 ppm to 1.0%, more preferably in the range of 10 to 1000 ppm, in terms of mass ratio with respect to the optics.
  • the optical film of the present invention may further contain fine particles (matting agent) as necessary in order to improve the slipperiness of the surface.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • inorganic fine particles include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples include magnesium silicate and calcium phosphate.
  • silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce the increase in haze of the obtained film.
  • Examples of the fine particles of silicon dioxide include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Seahoster KE-P10, KE-P30, KE-P50, KE-P100 (manufactured by Nippon Shokubai Co., Ltd.) and the like are included.
  • Aerosil R972V, NAX50, Seahoster KE-P30 and the like are particularly preferable because they reduce the coefficient of friction while keeping the turbidity of the resulting film low.
  • the primary particle diameter of the fine particles is preferably in the range of 5 to 50 nm, more preferably in the range of 7 to 20 nm.
  • a larger primary particle size has a larger effect of increasing the slipperiness of the resulting film, but the transparency tends to decrease. Therefore, the fine particles may be contained as secondary aggregates having a particle diameter in the range of 0.05 to 0.3 ⁇ m.
  • the size of the primary particles or the secondary aggregates of the fine particles is determined by observing the primary particles or secondary aggregates with a transmission electron microscope at a magnification of 500 to 2 million times, and 100 particles of primary particles or secondary aggregates. It can obtain
  • the content of the fine particles is preferably in the range of 0.05 to 1.0% by mass, more preferably in the range of 0.1 to 0.8% by mass with respect to the thermoplastic resin forming the optical film. preferable.
  • the moisture permeability of the optical film of the present invention is preferably in the range of 300 to 1800 g / m 2 ⁇ 24 h at 40 ° C. and 90% RH, more preferably in the range of 400 to 1500 g / m 2 ⁇ 24 h, and 40 to 1300 g / m 2. -The range of 24 h is particularly preferred.
  • the moisture permeability can be measured according to the method described in JIS Z 0208.
  • the visible light transmittance of the optical film of the present invention is preferably 90% or more, and more preferably 93% or more.
  • the haze of the optical film of the present invention is preferably less than 1%, particularly preferably 0 to 0.1%.
  • the optical film of the present invention is preferably a functional film used for various display devices such as a liquid crystal display, a plasma display, and an organic EL display.
  • the optical film of the present invention is a polarizing plate protective film for liquid crystal display devices, a retardation film, an antireflection film, a brightness enhancement film, a hard coat film, an antiglare film, an antistatic film, an enlarged viewing angle, etc. Or an optical compensation film.
  • the optical film of the present invention is a polarizing plate protective film, a retardation film, or an optical compensation film.
  • the optical film of the present invention is preferably used as a polarizing plate protective film that is bonded to at least one surface of a polarizer.
  • the retardation value of the polarizing plate protective film is obtained by the following formula, and the retardation value Ro in the in-plane direction is preferably in the range of 0 to 100 nm, more preferably in the range of 0 to 50 nm.
  • the retardation value Rt is preferably in the range of ⁇ 400 to 400 nm, more preferably in the range of ⁇ 300 to 300 nm.
  • d represents the thickness of the optical film (nm)
  • n x is represents the maximum refractive index in the plane of the film, also referred to as a slow axis direction of the refractive index .
  • n y represents a refractive index in the direction perpendicular to the slow axis in the film plane
  • n z is the film in the thickness direction (All are measured values at a wavelength of 590 nm.)
  • the retardation value can be obtained at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH using, for example, KOBRA-WIS / RT (Oji Scientific Instruments).
  • optical compensation film Since liquid crystal displays use anisotropic liquid crystal materials and polarizing plates, there is a problem of viewing angle that even when good display is obtained when viewed from the front, display performance is degraded when viewed from an oblique direction. . Therefore, a viewing angle compensator is necessary to improve the performance of the liquid crystal display.
  • the average refractive index distribution of the liquid crystal cell is larger in the cell thickness direction and smaller in the in-plane direction. Therefore, the viewing angle compensator must cancel this anisotropy. In other words, it is effective that the viewing angle compensation plate has a refractive index smaller than that in the in-plane direction, that is, a so-called negative uniaxial structure.
  • the optical film of the present invention can be an optical compensation film having such a function.
  • optical film of the present invention When the optical film of the present invention is used for a VA mode liquid crystal cell, a total of two optical films may be used, one on each side of the cell (two-sheet type), or one of the upper and lower sides of the cell. An optical film may be used only on the side (single sheet type).
  • the retardation value Ro in the in-plane direction represented by the above formula is preferably within a range of 20 to 150 nm at a measurement wavelength of 590 nm in an environment of 23 ° C. and 55% RH. A range of 30 to 130 nm is more preferable.
  • the retardation value Rt in the thickness direction is preferably in the range of 50 to 350 nm and more preferably in the range of 100 to 270 nm at a measurement wavelength of 590 nm in an environment of 23 ° C. and 55% RH.
  • the optical film of the present invention has a slow axis or a fast axis in the film plane, and an angle ⁇ 1 formed by the slow axis or the fast axis and the film forming direction axis is ⁇ 1 ° or more and + 1 ° or less. Preferably, it is more preferably ⁇ 0.5 ° or more and + 0.5 ° or less.
  • ⁇ 1 can be defined as an orientation angle, and ⁇ 1 can be measured using an automatic birefringence meter KOBRA-WIS / RT (Oji Scientific Instruments).
  • An optical film in which ⁇ 1 satisfies the above relationship increases the brightness of a display image of a liquid crystal display device including the same, suppresses or prevents light leakage, and faithfully reproduces color in a color liquid crystal display device.
  • the polarizing plate using the optical film of the present invention is preferably produced by laminating the optical film of the present invention on one surface of the polarizer using an active energy ray-curable adhesive.
  • the optical film of the present invention may be used on the other surface of the polarizer constituting the polarizing plate, and other optical films are preferably bonded.
  • other optical films include commercially available cellulose ester films (for example, Konica Minoltak KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC4UY, KC4UY, KC4UY, KC4UY, KC4UY, , KC8UE, KC8UY-HA, KC2UA, KC4UA, KC6UAKC, KC4UAH, KC6UAH, Konica Minolta, Fujitac T40UZ, Fujitac T60UZ, Fujitac T80UZ, Fujitac TD80U FUJIFILM Corporation etc.) is preferably used.
  • a polarizer which is a main component of the polarizing plate, is an element that allows only light having a plane of polarization in a certain direction to pass through.
  • a typical polarizer currently known is a polyvinyl alcohol polarizing film.
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • polarizer a polarizer obtained by forming a polyvinyl alcohol aqueous solution into a film and dyeing it by uniaxial stretching or dyeing and then uniaxially stretching and then preferably performing a durability treatment with a boron compound may be used.
  • the thickness of the polarizer is preferably in the range of 5 to 30 ⁇ m, and particularly preferably in the range of 10 to 20 ⁇ m from the viewpoint of thinning.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the degree of saponification is 99.0 to 99.99 mol%.
  • the ethylene-modified polyvinyl alcohol is also preferably used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
  • a polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarizing performance and durability, and has little color unevenness, and is particularly preferably used for a large liquid crystal display device.
  • the bonding of the optical film of the present invention and the polarizer is not particularly limited, but can be performed using a completely saponified polyvinyl alcohol adhesive, a photocurable adhesive, or the like. It is preferable to use a photocurable adhesive from the viewpoint that the obtained adhesive layer has a high elastic modulus and can easily suppress deformation of the polarizing plate.
  • Preferred examples of the photocurable adhesive include ( ⁇ ) cationic polymerizable compound, ( ⁇ ) photocationic polymerization initiator, and ( ⁇ ) a wavelength longer than 380 nm, as disclosed in JP 2011-08234 A. And a photo-curable adhesive composition containing each component of a photosensitizer exhibiting maximum absorption in the light of ( ⁇ ) and a naphthalene-based photosensitization aid.
  • other photocurable adhesives may be used.
  • the polarizing plate includes (1) a pretreatment step for easily adhering the surface of the optical film to which the polarizer is bonded, and (2) at least one of the adhesive surfaces of the polarizer and the optical film. (3) a bonding step of bonding the polarizer and the optical film through the obtained adhesive layer, and (4) a polarizer and the optical film through the adhesive layer. It can manufacture by the manufacturing method including the hardening process which hardens an adhesive bond layer in the bonded state. What is necessary is just to implement the pre-processing process of (1) as needed.
  • Pretreatment process In the pretreatment step, an easy adhesion treatment is performed on the adhesion surface of the optical film with the polarizer. When bonding an optical film to both surfaces of a polarizer, an easy adhesion process is performed on the adhesive surface of each optical film with the polarizer. Examples of the easy adhesion treatment include corona treatment and plasma treatment.
  • the photocurable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the optical film.
  • the application method is not particularly limited. For example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • the method of pressurizing with a roller etc. and spreading uniformly can also be utilized.
  • Bonding process For example, when a photocurable adhesive is applied to the surface of the polarizer in the previous application step, an optical film is superimposed thereon. When a photocurable adhesive is applied to the surface of the optical film in the previous application step, a polarizer is superimposed thereon. In addition, when a photocurable adhesive is cast between the polarizer and the optical film, the polarizer and the optical film are superposed in that state.
  • the optical film is superimposed on the both surfaces of the polarizer via the photocurable adhesive.
  • both sides if the optical film is superimposed on one side of the polarizer, the polarizer side and the optical film side, and if the optical film is superimposed on both sides of the polarizer, The film is pressed with a roller or the like from the film side).
  • the material of the roller metal, rubber or the like can be used.
  • the rollers arranged on both sides may be made of the same material or different materials.
  • the active energy ray is irradiated to the uncured photocurable adhesive to cure the adhesive layer containing the epoxy compound or the oxetane compound.
  • the overlapped polarizer and the optical film are bonded via the photocurable adhesive.
  • an active energy ray is applied from either one of the optical films in a state where the optical film is superimposed on both surfaces of the polarizer via a photocurable adhesive. It is advantageous to irradiate and simultaneously cure the photocurable adhesive on both sides.
  • active energy rays visible rays, ultraviolet rays, X-rays, electron beams and the like can be used, and since they are easy to handle and have a sufficient curing rate, electron beams or ultraviolet rays are generally preferably used.
  • the acceleration voltage is preferably in the range of 5 to 300 kV, more preferably in the range of 10 to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetrating force through the sample is too strong and the electron beam rebounds, causing an optical film or polarized light. There is a risk of damaging the child.
  • the irradiation dose is in the range of 5 to 100 kGy, more preferably in the range of 10 to 75 kGy.
  • the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the optical film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. Can not.
  • Arbitrary appropriate conditions can be employ
  • the dose of ultraviolet rays in the range of 50 ⁇ 1500mJ / cm 2 in accumulated light amount, and even more preferably in the range of within the range of 100 ⁇ 500mJ / cm 2.
  • the thickness of the adhesive layer is not particularly limited, but is usually in the range of 0.01 to 10 ⁇ m, and preferably in the range of 0.5 to 5 ⁇ m.
  • the liquid crystal display device in which the optical film of the present invention is used preferably includes a polarizing plate having the optical film of the present invention.
  • the polarizing film disposed in at least one of the liquid crystal cells includes the optical film of the present invention, and the film on the liquid crystal cell side of the polarizing plate is the optical film of the present invention.
  • the polarizing plate is bonded to one or both surfaces of the liquid crystal cell via an adhesive layer.
  • the polarizing plate protective film used on the surface side of the liquid crystal display device of the present invention preferably has an antireflection layer, an antistatic layer, an antifouling layer, and a backcoat layer. .
  • the optical film and polarizing plate of the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB.
  • it is preferably used for a VA (MVA, PVA) type liquid crystal display device.
  • VA MVA, PVA
  • the liquid crystal display device of the present invention is excellent in various visibility.
  • Example 1 A cellulose acylate film used as an optical film was produced by the following method.
  • Aerosil 972V manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 16 nm, apparent specific gravity of 90 g / liter
  • the obtained dope 1 was uniformly cast on a stainless steel band support using a belt casting apparatus shown in FIG. 1 under the conditions of a dope temperature of 35 ° C. and a width of 1.6 m.
  • the solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to obtain a web, and then the web was peeled from the stainless steel band support.
  • the resulting web was further dried at 35 ° C.
  • the film was stretched in the MD direction at a stretching ratio of 1.02 times at 80 ° C. by the preliminary stretching apparatus 102 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 30% by mass.
  • the film was stretched in the MD direction at 160 ° C. at a stretching ratio of 1.60 times by the main stretching apparatus 103 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 12% by mass.
  • the web was stretched in the TD direction at a stretching ratio of 1.60 times by the TD stretching apparatus 104 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 8% by mass.
  • the obtained film was dried at 125 ° C. for 15 minutes while being conveyed by a number of rollers in the drying apparatus, then slit to 1.8 m width, and the height of the convex portion was 10 ⁇ m at both ends in the width direction.
  • the long optical film 101 having a width of 1.8 m, a length of 4000 m, and a film thickness of 30 ⁇ m was produced.
  • the glass transition temperature of the optical film was 145 ° C.
  • the optical film was cut out at 120 mm (MD direction) ⁇ 10 mm (TD direction), and the sample was allowed to stand for 24 hours in an environment of 23 ⁇ 2 ° C. and 55 ⁇ 5% RH, and then kept at 23 ° C. and 55% RH.
  • the film is pulled in the MD direction at a chuck length of 50 mm and a speed of 50 mm / min in the tank, and the tensile load in that direction is divided by the film cross-sectional area (that is, the film width ⁇ film thickness) to obtain the stretching stress in the MD direction. Asked.
  • the optical film No. 101 to 112 are excellent optical films as a result of pre-stretching according to the present invention having low stretching stress and low generation of scratches and optical unevenness.
  • the optical films 101 to 106 in which the draw ratio, temperature, residual solvent amount, and draw span are in the preferred ranges in relation to each claim showed excellent characteristics.
  • Example 2 ⁇ Preparation of acrylic resin / cellulose acylate mixed optical film 201> According to the following method, the optical film 201 which mixedly contains acrylic resin / cellulose acylate was produced as an optical film.
  • a single unit consisting of 0.36 g of ammonium persulfate (APS) and 1657 g of methyl methacrylate (MMA), 21.6 g of n-butyl acrylate (BA) and 1.68 g of allyl methacrylate (ALMA) after stirring for 5 minutes.
  • the body mixture was added all at once, and after the detection of the exothermic peak, the mixture was further held for 20 minutes to complete the polymerization of the innermost hard layer.
  • a small amount of the polymer latex thus obtained was collected, and the flat particle size was determined by the absorbance method, which was 0.10 ⁇ m.
  • the remaining latex was put into a 3% by mass sodium sulfate warm aqueous solution, salted out and coagulated, and then dried after repeated dehydration and washing to obtain acrylic fine particles (C1) having a three-layer structure.
  • the obtained dope 2 was uniformly cast on a stainless steel band support using a belt casting apparatus shown in FIG. 1 under the conditions of a dope temperature of 35 ° C. and a width of 1.6 m.
  • the solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to obtain a web, and then the web was peeled from the stainless steel band support.
  • the resulting web was further dried at 35 ° C.
  • the film was stretched in the MD direction at a stretching ratio of 1.05 times at 80 ° C. by the preliminary stretching apparatus 102 shown in FIG.
  • the residual solvent amount of the web at the start of stretching at that time was 30% by mass.
  • the film was stretched in the MD direction at 160 ° C. at a stretching ratio of 1.60 times by the main stretching apparatus 103 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 12% by mass.
  • the web was stretched in the TD direction at a stretching ratio of 1.60 times by the TD stretching apparatus 104 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 8% by mass.
  • the obtained film was dried at 125 ° C. for 15 minutes while being conveyed by a number of rollers in the drying apparatus, then slit to 1.8 m width, and the height of the convex portion was 10 ⁇ m at both ends in the width direction.
  • the long acrylic resin / cellulose acylate mixed film 201 having a width of 1.8 m, a length of 4000 m, and a film thickness of 30 ⁇ m was produced.
  • the acrylic resin / cellulose acylate mixed optical film had a Tg of 120 ° C.
  • acrylic resin / cellulose acylate mixed optical film No. which is the optical film of the present invention.
  • Nos. 201 to 211 are excellent optical films as a result of pre-stretching according to the present invention having low stretching stress and low generation of scratches and optical unevenness.
  • Example 3 Provide of acrylic resin-containing optical film 301> An optical film 301 containing an acrylic resin was produced according to the following method.
  • Acrylic resin Dianal BR85 (manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin Mw: 280000) 100 parts by weight Acrylic fine particles (C1) 2 parts by weight Methylene chloride 360 parts by weight Ethanol 15 parts by weight 100 parts by weight of main dope and 2.5 parts by weight Part of the in-line additive solution was thoroughly mixed with an in-line mixer (Toray static type in-tube mixer Hi-Mixer, SWJ) to obtain a dope 3.
  • in-line mixer Toray static type in-tube mixer Hi-Mixer, SWJ
  • the obtained dope 3 was uniformly cast on a stainless steel band support using a belt casting apparatus shown in FIG. 1 under the conditions of a dope temperature of 35 ° C. and a width of 1.6 m.
  • the solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to obtain a web, and then the web was peeled from the stainless steel band support.
  • the resulting web was further dried at 35 ° C.
  • the film was stretched in the MD direction at a stretching ratio of 1.07 times at 80 ° C. by the preliminary stretching apparatus 102 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 30% by mass.
  • the film was stretched in the MD direction at 160 ° C. at a stretching ratio of 1.60 times by the main stretching apparatus 103 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 12% by mass.
  • the web was stretched in the TD direction at a stretching ratio of 1.60 times by the TD stretching apparatus 104 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 8% by mass.
  • the obtained film was dried at 125 ° C. for 15 minutes while being conveyed by a number of rollers in the drying apparatus, then slit to 1.8 m width, and the height of the convex portion was 10 ⁇ m at both ends in the width direction.
  • a long acrylic resin-containing optical film 301 having a width of 1.8 m, a length of 4000 m, and a film thickness of 30 ⁇ m was produced.
  • Tg of the said acrylic resin containing optical film was 115 degreeC.
  • the acrylic resin-containing optical films 301 to 310 which are the optical films of the present invention, have a low stretching stress and suppress the occurrence of scratches and optical unevenness by performing preliminary stretching according to the present invention. It can be seen that it is a comprehensively excellent optical film.
  • an optical film in which generation of scratches and optical unevenness by a transport roller is reduced can be produced, and the optical film is suitably used for a polarizing plate, a liquid crystal display element, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The objective of the present invention is to provide a method for producing an optical film, which is a method for producing an optical film that has a reduced thickness and an increased width, and wherein the generation of scratches due to conveyance rollers and the occurrence of optical unevenness are reduced by suppressing abrupt increase in the stretching stress during stretching in the MD direction and by increasing the orientation of a resin in the film. A method for producing an optical film according to the present invention, wherein an optical film having a film thickness within the range of 10-40 μm and a width of 1.4 m or more is produced by a solution casting method, is characterized in that a web separated from a cast supporting body is preliminarily stretched in the MD direction at a stretch ratio within the range of from 1.01-1.10 times, and is then subjected to main stretching in the MD direction.

Description

光学フィルムの製造方法Manufacturing method of optical film
 本発明は、光学フィルムの製造方法に関する。より詳しくは、薄膜化及び広幅化された光学フィルムの製造方法であって、擦り傷の発生や光学的なムラが低減された光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film. More specifically, the present invention relates to a method for manufacturing a thinned and widened optical film, and relates to a method for manufacturing an optical film in which generation of scratches and optical unevenness is reduced.
 近年、液晶テレビ等の液晶表示装置は薄型化及び大型化する傾向にあり、それに伴って偏光板保護フィルム等の部材として一般的に用いられている光学フィルムも、薄膜化及び広幅化が求められている。 In recent years, liquid crystal display devices such as liquid crystal televisions tend to be thinner and larger, and accordingly, an optical film generally used as a member such as a polarizing plate protective film is also required to be thinner and wider. ing.
 従来から、溶融製膜フィルムを薄膜化する手段として、長手方向及び幅手方向のトータル延伸倍率を上げること、及び広幅化する手段として、特に幅手方向の延伸倍率を上げることが知られている。
 しかしながら、溶液流延法で製造したフィルムを長手方向(以下、MD方向という。)や幅手方向(以下、TD方向という。)に従来よりも高い延伸倍率で延伸して薄膜化した光学フィルムは、延伸初期に延伸応力が急激に上昇したりするため、製造過程において搬送ローラー等の摩擦による擦り傷が発生しやすい。特にMD方向に高い延伸倍率で延伸する場合は、延伸直前の搬送ローラー上でフィルムがスリップして前記擦り傷が発生しやすい。
Conventionally, as a means for thinning a melt film-forming film, it is known to increase the total draw ratio in the longitudinal direction and the width direction, and as a means to widen the width, particularly to increase the draw ratio in the width direction. .
However, an optical film obtained by stretching a film produced by the solution casting method in the longitudinal direction (hereinafter referred to as the MD direction) or the width direction (hereinafter referred to as the TD direction) at a higher draw ratio than the conventional film. Since the stretching stress increases abruptly in the initial stage of stretching, scratches due to friction of the transport roller or the like are likely to occur during the manufacturing process. In particular, when the film is stretched at a high stretching ratio in the MD direction, the film easily slips on the transport roller immediately before stretching, and the scratches are likely to occur.
 また、高い延伸倍率による延伸を行うことによって、フィルムにかかる前記延伸応力が不均一化しやすく、フィルム中の熱可塑性樹脂の配向の乱れによる光学的なムラが発生しやすい。 Further, by performing stretching at a high stretching ratio, the stretching stress applied to the film is likely to be nonuniform, and optical unevenness due to disorder of the orientation of the thermoplastic resin in the film is likely to occur.
 光学フィルムの熱可塑性樹脂の配向の乱れを解消する方法として、高残留溶媒状態でMD方向の延伸を行った後、低残留溶媒状態でTD方向の延伸を行うセルロースアシレートフィルムの製造方法が開示されている(例えば、特許文献1参照。)。 Disclosed is a method for producing a cellulose acylate film in which the orientation of the thermoplastic resin of the optical film is eliminated by stretching in the MD direction in a high residual solvent state and then in the TD direction in a low residual solvent state. (For example, refer to Patent Document 1).
特許第4277575号公報Japanese Patent No. 4277575
 しかしながら、特許文献1の実施例に記載された延伸倍率は、たかだかMD方向に7%、TD方向に10%程度の延伸であり、この方法では延伸倍率が小さいため広幅化、薄膜化への寄与は小さく、さらに、特許文献1に開示されている技術では、本発明のような高い延伸倍率による延伸によって生じやすい、フィルム中の熱可塑性樹脂の配向の乱れを解消することは困難である。 However, the draw ratio described in the Examples of Patent Document 1 is at most about 7% in the MD direction and about 10% in the TD direction, and this method has a small draw ratio, which contributes to widening and thinning. Furthermore, with the technique disclosed in Patent Document 1, it is difficult to eliminate the disorder of the orientation of the thermoplastic resin in the film, which is easily caused by stretching at a high stretching ratio as in the present invention.
 MD方向への延伸倍率を高くしながら、フィルムにかかる延伸応力を低下させる製造条件としては、延伸温度を上昇する、延伸時の残留溶媒量を増加する等の方法があるが、いずれもフィルム中の熱可塑性樹脂の配向を低下させてしまうため、光学フィルムとしての必要な物性が出ない。 Production conditions for reducing the stretching stress applied to the film while increasing the stretching ratio in the MD direction include methods such as increasing the stretching temperature and increasing the amount of residual solvent during stretching. Therefore, the necessary physical properties as an optical film cannot be obtained.
 他の方法として、一回に行う延伸倍率を下げて複数回延伸を行う方法は、上記熱可塑性樹脂の配向を低下させずに、延伸応力の急激な上昇を抑制することができるものと考えられるが、長大な装置が必要であり、生産コストが大幅に上がるという問題がある。 As another method, it is considered that the method of performing stretching a plurality of times by reducing the stretching ratio performed at one time can suppress a rapid increase in stretching stress without reducing the orientation of the thermoplastic resin. However, there is a problem that a long apparatus is required and the production cost is greatly increased.
 したがって、大きな設備導入を必要とせずに、延伸応力の急激な上昇を抑制し、かつフィルム中の熱可塑性樹脂の配向を高めて、搬送ローラーによる擦り傷の発生や光学的なムラの発生が低減された光学フィルムの製造方法が求められている。 Therefore, it is possible to reduce the occurrence of scratches and optical unevenness caused by the transport roller by suppressing the rapid increase in stretching stress and increasing the orientation of the thermoplastic resin in the film without requiring the introduction of large equipment. There is a need for a method for producing optical films.
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、薄膜化及び広幅化された光学フィルムの製造方法であって、MD方向への延伸時において、延伸応力の急激な上昇を抑制し、かつフィルム中の熱可塑性樹脂の配向を高め、搬送ローラーによる擦り傷の発生や光学的なムラの発生が低減された光学フィルムの製造方法を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is a method for producing a thinned and widened optical film, and the stretching stress is rapidly increased during stretching in the MD direction. It is intended to provide a method for producing an optical film that suppresses a significant increase and enhances the orientation of a thermoplastic resin in the film and reduces the occurrence of scratches and optical unevenness caused by a transport roller.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、薄膜化及び広幅化された光学フィルムの製造方法であって、MD方向への延伸時において、特定の延伸倍率の予備延伸を行い、次いで本延伸を行うことよって、延伸応力の急激な上昇を抑制し、かつフィルム中の熱可塑性樹脂の配向を高め、搬送ローラーによる擦り傷の発生や光学的なムラの発生が低減された光学フィルムの製造方法が得られることを見出した。 In order to solve the above-mentioned problems, the present inventor is a method for producing a thinned and widened optical film in the process of examining the cause of the above-mentioned problem, and a specific stretching at the time of stretching in the MD direction. By performing pre-stretching of magnification and then performing main stretching, the rapid increase in stretching stress is suppressed, and the orientation of the thermoplastic resin in the film is enhanced. The present inventors have found that a method for producing an optical film with reduced can be obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.膜厚が10~40μmの範囲内であり、幅が1.4m以上である光学フィルムを溶液流延法によって製造する光学フィルムの製造方法であって、流延支持体より剥離したウェブを、MD方向に延伸倍率として1.01~1.10倍の範囲内で予備延伸した後、さらにMD方向に本延伸することを特徴とする光学フィルムの製造方法。 1. An optical film manufacturing method for manufacturing an optical film having a thickness in a range of 10 to 40 μm and a width of 1.4 m or more by a solution casting method, wherein a web peeled from a casting support is MD A method for producing an optical film, wherein the film is pre-stretched in a range of 1.01 to 1.10 times as a stretching ratio in the direction, and further stretched in the MD direction.
 2.前記本延伸を、延伸倍率として1.15~2.50倍の範囲内で行うことを特徴とする第1項に記載の光学フィルムの製造方法。 2. 2. The method for producing an optical film according to item 1, wherein the main stretching is performed in a range of 1.15 to 2.50 times as a stretching ratio.
 3.前記予備延伸を、延伸開始時のウェブの下記式で表される残留溶媒量を20~100質量%の範囲内で行い、前記本延伸を、延伸開始時の当該残留溶媒量を1~30質量%の範囲内で行うことを特徴とする第1項又は第2項に記載の光学フィルムの製造方法。 3. The pre-stretching is performed within the range of 20 to 100% by mass of the residual solvent represented by the following formula of the web at the start of stretching, and the main stretching is performed at a residual solvent amount of 1 to 30% by mass at the start of stretching. The method for producing an optical film according to item 1 or 2, wherein the method is performed within a range of%.
 残留溶媒量(質量%)={(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)}×100
 ただし、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (% by mass) = {(mass before heat treatment of web−mass after heat treatment of web) / (mass after heat treatment of web)} × 100
However, the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 4.光学フィルムのガラス転移温度をTg(℃)としたとき、前記予備延伸を(Tg-100)~(Tg-20)℃の範囲内の温度で行い、前記本延伸を(Tg-10)~(Tg+100)℃の範囲内の温度で行うことを特徴とする第1項から第3項までのいずれか一項に記載の光学フィルムの製造方法。 4. When the glass transition temperature of the optical film is Tg (° C.), the preliminary stretching is performed at a temperature within the range of (Tg-100) to (Tg-20) ° C., and the main stretching is performed (Tg-10) to (T The method for producing an optical film according to any one of Items 1 to 3, wherein the method is performed at a temperature within a range of Tg + 100) ° C.
 5.前記予備延伸の延伸スパンが2m以下であり、前記本延伸の延伸スパンが2m以上であることを特徴とする第1項から第4項までのいずれか一項に記載の光学フィルムの製造方法。 5. The method for producing an optical film according to any one of Items 1 to 4, wherein a stretch span of the preliminary stretching is 2 m or less, and a stretch span of the main stretching is 2 m or more.
 6.前記MD方向に予備延伸及び本延伸した後に、TD方向に1.3~3.0倍の範囲内で延伸することを特徴とする第1項から第5項までのいずれか一項に記載の光学フィルムの製造方法。 6. 6. The pre-stretching and main stretching in the MD direction, followed by stretching in the range of 1.3 to 3.0 times in the TD direction, according to any one of items 1 to 5 Manufacturing method of optical film.
 7.前記光学フィルムに用いる熱可塑性樹脂が、セルロースアシレート、アクリル樹脂及びセルロースアシレートとアクリル樹脂を混合した樹脂のいずれかから選択されることを特徴とする第1項から第6項までのいずれか一項に記載の光学フィルムの製造方法。
 8.前記光学フィルムに用いる熱可塑性樹脂が、アクリル樹脂であることを特徴とする第7項に記載の光学フィルムの製造方法。
7). The thermoplastic resin used for the optical film is selected from any of cellulose acylate, acrylic resin, and a resin in which cellulose acylate and acrylic resin are mixed. The manufacturing method of the optical film of one term.
8). The method for producing an optical film according to claim 7, wherein the thermoplastic resin used for the optical film is an acrylic resin.
 本発明の上記手段により、薄膜化及び広幅化された光学フィルムの製造方法であって、MD方向への延伸時において、延伸応力の急激な上昇を抑制し、かつフィルム中の熱可塑性樹脂の配向を高めることで、搬送ローラーによる擦り傷の発生や光学的なムラの発生が低減された光学フィルムの製造方法を提供することができる。 A method for producing an optical film that has been thinned and widened by the above-described means of the present invention, wherein a rapid increase in stretching stress is suppressed during stretching in the MD direction, and the orientation of the thermoplastic resin in the film By increasing the ratio, it is possible to provide a method for producing an optical film in which the generation of scratches and the occurrence of optical unevenness by the transport roller is reduced.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 前記したように偏光板及び液晶表示装置の薄型化及び大型化に伴い、高品質で薄膜/広幅である光学フィルムが求められているが、MD方向及びTD方向に高い延伸倍率で延伸して薄膜/広幅化した光学フィルムは、特にMD方向の延伸初期に延伸応力が急激に上昇することによって、製造過程において搬送ローラー等の摩擦による擦り傷が発生しやすい。また延伸時のフィルムにかかる応力が広幅なフィルム内で不均一化しやすく、熱可塑性樹脂の配向ムラによる光学的なムラが発生しやすく、高生産化を阻害する要因となっていた。特に前記擦り傷は、MD方向に延伸する際に、延伸直前の搬送ローラー上でウェブがスリップして発生しやすい。 As described above, with the thinning and enlargement of polarizing plates and liquid crystal display devices, there is a demand for optical films that are high quality and thin film / wide, but thin films that are stretched at a high draw ratio in the MD and TD directions. / A widened optical film is likely to be scratched due to friction of a transport roller or the like in the manufacturing process, particularly when the stretching stress increases rapidly in the initial stage of stretching in the MD direction. In addition, the stress applied to the film during stretching is likely to be non-uniform in a wide film, and optical unevenness due to uneven orientation of the thermoplastic resin is likely to occur, which has been a factor hindering high production. In particular, the scratches are likely to occur when the web slips on the transport roller immediately before stretching when stretching in the MD direction.
 本発明者は、上記延伸初期において延伸応力が急激に上昇する原因は、熱可塑性樹脂の樹脂鎖の絡み合いに起因するものと推定した。
 溶液流延法では、溶融流延法と比較して、フィルムの弾性率を高めやすい高分子量の熱可塑性樹脂でも流延できるという利点がある一方、当該高分子量の熱可塑性樹脂は樹脂鎖同士の絡み合い点が多いため応力集中が生じやすく、延伸時に樹脂が伸びにくいという性質がある。この樹脂の伸びにくさが延伸時の応力を大きくする原因と考えられる。また、薄膜化及び高生産化するために、従来よりもMD方向の延伸倍率を大きくしたことや延伸速度を上げたことも、相乗的に延伸応力が上昇する要因となっている。
The inventor presumed that the cause of the sudden increase in the stretching stress in the initial stage of stretching was due to the entanglement of the resin chains of the thermoplastic resin.
Compared to the melt casting method, the solution casting method has the advantage that even a high molecular weight thermoplastic resin that easily increases the elastic modulus of the film can be cast, whereas the high molecular weight thermoplastic resin is a resin chain-to-resin chain. Since there are many entanglement points, stress concentration is likely to occur, and the resin is difficult to stretch during stretching. This difficulty in stretching the resin is considered to be the cause of increasing the stress during stretching. In addition, increasing the stretching ratio in the MD direction and increasing the stretching speed in order to reduce the film thickness and increase the production also cause the stretching stress to increase synergistically.
 本発明者の検討によれば、本延伸の前に特定の条件下で低倍率の予備延伸を行うことによって、樹脂鎖同士の絡み合い点を効果的にほぐして減少し、その後本延伸で高倍率に延伸しても、樹脂鎖同士の絡み合い点が前工程で減少していることから、前記樹脂鎖同士の絡み合いによる応力集中が生じにくくなる。そのため、延伸応力の急激な上昇を抑制でき、さらに予備延伸によって弱い配向を与えることができるため、本延伸によって樹脂の配向がそろいやすく、擦り傷の発生や光学的なムラの発生を低減できるものと推察される。さらに、予備延伸は低倍率の延伸であることから、本延伸時の樹脂配向を阻害するほど強く樹脂が配向していないが、樹脂鎖同士の絡み合い点が減少していることから、MD方向への本延伸及びTD方向への延伸の効果を高めることができ、フィルム幅手のリターデーションムラを抑制し、均一な光学特性を付与することができるものと推察される。 According to the inventor's study, by performing a low-strength pre-stretching under specific conditions before the main stretching, the entanglement points between the resin chains are effectively loosened and reduced, and then the main stretching is performed at a high magnification. Even when the resin chains are stretched, stress points due to the entanglement between the resin chains are less likely to occur because the entanglement points between the resin chains are reduced in the previous step. Therefore, the rapid increase in stretching stress can be suppressed, and further weak orientation can be given by pre-stretching, so that the orientation of the resin is easily aligned by main stretching, and the occurrence of scratches and optical unevenness can be reduced. Inferred. Furthermore, since the pre-stretching is a low-magnification stretching, the resin is not strong enough to inhibit the resin orientation during the main stretching, but the entanglement points between the resin chains are reduced, so that the MD direction. It is presumed that the effect of the main stretching and stretching in the TD direction can be enhanced, retardation unevenness of the film width can be suppressed, and uniform optical characteristics can be imparted.
本発明の光学フィルムの製造方法を実施する製造装置の一例を示す模式図The schematic diagram which shows an example of the manufacturing apparatus which enforces the manufacturing method of the optical film of this invention
 本発明の光学フィルムの製造方法は、膜厚が10~40μmの範囲内であり、幅が1.4m以上である光学フィルムを溶液流延法によって製造する光学フィルムの製造方法であって、流延支持体より剥離したウェブを、MD方向に1.01~1.10倍の範囲内で予備延伸した後、さらにMD方向に本延伸することを特徴とする。この特徴は、請求項1から請求項8までの請求項に係る発明に共通する技術的特徴である。 The method for producing an optical film of the present invention is a method for producing an optical film in which an optical film having a thickness of 10 to 40 μm and a width of 1.4 m or more is produced by a solution casting method. The web peeled from the stretched support is pre-stretched within a range of 1.01 to 1.10 times in the MD direction, and further stretched in the MD direction. This feature is a technical feature common to the inventions according to claims 1 to 8.
 当該予備延伸の延伸倍率が上記範囲内であれば、本延伸での樹脂の配向制御に影響を与えるほど強い樹脂の配向がなく、樹脂鎖も十分にほぐしやすい。 If the draw ratio of the preliminary drawing is within the above range, there is no resin orientation strong enough to affect the resin orientation control in the main drawing, and the resin chains are easily loosened sufficiently.
 本発明の実施態様としては、本発明の効果発現の観点から、前記本延伸を延伸倍率として1.15~2.50倍の範囲内で行うことが、薄膜化の観点から好ましい。本発明に係る予備延伸によって樹脂鎖同士の絡み合い点が減少していることから、前記範囲のような高い延伸倍率で本延伸を行っても、低い延伸応力に保つことができ、搬送ローラーによる擦り傷や光学的なムラの発生を低減することができる。
 さらに、前記予備延伸を、延伸開始時の残留溶媒量を20~100質量%の範囲内で行い、前記本延伸を、延伸開始時の残留溶媒量を1~30質量%の範囲内で行うこと、さらに、前記予備延伸を光学フィルムのガラス転移温度をTgとしたときに、(Tg-100)~(Tg-20)℃の範囲内の温度で行い、前記本延伸を(Tg-10)~(Tg+100)℃の範囲内で行うことが、延伸応力の急激な上昇を抑制し、かつフィルム中の樹脂の配向を高め、搬送ローラーによる擦り傷や光学的なムラの発生を低減でき、好ましい。
As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, it is preferable that the main stretching is performed within a range of 1.15 to 2.50 times as a draw ratio from the viewpoint of thinning. Since the entanglement points between the resin chains are reduced by the preliminary stretching according to the present invention, even if the main stretching is performed at a high stretching ratio as in the above range, a low stretching stress can be maintained, and scratches caused by the transport roller. And the occurrence of optical unevenness can be reduced.
Further, the preliminary stretching is performed within the range of 20 to 100% by mass of the residual solvent at the start of stretching, and the main stretching is performed within the range of 1 to 30% by mass of the residual solvent at the start of stretching. Further, the preliminary stretching is performed at a temperature within the range of (Tg-100) to (Tg-20) ° C. when the glass transition temperature of the optical film is Tg, and the main stretching is performed at (Tg-10) to Performing within the range of (Tg + 100) ° C. is preferable because it suppresses a rapid increase in stretching stress, increases the orientation of the resin in the film, and reduces the occurrence of scratches and optical unevenness due to the transport roller.
 また、予備延伸時の残留溶媒量や延伸温度が上記範囲内であれば、本延伸での樹脂の配向制御に影響を与えるほど強い樹脂の配向がなく、樹脂鎖も十分にほぐしやすい。 Also, if the residual solvent amount and the stretching temperature during the pre-stretching are within the above ranges, there is no strong resin orientation that affects the orientation control of the resin in the main stretching, and the resin chains are also easily loosened.
 さらに、予備延伸時の温度が上記範囲内であれば、溶媒の乾燥速度も速く、溶媒の揮発による発泡が起こる可能性も低く、特別な加熱装置も必要ないので生産適性が向上する。 Furthermore, if the temperature at the time of pre-stretching is within the above range, the drying speed of the solvent is high, the possibility of foaming due to volatilization of the solvent is low, and a special heating device is not required, so that the productivity is improved.
 前記予備延伸の延伸スパンは2m以下であることが好ましい。設備上は、延伸スパンはできるだけ小さいことが好ましいが、余り短いと配置が難しくなるため、0.2~1.5mの範囲がより好ましい。ここで延伸スパンとは、フィルムがMD方向に延伸されている長さのことをいい、具体的にはフィルムがローラーに非接触で搬送されている長さ、すなわちローラー間距離をいう。また延伸にクリップテンター等を用いる場合は、当該クリップの間隔をいう。 The stretching span of the preliminary stretching is preferably 2 m or less. From the viewpoint of equipment, it is preferable that the stretch span is as small as possible. However, if the span is too short, it becomes difficult to place the stretch span. Here, the stretching span refers to a length in which the film is stretched in the MD direction, and specifically refers to a length in which the film is conveyed to the rollers in a non-contact manner, that is, a distance between the rollers. In addition, when a clip tenter or the like is used for stretching, it means the interval between the clips.
 前記本延伸の延伸スパンは2m以上であることが好ましい。これはフィルム幅に対して延伸スパンが短いと幅収縮に規制がかかるため、均一な延伸ができない懸念があるためである。 The stretching span of the main stretching is preferably 2 m or more. This is because if the stretching span is short with respect to the film width, the width shrinkage is restricted, and there is a concern that uniform stretching cannot be performed.
 本発明の光学フィルムの製造方法は、薄膜化及び広幅化のために、前記MD方向に予備延伸し続いて本延伸した後に、TD方向に1.3~3.0倍の範囲内で延伸することが、薄膜及び広幅の光学フィルムを得る観点から、好ましい。また、TD方向に延伸することで、フィルムのMD方向及びTD方向の弾性率が向上し、好ましい。 In the method for producing an optical film of the present invention, the film is preliminarily stretched in the MD direction, followed by main stretching, and then stretched in the range of 1.3 to 3.0 times in the TD direction for thinning and widening. It is preferable from the viewpoint of obtaining a thin film and a wide optical film. Moreover, the elasticity modulus of MD direction of a film and TD direction improves by extending | stretching to a TD direction, and it is preferable.
 また、前記光学フィルムに用いる熱可塑性樹脂が、セルロースアシレート、アクリル樹脂及びセルロースアシレートとアクリル樹脂を混合した樹脂のいずれかから選択されることが、溶液流延法によって高品質な光学フィルムを得る観点から好ましい。さらに、本発明の効果は、熱可塑性樹脂がアクリル樹脂であるときに、より発現しやすいことから、アクリル樹脂フィルムへの適用に好適である。 Further, the thermoplastic resin used for the optical film is selected from any of cellulose acylate, acrylic resin, and a resin in which cellulose acylate and acrylic resin are mixed. From the viewpoint of obtaining. Furthermore, since the effect of the present invention is more easily manifested when the thermoplastic resin is an acrylic resin, it is suitable for application to an acrylic resin film.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明の光学フィルムの製造方法の概要≫
 本発明の光学フィルムの製造方法は、膜厚が10~40μmの範囲内であり、幅が1.4m以上である光学フィルムを溶液流延法によって製造する光学フィルムの製造方法であって、流延支持体より剥離したウェブを、MD方向に1.01~1.10倍の範囲内で予備延伸した後、さらにMD方向に本延伸することを特徴とし、かかる製造方法を採用することによって、MD方向への延伸時において、延伸応力の急激な上昇を抑制し、かつフィルム中の樹脂の配向を高めることで、搬送ローラーによる擦り傷の発生や光学的なムラの発生が低減された光学フィルムを提供するものである。以下、本発明の光学フィルムの製造方法によって製造された光学フィルムを、本願では「本発明の光学フィルム」という。
<< Outline of Manufacturing Method of Optical Film of the Present Invention >>
The method for producing an optical film of the present invention is a method for producing an optical film in which an optical film having a thickness of 10 to 40 μm and a width of 1.4 m or more is produced by a solution casting method. The web peeled from the extended support is pre-stretched in the range of 1.01 to 1.10 times in the MD direction, and further stretched in the MD direction. By adopting such a production method, An optical film in which the occurrence of scratches and optical unevenness due to the transport roller is reduced by suppressing the sudden increase in stretching stress and enhancing the orientation of the resin in the film during stretching in the MD direction. It is to provide. Hereinafter, the optical film manufactured by the manufacturing method of the optical film of the present invention is referred to as “the optical film of the present invention” in the present application.
 本発明でいう「予備延伸」とは、高倍率に延伸する「本延伸」前に行う、低倍率の延伸操作をいい、具体的には、MD方向に1.01~1.10倍の範囲内で行う延伸をいう。 “Preliminary stretching” as used in the present invention refers to a low-magnification stretching operation performed before “main stretching” for stretching at a high magnification, and specifically, a range of 1.01 to 1.10 times in the MD direction. This is the stretching performed inside.
 <光学フィルムの製造装置>
 まず、本発明の光学フィルムの製造方法を実施するのに用いられる製造装置について説明する。
<Optical film manufacturing equipment>
First, the manufacturing apparatus used for implementing the manufacturing method of the optical film of this invention is demonstrated.
 図1は、本発明の光学フィルムの製造方法を実施する製造装置の一例を示す模式図である。 FIG. 1 is a schematic view showing an example of a production apparatus for carrying out the method for producing an optical film of the present invention.
 図1に示すように、本実施形態に係る光学フィルムの製造装置1は、流延装置101と、MD方向への予備延伸装置102とMD方向への本延伸装置103と、TD方向への延伸装置104と、乾燥装置105と、巻取装置106とを備え、流延装置101で形成された流延膜(ウェブ)3を、搬送しつつ、予備延伸装置102でMD方向に予備的な延伸し、本延伸装置103で同じくMD方向に高倍率の本延伸を行う。さらに必要に応じてTD方向への延伸装置104でTD方向に延伸して、乾燥装置105で乾燥(熱処理)し、巻取装置106で光学フィルムとして巻き取るようになっている。第1延伸装置102と第2延伸装置103との間に乾燥装置を配置してウェブ3を乾燥させるようにしてもよい。 As shown in FIG. 1, the optical film manufacturing apparatus 1 according to this embodiment includes a casting apparatus 101, a preliminary stretching apparatus 102 in the MD direction, a main stretching apparatus 103 in the MD direction, and stretching in the TD direction. The apparatus 104, the drying apparatus 105, and the winding apparatus 106 are provided, and the film (web) 3 formed by the casting apparatus 101 is transported, and preliminary stretching is performed in the MD direction by the preliminary stretching apparatus 102. Then, the main stretching apparatus 103 performs high-stretching in the MD direction in the same manner. Further, if necessary, the film is stretched in the TD direction by a stretching device 104 in the TD direction, dried (heat treated) by a drying device 105, and wound as an optical film by a winding device 106. The web 3 may be dried by disposing a drying device between the first stretching device 102 and the second stretching device 103.
 ここで流延膜(ウェブ)とは、樹脂や添加剤等を溶解したドープを流延支持体上に流延、製膜し、剥離した状態のものをいう。 Here, the cast film (web) refers to a film in which a dope in which a resin, an additive or the like is dissolved is cast on a cast support, formed into a film, and peeled.
 [流延装置]
 流延装置101は、支持体としての、表面が鏡面仕上げされた金属製の無端ベルト(無端ベルトに代えて、表面が鏡面仕上げされた金属製の円筒ドラム等でもよい。)101aと、樹脂溶液(ドープ)2を無端ベルト101a上に流延するためのダイ101bと、無端ベルト101a上に流延されたドープ2から溶媒を除去するための加熱装置101cと、無端ベルト101a上で形成されたウェブ3を無端ベルト101aから剥離するための剥離ローラー4とを備える。無端ベルト101aは、駆動ローラー101a1と従動ローラー101a2とに巻き掛けられて、図中の矢印方向に走行可能とされている。剥離ローラー4は、無端ベルト101a上にドープ2が流延される側の端部に配置されている。流延装置101は、樹脂溶液(ドープ)2を無端ベルト101a上に流延する流延工程と、無端ベルト101a上で形成されたドープ2の流延膜(ウェブ)3を無端ベルト101aから剥離する剥離工程とを行うものである。
[Casting device]
The casting apparatus 101 is a metal endless belt having a mirror-finished surface (a metal cylindrical drum having a mirror-finished surface instead of an endless belt) 101a as a support, and a resin solution. The die 101b for casting the (dope) 2 on the endless belt 101a, the heating device 101c for removing the solvent from the dope 2 cast on the endless belt 101a, and the endless belt 101a were formed. And a peeling roller 4 for peeling the web 3 from the endless belt 101a. The endless belt 101a is wound around a driving roller 101a1 and a driven roller 101a2, and can travel in the direction of an arrow in the figure. The peeling roller 4 is disposed at an end portion on the side where the dope 2 is cast on the endless belt 101a. The casting apparatus 101 includes a casting process in which the resin solution (dope) 2 is cast on the endless belt 101a, and a casting film (web) 3 of the dope 2 formed on the endless belt 101a is peeled from the endless belt 101a. The peeling process to perform is performed.
 ダイ101bから無端ベルト101a上にドープ2が流延されると、ドープ2は無端ベルト101a上でゲル化して流延膜(ウェブ)3を形成する。無端ベルト101a上で形成されたウェブ3は剥離ローラー4によって無端ベルト101aから剥離される。ここで、無端ベルト101a上でのウェブ3の厚さは、巻取装置106で巻き取られた光学フィルムの厚さが所定の厚さとなるように、種々の値に変更可能である。なお、無端ベルト101a上でのウェブ3の厚さは、ドープ2の流延量や無端ベルト101aの走行速度等に応じて調整される。 When the dope 2 is cast on the endless belt 101a from the die 101b, the dope 2 gels on the endless belt 101a to form a cast film (web) 3. The web 3 formed on the endless belt 101 a is peeled from the endless belt 101 a by the peeling roller 4. Here, the thickness of the web 3 on the endless belt 101a can be changed to various values so that the thickness of the optical film wound up by the winding device 106 becomes a predetermined thickness. The thickness of the web 3 on the endless belt 101a is adjusted according to the casting amount of the dope 2, the traveling speed of the endless belt 101a, and the like.
 加熱装置101cは、乾燥箱101c1と、乾燥箱101c1に配設された第1加熱風供給装置101dと、第2加熱風供給装置101eと、排気口101fとを備える。第1加熱風供給装置101d及び第2加熱風供給装置101eは、それぞれ、加熱風供給管101d1、101e1と、ヘッダー101d2、101e2とを備える。 The heating device 101c includes a drying box 101c1, a first heating air supply device 101d disposed in the drying box 101c1, a second heating air supply device 101e, and an exhaust port 101f. The first heating air supply device 101d and the second heating air supply device 101e include heating air supply pipes 101d1 and 101e1 and headers 101d2 and 101e2, respectively.
 第1加熱風供給装置101d側の無端ベルト101a上のウェブ3の温度及び第2加熱風供給装置101e側の無端ベルト101a上のウェブ3の温度は、それぞれ、溶媒の蒸発に要する時間に基いて決定される無端ベルト101aの走行速度、ドープ2中における微粒子の分散度合、生産性等を考慮して、例えば、-5℃~70℃の範囲が好ましく、0℃~60℃の範囲がより好ましい。 The temperature of the web 3 on the endless belt 101a on the first heating air supply device 101d side and the temperature of the web 3 on the endless belt 101a on the second heating air supply device 101e side are based on the time required for evaporation of the solvent, respectively. In consideration of the determined traveling speed of the endless belt 101a, the degree of dispersion of fine particles in the dope 2, productivity, etc., for example, a range of −5 ° C. to 70 ° C. is preferable, and a range of 0 ° C. to 60 ° C. is more preferable. .
 第1加熱風供給装置101d及び第2加熱風供給装置101eから供給される加熱風の風圧は、溶媒の蒸発の均一性、ドープ2中における微粒子の分散度合等を考慮して、例えば、50~5000Paの範囲が好ましい。 The wind pressure of the heating air supplied from the first heating air supply device 101d and the second heating air supply device 101e is, for example, 50 to 50 in consideration of the uniformity of evaporation of the solvent, the degree of dispersion of the fine particles in the dope 2, and the like. A range of 5000 Pa is preferred.
 第1加熱風供給装置101d及び第2加熱風供給装置101eは、一定温度の加熱風だけを供給してもよいし、無端ベルト101aの走行方向に沿って複数の温度の加熱風を段階的に供給してもよい。 The first heating air supply device 101d and the second heating air supply device 101e may supply only the heating air having a constant temperature, or stepwise the heating air having a plurality of temperatures along the traveling direction of the endless belt 101a. You may supply.
 図1に示した加熱装置101cは、ウェブ3を加熱風で加熱して溶媒を除去するものであるが、これに限らず、例えば、ウェブ3を赤外線ヒーターで加熱するもの、無端ベルト101aの裏面に加熱風を吹き付けてウェブ3を裏面から加熱するもの等でもよい。 The heating device 101c shown in FIG. 1 is for removing the solvent by heating the web 3 with heating air, but is not limited to this, for example, a device for heating the web 3 with an infrared heater, or the back surface of the endless belt 101a. It is also possible to heat the web 3 from the back side by spraying heated air.
 無端ベルト101a上にドープ2を流延してから、無端ベルト101aからウェブ3を剥離するまでの時間は、製造された光学フィルムの厚さ、溶媒の種類等に応じて異なるが、無端ベルト101aからの良好な剥離性を考慮して、例えば、0.5~5分の範囲が好ましい。 The time from casting the dope 2 on the endless belt 101a to peeling the web 3 from the endless belt 101a varies depending on the thickness of the manufactured optical film, the type of solvent, etc., but the endless belt 101a For example, the range of 0.5 to 5 minutes is preferable in consideration of good peelability from the surface.
 無端ベルト101aとしては、表面が鏡面仕上げされたものが好ましく、例えば、ステンレス鋼や鋳物で表面がメッキ仕上げされた金属製の無端ベルトが好ましく用いられる。無端ベルト101aの幅は、製造しようとする光学フィルムの大きさに応じて異なるが、例えば、1700mm~2700mmの範囲が好ましい。そして、ドープ2を流延する幅は、無端ベルト101aの幅のうちの、例えば、80~99%の範囲が好ましい。 The endless belt 101a preferably has a mirror-finished surface, and for example, a metal endless belt whose surface is plated with stainless steel or casting is preferably used. The width of the endless belt 101a varies depending on the size of the optical film to be manufactured, but is preferably in the range of 1700 mm to 2700 mm, for example. The width for casting the dope 2 is preferably in the range of 80 to 99% of the width of the endless belt 101a, for example.
 [予備延伸装置]
 予備延伸装置102は、乾燥風取入れ口102cと排出口102bとを有する外箱102aと、外箱102aの中に入れられた延伸装置102dとを備える。予備延伸装置102は、無端ベルト101aから剥離されたウェブ3をMD方向に延伸するものである。
[Preliminary stretching equipment]
The preliminary stretching device 102 includes an outer box 102a having a dry air intake port 102c and a discharge port 102b, and a stretching device 102d placed in the outer box 102a. The preliminary stretching apparatus 102 stretches the web 3 peeled from the endless belt 101a in the MD direction.
 延伸装置102dでは搬送ローラーに周速差をつけることで、ウェブ3をMD方向に延伸することが可能となっている。なお、乾燥風取入口102bと排出口102cとは、逆であってもよい。予備延伸装置102における溶媒除去手段としては加熱風を使用した場合を示しているが、溶媒除去手段としては特に限定はなく、このほかに、例えば赤外線ヒーターで加熱する手段等が挙げられる。 In the stretching device 102d, the web 3 can be stretched in the MD direction by making a difference in peripheral speed between the transport rollers. Note that the drying air inlet 102b and the outlet 102c may be reversed. Although the case where heating air is used is shown as the solvent removing means in the pre-stretching apparatus 102, the solvent removing means is not particularly limited, and other examples include means for heating with an infrared heater, for example.
 予備延伸装置102における乾燥は、一定の温度で乾燥してもよいし、3~4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。 The drying in the pre-stretching apparatus 102 may be performed at a constant temperature, or may be divided into three to four stages of temperature and may be divided into several stages of temperature.
 MD方向の延伸については従来公知の方式、代表的には、ヒーター加熱方式とオーブン加熱方式、を用いることができる。 For the stretching in the MD direction, a conventionally known method, typically a heater heating method and an oven heating method, can be used.
 ヒーター加熱方式は、低速ローラー群と高速ローラー群の間に設置されたヒーターにより瞬時に延伸温度にまで昇温し、比較的短い延伸スパンで延伸するものである。 The heater heating method is a method in which a heater installed between a low-speed roller group and a high-speed roller group instantaneously raises the temperature to a stretching temperature and stretches with a relatively short stretching span.
 延伸に伴う幅収縮は延伸スパンが短いほど小さく抑えられるため、広幅フィルムを得るためには、低速ローラー群と高速ローラー群の間隔はできるだけ短いことが好ましい。 Width shrinkage due to stretching is reduced as the stretching span is shortened. Therefore, in order to obtain a wide film, the distance between the low speed roller group and the high speed roller group is preferably as short as possible.
 具体的には、延伸スパンが2m以下で搬送ローラーが設置されていることが好ましく、より好ましくは、0.2~1.5mの範囲内である。設備上は、延伸スパンはできるだけ小さいことが好ましいが、余り短いと配置が難しくなるため、上記範囲内がより好ましい。ここで延伸スパンとは、フィルムがMD方向に延伸されている長さのことをいい、具体的にはフィルムがローラーに非接触で搬送されている長さ、すなわちローラー間距離をいう。 Specifically, it is preferable that the stretching span is 2 m or less, and the conveying roller is installed, and more preferably within the range of 0.2 to 1.5 m. From the viewpoint of equipment, it is preferable that the stretch span is as small as possible. Here, the stretching span refers to a length in which the film is stretched in the MD direction, and specifically refers to a length in which the film is conveyed to the rollers in a non-contact manner, that is, a distance between the rollers.
 低速ローラー群では、フィルムの粘着や擦り傷が発生しない範囲でなるべく延伸温度に近い温度まで予熱しておくことが好ましい。 In the low-speed roller group, it is preferable to preheat to a temperature as close as possible to the stretching temperature as long as film adhesion and scratches do not occur.
 予備延伸装置102内は、フィルム通路の上下に配置されたノズルから吹き出された熱風の間をノズルに接触しないように、フィルムを浮かせながら非接触で搬送しつつ延伸するフローティングが好ましい。なお、予備延伸装置102の入り口より上流側、及び出口より下流側は、一般的にはフィルムを安定に搬送可能な抱き角でサクションローラーやガイドローラーにより保持搬送される。 The inside of the pre-stretching apparatus 102 is preferably a floating that is stretched while being transported in a non-contact manner while the film is floated so that the hot air blown from nozzles arranged above and below the film passage does not come into contact with the nozzle. Note that the upstream side from the entrance and the downstream side from the exit of the prestretching apparatus 102 are generally held and conveyed by a suction roller and a guide roller at a holding angle capable of stably conveying the film.
 ヒーター加熱方式は、幅収縮量を小さく抑えられ広幅フィルムの製膜に有利であること、及び比較的省スペースで設置できることなどの利点があり、オーブン加熱方式には、光学特性の均一性が高いこと、擦り傷や粘着故障が出にくいことなどの利点がある。MD延伸方式は使用する材料や必要な物性などを考慮して適宜選択される。 The heater heating method is advantageous in that the amount of width shrinkage can be kept small, which is advantageous for forming a wide film, and that it can be installed in a relatively small space. The oven heating method has high uniformity of optical characteristics. In addition, there are advantages such as less scratches and adhesion failure. The MD stretching method is appropriately selected in consideration of materials to be used and necessary physical properties.
 [本延伸装置]
 本延伸装置103は、乾燥風取入れ口103cと排出口103bとを有する外箱103aと、外箱103aの中に入れられた延伸装置103dとを備える。本延伸装置103は、予備延伸装置102で延伸されたウェブ3を、MD方向にさらに高い延伸倍率で延伸する延伸工程を行うものである。延伸装置103dは、特に限定はなく、汎用性や操作の容易さの観点から、例えば、予備延伸装置と同様な搬送ローラーとして、低速ローラー群、高速ローラー群を具備して、当該ローラーに周速差をつけることで、ウェブ3をMD方向に延伸する装置でもよく、また、他の延伸装置としてクリップテンター、ピンテンター等が挙げられ、必要に応じて選択し使用することができる。本実施形態では、本延伸工程は、ある程度乾燥されたウェブ3を搬送ローラーに周速差をつけることで延伸する方法又はクリップテンターによって延伸する方法及び装置であることが好ましい。
[Main stretching device]
The stretching device 103 includes an outer box 103a having a dry air intake port 103c and a discharge port 103b, and a stretching device 103d placed in the outer box 103a. The main stretching apparatus 103 performs a stretching process in which the web 3 stretched by the preliminary stretching apparatus 102 is stretched at a higher stretch ratio in the MD direction. The stretching device 103d is not particularly limited. From the viewpoint of versatility and ease of operation, the stretching device 103d includes, for example, a low-speed roller group and a high-speed roller group as conveyance rollers similar to the pre-stretching device, and the peripheral speed of the roller. By providing a difference, an apparatus that stretches the web 3 in the MD direction may be used, and other stretching apparatuses include a clip tenter and a pin tenter, and can be selected and used as necessary. In the present embodiment, the main stretching step is preferably a method of stretching the web 3 that has been dried to some extent by making a difference in peripheral speed between the conveying rollers, or a method and apparatus of stretching by a clip tenter.
 本延伸装置103は、乾燥風取入れ口103cと排出口103bとを有する。これは逆であってもよい。本延伸装置103における溶媒除去手段としては加熱風を使用した場合を示しているが、溶媒除去手段としては特に限定はなく、このほかに、例えば赤外線ヒーターで加熱する手段等が挙げられる。 The present stretching device 103 has a dry air intake port 103c and a discharge port 103b. This may be reversed. Although the case where heated air is used as the solvent removing means in the stretching apparatus 103 is shown, the solvent removing means is not particularly limited, and other examples include means for heating with an infrared heater, for example.
 本延伸においても、予備延伸と同様にヒーター加熱方式とオーブン加熱方式を適宜選択して用いることが好ましいが、本延伸の延伸スパンは2m以上であることが好ましい。これはフィルム幅に対して延伸スパンが短いと幅収縮に規制がかかるため、均一な延伸ができない懸念があるためである。当該延伸スパンは2~4mの範囲内であることが設備をコンパクトに設計する上で好ましく、より好ましくは2.5~3.5mの範囲である。 Also in the main stretching, it is preferable to select and use a heater heating method and an oven heating method as in the pre-stretching, but the stretching span of the main stretching is preferably 2 m or more. This is because if the stretching span is short with respect to the film width, the width shrinkage is restricted, and there is a concern that uniform stretching cannot be performed. The drawing span is preferably in the range of 2 to 4 m in view of designing the equipment compactly, and more preferably in the range of 2.5 to 3.5 m.
 本延伸装置103における乾燥条件は、この第2延伸装置103による延伸開始時のウェブ3の残留溶媒量に応じて好適温度が異なるが、乾燥時間、収縮ムラ、伸縮量の安定性等を考慮し、また、無理のない延伸を実現し、製造された光学フィルムのボイドのない良好な乾燥性や平面性や膜厚均一性の確保及び弾性率や光学特性の確保の観点から、一定の温度で乾燥してもよいし、3~4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。 The drying conditions in the stretching apparatus 103 vary depending on the residual solvent amount of the web 3 at the start of stretching by the second stretching apparatus 103, but taking into consideration drying time, shrinkage unevenness, stability of the amount of stretching, and the like. In addition, it achieves reasonable stretching, and at a constant temperature from the viewpoint of ensuring good dryness, flatness and film thickness uniformity without voids in the manufactured optical film, and ensuring elastic modulus and optical properties. It may be dried, or may be divided into three to four stages of temperature and dried in several stages.
 [TD延伸装置]
 TD延伸装置104は、乾燥風取入れ口104cと排出口104bとを有する外箱104aと、外箱104aの中に入れられたTD延伸装置104dとを備える。TD延伸装置104は、本延伸装置103で延伸されたウェブ3をTD方向に追加延伸する延伸工程を行うものである。TD延伸装置104dは、テンター延伸装置であることが好ましく、使用するテンターは、特に限定はなく、汎用性や操作の容易さの観点から、例えば、クリップテンター、ピンテンター等が挙げられ、必要に応じて選択し使用することが可能である。特に、クリップテンターを用いることが好ましい。
[TD stretcher]
The TD stretching device 104 includes an outer box 104a having a dry air intake port 104c and a discharge port 104b, and a TD stretching device 104d placed in the outer box 104a. The TD stretching device 104 performs a stretching process of additionally stretching the web 3 stretched by the stretching device 103 in the TD direction. The TD stretching device 104d is preferably a tenter stretching device, and the tenter to be used is not particularly limited, and examples thereof include a clip tenter and a pin tenter from the viewpoint of versatility and ease of operation. Can be selected and used. In particular, it is preferable to use a clip tenter.
 乾燥風取入れ口104cと排出口104bとは、逆であってもよい。TD延伸装置103における溶媒除去手段としては加熱風を使用した場合を示しているが、溶媒除去手段としては特に限定はなく、このほかに、例えば赤外線ヒーターで加熱する手段等が挙げられる。 The dry air intake 104c and the discharge port 104b may be reversed. Although the case where heated air is used as the solvent removal means in the TD stretching apparatus 103 is shown, the solvent removal means is not particularly limited, and other examples include means for heating with an infrared heater, for example.
 TD延伸装置104における乾燥条件は、このTD延伸装置104による延伸開始時のウェブ3の残留溶媒量に応じて好適温度が異なるが、乾燥時間、収縮ムラ、伸縮量の安定性等を考慮し、また、無理のない延伸を実現し、製造された光学フィルムのボイドのない良好な乾燥性や平面性や膜厚均一性の確保及び弾性率や光学特性の確保の観点から、一定の温度で乾燥してもよいし、3~4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。 The drying conditions in the TD stretching device 104 vary depending on the residual solvent amount of the web 3 at the start of stretching by the TD stretching device 104, but considering the drying time, shrinkage unevenness, stability of the stretch amount, etc. Also, it can be stretched without difficulty and dried at a constant temperature from the viewpoint of ensuring good dryness, flatness and film thickness uniformity without voids in the manufactured optical film, and ensuring elastic modulus and optical properties. Alternatively, it may be divided into three to four stages of temperature and may be dried in several stages of temperature.
 [乾燥装置]
 乾燥装置105は、乾燥風取入れ口105cと排出口105bとを有する乾燥箱105aと、ウェブ3を搬送する上部の搬送ローラー105dと下部の搬送ローラー105eとを備える。乾燥装置105は、MD方向への予備延伸、本延伸及びTD方向に延伸されたウェブ3を乾燥する熱処理工程を行うものである。上部の搬送ローラー105dと下部の搬送ローラー105eとは上下一組で、複数組から構成されている。乾燥装置105に配設される搬送ローラーの数は、乾燥条件、乾燥方法、製造される光学フィルム8の長さ等により異なり適宜設定している。上部の搬送ローラー105dと下部の搬送ローラー105eとは駆動源によって回転駆動されない自由回転ローラーとなっている。また、乾燥装置105から巻取装置106までの間には、全て自由回転する搬送ローラーが用いられるわけではなく、通常、1本~数本の搬送用駆動ローラー(駆動源によって回転駆動するローラー)の設置を必要とする。基本的に、搬送用駆動ローラーは、その駆動でウェブ3を搬送するのが目的であるので、ニップやサクション(エアーの吸引)等により、ウェブ3の搬送と、駆動ローラーの回転とを同期させる機構が付いている。
[Drying equipment]
The drying device 105 includes a drying box 105a having a drying air intake port 105c and a discharge port 105b, an upper conveyance roller 105d that conveys the web 3, and a lower conveyance roller 105e. The drying apparatus 105 performs a heat treatment step of drying the web 3 stretched in the MD direction in the pre-stretching, main stretching, and TD directions. The upper conveyance roller 105d and the lower conveyance roller 105e are a set of upper and lower, and are composed of a plurality of sets. The number of transport rollers disposed in the drying device 105 varies depending on the drying conditions, the drying method, the length of the optical film 8 to be manufactured, and the like, and is appropriately set. The upper conveyance roller 105d and the lower conveyance roller 105e are free rotation rollers that are not rotated by a drive source. In addition, a transport roller that freely rotates is not used between the drying device 105 and the winding device 106, but usually one to several transport drive rollers (rollers that are rotationally driven by a drive source). Requires installation. Basically, the purpose of the driving roller for conveyance is to convey the web 3 by its drive, so the conveyance of the web 3 and the rotation of the driving roller are synchronized by nip, suction (air suction), or the like. With the mechanism.
 乾燥装置105では、加熱空気、赤外線等を単独で用いて乾燥してもよいし、加熱空気と赤外線とを併用して乾燥してもよい。簡便さの点から加熱空気を用いることが好ましい。なお、図1は加熱空気を使用した場合を示している。乾燥温度は、乾燥工程に入る時のウェブの残留溶媒量により、好適温度が異なるが、乾燥時間、収縮ムラ、伸縮量の安定性等を考慮し、例えば、30~180℃の範囲で残留溶媒量により適宜選択して決めればよい。また、一定の温度で乾燥してもよいし、3~4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。 The drying device 105 may dry using heated air, infrared light, or the like alone, or may dry using heated air and infrared light in combination. It is preferable to use heated air from the viewpoint of simplicity. FIG. 1 shows a case where heated air is used. The drying temperature varies depending on the amount of residual solvent in the web at the time of entering the drying process, but considering the drying time, unevenness of shrinkage, stability of the amount of expansion and contraction, etc., for example, the residual solvent in the range of 30 to 180 ° C. What is necessary is just to select suitably and decide by quantity. Further, it may be dried at a constant temperature, or may be divided into three to four stages of temperature and may be divided into several stages of temperature.
 乾燥装置104での乾燥処理後のウェブ3の残留溶媒量は、この乾燥工程(熱処理工程)の負荷、保存時の寸法安定性や伸縮率等を考慮し、0.01~0.5質量%の範囲が好ましい。なお、本実施形態では、流延装置101で形成されたウェブ3が乾燥装置105で徐々に溶媒が除去され、全残留溶媒量が例えば2質量%以下となったウェブ3を光学フィルム8という場合がある。 The amount of residual solvent in the web 3 after the drying process in the drying apparatus 104 is 0.01 to 0.5% by mass in consideration of the load of the drying process (heat treatment process), the dimensional stability during storage and the expansion / contraction rate. The range of is preferable. In the present embodiment, when the web 3 formed by the casting apparatus 101 is gradually removed of the solvent by the drying apparatus 105 and the total residual solvent amount becomes, for example, 2% by mass or less, the web 3 is called the optical film 8. There is.
 [巻取装置]
 巻取装置106は、乾燥装置105で、所定の残留溶媒量となった光学フィルム8を必要量の長さに巻き芯にロール状に巻き取る。巻き取る際の温度は、巻き取り後の収縮によるスリキズ、巻き緩み等を防止するために室温まで冷却することが好ましい。使用する巻き取り機は、特に限定なく使用でき、一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻き取り方法で巻き取ることができる。
[Winding device]
The winding device 106 winds the optical film 8 having a predetermined residual solvent amount in a roll shape around the core to a required length by the drying device 105. The temperature at the time of winding is preferably cooled to room temperature in order to prevent scratches and loosening due to shrinkage after winding. The winder to be used can be used without any particular limitation, and may be a commonly used one, such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method with a constant internal stress. Can be wound up.
 <光学フィルムの製造方法>
 図1に示したような光学フィルムの製造装置1によれば、樹脂溶液2を金属支持体101a上に流延する流延工程と、支持体101a上で形成されたウェブ3を支持体101aから剥離する剥離工程と、剥離したウェブ3をMD方向に予備延伸する予備延伸工程と、次いでMD方向に本延伸する本延伸工程と、さらに必要に応じてTD方向に延伸するTD延伸工程と、延伸したウェブ3を乾燥する熱処理工程と、乾燥したウェブ3を光学フィルムとして巻き取る巻取工程とを備える、溶液流延法による光学フィルムの製造方法が実施される。このような溶液流延法による光学フィルムの製造方法は、弾性率を高めることができる高分子量の樹脂を用いることができること、着色抑制、異物欠点の抑制、ダイライン等の光学欠点の抑制等の観点から好ましい光学フィルムの製造方法である。
<Method for producing optical film>
According to the optical film manufacturing apparatus 1 as shown in FIG. 1, the casting step of casting the resin solution 2 on the metal support 101a and the web 3 formed on the support 101a are removed from the support 101a. A peeling step for peeling, a pre-stretching step for pre-stretching the peeled web 3 in the MD direction, a main stretching step for main stretching in the MD direction, and a TD stretching step for stretching in the TD direction as necessary, and stretching The manufacturing method of the optical film by the solution casting method is provided, which includes a heat treatment step for drying the web 3 and a winding step for winding the dried web 3 as an optical film. Such a method for producing an optical film by the solution casting method is capable of using a high molecular weight resin capable of increasing the elastic modulus, viewpoints of suppression of coloring, suppression of foreign matter defects, suppression of optical defects such as die lines, and the like. To a preferable method for producing an optical film.
 本実施形態においては、製造された光学フィルム8の薄膜での用途を考慮し、更に製造された光学フィルム8のカールや皺等を防止する観点から、膜厚が10~40μmの範囲の光学フィルムを製造するものである。膜厚を上記範囲内に制御するには、ドープ流延時の流延量による延伸前の膜厚の設定、及び延伸倍率によって行うことが好ましい。 In the present embodiment, in consideration of the use of the manufactured optical film 8 as a thin film, and from the viewpoint of preventing curling, wrinkles, etc. of the manufactured optical film 8, the optical film having a thickness in the range of 10 to 40 μm. Is to be manufactured. In order to control the film thickness within the above range, it is preferable to carry out by setting the film thickness before stretching by the casting amount at the time of dope casting and the stretching ratio.
 以下、前述した内容に加えて、さらに説明する。 In addition to the contents described above, further explanation will be given below.
 [溶解工程]
 溶解工程は、熱可塑性樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で、熱可塑性樹脂及びその他の添加剤を撹拌しながら溶解しドープを形成する工程、あるいは熱可塑性樹脂溶液に、場合によっては、その他の添加剤溶液を混合して主溶解液であるドープを形成する工程である。
[Dissolution process]
The dissolving step is a step of dissolving a thermoplastic resin and other additives in an organic solvent mainly containing a good solvent for the thermoplastic resin while stirring the thermoplastic resin and other additives to form a dope, or a thermoplastic resin solution. Depending on the case, it is the process of mixing dope which is a main solution by mixing other additive solutions.
 熱可塑性樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
 ドープ中の熱可塑性樹脂は、計10~45質量%の範囲であることが好ましい。溶解中又は後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。 The total thermoplastic resin in the dope is preferably in the range of 10 to 45% by mass. After the additive is added and dissolved and dispersed in the dope during or after dissolution, the solution is filtered with a filter medium, defoamed, and sent to the next step with a liquid feed pump.
 濾過は捕集粒子径0.5~5μmの範囲で、かつ濾水時間10~25sec/100mlの範囲の濾材を用いることが好ましい。 For the filtration, it is preferable to use a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml.
 この方法では、粒子分散時に残存する凝集物や主ドープ添加時発生する凝集物を、捕集粒子径0.5~5μmの範囲で、かつ濾水時間10~25sec/100mlの範囲の濾材を用いることで凝集物だけ除去できる。主ドープでは粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。 In this method, a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml is used for the aggregate remaining at the time of particle dispersion and the aggregate generated when the main dope is added. Only the aggregate can be removed. In the main dope, the concentration of particles is sufficiently thinner than that of the additive solution, so that aggregates do not stick together at the time of filtration and the filtration pressure does not increase suddenly.
 必要な場合は、後述するアクリル粒子仕込釜より濾過器で大きな凝集物を除去し、ストック釜へ送液する。その後、ストック釜より主ドープ溶解釜へアクリル粒子添加液を添加する。 If necessary, remove large agglomerates with a filter from the acrylic particle charging pot described later, and send the liquid to the stock pot. Thereafter, the acrylic particle additive liquid is added from the stock kettle to the main dope dissolving kettle.
 その後主ドープは主濾過器にて濾過され、これに紫外線吸収剤添加液等がさらにインライン添加されてもよい。 Thereafter, the main dope is filtered by a main filter, and an ultraviolet absorbent additive solution or the like may be further added in-line thereto.
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。返材には添加剤が含まれているため、その場合には返材の添加量に合わせて添加剤の添加量をコントロールすることが好ましい。 In many cases, the main dope may contain about 10 to 50% by weight of recycled material. Since the return material contains an additive, in that case, it is preferable to control the amount of additive added in accordance with the amount of return material added.
 返材とは、光学フィルムを細かく粉砕した物で、光学フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷等でスペックアウトした光学フィルム原反が使用される。 The return material is a product obtained by finely pulverizing an optical film, which is produced when an optical film is formed, and is obtained by cutting off both sides of the film, or an optical film original that has been speculated out by scratches, etc. .
 また、あらかじめ熱可塑性樹脂、場合によって添加剤を混練してペレット化したものも、好ましく用いることができる。 Also, a thermoplastic resin, and optionally pelletized by kneading additives may be preferably used.
 (ドープの溶媒)
 本発明の光学フィルムを溶液流延法で製造する場合のドープを形成するのに有用な溶媒は、例えば有機溶媒である。そのような有機溶媒としては、例えば、熱可塑性樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
(Dope solvent)
A solvent useful for forming a dope when the optical film of the present invention is produced by a solution casting method is, for example, an organic solvent. As such an organic solvent, any organic solvent can be used without limitation as long as it can simultaneously dissolve a thermoplastic resin and other additives.
 例えば、塩素系有機溶媒としては、塩化メチレン(メチレンクロライド)、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、メチレンクロライド、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride (methylene chloride) and as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone Ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3 -Hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Methylene chloride, methyl acetate, ethyl acetate, and acetone can be preferably used.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels, facilitating peeling from the metal support, and when the proportion of alcohol is small, the dissolution of the thermoplastic resin in a non-chlorine organic solvent system is promoted. There is also a role.
 特に、メチレンクロライド、及び炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性樹脂と添加剤を、少なくとも計10~45質量%溶解させたドープ組成物であることが好ましい。
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。
In particular, a dope composition in which a thermoplastic resin and an additive are dissolved at least 10 to 45 mass% in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. It is preferable that
Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 [流延工程]
 再び図1を参照して説明する。流延工程は、ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
[Casting process]
A description will be given with reference to FIG. 1 again. In the casting process, the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump), and is supported by an endless metal belt such as a stainless steel belt or a rotating metal drum. This is a step of casting a dope from a pressure die slit to a casting position on the body.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 (流延工程中の溶媒蒸発工程)
 ウェブを支持体上で加熱し、溶媒を蒸発させる工程である。
(Solvent evaporation process during casting process)
This is a step of heating the web on the support and evaporating the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを-5~100℃の雰囲気下、支持体上で乾燥させることが好ましい。より好ましくは40~70℃の範囲内である。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, and the like. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of −5 to 100 ° C. More preferably, it is in the range of 40 to 70 ° C.
 面品質、透湿性、剥離性の観点から、0.5~5分以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 0.5 to 5 minutes.
 [剥離工程]
 剥離工程は、金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
[Peeling process]
A peeling process is a process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは0~40℃の範囲であり、更に好ましくは5~30℃の範囲である。 The temperature at the peeling position on the metal support is preferably in the range of 0 to 40 ° C, more preferably in the range of 5 to 30 ° C.
 無端ベルト101a上で形成されたウェブ3を無端ベルト101aから剥離するときのウェブ3の残留溶媒量(剥離時のウェブ3の残留溶媒量)は、無端ベルト101aからのウェブ3の剥離性、剥離後のウェブ3の搬送性、延伸時のテンターによる保持性、製造された光学フィルムの外観や光学特性等を考慮して、例えば、20~100質量%の範囲が好ましく、35~90質量%の範囲がより好ましく、45~80質量%の範囲がさらに好ましい。 When the web 3 formed on the endless belt 101a is peeled from the endless belt 101a, the residual solvent amount of the web 3 (the residual solvent amount of the web 3 at the time of peeling) is the peelability and peeling of the web 3 from the endless belt 101a. In consideration of the transportability of the subsequent web 3, the retention by the tenter during stretching, the appearance and optical characteristics of the produced optical film, for example, the range of 20 to 100% by mass is preferable, and the range of 35 to 90% by mass is preferable. The range is more preferable, and the range of 45 to 80% by mass is further preferable.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、前述した理由に加えて、乾燥の条件の強弱、金属支持体の長さ等により20~150質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is in the range of 20 to 150% by mass depending on the strength of drying conditions, the length of the metal support, etc. in addition to the reasons described above. However, if the web is too soft, the flatness at the time of peeling is impaired, and slippage and vertical stripes due to peeling tension are likely to occur. Therefore, the amount of residual solvent at the time of peeling is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(質量%)={(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)}×100
 ただし、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (% by mass) = {(mass before heat treatment of web−mass after heat treatment of web) / (mass after heat treatment of web)} × 100
However, the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 また、無端ベルト101aからウェブ3を剥離するときにウェブ3に作用する張力(剥離張力)、及び、剥離後にウェブ3を搬送するときにウェブ3に作用する張力(搬送張力)に起因して、ウェブ3は、ウェブ3の搬送方向(MD方向)に延伸される。ここでの延伸を制御する観点から、前記剥離張力及び前記搬送張力は、例えば、20~400N/mの範囲が好ましい。 Also, due to the tension acting on the web 3 when peeling the web 3 from the endless belt 101a (peeling tension), and the tension acting on the web 3 when transporting the web 3 after peeling (conveying tension), The web 3 is stretched in the conveyance direction (MD direction) of the web 3. From the viewpoint of controlling stretching here, the peel tension and the transport tension are preferably in the range of 20 to 400 N / m, for example.
 金属支持体とフィルムを剥離する際の剥離張力は、剥離の際に皺が入りやすい場合、200N/m以下の張力で剥離することが好ましく、更には、剥離できる最低張力~175N/mの範囲、次いで、最低張力~150N/mの範囲で剥離することが好ましいが、特に好ましくは最低張力~100N/mの範囲で剥離することである。 The peeling tension when peeling the metal support from the film is preferably at a tension of 200 N / m or less when wrinkles are likely to occur at the time of peeling, and more preferably in the range of the minimum tension that can be peeled to 175 N / m. Then, it is preferable to peel in the range of the minimum tension to 150 N / m, but it is particularly preferable to peel in the range of the minimum tension to 100 N / m.
 本発明においては、該金属支持体上の剥離位置における温度を-5℃~70℃の範囲とするのが好ましく、0~60℃の範囲がより好ましく、15~60℃の範囲とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably in the range of −5 to 70 ° C., more preferably in the range of 0 to 60 ° C., and in the range of 15 to 60 ° C. Most preferred.
 [MD方向への予備延伸工程]
 本発明に係る予備延伸は、MD方向に1.01~1.10倍の範囲内で行うことが特徴である。この範囲であれば、本延伸での樹脂の配向制御に影響を与えるほど強い樹脂の配向がなく、樹脂鎖も十分にほぐしやすい。予備延伸で1.10倍を超える延伸を行うと、たしかに樹脂鎖はほぐれるが配向が不均一となりやすく、本延伸によって当該樹脂の配向の不均一性が拡大されやすくなるため、上記範囲内とすることが必要である。
[Pre-stretching step in MD direction]
The pre-stretching according to the present invention is characterized in that it is performed within a range of 1.01 to 1.10 times in the MD direction. Within this range, there is no orientation of the resin that is so strong as to affect the orientation control of the resin in the main stretching, and the resin chains are also easily loosened. When the pre-stretching is performed at a ratio exceeding 1.10 times, the resin chains are surely loosened, but the orientation is likely to be non-uniform, and the non-uniformity of the orientation of the resin is likely to be expanded by the main stretching. It is necessary.
 予備第1の延伸工程におけるMD方向の延伸倍率は、式「予備延伸工程におけるMD方向の延伸倍率=予備延伸工程後のウェブの搬送速度/予備延伸工程前のウェブの搬送速度」で求められる。
 本発明に係る予備延伸時のウェブの搬送速度は、10~100m/分の範囲で行うことが好ましく、15~100m/分の範囲で行うことが生産性や破断の点でより好ましい。中でも、熱可塑性樹脂の樹脂鎖の絡み合いを効果的にほぐす観点から、20~80m/分の範囲で行うことが特に好ましい。
The draw ratio in the MD direction in the preliminary first stretching step is obtained by the formula “stretch ratio in the MD direction in the preliminary stretching step = web transport speed after the pre-stretching process / web transport speed before the pre-stretching process”.
The web conveyance speed during pre-stretching according to the present invention is preferably 10 to 100 m / min, more preferably 15 to 100 m / min in terms of productivity and breaking. Among these, from the viewpoint of effectively loosening the entanglement of the resin chains of the thermoplastic resin, it is particularly preferable to carry out in the range of 20 to 80 m / min.
 本発明では、流延支持体より剥離したウェブを予備延伸工程及び本延伸工程によってMD方向に延伸するときの、好ましい延伸倍率は前述のとおりであるが、予備延伸と本延伸のMD方向の延伸倍率の積の値は、1.5~2.5倍の範囲内とすることが好ましい。前記範囲内での延伸を行うことにより、本発明の効果の発現と均一な延伸処理をする観点から好ましく、さらに当該積の値は、1.5~2.0倍の範囲にすることが特に好ましい。 In the present invention, when the web peeled from the casting support is stretched in the MD direction by the pre-stretching step and the main stretching step, the preferred stretching ratio is as described above. The product value of the magnification is preferably in the range of 1.5 to 2.5 times. By performing stretching within the above range, it is preferable from the viewpoint of expression of the effect of the present invention and uniform stretching treatment, and the product value is particularly preferably in the range of 1.5 to 2.0 times. preferable.
 予備延伸時の温度は、光学フィルムのガラス転移温度をTg(℃)としたときに、(Tg-100)~(Tg-10)℃の範囲内の温度で行うことが好ましく、(Tg-100)~(Tg-20)℃の範囲内の温度で行うことがより好ましい。延伸温度が前記範囲内であれば、本延伸での樹脂の配向制御に影響を与えるほど強い樹脂の配向がなく、樹脂鎖も十分にほぐしやすい。 The pre-stretching temperature is preferably a temperature within the range of (Tg-100) to (Tg-10) ° C., where Tg (° C.) is the glass transition temperature of the optical film. ) To (Tg−20) ° C. is more preferable. If the stretching temperature is within the above range, there is no orientation of the resin that is strong enough to affect the orientation control of the resin in the main stretching, and the resin chain is also easily loosened.
 なお、フィルムのガラス転移温度Tg(℃)は、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。 The glass transition temperature Tg (° C.) of the film was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer) and determined according to JIS K7121 (1987). The intermediate glass transition temperature (Tmg).
 また、ウェブ3を予備延伸装置102で延伸開始するときのウェブ3の残留溶媒量(予備延伸装置102による延伸開始時のウェブ3の残留溶媒量)は、本発明の効果を得るのに、前記式で表される残留溶媒量(質量%)が、20~100質量%の範囲内であることが好ましく、より好ましくは21~80質量%の範囲内であり、特に好ましくは30~80質量%の範囲である。 Further, the residual solvent amount of the web 3 when the web 3 is started to be stretched by the prestretching apparatus 102 (the residual solvent amount of the web 3 at the start of stretching by the prestretching apparatus 102) The residual solvent amount (% by mass) represented by the formula is preferably within the range of 20 to 100% by mass, more preferably within the range of 21 to 80% by mass, and particularly preferably 30 to 80% by mass. Range.
 残留溶媒量が前記範囲内であれば、本延伸での樹脂の配向制御に影響を与えるほど強い樹脂の配向がなく、樹脂鎖も十分にほぐしやすい。 If the amount of residual solvent is within the above range, there is no strong resin orientation that affects the orientation control of the resin in the main stretching, and the resin chain is also easily loosened.
 [MD方向への本延伸工程]
 当該本延伸の延伸倍率としては、1.15~2.50倍の範囲内で行うことが、薄膜化の観点から好ましい。本発明に係る予備延伸によって樹脂鎖同士の絡み合いが効果的にほぐされているため、前記範囲のような高い延伸倍率で本延伸を行っても、低い延伸応力に保つことができ、搬送ローラーによる擦り傷や光学的なムラの発生を低減することができる。
[Main stretching process in the MD direction]
The stretching ratio of the main stretching is preferably in the range of 1.15 to 2.50 times from the viewpoint of thinning. Since the entanglement between the resin chains is effectively loosened by the pre-stretching according to the present invention, even if the main stretching is performed at a high stretching ratio as in the above range, it can be kept at a low stretching stress and depends on the transport roller. Generation of scratches and optical unevenness can be reduced.
 ここで、本延伸工程におけるMD方向の延伸倍率は、式「本延伸工程におけるMD方向の延伸倍率=本延伸工程後のウェブの搬送速度/本延伸工程前のウェブの搬送速度」で求められる。
 本発明に係る本延伸時のウェブの搬送速度は、10~100m/分の範囲で行うことが好ましく、15~100m/分の範囲で行うことが生産性や破断の点でより好ましい。
Here, the draw ratio in the MD direction in the main stretching process is determined by the formula “stretch ratio in the MD direction in the main stretching process = web transport speed after the main stretching process / web transport speed before the main stretching process”.
The web conveyance speed during the main stretching according to the present invention is preferably 10 to 100 m / min, more preferably 15 to 100 m / min in terms of productivity and breaking.
 また、当該本延伸時の残留溶媒量は、1~30質量%の範囲内で行うことが、加熱時に発泡することもなく、所望の延伸倍率で延伸することができ、平面性や光学的な均一性の高い光学フィルムを得ることができる。当該残留溶媒量は好ましくは、3~18質量%の範囲内である。 Further, the amount of residual solvent at the time of the main stretching may be within a range of 1 to 30% by mass, and it can be stretched at a desired stretching ratio without foaming during heating, and has flatness and optical properties. An optical film with high uniformity can be obtained. The residual solvent amount is preferably in the range of 3 to 18% by mass.
 さらに、光学フィルムのガラス転移温度をTg(℃)としたときに、当該本延伸を(Tg-10)~(Tg+100)℃の範囲内で行うことが、延伸応力の急激な上昇を抑制し、かつフィルム中の樹脂の配向を高め、搬送ローラーによる擦り傷や光学的なムラの発生を低減でき、好ましい。好ましくは、Tg~(Tg+80)℃の範囲である。 Further, when the glass transition temperature of the optical film is Tg (° C.), performing the main stretching within the range of (Tg−10) to (Tg + 100) ° C. suppresses a rapid increase in stretching stress, In addition, the orientation of the resin in the film can be increased, and the occurrence of scratches and optical unevenness by the transport roller can be reduced, which is preferable. Preferably, it is in the range of Tg to (Tg + 80) ° C.
 本延伸工程時の延伸応力は、1~10MPaの範囲内であることが好ましく、さらに延伸応力が、2~5MPaの範囲内であることが、擦り傷の発生を低下しながら、熱可塑性樹脂の均一な配向を促す観点から、特に好ましい。 The stretching stress during the main stretching process is preferably in the range of 1 to 10 MPa, and the stretching stress is preferably in the range of 2 to 5 MPa while reducing the occurrence of scratches and uniforming the thermoplastic resin. This is particularly preferable from the viewpoint of promoting proper orientation.
 上記延伸応力は、以下の方法によって測定することができる。 The stretching stress can be measured by the following method.
 〈延伸応力の評価〉
 テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、以下のような測定を行う。
<Evaluation of stretching stress>
The following measurement is performed using a Tensilon tester (ORICTEC, RTC-1225A).
 光学フィルムを120mm(MD:長手方向)×10mm(TD:幅手方向)で切り出し、試料を23±2℃、55±5%RHの環境下で、24時間放置した後、23℃・55%RHに保持した恒温槽の中でチャック長50mmで50mm/minの速度でフィルムをMD方向に引っ張り、そのときの引っ張り荷重を、フィルム断面積(すなわち、フィルム幅×膜厚)で割ることでMD方向の延伸応力が求められる。 The optical film was cut out at 120 mm (MD: longitudinal direction) × 10 mm (TD: lateral direction), and the sample was left in an environment of 23 ± 2 ° C. and 55 ± 5% RH for 24 hours, and then 23 ° C./55%. The film is pulled in the MD direction at a chuck length of 50 mm and a speed of 50 mm / min in a thermostatic chamber held in RH, and the tensile load at that time is divided by the film cross-sectional area (that is, film width × film thickness). Directional stretching stress is required.
 [TD延伸工程]
 本発明に好ましい実施態様としては、前記MD方向に予備延伸及び本延伸した後に、TD方向に1.3~3.0倍の範囲内で延伸することが、光学フィルムの薄膜化及び広幅化のために好ましく、さらに光学フィルムのMD方向及びTD方向の弾性率を高める観点からも好ましい。より好ましくは、光学フィルムとしての弾性率等の物性を維持する観点から、1.5~2.5倍の範囲内である。
[TD stretching step]
As a preferred embodiment of the present invention, after pre-stretching and main-stretching in the MD direction, stretching in the range of 1.3 to 3.0 times in the TD direction may reduce the thickness and width of the optical film. Therefore, it is also preferable from the viewpoint of increasing the elastic modulus in the MD direction and TD direction of the optical film. More preferably, it is in the range of 1.5 to 2.5 times from the viewpoint of maintaining physical properties such as elastic modulus as an optical film.
 ここで、TD方向の延伸倍率は、式「TD延伸工程におけるTD方向の延伸倍率=TD延伸工程後のウェブの幅/TD延伸工程前のウェブの幅」で求められる。なお、ウェブの幅は、C型JIS1級の鋼製スケールで測定した値である。 Here, the stretching ratio in the TD direction is determined by the formula “stretching ratio in the TD direction in the TD stretching process = web width after the TD stretching process / web width before the TD stretching process”. The width of the web is a value measured with a C-type JIS grade 1 steel scale.
 TD延伸工程において、テンター延伸装置を用いる場合は、テンターによるフィルムの保持位置を左右で独立に制御できる装置を用いることが好ましい。また、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 In the TD stretching step, when a tenter stretching apparatus is used, it is preferable to use an apparatus that can independently control the holding position of the film by the tenter on the left and right. It is also preferable to create compartments with intentionally different temperatures to improve planarity. It is also preferable to provide a neutral zone between different temperature zones so that the zones do not interfere with each other.
 なお、TD延伸工程において、延伸操作は多段階に分割して実施してもよい。また、二軸延伸する場合は、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。 In the TD stretching process, the stretching operation may be performed in multiple stages. Biaxial stretching also includes stretching in one direction and contracting the other while relaxing the tension.
 TD延伸装置104にウェブが搬送される直前のウェブの残留溶媒量は、20質量%未満であることが好ましく、より好ましくは1~10質量%の範囲である。上記範囲内であれば、平面性や光学的な均一性を高めることができ、好ましい。 The residual solvent amount of the web immediately before the web is conveyed to the TD stretching device 104 is preferably less than 20% by mass, and more preferably in the range of 1 to 10% by mass. If it is in the said range, planarity and optical uniformity can be improved and it is preferable.
 また、TD方向の延伸時の温度は、具体的には、光学フィルムのガラス転移温度をTg(℃)としたときに、(Tg-10)~(Tg+100)℃の範囲内で行うことが好ましく、(Tg-5)~(Tg+100)℃の範囲内で行うことが好ましい。 The temperature during stretching in the TD direction is specifically preferably within the range of (Tg-10) to (Tg + 100) ° C. when the glass transition temperature of the optical film is Tg (° C.). , (Tg-5) to (Tg + 100) ° C. is preferable.
 TD方向の延伸工程において、雰囲気の幅方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、TD延伸工程での幅方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内がさらに好ましい。
 本発明に係るTD方向の延伸時のウェブの搬送速度は、15~200m/分の範囲で行うことが好ましく、15~180m/分の範囲で行うことが生産性や破断の点でより好ましい。
In the stretching process in the TD direction, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the TD stretching process is preferably within ± 5 ° C., and ± 2 It is more preferably within 1 ° C., and further preferably within 1 ° C.
The web conveyance speed during stretching in the TD direction according to the present invention is preferably in the range of 15 to 200 m / min, and more preferably in the range of 15 to 180 m / min in terms of productivity and breaking.
 [熱処理工程]
 熱処理工程は、延伸したウェブを乾燥装置内に複数配置したローラーに交互に通して搬送しつつ乾燥(熱処理)する工程である。
[Heat treatment process]
The heat treatment step is a step of drying (heat treatment) while alternately passing the stretched web through rollers arranged in a drying apparatus.
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ねやすい。高温による乾燥は残留溶媒量が10質量%以下くらいから行うのがよい。全体を通し、乾燥はおおむね30~250℃の範囲で行われることが好ましく、特に40~160℃の範囲で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from a residual solvent amount of about 10% by mass or less. Throughout the whole, the drying is preferably carried out in the range of approximately 30 to 250 ° C., particularly preferably in the range of 40 to 160 ° C.
 [巻取工程]
 巻取工程は、ウェブ中の残留溶媒量が2質量%以下となってから光学フィルムとして巻取り機により巻き取る工程であり、残留溶媒量を0.05質量%以下にすることにより寸法安定性の良好な本発明の光学フィルムを得ることができる。特に0.00~0.05質量%の範囲で巻き取ることが好ましい。
[Winding process]
The winding process is a process in which the amount of residual solvent in the web becomes 2% by mass or less and is wound as an optical film by a winder, and the dimensional stability is achieved by setting the residual solvent amount to 0.05% by mass or less. Can be obtained. In particular, it is preferable to take up in the range of 0.00 to 0.05% by mass.
 巻取り方法は、一般に使用されている方法を用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。 As a winding method, a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
 本発明の光学フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.4m以上であることが広幅の光学フィルムを得る上で必要であり、1.6~3mであることが好ましく、1.8~3mであることがより好ましい。 The optical film of the present invention is preferably a long film. Specifically, the optical film has a thickness of about 100 m to 5000 m, and is usually in the form of a roll. The width of the film is 1.4 m or more, which is necessary for obtaining a wide optical film, preferably 1.6 to 3 m, and more preferably 1.8 to 3 m.
 本発明の光学フィルムの膜厚は、薄膜の偏光板用保護フィルムとして使用する場合を考慮して10~40μmの範囲であることが特徴であるが、15~35μmであることがより好ましく、20~35μmであることが特に好ましい。当該膜厚が上記範囲内であれば、薄膜化への要望に応えることができ、また光学フィルムとして要求される物性等を満たすことができる。 The film thickness of the optical film of the present invention is characterized by being in the range of 10 to 40 μm in consideration of the use as a protective film for a thin polarizing plate, more preferably 15 to 35 μm, and 20 It is particularly preferable that the thickness is 35 μm. When the film thickness is within the above range, it is possible to meet the demand for thinning, and to satisfy physical properties required for an optical film.
 以上のような方法によって製造された光学フィルムは、低吸湿性で、透明度が高く、耐候性に優れた光学フィルムである。 The optical film manufactured by the method as described above is an optical film having low hygroscopicity, high transparency, and excellent weather resistance.
 ≪光学フィルムを構成する材料≫
 以下、本発明の光学フィルムに用いられる各種材料について説明する。
≪Material for optical film≫
Hereinafter, various materials used for the optical film of the present invention will be described.
 <熱可塑性樹脂>
 本発明の光学フィルムは、熱可塑性樹脂を含有する。ここで、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂のことをいう。
<Thermoplastic resin>
The optical film of the present invention contains a thermoplastic resin. Here, the “thermoplastic resin” refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into a desired shape.
 本発明に用いられる熱可塑性樹脂は、製造が容易であること、光学的に透明であることが好ましい要件として挙げられる。 The thermoplastic resin used in the present invention is preferably manufactured easily and optically transparent.
 本発明でいう透明とは、可視光の全光線透過率が60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。 The term “transparent” as used in the present invention means that the total light transmittance of visible light is 60% or more, preferably 80% or more, and particularly preferably 90% or more.
 上記の性質を有していれば特に限定はないが、例えば、セルロース(ジ、トリ)アセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースアシレート系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート等のポリエステル系樹脂、ポリフェニレンサルファイド、ポリフェニレンオキシド、ポリカプロラクトン、ポリカーボネート系樹脂、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等の環状ポリオレフィン系樹脂、ポリアリレート系樹脂、ポリスルホン(ポリエーテルスルホンも含む)系樹脂、ポリエチレン、ポリプロピレン、ABS樹脂、ポリ乳酸、セロファン、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系樹脂、ノルボルネン系樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ナイロン等のポリアミド系樹脂、フッ素系樹脂、ポリアリレート、熱可塑性エラストマー、シリコーン等を挙げることができる。中でも、セルロースアシレート系樹脂(以下、セルロースアシレートともいう。)やアクリル系樹脂(以下、アクリル樹脂ともいう。)、又はそれらの混合樹脂がフィルムの強度の向上、光学特性の調整ができるため、好ましい。 Although it will not specifically limit if it has said property, For example, cellulose acylate type resins, such as a cellulose (di, tri) acetate, a cellulose acetate propionate, a cellulose acetate butyrate, Acrylic type, such as a polymethylmethacrylate Resin, Polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polypropylene terephthalate, polyphenylene sulfide, polyphenylene oxide, polycaprolactone, polycarbonate resin, norbornene resin, monocyclic cyclic olefin resin, cyclic conjugated diene series Resins, vinyl alicyclic hydrocarbon resins, and cyclic polyolefin resins such as hydrides thereof, polyarylate resins, polysulfones (also polyether sulfones) Resin), polyethylene, polypropylene, ABS resin, polylactic acid, cellophane, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene resin, norbornene resin, polymethylpentene, polyether ketone, polyether ketone Examples thereof include polyamide resins such as imide and nylon, fluorine resins, polyarylate, thermoplastic elastomer, and silicone. Among them, a cellulose acylate resin (hereinafter also referred to as cellulose acylate), an acrylic resin (hereinafter also referred to as acrylic resin), or a mixed resin thereof can improve the strength of the film and adjust optical properties. ,preferable.
 特に、アクリル樹脂は他の樹脂に比較して硬度がやや低いため、擦り傷が発生しやすいが、本発明の製造方法を採用することで、当該擦り傷の発生は大幅に改善される。 Particularly, since acrylic resin has a slightly lower hardness than other resins, scratches are likely to occur. However, the use of the production method of the present invention greatly improves the generation of scratches.
 〔セルロースアシレート〕
 本発明の光学フィルムは、セルロースアシレートを主成分として含有することが好ましく、偏光板保護フィルムや位相差フィルム用途の光学フィルムとして好適である。主成分とは、当該光学フィルム中のセルロースアシレートの含有比率が55質量%以上であることをいう。好ましくは70質量%以上である。
[Cellulose acylate]
The optical film of the present invention preferably contains cellulose acylate as a main component, and is suitable as an optical film for polarizing plate protective films and retardation films. A main component means that the content rate of the cellulose acylate in the said optical film is 55 mass% or more. Preferably it is 70 mass% or more.
 本発明に係るセルロースアシレートは、炭素原子数が2~4の範囲内であるアシル基を有することが好ましい。炭素原子数が2~4の範囲内であるアシル基としては、アセチル基、プロピオニル基、及びブタノイル基を挙げることができる。 The cellulose acylate according to the present invention preferably has an acyl group having 2 to 4 carbon atoms. Examples of the acyl group having 2 to 4 carbon atoms include an acetyl group, a propionyl group, and a butanoyl group.
 セルロースを構成するβ-1,4結合しているグルコース単位は、2位、3位及び6位に遊離のヒドロキシ基を有している。セルロースアシレートは、これらのヒドロキシ基の一部又は全部をアシル基によりアシル化した重合体(ポリマー)である。アシル基総置換度は、グルコース単位一つあたり、2位、3位及び6位に位置するセルロースのヒドロキシ基の全てがアシル化している割合(100%のアシル化は置換度3)を意味する。 The β-1,4-bonded glucose unit constituting cellulose has free hydroxy groups at the 2nd, 3rd and 6th positions. Cellulose acylate is a polymer obtained by acylating part or all of these hydroxy groups with an acyl group. The total acyl group substitution degree means the ratio in which all the hydroxy groups of cellulose located at the 2nd, 3rd and 6th positions are acylated per one glucose unit (100% acylation has a degree of substitution of 3). .
 好ましいアシル基の例としては、アセチル基、プロピオニル基、ブタノイル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、イソブタノイル基、tert-ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などを挙げることができる。これらの中でも、アセチル基、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、tert-ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などがより好ましく、特に好ましくはアセチル基、プロピオニル基、ブタノイル基(アシル基が炭素原子数2~4である場合)である。 Examples of preferred acyl groups include acetyl, propionyl, butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl, octadecanoyl, Examples thereof include an isobutanoyl group, a tert-butanoyl group, a cyclohexanecarbonyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, and a cinnamoyl group. Among these, an acetyl group, a propionyl group, a butanoyl group, a dodecanoyl group, an octadecanoyl group, a tert-butanoyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, a cinnamoyl group, and the like are more preferable, and an acetyl group is particularly preferable. A propionyl group and a butanoyl group (when the acyl group has 2 to 4 carbon atoms);
 具体的なセルロースアシレートとしては、セルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースアセテートプロピオネートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも1種であることが好ましい。 Specific cellulose acylates include at least selected from cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose acetate propionate benzoate, cellulose propionate, and cellulose butyrate. One type is preferable.
 これらの中でより好ましいセルロースアシレートは、セルロース(ジ、トリ)アセテート、セルロースアセテートプロピオネートやセルロースアセテートブチレートであり、特に好ましいセルロースアシレートはセルロース(ジ、トリ)アセテート及びセルロースアセテートプロピオネートである。 Among these, more preferred cellulose acylates are cellulose (di, tri) acetate, cellulose acetate propionate and cellulose acetate butyrate, and particularly preferred cellulose acylates are cellulose (di, tri) acetate and cellulose acetate propioate. Nate.
 セルローストリアセテートは、平均酢化度(結合酢酸量)54.0~62.5%の範囲のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0~62.5%の範囲のセルローストリアセテートである。 As the cellulose triacetate, those having an average degree of acetylation (bound acetic acid amount) in the range of 54.0 to 62.5% are preferably used, and more preferably, the average degree of acetylation is in the range of 58.0 to 62.5%. Of cellulose triacetate.
 セルロースジアセテートは、平均酢化度(結合酢酸量)51.0%~56.0%の範囲が好ましく用いられる。市販品としては、(株)ダイセル製のL20、L30、L40、L50、イーストマンケミカルジャパン(株)製のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60Sが挙げられる。 Cellulose diacetate preferably has an average degree of acetylation (bound acetic acid amount) in the range of 51.0% to 56.0%. Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. .
 セルロースアセテートプロピオネートやセルロースアセテートブチレートは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすものが好ましい。 Cellulose acetate propionate or cellulose acetate butyrate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y Those satisfying the following formulas (I) and (II) are preferred.
 式(I) 2.0≦X+Y≦2.95
 式(II) 0≦X≦2.5
 中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。
Formula (I) 2.0 ≦ X + Y ≦ 2.95
Formula (II) 0 ≦ X ≦ 2.5
Among them, it is preferable that 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9.
 上記アシル基の置換度の測定方法は、ASTM-D817-96に準じて測定することができる。 The method for measuring the degree of substitution of the acyl group can be measured according to ASTM-D817-96.
 セルロースアシレートの重量平均分子量Mwは、弾性率及び延伸応力を制御する観点から、80000~300000の範囲内であることが好ましく、120000~200000の範囲内であることがより好ましい。上記範囲内であると、溶液流延製膜時に延伸による弾性率の制御が行いやすく、フィルムの破延伸時の応力を制御しやすい。 The weight average molecular weight Mw of the cellulose acylate is preferably in the range of 80000 to 300000, more preferably in the range of 120,000 to 200000, from the viewpoint of controlling the elastic modulus and stretching stress. Within the above range, it is easy to control the elastic modulus by stretching during solution casting film formation, and it is easy to control the stress during break stretching of the film.
 セルロースアシレートの数平均分子量(Mn)は30000~150000の範囲が、得られたセルロースアシレートフィルムの機械的強度が高く好ましい。さらに40000~100000の数平均分子量のセルロースアシレートが好ましく用いられる。 The number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 30,000 to 150,000 because the obtained cellulose acylate film has high mechanical strength. Further, cellulose acylate having a number average molecular weight of 40,000 to 100,000 is preferably used.
 セルロースアシレートの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)の値は、1.4~3.0の範囲であることが好ましい。 The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) of the cellulose acylate is preferably in the range of 1.4 to 3.0.
 セルロースアシレートの重量平均分子量Mw、数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。 The weight average molecular weight Mw and number average molecular weight Mn of the cellulose acylate were measured using gel permeation chromatography (GPC).
 測定条件は以下のとおりである。 The measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~1000000の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 500 to 1000000 13 calibration curves were used. Thirteen samples are used at approximately equal intervals.
 本発明で用いられるセルロースアシレートの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースアシレートは適宜混合して、あるいは単独で使用することができる。 The raw material cellulose of cellulose acylate used in the present invention may be wood pulp or cotton linter, and wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. Cellulose acylates made from these can be used in appropriate mixture or independently.
 例えば、綿花リンター由来セルロースアシレート:木材パルプ(針葉樹)由来セルロースアシレート:木材パルプ(広葉樹)由来セルロースアシレートの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。 For example, the ratio of cellulose acylate derived from cotton linter: cellulose acylate derived from wood pulp (conifer): cellulose acylate derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50. : 50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30 it can.
 本発明に係るセルロースアシレートは、公知の方法により製造することができる。一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸など)と酸無水物(無水酢酸、無水プロピオン酸など)、触媒(硫酸など)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。トリエステルにおいてはグルコース単位の三個のヒドロキシ基は、有機酸のアシル酸で置換されている。同時に2種類の有機酸を使用すると、混合エステル型のセルロースアシレート、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースアシレートを合成する。その後、濾過、沈殿、水洗、脱水、乾燥などの工程を経て、セルロースアシレートができあがる。 The cellulose acylate according to the present invention can be produced by a known method. Generally, cellulose is esterified by mixing cellulose as a raw material, a predetermined organic acid (such as acetic acid or propionic acid), an acid anhydride (such as acetic anhydride or propionic anhydride), and a catalyst (such as sulfuric acid). The reaction proceeds until the triester is formed. In the triester, the three hydroxy groups of the glucose unit are substituted with an organic acid acyl acid. When two types of organic acids are used at the same time, a mixed ester type cellulose acylate such as cellulose acetate propionate or cellulose acetate butyrate can be produced. Next, cellulose acylate having a desired degree of acyl substitution is synthesized by hydrolyzing cellulose triester. Thereafter, cellulose acylate is completed through steps such as filtration, precipitation, washing with water, dehydration, and drying.
 本発明に係るセルロースアシレートは、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて撹拌したときのpHが6~7の範囲であり、電気伝導度が1~100μS/cmの範囲であることが好ましい。 The cellulose acylate according to the present invention has a pH of 6 when charged in 20 ml of pure water (electric conductivity 0.1 μS / cm or less, pH 6.8) and stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. The electric conductivity is preferably in the range of 1 to 100 μS / cm.
 具体的には特開平10-45804号公報に記載の方法を参考にして合成することができる。 Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
 〔アクリル樹脂〕
 本発明の光学フィルムは、アクリル樹脂を含有するフィルムであることが好ましい。本発明において、アクリル樹脂とはアクリル酸エステルあるいはメタアクリル酸エステルの重合体であって、ほかのモノマーとの共重合体も含まれる。
〔acrylic resin〕
The optical film of the present invention is preferably a film containing an acrylic resin. In the present invention, the acrylic resin is a polymer of acrylic acid ester or methacrylic acid ester, and includes copolymers with other monomers.
 したがって、本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%の範囲内、及びこれと共重合可能なほかの単量体単位1~50質量%の範囲内からなるものが好ましい。 Therefore, the acrylic resin used in the present invention includes a methacrylic resin. The resin is not particularly limited, but a resin having a methyl methacrylate unit content in the range of 50 to 99% by mass and other monomer units copolymerizable therewith is preferably in the range of 1 to 50% by mass. .
 共重合可能なほかの単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリロイルモルホリンやN,N-ジメチルアクリルアミドなどのアミド基を有するビニルモノマー、エステル部分に炭素数5~22の脂環式炭化水素基を有するメタクリル酸エステル又はアクリル酸エステルや、アクリル酸、メタクリル酸等のα、β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα、β-不飽和ニトリルが挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。 Other monomers that can be copolymerized include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, and amides such as acryloylmorpholine and N, N-dimethylacrylamide. Vinyl monomer having a group, methacrylic acid ester or acrylic acid ester having an alicyclic hydrocarbon group having 5 to 22 carbon atoms in the ester portion, α, β-unsaturated acid such as acrylic acid or methacrylic acid, maleic acid, Examples include unsaturated group-containing divalent carboxylic acids such as fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, and α and β-unsaturated nitriles such as acrylonitrile and methacrylonitrile. Alternatively, two or more monomers can be used in combination.
 また、本発明のアクリル樹脂としては、環構造を有してもよく、具体的には、ラクトン環構造、無水グルタル酸構造、グルタルイミド構造、N-置換マレイミド構造及び無水マレイン酸構造、ピラン環構造が挙げられる。 In addition, the acrylic resin of the present invention may have a ring structure, specifically, a lactone ring structure, a glutaric anhydride structure, a glutarimide structure, an N-substituted maleimide structure and a maleic anhydride structure, a pyran ring. Structure is mentioned.
 アルキル数の炭素数が1~18のアルキルアクリレートの具体例としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレートn-ブチルアクリレート、s-ブチルアクリレート、t-ブチルアクリレート、イソペンチルアクリレート、ネオペンチルアクリレート、t-ペンチルアクリレート、2-エチルヘキシルアクリレートなどが挙げられる。 Specific examples of the alkyl acrylate having 1 to 18 carbon atoms are methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate n-butyl acrylate, s-butyl acrylate, t-butyl acrylate, isopentyl acrylate, Examples thereof include neopentyl acrylate, t-pentyl acrylate, and 2-ethylhexyl acrylate.
 アルキル数の炭素数が1~18のアルキルメタクリレートの具体例としては、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、s-ブチルメタクリレート、t-ブチルメタクリレート、イソペンチルメタクリレート、ネオペンチルメタクリレート、t-ペンチルメタクリレート、2-エチルヘキシルメタクリレートなどが挙げられる。 Specific examples of the alkyl methacrylate having 1 to 18 carbon atoms include ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, isopentyl methacrylate, neopentyl Examples include methacrylate, t-pentyl methacrylate, 2-ethylhexyl methacrylate, and the like.
 好ましくは、イソプロピルアクリレート、t-ブチルアクリレート、イソプロピルメタクリレート、t-ブチルメタクリレートなどが挙げられる。 Preferably, isopropyl acrylate, t-butyl acrylate, isopropyl methacrylate, t-butyl methacrylate and the like can be mentioned.
 アミド基を有するビニルモノマーの具体例としては、アクリルアミド、N-メチルアクリルアミド、N-ブチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、アクリロイルモルホリン、N-ヒドロキシエチルアクリルアミド、アクリロイルピロリジン、アクリロイルピペリジン、メタクリルアミド、N-メチルメタクリルアミド、N-ブチルメタクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、メタクリロイルモルホリン、N-ヒドロキシエチルメタクリルアミド、メタクリロイルピロリジン、メタクリロイルピペリジン、N-ビニルホルムアミド、N-ビニルアセトアミド、ビニルピロリドン等が挙げられる。好ましくは、アクリロイルモルホリン、N,N-ジメチルアクリルアミド、N-ブチルアクリルアミド、ビニルピロリドンが挙げられる。 Specific examples of the vinyl monomer having an amide group include acrylamide, N-methylacrylamide, N-butylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, acryloylmorpholine, N-hydroxyethylacrylamide, acryloylpyrrolidine, Acryloylpiperidine, methacrylamide, N-methylmethacrylamide, N-butylmethacrylamide, N, N-dimethylmethacrylamide, N, N-diethylmethacrylamide, methacryloylmorpholine, N-hydroxyethylmethacrylamide, methacryloylpyrrolidine, methacryloylpiperidine, N-vinylformamide, N-vinylacetamide, vinylpyrrolidone and the like can be mentioned. Preferably, acryloylmorpholine, N, N-dimethylacrylamide, N-butylacrylamide, and vinylpyrrolidone are used.
 エステル部分に炭素数5~22の脂環式炭化水素基を有するメタクリル酸エステル又はアクリル酸エステルの具体例としては、例えば、アクリル酸シクロペンチル、アクリル酸シクロヘキシル、アクリル酸メチルシクロヘキシル、アクリル酸トリメチルシクロヘキシル、アクリル酸ノルボルニル、アクリル酸ノルボルニルメチル、アクリル酸シアノノルボルニル、アクリル酸イソボルニル、アクリル酸ボルニル、アクリル酸メンチル、アクリル酸フェンチル、アクリル酸アダマンチル、アクリル酸ジメチルアダマンチル、アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル、アクリル酸トリシクロ[5.2.1.02,6]デカ-4-メチル、アクリル酸シクロデシル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸メチルシクロヘキシル、メタクリル酸トリメチルシクロヘキシル、メタクリル酸ノルボルニル、メタクリル酸ノルボルニルメチル、メタクリル酸シアノノルボルニル、メタクリル酸フェニルノルボルニル、メタクリル酸イソボルニル、メタクリル酸ボルニル、メタクリル酸メンチル、メタクリル酸フェンチル、メタクリル酸アダマンチル、メタクリル酸ジメチルアダマンチル、メタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル、メタクリル酸トリシクロ[5.2.1.02,6]デカ-4-メチル、メタクリル酸シクロデシル、メタクリル酸ジシクロペンタニル等が挙げられる。 Specific examples of the methacrylic acid ester or acrylic acid ester having an alicyclic hydrocarbon group having 5 to 22 carbon atoms in the ester portion include, for example, cyclopentyl acrylate, cyclohexyl acrylate, methyl cyclohexyl acrylate, trimethylcyclohexyl acrylate, Norbornyl acrylate, norbornyl acrylate, cyano norbornyl acrylate, isobornyl acrylate, bornyl acrylate, menthyl acrylate, fentyl acrylate, adamantyl acrylate, dimethyladamantyl acrylate, tricycloacrylate [5.2 .1.0 2,6 ] dec-8-yl, tricyclo [5.2.1.0 2,6 ] dec-4-methyl acrylate, cyclodecyl acrylate, cyclopentyl methacrylate, cyclohex methacrylate Sil, methyl cyclohexyl methacrylate, trimethyl cyclohexyl methacrylate, norbornyl methacrylate, norbornyl methyl methacrylate, cyano norbornyl methacrylate, phenyl norbornyl methacrylate, isobornyl methacrylate, bornyl methacrylate, menthyl methacrylate, methacryl Fentyl acid, adamantyl methacrylate, dimethyladamantyl methacrylate, tricyclo [5.2.1.0 2,6 ] dec-8-yl methacrylate, tricyclo [5.2.1.0 2,6 ] decyl methacrylate 4-methyl, cyclodecyl methacrylate, dicyclopentanyl methacrylate and the like.
 好ましくは、メタクリル酸イソボルニル、メタクリル酸ジシクロペンタニル、メタクリル酸ジメチルアダマンチルなどが挙げられる。 Preferably, isobornyl methacrylate, dicyclopentanyl methacrylate, dimethyladamantyl methacrylate and the like can be mentioned.
 N-置換マレイミドとしては、例えば、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-i-プロピルマレイミド、N-ブチルマレイミド、N-i-ブチルマレイミド、N-t-ブチルマレイミド、N-ラウリルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-フェニルマレイミド、N-(2-クロロフェニル)マレイミド、N-(4-クロロフェニル)マレイミド、N-(4-ブロモフェニル)フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(2-エチルフェニルマレイミド、N-(2-メトキシフェニル)マレイミド、N-(2,4,6-トリメチルフェニル)マレイミド、N-(4-ベンジルフェニル)マレイミド、N-(2,4,6-トリブロモフェニル)マレイミド等が挙げられる。 Examples of the N-substituted maleimide include N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide, N-butylmaleimide, Ni-butylmaleimide, Nt-butylmaleimide, N-laurylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N-phenylmaleimide, N- (2-chlorophenyl) maleimide, N- (4-chlorophenyl) maleimide, N- (4-bromophenyl) phenylmaleimide, N -(2-methylphenyl) maleimide, N- (2-ethylphenylmaleimide), N- (2-methoxyphenyl) maleimide, N- (2,4,6-trimethylphenyl) maleimide, N- (4-benzylphenyl) Maleimide, N- (2,4,6-tribromoph Yl) maleimide and the like.
 好ましくは、N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミドなどが挙げられる。 Preferably, N-methylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and the like can be mentioned.
 これらのモノマーは市販のものをそのまま使用することができる。 These monomers are commercially available.
 本発明に係るアクリル樹脂含有フィルムに用いられるアクリル樹脂は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が100000~1000000の範囲内であることが好ましく、より好ましくは、300000~500000の範囲内である。 The acrylic resin used in the acrylic resin-containing film according to the present invention has a weight average molecular weight (Mw) in the range of 100,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when producing the film. Preferably, it is in the range of 300,000 to 500,000.
 本発明に係るアクリル樹脂の重量平均分子量は、前記ゲルパーミエーションクロマトグラフィーにより同様に測定することができる。 The weight average molecular weight of the acrylic resin according to the present invention can be similarly measured by the gel permeation chromatography.
 本発明におけるアクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いてもよい。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃、塊状又は溶液重合では80~160℃の範囲で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The method for producing the acrylic resin in the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization and 80 to 160 ° C. for bulk or solution polymerization. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 本発明に係るアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(以上、旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(以上、三菱レイヨン(株)製)、パラペットHR-S((株)クラレ製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。 Commercially available acrylic resins can be used as the acrylic resin according to the present invention. For example, Delpet 60N, 80N (above, manufactured by Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (above, manufactured by Mitsubishi Rayon Co., Ltd.), Parapet HR-S (manufactured by Kuraray Co., Ltd.) ) And the like. Two or more acrylic resins can be used in combination.
 〔アクリル樹脂及びセルロースアシレートを混合したフィルム〕
 本発明の光学フィルムは、アクリル樹脂とセルロースアシレートとを混合して熱可塑樹脂として用いることも好ましい。混合する場合には、アクリル樹脂とセルロースアシレートの混合質量比が、アクリル樹脂:セルロースアシレート=95:5~50:50の範囲が好ましく、90:10~70:30の範囲であることが、延伸時の延伸応力を制御しやすく、熱可塑性樹脂の配向もしやすい。
[Film mixed with acrylic resin and cellulose acylate]
The optical film of the present invention is also preferably used as a thermoplastic resin by mixing an acrylic resin and cellulose acylate. In the case of mixing, the mixing mass ratio of the acrylic resin and the cellulose acylate is preferably in the range of acrylic resin: cellulose acylate = 95: 5 to 50:50, and preferably in the range of 90:10 to 70:30. The stretching stress during stretching is easy to control, and the orientation of the thermoplastic resin is also easy.
 アクリル樹脂は、前述のアクリル樹脂から適宜選択して使用することができる。セルロースアシレートとしては、前述のセルロースアシレートから適宜選択して使用することができ、中でもセルローストリアセテート又はセルロースアセテートプロピオネートを用いることが好ましい。 The acrylic resin can be appropriately selected from the aforementioned acrylic resins. As a cellulose acylate, it can select from the above-mentioned cellulose acylate suitably, and it is preferable to use a cellulose triacetate or a cellulose acetate propionate especially.
 本発明の光学フィルムにおいては、アクリル樹脂とセルロースアシレートが相溶状態で含有されることが好ましい。光学フィルムとして必要とされる物性や品質を、異なる樹脂を相溶させることで相互に補うことができる。 In the optical film of the present invention, it is preferable that an acrylic resin and cellulose acylate are contained in a compatible state. The physical properties and quality required as an optical film can be supplemented with each other by dissolving different resins.
 アクリル樹脂とセルロースアシレートが相溶状態となっているかどうかは、例えば、ガラス転移温度Tgにより判断することが可能である。 Whether or not the acrylic resin and cellulose acylate are in a compatible state can be determined, for example, based on the glass transition temperature Tg.
 例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は二つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、一つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。 For example, when the glass transition temperatures of the two resins are different, when the two resins are mixed, there are two or more glass transition temperatures of the mixture because there is a glass transition temperature of each resin. When they are compatible, the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which becomes the glass transition temperature of the compatible resin.
 本発明の光学フィルムにおけるアクリル樹脂とセルロースアシレートの総質量は、光学フィルム全質量の55質量%以上であることが好ましく、さらに好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。 The total mass of the acrylic resin and cellulose acylate in the optical film of the present invention is preferably 55% by mass or more of the total mass of the optical film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. It is.
 <添加剤>
 添加剤として、可塑剤、紫外線吸収剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等の添加剤を含有することも好ましい。
<Additives>
As additives, it is also preferable to contain additives such as plasticizers, ultraviolet absorbers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles.
 特に、下記糖エステル又は下記重縮合エステルを含有することが好ましい。 In particular, it is preferable to contain the following sugar ester or the following polycondensed ester.
 〔糖エステル〕
 本発明の光学フィルムは、セルロースアシレート以外の糖エステルを含有することが、延伸によって、熱可塑性樹脂を所望の方向にそろえて配向する効果が高く好ましい。特にMD方向への予備延伸による樹脂鎖の絡みを効果的にほぐす観点から使用することが好ましい。
[Sugar ester]
The optical film of the present invention preferably contains a sugar ester other than cellulose acylate because the effect of aligning and aligning the thermoplastic resin in a desired direction by stretching is preferable. In particular, it is preferable to use from the viewpoint of effectively loosening the entanglement of the resin chain due to pre-stretching in the MD direction.
 本発明に用いられる糖エステルとしては、ピラノース環又はフラノース環の少なくとも1種を1個以上12個以下有しその構造のOH基の全て若しくは一部をエステル化した糖エステルであることが好ましい。 The sugar ester used in the present invention is preferably a sugar ester in which at least one pyranose ring or furanose ring is 1 to 12 and all or part of the OH groups in the structure are esterified.
 本発明に用いられる糖エステルとは、フラノース環又はピラノース環の少なくともいずれかを含む化合物であり、単糖であっても、糖構造が2~12個連結した多糖であってもよい。そして、糖エステルは、糖構造が有するOH基の少なくとも一つがエステル化された化合物が好ましい。本発明に用いられる糖エステルにおいては、平均エステル置換度が、4.0~8.0の範囲内であることが好ましく、5.0~7.5の範囲内であることがより好ましい。 The sugar ester used in the present invention is a compound containing at least one of a furanose ring and a pyranose ring, and may be a monosaccharide or a polysaccharide having 2 to 12 sugar structures linked together. The sugar ester is preferably a compound in which at least one OH group of the sugar structure is esterified. In the sugar ester used in the present invention, the average ester substitution degree is preferably within the range of 4.0 to 8.0, and more preferably within the range of 5.0 to 7.5.
 本発明に適用可能な糖エステルとしては、特に制限はないが、下記一般式(A)で表される糖エステルを挙げることができる。 The sugar ester applicable to the present invention is not particularly limited, and examples thereof include sugar esters represented by the following general formula (A).
 一般式(A)
   (HO)-G-(O-C(=O)-R
 上記一般式(A)において、Gは、単糖類又は二糖類の残基を表し、Rは、脂肪族基又は芳香族基を表し、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計であり、3≦m+n≦8であり、n≠0である。
Formula (A)
(HO) m -G- (OC (= O) -R 2 ) n
In the general formula (A), G represents a monosaccharide or disaccharide residue, R 2 represents an aliphatic group or an aromatic group, and m is directly bonded to the monosaccharide or disaccharide residue. N is the total number of — (O—C (═O) —R 2 ) groups directly bonded to the monosaccharide or disaccharide residue, 3 ≦ m + n ≦ 8, and n ≠ 0.
 一般式(A)で表される構造を有する糖エステルは、ヒドロキシ基の数(m)、-(O-C(=O)-R)基の数(n)が固定された単一種の化合物として単離することは困難であり、式中のm、nの異なる成分が数種類混合された化合物となることが知られている。したがって、ヒドロキシ基の数(m)、-(O-C(=O)-R)基の数(n)が各々変化した混合物としての性能が重要であり、本発明の光学フィルムの場合、平均エステル置換度が、5.0~7.5の範囲内である糖エステルが好ましい。 The sugar ester having the structure represented by the general formula (A) is a single kind of hydroxy group (m) and-(O—C (═O) —R 2 ) groups in which the number (n) is fixed. It is difficult to isolate as a compound, and it is known that a compound in which several components different in m and n in the formula are mixed is obtained. Therefore, the performance as a mixture in which the number of hydroxy groups (m) and the number of — (O—C (═O) —R 2 ) groups (n) are changed is important. In the case of the optical film of the present invention, Sugar esters having an average ester substitution degree in the range of 5.0 to 7.5 are preferred.
 上記一般式(A)において、Gは単糖類又は二糖類の残基を表す。単糖類の具体例としては、例えばアロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、リボース、アラビノース、キシロース、リキソースなどが挙げられる。 In the above general formula (A), G represents a monosaccharide or disaccharide residue. Specific examples of monosaccharides include allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose, lyxose, and the like.
 以下に、一般式(A)で表される糖エステルの単糖類残基を有する化合物の具体例を示すが、本発明はこれら例示する化合物に限定されるものではない。 Specific examples of the compound having a monosaccharide residue of the sugar ester represented by the general formula (A) are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 また、二糖類残基の具体例としては、例えば、トレハロース、スクロース、マルトース、セロビオース、ゲンチオビオース、ラクトース、イソトレハロース等が挙げられる。 Specific examples of the disaccharide residue include trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, and isotrehalose.
 以下に、一般式(A)で表される糖エステルの二糖類残基を有する化合物の具体例を示すが、本発明はこれら例示する化合物に限定されるものではない。 Specific examples of the compound having a disaccharide residue of the sugar ester represented by the general formula (A) are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 一般式(A)において、Rは、脂肪族基又は芳香族基を表す。ここで、脂肪族基及び芳香族基は、それぞれ独立に置換基を有していてもよい。 In the general formula (A), R 2 represents an aliphatic group or an aromatic group. Here, the aliphatic group and the aromatic group may each independently have a substituent.
 また、一般式(A)において、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計である。そして、3≦m+n≦8であることが必要であり、4≦m+n≦8であることが好ましい。また、n≠0である。なお、nが2以上である場合、-(O-C(=O)-R)基は互いに同じでもよいし異なっていてもよい。 In general formula (A), m is the total number of hydroxy groups directly bonded to the monosaccharide or disaccharide residue, and n is directly bonded to the monosaccharide or disaccharide residue. And the total number of — (O—C (═O) —R 2 ) groups. Further, it is necessary that 3 ≦ m + n ≦ 8, and it is preferable that 4 ≦ m + n ≦ 8. Further, n ≠ 0. When n is 2 or more, the — (O—C (═O) —R 2 ) groups may be the same as or different from each other.
 Rの定義における脂肪族基は、直鎖であっても、分岐であっても、環状であってもよく、炭素数1~25のものが好ましく、1~20のものがより好ましく、2~15のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル、エチル、n-プロピル、iso-プロピル、シクロプロピル、n-ブチル、iso-ブチル、tert-ブチル、アミル、iso-アミル、tert-アミル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、ビシクロオクチル、アダマンチル、n-デシル、tert-オクチル、ドデシル、ヘキサデシル、オクタデシル、ジデシル等の各基が挙げられる。 The aliphatic group in the definition of R 2 may be linear, branched or cyclic, and preferably has 1 to 25 carbon atoms, more preferably 1 to 20 carbon atoms. Those of ˜15 are particularly preferred. Specific examples of the aliphatic group include, for example, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, amyl, iso-amyl, tert-amyl, n- Examples include hexyl, cyclohexyl, n-heptyl, n-octyl, bicyclooctyl, adamantyl, n-decyl, tert-octyl, dodecyl, hexadecyl, octadecyl, didecyl and the like.
 また、Rの定義における芳香族基は、芳香族炭化水素基でもよいし、芳香族複素環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素数が6~24のものが好ましく、6~12のものがさらに好ましい。芳香族炭化水素基の具体例としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニル等の各環が挙げられる。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、ビフェニル環が特に好ましい。芳香族複素環基としては、酸素原子、窒素原子又は硫黄原子のうち少なくとも一つを含む環が好ましい。複素環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデン等の各環が挙げられる。芳香族複素環基としては、ピリジン環、トリアジン環、キノリン環が特に好ましい。 The aromatic group in the definition of R 2 may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and more preferably an aromatic hydrocarbon group. The aromatic hydrocarbon group preferably has 6 to 24 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples of the aromatic hydrocarbon group include rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl. As the aromatic hydrocarbon group, a benzene ring, a naphthalene ring, and a biphenyl ring are particularly preferable. As the aromatic heterocyclic group, a ring containing at least one of an oxygen atom, a nitrogen atom or a sulfur atom is preferable. Specific examples of the heterocyclic ring include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, Examples of each ring include isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, and tetrazaindene. As the aromatic heterocyclic group, a pyridine ring, a triazine ring, and a quinoline ring are particularly preferable.
 次に、一般式(A)で表される糖エステルの好ましい例を下記に示すが、本発明はこれらの例示する化合物に限定されるものではない。 Next, preferred examples of the sugar ester represented by the general formula (A) are shown below, but the present invention is not limited to these exemplified compounds.
 糖エステルは一つの分子中に二つ以上の異なった置換基を含有していても良く、芳香族置換基と脂肪族置換基を1分子内に含有、異なる二つ以上の芳香族置換基を1分子内に含有、異なる二つ以上の脂肪族置換基を1分子内に含有することができる。 A sugar ester may contain two or more different substituents in one molecule, contains an aromatic substituent and an aliphatic substituent in one molecule, and contains two or more different aromatic substituents. Two or more different aliphatic substituents contained in one molecule can be contained in one molecule.
 また、2種類以上の糖エステルを混合して含有することも好ましい。芳香族置換基を含有する糖エステルと、脂肪族置換基を含有する糖エステルを同時に含有することも好ましい。 It is also preferable to contain a mixture of two or more sugar esters. It is also preferable to simultaneously contain a sugar ester containing an aromatic substituent and a sugar ester containing an aliphatic substituent.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 〈合成例:一般式(A)で表される糖エステルの合成例〉
 以下に、本発明に好適に用いることのできる糖エステルの合成の一例を示す。
<Synthesis Example: Synthesis Example of Sugar Ester Represented by Formula (A)>
Below, an example of the synthesis | combination of the sugar ester which can be used suitably for this invention is shown.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖を34.2g(0.1モル)、無水安息香酸を180.8g(0.8モル)、ピリジンを379.7g(4.8モル)、それぞれ仕込み、撹拌下で窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエンを1L、0.5質量%の炭酸ナトリウム水溶液を300g添加し、50℃で30分間撹拌した後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水を100g添加し、常温で30分間水洗した後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が7質量%、A-2が58質量%、A-3が23質量%、A-4が9質量%、A-5が3質量%で、糖エステルの平均エステル置換度が、6.57であった。なお、得られた混合物の一部をシリカゲルカラムクロマトグラフィーにより精製することで、それぞれ純度100%のA-1、A-2、A-3、A-4及びA-5を得た。 Four-headed Kolben equipped with a stirrer, reflux condenser, thermometer and nitrogen gas inlet tube, 34.2 g (0.1 mol) of sucrose, 180.8 g (0.8 mol) of benzoic anhydride, pyridine 379.7 g (4.8 mol) of each were charged, and the temperature was raised while bubbling nitrogen gas from a nitrogen gas inlet tube under stirring, and esterification was carried out at 70 ° C. for 5 hours. Next, the inside of the Kolben was depressurized to 4 × 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 × 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off. Then, 1 L of toluene and 300 g of a 0.5% by mass sodium carbonate aqueous solution were added, and the mixture was stirred at 50 ° C. for 30 minutes, and then allowed to stand to separate a toluene layer. Finally, 100 g of water was added to the separated toluene layer, and after washing with water at room temperature for 30 minutes, the toluene layer was separated, and toluene was distilled off at 60 ° C. under reduced pressure (4 × 10 2 Pa or less). A mixture of compounds A-1, A-2, A-3, A-4 and A-5 was obtained. Analysis of the resulting mixture by HPLC and LC-MASS revealed that A-1 was 7% by mass, A-2 was 58% by mass, A-3 was 23% by mass, A-4 was 9% by mass, A-5 Was 3% by mass, and the average ester substitution degree of the sugar ester was 6.57. A part of the obtained mixture was purified by silica gel column chromatography to obtain 100% pure A-1, A-2, A-3, A-4 and A-5, respectively.
 当該糖エステルの添加量は、熱可塑性樹脂に対して0.1~20質量%の範囲で添加することが好ましく、1~15質量%の範囲で添加することがより好ましい。 The addition amount of the sugar ester is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 1 to 15% by mass with respect to the thermoplastic resin.
 また本発明の光学フィルムは、下記エステル(重縮合エステル)を含有することが好ましい。 The optical film of the present invention preferably contains the following ester (polycondensation ester).
 〔重縮合エステル〕
 本発明の光学フィルムは、可塑剤の一つとして、糖エステル以外のエステルを用いることも好ましい。
[Polycondensed ester]
The optical film of the present invention preferably uses an ester other than a sugar ester as one of the plasticizers.
 本発明に適用可能な糖エステル以外のエステルとしては、特に制限はないが、下記一般式(1)で表される構造を有する重縮合エステルを用いることが好ましい。 The ester other than the sugar ester applicable to the present invention is not particularly limited, but it is preferable to use a polycondensed ester having a structure represented by the following general formula (1).
 当該重縮合エステルはその可塑的な効果から、本発明の光学フィルムにおいては、1~20質量%の範囲で含有することが好ましく、2~15質量%の範囲で含有することがより好ましい。 The polycondensed ester is preferably contained in the range of 1 to 20% by mass and more preferably in the range of 2 to 15% by mass in the optical film of the present invention due to its plastic effect.
 一般式(1)
   B-(G-A)-G-B
 上記一般式(1)において、B及びBは、それぞれ独立に脂肪族又は芳香族モノカルボン酸残基、若しくはヒドロキシ基を表す。Gは、炭素数2~12のアルキレングリコール残基、炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基を表す。Aは、炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表す。nは1以上の整数を表す。
General formula (1)
B 3- (G 2 -A) n -G 2 -B 4
In the general formula (1), B 3 and B 4 each independently represent an aliphatic or aromatic monocarboxylic acid residue or a hydroxy group. G 2 represents an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms. A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms. n represents an integer of 1 or more.
 本発明において、重縮合エステルは、ジカルボン酸とジオールを反応させて得られる繰り返し単位を含む重縮合エステルであり、Aは重縮合エステル中のカルボン酸残基を表し、Gはアルコール残基を表す。 In the present invention, the polycondensed ester is a polycondensed ester containing a repeating unit obtained by reacting a dicarboxylic acid and a diol, A represents a carboxylic acid residue in the polycondensed ester, and G 2 represents an alcohol residue. To express.
 重縮合エステルを構成するジカルボン酸は、芳香族ジカルボン酸、脂肪族ジカルボン酸又は脂環式ジカルボン酸であり、好ましくは芳香族ジカルボン酸である。ジカルボン酸は、1種類であっても、2種類以上の混合物であってもよい。特に芳香族、脂肪族を混合させることが好ましい。 The dicarboxylic acid constituting the polycondensed ester is an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, preferably an aromatic dicarboxylic acid. The dicarboxylic acid may be one type or a mixture of two or more types. In particular, it is preferable to mix aromatic and aliphatic.
 重縮合エステルを構成するジオールは、芳香族ジオール、脂肪族ジオール又は脂環式ジオールであり、好ましくは脂肪族ジオールであり、より好ましくは炭素数1~4のジオールである。ジオールは、1種類であっても、2種類以上の混合物であってもよい。 The diol constituting the polycondensed ester is an aromatic diol, an aliphatic diol or an alicyclic diol, preferably an aliphatic diol, more preferably a diol having 1 to 4 carbon atoms. The diol may be one type or a mixture of two or more types.
 中でも、少なくとも芳香族ジカルボン酸を含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことが好ましく、芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことがより好ましい。 Among them, it is preferable to include a repeating unit obtained by reacting at least a dicarboxylic acid containing an aromatic dicarboxylic acid and a diol having 1 to 8 carbon atoms, and a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid; More preferably, it contains a repeating unit obtained by reacting with a diol having 1 to 8 carbon atoms.
 重縮合エステルの分子の両末端は、封止されていても、封止されていなくてもよい。 Both ends of the polycondensed ester molecule may or may not be sealed.
 一般式(1)のAを構成するアルキレンジカルボン酸の具体例としては、1,2-エタンジカルボン酸(コハク酸)、1,3-プロパンジカルボン酸(グルタル酸)、1,4-ブタンジカルボン酸(アジピン酸)、1,5-ペンタンジカルボン酸(ピメリン酸)、1,8-オクタンジカルボン酸(セバシン酸)などから誘導される2価の基が含まれる。Aを構成するアルケニレンジカルボン酸の具体例としては、マレイン酸、フマル酸などが挙げられる。Aを構成するアリールジカルボン酸の具体例としては、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸、1,4-ベンゼンジカルボン酸、1,5-ナフタレンジカルボン酸などが挙げられる。 Specific examples of the alkylene dicarboxylic acid constituting A in the general formula (1) include 1,2-ethanedicarboxylic acid (succinic acid), 1,3-propanedicarboxylic acid (glutaric acid), 1,4-butanedicarboxylic acid. Divalent groups derived from (adipic acid), 1,5-pentanedicarboxylic acid (pimelic acid), 1,8-octanedicarboxylic acid (sebacic acid) and the like are included. Specific examples of the alkenylene dicarboxylic acid constituting A include maleic acid and fumaric acid. Specific examples of the aryl dicarboxylic acid constituting A include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and the like. Can be mentioned.
 Aは、1種類であっても、2種類以上が組み合わされてもよい。中でも、Aは、炭素原子数4~12のアルキレンジカルボン酸と炭素原子数8~12のアリールジカルボン酸との組み合わせが好ましい。 A may be one type or two or more types may be combined. Among them, A is preferably a combination of an alkylene dicarboxylic acid having 4 to 12 carbon atoms and an aryl dicarboxylic acid having 8 to 12 carbon atoms.
 一般式(1)中のGは、炭素原子数2~12のアルキレングリコールから誘導される2価の基、炭素原子数6~12のアリールグリコールから誘導される2価の基、又は炭素原子数4~12のオキシアルキレングリコールから誘導される2価の基を表す。 G 2 in the general formula (1) is a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, a divalent group derived from an aryl glycol having 6 to 12 carbon atoms, or a carbon atom. It represents a divalent group derived from oxyalkylene glycol of 4 to 12.
 Gにおける炭素原子数2~12のアルキレングリコールから誘導される2価の基の例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、及び1,12-オクタデカンジオール等から誘導される2価の基が含まれる。 Examples of the divalent group derived from an alkylene glycol having 2 to 12 carbon atoms in G 2 include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, , 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-di-) Methylol heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanedio , 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, etc. Divalent groups are included.
 Gにおける炭素原子数6~12のアリールグリコールから誘導される2価の基の例には、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)などから誘導される2価の基が含まれる。Gにおける炭素原子数が4~12のオキシアルキレングリコールから誘導される2価の基の例には、ジエチレングルコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどから誘導される2価の基が含まれる。 Examples of divalent groups derived from aryl glycols having 6 to 12 carbon atoms in G 2 include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxy Divalent groups derived from benzene (hydroquinone) and the like are included. Examples of the divalent group derived from oxyalkylene glycol having 4 to 12 carbon atoms in G are derived from diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like. Divalent groups are included.
 Gは、1種類であっても、2種類以上が組み合わされてもよい。中でも、Gは、炭素原子数2~12のアルキレングリコールから誘導される2価の基が好ましく、2~5がさらに好ましく、2~4が最も好ましい。 G 2 may be a single type or a combination of two or more types. Among these, G 2 is preferably a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, more preferably 2 to 5, and most preferably 2 to 4.
 一般式(1)におけるB及びBは、各々芳香環含有モノカルボン酸又は脂肪族モノカルボン酸から誘導される1価の基、若しくはヒドロキシ基である。 B 3 and B 4 in the general formula (1) are each a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid, or a hydroxy group.
 芳香環含有モノカルボン酸から誘導される1価の基における芳香環含有モノカルボン酸は、分子内に芳香環を含有するカルボン酸であり、芳香環がカルボキシ基と直接結合したものだけでなく、芳香環がアルキレン基などを介してカルボキシ基と結合したものも含む。芳香環含有モノカルボン酸から誘導される1価の基の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などから誘導される1価の基が含まれる。中でも安息香酸、パラトルイル酸が好ましい。 The aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only those in which the aromatic ring is directly bonded to a carboxy group, Also included are those in which an aromatic ring is bonded to a carboxy group via an alkylene group or the like. Examples of monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid. , Monovalent groups derived from aminobenzoic acid, acetoxybenzoic acid, phenylacetic acid, 3-phenylpropionic acid and the like. Of these, benzoic acid and p-toluic acid are preferable.
 脂肪族モノカルボン酸から誘導される1価の基の例には、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸などから誘導される1価の基が含まれる。中でも、アルキル部分の炭素原子数が1~3であるアルキルモノカルボン酸から誘導される1価の基が好ましく、アセチル基(酢酸から誘導される1価の基)がより好ましい。 Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Is included. Among these, a monovalent group derived from an alkyl monocarboxylic acid having 1 to 3 carbon atoms in the alkyl portion is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
 本発明に用いられる重縮合エステルの重量平均分子量は、500~3000の範囲であることが好ましく、600~2000の範囲であることがより好ましい。重量平均分子量は前記ゲルパーミエーションクロマトグラフィー(GPC)によって測定することができる。 The weight average molecular weight of the polycondensed ester used in the present invention is preferably in the range of 500 to 3000, more preferably in the range of 600 to 2000. The weight average molecular weight can be measured by the gel permeation chromatography (GPC).
 以下、一般式(1)で表される構造を有する重縮合エステルの具体例を示すが、これに限定されるものではない。 Hereinafter, although the specific example of the polycondensation ester which has a structure represented by General formula (1) is shown, it is not limited to this.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 以下、上記説明した重縮合エステルの具体的な合成例について記載する。 Hereinafter, a specific synthesis example of the polycondensation ester described above will be described.
 〈重縮合エステルP1〉
 エチレングリコール180g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP1を得た。酸価0.20、数平均分子量450であった。
<Polycondensed ester P1>
180 g of ethylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a slow cooling tube. The temperature is gradually raised with stirring until reaching 230 ° C. in a nitrogen stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted ethylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P1. The acid value was 0.20 and the number average molecular weight was 450.
 〈重縮合エステルP2〉
 1,2-プロピレングリコール251g、無水フタル酸244g、アジピン酸103g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP2を得た。酸価0.10、数平均分子量450であった。
<Polycondensed ester P2>
251 g of 1,2-propylene glycol, 244 g of phthalic anhydride, 103 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and quick cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P2. The acid value was 0.10 and the number average molecular weight was 450.
 〈重縮合エステルP3〉
 1,4-ブタンジオール330g、無水フタル酸244g、アジピン酸103g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,4-ブタンジオールを減圧留去することにより、重縮合エステルP3を得た。酸価0.50、数平均分子量2000であった。
<Polycondensed ester P3>
1,4-butanediol (330 g), phthalic anhydride (244 g), adipic acid (103 g), benzoic acid (610 g), tetraisopropyl titanate (0.191 g) as an esterification catalyst, 2 L four-neck equipped with a thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,4-butanediol was distilled off at 200 ° C. under reduced pressure to obtain a polycondensed ester P3. The acid value was 0.50 and the number average molecular weight was 2000.
 〈重縮合エステルP4〉
 1,2-プロピレングリコール251g、テレフタル酸354g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP4を得た。酸価0.10、数平均分子量400であった。
<Polycondensed ester P4>
251 g of 1,2-propylene glycol, 354 g of terephthalic acid, 610 g of benzoic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a quick cooling tube. The temperature is gradually raised with stirring until it reaches 230 ° C. in an air stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off at 200 ° C. under reduced pressure to obtain a polycondensed ester P4. The acid value was 0.10 and the number average molecular weight was 400.
 〈重縮合エステルP5〉
 1,2-プロピレングリコール251g、テレフタル酸354g、p-トロイル酸680g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP5を得た。酸価0.30、数平均分子量400であった。
<Polycondensed ester P5>
251 g of 1,2-propylene glycol, 354 g of terephthalic acid, 680 g of p-troyl acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst are charged into a 2 L four-necked flask equipped with a thermometer, stirrer, and slow cooling tube. The temperature is gradually raised with stirring until it reaches 230 ° C. in a nitrogen stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P5. The acid value was 0.30 and the number average molecular weight was 400.
 〈重縮合エステルP6〉
 180gの1,2-プロピレングリコール、292gのアジピン酸、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP6を得た。酸価0.10、数平均分子量400であった。
<Polycondensed ester P6>
180 g of 1,2-propylene glycol, 292 g of adipic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a slow cooling tube, in a nitrogen stream. The temperature is gradually raised while stirring until 200 ° C is reached. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P6. The acid value was 0.10 and the number average molecular weight was 400.
 〈重縮合エステルP7〉
 180gの1,2-プロピレングリコール、無水フタル酸244g、アジピン酸103g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP7を得た。酸価0.10、数平均分子量320であった。
<Polycondensed ester P7>
180 g of 1,2-propylene glycol, 244 g of phthalic anhydride, 103 g of adipic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, stirrer, and quick cooling tube. The temperature is gradually raised with stirring until it reaches 200 ° C. in a nitrogen stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P7. The acid value was 0.10 and the number average molecular weight was 320.
 〈重縮合エステルP8〉
 エチレングリコール251g、無水フタル酸244g、コハク酸120g、酢酸150g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP8を得た。酸価0.50、数平均分子量1200であった。
<Polycondensed ester P8>
251 g of ethylene glycol, 244 g of phthalic anhydride, 120 g of succinic acid, 150 g of acetic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a slow cooling tube, and nitrogen The temperature is gradually raised with stirring until it reaches 200 ° C. in an air stream. The dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted ethylene glycol was distilled off under reduced pressure at 200 ° C. to obtain a polycondensed ester P8. The acid value was 0.50 and the number average molecular weight was 1200.
 〔可塑剤〕
 本発明の光学フィルムは、本発明の効果を得る上で必要に応じて他の可塑剤を含有することができる。
[Plasticizer]
The optical film of the present invention can contain other plasticizers as necessary for obtaining the effects of the present invention.
 可塑剤は特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、エステル系可塑剤、アクリル系可塑剤等から選択される。 The plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or an ester plasticizer. Agent, acrylic plasticizer and the like.
 そのうち、可塑剤を2種以上用いる場合は、少なくとも1種は多価アルコールエステル系可塑剤であることが好ましい。 Of these, when two or more plasticizers are used, at least one is preferably a polyhydric alcohol ester plasticizer.
 (多価アルコールエステル)
 本発明の光学フィルムにおいては、下記一般式(2)で表される多価アルコールエステルを含有することも好ましい。
(Polyhydric alcohol ester)
The optical film of the present invention preferably contains a polyhydric alcohol ester represented by the following general formula (2).
 一般式(2)
   B-G-B
 上記一般式(2)において、B及びBは、それぞれ独立に脂肪族又は芳香族モノカルボン酸残基を表す。Gは、炭素数が2~12の直鎖又は分岐構造を有するアルキレングリコール残基を表す。
General formula (2)
B 1 -GB 2
In the general formula (2), B 1 and B 2 each independently represent an aliphatic or aromatic monocarboxylic acid residue. G represents an alkylene glycol residue having a straight chain or branched structure having 2 to 12 carbon atoms.
 一般式(2)において、Gは、炭素原子数2~12の直鎖又は分岐構造を有するアルキレングリコールから誘導される2価の基を表す。 In the general formula (2), G represents a divalent group derived from an alkylene glycol having a linear or branched structure having 2 to 12 carbon atoms.
 Gにおける炭素原子数2~12のアルキレングリコールから誘導される2価の基の例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、及び1,12-オクタデカンジオール等から誘導される2価の基を挙げることができる。アルキレングリコールは2種類以上、混合して用いることも好ましく用いることができる。 Examples of the divalent group derived from an alkylene glycol having 2 to 12 carbon atoms in G include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1, 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol ( Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylol) Heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanedio , 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, etc. A divalent group can be mentioned. Two or more types of alkylene glycol can be preferably used in combination.
 一般式(2)において、B及びBは、それぞれ独立に芳香環含有モノカルボン酸又は脂肪族モノカルボン酸から誘導される1価の基である。 In the general formula (2), B 1 and B 2 are each independently a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid.
 芳香環含有モノカルボン酸から誘導される1価の基における芳香環含有モノカルボン酸は、分子内に芳香環を含有するカルボン酸であり、芳香環がカルボキシ基と直接結合したものだけでなく、芳香環がアルキレン基などを介してカルボキシ基と結合したものも含む。芳香環含有モノカルボン酸から誘導される1価の基の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などから誘導される1価の基が含まれる。中でも安息香酸、パラトルイル酸が好ましい。 The aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only those in which the aromatic ring is directly bonded to a carboxy group, Also included are those in which an aromatic ring is bonded to a carboxy group via an alkylene group or the like. Examples of monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid. , Monovalent groups derived from aminobenzoic acid, acetoxybenzoic acid, phenylacetic acid, 3-phenylpropionic acid and the like. Of these, benzoic acid and p-toluic acid are preferable.
 脂肪族モノカルボン酸から誘導される1価の基の例には、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸などから誘導される1価の基が含まれる。中でも、アルキル部分の炭素原子数が1~10であるアルキルモノカルボン酸から誘導される1価の基が好ましく、アセチル基(酢酸から誘導される1価の基)がより好ましい。 Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Is included. Among these, a monovalent group derived from an alkyl monocarboxylic acid having 1 to 10 carbon atoms in the alkyl portion is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
 以下に、本発明に適用可能な多価アルコールエステルの具体例を示すが、本発明はこれら例示する化合物に限定されるものではない。 Specific examples of polyhydric alcohol esters applicable to the present invention are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 本発明に用いられる一般式(2)で表される構造を有する多価アルコールエステルは、光学フィルムに対して0.5~5質量%の範囲で含有することが好ましく、1~3質量%の範囲で含有することがより好ましく、1~2質量%の範囲で含有することが特に好ましい。 The polyhydric alcohol ester having a structure represented by the general formula (2) used in the present invention is preferably contained in the range of 0.5 to 5% by mass with respect to the optical film. The content is more preferably in the range, and particularly preferably in the range of 1 to 2% by mass.
 本発明に用いられる一般式(2)で表される構造を有する多価アルコールエステルは、従来公知の一般的な合成方法に従って合成することができる。 The polyhydric alcohol ester having the structure represented by the general formula (2) used in the present invention can be synthesized according to a conventionally known general synthesis method.
 (リン酸エステル)
 本発明の光学フィルムは、リン酸エステルを用いることができる。リン酸エステルとしては、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等が挙げることができる。
(Phosphate ester)
The optical film of the present invention can use a phosphate ester. As phosphoric acid esters, triaryl phosphoric acid esters, diaryl phosphoric acid esters, monoaryl phosphoric acid esters, aryl phosphonic acid compounds, aryl phosphine oxide compounds, condensed aryl phosphoric acid esters, halogenated alkyl phosphoric acid esters, halogen-containing condensed phosphoric acid Examples thereof include esters, halogen-containing condensed phosphonic acid esters, and halogen-containing phosphorous acid esters.
 具体的なリン酸エステルとしては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 Specific phosphoric acid esters include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloro) Propyl) phosphate, tris (tribromoneopentyl) phosphate, and the like.
 (グリコール酸のエステル類)
 また、本発明においては、多価アルコールエステル類の1種として、グリコール酸のエステル類(グリコレート化合物)を用いることができる。
(Esters of glycolic acid)
In the present invention, glycolic acid esters (glycolate compounds) can be used as one kind of polyhydric alcohol esters.
 本発明に適用可能なグリコレート化合物としては、特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。 The glycolate compound applicable to the present invention is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
 アルキルフタリルアルキルグリコレート類としては、例えば、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられ、好ましくはエチルフタリルエチルグリコレートである。 Examples of alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl methyl glycolate, octyl Lil ethyl glycolate and the like, preferably ethyl phthalyl ethyl glycolate.
 〔紫外線吸収剤〕
 本発明の光学フィルムは、紫外線吸収剤を含有することが耐光性を向上する観点から好ましい。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐光性を向上させることを目的としており、特に波長370nmでの透過率が、2~30%の範囲であることが好ましく、より好ましくは4~20%の範囲、更に好ましくは5~10%の範囲である。
[Ultraviolet absorber]
The optical film of the present invention preferably contains an ultraviolet absorber from the viewpoint of improving light resistance. The ultraviolet absorber is intended to improve light resistance by absorbing ultraviolet rays of 400 nm or less, and in particular, the transmittance at a wavelength of 370 nm is preferably in the range of 2 to 30%, more preferably 4 It is in the range of -20%, more preferably in the range of 5-10%.
 本発明で好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤及びベンゾフェノン系紫外線吸収剤である。 The UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, and particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers.
 例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類があり、これらはいずれもBASFジャパン社製の市販品であり好ましく使用できる。この中ではハロゲンフリーのものが好ましい。 For example, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6- (linear and side Chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, etc., and tinuvin 109, tinuvin 171, tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, There are tinuvins such as tinuvin 928, and these are all commercially available products from BASF Japan and can be preferably used. Of these, halogen-free ones are preferred.
 このほか、1,3,5-トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。 In addition, a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
 本発明の光学フィルムは、紫外線吸収剤を2種以上含有することが好ましい。 The optical film of the present invention preferably contains two or more ultraviolet absorbers.
 また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。また、紫外線吸収剤は、ハロゲン基を有していないことが好ましい。 Also, as the ultraviolet absorber, a polymeric ultraviolet absorber can be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used. Moreover, it is preferable that the ultraviolet absorber does not have a halogen group.
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。 The method of adding the UV absorber can be added to the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane or a mixed solvent thereof. Or you may add directly in dope composition.
 無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースアシレート(セルロースアセテート)中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。 For inorganic powders that do not dissolve in organic solvents, use a dissolver or sand mill in organic solvents and cellulose acylate (cellulose acetate) to disperse them before adding them to the dope.
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、光学フィルムの乾燥膜厚が10~40μmの場合は、光学フィルムに対して0.5~10質量%の範囲が好ましく、0.6~4質量%の範囲が更に好ましい。 The amount of the UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the optical film has a dry film thickness of 10 to 40 μm, it is 0.5 to 10% by mass relative to the optical film. The range is preferably 0.6 to 4% by mass.
 〔酸化防止剤〕
 酸化防止剤は劣化防止剤ともいわれる。高湿高温の状態に有機エレクトロルミネッセンス表示装置などが置かれた場合には、光学フィルムの劣化が起こる場合がある。
〔Antioxidant〕
Antioxidants are also referred to as deterioration inhibitors. When an organic electroluminescence display device or the like is placed in a high humidity and high temperature state, the optical film may be deteriorated.
 酸化防止剤は、例えば、光学中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等により光学が分解するのを遅らせたり、防いだりする役割を有するので、本発明の光学フィルム中に含有させるのが好ましい。 The antioxidant has a role of delaying or preventing the optical decomposition due to, for example, the residual solvent amount of halogen in the optical system, phosphoric acid of the phosphoric acid plasticizer, etc., and therefore, in the optical film of the present invention. It is preferable to contain.
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート等を挙げることができる。 As such an antioxidant, a hindered phenol compound is preferably used. For example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxy Benzyl) -isocyanurate and the like.
 特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)ホスファイト等のリン系加工安定剤を併用してもよい。 In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
 これらの化合物の添加量は、光学に対して質量割合で1ppm~1.0%の範囲が好ましく、10~1000ppmの範囲が更に好ましい。 The amount of these compounds to be added is preferably in the range of 1 ppm to 1.0%, more preferably in the range of 10 to 1000 ppm, in terms of mass ratio with respect to the optics.
 〔微粒子(マット剤)〕
 本発明の光学フィルムは、表面の滑り性を高めるため、必要に応じて微粒子(マット剤)をさらに含有してもよい。
[Fine particles (matting agent)]
The optical film of the present invention may further contain fine particles (matting agent) as necessary in order to improve the slipperiness of the surface.
 微粒子は、無機微粒子であっても有機微粒子であってもよい。無機微粒子の例には、二酸化ケイ素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムなどが含まれる。中でも、二酸化ケイ素や酸化ジルコニウムが好ましく、得られるフィルムのヘイズの増大を少なくするためには、より好ましくは二酸化ケイ素である。 The fine particles may be inorganic fine particles or organic fine particles. Examples of inorganic fine particles include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples include magnesium silicate and calcium phosphate. Among these, silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce the increase in haze of the obtained film.
 二酸化ケイ素の微粒子の例には、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKE-P10、KE-P30、KE-P50、KE-P100(以上日本触媒(株)製)などが含まれる。中でも、アエロジルR972V、NAX50、シーホスターKE-P30などが、得られるフィルムの濁度を低く保ちつつ、摩擦係数を低減させるため特に好ましい。 Examples of the fine particles of silicon dioxide include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Seahoster KE-P10, KE-P30, KE-P50, KE-P100 (manufactured by Nippon Shokubai Co., Ltd.) and the like are included. Among them, Aerosil R972V, NAX50, Seahoster KE-P30 and the like are particularly preferable because they reduce the coefficient of friction while keeping the turbidity of the resulting film low.
 微粒子の一次粒子径は、5~50nmの範囲であることが好ましく、7~20nmの範囲であることがより好ましい。一次粒子径が大きい方が、得られるフィルムの滑り性を高める効果は大きいが、透明性が低下しやすい。そのため、微粒子は、粒子径0.05~0.3μmの範囲の二次凝集体として含有されていてもよい。微粒子の一次粒子又はその二次凝集体の大きさは、透過型電子顕微鏡にて倍率50~200万倍で一次粒子又は二次凝集体を観察し、一次粒子又は二次凝集体100個の粒子径の平均値として求めることができる。 The primary particle diameter of the fine particles is preferably in the range of 5 to 50 nm, more preferably in the range of 7 to 20 nm. A larger primary particle size has a larger effect of increasing the slipperiness of the resulting film, but the transparency tends to decrease. Therefore, the fine particles may be contained as secondary aggregates having a particle diameter in the range of 0.05 to 0.3 μm. The size of the primary particles or the secondary aggregates of the fine particles is determined by observing the primary particles or secondary aggregates with a transmission electron microscope at a magnification of 500 to 2 million times, and 100 particles of primary particles or secondary aggregates. It can obtain | require as an average value of a diameter.
 微粒子の含有量は、光学フィルムを形成する熱可塑性樹脂に対して0.05~1.0質量%の範囲であることが好ましく、0.1~0.8質量%の範囲であることがより好ましい。 The content of the fine particles is preferably in the range of 0.05 to 1.0% by mass, more preferably in the range of 0.1 to 0.8% by mass with respect to the thermoplastic resin forming the optical film. preferable.
 <光学フィルムの物性>
 本発明の光学フィルムの透湿度は、40℃、90%RHで300~1800g/m・24hの範囲が好ましく、更に400~1500g/m・24hの範囲が好ましく、40~1300g/m・24hの範囲が特に好ましい。透湿度はJIS Z 0208に記載の方法に従い測定することができる。
<Physical properties of optical film>
The moisture permeability of the optical film of the present invention is preferably in the range of 300 to 1800 g / m 2 · 24 h at 40 ° C. and 90% RH, more preferably in the range of 400 to 1500 g / m 2 · 24 h, and 40 to 1300 g / m 2. -The range of 24 h is particularly preferred. The moisture permeability can be measured according to the method described in JIS Z 0208.
 本発明の光学フィルムの可視光透過率は90%以上であることが好ましく、93%以上であることが更に好ましい。 The visible light transmittance of the optical film of the present invention is preferably 90% or more, and more preferably 93% or more.
 本発明の光学フィルムのヘイズは1%未満であることが好ましく0~0.1%であることが特に好ましい。 The haze of the optical film of the present invention is preferably less than 1%, particularly preferably 0 to 0.1%.
 <光学フィルムの用途>
 本発明の光学フィルムは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の各種表示装置に用いられる機能フィルムであることが好ましい。具体的には、本発明の光学フィルムは、液晶表示装置用の偏光板保護フィルム、位相差フィルム、反射防止フィルム、輝度向上フィルム、ハードコートフィルム、防眩フィルム、帯電防止フィルム、視野角拡大等の光学補償フィルムなどでありうる。典型的には、本発明の光学フィルムは、偏光板保護フィルム、位相差フィルム、光学補償フィルムである。
<Applications of optical films>
The optical film of the present invention is preferably a functional film used for various display devices such as a liquid crystal display, a plasma display, and an organic EL display. Specifically, the optical film of the present invention is a polarizing plate protective film for liquid crystal display devices, a retardation film, an antireflection film, a brightness enhancement film, a hard coat film, an antiglare film, an antistatic film, an enlarged viewing angle, etc. Or an optical compensation film. Typically, the optical film of the present invention is a polarizing plate protective film, a retardation film, or an optical compensation film.
 〔偏光板保護フィルム〕
 本発明の光学フィルムは、偏光子の少なくとも一方の面に貼合する偏光板保護フィルムとして用いることが好ましい。
[Polarizing film]
The optical film of the present invention is preferably used as a polarizing plate protective film that is bonded to at least one surface of a polarizer.
 偏光板保護フィルムのリターデーション値は、下記式で求められ、面内方向のリターデーション値Roは0~100nmの範囲であることが好ましく、より好ましくは0~50nmの範囲であり、厚さ方向のリターデーション値Rtは、-400~400nmの範囲であることが好ましく、より好ましくは-300~300nmの範囲である。 The retardation value of the polarizing plate protective film is obtained by the following formula, and the retardation value Ro in the in-plane direction is preferably in the range of 0 to 100 nm, more preferably in the range of 0 to 50 nm. The retardation value Rt is preferably in the range of −400 to 400 nm, more preferably in the range of −300 to 300 nm.
 式(i):Ro=(n-n)×d(nm)
 式(ii):Rt={(n+n)/2-n}×d(nm)
(式中、Roはフィルム内の面内リターデーション値を表し、Rtはフィルム内の厚さ方向のリターデーション値を表す。また、dは光学フィルムの厚さ(nm)を表し、nはフィルムの面内の最大の屈折率を表し、遅相軸方向の屈折率ともいう。nはフィルム面内で遅相軸に直角な方向の屈折率を表し、nは厚さ方向におけるフィルムの屈折率を表す。いずれも波長590nmにおける測定値である。)
 上記リターデーション値は、例えばKOBRA-WIS/RT(王子計測機器(株))を用いて、23℃・55%RHの環境下で、波長が590nmで求めることができる。
Formula (i): Ro = (n x −n y ) × d (nm)
Formula (ii): Rt = {(n x + n y ) / 2−n z } × d (nm)
(Wherein, Ro represents a plane retardation value of the film, Rt represents the retardation value in the thickness direction of the film. Further, d represents the thickness of the optical film (nm), n x is represents the maximum refractive index in the plane of the film, also referred to as a slow axis direction of the refractive index .n y represents a refractive index in the direction perpendicular to the slow axis in the film plane, n z is the film in the thickness direction (All are measured values at a wavelength of 590 nm.)
The retardation value can be obtained at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH using, for example, KOBRA-WIS / RT (Oji Scientific Instruments).
 〔光学補償フィルム〕
 液晶ディスプレイは、異方性を持つ液晶材料や偏光板を使用するために正面から見た場合に良好な表示が得られても、斜めから見ると表示性能が低下するという視野角の問題がある。そのため、液晶ディスプレイの性能向上のためには視野角補償板が必要である。平均的な液晶セルの屈折率分布は、セルの厚さ方向で大きく、面内方向でより小さい。そのため、視野角補償板は、この異方性を相殺しなければならない。つまり、視野角補償板は、膜厚方向の屈折率が面内方向より小さな屈折率を有すること、いわゆる負の一軸性構造を有することが有効である。本発明の光学フィルムは、そのような機能を有する光学補償フィルムともなりうる。
[Optical compensation film]
Since liquid crystal displays use anisotropic liquid crystal materials and polarizing plates, there is a problem of viewing angle that even when good display is obtained when viewed from the front, display performance is degraded when viewed from an oblique direction. . Therefore, a viewing angle compensator is necessary to improve the performance of the liquid crystal display. The average refractive index distribution of the liquid crystal cell is larger in the cell thickness direction and smaller in the in-plane direction. Therefore, the viewing angle compensator must cancel this anisotropy. In other words, it is effective that the viewing angle compensation plate has a refractive index smaller than that in the in-plane direction, that is, a so-called negative uniaxial structure. The optical film of the present invention can be an optical compensation film having such a function.
 本発明の光学フィルムをVAモードの液晶セルに使用する場合、セルの両側に1枚ずつ合計2枚の光学フィルムを使用してもよいし(2枚型)、セルの上下のいずれか一方の側にのみ光学フィルムを使用してもよい(1枚型)。 When the optical film of the present invention is used for a VA mode liquid crystal cell, a total of two optical films may be used, one on each side of the cell (two-sheet type), or one of the upper and lower sides of the cell. An optical film may be used only on the side (single sheet type).
 本発明の光学フィルムは、前記式で表される面内方向のリターデーション値Roが23℃・55%RHの環境下で、測定波長が590nmにおいて20~150nmの範囲内であることが好ましく、30~130nmの範囲内がさらに好ましい。厚さ方向のリターデーション値Rtは23℃・55%RHの環境下で、測定波長が590nmにおいて50~350nmの範囲内であることが好ましく、100~270nmの範囲内がさらに好ましい。 In the optical film of the present invention, the retardation value Ro in the in-plane direction represented by the above formula is preferably within a range of 20 to 150 nm at a measurement wavelength of 590 nm in an environment of 23 ° C. and 55% RH. A range of 30 to 130 nm is more preferable. The retardation value Rt in the thickness direction is preferably in the range of 50 to 350 nm and more preferably in the range of 100 to 270 nm at a measurement wavelength of 590 nm in an environment of 23 ° C. and 55% RH.
 本発明の光学フィルムは、フィルム面内に遅相軸又は進相軸を有し、遅相軸又は進相軸と製膜方向の軸とのなす角度θ1は、-1°以上+1°以下であることが好ましく、-0.5°以上+0.5°以下であることがより好ましい。θ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-WIS/RT(王子計測機器)を用いて行うことができる。θ1が上記関係を満たす光学フィルムは、それを含む液晶表示装置の表示画像の輝度を高め、光漏れを抑制又は防止し、カラー液晶表示装置においては忠実に色を再現させる。 The optical film of the present invention has a slow axis or a fast axis in the film plane, and an angle θ1 formed by the slow axis or the fast axis and the film forming direction axis is −1 ° or more and + 1 ° or less. Preferably, it is more preferably −0.5 ° or more and + 0.5 ° or less. θ1 can be defined as an orientation angle, and θ1 can be measured using an automatic birefringence meter KOBRA-WIS / RT (Oji Scientific Instruments). An optical film in which θ1 satisfies the above relationship increases the brightness of a display image of a liquid crystal display device including the same, suppresses or prevents light leakage, and faithfully reproduces color in a color liquid crystal display device.
 <偏光板>
 本発明の光学フィルムを用いる偏光板は、活性エネルギー線硬化性接着剤を用いて偏光子の一方の面に、本発明の光学フィルムを貼り合わせることにより製造することが好ましい。
<Polarizing plate>
The polarizing plate using the optical film of the present invention is preferably produced by laminating the optical film of the present invention on one surface of the polarizer using an active energy ray-curable adhesive.
 なお、偏光板を構成する偏光子の他方の面には、本発明の光学フィルムを用いてもよいし、他の光学フィルムを貼合することも好ましい。このような他の光学フィルムとしては、例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UAKC、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フイルム(株)製等)が好ましく用いられる。 It should be noted that the optical film of the present invention may be used on the other surface of the polarizer constituting the polarizing plate, and other optical films are preferably bonded. Examples of such other optical films include commercially available cellulose ester films (for example, Konica Minoltak KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC4UY, KC4UY, KC4UY, KC4UY, , KC8UE, KC8UY-HA, KC2UA, KC4UA, KC6UAKC, KC4UAH, KC6UAH, Konica Minolta, Fujitac T40UZ, Fujitac T60UZ, Fujitac T80UZ, Fujitac TD80U FUJIFILM Corporation etc.) is preferably used.
 〔偏光子〕
 偏光板の主たる構成要素である偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
[Polarizer]
A polarizer, which is a main component of the polarizing plate, is an element that allows only light having a plane of polarization in a certain direction to pass through. A typical polarizer currently known is a polyvinyl alcohol polarizing film. The polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
 偏光子としては、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行った偏光子が用いられ得る。偏光子の膜厚は5~30μmの範囲が好ましく、特に薄膜化の観点から10~20μmの範囲であることが好ましい。 As the polarizer, a polarizer obtained by forming a polyvinyl alcohol aqueous solution into a film and dyeing it by uniaxial stretching or dyeing and then uniaxially stretching and then preferably performing a durability treatment with a boron compound may be used. The thickness of the polarizer is preferably in the range of 5 to 30 μm, and particularly preferably in the range of 10 to 20 μm from the viewpoint of thinning.
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、ケン化度99.0~99.99モル%のエチレン変性ポリビニルアルコールも好ましく用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能及び耐久性能に優れているうえに、色ムラが少なく、大型液晶表示装置に特に好ましく用いられる。 Further, the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%, the degree of polymerization is 2000 to 4000, and the degree of saponification is 99.0 to 99.99 mol%. The ethylene-modified polyvinyl alcohol is also preferably used. Among these, an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used. A polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarizing performance and durability, and has little color unevenness, and is particularly preferably used for a large liquid crystal display device.
 〔光硬化性接着剤〕
 本発明の光学フィルムと偏光子との貼り合わせは、特に限定はないが、完全ケン化型のポリビニルアルコール系接着剤や、光硬化性接着剤などを用いて行うことができる。得られる接着剤層の弾性率が高く、偏光板の変形を抑制しやすい点などから、光硬化性接着剤を用いることが好ましい。
[Photocurable adhesive]
The bonding of the optical film of the present invention and the polarizer is not particularly limited, but can be performed using a completely saponified polyvinyl alcohol adhesive, a photocurable adhesive, or the like. It is preferable to use a photocurable adhesive from the viewpoint that the obtained adhesive layer has a high elastic modulus and can easily suppress deformation of the polarizing plate.
 光硬化性接着剤の好ましい例としては、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、及び(δ)ナフタレン系光増感助剤の各成分を含有する光硬化性接着剤組成物が挙げられる。ただし、これ以外の光硬化性接着剤が用いられてもよい。 Preferred examples of the photocurable adhesive include (α) cationic polymerizable compound, (β) photocationic polymerization initiator, and (γ) a wavelength longer than 380 nm, as disclosed in JP 2011-08234 A. And a photo-curable adhesive composition containing each component of a photosensitizer exhibiting maximum absorption in the light of (δ) and a naphthalene-based photosensitization aid. However, other photocurable adhesives may be used.
 以下、光硬化性接着剤を用いた偏光板の製造方法の一例を説明する。偏光板は、(1)光学フィルムの偏光子を接着する面を易接着処理する前処理工程、(2)偏光子と光学フィルムとの接着面のうち少なくとも一方に、下記の光硬化性接着剤を塗布する接着剤塗布工程、(3)得られた接着剤層を介して偏光子と光学フィルムとを貼り合わせる貼合工程、及び(4)接着剤層を介して偏光子と光学フィルムとが貼り合わされた状態で接着剤層を硬化させる硬化工程、を含む製造方法によって製造することができる。(1)の前処理工程は、必要に応じて実施すればよい。 Hereinafter, an example of a method for producing a polarizing plate using a photocurable adhesive will be described. The polarizing plate includes (1) a pretreatment step for easily adhering the surface of the optical film to which the polarizer is bonded, and (2) at least one of the adhesive surfaces of the polarizer and the optical film. (3) a bonding step of bonding the polarizer and the optical film through the obtained adhesive layer, and (4) a polarizer and the optical film through the adhesive layer. It can manufacture by the manufacturing method including the hardening process which hardens an adhesive bond layer in the bonded state. What is necessary is just to implement the pre-processing process of (1) as needed.
 (前処理工程)
 前処理工程では、光学フィルムの偏光子との接着面に易接着処理を行う。偏光子の両面にそれぞれ光学フィルムを接着させる場合は、それぞれの光学フィルムの偏光子との接着面に易接着処理を行う。易接着処理としては、コロナ処理、プラズマ処理等が挙げられる。
(Pretreatment process)
In the pretreatment step, an easy adhesion treatment is performed on the adhesion surface of the optical film with the polarizer. When bonding an optical film to both surfaces of a polarizer, an easy adhesion process is performed on the adhesive surface of each optical film with the polarizer. Examples of the easy adhesion treatment include corona treatment and plasma treatment.
 (接着剤塗布工程)
 接着剤塗布工程では、偏光子と光学フィルムとの接着面のうち少なくとも一方に、上記光硬化性接着剤を塗布する。偏光子又は光学フィルムの表面に直接光硬化性接着剤を塗布する場合、その塗布方法に特別な限定はない。例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等、種々の塗工方式が利用できる。また、偏光子と光学フィルムの間に、光硬化性接着剤を流延させた後、ローラー等で加圧して均一に押し広げる方法も利用できる。
(Adhesive application process)
In the adhesive application step, the photocurable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the optical film. When the photocurable adhesive is directly applied to the surface of the polarizer or the optical film, the application method is not particularly limited. For example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used. Moreover, after casting a photocurable adhesive between a polarizer and an optical film, the method of pressurizing with a roller etc. and spreading uniformly can also be utilized.
 (貼合工程)
 こうして光硬化性接着剤を塗布した後、貼合工程に供される。この貼合工程では、例えば、先の塗布工程で偏光子の表面に光硬化性接着剤を塗布した場合、そこに光学フィルムが重ね合わされる。先の塗布工程で光学フィルムの表面に光硬化性接着剤を塗布した場合は、そこに偏光子が重ね合わされる。また、偏光子と光学フィルムの間に光硬化性接着剤を流延させた場合は、その状態で偏光子と光学フィルムとが重ね合わされる。偏光子の両面に光学フィルムを接着する場合であって、両面とも光硬化性接着剤を用いる場合は、偏光子の両面にそれぞれ、光硬化性接着剤を介して光学フィルムが重ね合わされる。そして通常は、この状態で両面(偏光子の片面に光学フィルムを重ね合わせた場合は、偏光子側と光学フィルム側、また偏光子の両面に光学フィルムを重ね合わせた場合は、その両面の光学フィルム側)からローラー等で挟んで加圧することになる。ローラーの材質は、金属やゴム等を用いることが可能である。両面に配置されるローラーは、同じ材質であってもよいし、異なる材質であってもよい。
(Bonding process)
Thus, after apply | coating a photocurable adhesive agent, it uses for a bonding process. In this bonding step, for example, when a photocurable adhesive is applied to the surface of the polarizer in the previous application step, an optical film is superimposed thereon. When a photocurable adhesive is applied to the surface of the optical film in the previous application step, a polarizer is superimposed thereon. In addition, when a photocurable adhesive is cast between the polarizer and the optical film, the polarizer and the optical film are superposed in that state. In the case where the optical film is bonded to both surfaces of the polarizer, and the photocurable adhesive is used on both surfaces, the optical film is superimposed on the both surfaces of the polarizer via the photocurable adhesive. Usually, in this state, both sides (if the optical film is superimposed on one side of the polarizer, the polarizer side and the optical film side, and if the optical film is superimposed on both sides of the polarizer, The film is pressed with a roller or the like from the film side). As the material of the roller, metal, rubber or the like can be used. The rollers arranged on both sides may be made of the same material or different materials.
 (硬化工程)
 硬化工程では、未硬化の光硬化性接着剤に活性エネルギー線を照射して、エポキシ化合物やオキセタン化合物を含む接着剤層を硬化させる。それにより、光硬化性接着剤を介して重ね合わせた偏光子と光学フィルムとを接着させる。偏光子の片面に光学フィルムを貼合する場合、活性エネルギー線は、偏光子側又は光学フィルム側のいずれから照射してもよい。また、偏光子の両面に光学フィルムを貼合する場合、偏光子の両面にそれぞれ光硬化性接着剤を介して光学フィルムを重ね合わせた状態で、いずれか一方の光学フィルム側から活性エネルギー線を照射し、両面の光硬化性接着剤を同時に硬化させるのが有利である。
(Curing process)
In the curing step, the active energy ray is irradiated to the uncured photocurable adhesive to cure the adhesive layer containing the epoxy compound or the oxetane compound. Thereby, the overlapped polarizer and the optical film are bonded via the photocurable adhesive. When bonding an optical film to the single side | surface of a polarizer, you may irradiate an active energy ray from either a polarizer side or an optical film side. Moreover, when bonding an optical film on both surfaces of a polarizer, an active energy ray is applied from either one of the optical films in a state where the optical film is superimposed on both surfaces of the polarizer via a photocurable adhesive. It is advantageous to irradiate and simultaneously cure the photocurable adhesive on both sides.
 活性エネルギー線としては、可視光線、紫外線、X線、電子線等を用いることができ、取扱いが容易で硬化速度も十分であることから、一般的には、電子線又は紫外線が好ましく用いられる。 As the active energy rays, visible rays, ultraviolet rays, X-rays, electron beams and the like can be used, and since they are easy to handle and have a sufficient curing rate, electron beams or ultraviolet rays are generally preferably used.
 電子線の照射条件は、前記接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5~300kVの範囲内であり、さらに好ましくは10~250kVの範囲内である。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、光学フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5~100kGyの範囲内、さらに好ましくは10~75kGyの範囲内である。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、光学フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。 Any appropriate conditions can be adopted as the electron beam irradiation conditions as long as the adhesive can be cured. For example, in the electron beam irradiation, the acceleration voltage is preferably in the range of 5 to 300 kV, more preferably in the range of 10 to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetrating force through the sample is too strong and the electron beam rebounds, causing an optical film or polarized light. There is a risk of damaging the child. The irradiation dose is in the range of 5 to 100 kGy, more preferably in the range of 10 to 75 kGy. When the irradiation dose is less than 5 kGy, the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the optical film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. Can not.
 紫外線の照射条件は、前記接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。紫外線の照射量は積算光量で50~1500mJ/cmの範囲内であることが好ましく、100~500mJ/cmの範囲内であるのがさらに好ましい。 Arbitrary appropriate conditions can be employ | adopted for the irradiation conditions of an ultraviolet-ray, if it is the conditions which can harden the said adhesive agent. Preferably the dose of ultraviolet rays in the range of 50 ~ 1500mJ / cm 2 in accumulated light amount, and even more preferably in the range of within the range of 100 ~ 500mJ / cm 2.
 以上のようにして得られた偏光板において、接着剤層の厚さは、特に限定されないが、通常0.01~10μmの範囲内であり、好ましくは0.5~5μmの範囲内である。 In the polarizing plate obtained as described above, the thickness of the adhesive layer is not particularly limited, but is usually in the range of 0.01 to 10 μm, and preferably in the range of 0.5 to 5 μm.
 <液晶表示装置>
 本発明の光学フィルムが用いられる液晶表示装置は、前記本発明の光学フィルムを有する偏光板を具備することが好ましい。具体的には、液晶セルの少なくとも一方に配置された偏光板に、本発明の光学フィルムが含まれ、当該偏光板の液晶セル側のフィルムが、本発明の光学フィルムである。
<Liquid crystal display device>
The liquid crystal display device in which the optical film of the present invention is used preferably includes a polarizing plate having the optical film of the present invention. Specifically, the polarizing film disposed in at least one of the liquid crystal cells includes the optical film of the present invention, and the film on the liquid crystal cell side of the polarizing plate is the optical film of the present invention.
 本発明の液晶表示装置において、液晶セルの一方又は両方の面に、当該偏光板が粘着層を介して貼り合わされていることが好ましい。 In the liquid crystal display device of the present invention, it is preferable that the polarizing plate is bonded to one or both surfaces of the liquid crystal cell via an adhesive layer.
 本発明の液晶表示装置の表面側に用いられる偏光板保護フィルムには、防眩層あるいはクリアハードコート層のほか、反射防止層、帯電防止層、防汚層、バックコート層を有することが好ましい。 In addition to the antiglare layer or the clear hard coat layer, the polarizing plate protective film used on the surface side of the liquid crystal display device of the present invention preferably has an antireflection layer, an antistatic layer, an antifouling layer, and a backcoat layer. .
 本発明の光学フィルムや偏光板は、STN、TN、OCB、HAN、VA(MVA、PVA)、IPS、OCBなどの各種駆動方式の液晶表示装置に用いることができる。特にVA(MVA、PVA)型液晶表示装置に用いられることが好ましい。特に、30型以上の大画面の液晶表示装置に用いられても、光漏れによる黒表示時の着色を低減し、正面コントラストなど視認性を高めうる。このように、本発明の液晶表示装置は種々の視認性に優れる。 The optical film and polarizing plate of the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB. In particular, it is preferably used for a VA (MVA, PVA) type liquid crystal display device. In particular, even when used in a liquid crystal display device having a large screen of 30 type or more, coloring during black display due to light leakage can be reduced and visibility such as front contrast can be improved. Thus, the liquid crystal display device of the present invention is excellent in various visibility.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 実施例1
 以下の方法にて、光学フィルムとして用いられるセルロースアシレートフィルムを作製した。
Example 1
A cellulose acylate film used as an optical film was produced by the following method.
 <光学フィルム101の作製>
 〈インライン添加液の調製〉
 10質量部のアエロジル972V(日本アエロジル社製、一次粒子の平均径16nm、見掛け比重90g/リットル)と、90質量部のメタノールとをディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散させて、微粒子分散液を得た。
<Preparation of optical film 101>
<Preparation of in-line additive solution>
10 parts by mass of Aerosil 972V (manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 16 nm, apparent specific gravity of 90 g / liter) and 90 parts by mass of methanol were stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. A fine particle dispersion was obtained.
 得られた微粒子分散液に、88質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、微粒子分散希釈液を得た。 Into the obtained fine particle dispersion, 88 parts by mass of dichloromethane was added with stirring, and the mixture was diluted by stirring and mixing with a dissolver for 30 minutes. The obtained solution was filtered through a polypropylene wind cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a fine particle dispersion dilution.
 15質量部のチヌビン928(BASFジャパン社製)と、100質量部のジクロロメタンとを密閉容器に投入し、加熱撹拌して完全に溶解させた後、濾過した。得られた溶液に、36質量部の前記微粒子分散希釈液を撹拌しながら加えて30分間さらに撹拌した後、6質量部のセルローストリアセテート(アセチル基置換度2.85、Mw=152000、Mn=90000、Mw/Mn=1.7)を撹拌しながら加えて60分間さらに撹拌した。得られた溶液を、日本精線(株)製ファインメットNFで濾過して、インライン添加液を得た。濾材は、公称濾過精度20μmのものを用いた。 15 parts by mass of Tinuvin 928 (manufactured by BASF Japan Ltd.) and 100 parts by mass of dichloromethane were put into a sealed container, heated and stirred to completely dissolve, and then filtered. To the obtained solution, 36 parts by mass of the fine particle dispersion diluted solution was added with stirring, and further stirred for 30 minutes, and then 6 parts by mass of cellulose triacetate (acetyl group substitution degree 2.85, Mw = 152000, Mn = 90000). , Mw / Mn = 1.7) was added with stirring, and the mixture was further stirred for 60 minutes. The obtained solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to obtain an in-line additive solution. The filter medium having a nominal filtration accuracy of 20 μm was used.
 〈ドープ1の調製〉
 下記成分を密閉容器に投入し、加熱及び撹拌しながら完全に溶解させた。得られた溶液を安積濾紙(株)製の安積濾紙No.24で濾過して、主ドープを得た。
<Preparation of dope 1>
The following components were put into a sealed container and completely dissolved with heating and stirring. The obtained solution was prepared as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. Filtration at 24 gave the main dope.
 (主ドープの組成)
 セルロースアセテートプロピオネート(イーストマンケミカル社製、製品
名CAP482-20、アセチル基置換度0.26、プロピオニル基置換度
2.5、総アシル基置換度2.76、重量平均分子量Mw240000)
                             86質量部
 多価アルコールエステル(一般式(2)で表される化合物):例示化合物
2-10                          2質量部
 糖エステル;BzSc(ベンジルスクロース:化3に記載の化合物a-
1~a-4の混合物)、平均エステル置換度=5.5      7質量部
 重縮合エステル:一般式(1)で表される構造を有する重縮合エステル
:P8                           5質量部
 ジクロロメタン                    430質量部
 メタノール                       11質量部
 100質量部の主ドープと、2.5質量部のインライン添加液とを、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合して、ドープ1を得た。
(Main dope composition)
Cellulose acetate propionate (manufactured by Eastman Chemical Co., Ltd., product name CAP482-20, acetyl group substitution degree 0.26, propionyl group substitution degree 2.5, total acyl group substitution degree 2.76, weight average molecular weight Mw 240000)
86 parts by mass Polyhydric alcohol ester (compound represented by formula (2)): Exemplified compound 2-10 2 parts by mass Sugar ester; BzSc (benzylsucrose: Compound a- described in Chemical formula 3
1 to a-4 mixture), average degree of ester substitution = 5.5 7 parts by mass Polycondensation ester: Polycondensation ester having a structure represented by the general formula (1): P8 5 parts by mass Dichloromethane 430 parts by mass Methanol 11 Part by mass 100 parts by mass of the main dope and 2.5 parts by mass of the in-line additive solution were sufficiently mixed with an in-line mixer (Toray static in-tube mixer Hi-Mixer, SWJ) to obtain a dope 1.
 得られたドープ1を、図1で示すベルト流延装置を用いてステンレスバンド支持体上に、ドープ温度35℃、幅1.6mの条件で均一に流延させた。ステンレスバンド支持体上で、得られたドープ膜中の溶剤を、残留溶剤量が100質量%になるまで蒸発させてウェブを得た後、ステンレスバンド支持体からウェブを剥離した。得られたウェブを、35℃でさらに乾燥させた。 The obtained dope 1 was uniformly cast on a stainless steel band support using a belt casting apparatus shown in FIG. 1 under the conditions of a dope temperature of 35 ° C. and a width of 1.6 m. On the stainless steel band support, the solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to obtain a web, and then the web was peeled from the stainless steel band support. The resulting web was further dried at 35 ° C.
 その後、図1で示す予備延伸装置102によって、MD方向に80℃で1.02倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は30質量%であった。 Thereafter, the film was stretched in the MD direction at a stretching ratio of 1.02 times at 80 ° C. by the preliminary stretching apparatus 102 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 30% by mass.
 次いで、図1で示す本延伸装置103によって、MD方向に160℃で1.60倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は12質量%であった。 Next, the film was stretched in the MD direction at 160 ° C. at a stretching ratio of 1.60 times by the main stretching apparatus 103 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 12% by mass.
 次いで、図1で示すTD延伸装置104によってウェブをTD方向に1.60倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は8質量%であった。 Next, the web was stretched in the TD direction at a stretching ratio of 1.60 times by the TD stretching apparatus 104 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 8% by mass.
 その後、得られたフィルムを、乾燥装置内を多数のローラーで搬送させながら125℃で15分間乾燥させた後、1.8m幅にスリットし、幅方向両端部に、凸部の高さが10μmのエンボス部を形成し、幅1.8m、長さ4000m、膜厚30μmの長尺状の光学フィルム101を作製した。 Thereafter, the obtained film was dried at 125 ° C. for 15 minutes while being conveyed by a number of rollers in the drying apparatus, then slit to 1.8 m width, and the height of the convex portion was 10 μm at both ends in the width direction. The long optical film 101 having a width of 1.8 m, a length of 4000 m, and a film thickness of 30 μm was produced.
 なお、光学フィルムのガラス転移温度は、145℃であった。 The glass transition temperature of the optical film was 145 ° C.
 <光学フィルム102~114の作製>
 光学フィルム101の作製において、表1に記載のように、MD方向の予備延伸時の延伸倍率、温度、残留溶媒量及び延伸スパン、さらにMD方向の本延伸時の延伸倍率、温度、残留溶媒量及び延伸スパンを変化させ、トータル延伸倍率及び膜厚を変化させた以外は同様にして、光学フィルム102~114を作製した。
<Preparation of optical films 102 to 114>
In the production of the optical film 101, as shown in Table 1, the draw ratio, temperature, residual solvent amount and stretch span during preliminary stretching in the MD direction, and the stretch ratio, temperature, residual solvent amount during main stretching in the MD direction. Optical films 102 to 114 were produced in the same manner except that the stretch span was changed and the total draw ratio and film thickness were changed.
 ≪評価≫
 〔延伸応力の測定〕
 テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、以下のような測定を行った。
≪Evaluation≫
(Measurement of stretching stress)
The following measurements were performed using a Tensilon tester (ORITC Corporation, RTC-1225A).
 光学フィルムを120mm(MD方向)×10mm(TD方向)で切り出し、試料を23±2℃、55±5%RHの環境下で、24時間放置した後、23℃・55%RHに保持した恒温槽の中でチャック長50mmで50mm/minの速度でフィルムをMD方向に引っ張り、そのときの引っ張り荷重を、フィルム断面積(すなわち、フィルム幅×膜厚)で割ることでMD方向の延伸応力が求めた。 The optical film was cut out at 120 mm (MD direction) × 10 mm (TD direction), and the sample was allowed to stand for 24 hours in an environment of 23 ± 2 ° C. and 55 ± 5% RH, and then kept at 23 ° C. and 55% RH. The film is pulled in the MD direction at a chuck length of 50 mm and a speed of 50 mm / min in the tank, and the tensile load in that direction is divided by the film cross-sectional area (that is, the film width × film thickness) to obtain the stretching stress in the MD direction. Asked.
 〔擦り傷評価方法〕
 黒い羅紗布を貼った、平らな評価台の上にMD方向に1mの短冊状にサンプリングしたフィルムを広げ、グリーンランプを斜めから照射して、フィルム表面の擦り傷を目視で観察して以下の評価基準で評価した。
[Scratch evaluation method]
Spread the film sampled in a strip of 1m in the MD direction on a flat evaluation table with a black lacquer cloth, irradiate the green lamp diagonally, and visually observe the scratches on the surface of the film. Evaluated by criteria.
 ◎:擦り傷が視認できない
 ○:弱い擦り傷が視認できるが性能上問題ない
 △:擦り傷が視認できる
 ×:複数の擦り傷が視認できる
 〔TD方向の光学ムラの評価方法〕
 フィルムの光学的性質を評価するために、フィルムの厚さ方向のリターデーション値(Rt)及び面内リターデーション値(Ro)を、自動複屈折率計測定装置(KOBRA-WIS/RT、王子計測機器株式会社製)を用いて、温度23℃、相対湿度55%RHの環境下で、波長590nmで測定した。
◎: Scratches are not visible ○: Slight scratches are visible but there is no problem in performance △: Scratches are visible ×: Multiple scratches are visible [Evaluation method of optical unevenness in TD direction]
In order to evaluate the optical properties of the film, the retardation value (Rt) and in-plane retardation value (Ro) in the thickness direction of the film were measured using an automatic birefringence meter measuring device (KOBRA-WIS / RT, Oji Measurement). Measured at a wavelength of 590 nm under an environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
 フィルム両端部各50mmを除き、フィルムの幅手方向に、100mm間隔で測定を行った。面内リターデーションの幅手測定点の最大値と最小値の差をΔRoとして算出した。 Measured at intervals of 100 mm in the width direction of the film except for 50 mm each on both ends of the film. The difference between the maximum value and the minimum value of the width measurement points of in-plane retardation was calculated as ΔRo.
 〔総合評価〕
 ◎ :擦り傷の発生がなく光学ムラとしてΔRoが0.4nm以下である
 ○ :弱い擦り傷の発生があるか、又は光学ムラとしてΔRoが1.0n
m以下である
 ○△:弱い擦り傷の発生及び光学ムラとしてΔRoが4.0nm以下である
 △ :擦り傷の発生が視認でき、光学ムラとしてΔRoが5.0nm以上である
 × :複数の擦り傷が視認でき、光学ムラとしてΔRoが5.0nm以上である
 光学フィルムとしては、○△の評価結果が実用上の限度内であり、○~◎が光学フィルムとしてより優れていることを表す。
〔Comprehensive evaluation〕
A: There is no generation of scratches and ΔRo is 0.4 nm or less as optical unevenness. ○: There is generation of weak scratches, or ΔRo is 1.0 n as optical unevenness.
△: Generation of weak scratches and ΔRo as optical unevenness is 4.0 nm or less Δ: Generation of scratches can be visually recognized, and ΔRo is 5.0 nm or more as optical unevenness ×: Multiple scratches are visually recognized As an optical film, ΔRo is 5.0 nm or more as optical unevenness, the evaluation result of ◯ △ is within practical limits, and ◯ to ◎ indicate that the optical film is more excellent.
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 表1の結果より、本発明の光学フィルムNo.101~112は、本発明に係る予備延伸を行うことにより、延伸応力が低く、擦り傷の発生や光学ムラの発生等も低く抑制できており、総合的に優れた光学フィルムであることが分かる。中でも、延伸倍率、温度、残留溶媒量及び延伸スパンが、各請求項に関連して好ましい範囲にある光学フィルム101~106は、優れた特性を示した。 From the results in Table 1, the optical film No. It can be seen that Nos. 101 to 112 are excellent optical films as a result of pre-stretching according to the present invention having low stretching stress and low generation of scratches and optical unevenness. Among them, the optical films 101 to 106 in which the draw ratio, temperature, residual solvent amount, and draw span are in the preferred ranges in relation to each claim showed excellent characteristics.
 実施例2
 <アクリル樹脂/セルロースアシレート混合光学フィルム201の作製>
 下記の方法に従って、光学フィルムとして、アクリル樹脂/セルロースアシレートを混合含有する光学フィルム201を作製した。
Example 2
<Preparation of acrylic resin / cellulose acylate mixed optical film 201>
According to the following method, the optical film 201 which mixedly contains acrylic resin / cellulose acylate was produced as an optical film.
 (ドープ2の調製)
 下記成分を密閉容器に投入し、加熱及び撹拌しながら完全に溶解させた。得られた溶液を安積濾紙(株)製の安積濾紙No.24で濾過して、主ドープを得た。
(Preparation of dope 2)
The following components were put into a sealed container and completely dissolved with heating and stirring. The obtained solution was prepared as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. Filtration at 24 gave the main dope.
 (主ドープの調製)
 アクリル樹脂:ダイヤナールBR85(三菱レイヨン社製、アクリル樹脂
 Mw:280000)                  90質量部
 セルロースエステル(セルロースアセテートプロピオネート アシル基総
置換度2.75、アセチル基置換度0.19、プロピオニル基置換度2.5
6、Mw=200000)                 10質量部
 アクリル微粒子(C1)                  2質量部
 メチレンクロライド                  300質量部
 エタノール                       40質量部
 〈アクリル微粒子(C1)の調製〉
 内容積60リットルの還流冷却器付反応器に、イオン交換水38.2リットル、ジオクチルスルホコハク酸ナトリウム111.6gを投入し、250rpmの回転数で撹拌しながら、窒素雰囲気下75℃に昇温し、酸素の影響が事実上無い状態にした。過硫酸アンモニウム(APS)を0.36g投入し、5分間撹拌後にメチルメタクリレート(MMA)を1657g、n-ブチルアクリレート(BA)を21.6g、及びアリルメタクリレート(ALMA)の1.68gからなる単量体混合物を一括添加し、発熱ピークの検出後さらに20分間保持して最内硬質層の重合を完結させた。
(Preparation of main dope)
Acrylic resin: Dianal BR85 (manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin Mw: 280000) 90 parts by mass Cellulose ester (cellulose acetate propionate acyl group total substitution degree 2.75, acetyl group substitution degree 0.19, propionyl group substitution degree) 2.5
6, Mw = 200000) 10 parts by mass Acrylic fine particles (C1) 2 parts by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass <Preparation of acrylic fine particles (C1)>
A reactor with a reflux condenser with an internal volume of 60 liters was charged with 38.2 liters of ion-exchanged water and 111.6 g of sodium dioctylsulfosuccinate and heated to 75 ° C. under a nitrogen atmosphere while stirring at a rotational speed of 250 rpm. The effect of oxygen was virtually eliminated. A single unit consisting of 0.36 g of ammonium persulfate (APS) and 1657 g of methyl methacrylate (MMA), 21.6 g of n-butyl acrylate (BA) and 1.68 g of allyl methacrylate (ALMA) after stirring for 5 minutes. The body mixture was added all at once, and after the detection of the exothermic peak, the mixture was further held for 20 minutes to complete the polymerization of the innermost hard layer.
 次に、APSを3.48gを加え、5分間撹拌後にBAを8105g、ポリエチレングリコールジアクリレート(PEGDA:分子量200)を31.9g、及びALMAの264.0gからなる単量体混合物を120分間かけて連続的に添加し、添加終了後さらに120分間保持して、軟質層の重合を完結させた。 Next, 3.48 g of APS was added, and after stirring for 5 minutes, a monomer mixture consisting of 8105 g of BA, 31.9 g of polyethylene glycol diacrylate (PEGDA: molecular weight 200), and 264.0 g of ALMA was applied for 120 minutes. The mixture was continuously added and held for an additional 120 minutes after completion of the addition to complete the polymerization of the soft layer.
 次に、APSを1.32g投入し、5分間撹拌後にMMAを2106g、BAを201.6gからなる単量体混合物を20分間かけて連続的に添加し、添加終了後さらに20分間保持して最外硬質層1の重合を完結した。 Next, 1.32 g of APS was added, and after stirring for 5 minutes, a monomer mixture consisting of 2106 g of MMA and 201.6 g of BA was continuously added over 20 minutes, and held for another 20 minutes after the addition was completed. Polymerization of the outermost hard layer 1 was completed.
 次いで、APSを1.32g投入し、5分後にMMAを3148g、BAを201.6g、及びn-OMの10.1gからなる単量体混合物を20分間かけて連続的に添加し、添加終了後にさらに20分間保持した。次いで95℃に昇温し60分間保持して、最外硬質層2の重合を完結させた。 Next, 1.32 g of APS was added, and after 5 minutes, a monomer mixture consisting of 3148 g of MMA, 201.6 g of BA, and 10.1 g of n-OM was continuously added over 20 minutes, and the addition was completed. Later held for another 20 minutes. Next, the temperature was raised to 95 ° C. and held for 60 minutes to complete the polymerization of the outermost hard layer 2.
 このようにして得られた重合体ラテックスを少量採取し、吸光度法により平粒子径を求めたところ0.10μmであった。残りのラテックスを3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させ、次いで、脱水・洗浄を繰り返したのち乾燥し、3層構造のアクリル微粒子(C1)を得た。 A small amount of the polymer latex thus obtained was collected, and the flat particle size was determined by the absorbance method, which was 0.10 μm. The remaining latex was put into a 3% by mass sodium sulfate warm aqueous solution, salted out and coagulated, and then dried after repeated dehydration and washing to obtain acrylic fine particles (C1) having a three-layer structure.
 100質量部の主ドープを、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合して、ドープ2を得た。 100 parts by mass of the main dope was sufficiently mixed with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ) to obtain a dope 2.
 得られたドープ2を、図1で示すベルト流延装置を用いてステンレスバンド支持体上に、ドープ温度35℃、幅1.6mの条件で均一に流延させた。ステンレスバンド支持体上で、得られたドープ膜中の溶剤を、残留溶剤量が100質量%になるまで蒸発させてウェブを得た後、ステンレスバンド支持体からウェブを剥離した。得られたウェブを、35℃でさらに乾燥させた。 The obtained dope 2 was uniformly cast on a stainless steel band support using a belt casting apparatus shown in FIG. 1 under the conditions of a dope temperature of 35 ° C. and a width of 1.6 m. On the stainless steel band support, the solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to obtain a web, and then the web was peeled from the stainless steel band support. The resulting web was further dried at 35 ° C.
 その後、図1で示す予備延伸装置102によって、MD方向に80℃で1.05倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は30質量%であった。 Thereafter, the film was stretched in the MD direction at a stretching ratio of 1.05 times at 80 ° C. by the preliminary stretching apparatus 102 shown in FIG. The residual solvent amount of the web at the start of stretching at that time was 30% by mass.
 次いで、図1で示す本延伸装置103によって、MD方向に160℃で1.60倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は12質量%であった。 Next, the film was stretched in the MD direction at 160 ° C. at a stretching ratio of 1.60 times by the main stretching apparatus 103 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 12% by mass.
 次いで、図1で示すTD延伸装置104によってウェブをTD方向に1.60倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は8質量%であった。 Next, the web was stretched in the TD direction at a stretching ratio of 1.60 times by the TD stretching apparatus 104 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 8% by mass.
 その後、得られたフィルムを、乾燥装置内を多数のローラーで搬送させながら125℃で15分間乾燥させた後、1.8m幅にスリットし、幅方向両端部に、凸部の高さが10μmのエンボス部を形成し、幅1.8m、長さ4000m、膜厚30μmの長尺状のアクリル樹脂/セルロースアシレート混合フィルム201を作製した。 Thereafter, the obtained film was dried at 125 ° C. for 15 minutes while being conveyed by a number of rollers in the drying apparatus, then slit to 1.8 m width, and the height of the convex portion was 10 μm at both ends in the width direction. The long acrylic resin / cellulose acylate mixed film 201 having a width of 1.8 m, a length of 4000 m, and a film thickness of 30 μm was produced.
 なお、上記アクリル樹脂/セルロースアシレート混合光学フィルムのTgは、120℃であった。 The acrylic resin / cellulose acylate mixed optical film had a Tg of 120 ° C.
 <アクリル樹脂/セルロースアシレート混合光学フィルム202~213の作製>
 アクリル樹脂/セルロースアシレート混合フィルム201の作製において、表2に記載のように、MD方向の予備延伸時の延伸倍率、温度、残留溶媒量及び延伸スパン、さらにMD方向の本延伸時の延伸倍率、温度、及び残留溶媒量を変化させ、トータル延伸倍率及び膜厚を変化させた以外は同様にして、アクリル樹脂/セルロースアシレート混合光学フィルム202~213を作製した。
<Production of acrylic resin / cellulose acylate mixed optical films 202 to 213>
In preparation of the acrylic resin / cellulose acylate mixed film 201, as shown in Table 2, the draw ratio at the time of pre-stretching in the MD direction, the temperature, the residual solvent amount and the stretch span, and the draw ratio at the time of main stretching in the MD direction Acrylic resin / cellulose acylate mixed optical films 202 to 213 were prepared in the same manner except that the temperature and the amount of residual solvent were changed, and the total draw ratio and film thickness were changed.
 得られたアクリル樹脂/セルロースアシレート混合光学フィルム201~213を用いて、実施例1と同様な評価を行い、結果を表2に示した。 Using the obtained acrylic resin / cellulose acylate mixed optical films 201 to 213, the same evaluation as in Example 1 was performed, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
 表2の結果より、本発明の光学フィルムであるアクリル樹脂/セルロースアシレート混合光学フィルムNo.201~211は、本発明に係る予備延伸を行うことにより、延伸応力が低く、擦り傷の発生や光学ムラの発生も低く抑制できており、総合的に優れた光学フィルムであることが分かる。 From the results in Table 2, acrylic resin / cellulose acylate mixed optical film No. which is the optical film of the present invention. Nos. 201 to 211 are excellent optical films as a result of pre-stretching according to the present invention having low stretching stress and low generation of scratches and optical unevenness.
 実施例3
 <アクリル樹脂含有光学フィルム301の作製>
 下記の方法に従って、アクリル樹脂を含有する光学フィルム301を作製した。
Example 3
<Production of acrylic resin-containing optical film 301>
An optical film 301 containing an acrylic resin was produced according to the following method.
 (微粒子分散希釈液の調製)
 10質量部のアエロジル972V(日本アエロジル社製、一次平均粒子径:16nm、見掛け比重90g/L)と、90質量部のエタノールとをディゾルバーで30分間撹拌混合した後、高圧分散機であるマントンゴーリンを用いて分散させて、微粒子分散液を調製した。
(Preparation of fine particle dispersion)
10 parts by mass of Aerosil 972V (manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 16 nm, apparent specific gravity of 90 g / L) and 90 parts by mass of ethanol were stirred and mixed with a dissolver for 30 minutes, and then high pressure disperser Manton Gorin Was used to prepare a fine particle dispersion.
 得られた微粒子分散液に、88質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、微粒子分散希釈液を得た。 Into the obtained fine particle dispersion, 88 parts by mass of dichloromethane was added with stirring, and the mixture was diluted by stirring and mixing with a dissolver for 30 minutes. The obtained solution was filtered through a polypropylene wind cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a fine particle dispersion dilution.
 (インライン添加液の調製)
 紫外線吸収剤として15質量部のチヌビン928(BASFジャパン社製)と、100質量部のジクロロメタンとを密閉容器に投入し、加熱撹拌して完全に溶解させた後、濾過した。得られた溶液に、36質量部の前記微粒子分散希釈液を撹拌しながら加えて30分間さらに撹拌した後、6質量部のアクリル樹脂:ダイヤナールBR85((三菱レイヨン社製、Mw:280000)を撹拌しながら加えて60分間さらに撹拌した。得られた溶液を、日本精線(株)製ファインメットNFで濾過して、インライン添加液を得た。濾材は、公称濾過精度20μmのものを用いた。
(Preparation of inline additive solution)
15 parts by weight of Tinuvin 928 (manufactured by BASF Japan) and 100 parts by weight of dichloromethane as an ultraviolet absorber and 100 parts by weight of dichloromethane were put into a sealed container, and heated and stirred to completely dissolve, followed by filtration. To the obtained solution, 36 parts by mass of the fine particle dispersion diluted liquid was added with stirring, and further stirred for 30 minutes, and then 6 parts by mass of acrylic resin: Dianal BR85 (Mitsubishi Rayon, Mw: 280000) was added. The mixture was further stirred for 60 minutes with stirring, and the resulting solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to obtain an in-line additive solution. It was.
 (ドープ3の調製)
 下記成分を密閉容器に投入し、加熱及び撹拌しながら完全に溶解させた。得られた溶液を安積濾紙(株)製の安積濾紙No.24で濾過して、主ドープを得た。
(Preparation of dope 3)
The following components were put into a sealed container and completely dissolved with heating and stirring. The obtained solution was prepared as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. Filtration at 24 gave the main dope.
 〈主ドープの組成〉
 アクリル樹脂:ダイヤナールBR85(三菱レイヨン社製、アクリル樹脂
 Mw:280000)                 100質量部
 アクリル微粒子(C1)                  2質量部
 メチレンクロライド                  360質量部
 エタノール                       15質量部
 100質量部の主ドープと、2.5質量部のインライン添加液とを、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合して、ドープ3を得た。
<Composition of main dope>
Acrylic resin: Dianal BR85 (manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin Mw: 280000) 100 parts by weight Acrylic fine particles (C1) 2 parts by weight Methylene chloride 360 parts by weight Ethanol 15 parts by weight 100 parts by weight of main dope and 2.5 parts by weight Part of the in-line additive solution was thoroughly mixed with an in-line mixer (Toray static type in-tube mixer Hi-Mixer, SWJ) to obtain a dope 3.
 得られたドープ3を、図1で示すベルト流延装置を用いてステンレスバンド支持体上に、ドープ温度35℃、幅1.6mの条件で均一に流延させた。ステンレスバンド支持体上で、得られたドープ膜中の溶剤を、残留溶剤量が100質量%になるまで蒸発させてウェブを得た後、ステンレスバンド支持体からウェブを剥離した。得られたウェブを、35℃でさらに乾燥させた。 The obtained dope 3 was uniformly cast on a stainless steel band support using a belt casting apparatus shown in FIG. 1 under the conditions of a dope temperature of 35 ° C. and a width of 1.6 m. On the stainless steel band support, the solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to obtain a web, and then the web was peeled from the stainless steel band support. The resulting web was further dried at 35 ° C.
 その後、図1で示す予備延伸装置102によって、MD方向に80℃で1.07倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は30質量%であった。 Thereafter, the film was stretched in the MD direction at a stretching ratio of 1.07 times at 80 ° C. by the preliminary stretching apparatus 102 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 30% by mass.
 次いで、図1で示す本延伸装置103によって、MD方向に160℃で1.60倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は12質量%であった。 Next, the film was stretched in the MD direction at 160 ° C. at a stretching ratio of 1.60 times by the main stretching apparatus 103 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 12% by mass.
 次いで、図1で示すTD延伸装置104によってウェブをTD方向に1.60倍の延伸倍率で延伸した。その際の延伸開始時のウェブの残留溶媒量は8質量%であった。 Next, the web was stretched in the TD direction at a stretching ratio of 1.60 times by the TD stretching apparatus 104 shown in FIG. At that time, the residual solvent amount of the web at the start of stretching was 8% by mass.
 その後、得られたフィルムを、乾燥装置内を多数のローラーで搬送させながら125℃で15分間乾燥させた後、1.8m幅にスリットし、幅方向両端部に、凸部の高さが10μmのエンボス部を形成し、幅1.8m、長さ4000m、膜厚30μmの長尺状のアクリル樹脂含有光学フィルム301を作製した。 Thereafter, the obtained film was dried at 125 ° C. for 15 minutes while being conveyed by a number of rollers in the drying apparatus, then slit to 1.8 m width, and the height of the convex portion was 10 μm at both ends in the width direction. A long acrylic resin-containing optical film 301 having a width of 1.8 m, a length of 4000 m, and a film thickness of 30 μm was produced.
 なお、上記アクリル樹脂含有光学フィルムのTgは、115℃であった。 In addition, Tg of the said acrylic resin containing optical film was 115 degreeC.
 <アクリル樹脂含有光学フィルム302~312の作製>
 アクリル樹脂含有光学フィルム301の作製において、表3に記載のように、MD方向の予備延伸時の延伸倍率、温度、残留溶媒量及び延伸スパン、さらにMD方向の本延伸時の延伸倍率及び残留溶媒量を変化させ、トータル延伸倍率及び膜厚を変化させた以外は同様にして、アクリル樹脂含有光学フィルム302~312を作製した。
<Preparation of acrylic resin-containing optical films 302-312>
In the production of the acrylic resin-containing optical film 301, as shown in Table 3, the draw ratio, temperature, residual solvent amount and stretch span during preliminary stretching in the MD direction, and the stretch ratio and residual solvent during main stretching in the MD direction Acrylic resin-containing optical films 302 to 312 were produced in the same manner except that the amount was changed and the total draw ratio and film thickness were changed.
 得られたアクリル樹脂含有光学フィルム301~312を用いて、実施例1と同様な評価を行い、結果を表3に示した。 Using the obtained acrylic resin-containing optical films 301 to 312, the same evaluation as in Example 1 was performed, and the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 表3の結果より、本発明の光学フィルムであるアクリル樹脂含有光学フィルム301~310は、本発明に係る予備延伸を行うことにより、延伸応力が低く、擦り傷の発生や光学ムラの発生も低く抑制できており、総合的に優れた光学フィルムであることが分かる。 From the results shown in Table 3, the acrylic resin-containing optical films 301 to 310, which are the optical films of the present invention, have a low stretching stress and suppress the occurrence of scratches and optical unevenness by performing preliminary stretching according to the present invention. It can be seen that it is a comprehensively excellent optical film.
 本発明の光学フィルムの製造方法によって、搬送ローラーによる擦り傷の発生や光学的なムラの発生が低減された光学フィルムを製造でき、当該光学フィルムは、偏光板や液晶表示素子等に好適に用いられる。 According to the method for producing an optical film of the present invention, an optical film in which generation of scratches and optical unevenness by a transport roller is reduced can be produced, and the optical film is suitably used for a polarizing plate, a liquid crystal display element, and the like. .
 1 光学フィルムの製造装置
 2 ドープ(樹脂溶液)
 3 ウェブ(流延膜)
 4 剥離ローラー
 5,6,7 ガイドローラー
 8 光学フィルム
 101 流延装置
 101a 金属支持体(無端ベルト)
 101b ダイ
 101c 加熱装置
 101d 第1加熱風供給装置
 101e 第2加熱風供給装置
 101f 排気口
 102 MD方向への予備延伸装置(第1延伸装置)
 102d 延伸装置
 103 MD方向への本延伸装置(第2延伸装置)
 103d 延伸装置
 104 TD方向への延伸装置(TD延伸装置)
 104d 延伸装置
 105 乾燥装置
 106 巻取装置
 106a 巻き取られたロール状の光学フィルム
DESCRIPTION OF SYMBOLS 1 Optical film manufacturing apparatus 2 Dope (resin solution)
3 Web (casting membrane)
4 peeling roller 5, 6, 7 guide roller 8 optical film 101 casting apparatus 101a metal support (endless belt)
101b Die 101c Heating device 101d First heating air supply device 101e Second heating air supply device 101f Exhaust port 102 Pre-stretching device in MD direction (first stretching device)
102d Stretching device 103 Main stretching device in MD direction (second stretching device)
103d Stretching device 104 Stretching device in the TD direction (TD stretching device)
104d Stretching device 105 Drying device 106 Winding device 106a Rolled optical film wound up

Claims (8)

  1.  膜厚が10~40μmの範囲内であり、幅が1.4m以上である光学フィルムを溶液流延法によって製造する光学フィルムの製造方法であって、流延支持体より剥離したウェブを、MD方向に延伸倍率として1.01~1.10倍の範囲内で予備延伸した後、さらにMD方向に本延伸することを特徴とする光学フィルムの製造方法。 An optical film manufacturing method for manufacturing an optical film having a thickness in a range of 10 to 40 μm and a width of 1.4 m or more by a solution casting method, wherein a web peeled from a casting support is MD A method for producing an optical film, wherein the film is pre-stretched in a range of 1.01 to 1.10 times as a stretching ratio in the direction, and further stretched in the MD direction.
  2.  前記本延伸を、延伸倍率として1.15~2.50倍の範囲内で行うことを特徴とする請求項1に記載の光学フィルムの製造方法。 2. The method for producing an optical film according to claim 1, wherein the main stretching is performed within a range of 1.15 to 2.50 times as a stretching ratio.
  3.  前記予備延伸を、延伸開始時のウェブの下記式で表される残留溶媒量を20~100質量%の範囲内で行い、前記本延伸を、延伸開始時の当該残留溶媒量を1~30質量%の範囲内で行うことを特徴とする請求項1又は請求項2に記載の光学フィルムの製造方法。
     残留溶媒量(質量%)={(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)}×100
     ただし、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
    The pre-stretching is performed within the range of 20 to 100% by mass of the residual solvent represented by the following formula of the web at the start of stretching, and the main stretching is performed at a residual solvent amount of 1 to 30% by mass at the start of stretching. The method for producing an optical film according to claim 1, wherein the method is performed within a range of%.
    Residual solvent amount (% by mass) = {(mass before heat treatment of web−mass after heat treatment of web) / (mass after heat treatment of web)} × 100
    However, the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  4.  光学フィルムのガラス転移温度をTg(℃)としたとき、前記予備延伸を(Tg-100)~(Tg-20)℃の範囲内の温度で行い、前記本延伸を(Tg-10)~(Tg+100)℃の範囲内の温度で行うことを特徴とする請求項1から請求項3までのいずれか一項に記載の光学フィルムの製造方法。 When the glass transition temperature of the optical film is Tg (° C.), the preliminary stretching is performed at a temperature within the range of (Tg-100) to (Tg-20) ° C., and the main stretching is performed (Tg-10) to (T The method for producing an optical film according to any one of claims 1 to 3, wherein the method is performed at a temperature within a range of Tg + 100) ° C.
  5.  前記予備延伸の延伸スパンが2m以下であり、前記本延伸の延伸スパンが2m以上であることを特徴とする請求項1から請求項4までのいずれか一項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 4, wherein a stretching span of the preliminary stretching is 2 m or less and a stretching span of the main stretching is 2 m or more.
  6.  前記MD方向に予備延伸及び本延伸した後に、TD方向に1.3~3.0倍の範囲内で延伸することを特徴とする請求項1から請求項5までのいずれか一項に記載の光学フィルムの製造方法。 The pre-stretching in the MD direction and the main stretching, followed by stretching in the range of 1.3 to 3.0 times in the TD direction, according to any one of claims 1 to 5 Manufacturing method of optical film.
  7.  前記光学フィルムに用いる熱可塑性樹脂が、セルロースアシレート、アクリル樹脂及びセルロースアシレートとアクリル樹脂を混合した樹脂のいずれかから選択されることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学フィルムの製造方法。 The thermoplastic resin used for the optical film is selected from any one of cellulose acylate, acrylic resin, and a resin in which cellulose acylate and acrylic resin are mixed. The method for producing an optical film according to one item.
  8.  前記光学フィルムに用いる熱可塑性樹脂が、アクリル樹脂であることを特徴とする請求項7に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 7, wherein the thermoplastic resin used for the optical film is an acrylic resin.
PCT/JP2014/063179 2013-05-24 2014-05-19 Method for producing optical film WO2014188993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518229A JP6264373B2 (en) 2013-05-24 2014-05-19 Manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109534 2013-05-24
JP2013109534 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014188993A1 true WO2014188993A1 (en) 2014-11-27

Family

ID=51933546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063179 WO2014188993A1 (en) 2013-05-24 2014-05-19 Method for producing optical film

Country Status (2)

Country Link
JP (1) JP6264373B2 (en)
WO (1) WO2014188993A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137367A1 (en) * 2014-03-11 2015-09-17 コニカミノルタ株式会社 Optical film roll-body and method for manufacturing same, polarizing plate, and liquid crystal display device
JP2017001874A (en) * 2015-06-16 2017-01-05 コニカミノルタ株式会社 Manufacturing method of resin film
WO2020027082A1 (en) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114332A1 (en) * 2007-02-21 2008-09-25 Fujifilm Corporation Process for producing transparent polymer film, transparent polymer film produced thereby, retardation film, polarization plate and liquid crystal display apparatus
JP2008273029A (en) * 2007-04-27 2008-11-13 Fujifilm Corp Cycloolefin resin film, and polarization plate, optical compensation film, antireflection film and liquid crystal display device using it and manufacturing method of cycloolefin resin film
JP4277575B2 (en) * 2003-05-15 2009-06-10 コニカミノルタオプト株式会社 Method for producing cellulose ester film
WO2011118145A1 (en) * 2010-03-24 2011-09-29 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizing plate, and liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907387B2 (en) * 2006-02-28 2012-03-28 株式会社日本触媒 Retardation film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277575B2 (en) * 2003-05-15 2009-06-10 コニカミノルタオプト株式会社 Method for producing cellulose ester film
WO2008114332A1 (en) * 2007-02-21 2008-09-25 Fujifilm Corporation Process for producing transparent polymer film, transparent polymer film produced thereby, retardation film, polarization plate and liquid crystal display apparatus
JP2008273029A (en) * 2007-04-27 2008-11-13 Fujifilm Corp Cycloolefin resin film, and polarization plate, optical compensation film, antireflection film and liquid crystal display device using it and manufacturing method of cycloolefin resin film
WO2011118145A1 (en) * 2010-03-24 2011-09-29 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizing plate, and liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137367A1 (en) * 2014-03-11 2015-09-17 コニカミノルタ株式会社 Optical film roll-body and method for manufacturing same, polarizing plate, and liquid crystal display device
JP2017001874A (en) * 2015-06-16 2017-01-05 コニカミノルタ株式会社 Manufacturing method of resin film
WO2020027082A1 (en) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film
CN112513698A (en) * 2018-07-31 2021-03-16 柯尼卡美能达株式会社 Optical film, polarizer protective film, roll of optical film, and method for producing optical film
CN112513698B (en) * 2018-07-31 2023-08-15 柯尼卡美能达株式会社 Optical film, polarizing plate protective film, roll of optical film, and method for producing optical film
JP7452421B2 (en) 2018-07-31 2024-03-19 コニカミノルタ株式会社 Optical film, polarizing plate protective film, optical film roll, and optical film manufacturing method

Also Published As

Publication number Publication date
JP6264373B2 (en) 2018-01-24
JPWO2014188993A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
KR101313948B1 (en) Cellulosic resin film, process for producing cellulosic resin film, antireflection film, polarizer, and liquid-crystal display
KR20150136097A (en) Polarizing plate, method for producing same and liquid crystal display device
KR20160070810A (en) Polarizing plate and liquid crystal display device using same
JP2014149325A (en) Method for manufacturing optical film, method for manufacturing polarizing plate and method for manufacturing liquid crystal display device
WO2014136529A1 (en) Optical film, polarizing plate containing same and vertical alignment liquid crystal display device
JP2017219863A (en) Production method of cellulose acylate film
JP2007304559A (en) Polarizing plate protective film having polarized light scattering anisotropy, polarizing plate using the same and liquid crystal display device
JP2016212146A (en) Optical film and method for manufacturing the same
KR101841854B1 (en) Cellulose acylate film, polarizer, and liquid-crystal display device
JP6264373B2 (en) Manufacturing method of optical film
WO2015098491A1 (en) Cellulose-ester film, manufacturing method therefor, and polarizing plate
WO2015060167A1 (en) Phase difference film, polarization plate and liquid crystal display device
KR101709419B1 (en) Optical film, method for producing optical film, polarizing plate and liquid crystal display device
JPWO2007046228A1 (en) Optical film manufacturing method, optical film manufacturing apparatus, and optical film
JP2017121777A (en) Protection film laminate
JP5948870B2 (en) Liquid crystal display
JP2010197680A (en) Optical film, and polarizing plate and display apparatus using the same
JP2014081598A (en) Optical film and production method of the same, and polarizing plate
CN109844580B (en) Polarizing plate and liquid crystal display device
JP5861502B2 (en) Liquid crystal display
TW202108356A (en) Method for manufacturing polarizer and polarizer has enhanced durability in a high temperature and high humidity environment
JP6791139B2 (en) Polarizing plate and liquid crystal display device using it
JP6720706B2 (en) Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2014226800A (en) Production method of optical film
CN115698786A (en) Laminated film, polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801323

Country of ref document: EP

Kind code of ref document: A1